Prabhat Mishra - Swarup Bhunia
Mark Tehranipoor Editors

Hardware
P Security
and Trust

http://www.allitebooks.org

Hardware IP Security and Trust

vww . allitebooks.con]

http://www.allitebooks.org

Prabhat Mishra ® Swarup Bhunia « Mark Tehranipoor
Editors

Hardware IP Security
and Trust

@ Springer

Iwvww . allitebooks.cond

http://www.allitebooks.org

Editors

Prabhat Mishra Swarup Bhunia

Department of Computer and Department of Electrical and
Information Science and Engineering Computer Engineering

University of Florida University of Florida

Gainesville, FL, USA Gainesville, FL, USA

Mark Tehranipoor

Department of Electrical and
Computer Engineering

University of Florida

Gainesville, FL, USA

ISBN 978-3-319-49024-3 ISBN 978-3-319-49025-0 (eBook)
DOI 10.1007/978-3-319-49025-0

Library of Congress Control Number: 2016963250

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

vww . allitebooks.con]

http://www.allitebooks.org

Acknowledgements

This book would not be possible without the contributions of many researchers
and experts in the field of hardware security and trust. We would like to gratefully
acknowledge the contributions from the following authors who have contributed
book chapters:

* Adib Nahiyan, University of Florida, USA

* Debapriya Basu Roy, Indian Institute of Technology, Kharagpur, India
e Dr. Marc Stoettinger, TU Darmstadt, Germany

* Dr. Nicole Fern, University of California at Santa Barbara, USA

e Dr. Pramod Subramanyan, Princeton University, USA

* Farimah Farahmandi, University of Florida, USA

» Jaya Dofe, University of New Hampshire, USA

¢ Jonathan Frey, Draper, USA

¢ Kan Xiao, Intel, USA

* Prof. Debdeep Mukhopadhyay, Indian Institute of Technology, Kharagpur, India
e Prof. Domenic Forte, University of Florida, USA

* Prof. Hassan Salmani, Howard University, USA

* Prof. Qiang Xu, Chinese University of Hong Kong

* Prof. Qiaoyan Yu, University of New Hampshire, USA

* Prof. Sharad Malik, Princeton University, USA

* Prof. Sorin Alexander Huss, TU Darmstadt, Germany

* Prof. Tim Cheng, University of California at Santa Barbara, USA

* Prof. Yier Jin, University of Central Florida, USA

* Qihang Shi, University of Connecticut, USA

* Shivam Bhasin, Indian Institute of Technology, Kharagpur, India

* Sikhar Patranabis, Indian Institute of Technology, Kharagpur, India
* Yuanwen Huang, University of Florida, USA

* Yuejun Zhang, University of New Hampshire, USA

Iwvww . allitebooks.cond

http://www.allitebooks.org

vi Acknowledgements

This work was partially supported by National Science Foundation (CNS-1441667,
CNS-1558516, CNS-1603475, CNS-1603483), Semiconductor Research Corpo-
ration (2014-TS-2554, 2649) and Cisco. Any opinions, findings, conclusions or
recommendations presented in this book are only those of the authors and contrib-
utors and do not necessarily reflect the views of the National Science Foundation,
Semiconductor Research Corporation or Cisco.

vww . allitebooks.con]

http://www.allitebooks.org

Contents

Partl Introduction

1 Security and Trust Vulnerabilities in Third-Party IPs
Prabhat Mishra, Mark Tehranipoor, and Swarup Bhunia

Part I Trust Analysis

2 Security Rule Check..............oooiiiiiiiiii i
Adib Nahiyan, Kan Xiao, Domenic Forte, and Mark Tehranipoor

3 Digital Circuit Vulnerabilities to Hardware Trojans
Hassan Salmani and Mark Tehranipoor

4 Code Coverage Analysis for IP Trust Verification
Adib Nahiyan and Mark Tehranipoor

5 Analyzing Circuit Layout to Probing Attack
Qihang Shi, Domenic Forte, and Mark M. Tehranipoor

6 Testing of Side-Channel Leakage of Cryptographic
Intellectual Properties: Metrics and Evaluations
Debapriya Basu Roy, Shivam Bhasin, Sikhar Patranabis,
and Debdeep Mukhopadhyay

PartIII Effective Countermeasures

7 Hardware Hardening Approaches Using Camouflaging,
Encryption, and Obfuscation.........................coiiiiiiiiiiiiin..
Qiaoyan Yu, Jaya Dofe, Yuejun Zhang, and Jonathan Frey

8 A Novel Mutating Runtime Architecture for Embedding
Multiple Countermeasures Against Side-Channel Attacks............
Sorin A. Huss and Marc Stottinger

vww . allitebooks.con]

vii

http://www.allitebooks.org

viii Contents

Part IV Security and Trust Validation

9 Validation of IP Security and Trustcoooiiiiiiiiiinn.. 187
Farimah Farahmandi and Prabhat Mishra

10 IP Trust Validation Using Proof-Carrying Hardware 207
Xiaolong Guo, Raj Gautam Dutta, and Yier Jin

11 Hardware Trust Verification .. 227

Qiang Xu and Lingxiao Wei

12 Verification and Trust for Unspecified IP Functionality 255
Nicole Fern and Kwang-Ting (Tim) Cheng

13 Verifying Security Properties in Modern SoCs Using
Instruction-Level Abstractions.........................oooiiiii. 287
Pramod Subramanyan and Sharad Malik

14 Test Generation for Detection of Malicious Parametric Variations... 325
Yuanwen Huang and Prabhat Mishra
Part V Conclusion

15 The Future of Trustworthy SoC Design......................coooiiiit 343
Prabhat Mishra, Swarup Bhunia and Mark Tehranipoor

vww . allitebooks.con]

http://www.allitebooks.org

Abbreviations (Acronyms)

3D

3PIP

AES

ALU
AMASIVE

ASIC
ATPG
BDD
BEOL
BFM
BMC
CAD
CAE
CBC
CE
CEGIS
CIC
CISC
CM
CNF
CpP
CS
CTL
DFD
DFG
DFT
DIP
DPA
DPM
DRC

Three Dimensional

Third-Party Intellectual Property
Advanced Encryption Standard
Arithmetic Logic Unit

Adaptable Modular Autonomous SIde-Channel Vulnerability
Evaluator

Application-Specific Integrated Circuit
Automatic Test Pattern Generation
Binary Decision Diagram
Back-End-of-Line

Bus Functional Model

Bounded Model Checking
Computer Aided Design
Computer-Aided Engineering
Cipher Block Chaining

Circuit Editing

Counter-Example Guided Inductive Synthesis
Calculus of Inductive Construction
Complex Instruction Set Computer
Central Moment

Conjunctive Normal Form
Cross-plane port

Central Sum

Computation Tree Logic
Design-for-Debug

Data Flow Graph

Design for Test

Distinguishing inputs

Differential Power Analysis
Dynamic Power Management
Design Rule Check

Iwvww . allitebooks.cond

ix

http://www.allitebooks.org

X Abbreviations (Acronyms)

DSD Dynamic state-deflection

DSeRC Design Security Rule Check

DSP Digital Signal Processor

DTA Dynamic Taint Analysis

DTM Dynamic Thermal Management

ECC Elliptic Curve Cryptography

ECP Elliptic Curve Processor

EDA Electronic design automation

EEPROM Electrically Erasable Programmable Read-Only Memories
eMSK enhanced Multi-Segment Karatsuba

EOFM Electro-Optical Modulation

FANCI Functional Analysis for Nearly-unused Circuit Identification
FF Flip-flop

FIB Focused Ion Beam

FIFO First-In, First-Out

FIPS Federal Information Processing Standard

FP Floating Point

FPGA Field Programmable Gate Array

FSM Finite State Machine

FwW Firmware

HARPOON Hardware protection through obfuscation of netlist
HDL Hardware Description Language

HED Horner Expansion Diagram

HiFV Hierarchy-preserving Formal Verification
HLSM High-Level State Machine

HT Hardware Trojan

HW Hardware

1ATPG Automatic Test Pattern Generation

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers
IFS information flow security

IIR Interrupt Identification Register

ILA Instruction-Level Abstraction

Imp Implementation

IoT Internet of Things

1P Intellectual Property

IR Infra-Red

ISA Instruction Set Architecture

ITRS International Technology Roadmap for Semiconductors
K-Map Karnaugh Map

LED Light-Emitting Diode

LFF Largest Fanout First

LFSR Linear Feedback Shift Register

LTL Linear Temporal Logic

LUT Lookup table

Iwvww . allitebooks.cond

http://www.allitebooks.org

Abbreviations (Acronyms)

LVX Laser Voltage Techniques

M1 Metal 1

MMIO Memory Mapped Input/Output
MPU Micro-Processor Unit

MRA Mutating Runtime Architecture
MSB Most Significant Bit

MSK Multi-Segment Karatsuba

MUX Multiplexer

NI Network interface

NICV Normalized Inter Class Variance
NoC Network-on-chip

NOC-SIP NoC shielding plane

OTP One-Time Programmable Memory
OVM Open Verification Methodology
PAD Probe Attempt Detector

PBO Pseudo Boolean Optimization
PC Program Counter

PCC Proof-Carrying Code

PCH Proof-carrying hardware

PCHIP Proof-carrying hardware IP

PE Photon Emission

Pol Point of Interest

POS Product-of-Sums

PPIs Pseudo Primary Inputs

PPOs Pseudo Primary Outputs

PSL Property Specification Language
PUF Physical Unclonable Function
RAM Random Access Memory

RDA Received Data Available

RISC Reduced Instruction Set Computer
ROBDD Reduced Order Binary Decision Diagram
ROM Read-only-memory

RSA The Rivest-Shamir-Adleman cryptosystem
RSR Reconfigurable ShiftRows

RTL Register-Transfer Level

SAMD Shared-Address Multiple-Data
SAT Boolean Satisfiability Problem
SCA Side Channel Analysis

SEM Scanning electron microscopy
SHA-1 Secure Hash Algorithm 1

SM Standardized Moment

SMT Satisfiability Modulo Theories
SNR Signal to Noise Ratio

SoC System on Chip

SOP Sum-of-Products

xii Abbreviations (Acronyms)

SPA Simple Power Attack
Spec Specification
SPP The single-plane port

SRSWOR Simple Random Sampling Without Replacement
SRSWR Simple Random Sampling With Replacement

SSH Secure Shell

STG Signal Transition Graph

SW Software

TLM Transaction-level modeling

TLS Transport Layer Security

TOCTOU Time of Check To Time of Use

TSV Through-Silicon-Via

TTP trusted third party

TVLA Test Vector Leakage Assessment
TVVF Timing Violation Vulnerability Factor
UART Universal Asynchronous Receiver/Transmitter
UCl Unused Circuit Identification

uv Ultra-Violet

VLIW Very Large Instruction Word

XOR Exclusive-Or

Part I
Introduction

Chapter 1
Security and Trust Vulnerabilities
in Third-Party IPs

Prabhat Mishra, Mark Tehranipoor, and Swarup Bhunia

1.1 Introduction

Our daily life is intertwined in the fabric of Internet-of-Things (IoTs), a fabric in
which the number of connected computing devices exceeds the human population.
We anticipate over 50 billion devices to be deployed and mutually connected
by 2020 [1]. Security and trust are paramount considerations while designing
these systems. Majority of these IoT devices as well as embedded systems are
designed using both System-on-Chip (SoC) components and software applications.
In order to reduce design cost and meet shrinking time-to-market constraints, SoCs
are designed using third-party Intellectual Property (IP) blocks [2]. For example,
Fig. 1.1 shows a typical SoC with a processor core, a Digital Signal Processor (DSP),
memory (MEM), analog-to-digital (ADC) and digital-to-analog (DAC) converters,
communication network, peripherals (I/0), and so on. For the ease of illustration,
communication network is shown as an IP block instead of connectivity between
IPs and peripherals. In many cases, these IPs are designed by different companies
across the globe and travel through long supply chain involving multiple vendors,
as shown in Fig. 1.2. Security vulnerability of SoCs at different stages of its life
cycle is an important concern to SoC designers, system integrators, as well as to
the end users. Over the ages, hardware components, platforms, and supply chains
have been considered secure and trustworthy. However, recent discoveries and
reports on security vulnerabilities and attacks in microchips and circuits violate this
assumption [3].

Growing reliance on reusable hardware IPs, often gathered from untrusted third-
party vendors, severely affects the security and trustworthiness of SoC computing
platforms [3]. An important emerging concern with the hardware IPs acquired from

P. Mishra (><) « M. Tehranipoor ¢ S. Bhunia
University of Florida, Gainesville, FL, USA
e-mail: prabhat@ufl.edu; tehranipoor@ece.ufl.edu; swarup@ece.ufl.edu

© Springer International Publishing AG 2017 3
P. Mishra et al. (eds.), Hardware IP Security and Trust,
DOI 10.1007/978-3-319-49025-0_1

mailto:prabhat@ufl.edu
mailto:tehranipoor@ece.ufl.edu
mailto:swarup@ece.ufl.edu

4 P. Mishra et al.

PROCESSOR

Trojans *87

TRUST

G ME OK Backdoor

-"":\"Y'—"’
D
&

&

10 COMMUNICATION)

Fig. 1.1 Trusted SoC design using untrusted IPs

Analog/Mixed s%r"-'a!_

= (ADC/DAC/PLL/Power __,-"I Video/Graphics .'\‘ e |r . —~ N r‘la e
Management)] = Multiple IP Core Types © {)
| o (incl, peripheral drivers) L

= Processor Core R o .4_’.0“
= Memeory Controller Y - -

Network/comectvity —— @lobal Distribution of Semiconductor IP Vendors

Fig. 1.2 The long and globally distributed supply chain for hardware IPs makes them increasingly
vulnerable to diverse trust/integrity issues

external sources is that they may come with deliberate malicious implants to incor-
porate undesired functionality (e.g., hardware Trojan), undocumented test/debug
interface working as a hidden backdoor, or other integrity issues. For example,
a close inspection of an IP (listed as “TRUST ME” in Fig. 1.1) shows malicious
logic (hardware Trojan), potential backdoor as well as unknown (unspecified)
functionality. Untrusted IPs in an SoC can lead to security consequences for the end
user. For example, a hardware Trojan in a processor module can leak the secure key
or other protected data to the adversary. In fact, a hardware Trojan in the memory
IP would be able to access the secure key from the processor IP if the attacker
can carefully analyze the state transitions and able to reach a protected state in the
processor IP from any state in the memory IP. It is important to note that an IP from
a trusted company may have malicious implants if the IP was outsourced during
any of the design stages such as synthesis, verification, test insertion (DFT), layout,
fabrication, manufacturing testing, and post-silicon debug. Depending on the type
of IP vulnerability, an adversary can not only exploit hardware Trojans, but can also
perform side-channel attack, probing attack, FSM vulnerability-based attack, and

1 Security and Trust Vulnerabilities in Third-Party IPs 5

so on. This book provides a comprehensive coverage of SoC vulnerability analysis
and presents effective countermeasures and validation techniques to design trusted
SoCs using untrusted third-party IPs.

This chapter is organized as follows. Section 1.2 describes the current practice
of SoC design and validation methodology. Section 1.3 outlines security and trust
vulnerabilities in third-party IPs. Section 1.4 presents how to design trustworthy
SoCs using potentially untrusted third-party IPs. Finally, Sect. 1.5 provides the
organization of the remaining chapters.

1.2 Design and Validation of SoCs

System-on-Chip (SoC) integrates both hardware and software components into an
Integrated Circuit (IC) that can perform the desired functionality. The hardware
components can be processors, co-processors, controllers, converters (analog-to-
digital and digital-to-analog), FPGA, memory modules, and peripherals. Similarly,
the software components can be real-time operating systems and control programs.
A typical SoC can perform digital, analog as well as mixed-signal computations.
Figure 1.1 shows a block diagram of a typical SoC design. The example SoC
consists of processor, DSP, memory, converters, communication network, and
peripherals. SoCs are widely used in designing both IoT devices and embedded
systems in a wide variety of domains including communication, entertainment,
multimedia, automotive, avionics, and so on. The remainder of this section outlines
SoC design methodology followed by SoC validation techniques.

Figure 1.3 shows a typical top-down SoC design methodology. It starts with a
design specification, followed by hardware—software co-design (includes partition-
ing, code generation for software models, and synthesis, layout, and fabrication for
hardware models), and integration and verification. Some semiconductor companies
use the platform-based SoC design, which is a variation of the traditional top-down
methodology. In platform-based methodology, desired behavior (specification) is
mapped to the target platforms. Some parts of the design behavior may be available
as IPs, whereas the remaining parts need to be implemented in hardware or
software. Due to increasing SoC design complexity coupled with reduced time-to-
market constraints, semiconductor companies have opted for IP-based SoC design
methodology. This enables them to put together all the required components very
quickly (compared to top-down design methodology) followed by integration and
verification as outlined in Fig. 1.4.

SoC validation is a major challenge due to combined effects of increasing design
complexity and reduced time-to-market. Recent studies report that SoC validation
consumes up to 70 % resources (cost and time) of overall SoC design methodology
[4]. This cost computation includes system-level validation of architectural models,
pre-silicon validation as well as post-silicon validation of both functional behaviors
and non-functional requirements. Simulation is widely used form of SoC validation
using random, constrained random as well as directed test vectors. Since the total

6 P. Mishra et al.

Fig. 1.3 Traditional High-level

top-down SoC design Design Validation
methodology

Specification

Pre-Silicon

Partitionin g /! ; "
8 Validation / Verification

Software (Tasks) Hardware (RTL)

Synthesis/DFT

Fabrication

Hardware-Software Co-Design

Binaries System-on-Chip (SoC)

Manufacturing
Testing

Validation /

Verification Integration

1 Post-Silicon
Final Product Validation and Debug

number of possible input combinations (test vectors) can be exponential, simulation-
based approaches cannot guarantee completeness of verification. On the other hand,
formal methods, such as model (property) checking, equivalence checking, and
satisfiability (SAT) solving, can prove correctness but cannot handle large designs
due to state-space explosion. SoC verification experts use an efficient combination
of simulation-based techniques and formal methods. In a typical industrial setting,
full SoC is simulated using efficient test vectors, whereas some of the critical
components (e.g., security IPs and complex protocols) are verified using formal
methods. Unfortunately, these validation techniques are not designed to detect
security and trust vulnerabilities of SoCs [5-8].

1.3 Security and Trust Vulnerabilities in Third-Party IPs

Hardware IPs acquired from untrusted third-party vendors can have diverse security
and integrity issues. An adversary inside an IP design house involved in the IP
design process can deliberately insert a malicious implant or design modification

1 Security and Trust Vulnerabilities in Third-Party IPs 7

Fig. 1.4 IP-based SoC Pre-Silicon

design methodology Validation / Verification

Design Hardware IPs
Specification (RTL Models)

Integration

Synthesis/DFT

Layout

Fabrication

System-on-Chip (So(f)d
Manufacturing Post-Silicon
Testing Validation and Debug

to incorporate hidden and undesired functionality. Such additional functionalities
can serve broadly two purposes for an adversary: (1) it can cause malfunction in
the SoC that integrates the IP; and (2) it can facilitate information leakage through
a hardware backdoor that enables unauthorized access or can directly leak secret
information (e.g., cryptographic key, or internal design details of an SoC) from
inside a chip. Wide array of hardware Trojan designs including different forms of
combinational and sequential Trojans investigated by researchers, with payloads
causing malfunction or information leakage, would form a possible arsenal for
an adversary. An information leakage or hidden backdoor can give an attacker
illegal access to important systems or valuable data inside SoC during in-field
deployment of a system. Such an access can potentially be gained remotely through
a hardware backdoor. On the other hand, sudden malfunction of an electronic
component triggered by a malicious modification can allow an attacker to cause
catastrophic consequences in critical infrastructure. Both types of effects constitute
critical concerns with respect to national and personal security.

In addition to deliberate malicious changes in a design, IP vendors can also
unintentionally incorporate design features, e.g., hidden test/debug interfaces that
can create critical security loopholes. In 2012, a breakthrough study by a group
of researchers in Cambridge revealed an undocumented silicon level backdoor in
a highly secure military-grade ProAsic3 FPGA device from MicroSemi (formerly
Actel) [9]. Similarly, IPs can have uncharacterized parametric behavior (e.g.,
power/thermal) which can be exploited by an attacker to cause irrecoverable damage
to an electronic system. In a recent report, researchers have demonstrated such

8 P. Mishra et al.

Threats at IP Level

Malicious Structural Hidden Backdoors (due to Malicious Parametric
Modifications Test/Debug Interface) Changes
' ’_I_‘ |
Seq. Comb. Debug Test Pﬁwer Perf. Reliability
Trojan Trojan Mode Mode Attack Attack Attack

Fig. 1.5 The taxonomy of trust issues for hardware IPs

an attack where a malicious upgrade of a firmware destroys the processor it is
controlling by affecting the power management system [10]. It manifests a new
attack mode for IPs, where firmware/software update can maliciously affect the
power/performance/temperature profile of a chip to either destroy a system or reveal
secret information through appropriate side-channel attack, e.g., a fault or timing
attack [11]. Hence, there is a critical need to perform rigorous and comprehensive
analysis of trust/integrity issues in hardware IPs and develop effective low-cost
countermeasures to protect SoC designers as well as end users against these issues.

Digital IP comes in several different forms: (1) soft IP (e.g., register transfer
level IP), (2) firm IP (e.g., gate level IP), and (3) hard IP (e.g., layout level IP).
All forms of IPs are vulnerable to the above-mentioned trust issues. Figure 1.5
shows the major classes of trust/integrity issues for hardware IPs. First, an adversary
can implant combinational and sequential Trojans, which are triggered by internal
node conditions. It is expected that an intelligent adversary would make the
trigger condition of these Trojans rare, to evade detection during regular functional
testing [12]. A combinational Trojan is activated by a trigger condition, which
is a Boolean function of internal node values. On the other hand, a sequential
Trojan is activated by a sequence of rare conditions and is realized with a state
machine comprising of one or more state elements. In general, these Trojans can
have two types of payloads (which indicate the effect of Trojan): either malfunction
or information leakage, as mentioned earlier. The latter can be accomplished by
leaking secret information either through output ports as logic values or through
side-channel information leakage, i.e., adding single bit of information at a time to
the power signature to leak the key from a crypto IP [13]. Both types of Trojans can
have varying complexity, which are expected to correlate well with the triggering
probability. A more complex combinational (or sequential) Trojan is likely to use
more nodes (trigger inputs) to realize a trigger condition and hence a more rare
activation condition.

The second class of trust/integrity issues would relate the apparently benign
test/debug interface which makes IPs vulnerable to diverse security attacks during
field operation. For example, a scan chain in crypto IP that interfaces with key-
dependent logic, if accessible postfabrication in an SoC, can enable mounting a

1 Security and Trust Vulnerabilities in Third-Party IPs 9

scan-based controllability/observability attack leading to leakage of the secret key.
Similarly, debug interface in an SoC that allows post-silicon validation, debug, and
failure analysis is well-known vulnerability for diverse attacks. A recent incident
points to such a vulnerability [9]. A study revealed an undocumented silicon level
backdoor in a highly secure military-grade reconfigurable device from MicroSemi.
This backdoor had a key or passcode as Microsemi puts it, which was extracted
in affordable time and effort by the researchers using a highly sensitive differential
power analysis technique. With this backdoor, an attacker has access to different
chip components like non-volatile memory (NVM), array bitstream, etc. An attacker
can utilize this to remotely reprogram as well as disable the chip even if a user
locks it with his/her own user key. Microsemi has confirmed the presence of this
structure as a test/debug interface with JTAG, controllable, and usable only by the
manufacturer. The concern is that they cannot be fixed by software antivirus and
hence those chips which are deployed remain susceptible. It is important to analyze
if such a test/debug interface creates either direct (logic-based) or indirect (side-
channel) vulnerability in terms of information leakage.

The third class of Trojan relates to hidden input/operating conditions that can
bring an IP outside safe operating points, such as attacks where an IP violates
the peak power or temperature constraint. Since many third-party IPs may not be
characterized well with their parametric behavior, it makes them vulnerable with
respect to attacks where an attacker tries to exercise input (possibly rare) conditions
to violate non-functional constraints. Such a condition can impose serious threat
where the firmware/software/input can be used to directly attack the hardware, as
reported in [10]. This book presents analysis of major types of attacks at the IP level
and their implications in SoC security and trust.

1.4 Trustworthy SoC Design Using Untrusted IPs

Recent research efforts have targeted IP trust assurance. These efforts can be
classified into two broad categories: (1) test and verification solutions, where a set
of test patterns aim at identifying unknown hidden Trojans in an IP; and (2) design
solutions, where SoC designers follow a pre-defined protocol with the IP providers.
Existing works on test/verification solutions have considered both statistical and
directed test generation. The scalability of the approach to large designs or various
forms of IPs and Trojans has not been extensively studied. A salient work in the
second category is based on embedding proof-carrying-code (PCC) into a design,
where the SoC designer provides a set of proofs to an IP vendor for embedding into
the IP, which can then be checked by the SoC designer for integrity verification.
While such a technique can be effective to provide high level of assurance to
SoC designer on certain properties and components of an IP, it cannot provide
comprehensive assurance in all structural components of an IP. An attacker of the
IP can evade the protection of PCCs by incorporating a Trojan in logic blocks not
covered by them. Furthermore, it may incorporate considerable design overhead due

10 P. Mishra et al.

to integration of the PCCs and imposes a significant requirement and binding for the
SoC designer to interact with an IP vendor during the IP design process.

Due to their stealthy nature and practically infinite Trojan space (in terms of
trigger conditions, forms, and sizes), a cleverly inserted Trojan in an IP integrated
into a large SoC is highly likely to evade conventional post-silicon testing. Fur-
thermore, malicious hardware can easily bypass traditional software-implemented
defense techniques as it is a layer below the entire software stack. Similarly, an
apparently benign debug/test interface or uncharacterized parametric behavior under
rare input conditions can be exploited by an adversary during field usage. Existing
security analysis and trust validation at IC level do not readily extend to hardware
IPs used in an SoC due to the following reasons.

 Different Threat Model: Trust/integrity issues at IP level fall into a fundamentally
different class than those at IC primarily because third-party IPs do not come
with golden reference models. It prevents performing conventional sequential
equivalence check (SEC) to identify an anomaly. Most often these IPs come with
simply a functional specification (often incomplete) and optionally high-level
block diagrams. On the other hand, for IC, either a set of golden ICs or a golden
design at some abstraction level is used as a reference.

* Hidden Test/Debug Interface: Unlike ICs, where test/debug interfaces that go into
a design are available to test engineers during trust validation, IPs can include
hidden test/debug interface that can create major security issue, as discovered
recently.

* Parametric Vulnerability: Power/temperature/performance behavior of an IP may
not be adequately verified by an IP vendor, which can create unanticipated
vulnerability, as mentioned earlier.

Fortunately, an IP of any form provides an important advantage with respect to
trust verification. It is not really a black box and one can exploit the structural/func-
tional information about the constituent logic blocks (e.g., datapath) to efficiently
identify diverse trust issues. Three major types of IP trust validation solutions, as
illustrated in Fig. 1.6, are detailed below.

Functional Analysis The functional analysis can be performed in two steps. First,
it can employ a statistical random testing approach, which aims at activating
arbitrary Trojan instances. Published results in this area show that such an approach
can be highly effective for small Trojans, particularly combinational ones [14]. It
tries to bias a random test generator toward possible malicious implants. However,
such an approach generally is not effective for larger Trojans whose activation
conditions are random-resistant. Statistical random tests will be complemented with
directed tests.

Structural Analysis It is important to ensure that an IP block performs exactly as
intended in the specification (nothing more, nothing less), which requires evaluation
of both state machine and datapath. To check the integrity of the state transition
function, one can employ a self-referencing approach [15], which compares the
temporal behavior of a finite state machine (FSM) at two different time instants

1 Security and Trust Vulnerabilities in Third-Party IPs 11

SoC Design Flow

-+-+-'\

Hardware IPs }

IP Trust/Integrity
Issues

P !\ Functional Validation
i (Statistical Approach)

Structural Validation

{{ Check Integrity of FSM |
i (Self-referencing Approach)

SoC Integration \ | ik ety of Lo 2
\ It (Formal Approach)

Design Convergence 2 Pa;“me"i’:g:ud“ﬁ"“
i (Property Checking)

% J \ P,

Fig. 1.6 Different classes of IP trust validation approaches which can potentially be integrated for
higher level of confidence

to identify malicious modification of the FSM. The basic idea is that a sequential
Trojan (e.g., a counter Trojan) in a design would trigger uncorrelated activities in
the state machine and hence can be isolated. Self-referencing will be complemented
with a formal verification approach. Formal verification methods make use of
mathematical techniques to guarantee the correctness of a design with respect to
some specified behavior. Unfortunately, existing methods often fail for large IP
blocks due to state-space explosion during equivalence checking unless the structure
of specification and implementation are very similar. Hence, new scalable formal
methods for structural trust verification of IP need to be developed [7].

Parametric Analysis It is also important to check various properties of IPs
including peak power and peak temperature for trust assurance. An attacker can
generate a power virus (through software/firmware/input control) that can maximize
the switching activity in the IP. In case the peak power violates the threshold, the
designers may need to re-design the IP block to reduce the peak power. An attacker
can develop mechanisms to produce a temperature virus that can generate sustained
peak power to produce peak temperature. In case the temperature virus can increase
the IP temperature beyond threshold, it can lead to reliability, security, and safety
concerns.

Secure by Design As an alternative or complementary approach to IP level trust
validation, judicious design solutions can be used to protect SoCs from malicious

12 P. Mishra et al.

behavior of untrusted IPs. Such a solution would often require collaboration
between SOC design house and IP vendors. The central idea for such secure
by design solution is to design an IP with specific provable properties whose
trustworthiness can be easily established during SoC integration. An SoC designer
would ask an IP vendor to embed a set of pre-defined verifiable security assertions
into an IP which can be checked—e.g., using formal methods, to verify the trust
level of the IP. Any violation of the security assertions/checks would indicate the
IP being non-compliant and hence potentially malicious. Major challenges with this
approach include derivation of appropriate security checks for different functional
blocks in a design, the design overhead due to insertions of security checks, and
finally, difficulty to safe-guard the entire design. Besides, such an approach requires
change in the current business model where IPs are sold to chip manufacturers as
commodity products with little or no customization.

1.5 Book Organization

This book is organized as follows. Chapters 2—5 present several trust vulnerability
analysis techniques. Chapters 6—7 provide effective countermeasures against various
forms of attacks. Chapters 8—14 survey efficient techniques for testing and validation
of hardware IP security and trust. Finally, Chap. 15 concludes the book.

* Chapter 2 presents a framework to analyze design vulnerabilities at different
abstraction levels and assess its security at design stage.

* Chapter 3 describes vulnerability analysis for both gate- and layout-level designs
to quantitatively determine their susceptibility to hardware Trojan insertion.

* Chapter 4 presents an interesting case study to identify suspicious signals using
both formal and semi-formal coverage analysis methods.

* Chapter 5 surveys existing techniques in performing probing attacks, the problem
of protection against probing attacks, and presented a layout-driven framework
to assess designs for vulnerabilities to probing attacks.

* Chapter 6 reviews three major security hardening approaches—camouflaging,
logic encryption/locking, and design obfuscation—that are applied to ICs at
layout, gate, and register transfer levels.

* Chapter 7 presents a mutating runtime architecture to support system designers
in implementing cryptographic devices hardened against side-channel attacks.

* Chapter 8 surveys the existing security validation methods for soft IP cores using
a combination of simulation-based validation and formal methods.

* Chapter 9 utilizes model checking and theorem proving using proof-carrying
hardware for trust evaluation.

e Chapter 10 describes three methods to detect potential hardware Trojans by
utilizing Trojan characteristics. It also outlined how a stealthy Trojan can evade
these methods.

Security and Trust Vulnerabilities in Third-Party IPs 13

Chapter 11 outlines how to exploit unspecified functionality for information
leakage and presented a framework for preventing such attacks.

Chapter 12 proposes mechanism for specifying security properties and ver-
ifying these properties across firmware and hardware using instruction-level
abstraction.

Chapter 13 describes how to perform test generation for detecting malicious
variations in parametric constraints.

Chapter 14 covers side-channel testing using three metrics, along with practical
case studies on real unprotected and protected targets.

Chapter 15 concludes the book and provides a future roadmap for trustworthy
SoC design.

References

1.

10.

11.

12.

13.

D. Evans, Cisco white paper on the internet of things: how the next evolution of the internet is
changing everything (April 2011). www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_
IBSG_0411FINAL.pdf. Accessed 8 Nov 2016

. M. Keating, P. Bricaud, Reuse Methodology Manual for System-on-a-Chip Designs (Kluwer,

Norwell, MA, 1998)

. S. Bhunia, D. Agrawal, L. Nazhandali, Guest editors’ introduction: trusted system-on-chip with

untrusted components. IEEE Des. Test Comput. 30(2), 5-7 (2013)

. M. Chen, X. Qin, H. Koo, P. Mishra, System-Level Validation: High-Level Modeling and

Directed Test Generation Techniques (Springer, New York, 2012)

. Y. Huang, S. Bhunia, P. Mishra, MERS: statistical test generation for side-channel analysis

based Trojan detection, in ACM Conference on Computer and Communications Security (CCS)
(2016)

. X. Guo, R. Dutta, P. Mishra, Y. Jin, Scalable SoC trust verification using integrated theorem

proving and model checking, in IEEE International Symposium on Hardware Oriented
Security and Trust (HOST) (2016), pp. 124-129

. F. Farahmandi, Y. Huang, P. Mishra, Trojan localization using symbolic algebra, in Asia and

South Pacific Design Automation Conference (ASPDAC) (2017)

. X. Guo, R. Dutta, Y. Jin, F. Farahmandi, P. Mishra, Pre-silicon security verification and

validation: a formal perspective, in ACM/IEEE Design Automation Conference (DAC) (2015)

. S. Skorobogatov, C. Woods, Breakthrough silicon scanning discovers backdoor in military

chip, in CHES 2012. Published in Lecture Notes in Computer Science, vol. 7428 (2012),
pp. 23-40

Ellen Messmer, RSA security attack demo deep-fries Apple Mac components, Net-
work World (2014). http://www.networkworld.com/article/2174737/security/rsa-security-
attack-demo-deep-fries-apple-mac-components.html

P.C. Kocher, Timing attacks on implementations of diffie-hellman, RSA, DSS, and other
systems, in CRYPTO (1996), pp. 104-113

F. Wolff, C. Papachristou, R. Chakraborty, S. Bhunia, Towards Trojan-free trusted ICs: problem
analysis and a low-overhead detection scheme, in Design Automation and Test in Europe
(DATE) (2008)

L. Lin, W. Burleson, C. Parr, MOLES: malicious off-chip leakage enabled by side-channels, in
International Conference on CAD (ICCAD) (2009)

www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.networkworld.com/article/2174737/security/rsa-security-attack-demo-deep-fries-apple-mac-components.html
http://www.networkworld.com/article/2174737/security/rsa-security-attack-demo-deep-fries-apple-mac-components.html

14 P. Mishra et al.

14. R. Chakraborty, F. Wolff, S. Paul, C. Papachristou, S. Bhunia, MERO: a statistical approach for
hardware Trojan detection, in Workshop on Cryptographic Hardware and Embedded Systems
(CHES) (2009)

15. S. Narasimhan, X. Wang, D. Du, R. Chakraborty, S. Bhunia, TeSR: a robust temporal self-
referencing approach for hardware Trojan detection, in 4th IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST) (2011)

Part I1
Trust Analysis

Chapter 2
Security Rule Check

Adib Nahiyan, Kan Xiao, Domenic Forte, and Mark Tehranipoor

2.1 Introduction

With the emergence of information technology and its critical role in our daily
lives, the risk of cyber attacks is larger than ever before. Many security systems
or devices have critical assurance requirement. Their failure may endanger human
life and environment, cause serious damage to critical infrastructure, hinder personal
privacy, and undermine the viability of whole business sectors. Even the perception
that a system is more vulnerable than it really is (e.g., paying with a credit card
over the Internet) can significantly impede economic development. The defense
against intrusion and unauthorized use of resources with software has gained
significant attention in the past. Security technologies, including antivirus, firewall,
virtualization, cryptographic software, and security protocols, have been developed
to make systems more secure.

While the battle between software developers and hackers has raged since the
1980s, the underlying hardware was generally considered safe and secure. However,
in the last decade or so, the battlefield has expanded to hardware domain, since
emerging attacks on hardware are shown to be more effective and efficient than
traditional software attacks in some aspects. For example, while the cryptographic
algorithms have been improved and become extremely difficult (if not impossible) to
break mathematically, their implementations are often not. It has been demonstrated
that the security of cryptosystems, system on chips (SoCs), and microprocessor
circuits can be compromised using timing analysis attacks [1], power analysis

A. Nahiyan (<) * D. Forte « M. Tehranipoor
University of Florida, Gainesville, FL, USA
e-mail: adib1991 @ufl.edu; dforte@ece.ufl.edu; tehranipoor@ece.ufl.edu

K. Xiao
Intel, Santa Clara, CA, USA
e-mail: kan.xiao@intel.com

© Springer International Publishing AG 2017 17
P. Mishra et al. (eds.), Hardware IP Security and Trust,
DOI 10.1007/978-3-319-49025-0_2

mailto:adib1991@ufl.edu
mailto:dforte@ece.ufl.edu
mailto:tehranipoor@ece.ufl.edu
mailto:kan.xiao@intel.com

18 A. Nahiyan et al.

attacks [2], exploitation of design-for-test (DFT) structures [3—5], and fault injection
attacks [6]. These attacks can effectively bypass the security mechanisms built
in the software level and put devices or systems at risk. These hardware based
attacks aim to exploit the vulnerabilities in the design which are introduced either
unintentionally or intentionally during the IC design flow.

Many security vulnerabilities in ICs can be unintentionally created by design
mistakes and designer’s lack of understanding of security problems. Further, today’s
CAD tools are not equipped with understanding security vulnerabilities in integrated
circuits. Therefore, a tool can introduce additional vulnerabilities in the circuit [7, 8].
These vulnerabilities can facilitate attacks such as fault injection or side-channel
based attacks. Also, these vulnerabilities can cause sensitive information to be
leaked through observable points which are accessible to an attacker or give
unauthorized access to an attacker to control or affect a secured system.

Vulnerabilities can also be intentionally introduced in ICs in the form of mali-
cious modifications, referred to as hardware Trojans [9]. Due to short time-to-market
constraints, design houses are increasing being dependent on third party to procure
IPs. Also, due to the ever increasing cost of manufacturing ICs, design houses
rely on untrusted foundry and assembly for fabricating, testing, and packaging ICs.
These untrusted third party IP owners or foundries can insert hardware Trojans to
create backdoors in the design through which sensitive information can be leaked
and other possible attacks (e.g., denial of service, reduction in reliability, etc.) can
be performed.

It is of paramount importance to identify security vulnerabilities during hardware
design and validation process, and address them as early as possible due to the
following reasons: (1) there is little or no flexibility in changing or updating post-
fabricated integrated circuits; (2) The cost of fixing a vulnerability found at later
stages during the design and fabrication processes is significantly higher following
the well-known rule-of-ten (the cost of detecting a faulty IC increases by an order
of magnitude as we advances through each stage of design flow). Moreover, if a
vulnerability is discovered after manufacturing while the IC is in-field, it may cost
a company millions of dollars in lost revenues and replacement costs.

Identifying security vulnerabilities requires extensive knowledge of hardware
security, which design engineers lack due to the high complexity and diversity
of hardware security issues. Hence, hardware security engineers are required to
analyze circuit implementations and specification, and identify potential vulnerabil-
ities. This requires engineers with significant knowledge of different vulnerabilities
stemming from diverse set of existing and emerging attacks. It is prohibitively
expensive for a design house to maintain a large team of security experts with high
expertise while the growing complexity of modern designs significantly increases
the difficulty of manual analysis of security vulnerabilities. Poor security check
could result in unresolved security vulnerabilities along with large design overhead,
development time, and silicon cost [10].

Such limitations suggest to automate the process of security vulnerability
analysis during design and validation phases. In this chapter, we present a frame-
work, called Design Security Rule Check (DSeRC) [11], to be integrated in the

2 Security Rule Check 19

conventional design flow to analyze vulnerabilities of a design and assess its security
at various stages of design process, namely register transfer level (RTL), gate-level
netlist, design-for-test (DFT) insertion, physical design, etc. DSeRC framework
is intended to be used as security subject matter expert for design engineers.
To achieve this, one needs a comprehensive list of vulnerabilities for ICs. The
vulnerabilities are then tied with rules and metrics, so that each vulnerability can
be quantitatively measured. The DSeRC framework will allow the semiconductor
industry to systematically identify vulnerabilities and security issues before tape-
out in order to include proper countermeasures or refine the design to address them.

The rest of the chapter is organized as follows: In Sect. 2.2, we present what are
the security assets and attack models. Here, we also talk about who are potential
adversaries and how they can get unauthorized access to assets. In Sect.2.3, we
present the proposed DSeRC framework, vulnerabilities, and the associated metrics
rules. We present in detail how the vulnerabilities are introduced at different stages
of design process. We also present a brief overview of the rules and metrics which
are required to quantitatively analyze vulnerabilities. In Sect.2.4, we discuss the
required tasks for the development DSeRC framework. Finally, Sect. 2.5 concludes
the chapter.

2.2 Security Assets and Attack Models

To build a secure integrated circuit, a designer must decide what assets to protect,
and which of the possible attacks to investigate for. Further, IC designers must
also understand who the players (attackers and defenders) are in the IC design
supply chain and have the means for quickly evaluating the security vulnerabilities
and the quality of the countermeasures against a set of well-defined rules and
metrics. Three fundamental security factors (security assets, potential adversaries,
and potential attacks) are associated with security checks in integrated circuits,
which are discussed in the following.

2.2.1 Asset

As defined in [10], asset is a resource of value which is worth protecting with respect
to the adversary. An asset may be a tangible object, such as a signal in a circuit
design, or may be an intangible asset, such as controllability of a signal. Sample
assets that must be protected in an SoC are listed below [12]:

* On-device key: Secret key, e.g., private key of an encryption algorithm.
These assets are stored on chip in some form of non-volatile memory. If
these are breached, then the confidentiality requirement of the device will be
compromised.

20 A. Nahiyan et al.

* Manufacture firmware: Low level program instructions, proprietary firmware.
These assets have intellectual property values to the original manufactures and
compromising these assets would allow an attacker to counterfeit the device.

* On-device protected data: Sensitive data such as user’s personal information
and meter reading. An attacker can invade someone’s privacy by stealing these
assets or can benefit himself/ herself by tampering with these assets (meter
reading).

* Device configuration: Configuration data determining which resources are
available to users. These assets determine which particular services or resources
are available to a particular user and an attacker may want to tamper with these
assets to gain illegal access to these resources.

¢ Entropy: Random numbers generated for cryptographic primitives, e.g., initial-
izing vector or cryptographic key generation. Successful attacks on these assets
would weaken cryptographic strength of a device.

The security assets are known to the hardware designers based on the target
specifications of a design. For example, a designer knows that the private encryption
key used by the crypto-module is an asset and also knows where the key is located
in the SoC. Different types of assets and their locations in an SoC are shown in
Fig.2.1.

Fig. 2.1 Assets in SoC. Source: Intel

vww . allitebooks.con]

http://www.allitebooks.org

2 Security Rule Check 21

2.2.2 Potential Access to Assets

The aim of an attack is usually to obtain access to assets. There are three types of
attacks to gain access to assets depending on attackers’ abilities: remote attacks,
non-invasive physical attacks, and invasive physical attacks.

Remote Attacks In this case an attacker has no physical access to the device;
i.e., the attacker cannot touch the device. The attacker can still perform timing
[13] and electromagnetic [14] side-channel attacks to remotely extract private key
from devices such as smartcards. It has also been demonstrated that an attacker can
remotely access the JTAG port and compromise the secret key stored in smartcard
of a set-top box [15].

It is also possible to remotely access the scan structure of a chip. For example,
in automotive applications, the SoC controlling critical functions such as breaks,
power-train, air bags go into “test-mode” every time the car is turned off or on. This
key-off/on tests ensure that these critical systems are tested and working correctly
before every drive. However, modern cars can be remotely turned on or off, either by
trusted parties such as roadside assistance operators or by malicious parties as shown
in recent news. Remotely turning the car on or off, allows access to the SoC’s test
mode which can be used to obtain information from the on-chip memory or force
unwanted functions.

Remote attacks also include those that utilize the weakness of hardware, such as
buffer overflow, integer overflow, heap corruption, format string, and globbing [16].

Non-Invasive Physical Attacks Such attacks are usually of low-budget and do not
cause the destruction of the device under attack. Basic attacks consist of using the
primary inputs and outputs to take advantage of security weaknesses in the design
to obtain sensitive information. Additionally, more advanced attacks use JTAG
debug, boundary scan I/0, and DFT structures to monitor and/or control system
intermediate states, or snoop bus lines and system signals [4]. Other attacks consist
of injecting faults to cause an error during computation of cipher algorithms and
exploit the faulty results to extract the asset (e.g., private key).

Semi-Invasive Physical Attacks Semi-invasive attacks fall between non-invasive
and invasive physical attacks. These attacks present a greater threat because they
are more effective than non-invasive attacks but can be performed at a much lower
cost than an invasive physical attack. Semi-invasive physical attacks require partial
depackaging the chip to get access to its surface; but unlike invasive attacks, these
attacks do not require complete removal of the internal layers of the chip. Such
attacks include injecting faults to modify SRAM cells content or change the state
of a CMOS transistor and gain control of a chip’s operation or bypass its protection
mechanisms [17].

Invasive Physical Attacks These fall under the most sophisticated and expensive
attacks and require advanced technical skills and equipment. In these attacks,
chemical processes or precision equipment can be used to physically remove

22 A. Nahiyan et al.

Untrusted 3PIP
(Hardware Trojan)
RTL sae
w2 ':rI: (" e 3 \“. Remote Attacker
arip = B - j .. WA I (Side Channel)

SoC Synthesis L, Physical
Integrator DFT & DFD Layout

F d
Rogue Employee Unintentional ouncry End User
g ploy - (Hardware JTAG
(Hardware Trojan) Vulnerability Trofan) ()

Fig. 2.2 Potential adversaries in different stages of SoC design process

Professional
Attacker
(Microprobing)

CAD Tools

— Fabrication ———> ((A))
oduct

micrometer thin layers of the device. Micro-probes can then be used to read values
on data buses or inject faults into internal nets in the device to activate specific parts
and extract information. Such attacks are usually invasive, require total access to the
device, and result in destruction of the device.

2.2.3 Potential Adversary for Intentional Attacks

It is important to understand the potential adversaries who would utilize the security
vulnerabilities to perform attacks. This may help designers in comprehending
adversaries’ capabilities and choosing right countermeasures depending on the
target adversary. Adversary might be an individual or a party who intend to
acquire, damage, or disrupt an asset for which he/she does not have permission
to access. Considering an integrated circuit design process and entities involved in
it, adversaries can be categorized into insiders and outsiders. Figure 2.2 shows the
potential adversaries in different stages of SoC design process.

Insiders The design and manufacturing of integrated circuits have become more
sophisticated and globally distributed with a higher possibility of being attacked by
insiders who understand details of the design. An insider could be a rogue employee
who work for design house, system integrator or could be a untrusted 3PIP, or a
foundry. An insider:

» Has direct access to the SoC design either as an RTL or gate-level netlist, or as a
GDSII layout file.

* Has high technical knowledge from the assumption that he/she is employed by a
company in the IC design and supply chain.

* Has the capability to make modifications to the design, e.g., inserting hardware
Trojans [9, 18]. These hardware Trojans can cause denial of service or create
backdoors in the design through which sensitive information can be leaked. Other
possible insider attacks are reduction in circuit reliability by manipulating circuit
parameters, asset leakage, etc.

2 Security Rule Check 23

Outsiders This class of attackers are assumed to have access to end products in the
market (e.g., a packaged IC). Outsider attackers can be divided into three groups
based on their capabilities:

* Remote hacker: These attackers have no physical access to the device and must
employ remote attacks described in Sect. 2.2.2, although they may have physical
access to a similar device to develop their attack strategy. These attackers
generally rely on exploiting software/hardware vulnerabilities, user errors, and
design bugs to gain access to assets.

* End user: This group of attackers typically aim to gain free access to contents
and services. In this case, the curious end users may rely on techniques already
developed by professional attackers to carry their attack. For example, some
hobbyists may find a way to jailbreak iPhone or Xbox gaming consoles and
post the procedure on social media allowing end users with less expertise to
duplicate the process. Jailbreaking allows users to install jailbreak programs and
make Apple or Microsoft lose profits [19].

* Professional attacker: The most technically capable attackers are security
experts or state-sponsored attackers whose motives are driven by financial or
political reasons. These groups are capable of executing all types of attacks,
including the more expensive invasive attacks described in Sect.2.2.2, which
requires removing the chip package and probing internal signals.

An Insider can more easily introduce or exploit the vulnerabilities in a design
compared to an outsider. The main challenge for an outsider to perform an attack is
that the internal functionality of the design is not known to the attacker. An outsider
can reverse engineer the functionality of a chip but this technique would require
extensive resource and time.

2.3 DSeRC: Design Security Rule Check

In order to identify and evaluate vulnerabilities associated with ICs, Design Security
Rule Check (DSeRC) framework is to be integrated into the conventional digital
IC design flow, as shown in Fig.2.3. DSeRC framework will read the design
files, constraints, and user input data, and check for vulnerabilities at all levels of
abstraction (RTL, gate level, and physical layout level). Each of the vulnerabilities
is to be tied with a set of rules and metrics so that each design’s security can be
quantitatively measured. At RTL, the DSeRC framework will assess the security
of IPs which are either developed in-house or procured from third party (3P); and
will provide feedback to design engineers so that the identified security issues
can be addressed. After resolving the security vulnerabilities at RTL, the design
will be synthesized to gate level and design-for-test (DFT) and design-for-debug
(DFD) structures will be inserted. Then, DSeRC framework will analyze the gate-
level netlist for security vulnerabilities. The same process will continue for the
physical layout design as well. Through this process, the DSeRC framework will

24 A. Nahiyan et al.

RTL S
Code Verilog/ RTL Level
VHDL DSeRC | ————p
Synthesis
Tools
} 2
£
DFT/DFD @ g
Tools 3@
X o
| 23
€T
c £
— s
Gate Level Gate Level g =
Netlist DSeRC > 52
=C
)
7]
2
Physical Design
Tools
Layout Level
Layout DSeRC D EE—

Final S Ab E
; oundry
Design v

Fig. 2.3 DSeRC framework

allow the designers to identify and address security vulnerabilities at earliest design
steps. This will significantly improve the security of ICs as well as considerably
reduce the development time and cost by reducing the time-to-market constraint.
Also, the DSeRC framework will allow the designer to quantitatively compare
different implementation of same design and thereby allow the designer to optimize
performance without compromising security.

The DSeRC framework will need some input from the designer. For example,
the security assets need to be specified by hardware designers based on the target
specifications of a design. The security vulnerabilities and the corresponding metrics
and rules required for the development of the DSeRC framework are discussed in
the following subsections.

2 Security Rule Check 25

module PRESENT_ENCRYPT (

output [63:0] odat, // data output
plaintext key register input [£3:0] idat, |

input [79:0] key,
ES addRoundKey input load, // dat nad
T/ input clk // clock
)i
sBox Layer
update / wires, registe
pLayer rag [72:0] kreg; // key regi
reg [63:0] dreg: // data reg
H
sBox Layer
update // Load/reload key intc
player always @ (posedge clk)
begin
X addRoundKey J if (load)
4 kreg <= key;
else
ciphertext kreg <= kdat2;
end
(a) (b)

Fig. 2.4 Unintentional vulnerabilities created by design mistakes. (a) top-level description of
PRESENT [20], (b) verilog implementation of PRESENT (http://opencores.org/)

2.3.1 Vulnerabilities
2.3.1.1 Sources of Vulnerabilities

Vulnerability in an IC means a weakness which allows an adversary to access the
assets by performing some form of attack. Sources of the vulnerabilities in ICs are
divided into following categories:

Vulnerabilities Due to Design Mistakes Traditionally the design objectives are
driven by cost, performance, and time-to-market constraints; while security is
generally neglected during the design phase. Additionally, security-aware design
practices do not yet exist. Thus, IPs developed by different designers and design
teams may present different set of vulnerabilities. We illustrate this further with a
case study below.

Figure 2.4a shows the top-level description of PRESENT encryption algo-
rithm [20]. A segment of its Verilog implementation is shown in Fig.2.4b. We
can see that the key is directly being assigned to the register, defined as “kreg”
in the module. Although the encryption algorithm itself is secure, a vulnerability
is unintentionally created in its hardware implementation. When this design is
implemented, the “kreg” register will be included in the scan chain and an attacker
can gain access to key through scan chain based attack [4].

Also, different implementation style of a same algorithm can have different levels
of security. In a recent study [21], two AES SBox architectures, PPRM1 [22] and
Boyar-Peralta [23], have been analyzed to evaluate which design is more susceptible
to fault injection attack. The analysis showed that P-AES is more vulnerable to fault
injection attack than the B-AES architecture.

http://opencores.org/

26 A. Nahiyan et al.

Vulnerabilities Introduced by CAD Tools In the IC design process, CAD tools
are extensively used for synthesis, DFT insertion, automatic place and route, etc.
These tools are not equipped with understanding of the security vulnerabilities
in ICs and can therefore introduce additional vulnerabilities in the design. As an
example, synthesis tools can create new vulnerabilities in a design when the tool
synthesizes the design from RTL to gate level. In the RTL specification of a finite
state machine (FSM) there are don’t-care conditions where the next state or the
output of a transition is not specified. During the synthesis process, the synthesis
tool tries to optimize the design by introducing deterministic states and transitions
for the don’t-care conditions. The introduction of don’t-care states and transitions
by the CAD tool can create vulnerability in the circuit by allowing a protected state
to be illegally accessed through the don’t-care states and transitions [8].

We use the controller circuit of an AES encryption module (http://opencores.
org/) as another case study to demonstrate the vulnerability introduced by the CAD
tools. The state transition diagram of the FSM shown in Fig.2.5b implements
the AES encryption algorithm on the data path shown in Fig.2.5a. The FSM is
composed of 5 states and each of these states controls specific modules during the
ten rounds of AES encryption. After ten rounds, the “Final Round” state is reached
and the FSM generates the control signal finished = 1 which stores the result
of the “Add Key” module (i.e., the ciphertext) in the “Result Register.” For this
FSM, the “Final Round” is a protected state because if an attacker can gain access
to the “Final Round” without going through the “Do Round” state, then premature
results will be stored in “Result Register,” potentially leaking the secret key. Now,
during the synthesis process if a don’t-care state is introduced that has direct access
to a protected state, then it can create vulnerability in the FSM by allowing the
attacker to utilize this don’t-care state to access the protected state. Let us consider
that the “Don’t-Care_1" state shown in Fig. 2.5b is introduced by the synthesis tool
and this state has direct access to the protected state “Final Round.” Introduction of
“Don’t-Care_1" state represents a vulnerability introduced by the CAD tool because
this don’t-care state can facilitate fault and Trojan based attack. For example, an
attacker can inject a fault to go to state “Don’t Care_1" and access the protected
state “Final Round” from this state. The attacker can also utilize the “Don’t Care_1"
to implant a Trojan. The presence of this don’t-care state gives the attacker a unique
advantage because this state is not taken into consideration during validation and
testing; therefore it is easier for the Trojan to evade detection.

Additionally, during the synthesis process CAD tools flatten all the modules of
the design together and try to optimize the design for power, timing, and/or area. If a
secure module (e.g., encryption module) is present in an SoC, design flattening and
the multiple optimization processes can lead to merging trusted blocks with those
untrusted. These design steps, which the designer has little control of, can introduce
vulnerabilities and cause information leakage [24].

Vulnerabilities Introduced by DFT and DFD Structure High testability is
important for critical systems to ensure proper functionality and reliability through-
out their lifetime. Testability is a measure of controllability and observability of

http://opencores.org/
http://opencores.org/

2 Security Rule Check

i~
Data In N
finished Don t N\ 00 Ve——_,_ e
Care_Z @ \
\
D AES Encryp KR=1 \
% Controller \“
\
KR T \LRound Index “
R Wait Data \‘
Kel> Key. L) Add Key ! \
Expansion i '
/ !
ﬁ / '
finished-=1 H Inltlal Round !
! 1
Result H]
Register SBox ! 1
8 H No_Rounds H
J, : KR=1 i
l :
Shift Row | Do Round !
il !
H 1
\ 1
\ 1
Mix Column \ y i
\ v

L \ Don’t
Care_3

(a)

(b)

Fig. 2.5 Unintentional vulnerabilities created by CAD tools. (a) and (b) show data path and finite
state machine (FSM) of AES encryption module. KR and DS stand for Key Ready and Data

Stable signal, respectively; the red marked states and transitions represent the don’t-care states
and transitions introduced by the CAD tool

signals (i.e., nets) in a circuit. Controllability is defined as the difficulty of setting
a particular logic signal to “1” or “0” and observability is defined as the difficulty
of observing the state of a logic signal. To increase testability and debug, it is very
common to integrate design-for-test (DFT) and design-for-debug (DFD) structures
in a complex design. However, the increased controllability and observability added
by DFT and DFD structures can create numerous vulnerabilities by allowing
attackers to control or observe internal states of an IC [25]

In general, test and debug can be viewed as the opposite of security when it comes
to accessing circuit internals, as shown in Fig. 2.6. Unfortunately, the DFT and DFD
structures cannot be simply avoided in modern designs because of large amount
of unexpected defects and errors that occur during the fabrication. Additionally,
National Institute of Standards and Technology (NIST) requires that any design
used in critical applications needs to be properly testable, both in pre- and post-
manufacturing. Therefore, the DFT and DFD structures must be incorporated in
ICs, though these structures may create vulnerability. Thus, it is necessary for the

DSeRC framework to check whether any security vulnerability is introduced by the
DFT and DFD.

27

28 A. Nahiyan et al.

Test & Debug

Test Points

Security

Chip IDs

Encryption

Embedded Trace

Gateways |/ Observability

Integrity Verification Tractability Scan Architecture |

Controllability Embedded BIST /

Misdirection
Accessibility

Debug Points

Challenge-Response

Anti-Copying Embedded Configuration

Obfuscation DfT Structure

Fig. 2.6 Requirement for high quality test and debug contradicts security

2.3.1.2 Vulnerabilities at Different Abstraction Levels

For the development of DSeRC framework, each vulnerability needs to be assigned
to one or multiple proper abstraction levels where it can be identified efficiently.
Generally, an IC design flow will go through specification, RTL design, gate-
level design and consequently physical layout design. DSeRC framework aims at
identifying vulnerabilities as early as possible during the design flow because late
evaluation can lead to a long development cycle and high design cost. Also, vulnera-
bilities in one stage, if not addressed, may introduce additional vulnerabilities during
transitions from one level to the next. In this section, we categorize vulnerabilities
based on the abstraction levels (see Table 2.1).

Register Transfer Level (RTL) The design specification is first described in a
hardware description language (HDL) (e.g., verilog) to create the RTL abstraction
of the design. Several attacks performed at the RTL have been proposed in literature.
For example, Fern et al. [26] demonstrated that don’t-care assignments in RTL code
can be leveraged to implement hardware Trojans that leak assets. In this case, the
don’t-care assignments in RTL code is the source of vulnerability. Additionally, in
the RTL, hardware Trojans are most likely to be inserted at hard-to-control and hard-
to-observe parts of the code [27]. Identifying hard-to-control and hard-to-observe
parts of the code can help designers assess the susceptibility of the design to Trojan
insertion at the RTL.

In general, vulnerabilities identified at the RTL are comparatively easier to
address. However, some vulnerabilities, e.g., how susceptible the design is to fault
or side-channel attacks, are very challenging if not impossible to identify at this
level.

2 Security Rule Check 29

Gate Level The RTL specification is synthesized into gate-level netlist using a
synthesis tools, e.g., design compiler. At gate level, a design usually is represented
with a flattened netlist hence, loses its abstraction; however, more accurate infor-
mation about the implementation in term of gates or transistors are available. At
gate level, hard-to-control and hard-to-observe nets can be used to design hard-to-
detect Hardware Trojans [28]. Also, transition from RTL to gate level can introduce
additional vulnerabilities by the CAD tools. Examples of vulnerabilities introduced
by the tools have been discussed in Sect.2.3.1. These vulnerabilities need to be
analyzed at the gate level.

DFT and DFD structures are generally incorporated in the ICs at the gate
level. Therefore, the vulnerabilities introduced by the test and debug structure (see
Sect.2.3.1) need to be analyzed at the gate level.

Layout Level Physical layout design is the last design stage before shipping the
chip to fabrication, so all the remaining vulnerabilities should be addressed in this
level. During layout design, the placement and routing phase gives information
about the spatial arrangements of the cells and metal connections in the circuit.
In the layout level, power consumption, electromagnetic emanations, and execution
time can be accurately modeled. Therefore, vulnerability analysis of side-channel
and fault-injection based attacks can be done very accurately at this level. Addition-
ally, some vulnerability analyses, e.g., vulnerability to probing attack [29] can only
be done at the layout level. However, any analysis done in this level is very time
consuming compared to RTL and gate level.

2.3.2 Metrics and Rules

The vulnerabilities that have been discussed so far are to be tied with metrics and
rules so that each design’s security can be quantitatively measured (see Table 2.1).
These rules and metrics of the DSeRC framework can be compared with the design
rule check (DRC). In DRC, semiconductor manufacturers convert manufacturing
specifications into a series of metrics that enable the designer to quantitatively
measure a mask’s manufacturability. For the DSeRC framework, each vulnerability
needs to be mathematically modeled and the corresponding rule and metric need to
be developed so that the vulnerability of a design can be quantitatively evaluated.
As for the rules, there can be two types of rules; one type is based on quantitative
metric and the other type is based on a binary classification (yes/no).

We present a brief description of some of the rules and metrics corresponding to
the vulnerabilities shown in Table 2.1.

Asset Leakage As discussed in Sect. 2.3.1.1, vulnerabilities associated asset leak-
age can be unintentionally created by design-for-test (DFT), design-for-debug
(DFD) structures, CAD tools, and/or by designer’s mistake. These vulnerabilities
cause violation of information security policies, i.e., confidentiality and integrity
policies. Therefore, the metric for identifying these vulnerabilities is confidentiality

(19sn puy) yoene
uornoafur yne paseq Surwiy,

A. Nahiyan et al.

amoosut st uonejuawduwr ay)
sueawW ploysaIy) & ueyy 10ySy JAAL

[12] AAAD
10308y A)[IQRIdUINA UOTR[OTA Sutir],

Joug/ne, d[qeoafuy

(19308B))R [RUOISSIJOI])
yoene Jurqoxd-o1dTN

oneA ploysaIy) e
uey) 10M0[9q p[noys eare pasodxd Y],

[62] joene Suiqoid-o1omu 0} 9[qRISUINA QB YOTyM
S10U [BONLIO-AILINDIS AY) JO BaIe pasodxyg

Surqoid-oxoTpy

an[eA ploysaiy) © [1¢] [oATT
(19sn pug) yoene [SUULRYI-IPIS Uey) 19MO[99 PINoys JAS 941, (AAS) 10108} AJI[IqRIDUNA [QUUBYDI-IPIS [eUSIS [QUURYD-IPIS | Jnoke|
(19sn pug) SURORY 19SSV | S19SSB 9AIISGO IO SIASSE SSII0B :ON/SHA [0€] Juswssasse Ayasaut pue Airenuapyuo)) | (qdd) Ingag-1oj-udisaq
(1osn pug) SunRORY JOSSY | S1OSSE 9AIISQO IO SIISSE SSA0B (ON/SHA [0¢€] yuowssasse AyuaSaur pue Ayfenuopyuo) | (1AQ) 1SAL-Ioj-udisog
(1osn pug) SunRORY JOSSY | SIOSSE 9AIISQO IO SIISSE SSA0B (ON/SHA [0€] Juowssasse Aju3aur pue AJIenUIpYUO) 93eyea] 19ssY
(19sn pud ‘rapIsuy) [8] (“LyA) uonasur uefoi], Jo 10j08] AI[IqEIAUNA (JNSH) Quryoe
uefo1], aremprey ‘uonoalur jjneq 019z 3q p[noys *LyA pue HgA 2 (Mg A) uonoafur jney jo 1o0joe) AJ[IqeIdU[NA | 211G)IUL] S[qRIdU[NA
(aopr1suy) uefoxg, onyeA poysaxy) e uey) Joysy 9q JoU 9AISSQO-03-pIey | [9A]
drempIeH | pInoys AN[IqeAlasqo pue A)[Iqe[jonuo)) [82] A11qeAIasqO pue A)[IqR[[01U0D JON 2 [01U02-0)-prey | oyeD)
Sun[oen MOp UoTEULIOJUT
(19sn pug) SURORY 19SSV | S19SSB 9AIISQO IO SIOSSB SSII0B (ON/SHA pue 3un{doayd 2IoNNS 93eyea] 10ssY
an[eA proysaiy)
(1op1suy) ' uey) (19y31y) IoMmo[2q p[noys [£Z] Kniqearasqo [euSTS 9AI9SqO-0}-pIey
uefo1], arempieH | (AN[IQeAIISQO [RUSIS) SSOUPIRY JUSWRILIS [euS1s pue SsoupIey JUSWIELIS 2 [0NU02-0)-pIeH
(1op1Suy) sapou 9[qeAIasqo 03 pajeSedoxd sapou 9[qeAaIasqo o3 9jededord ues X, [eAT
uontasu] uefoi], arempreHq 9q jou p[noys syusawudisse X, J1Y09Y0 pue syuawusdIsse X, [[8 AJOUSPL | SaIe)) 1,u0(] Sno1d3ueq | Iy
(130eNV) oeny oIy OLIPIN Aiqereunp

30

D¥AS UI PAPNOUT SI[NI PUE ‘SOLIIOW ‘SANI[IQRIdUNA [°T [qEL

2 Security Rule Check 31

and integrity assessment. In [30], authors have presented a framework that validates
if confidentiality and integrity policies are being maintained in the SoC. This
framework is based on a novel concept of modeling an asset (e.g., a net carrying
a secret key) as a fault and leveraging the known test algorithms to detect that fault.
A successful detection of the fault indicates that there is flow of information from
the asset to an observable point. The rule for this vulnerability will be whether the
asset value can be propagated to any observable points. If the assessment result is
YES, then there exits vulnerability in the design and the design is not secure.

Vulnerable FSM The synthesis process of a finite state machine (FSM) can
introduce additional security risks in the implemented circuit by inserting additional
don’t-care states and transitions. An attacker can utilize these don’t-care states
and transitions to facilitate fault injection and Trojan attacks. In [8], authors
have presented two metrics, named vulnerability factor of fault injection (VFgy)
and vulnerability factor of Trojan insertion (VFry,) to quantitatively analyze how
susceptible an FSM is against fault injection and Trojan attacks, respectively. The
higher the values of these two metrics are, the more vulnerable the FSM is to fault
and Trojan attacks. For this vulnerability, the rule can be stated as follows; for an
FSM design to be secured against fault injection and Trojan insertion attack, the
values of VFg and VFry, should be zero.

Micro-Probing Attack Micro-probing is one kind of physical attack that directly
probes the signal wires in order to extract sensitive information. This attack has
raised serious concerns for security critical applications. In [29], authors have
presented a layout-driven framework to quantitatively evaluate a post place-and-
route design in terms of exposed area of the security-critical nets which are
vulnerable to micro-probing attack. The larger the exposed area, the more vulnerable
the SoC is to probing attack. Therefore, the rule for micro-probing vulnerability
can be stated as follows, the exposed area to micro-probing should be lower than a
threshold value.

Susceptibility to Trojan Insertion In [27], authors have presented a metric named
“Statement Hardness” to evaluate the difficulty of executing a statement in the
RTL code. Areas in a circuit with large value of “Statement Hardness” are more
vulnerable to Trojan insertion. Therefore, the metric “Statement Hardness” gives
the quantitative measure of a design’s susceptibility to Trojan insertion. Next is
to define rule(s) to evaluate if the design is secure. For this vulnerability, the rule
can be stated as follows; for a design to be secured against Trojan insertion attack,
statement hardness of each statement in the design should be lower than SHy,,. Here,
SHyy, is a threshold value that needs to be derived from the area and performance
budget.

At gate level, a design is vulnerable to Trojan insertion which can be imple-
mented by adding and deleting gates. To hide the effect of inserted Trojan, an
adversary will target hard-to-detect areas of the gate-level netlist. Hard-to-detect
nets are defined as, nets which have low transition probability and are not testable
through well-known fault testing techniques (stuck-at, transition delay, path delay,

32 A. Nahiyan et al.

and bridging faults) [28]. Inserting a Trojan in hard-to-detect areas would reduce
the probability to trigger the Trojan and thereby, reduce the probability of being
detected during verification and validation testing. In [32], authors have proposed
metrics to evaluate hard-to-detect areas in the gate-level netlist.

Fault and Side-Channel Attacks Authors in [21] have introduced Timing Vio-
lation Vulnerability Factor (TVVF) to evaluate the vulnerability of a hardware
structure to setup time violation attacks which are one subset of fault-injection
attacks. In [33], authors have proposed a framework named AMASIVE (Adapt-
able Modular Autonomous Side-Channel Vulnerability Evaluator) to automatically
identify side-channel vulnerabilities of a design. Also, a metric named side-channel
vulnerability factor (SVF) has been proposed to evaluate the ICs’ vulnerability to
power side-channel attacks [31].

Note that the development of the metrics is a challenging task because ideally
the metrics must be independent of attack model and application/functionality of
a design. For example, an attacker can apply voltage starving or clock glitching
based fault injection attacks to obtain the private key of AES or RSA encryption
modules. The metric for fault injection needs to provide a quantitative measure of
vulnerability for any design (AES or RSA) against any of these attacks (voltage
starving or clock glitching). One strategy would be to first identify the root
vulnerability that these attacks try to exploit. For this particular example, both
voltage starving and clock glitching try to exploit the setup time violation, a
common criteria for success of both attacks. Then the framework must evaluate
the difficulty of violating setup time for a given design to gain access to the target
security assets.

2.3.3 Workflow of DSeRC Framework

In this section we describe how the rules and metrics will be used to identify a
vulnerability under DSeRC framework. Table 2.1 shows the vulnerabilities and their
corresponding metrics and rules that our DSeRC framework covers. The example of
PRESENT encryption algorithm will be used to illustrate the workflow of DSeRC
framework. The designer will first give the RTL design files and the name of
the asset (i.e., “key”) as input to DSeRC framework. DSeRC framework will use
the information flow tracking to analyze if the “key” can be leaked through any
observation points (e.g., registers). As for this design the “key” can be observed
through “kreg” register. Therefore, the framework will give a preemptive warning
to the designer that if the register “kreg” is included in the DFT structure then,
the key can be leaked through scan chain. It will be up to the designer to apply
a countermeasure to address this vulnerability before moving to next level of
abstraction. One possible countermeasure would be is to exclude “kreg” from the
scan chain.

2 Security Rule Check 33

After addressing this vulnerability, the design can be synthesized and DFT
inserted. The designer will then give the synthesized gate-level netlist to DSeRC
and the framework will use the confidentiality assessment [30] technique of DSeRC
framework to analyze if the “key” can be leaked through any observable point. If
the “key” cannot be leaked, then the DSeRC rule will be satisfied and the design
can be considered to be secured against asset leakage. On the other hand, if the
DSeRC framework identifies the “key” is being leaked to scan flip-flops (observable
points), then the framework will raise flag and point the scan flip-flops which carry
information about the key. The designer needs to address this vulnerability before
moving to physical layout. One possible approach would to apply secure scan
structure [34, 35] to counter the vulnerability introduced by the DFT structure.

Note that manually tracking the asset in an SOC to evaluate if it is being leaked
through an observable point would be an exhaustive if not impossible task for the
designer. On the other hand, DSeRC framework will be able to pinpoint the asset
leakage paths allowing the designers to concentrate their analysis effort on those
paths and make informed decision.

Some vulnerability can have the common factors, which provide an opportunity
to merge multiple vulnerability analyses. As shown in Table 2.1, both asset leakage
and fault injection need a metric to evaluate the observability of a net in the
circuit structure. Therefore, observability analysis can be executed once for both
vulnerability analyses.

While DSeRC may be a logical and necessary step in designing secure ICs,
it would not eliminate the need for security subject matter expert. The DSeRC
framework is intended to be an automated framework and therefore, may not
take the application and use cases of an IC into consideration. For example, the
Trojan observability metric will report the difficulty of observing each signal in the
design. For Trojan detection, a high observability metric is desired. However, for an
encryption module, a high observability metric for the private key will be a serious
threat. Therefore, it would be upto the designer to interpret the results generated by
the DSeRC framework.

2.4 Development of DSeRC Framework

2.4.1 Vulnerabilities, Metrics, and Rules

Vulnerability identification is crucial for the development of DSeRC framework. As
more attacks are developed, the vulnerabilities exploited by these new attacks need
to be identified. And as more vulnerabilities are discovered, their corresponding
metrics and rules need to be developed as well. Given the diversity and vastness
of security threats, it will take the combined effort of academic and industry
researchers to develop a comprehensive set of vulnerabilities and corresponding
rules and metrics for the DSeRC framework.

34 A. Nahiyan et al.
2.4.2 Tool Development

The DSeRC framework is intended to be integrated with the traditional IC design
flow so that security evaluation can be made as an inherent part of the design
process. This requires the development of CAD tools which can automatically
evaluate the security of a design based on DSeRC rules and metrics. The tools’
evaluation times need to be scalable with the design size. Also, the tools should be
easy to use and the outputs generated by the tools need to be understandable by the
design engineer.

2.4.3 Development of Design Guidelines for Security

To avoid some common security problems in early design stages, good design
practices learned through experience can be used as guidelines. The design guideline
is able to guide design engineers what to do (Do-s) and not to do (Don’t-s) during the
initial design. Do-s and Don’t-s are very common in VLSI design and test domain,
in order to improve the design quality and testability of faults [36]. These Do-s
and Don’t-s, such as initializable flip-flops, no asynchronous logic feedback, and no
gating of clocks to scan flip-flops, are very straight-forward, but quite effective to
make a design testable and thus save time and cost in design cycles. This is also
applicable to hardware security. Taking the PRESENT in Fig.2.4 as an example,
if “kreg” does not become part of scan chain, the key leakage problem can be
addressed at the design stage. However, to date, no comprehensive design guideline
has been developed for hardware security. This can be a research direction where
academia and industry can explore.

2.4.4 Development of Countermeasure Techniques

Knowledge of the vulnerabilities of a design is not sufficient to protect it. A series
of low-cost countermeasure techniques are also needed for each vulnerability. One
additional extension of the DSeRC framework will be to provide low-cost mitigation
techniques for each vulnerability. The suggested countermeasure techniques will be
a good hint to design engineers who lack of knowledge in hardware security. The
improvement in security after applying the countermeasures can be measured by
running the DSeRC check again.

As an example, in [8] authors have proposed a countermeasure to address the
vulnerabilities introduced in FSMs by the synthesis tool or design mistake. In their
proposed approach the state FFs are to be replaced by ‘“Programmable State FFs.”
“Programmable State FFs” are defined as the state FFs which go to the Reset/Initial
state if the protected state is tried to be accessed by any other state apart from the
authorized states. The detailed architecture of the “Programmable State FFs” has
been discussed in [8].

2 Security Rule Check 35

2.5 Conclusion

In this chapter, we have presented the basic concept of Design Security Rule
Check (DSeRC) to analyze vulnerabilities in a design and consequently assess its
security level at design stage. One of the main challenges for the development of
the DSeRC framework is associated with mathematically modeling vulnerabilities
for quantitative evaluation. This is because DSeRC framework needs to validate the
security of a design regardless of the application of the design or attack models.
Although DSeRC will not eliminate the need for security subject matter experts,
it will, however, expedite the security analysis of ICs and SoCs, and increase the
design engineer’s awareness to the security issues of their designs.

References

1. P.C. Kocher, Timing attacks on implementations of diffie-hellman, RSA, DSS, and other
systems, in Annual International Cryptology Conference (Springer, Berlin/Heidelberg, 1996),
pp- 104-113

2. P.C. Kocher, J. Jaffe, B. Jun, Differential power analysis, in CRYPTO (1999)

3. D. Hely et al., Scan design and secure chip [secure IC testing], in Proceedings of the 10th IEEE
IOLTS (July 2004), pp. 219-224

4.J. Lee, M. Tehranipoor, C. Patel, J. Plusquellic, Securing scan design using lock and key
technique, in Proceedings - IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems (DFT’05) (2005)

5. B. Yang, K. Wu, R. Karri, Scan-based side-channel attack on dedicated hardware implementa-
tions of data encryption standard, in Proceedings of International Test Conference (2004)

6. E. Biham, A. Shamir, Differential fault analysis of secret key cryptosystems, in CRYPTO
(1997)

7. C. Dunbar, G. Qu, Designing trusted embedded systems from finite state machines. ACM
Trans. Embed. Comput. Syst. 13(5s), 1-20 (2014)

8. A. Nahiyan, K. Xiao, K. Yang, Y. Jin, D. Forte, M. Tehranipoor, AVFSM: a framework for
identifying and mitigating vulnerabilities in FSMs, in Proceedings of the 53rd Annual Design
Automation Conference (ACM, 2016), p. 89

9. M. Tehranipoor, F. Koushanfar, A survey of hardware Trojan taxonomy and detection. IEEE
Des. Test Comput. 27, 10-25 (2010)

10. ARM inc., Building a secure system using TrustZone technology, http://infocenter.arm.com/
help/topic/com.arm.doc.prd29-genc-009492¢/PRD29-GENC-009492C_trustzone_security_
whitepaper.pdf

11. K. Xiao, A. Nahiyan, M. Tehranipoor, Security rule checking in IC design. Computer 49(8),
54-61 (2016)

12. Eric Peeters, SoC security architecture: current practices and emerging needs, in Design
Automation Conference (DAC) (IEEE, 2015), pp. 1-6

13. P. Kocher, Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems,
in Advances in Cryptology (1996), pp. 104-113

14. T. Korak, T. Plos, Applying remote side-channel analysis attacks on a security-enabled NFC
tag, in Topics in cryptology—CT-RSA 2013 (February 2013)

15. A. Das, J. Da Rolt, S. Ghosh, S. Seys, S. Dupuis, G. Di Natale et al., Secure JTAG
implementation using Schnorr protocol. J. Electron. Test. Theory Appl. 29(2), 193-209 (2013)

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

36

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

A. Nahiyan et al.

. S. Chen et al., Security vulnerabilities: from analysis to detection and masking techniques.
Proc. IEEE 94(2), 407418 (2006)

S.P. Skorobogatov, Semi-invasive attacks - a new approach to hardware security analysis,
in Technical Report UCAM-CL-TR-630. University of Cambridge Computer Laboratory,
April 2005

M. Tehranipoor, C. Wang, Introduction to Hardware Security and Trust (Springer, New York,
2011)

M.A. Harris, K.P. Patten, Mobile device security considerations for small-and medium-sized
enterprise business mobility, Inf. Manage. Comput. Secur. 22, 97-114 (2014)

A. Bogdanov et al., PRESENT: an ultra-lightweight block cipher, in Cryptographic Hardware
and Embedded Systems (2007)

B. Yuce, N. Ghalaty, P. Schaumont, TV VF: estimating the vulnerability of hardware cryptosys-
tems against timing violation attacks, in Hardware Oriented Security and Trust (2015)

S. Morioka, A. Satoh, An optimized s-box circuit architecture for low power AES design, in
Cryptographic Hardware and Embedded Systems (2003)

J. Boyar, R. Peralta, A small depth-16 circuit for the AES s-box, in Proceedings of Information
Security and Privacy Research (2012)

T. Huffmire et al., Moats and drawbridges: an isolation primitive for reconfigurable hardware
based systems, in Proceedings of the 2007 IEEE Symposium on Security and Privacy (2007)
J. Rolt et al., Test versus security: past and present. IEEE Trans. Emerg. Top. Comput. 2(1),
50-62 (2013)

N. Fern, S. Kulkarni, K. Cheng, Hardware Trojans hidden in RTL don’t cares - automated
insertion and prevention methodologies, in International Test Conference (ITC) (2015)

H. Salmani, M. Tehranipoor, Analyzing circuit vulnerability to hardware Trojan insertion at
the behavioral level, in /IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT) (2013), pp. 190-195

H. Salmani, R. Karri, M. Tehranipoor, On design vulnerability analysis and trust benchmarks
development, in Proceedings of IEEE 3l1st International Conference on Computer Design
(ICCD) (2013), pp. 471474

Q. Shi, N. Asadizanjani, D. Forte, M. Tehranipoor, A layout-driven framework to assess
vulnerability of ICs to microprobing attacks, in 2016 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST) (IEEE, 2016), pp. 155-160

G. Contreras, A. Nahiyan, S. Bhunia, D. Forte, M. Tehranipoor, Security vulnerability analysis
of design-for-test exploits for asset protection, in Asia and South Pacific Design Automation
Conference (2017, to appear)

J. Demme et al., Side-channel vulnerability factor: a metric for measuring information leakage,
in 39th Annual International Symposium on Computer Architecture (2012), pp. 106-117

M. Tehranipoor, H. Salmani, X. Zhang, Integrated Circuit Authentication: Hardware Trojans
and Counterfeit Detection (Springer, Cham, 2013)

S.A. Huss, M. Stottinger, M. Zohner, AMASIVE: an adaptable and modular autonomous side-
channel vulnerability evaluation framework, in Number Theory and Cryptography (Springer,
Berlin, Heidelberg, 2013), pp. 151-165

J. Lee, M. Tehranipoor, C. Patel, J. Plusquellic, Securing designs against scan-based side-
channel attacks. IEEE Trans. Dependable Secure Comput. 4(4), 325-336 (2007)

J. Lee, M. Tehranipoor, J. Plusquellic, A low-cost solution for protecting IPs against scan-based
side-channel attacks, in VLSI Test Symposium (2006)

M. Bushnell, V. Agrawal, in Essentials of Electronic Testing for Digital, Memory and Mixed-
Signal VLSI Circuits (Springer, New York, 2000)

Chapter 3
Digital Circuit Vulnerabilities to Hardware
Trojans

Hassan Salmani and Mark Tehranipoor

3.1 Introduction

Adopted in the interest of economy, the horizontal integrated circuit design process
has raised serious concerns for national security and critical infrastructures [1, 2].
An adversary is afforded plenty of opportunities to interfere with its design process,
and circuit parametric or functional specifications may be jeopardized, allowing
malicious activities [3—6]. Any intentional modification of design specifications and
functionality to undermine its characteristics and correctness is called a hardware
Trojan.

Hardware Trojans can be realized by including additional circuits at the register
transfer or gate-level or by changing circuit parameters like wire thickness or
component size at the layout-level, to name a few. Hardware Trojans can reduce
circuit reliability, change or disable its functionality at a certain time, reveal its
detailed implementation, or grant covert access to unauthorized entities [7, 8]. For
instance, a third party intellectual property (IP) provider can enclose extra circuitry
within a cryptographic module at the gate-level to leak its secret key.

A number of proposed approaches facilitate hardware Trojan detection by
analyzing circuit side-channel signals or by increasing the probability of Trojan
full activation. Incurred extra switching activity or induced additional wiring and
gate capacitance affects circuit side-channel signals such as power and delay. Path
delay fingerprint and delay measurement based on shadow registers are techniques
intended to capture Trojan impact on circuit delay characteristics [9, 10]. Transient

H. Salmani (><)
Howard University, Washington, DC, USA
e-mail: hassan.salmani @howard.edu

M. Tehranipoor
University of Florida, Gainesville, FL, USA
e-mail: tehranipoor @ece.ufl.edu

© Springer International Publishing AG 2017 37
P. Mishra et al. (eds.), Hardware IP Security and Trust,
DOI 10.1007/978-3-319-49025-0_3

mailto:hassan.salmani@howard.edu
mailto:tehranipoor@ece.ufl.edu

38 H. Salmani and M. Tehranipoor

current integration, circuit power fingerprint, and static current analysis are power-
based Trojan detection techniques [11-13]. Efficient pattern generation is also
necessary to discover a Trojan’s impact upon circuit characteristics beyond process
and environmental variations [14, 15]. In addition to new pattern generation tech-
niques, design-for-hardware-trust methodologies have been proposed to increase
switching activity inside a Trojan circuit while reducing main circuit switching
activity acting as background noise, to enhance Trojan detection resolution [3, 4, 6].
At the gate-level, hardware Trojan triggers might be driven by signals with low
transition probabilities to reduce Trojan contribution into circuit specifications. As a
circuit layout is available to an untrusted foundry for fabrication, a hardware Trojan
might be inserted in existing white spaces to leave circuit layout size unchanged.
Therefore, a systematic approach is required to analyze the susceptibility of gate-
level netlists and circuit layouts to hardware Trojan insertion to identify and quantify
the vulnerability of a signal or a section to hardware Trojan insertion and attacks.

3.2 The Gate-Level Design Vulnerability Analysis Flow

Functional hardware Trojans are realized by adding or removing gates; therefore,
the inclusion of Trojan gates or the elimination of circuit gates affects circuit side-
channel signals such as power consumption and delay characteristics, as well as the
functionality. To minimize a Trojan’s contribution to the circuit side-channel signals,
an adversary can exploit hard-to-detect areas (e.g., nets) to implement the Trojan.
Hard-to-detect areas are defined as areas in a circuit not testable by well-known
fault-testing techniques (stuck-at, transition delay, path delay, and bridging faults)
or not having noticeable impact on the circuit side-channel signals. Therefore, a
vulnerability analysis flow is required to identify such hard-to-detect areas in a
circuit. These areas provide opportunities to insert hard-to-detect Trojans and invite
researchers to develop techniques to make it difficult for an adversary to insert
Trojans.

Figure 3.1 shows the vulnerability analysis flow performing power, delay, and
structural analyses on a circuit to extract the hard-to-detect areas. Any transition
inside a Trojan circuit increases the overall transient power consumption; therefore,
it is expected that Trojan inputs are supplied by nets with low transition probabilities
to reduce activity inside the Trojan circuit.

The Power Analysis step in Fig.3.1 is based on analyzing switching activity;
it determines the transition probability of every net in the circuit assuming the
probability of 0.5 for “0” or “1” at primary inputs and at memory cells’ outputs.
Then, nets with transition probabilities below a certain threshold are considered as
possible Trojan inputs. The Delay Analysis step performs path delay measurement
based on gates’ capacitance. This allows to measure the additional delay induced by
Trojan by knowing the added capacitance to circuit paths. The Delay Analysis step
identifies nets on non-critical paths as they are more susceptible to Trojan insertion
and harder to detect their changed delay. To further reduce Trojan impact on circuit

3 Digital Circuit Vulnerabilities to Hardware Trojans 39

S—
| | }

Power Analysis Delay Analysis Structural Analysis

Nets which are
untestable-block or
untestable-redundant

Nets with transition
probabilities smaller than
a specific threshold

Nets on non-critical paths
with the list of paths to
which a net belongs

l |

Hard-to-detect
nets identification

Unique hard-to-detect nets

Fig. 3.1 The gate-level vulnerability analysis flow

delay characteristics, it also reports the paths to which a net belongs to avoid
selecting nets belonging to different sections of one path. The Structural Analysis
step executes the structural transition delay fault testing to find untestable blocked
and untestable redundant nets. Untestable redundant nets are not testable because
they are masked by a redundant logic, and they are not observable through primary
output or scan cells. Untestable blocked nets are not controllable or observable by
untestable redundant nets. Tapping Trojan inputs to untestable nets hides Trojan
impact on delay variations.

At its end, the vulnerability analysis flow reports unique hard-to-detect nets
that are the list of untestable nets with low transition probabilities and nets with
low transition probabilities on non-critical paths while not sharing any common
path. Note that when a Trojan impacts more than one path, it provides greater
opportunities for detection. Avoiding shared paths makes a Trojan’s contribution to
affected paths’ delay minimal, which can be masked by process variations, making
it difficult to detect and distinguish the added delay from variations. The reported
nets are ensured to be untestable by structural test patterns used in production tests.
They also have low transition probabilities so Trojans will negligibly affect circuit
power consumption. As the nets are chosen from non-critical paths without any
shared segments, it would be extremely difficult to detect Trojans by delay-based
techniques.

The vulnerability analysis flow can be implemented using most electronic design
automation (EDA) tools, and the complexity of the analysis is linear with respect to
the number of nets in the circuit. The flow is applied to the Ethernet MAC 10GE
circuit [16], which implements 10Gbps Ethernet Media Access Control functions.
Synthesized at 90nm Synopsys technology node, the Ethernet MAC 10GE circuit

40 H. Salmani and M. Tehranipoor

consists of 102,047 components, including 21,830 flip-flops. The Power Analysis
shows that out of 102,669 nets in the circuit, 23,783 of them have a transition
probability smaller than 0.1, 7003 of them smaller than 0.01, 367 of them smaller
than 0.001, and 99 of them smaller than 0.0001. The Delay Analysis indicates
that the largest capacitance along a path, representing path delay, in the circuit is
0.065717825 pF, and there are 14,927 paths in the circuit whose path capacitance is
smaller than 70 % of the largest capacitance, assuming that paths longer than 70 %
in a circuit can be tested using testers. The Structural Analysis finds that there is no
untestable fault in the circuit. By excluding nets sharing different segments of one
path, there are 494 nets in the Ethernet MAC 10GE circuit considered to be areas
where Trojan inputs could be used while ensuring the high difficulty of detection
based on side-channel and functional test techniques.

3.3 The Layout-Level Design Vulnerability Analysis Flow

A physical design tool takes a synthesized netlist and associated technology library
information and performs placement and routing considering design constraints
such as performance, size, and manufacturability. Cells are typically placed in rows
and their interconnections are realized through metal layers above the cells. Large
circuits such as system-on-chips take larger areas for placement and require more
metal layers for routing to meet circuit constraints, besides circuit functionality.
However, a final circuit layout may contain a considerable amount of whitespaces
in substrate and empty routing channels in metal layers above the substrate. These
empty spaces can be used by an untrusted foundry to place and route Trojan cells
with minimum impact on circuit specification. To study the vulnerability of a circuit
layout to hardware Trojan insertion, Fig.3.2 shows a novel circuit vulnerability
analysis flow at the layout-level.

3.3.1 Cell and Routing Analyses

A gate-level synthesized netlist, along with design constraints and technology
library information, is fed into a physical design tool for placement and routing. The
circuit layout, the output of physical design, shows gates’ location and their detail
wiring through metal layers. In addition to the circuit layout, an updated design
netlist with circuit parasitic parameters is obtained. The proposed flow includes two
major steps: the Cell Analysis and the Routing Analysis to study cell distribution and
routing congestion. The Cell Analysis step screens the circuit silicon to extract cells’
location. It then determines whitespaces distribution and their size. The Routing
Analysis step extracts used routing channels in each metal layer and determines
unused ones.

Iwvww . allitebooks.cond

http://www.allitebooks.org

3 Digital Circuit Vulnerabilities to Hardware Trojans 41

Fig. 3.2 The layout-level
vulnerability analysis flow Gate-level lib Design
Synthesized Netlist forary Constrains

Hag

Physical Design
Tool

v)
Circuit Extracted netlist with
Layout parasitic parameters

‘ ! !
Routing Cell Net
Analysis Analysis Analysis

After obtaining the circuit layout, the Cell Analysis obtains the circuit size and
collects placed cells and their coordination by screening the circuit layout. Using
these information, whitespaces in the circuit substrate are identified. Any whitespace
whose area size is greater than that of the smallest cell in the technology library
is considered a potential location for one or more Trojan cells insertion. The Cell
Analysis also obtains the distribution of cells and whitespaces across the layout.
The Routing Analysis collects used and unused routing channels in metal layers
above the substrate. Available routing channels can potentially be used for Trojan
cells interconnection and their connections to the main circuit. Similar to the Cell
Analysis, the Routing Analysis also collects the distribution of used and empty
routing channels in all metal layers. After determining whitespace and unused
routing channels distributions of a circuit layout, the vulnerability of a region of
circuit layout to hardware Trojan cells placement is defined as:

V(r) = WS(r) x UR(r) 3.1)

where V(r) indicates the vulnerability of region r, WS(r) the normalized whitespace
of region r, and UR(r) the normalized unused routing channels of region r. It is
expected that Trojan cells are inserted in regions with high V(r) where there are
equally high WS(r) and UR(r).

While being inserted in a region with high V may not guarantee Trojan detection
avoidance, to remain hidden from delay-based detection techniques, Trojans should
be inserted in regions with enough whitespace and empty routing channels and
tapped to nets on non-critical paths. The value of vulnerability to delay-resistant
Trojans (Vrq(r)) in the region r can be defined as

Vra(r) = V(r) X Nne(r) (3.2)

42 H. Salmani and M. Tehranipoor

where Nxc(r) is the number of non-critical path in the region » and V(r) is the
vulnerability of region r as defined by Eq. (3.1).

To stand power-based detection technique, Trojans should be connected to nets
with low transition probabilities and placed in regions with enough whitespace
and unused routing channel. The value of vulnerability to power-resistant Trojans
(V1p(r)) in the region r can be defined as

Vrp(r) = V(r) X Npp(r) (3.3)

where Npp(r) is the number of nets with transition probability smaller than a
predefined Py, in the region r, and V(r) is the vulnerability of region r as defined by
Eq.(3.1).

Trojans resistant to multi-parameter detection techniques should be placed in
regions with empty space and unused routing channels and connected to nets with
low transition probabilities located on non-critical paths. The value of vulnerability
to power and delay-resistant Trojans (Vrq4p(r)) in region r can be defined as

Vrap(r) = V(r) X Nncerp(7) (3.4

where Nncgrp(r) is the number of nets with transition probability less than a
predefined P, on non-critical paths in the region r and V(r) is the vulnerability
of region r as defined by Eq. (3.1).

3.3.2 Net Analysis

The Net Analysis performs a comprehensive analysis of each net in a circuit.
The analysis determines the transition probability of each net in the circuit. With
incorporating the circuit layout information, it is possible to obtain the distribution
of transition probability across the circuit layout. Using a timing analysis tool, the
slack distribution of worst paths passing through a net can be obtained. Nets with
low transition probability located on non-critical paths are suitable candidates for
Trojan trigger inputs.

In conclusion, the layout-level vulnerability analysis flow identifies regions of a
circuit that are more vulnerable to Trojans resistant to delay-based, power-based,
and multi-parameter-based detection techniques. Furthermore, the vulnerability of
a region is quantified, and this provides a detailed and fair comparison between
different circuit implementations. With such knowledge, it is possible to incorporate
effective prevention techniques with the least impact on main design specifications.
In addition, the flow may provide insightful guidance for authenticating circuits after
manufacturing.

b18 benchmark is synthesized using Synopsys’s SAED_EDK90nm library at
90nm technology node [17] and 9 metal layers for routing is considered. The layout
is divided into tiles with the area A7 equal to W? where W is the width of the largest

3 Digital Circuit Vulnerabilities to Hardware Trojans 43

a
2
E
o
Q
j=
=)
>
b
[0]
e 25
©
@
3 20
] =
I
82 15
28
[e)
2E
8 12
[0
£
3 5 £
=}
3
0 (&)

01 2 3 4 5 6 7 8 9 10 11 12
Row

Fig. 3.3 Existence of unused space and routing channels and vulnerability to delay-resistant
hardware Trojans in bl5 benchmark. (a) Unused space and routing channels(V(r)). (b) Delay-
resistant Trojans

cell in the design library; that is, A7 = 560.7424 m?. The average available white
space and unused routing channel are about 41 unit of INVXO0 and 0.84 per layer,
respectively. After performing layout vulnerability analysis flow, Fig. 3.3a presents
the vulnerability of b15 benchmark [18] to Trojan insertion at the layout-level as

44 H. Salmani and M. Tehranipoor

defined by Eq.(3.1). The average vulnerability is about 0.46 and about 40 % of
regions have V above 0.5. These signify considerably high susceptibility of the
layout to Trojan insertion.

Figure 3.3b shows the vulnerability of bl5 benchmark to Trojans resilient to
delay-based detection techniques across the layout. The results indicate the region
95 in Row 7 and Column 4 is the most susceptible region to delay-resistant Trojan
with Vrq(95) = 20.44, where Nnc(95) = 28 and V(95) = 0.73. Interestingly,
the adjacent region 94 in Row 7 and Column 3 has considerably higher number of
non-critical paths (Nnc(94) = 40); however, the region 94 has low whitespaces or
unused routing channels, V(94) = 0.21. Therefore, the susceptibility of region 94
is much lower with V14(94) = 8.4. The vulnerability of b15 benchmark to Trojans
resilient to power-based detection techniques across the layout is shown in Fig. 3.4a
with P, = le — 04. The results show that the region 147 in row 11 and column
4 has the maximum vulnerability to power-resistant Trojan with Vy,(147) = 7.71
where V(147) = 0.70 and Ny p(147) = 11.

Comparing results for delay-resistant Trojans and power-resistant Trojans reveals
that b15 benchmark in more susceptible to delay-resistant Trojans as the maximum
V14 is greater than the maximum V7. Furthermore, regions with the maximum Vg
and Vr, are different such that the most susceptible region to delay-resistant Trojan
is region 95 and the most susceptible region to power-resistant Trojan is region 147
for b15 benchmark.

Figure 3.4b shows the vulnerability of bl5 benchmark to Trojans resilient to
multi-parameter power and delay Trojan detection techniques. The results reveal
that the region 150 in row 11 and column 7 is the most susceptible region to Trojans
resilient to power and delay-based detection techniques with Vpqp(150) = 5.32
where V(150) = 0.53 and Nncgrp(150) = 10. The analysis signifies even with
using multi-parameter Trojan detection techniques, it is possible to implement
a Trojan whose full activation probability can be about 1 — E40 while there is
still considerable whitespace and unused routing channels in the region 150. This
analysis flags regions that are highly susceptible to Trojan insertion; therefore, it
can effectively limit Trojan investigation into a limited number of regions. The
detailed analysis for b15 benchmark shows that 21 regions out of 169 regions have
Vrgp above 3 that indicates the moderate existence of regions with considerable
whitespace and unused routing channels and a considerable number of nets with
low transition probability on non-critical paths.

The detailed results for b15 benchmark show that the percentage of regions with
Vrq above 5, 10, and 15 are 75 %, 17 %, and 3 %, respectively. The percentage of
regions with Vr, above 2, 4, and 5 are 14 %, 4 %, and 0.6 %, and the percentage
of regions with Vrq, above 2, 4, and 5 are 12%, 2%, and 0%. The results
emphasize that the b15 benchmark has higher percentage of regions vulnerable
to Trojans resilient to delay-based Trojan detection techniques. Further, by using
a multi-parameter power and delay Trojan detection techniques these percentages
significantly drop.

3 Digital Circuit Vulnerabilities to Hardware Trojans 45

[

Vulnerability to power-resistance Trojans (V)

0 ——===== ===
01 2 3 4 5 6 7 8 9 10 11 12
Row

T

Tdp

Vulnerability to delay&power-resistance
Trojans (Vrqp)
Column

0 — T T T T T T T T T

01 2 3 45 6 7 8 9 10 11 12
Row

Fig. 3.4 Vulnerability of b15 benchmark to Trojans resilient to power-based and multi-parameter-
based detection techniques. (a) Power-resilient Trojans with P, = le — 04. (b) Multi-parameter-
resilient Trojans

46 H. Salmani and M. Tehranipoor
3.4 Trojan Analyses

A Trojan’s impact on circuit characteristics depends on its implementation. Trojan
inputs tapped from nets with higher transition probabilities will aggrandize switch-
ing activity inside the Trojan circuit and increase its contribution to circuit power
consumption. Furthermore, the Trojan might affect circuit delay characteristics
due to additional capacitance induced by extra routing and Trojan gates. To
quantitatively determine the difficulty of detecting a gate-level Trojan, a procedure
is developed to determine Trojan detectability based on its impact on delay and
power across different circuits. Trojan detectability can establish a fair comparison
among different hardware Trojan detection techniques since it is based on induced
variations by a Trojan in side-channel signals.

The Trojan detectability metric is determined by (1) the number of transitions
in the Trojan circuit and (2) extra capacitance induced by Trojan gates and their
routing. This metric is designed to be forward-compatible with new approaches for
Trojan detection by introducing a new variable, for example, a quantity related to
the electromagnetic field.

Transitions in a Trojan circuit reflect Trojan contribution to circuit power
consumption, and Trojan impact on circuit delay characteristic is represented
by measuring the added capacitance by the Trojan. Assuming Aryjan represents
the number of transitions in the Trojan circuit, Stojan the Trojan circuit size in
terms of the number of cells, Arjrree the number of transitions in the Trojan-free
circuit, Stjrree the Trojan-free circuit size in terms of the number of cells, TIC the
added capacitance by Trojan as Trojan-induced capacitance, and Crjpe. the Trojan-
affected path with the largest capacitance in the corresponding Trojan-free circuit,
Trojan detectability (Tpetectabitity) at the gate-level is defined as

TDeleclability = |t| 3.5
where
_ ATrojan/STrojan TIC
b= (ATjFree/STjFree ? CTjFree (36)

Tetectability at the gate-level is calculated as follows:

1. Apply random inputs to a Trojan-free circuit and obtain the number of transitions
in the circuit (ATjFree)-

2. Apply the same random vectors to the circuit with a Trojan and obtain the number

of transitions in the Trojan circuit (Arojan)-

. Perform the delay analysis on the Trojan-free and Trojan-inserted circuits.

. Obtain the list of paths whose capacitance is changed by the Trojan.

5. Determine the Trojan-affected path with the largest capacitance in the corre-
sponding Trojan-free (Crjpre) and the added capacitance (TIC).

F OS]

3 Digital Circuit Vulnerabilities to Hardware Trojans 47

In8 In7 In6 In5 In4 In3 In2 Inl

InY

In10

In11
In12
In13
In14
In15
In16

:)o_

From the main circuit
Fig. 3.5 An example comparator Trojan

Table 3.1 The detectability of the comparator Trojan placed at four different locations in
Ethernet MAC 10GE circuit

Trojan | ATjFree StiFree | ATrojan | STrojan | TIC (pF) Crifree (PF) | Tetectability
TjG-Locl | 106,664,486 | 102,047 | 10,682 12 0.000286935 | 0.041358674 | 0.851659
TjG-Loc2 | 106,664,486 | 102,047 | 4229 |12 0.004969767 | 0.072111502 | 0.344132
TjG-Loc3 | 106,664,486 | 102,047 | 3598 |12 0.005005983 | 0.049687761 | 0.304031
TjG-Loc4 | 106,664,486 | 102,047 | 13,484 | 12 0.004932996 | 0.052602269 | 1.079105

6. Form the vector ¢ (3.6) and compute Tpetectability s defined in Eq. (3.5). Note that
Trojan detectability represents the difficulty of detecting a Trojan.

As an example, the comparator Trojan, shown in Fig.3.5, is inserted at four
different locations, namely TjG-Locl, TjG-Loc2, TjG-Loc3, and TjG-Loc4 (G rep-
resents “gate level”), in the Ethernet MAC 10GE circuit, and Table 3.1 shows their
detectability. The Ethernet MAC 10GE circuit consists of 102,047 cells, Column
3 STjFree; While the Trojan size with 12 cells, Column 5 Stygjan, is only about
0.011 % of the entire circuit. TjG-Loc4, in Row 5, experiences the largest switching
activity (13,484 in Column 4) and relatively induces high TIC (0.004932996 pF in
Column 6). It is expected that TjG-Loc4 will be the easiest Trojan to be detected due
to more impact on circuit side-channel signals, and in turn the detectability of TjG-
Loc4 (Tpetectabiliy = 1.079105 in Column 8) is higher than the others. Although
the induced capacitance by TjG-Loc2 (0.004969767pF), in Row 3, is more than
the capacitance induced by TjG-Locl (0.000286935pF), in Row 2, TjG-Locl has
more significant contribution into circuit switching activity, 10,682 versus 4229 in

48 H. Salmani and M. Tehranipoor

250 . n4839 500 . n4845
400 Tj'ln 450 T!In
350 TjFree 400 TiFree
z 300 7 350
£ 550 2 300
s 5 250
g 200 £ 200
w150 “ 150
100 100
50 50
0 0
5.4 5.45 5.5 5.55 5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95 5.4 5.45 5.5 5.55 5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95
Slack (ns) Slack (ns)
(a) Slack distribution for n4839 (b) Slack distribution for n4845
n4846 Power (W)
500 TR 7.00E-04
450 T:_Free 6.00E-04
400 5.00E-04
> 350 4.00E-04
3
£ 300 3.00E-04
3 250 2.00E-04
g 200 1.00E-04
150 0.00E+00
100 TjFree Tjin
50 Circuit
0
5.4 5.45 5.5 5.55 5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95 Trojan cells: 6.84E-07 (W)
Slack (ns)
(c) Slack distribution for n4846 (d) Trojan cells power consumption

Fig. 3.6 The circuit power consumption and the slack distribution of 1000 worst paths passing
through each triggering signal of a 3-bit synchronous counter Trojan inserted in Region 42 of b15
benchmark with Vg, (42) = 4.149

Column 4. Therefore, TjG-Locl has the second largest detectability (0.851659)
after TjG-Loc4. Among TjG-Loc2 and TjG-Loc3, although TjG-Loc3, in Row 4,
has slightly larger induced capacitance (0.005005983 pF), TjG-Loc2 experiences
more switching activity (4229 versus 3598 in Column 4). The two Trojans have
close detectability where TjG-Loc2 stands above and TjG-Loc3 remains the hardest
Trojan to be detected with the lowest Trojan detectability.

At the layout-level, the Vg, metric determines the vulnerability of a region to
Trojans which are resistant to both delay-based detection techniques and power-
based detection techniques. One 3-bit synchronous counter Trojan and one 12-bit
comparator separately inserted into b15 benchmark and Figs. 3.6 and 3.7, respec-
tively, show their delay and power impacts. The counter Trojan is inserted in the
region 42 at Column 3 and Row 3 with Vrgp(42) = 4.149 (V(42) = 0.4149
and Nncgrp(42) = 10). Figure 3.6a—c shows the slack distribution of the 1000
worst paths passing through the three triggering signals of the counter. The analysis
indicates the amount of TID for the three signals is about 1ns, on average, and
the minimum slack for each signal after Trojan insertion still is so large that the
worst path is not become a critical path. Figure 3.6d also presents the very small
power consumption of the Trojan circuit (~6.84E — 07 W), and the circuit power
consumption before and after Trojan insertion is almost remained the same, about

3 Digital Circuit Vulnerabilities to Hardware Trojans 49

n4840 n4841
400 - 400 ;
Tjin Tjin
350 | —e—TjFree 350 —e—TjFree
300 300
Z 250 Z 250
c c
S 200 $ 200
o o
g o
& 150 L 150
100 100
50 50
0 0
5.4 5.5 5.6 5.7 5.8 5.9 5.4 5.5 5.6 5.7 5.8 5.9
Slack (ns) Slack (ns)
(a) Slack distribution for n4840 (b) Slack distribution for n4841
n4842 Power (W)
400 - 7.00E-04
Tjin
350 —e—TjFree 6.00€-04
5.00E-04
300 4.00E-04
> 250 3.00E-04
< 2.00E-04
3 200 1.00E-04
£ 150 0.00E+00
TjFree Tjln
100 Circuit
50 Trojan cells: 4.44E-07 (W)
0
54 55 56 57 58 5.9 6
Slack (ns)
(c) Slack distribution for n4842 (d) Trojan cells power consumption

Fig. 3.7 The circuit power consumption and the slack distribution of 1000 worst paths passing
through three selected triggering signal of a 12-bit comparator Trojan with minimum slack inserted
in Region 43 of b15 benchmark with Vg, (43) = 4.7035

6.49E — 04 W. Therefore, the 3-bit synchronous counter Trojan may remain hidden
from both delay- and power-based Trojan detection techniques.

A similar analysis is performed for 12-bit comparator inserted in the neighboring
region 43 at Column 4 and Row 3 with Vqp(43) = 4.7035 (V(43) = 0.78 and
Nncgrp(43) = 6). The slack distributions of three selected inputs of the comparator
with the minimum slacks are presented in Fig.3.7a—c. The amount of TID is
0.018ns, on average, and the delay of the worst path is not large enough to be
considered a critical path. In Fig. 3.7d, the Trojan power consumption is very small
(~4.44E — 07 W). With small impact on circuit delay characteristics and power
consumption, the comparator Trojan may also remain hidden. Comparing the 3-bit
synchronous counter to 12-bit combinational comparator indicate that the counter
consumes more power than the comparator although the size of comparator circuit
larger. This is attributed to the fact that the counter is a sequential circuit and the
clock inputs of its flip-flops are connected to circuit clock. Furthermore, TID for the

50 H. Salmani and M. Tehranipoor

comparator circuit is smaller than that of the counter this is because of the higher
Vrgp value of the comparator. Therefore, the Vrg, metric can effectively identify
regions vulnerable to Trojans resilient to delay&power-based techniques.

3.5 Conclusions

This chapter presented a novel gate- and layout-level vulnerability analysis flows
presented to determine susceptibility of a gate-level netlist and a circuit layout to
hardware Trojan insertion. Based on a circuit topology and placement and routing
information, several metrics were defined to quantify the vulnerability of circuit
layout to different types of Trojans. The significance of introduced metrics was
evaluated by implementing different Trojans. The results indicated the considerable
vulnerability of gate-level netlist and circuit layouts to Trojans resistant to delay-
based, power-based, and multi-parameter-based Trojan detection techniques. The
proposed novel layout vulnerability analysis flow may provide guidance for Trojan
prevention during circuit development and Trojan detection after fabrication.

References

1. U.S.D. Of Defense, Defense science board task force on high performance microchip supply
(2015) http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_Final.pdf

2. S. Adee, The hunt for the kill switch (2008) http://www.spectrum.ieee.org/print/6171

3. S. Bhunia, M. Abramovici, D. Agarwal, P. Bradley, M.S. Hsiao, J. Plusquellic, M. Tehranipoor,
Protection against hardware Trojan attacks: towards a comprehensive solution. IEEE Des. Test
30(3), 6-17 (2013)

4. M. Tehranipoor, F. Koushanfar, A survey of hardware Trojan taxonomy and detection. IEEE
Des. Test Comput. 27(1), 10-25 (2010)

5. R. Karri, J. Rajendran, K. Rosenfeld, M. Tehranipoor, Trustworthy hardware: identifying and
classifying hardware Trojans. IEEE Comput. 43(10), 39-46 (2010)

6. M. Tehranipoor, H. Salmani, X. Zhang, X. Wang, R. Karri, J. Rajendran, K. Rosenfeld,
Trustworthy hardware: Trojan detection and design-for-trust challenges. IEEE Comput. 44(7),
66-74 (2011)

7. Y. Jin, D. Maliuk, Y. Makris, Post-deployment trust evaluation in wireless cryptographic ICs,
in Proceedings of the IEEE Design, Automation and Test in Europe Conference and Exhibition
(DATEI2) (2012), PP. 965-970

8. X. Zhang, M. Tehranipoor, Case study: detecting hardware Trojans in third-party digital IP
cores, in Proceedings of the IEEE International Workshop on Hardware-Oriented Security and
Trust (HOSTI11) (2011), pp. 67-70

9. Y. Jin, Y. Makris, Hardware Trojan detection using path delay fingerprint, in Proceedings of
the IEEE International Workshop on Hardware-Oriented Security and Trust (HOSTOS) (2008),
pp. 51-57

10. J. Li, J. Lach, At-speed delay characterization for IC authentication and Trojan horse detection,
in Proceedings of the IEEE International Workshop on Hardware-Oriented Security and Trust
(HOSTO0S) (2008), pp. 8-14

11. X. Wang, H. Salmani, M. Tehranipoor, J. Plusquellic, Hardware Trojan detection and isolation
using current integration and localized current analysis, in Proceedings of the IEEE Interna-
tional Symposium on Fault and Defect Tolerance in VLSI Systems (DFT08) (2008), pp. 87-95

http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_Final.pdf
http://www.spectrum.ieee.org/print/6171

12.

13.

14.

15.

16.

17

18.

Digital Circuit Vulnerabilities to Hardware Trojans 51

D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, B. Sunar, Trojan detection using IC
fingerprinting, in Proceedings of the IEEE Symposium on Security and Privacy (2007),
pp- 296-310

R. Rad, X. Wang, J. Plusquellic, M. Tehranipoor, Power supply signal calibration techniques
for improving detection resolution to hardware Trojans, in Proceedings of the International
Conference on Computer-Aided Design(ICCADOS) (2008), pp. 632—-639

M. Banga, M.S. Hsiao, A novel sustained vector technique for the detection of hardware
Trojans, in Proceedings of the International Conference on VLSI Design (VLSID09) (2009),
pp. 327-332

F. Wolff, C. Papachristou, S. Bhunia, R.S. Chakraborty, Towards Trojan-free trusted ICs:
problem analysis and detection scheme, in Proceedings of the Design, Automation and Test
in Europe (DATEOS) (2008), pp. 1362-1365

Ethernet 10GE MAC (2013) http://opencores.org/project,xge_mac

. Synopsys 90nm generic library for teaching IC design (2016) http://www.synopsys.com/

Community/UniversityProgram/Pages
ISCAS benchmarks (2016) http://www.pld.ttu.ee/~maksim/benchmarks/

http://opencores.org/project,xge_mac
http://www.synopsys.com/Community/UniversityProgram/Pages
http://www.synopsys.com/Community/UniversityProgram/Pages
http://www.pld.ttu.ee/~maksim/benchmarks/

Chapter 4
Code Coverage Analysis for IP Trust Verification

Adib Nahiyan and Mark Tehranipoor

4.1 Introduction

Due to globalization of the semiconductor design and fabrication process, integrated
circuits (ICs) are becoming increasingly vulnerable to malicious activities and alter-
ations. Today’s system-on-chips (SoCs) usually contain tens of IP cores (digital and
analog) performing various functions. In practice, very seldom IPs are developed
by the SoC integrator; in fact most of them are currently being designed offshore
by 3PIP vendors. This raises a major concern towards the trustworthiness of 3PIPs.
These concerns have been documented in various reports and technical events [1].

IP trust problem is defined as the possibility of inserting Trojan into 3PIPs by
IP vendors during SoC design. This issue has gained significant attention as a
Trojan-inserted by 3PIP vendor can create backdoors in the design through which
sensitive information can be leaked and other possible attacks (e.g., denial of
service, reduction in reliability, etc.) can be performed [2, 3].

Detection of Trojans in 3PIP cores is extremely difficult as there is no golden
version against which to compare a given IP core during verification. In theory, an
effective way to detect a Trojan in an IP core is to activate the Trojan and observe
its effects, but the Trojan’s type, size, and location are unknown, and its activation
condition is most likely a rare event [4]. The conventional side-channel techniques
for IC trust are not applicable to IP trust. When a Trojan exists in an IP core, all
the fabricated ICs will contain Trojans. The only trusted component would be the
specification from the SoC designer which defines the function, primary input and
output, and other information about the 3PIP that they intend to use in their systems.
A Trojan can be very well hidden during the normal functional operation of the 3PIP

A. Nahiyan (0</) « M. Tehranipoor
University of Florida, Gainesville, FL, USA
e-mail: adib1991 @ufl.edu; tehranipoor @ece.ufl.edu

© Springer International Publishing AG 2017 53
P. Mishra et al. (eds.), Hardware IP Security and Trust,
DOI 10.1007/978-3-319-49025-0_4

mailto:adib1991@ufl.edu
mailto:tehranipoor@ece.ufl.edu

54 A. Nahiyan and M. Tehranipoor

supplied as register transfer level (RTL) code. A large industrial-scale IP core can
include thousands of lines of code. Identifying the few lines of RTL code in an IP
core that represents a Trojan is an extremely challenging task.

Given the complexity of the problem, there is no silver bullet available to detect
hardware Trojans in 3PIPs. An IP trust verification technique that tries to address
the IP trust problem is presented in [5]. This chapter will present this technique in
details. Several concepts such as formal verification, code coverage analysis, and
ATPG methods have been employed in this technique to achieve high confidence
in whether the circuit is Trojan-free or Trojan-inserted. This IP trust verification
technique is based on identification of suspicious signals. Suspicious signals are
identified first by coverage analysis with improved test bench. Removing redundant
circuit and equivalence theorems are then applied to reduce the number of suspicious
signals. Sequential ATPG is used to generate patterns to activate suspicious signals
which can trigger the Trojan.

4.2 SoC Design Flow

A typically SoC design flow is shown in Fig.4.1. Design specification by the SoC
integrator is generally the first step. The SoC integrator then identifies a list of IPs
necessary to implement the given specification. These IP cores are either developed
in-house or purchased from 3PIP vendors. These 3PIP cores can be procured from
the vendors in one of the following three ways [6]:

 soft IP cores are delivered as synthesizable register transfer level (RTL) hardware
description language (HDL)

* hard IP cores are delivered as GDSII representations of a fully placed and routed
core design

» firm IP cores are optimized in structure and topology for performance and area,
possibly using a generic library.

After developing/procuring all the necessary soft IPs, the SoC design house
integrates them to generate the RTL specification of the whole system. SoC
integrator then synthesizes the RTL description into a gate-level netlist based on
the logic cells and I/Os of a target technology library, then they may integrate gate-
level IP cores from a vendor into this netlist. They also add design-for-test (DFT)
structures to improve the design’s testability. The next step is to translate the gate-
level netlist into a physical layout based on logic cells and I/O geometries. It is
also possible to import IP cores from vendors in GDSII layout file format. After
performing static timing analysis (STA) and power closure, developers generate the
final layout in GDSII format and send it out for fabrication.

Today’s advanced semiconductor technology requires prohibitive investment
for each stage of the SoC development procedure. As an example, the estimated
cost of owning a foundry was five billion dollar in 2015 [7]. As a result, most
semiconductor companies cannot afford maintaining such a long supply chain from

4 Code Coverage Analysis for IP Trust Verification 55

Fig. 4.1 System-on-chip P 2 ;
(SoC) design flow consists of Ferel| . . . f"knf" Soft IP

IP-core-based design, system 2 1P n‘— Cores (RTL) |
integration, and 3pIP . —— |
manufacturing } securetp
s
SoC engOEETIT\'{ ’
Integrator
Gates and I/O Synthesis &
Library DFT
Firm IP

Cores (Gate ‘
Level)

oy
Cell And I/0 Layout &
GDSII STA
Hard IP |
Cores (GDSII) |

Fabrication

design to packaging. In order to lower R&D cost and speed up the development
cycle, the SoC design houses typically outsource fabrication to a third-party
foundry, purchase third-party intellectual property (IP) cores, and/or use Electronic
Design Automation (EDA) tools from third-party vendors. The use of untrusted
(and potentially malicious) third parties increases the security concerns. Thus, the
supply chain is now considered susceptible to various attacks, such as hardware
Trojan insertion, reverse engineering, IP piracy, IC tampering, IC cloning, IC
overproduction, and so forth. Among these, hardware Trojans are arguably one of
the biggest concerns and have garnered considerable attention [9].

Trojans can be inserted in SoCs at the RTL, at the gate level during synthesis
and DFT insertion, at the layout level during placement and routing, or during IC
manufacturing [8]. An attacker can also insert a Trojan through IP cores provided
by external vendors. Designers must verify the trustworthiness of IP cores to ensure
that they perform as intended, nothing more and nothing less.

56 A. Nahiyan and M. Tehranipoor
4.3 Hardware Trojan Structure

A hardware Trojan is defined as a malicious, intentional modification of a circuit
design that results in undesired behavior when the circuit is deployed [8]. The basic
structure of a Trojan in a 3PIP can include two main parts, trigger and payload. A
Trojan trigger is an optional part that monitors various signals and/or a series of
events in the circuit. The payload usually taps signals from the original (Trojan-
free) circuit and the output of the trigger. Once the trigger detects an expected event
or condition, the payload is activated to perform malicious behavior. Typically, the
trigger is expected to be activated under extremely rare conditions, so the payload
remains inactive most of the time. When the payload is inactive, the IC acts like a
Trojan-free circuit, making it difficult to detect the Trojan.

Figure 4.2 shows the basic structure of the Trojan at gate level. The trigger inputs
(T, T,,...,Ty) come from various nets in the circuit. The payload taps the original
signal Net; from the original (Trojan-free) circuit and the output of the trigger. Since
the trigger is expected to be activated under rare condition, the payload output stays
at the same value as Net; most of the time. However, when trigger is active (i.e.,
TriggerEnable is “0”) the payload output will be different from Net;; this could
result in injecting an erroneous value into the circuit and causing error at the output.
Note that Trojans at RTL would have similar functionality to the one shown in
Fig.4.2.

4.4 Related Work

IP trust validation focuses on verifying that an IP does not perform any malicious
function, i.e., an IP does not contain any Trojan. Existing IP trust validation tech-
niques can be broadly classified into code/structural analysis, functional verification,
logic testing, formal verification, and runtime validation.

Code Coverage Analysis Code coverage is defined as the percentage of lines of
code that has been executed during functional verification of the design. This metrics

T-T ! Payload
< Trigger !
TriggerEnable : B Trojan free
i circuit
Trojan free Neti !
circuit !

Fig. 4.2 Trojan structure

4 Code Coverage Analysis for IP Trust Verification 57

gives a quantitative measure of the completeness of the functional simulation of the
design. Code coverage analysis can also be applied to identify suspicious signals
that may be a part of a Trojan and validate the trustworthiness of a 3PIP. In
[9], authors have proposed a technique named unused circuit identification (UCI)
to find the lines of RTL code that have not been executed during simulation.
These unused lines of codes can be considered to be part of a malicious circuit.
Authors in [9] proposed to remove these suspicious lines of RTL code from the
hardware design and emulate it in the software level. In [10], authors have proposed
similar code coverage analysis in combination with hardware assertion checker to
identify malicious circuitry in a 3PIP. However, these techniques do not guarantee
the trustworthiness of a 3PIP. Authors in [11] have demonstrated that hardware
Trojans can be designed to defeat UCI technique. This type of Trojans derives their
triggering circuits from less likely events to evade detection from code coverage
analysis.

Formal Verification Formal methods such as symbolic execution [12], model
checking [13], and information flow [14] have been traditionally applied to software
systems for finding security bugs and improving test coverage. Formal verifi-
cation has also shown to be effective in verifying the trustworthiness of 3PIP
[15-17]. These approaches are based on the concept of proof-carrying code (PCC)
to formally validate the security-related properties of an IP. In these proposed
approaches, an SoC integrator provides a set of security properties in addition to the
standard functional specification to the IP vendor. A formal proof of these properties
alongside with the hardware IP is then provided by the third-party vendor. SoC
integrator then validates the proof by using the PCC. Any malicious modification of
the IP would violate this proof indicating the presence of hardware Trojan. However,
these approaches cannot ensure complete trust in an IP because the third-party
vendor crafts the formal proof of these security-related properties [18].

Authors in [19] have proposed a technique to formally verify malicious modifi-
cation of critical data in 3PIP by hardware Trojans. The proposed technique is based
on bounded model checking (BMC). Here, the BMC checks for the property—*“does
critical information get corrupted?” and outputs if the property is being violated in
the given IP. Also BMC reports the sequence of input patterns which violates this
property. Form the reported input patterns it is possible to extract the triggering
condition of the Trojan. Another similar approach has been proposed in [20] which
formally verifies unauthorized information leakage in 3PIPs. This technique checks
for the property—*"“does the design leak any sensitive information?” The limitation
of these approaches is that the processing ability of the model checking is relatively
limited, due to the problem of space explosion.

Structural Analysis Structural analysis employs quantitative metrics to mark
signals or gates with low activation probability as suspicious. In [21], authors
have presented a metric named “Statement Hardness” to evaluate the difficulty
of executing a statement in the RTL code. Areas in a circuit with large value of
“Statement Hardness” are more vulnerable to Trojan insertion. At gate level, an
attacker would most likely target hard-to-detect areas of the gate-level netlist to

58 A. Nahiyan and M. Tehranipoor

insert Trojan. Hard-to-detect nets are defined as nets which have low transition
probability and are not testable through well-known fault testing techniques (stuck-
at, transition delay, path delay, and bridging faults) [22]. Inserting a Trojan in
hard-to-detect areas would reduce the probability to trigger the Trojan and thereby,
reduce the probability of being detected during verification and validation testing.
In [23], authors have proposed metrics to evaluate hard-to-detect areas in the gate-
level netlist. The limitations of code/structural analysis techniques are that they do
not guarantee Trojan detection, and manual post-processing is required to analyze
suspicious signals or gates and determine if they are a part of a Trojan.

Logic Testing Logic testing aims to activate Trojans by applying test vectors and
comparing the responses with the correct results. While at first glance this is similar
in spirit to manufacturing tests for detecting manufacturing defects, conventional
manufacturing tests using functional/structural/random patterns perform poorly to
reliably detect hardware Trojans [24]. Intelligent adversaries can design Trojans that
are activated under very rare conditions, so they can go undetected under structural
and functional tests during the manufacturing test process. In [25] authors have
developed a test pattern generation methods to trigger such rarely activated nets
and improve the possibility of observing Trojan’s effects from primary outputs.
However, this technique does not guarantee to trigger the Trojan and it is infeasible
to apply this technique in an industrial-scale design. Additionally, there could
be Trojans which do not functionally affect the circuit but leaks confidential
information through side channel. This type of Trojans cannot be identified through
logic testing.

Functional Analysis Functional analysis applies random input patterns and per-
forms functional simulation of the IP to find suspicious regions of the IP which
have similar characteristics of a hardware Trojan. The basic difference between
functional analysis and logic testing is that logic testing aims to apply specific
patterns to activate a Trojan, whereas functional analysis applies random patterns
and these patterns are not directed to trigger the Trojan. Authors in [26] have
proposed a technique named Functional Analysis for Nearly unused Circuit Iden-
tification (FANCI) which flags nets having weak input-to-output dependency as
suspicious. This approach is based on the observation that a hardware Trojan is
triggered under very rare condition. Therefore the logic implementing the trigger
circuit of a Trojan is nearly unused or dormant during normal functional operation.
Here, the authors have proposed a metric called “Control value” to find “nearly
unused logic” by quantifying the degree of controllability of each input net has
on its output function. “Control value” is computed by applying random input
patterns and measuring the number of output transitions. If the control value of a
net is lower than a predefined threshold, then the net is flagged as suspicious. For
example, for the RSA-T100 (http://trust-hub.org/resources/benchmarks) Trojan, the
triggering condition is 32°h44444444. The “Control value” for the triggering net
is 2732 which is expected to be lower than the predefined threshold. The major
limitations of FANCI are, this approach produces a large number of false positive
results and this approach does not specify any method to verify if the suspicious

http://trust-hub.org/resources/benchmarks

4 Code Coverage Analysis for IP Trust Verification 59

signals are performing any malicious operation. Also, authors in [27] have shown
to design Trojans to defeat FANCI. Here, they design Trojan circuits whose trigger
vector arrives over multiple clock cycles. For example, for the RSA-T100 Trojan,
the triggering sequence can be derived over four cycles making the “Control value”
of the triggering net 278, Furthermore, FANCI cannot identify “Always On” Trojans
which remains active during their lifetime and do not have any triggering circuitry.

Authors in [28] have proposed a technique called VeriTrust to identify potential
triggering inputs of a hardware Trojan. The proposed technique is based on the
observation that input ports of the triggering circuit of a hardware Trojan keep
dormant during normal operation and therefore, are redundant to the normal logic
function of the circuit. VeriTrust works as follows, first it performs functional
simulation of the IP with random input patterns and traces the activation history
of the inputs ports in the form of sums-of-products (SOP) and product-of-sums
(POS). Veritrust then identifies redundant inputs by analyzing the SOPs and POSs
which are unactivated during functional simulation. These redundant input signals
are potential triggering inputs of a hardware Trojan. VeriTrust technique aims
to be independent of the implementation style of hardware Trojan. However,
this technique also produces a large number of false positive results because
of incomplete functional simulation and unactivated entries belonging to normal
function. Also, authors in [27] have designed Trojans which can defeat VeriTrust by
ensuring that Trojan triggering circuit is driven by a subset of functional inputs in
addition to triggering inputs. VeriTrust also shares the same limitation of FANCI as
not being able to identify “Always On” Trojans.

Runtime Validation Runtime validation approaches are generally based on dual
modular redundancy-based approaches [29]. These techniques rely on procuring
IP cores of same functionality from different IP vendors. The basic assumption
is that, it is highly unlikely that different Trojans in different 3PIPs will produce
identical wrong outputs. Therefore, by comparing the outputs of IP cores of same
functionality but obtained from different vendors, one can detect any malicious
activity triggered by a Trojan. The main disadvantage of this approach is that the
area overhead is prohibitively high (100 % area overhead) and the SoC integrator
needs to purchase same functional IP from different vendors (economically infeasi-
ble).

4.5 A Case Study for IP Trust Verification

It is evident from the discussion on Sect. 4.4 that it is not possible to verify with high
confidence the trustworthiness of a 3PIP using one single approach. Authors in [5]
have proposed an IP trust validation technique which involves formal verification,
coverage analysis, redundant circuit removal, sequential ATPG, and equivalence
theorems. This technique first utilizes formal verification and code coverage analysis
to identify any suspicious signals and components corresponding to Trojans in a

60 A. Nahiyan and M. Tehranipoor

3PIP core. Next, the proposed technique applies suspicious signal analysis to reduce
the number of false positive suspicious signals. This technique focuses on ensuring
trust in soft IP cores, as they are the most dominant cores in the market today due to
the flexibility they offer to the SoC designers.

4.5.1 Formal Verification and Coverage Analysis

One of the important concepts in this proposed technique is formal verification,
an algorithmic-based approach to logic verification that exhaustively proves the
functional properties of a design. It contains three types of verification methods
that are not commonly used in the traditional verification, namely model checking,
equivalence checking, and property checking. All functions in the specification are
defined as properties. The specific corner cases in the test suite as they monitor
particular objects in a 3PIP could also be represented by properties, such as worry
cases, inter-block interfaces, and complex RTL structures. They can be represented
as properties wherever the protocols may be misused, assumptions violated, or
design intent incorrectly implemented. Formal verification uses property checking
to check whether the IP satisfies those properties. With property checking, every
corner of the design can be explored. For example, in benchmark RS232, there
are two main functionalities in the specification: (1) transmitter and (2) receiver.
Figure 4.3 shows the waveform of the transmitter. Take the startbit as an example;
with Rst == 1'b1, clk positive edge, and xmitH == 1'b1, the output signal
Uart_xmit will start to transmit startbit “0”. This functionality is described using
the SystemVerilog property shown in Fig. 4.4, and the corresponding assertion is
defined simultaneously. The remaining items in the specification are also translated
to properties during formal verification. Once all the functionalities in the specifica-
tion are translated to properties, coverage metrics can help identify suspicious parts
in the 3PIP under authentication. Those suspicious parts may be Trojans (or part of
Trojans).

Rst
ceenl UL h JUuty
xmitH ’_I

xmit_data@(D7...D0O

iitig po [b1 [b2 | pa| pa] ps | pe | D7 | P

bit-1
T=16T T=16T

Uart_xmit

Fig. 4.3 Transmitter property in the specification stage

4 Code Coverage Analysis for IP Trust Verification 61

01: property el;

02: @(posedge uart_clk) disable iff (Rst)

03: Srose(xmitH) |— > ##1 (uart. XMIT.dataH==0);
04: endproperty

05:

06: al: assert property(el);

Fig. 4.4 One of the properties and assertions definitions for RS232

01: Line No Coverage Block Type
02: 69 | ALWAYS
03: 70 1 CASEITEM
04: 71 | CASEITEM
05: 72 0 CASEITEM
06: 73 | CASEITEM
07: 74 0 CASEITEM
08: 82 | ALWAYS
09: 82.1 | IF

Fig. 4.5 Part of the line coverage report

Coverage metrics include code coverage and functional coverage. Code coverage
analysis is a metric that evaluates the effectiveness of a test bench in exercising
the design [30, 31]. There are many different types of code coverage analysis,
but only a few of them are helpful for IP trust, namely line, statement, toggle,
and finite state machine (FSM) coverage. Toggle coverage reports whether signals
switch in the gate-level netlist while the other three coverage metrics show which
line(s) and statement(s) are executed, and whether states in FSM are reached in RTL
code during verification. Figure 4.5 shows parts of line coverage report during the
simulation with RS232. This report shows that lines 72 and 74 are not executed,
which helps improve the test bench by checking the source code. If the RTL code
is easily readable, special patterns that can activate those lines will be added to the
test bench. Otherwise, random patterns will be added to verify the 3PIP.

Functional coverage is the determination of how much functionality of the design
has been exercised by the verification environment. The functional requirements are
imposed on both the design inputs and outputs and on their interrelationships by
the design specifications from SoC designer (i.e., IP buyers). All the functional
requirements can be translated as different types of assertion, as in Fig.4.4.
Functional coverage checks those assertions to see whether they are successful or
not. Table 4.1 shows part of the assertions coverage report (Assertion al is defined in
Fig.4.4). The number of attempts in the table means that there are 500,003 positive
edge clocks during the simulation time when the tool tries to check the assertion.

62 A. Nahiyan and M. Tehranipoor

Table 4.1 Part of the assertion report with RS232

Assertion Attempts | Real success | Failure |Incomplete
test.uart]l.uart_checker.al | 500,003 1953 0 0
test.uartl.uart_checker.a2 | 1953 1952 0 1

In Table 4.1, the Real Success column represents the assertion success rate while
Failure/Incomplete column denotes the frequency of assertion failure/incomplete.
When there are zero Failures, the property is always satisfied.

If all the assertions generated from the specification of the 3PIP are successful
and all the coverage metrics such as line, statement, and FSM are 100 %, then it
can be assumed with high confidence that the 3PIP is Trojan-free. Otherwise, the
uncovered lines, statements, states in FSM, and signals are considered suspicious.
All the suspicious parts constitute the suspicious list.

4.5.2 Techniques for Suspicious Signals Reduction

Based on the formal verification and coverage metric, a flow is proposed to verify the
trustworthiness of 3PIP in [1]. The basic idea of the proposed solution is that without
redundant circuit and Trojans in a 3PIP, all the signals/components are expected
to change their states during verification and 3PIP should function perfectly.
Thus, the signals/components that stay stable during toggle coverage analysis are
considered suspicious, as Trojan circuits do not change their states frequently. Each
suspicious signal is then considered as the TriggercEnablex. Figure 4.6 shows the
flow to identify and minimize the suspicious parts, including test pattern generation,
suspicious signal identification, and suspicious signal analysis. Each step in the
figure will be discussed in detail in the following.

4.5.2.1 Phase 1: Test Bench Generation and Suspicious Signal
Identification

In order to verify the trustworthiness of 3PIPs, 100 % coverage of the test bench
is best. However, it is very difficult to achieve 100 % coverage for every 3PIP,
especially those with tens of thousands of lines of code. In the flow, the first step
is to improve the test bench to obtain a higher code coverage with an acceptable
simulation runtime. With each property in the specification and basic functional
test vectors, formal verification reports line, statement, and FSM coverage for the
RTL code. If one of the assertions fails even once during verification, the 3PIP
is considered untrustworthy, containing Trojans or bugs. If all the assertions are
successful and the code coverage is 100 %, the 3PIP can be trusted. If at least one

4 Code Coverage Analysis for IP Trust Verification 63

R e e e e\ A Py nl
I
PR Remove redundant
Specification Y T circuits
! o
! > F“"‘:""T:?;::h'la"d Suspicious]
Testbench) ol signals !
) e
i i - Suspicious
Formal verification and coverage analysis) BT s?g:nals
1 I
s s i
| Trojan 1 : e 1
' uential ATPG Suspicious
: inserted I - signals
|| Addtest | s
pattemns 1
l '
Final testbench and z Trojan analysis :
] suspicious parts I 1
]
! —_ P R - — |
Testbench generation and suspicious signal identification Suspicious signal analysis

Fig. 4.6 The proposed flow for identifying and minimizing suspicious signals

assertion fails or the code coverage is less than 100 %, more test vectors need to
be added to the test bench. The basic purpose of adding new vectors is to activate
the uncovered parts as much as possible. But the verification time will increase
as the number of test vectors increases. With the acceptable verification time and
certain coverage percentage, both defined by the IP buyer, the final test bench will
be generated and the RTL source code will be synthesized for further analysis.

4.5.2.2 Phase 2: Suspicious Signals Analysis

Redundant Circuit Removal (RCR) Redundant circuits must be removed from
the suspicious list since they also tend to stay at the same logic value during
verification, and input patterns cannot activate them. Removing a redundant circuit
involves sequential reasoning, SAT-sweeping, conflict analysis, and data mining.
The SAT method integrated in the Synopsys Design Compiler (DC) is used in this
flow.

Another method to remove redundant circuits is developed in [5]. Scan chains are
inserted into the gate-level netlist after synthesis for design testability, and ATPG
generates patterns for all the stuck-at faults. The untestable stuck-at faults during
ATPG are likely to be redundant logic. The reason is that if the stuck-at fault is
untestable, the output responses of the faulty circuit will be identical to the output
of the fault-free circuit for all possible input patterns. Thus, when ATPG identifies
a stuck-at-1/0 fault as untestable, the faulty net can be replaced by logic 1/0 in the

64 A. Nahiyan and M. Tehranipoor

a b

A

B i p—) —

° ; P
c

Fig. 4.7 (a) Before removing the redundant circuit with untestable F stuck-at-0 fault and (b) After
removing the redundant circuit

gate-level netlist without scan-chain. All the circuits driving the faulty net will be
removed as well. Figure 4.7a shows the circuit before redundant circuit removal.

The stuck-at-0 fault of net F is untestable when generating patterns. Net F will
be replaced by 0 and the gate G driving it will be removed from the original circuit,
as shown in Fig. 4.7b.

After redundant circuit removal, toggle coverage analysis for the gate-level netlist
without scan chain will identify which signals do not toggle (also called quiet
signal) during verification with the test bench generated in Phase 1. These signals
will be considered suspicious and added to the suspicious list. By monitoring these
suspicious signals during verification, the authors obtain the logic value those signal
are stuck at.

Equivalence Analysis Fault equivalence theorems are known to reduce the number
of faults during ATPG [32]. Similarly, the authors develop suspicious signal
equivalence theorems to reduce the number of suspicious signals in [5].

e Theorem 1. If signal A is the D pin of a flip-flop (FF) while signal B is the Q
pin of the same FF, the quiet signal A makes signal B quiet. Thus signal A is
considered equal to B, which means if the pattern that can activate A is found, it
will activate B as well. Then signal B will be removed from the suspicious signal
list. As the ON port of an FF is the inversion of the Q port, they will stay quiet or
switch at the same time. Thus the suspicious signal B would be considered equal
to A and should be removed from the suspicious list.

e Theorem 2. If signal A is the output pin of an inverter while signal B is its input,
they will stay quiet or switch at the same time. Thus the suspicious signal B would
be considered equal to A and should be removed from the suspicious list.

e Theorem 3. One of the inputs of AND gate A stuck-at-0 will cause the output B
to stay quiet and one of the inputs of OR gate C stuck-at-1 will make the output
D high all along. Thus, for AND gate, B stuck-at-0 is identical to A stuck-at-0,
while for OR gate, D is identical to C stuck-at-1.

Sequential ATPG After reducing the number of suspicious signals by applying the
above equivalence theorems, the authors use sequential ATPG to generate special
patterns to change the value of certain signals during simulation in [5]. Stuck-at

4 Code Coverage Analysis for IP Trust Verification 65

faults are targeted by the sequential ATPG to generate a sequential pattern to activate
the suspicious signals when applied to the 3PIP. If the 3PIP functions perfectly
with this pattern, the activated suspicious signals are considered part of the original
circuit. Otherwise, there must be malicious inclusion in the 3PIP.

4.6 Simulation Results

The flow is applied to the RS232 circuit. Nine Trojans designed by authors in [5]
and ten Trojans from (http://trust-hub.org/resources/benchmarks) are inserted into
the 3PIP (RS232). In total, there are 19 RS232 benchmarks with one Trojan in each
IP. The following section presents the simulation setup and test bench analysis for
the 19 Trojan-inserted benchmarks. Next, the results of redundant circuit removal
and the reduction of suspicious signals will be presented. Finally, Trojan coverage
analysis will be discussed.

4.6.1 Benchmark Setup

The specification, structure, and functionality of the Trojans designed by authors in
[5] are discussed below.

Trojan 1 The trigger of Trojan 1 is a special input sequence 8’ha6—8’h75-8 hcO—
8’hff . The payload changes the FSM in the transmitter of RS232 from state Start to
Stop, which means that once the Trojan is triggered, RS232 will stop transmitting
data (outputdata = 8'h0). Since the trigger of the Trojan is a sequence of four
special inputs, the probability of detecting the Trojan during verification is 1/2%2.
If the baud rate is 2400 and RS232 transmits 240 words in one second, it will take
207.2 days to activate the Trojan and detect the error. In other words, it would be
practically impossible to detect it by conventional verification. When this Trojan
is inserted into RS232, an FSM is used to describe the Trojan input sequence. A
three-bit variable state represents the FSM.

Trojan 2 This Trojan only adds four lines to the original RTL code. If the
transmitting word is odd and the receiving word is 8 haa, RS232 will stop receiving
words. This Trojan is less complex compared to Trojan 1, however, it provides
opportunities to demonstrate the effectiveness of each step of the proposed flow.

Trojan 3 The trigger of Trojan 3 is the same as that of Trojan 1, but the payload
is different. Trojan 1 changes the state machine while Trojan 3 changes the shift
process. The eighth bit of the transmitting word will be replaced by a Trojan bit
during transmission. The Trojan bit could be authentication information, the special
key to enable the system, or other important information.

http://trust-hub.org/resources/benchmarks

66 A. Nahiyan and M. Tehranipoor

Trojan 4 Trojan 4 is designed to act like a time bomb. A counter is inserted into
RS232 to count the number of words that have been sent out. After sending 10°h3ff
words, the Trojan will be activated. The sixth bit of the transmitting word will be
replaced by a Trojan bit.

Trojan 5 After 24 hffffff positive edge clock, this Trojan’s enable signal will
become high. The sixth bit of the transmitting word will be replaced by a Trojan
bit.

Trojan 6 If RS232 receives “0” when the system is reset, the Trojan will be
activated. The eighth bit of the transmitting word will be replaced by a Trojan bit.

Trojan7 When the transmitter sends a word 8’01 and the receiver receives a word
8’hef at the same time, the Trojan will be activated. A Trojan bit will replace the
first bit of the transmitting word.

Trojans 8 and 9 These Trojans do not tamper the original function of RS232 but
add extra one stage (Trojan 8) and three stage (Trojan 9) ring oscillator to the RTL,
which will increase the temperature of the chip quickly if they get activated.

4.6.2 Impact of Test Bench on Coverage Analysis

All the items in the specification are translated into properties and defined as
assertions in the test bench. Assertion checkers will verify the correctness of
assertions by SystemVerilog. Another important feature of a test bench is the input
patterns. Some test corners need special input patterns. The more input patterns in
the test bench, the more, for example, lines will be covered during verification.
Table 4.2 shows five test benches with different test patterns and verification
times for various coverage metric reports for the RS232 benchmark with Trojan
1. Generally, the verification time will increase with more test patterns and the code

Table 4.2 Analyzing the impact of the test bench on coverage metrics (a benchmark with Trojan
1 is used)

Test bench # Test bench 1 | Test bench 2 | Test bench 3 | Test bench 4 | Test bench 5
Test patterns # 2000 10,000 20,000 100,000 1,000,000
Verification time 1 min 6 min 11 min 56 min 10h

Line coverage (%) |89.5 95.2 98.0 98.7 100

FSM state 87.5 87.5 93.75 93.75 100
coverage (%)

FSM transition 86.2 89.65 93.1 96.5 100
coverage (%)

Path coverage (%) |77.94 80.8 87.93 97.34 100

Assertion Successful Successful Successful Successful Failure

4 Code Coverage Analysis for IP Trust Verification 67

coverage will be higher as well. For Test Bench 1 to Test Bench 4, all the coverage
reports are less than 100 % and all the assertions are successful, which indicates that
the Trojan is dormant during the entire verification. The special test patterns added
in Test Bench 5 increase the pattern count significantly and can activate the Trojans
inserted in the benchmark. Hundred percent code coverage could be achieved with
these additional test patterns. If one of the assertion experiences a failure, it signifies
Trojan activation and the RS232 will give an erroneous output. One can conclude
that the IP is Trojan-inserted. However, it is not easy to generate a test bench with
100 % code coverage for large IPs, and the verification time will be extremely long.
This phase of the flow can help improve the quality of the test bench. Given the
time-coverage trade off, Test Bench 4 is selected for further analysis.

4.6.3 Reducing the Suspicious Signals

All the 19 benchmarks with different Trojans are synthesized to generate the gate-
level netlist. The removal of redundant circuits is done during the synthesis process
with special constrains using the Design Compiler. The simulation results are shown
in Table 4.3. The second column in the table shows the area overhead of each
Trojan after generating the final layout. As the table shows, Trojans are composed
of different sizes, gates, and structures, as well as different triggers and payloads
as previously mentioned. The smallest Trojan has only 1.15% area overhead.
The percentage of Trojan area covered by suspicious signals SS-Overlap-Trojan is
obtained by,

N
SS-Overlap-Trojan = 5
Nt

where Nsg is the number of suspicious signals and Nts is the number of Trojan
signals. The results in Table 4.3 show that SS-Overlap-Trojan is between 67.7 %
and 100 %, as shown in seventh column.

If all the suspicious signals are part of the Trojan, the SS-Overlap-Trojan would
be 100 %. This indicates that the number of signals in the final suspicious list fully
overlapped with those from Trojan. This is an indicator of how successful the flow
is at identifying Trojan signals. In addition, if the Trojan is removed or detected by
sequential ATPG, the SS-Overlap-Trojan would also be 100 %.

Test Bench 4 is used to verify which signals in each Trojan-inserted circuit are
not covered by the simulation with all the successful assertions. Those quiet signals
are identified as suspicious. The number of suspicious signals of each benchmark
is shown in the third column of Table 4.3. Different benchmarks have a different
number of suspicious signals based on the size of its Trojans. The larger the Trojan
is, the more suspicious signals it has. On the other hand, the suspicious signals’
stuck-at values are monitored by verification. All stuck-at-faults are simulated by
the ATPG tool with scan chain in the netlist. If the fault is untestable, the suspicious

A. Nahiyan and M. Tehranipoor

68

€'L8 4! 4 44 ST €CI | TIdVOSOSIL
9'¢6 ¢l €1 0T (44 $"Z1 | 0IdVOSOEUL
001 1 1 81 0T 0°CI | 0IdVOSHcYL
001 1 1 81 61 611 |0IdVOSVZYL
€eL 0T 0T 8T 0¢ 0°ST | 0IdZ0SA0¥L
001 I I I 8 60'C | OIJZISHOUL
L'L9 6¢ 6 S 65 €'6Z | 01dT0SO0UL
001 I I I 8 60T | OIdOTSVOUL
001 € ¢ ¢ 6 8T | OIdETO90ML
001 € ¢ ¢ 8 9T | 0IdETOY0dL
001 - —| peaowar st uefory, ¢ 6L°¢ |6 uelorL yim
001 - —| paaowar st uefox], I ST |8 ueloxy yim
001 (4 € € € 6L°¢ | L uefo1f, yim
001 | paynuapr st uefoxy, I I I SI'T |9 ueloxy yim
001 L 3 3 6 65y |G uelorL yim
9°L8 4 ¢ ¢ ¢ S€°0T | ¥ ueloxL, ym
€L6 o1 S1 S1 0T 8401 | ¢ uelory, yim
001 | paynuapr st uefoxy, ¢ 91 L1 §€°0T | ueloxy, yim
001 Tl LT 0T (44 SI°11 |1 ueloi yim
(%) uelo1], OdIV SIsATeue DdIV SISAUPUAS | (%) PeSyIoA0 (z€TSW)
-deproaQ-SS | [enuenbas 10)je S | eoudreambo 101je §S | YIIM YD OB SS | YNM YD 1Y SS eare uefo1], | rewyoug

Jo roquuny :f doig

Jo oquuny :¢ daig

Jo roquiny :z doig

Jo roquiny :T doig

sisATeue [eusis snowidsng €y dqeL

4 Code Coverage Analysis for IP Trust Verification 69

circuit is a redundant circuit and will be removed from the original gate level netlist,
in addition to the gates that drive the net. The number of suspicious nets after
redundant circuit removal is shown in the fourth column of Table 4.3. As can be
seen in the table, the suspicious nets of benchmarks with Trojan 8 and Trojan 9 are
zero, which means that if the redundant circuits are removed in the two benchmarks,
the benchmarks will be Trojan-free. The reason that redundant circuit removal can
distinguish Trojans is that some Trojans are designed without payload and have no
impact on circuit functionality. Thus it can be concluded that such Trojans can be
removed by redundant circuit removal.

The remaining suspicious nets of each benchmark are needed to be processed by
equivalence analysis and sequential ATPG. The fifth and sixth columns in Table 4.3
show the number of suspicious signals after the first two steps. It can be concluded
that equivalence analysis can reduce a large number of suspicious signals, and
sequential ATPG can be effective as well. For benchmarks with Trojan 2 and Trojan
6, the sequential ATPG can generate sequential patterns for the stuck-at faults in the
suspicious signal. The sequential test patterns improve the test bench and increase
its coverage percentage. Even though the coverage percentage is not 100 %, some
assertions experience failure during simulation. Thus, the benchmarks with Trojan
2 and Trojan 6 are identified as Trojan-inserted.

The flow is implemented on ten trust benchmarks from the Trust-Hub (http://
trust-hub.org/resources/benchmarks) and the results reported in rows 11-20 in
Table 4.3 show that the presented flow can effectively reduce the total number of
suspicious signals. In addition, as shown in seventh column, there is a good overlap
between the number of suspicious signals and the actual Trojan signals inserted into
each benchmark. However, some benchmarks experience low SS-Overlap-Trojan,
such as RS232-TROCSO02PIO, since only part of this Trojan was activated during
simulation.

4.6.4 Trojan Coverage Analysis

In the suspicious list, not all of signals are a result of Trojans. However, the
TriggerEnable signal must be in the suspicious list if the IP contains a Trojan.
Once one net is identified as part of a Trojan, it can be concluded that the 3PIP
is Trojan-inserted. All the gates driving this net are considered to be Trojan gates.
Figure 4.8 shows that the percentage of Trojan signals in the suspicious list increases
significantly with the flow. As the authors apply different steps (step 1-4) to the
benchmarks, 72 %, on average, of the suspicious signals are of the result of Trojans
after redundant circuit removal with synthesis and ATPG in the 19 benchmarks.
However, the percentage increases to 85.2 % when equivalence analysis is done and
93.6 % of signals in the suspicious signal list come from Trojans after sequential
ATPG is applied to these benchmarks.

http://trust-hub.org/resources/benchmarks
http://trust-hub.org/resources/benchmarks

70 A. Nahiyan and M. Tehranipoor

0.95f -

o
©

0.85

0.75

Trojan Signals/Suspicious Signals
o o
~ o]

0.651 L L
1 2 3 4

Step (1 & 2:Redundant Circuit Removal;
3:Equivalence Analysis; 4: Sequential ATPG)

Fig. 4.8 Average Trojan signals/suspicious signals in 19 benchmarks

4.7 Conclusion

In this chapter, we have presented a technique to verify the trustworthiness of 3PIPs.
This technique involves formal verification, coverage analysis, redundant circuit
removal, sequential ATPG, and equivalence theorems. The code coverage generates
the suspicious signals list. Redundant circuit is removed to reduce the number
of suspicious signals. Equivalence theorems are developed for the same purpose.
Sequential ATPG is used to activate these suspicious signals and some Trojans will
be detected. However, more work is needed to get 100 % hardware Trojan detection
rates in 3PIPs.

References

1. Report of the Defense Science Board Task Force on High Performance Microchip Sup-
ply, Defense Science Board, US DoD (2005), http://www.acq.osd.mil/dsb/reports/2005-02-
HPMSi_Report_Final.pdf

2. M. Tehranipoor, F. Koushanfar, A survey of hardware Trojan taxonomy and detection. IEEE
Des. Test Comput. 27(1), 10-25 (2010)

3. M. Tehranipoor, C. Wang, Introduction to Hardware Security and Trust (Springer, New York,
2011)

http://www.acq.osd.mil/dsb/reports/2005-02-HPMSi_Report_Final.pdf
http://www.acq.osd.mil/dsb/reports/2005-02-HPMSi_Report_Final.pdf

bt

~

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Code Coverage Analysis for IP Trust Verification 71

. H. Salmani, X. Zhang, M. Tehranipoor, Integrated Circuit Authentication: Hardware Trojans

and Counterfeit Detection (Springer, Cham, 2013)

X. Zhang, M. Tehranipoor, Case study: detecting hardware Trojans in third-party digital IP
cores, in Proceedings of the IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST) (2011)

VSI Alliance, VSI Alliance Architecture Document: Version 1.0 (1997)

DIGITIMES. Trends in the global IC design service market (2012). Retrieved from http://www.
digitimes.com/news/a20120313RS400.html?chid=2

M. Tehranipoor, et al., Trustworthy hardware: Trojan detection and design-for-trust challenges.
Computer 44(7), 66-74 (2011)

. K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, M. Tehranipoor, Hardware Trojans: lessons

learned after one decade of research. ACM Trans. Des. Autom. Electron. Syst. 22(1), Article 6
(2016)

M. Bilzor, T. Huffmire, C. Irvine, T. Levin, Evaluating security requirements in a general-
purpose processor by combining assertion checkers with code coverage, in IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST) (2012)

C. Sturton, M. Hicks, D. Wagner, S. King, Defeating UCI: building stealthy and malicious
hardware, in 2011 IEEE Symposium on Security and Privacy (SP) (2011), pp. 64-77

C. Cadar, D. Dunbar, D.R. Engler, Klee: unassisted and automatic generation of high-coverage
tests for complex systems programs, in Proceedings of the 2008 USENIX Symposium on
Operating Systems Design and Implementation (2008)

A. Biere, A. Cimatti, E. Clarke, M. Fujita, Y. Zhu, Symbolic model checking using SAT
procedures instead of BDDs, in Proceedings of the ACM/IEEE Annual Design Automation
Conference (1999), pp. 317-320

A.C. Myers, B. Liskov, A decentralized model for information flow control, in Proceedings of
the 1997 Symposium on Operating Systems Principles (1997)

E. Love, Y. Jin, Y. Makris, Proof-carrying hardware intellectual property: a pathway to trusted
module acquisition. IEEE Trans. Inf. Forensics Secur. 7(1), 25-40 (2012)

Y. Jin, B. Yang, Y. Makris, Cycle-accurate information assurance by proof-carrying based
signal sensitivity tracing, in IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST) (2013)

G. Xiaolong, R.G. Dutta, Y. Jin, F. Farahmandi, P. Mishra, Pre-silicon security verification
and validation: a formal perspective, in Proceedings of the 52nd Annual Design Automation
Conference (ACM, New York, 2015), p. 145

S. Bhunia, M.S. Hsiao, M. Banga, S. Narasimhan, Hardware Trojan attacks: threat analysis and
countermeasures. Proc. IEEE 102(8), 1229-1247 (2014)

J. Rajendran, V. Vedula, R. Karri, Detecting malicious modifications of data in third-party
intellectual property cores, in Design Automation Conference (DAC) (2015)

J. Rajendran, A.M. Dhandayuthapany, V. Vedula, R. Karri, Formal security verification of third
party intellectual property cores for information leakage, in 29th International Conference on
VLSI Design (2016)

H. Salmani, M. Tehranipoor, Analyzing circuit vulnerability to hardware Trojan insertion at
the behavioral level, in /IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT) (2013), pp. 190-195

H. Salmani, R. Karri, M. Tehranipoor, On design vulnerability analysis and trust benchmarks
development, in Proceedings of IEEE 3l1st International Conference on Computer Design
(ICCD) (2013), pp. 471-474

M. Tehranipoor, H. Salmani, X. Zhang, Integrated Circuit Authentication: Hardware Trojans
and Counterfeit Detection (Springer, Cham, 2013)

S. Bhunia, M.S. Hsiao, M. Banga, S. Narasimhan, Hardware Trojan attacks: threat analysis and
countermeasures. Proc. IEEE 102(8), 1229-1247 (2014)

R.S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, S. Bhunia, MERO: a statistical approach
for hardware Trojan detection, in Proceedings of the 11th International Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES’09) (2009)

http://www.digitimes.com/news/a20120313RS400.html?chid=2
http://www.digitimes.com/news/a20120313RS400.html?chid=2

72

26

217.

28.

29.

30.
31

32.

A. Nahiyan and M. Tehranipoor

. A. Waksman, M. Suozzo, S. Sethumadhavan, FANCI: identification of stealthy malicious logic
using Boolean functional analysis, in Proceedings of the ACM Conference on Computer and
Communications Security (2013), pp. 697-708

J. Zhang, F. Yuan, L. Wei, Z. Sun, Q. Xu, VeriTrust: verification for hardware trust, in
Proceedings of the 50th ACM/EDAC/IEEE Design Automation Conference (2013), pp. 1-8

J. Zhang, F. Yuan, Q. Xu, DeTrust: defeating hardware trust verification with stealthy
implicitly-triggered hardware Trojans, in Proceedings of the ACM Conference on Computer
and Communications Security (2014), pp. 153-166

J. Rajendran, O. Sinanoglu, R. Karri, Building trustworthy systems using untrusted compo-
nents: a high-level synthesis approach. IEEE Trans. Very Large Scale Integr. VLSI Syst. 24(9),
2946-2959 (2016)

Synopsys, The Synopsys Verification Avenue Technical Bulletin, vol. 4, issue 4 (2004)

I. Ugarte, P. Sanchez, Formal meaning of coverage metrics in simulation-based hardware
design verification, in IEEE International High Level Design Validation and Test Workshop
(HLDVT) (IEEE, Napa Valley, 2005)

M. Bushnell, V. Vishwani, Essentials of Electronic Testing for Digital, Memory and Mixed
Signal VLSI Circuits, vol. 17 (Springer Science & Business Media, 2000)

Chapter 5
Analyzing Circuit Layout to Probing Attack

Qihang Shi, Domenic Forte, and Mark M. Tehranipoor

5.1 Introduction

Physical attacks have caused growing concern for design of integrated circuits used
in security critical applications. Physical attacks circumvent encryption by attacking
their silicon implementations. IC probing is one form of physical attack that allows
an attacker to access security critical information by directly accessing physical
wires in the IC that carry such information [1]. For convenience, we henceforth
refer to such physical wires that probing attacks target as fargeted wires. Successful
probing attacks have been reported on smartcards and microcontrollers in mobile
devices [2, 3]. In a successful probing attack, plaintexts such as personal data,
software-form IP, or even encryption keys can be compromised [4].

IC probing attacks happen for a spectrum of different reasons in the wild. Probing
attacks circumvent encryption without rendering the targeted device inoperable,
and therefore they enable unauthorized access on systems carrying sensitive infor-
mation. An otherwise innocuous tech-savvy kid might want to hack his satellite
TV smartcard to “unlock” channels he isn’t supposed to watch [5]; The issue
becomes less innocuous when authorities seize multi-million dollars’ worth of asset
in connection with piracy lawsuits [6]. As modern lives become more integrated
with the Internet through mobile hardware, security of private data, and keys stored
on these devices also raised concern. If leaked, such information can be used to
further identity theft, blackmail, or a number of other threats to individual rights
and liberties. The worst-case scenario is probably for systems that enable access

Q. Shi ()
ECE Department, University of Connecticut, Storrs, CT, USA
e-mail: gihang.shi@engr.uconn.edu

D. Forte * M.M. Tehranipoor
ECE Department, University of Florida, Gainesville, FL, USA
e-mail: dforte @ece.ufl.edu; tehranipoor@ece.ufl.edu

© Springer International Publishing AG 2017 73
P. Mishra et al. (eds.), Hardware IP Security and Trust,
DOI 10.1007/978-3-319-49025-0_5

mailto:qihang.shi@engr.uconn.edu
mailto:dforte@ece.ufl.edu
mailto:tehranipoor@ece.ufl.edu

74 Q. Shi et al.

(b)

probing station

Fig. 5.1 Example of a device under probing and probing station. (a) An IC under probing, with
package partially removed and probing pin inserted [7]. (b) A probing station [1]

to information related to public security—for example, the security tokens used
in defense industries—to become compromised. Therefore, it follows that tamper
resistance has become a default requirement in US defense acquisitions [8].

A typical probing attack involves (at least partially) remove package of the
targeted device (Fig.5.1a), place it on a probing station (Fig.5.1), and position
the metal probe to form an electrical contact with targeted wires (also shown in
Fig.5.1a). In real attacks, targeted wires are usually found by reverse engineering a
sacrificial device of the same design. Reverse engineering can be a lengthy process,
however, it can be accelerated if the IC under attack reuses compromised hardware
IP blocks, i.e., hardware IP blocks that have been reverse engineered in previous
attacks. In most IC designs, targeted wires are often buried beneath layers of
passivation, dielectric and other metal layers. As an example, consider a scenario
where an attacker targets a wire routed no higher than Metal 4 layer, in an IC that has
the same cross-section as in Fig. 5.2. To initiate a probing attack, an attacker has to
expose targeted wires either by milling through all layers above them, or the silicon
substrate beneath them. In our example, he will have to mill either from passivation
layer down to Metal 4, or from substrate up to Metal 4. In either scenario, use of
milling tools is necessary.

Most security critical ICs are reinforced against probing attacks with active
shield. This approach functions by detecting milling events and sending alarms
once a breach has been detected. Here “sending alarm” is a general term referring

5 Analyzing Circuit Layout to Probing Attack 75

Passivation

Dielectric
Etch
Stop

: Layer

e Dielectric
Capping
Layer
Copper

Conductor

with
Barrier /
Nucleation
Layer

Global ™
(=IMx1.8

Inter-
Mediat:
(=M1x1)

Metal 1

Tungsten
Contact
Plug

eyl

=1 Pre-Metal ¥
—»| =Metal 1 Pitch Dielectric —»i [+ Metal 1 Pitch

MPU Cross-Section ASIC Cross-Section

Fig. 5.2 Typical cross-sections of microprocessors (MPU) and Application-Specific Integrated
Circuits (ASIC) [9]

to all proper security actions to address a probing attempt, such as zeroizing all
sensitive information. Due to their popularity in research and practice, attacks
and antiprobing designers often focus their efforts on discovering and improving
exploits and countermeasures to penetrate or prevent penetration of the active shield.

In this chapter, we first review technologies and techniques known for their
use in probing attacks. These include technologies developed for other purposes
such as IC failure analysis, and specifically probing techniques such as back-side
attacks. These will be covered in Sect.5.2. Based on this knowledge, we then
investigate approaches to secure designs against probing attacks, commonly known
as antiprobing designs. This is covered in Sect.5.3, which introduces published
proposals to secure the design against probing attacks, their known problems and
research to address these problems. Based on background knowledge provided in
these two sections, it becomes apparent to us that evaluation of designs in terms of
their vulnerabilities to probing attacks would likely prove a valuable contribution to
the field. Therefore, in Sect.5.4 we present a layout-driven framework to assess
designs’ vulnerabilities to probing attacks, rules of said assessment framework,
a set of assumptions on state-of-the-art antiprobing designs, and an algorithm to
quantitatively evaluate design for exposure to probing attacks. Finally, the chapter
is concluded in Sect. 5.5.

76 Q. Shi et al.
5.2 Microprobing Attack Techniques

In this section we introduce various techniques used in probing attacks. All probing
attacks will involve milling to expose targets for the probe to access; however, it
is also important to acknowledge that a probing attack is a concerted effort that
involves different techniques at various stages, and many techniques other than
milling help shape the threat and limitations of the probing attack. Understanding
of these techniques is essential to the understanding of principles when designing
against such attacks.

5.2.1 Essential Steps in a Probing Attack

Before introducing specific techniques for probing attacks, let’s first take a look at
the modus operandi of a typical probing attack. In surveying reported attacks, we
have found probing attacks require at least four essential steps [3], each must be
successful for the attack to succeed (shown in Fig. 5.3 as different rows):

* Reverse engineer a sacrificial device to get its layout and find target wires to
microprobe;

* Locate the target wires with milling tool;

* Reach the target wires without damaging target information;

» Extract target information.

Each step can have a number of alternative techniques where success with only
one of them is necessary. For example, locating target wires in layout can be
done by reverse engineering the design or with information from a similar design.
Obfuscation can force the attacker to spend more time on this step, for example, by
performing dynamic address mapping and block relocation on embedded memories
[10] or by performing netlist obfuscation using modification kernel function [11];
but if the same hard IP is reused in another design both designs become vulnerable
once that IP becomes compromised. The diagram here lists all the alternatives we
know to exist, and new attacks can be easily integrated.

Shown in Fig. 5.3 is a typical flow of a probing attack, where each step is shown
in a row and each block shows an alternative technique to complete that step. Some
techniques are shaded with patterns to represent the particular capability to enable
that technique. Disable shield technique is shown with two blocks each having two
patterns to show it can be completed either with circuit editing or fault injection, but
in both options reverse engineering is required. Techniques in white boxes that do
not have a patterned alternative show possible exploits from avoidable design flaw
rather than lack of protection. For example, “Use shield to help fine navigation” is
possible if shield wires were not placed in 45° with regard to functional routing [3];
and if no internal clock source is used, attacker could simply “stop external clock”
to extract all information without having to use multiple probes.

5 Analyzing Circuit Layout to Probing Attack 77

Micro- Reuse of
phtography ~ known IP

Requirements:
Find target wires

Reverse
Engineering
————— ‘———P————— Milling
3 Circuit
Locate the target ~ Use shield Rely on Editing
wires to help fine tool Fault
with milling tool ~ navigation precision Injection

————— Sl 2R S !

Reach the target Bypass Rerouting = * | Backside
wires Attack attack Disable shield i
= et
Provide Stop Probing at
infEi(:;Z{t:iEon enough external related
probes clock signals

Fig. 5.3 Diagram of known probing techniques for assessment of design vulnerability

5.2.2 Microprobing Through Milling

On ICs fabricated with feature dimensions larger than 0.35 um, laser cutters can be
used to remove these layers [1]. For technologies of lower dimensions, currently
the state-of-the-art tool is a technology called the Focused Ion Beam (FIB) [12].
With the help of FIB, an attacker can mill with sub-micron or even nanometer level
precision [13]. Aspect ratio (see Fig.5.4b) is a measure of the FIB performance
defined as the ratio between depth D and diameter d of the milled hole [14]. FIB
instruments with higher aspect ratio can be expected to mill a hole of smaller
diameter on the top-most exposed layer, and therefore leave smaller impact on
all the other circuitry the attacker is not interested in breaking. When milling in
nanometer scale and applied on silicon ICs, state-of-the-art FIB systems can reach
an aspect ratio up to 8.3 [15]. In addition to milling, FIB is also capable of depositing
conducting traces [16], which adds Circuit Editing (CE) to the attacker’s repertoire.

The most straightforward way to expose targeted wires through milling is to
mill from the Back End of Line (BEOL), i.e., from passivation layer and top metal
layer towards silicon substrate (see Fig. 5.4a). This is called a front-side attack. An
obvious disadvantage of front-side attack is that targeted wires may be covered by
other wires above it, and without thorough reverse engineering of the IC the attacker
cannot know for sure whether cutting through these covering wires would corrupt
the information he seeks to access. In real attacks, attackers address this problem
by focusing on bus wires and try to probe from more exposed (i.e., not covered by

78 Q. Shi et al.

— diameter of the hole

— —

HI "= j
—— Partial cut
g— Complete cut
depth of the hole
D
—— Targeted wire Cross Section
of Milling

(b)

(a)

Fig. 5.4 Milling with Focused Ion Beam (FIB) technology. (a) Milling through covering wires to
expose targeted wires. (b) Definition of aspect ratio of an FIB

other wires on higher layers) segments of the targeted wires [2]. The latter could
be facilitated by performing reverse engineering a sacrificial device, in which case
desirable milling sites can be found from exposed layout of the sacrificial device.
The attacker still needs to find a way to navigate to the same sites on the target
device, which might be simplified or complicated depending on whether special
care was taken against this step by the designer.

5.2.3 Back-Side Techniques

In addition to milling through routing layers and inserting metal probes at targeted
wires, other techniques exist. Another way is through the silicon substrate, the so-
called back-side attacks [17]. In addition to probing at wires, back-side attacks can
also access at current activities in transistor channels (bottom layer in Fig.5.2).
This is facilitated by techniques known as Photon Emission (PE) and Laser-
based Electro-Optical Modulation (EOFM or Laser Voltage Techniques LVX) [18].
Between the two methods, PE can be passively observed without any external
stimulation, while LVX requires IR laser illumination of the active device. On the
other hand, PE manifests mainly during rise and fall time of the signal, while LVX
response is linearly correlated to the voltage applied to the device. Both methods
are very reliable as modern IC debug and diagnosis tools, and their legitimate
uses ensure that the available tools will maintain pace with semiconductor scaling.
Indeed, recent reports show that all 16 bytes encryption keys of AES-128 can be
recovered in 2h [19].

5 Analyzing Circuit Layout to Probing Attack 79

One limiting factor of the passive techniques is that both methods require obser-
vation of photon emissions, which makes them limited by the wavelength of emitted
photons. For example, detection of PE on majority of instruments operate between
2 and 4 wm [20]. Depending on spatial distribution of switching activity, this might
cause a problem on devices manufactured with deep sub-micron technologies. As
technology node advances and feature size shrinks, emissions, especially responses
from LVX techniques from more devices will become indistinguishable, thus
making probing attacks from back-side difficult [18].

Another possibility of back-side attacks is circuit editing, enabled with FIB. Like
with front side, wires can be cut from back-side; and in addition to cutting wires,
it is also possible to deposit conductive material in holes dug into drain and source
regions of transistors, serving as metal probes that can be inserted anywhere without
worrying cutting open any covering wires as the front-side attack [21].

Back-side attacks are harder to defend against since conventional IC design
process doesn’t place anything beneath the silicon substrate. However, next gen-
eration security critical designs may choose to fabricate a back-to-back 3D IC to
avoid leaving the silicon substrate exposed [22, 23], effectively eliminating back-
side attacks all together. Therefore, protection against front-side attacks remains an
important topic for antiprobing designs.

5.2.4 Other Related Techniques

This category summarizes all techniques that may be used to help further the probing
attack or jeopardize a secured IC’s defense against it. Some techniques can be quite
essential to the task: for example, all probing attacks have to consist of some amount
of reverse engineering. At least, the attacker has to locate targeted wires (or in the
case of back-side attacks, targeted gates) by discovering which part of the circuit is
responsible for carrying the sensitive information the attacker seeks; if cutting open
a functional wire is inevitable, additional reverse engineering is required to find out
cutting open which wires do not lead to corruption of the information the attacker
wishes to probe. The problem with reverse engineering is the amount of work and
time cost involved: since the target of probing attacks are often information that has
a short life span (e.g., keys and passwords), this can sometimes be used to work
against the attacker.

Some other techniques are supplemental to the main attack. One example is
circuit editing. An obvious use of this technique can be used to disable the security
feature, e.g., cutting off the alarm bit and rewiring it to power supply or ground.
In addition to that direct approach, circuit editing could also be used to supplement
other requirements, for example, clock source can be rewired to a controlled source,
which can be very useful when the number of wires is too many for available probes.

80 Q. Shi et al.
5.3 Protection Against Probing Attacks

This section gives an overview of current research in securing designs against
probing attacks. The focus of this section is on active shields, a protection
mechanism that has received the central attention of the academia, and application
on security hardware in the market. Much research has been aimed at finding shield
exploits and providing fixes to stop known exploits. In addition to attack and defense
with regard to active shields, we also present a mathematical model of active shield
and its ability to detect milling. Other approaches that are not active shields and
design details that complement active shields are also covered.

5.3.1 Active Shields

The most common method to protect IC from probing attack is the active shield,
which detects milling by placing signal-carrying wires on top metal layers
[22, 24-28]. The design is called an active shield because the wires on top metal
layers are constantly monitored in order to detect an attack.

Figure 5.5 is one example constructed for the sake of illustration. The detection
system generates a digital pattern with a pattern generator, sends them through mesh
wires on top metal layer, and then compares received signals with copies from lower

Pattern Generator
Hole milled by attacker

Mesh of active shield
Comparator
- Source of
\% | [sensitive
| information

— As soon as mismatch
occurs, comparator
sounds alarm
(e.q., erase data)

Copies of same signals sent via lower layer —
(Alternatively, create copy of
generator at comparator,
and synchronize both generators)

Completely cut mesh wire —
equivalent to stuck-open fault

Fig. 5.5 Example of active shield for the purpose of milling detection

5 Analyzing Circuit Layout to Probing Attack 81

layer. If an attacker mills through the top layer mesh wires to reach targeted wire
he will cut open some of them and cause a mismatch at the comparator. This will
trigger the alarm, for example, stopping the generation of or destroying sensitive
information.

Active shield as shown in Fig.5.5 is known as a digital active shield, since it
uses comparisons between digital signals to detect milling activity. Analog active
shields also exist: for example, the authors in [24] use capacitance measurement
on top layer shield mesh wires to detect damage done to it, and thereby detect
tampering. A similar design [29] utilizes conductivity change in dielectric material
due to exposure to ion irradiation, an essential step in FIB milling. Another design
[25] uses a delay chain as a reference to compare against shield wire RC delay,
and issues an alarm when mismatches between them are discovered. The problem
with analog shield designs is that analog sensors rely on parametric measurement,
which has been shown to become more difficult due to a number of issues, such as
elevated process variation with feature scaling, improved milling capabilities that
cause less disturbance, etc. [3]. These issues contribute to a higher error rate and
make detection unreliable, thereby making analog active shield a less preferable
approach.

5.3.2 Techniques to Attack and Secure Active Shields

Despite its popularity, active shields are not without problems. There are two main
weaknesses of this approach, namely:

1. Active shields require large routing overhead, usually at least one entire layer;
2. Active shields have to be placed on top metal layers, which might not always be
the most suitable layer.

We provide detailed discussions on both issues in the following subsections.

5.3.2.1 Routing Overhead

For thorough protection, active shields have to completely occupy at least one
metal routing layer, which can be quite costly to implement. This is thought to be
necessary because as long as attackers can afford extra probes, it is possible for him
to reconstruct the desired signal from other related signals if they are not protected as
well [30]. This requirement does not go well with designs having tight cost margin,
or designs with few routing layers, which is especially true for devices such as
smartcard, which are often fabricated with technology of larger dimensions such
as 350 or 600 nm [2]. In fact, ICs designed for security critical applications such as
smartcards, microcontrollers in mobile devices, and security tokens [2, 3, 31] are
among the most common victims to this kind of attack. Lacking a very wide cost
margin or a lot of routing layers precludes these devices from a number of new shield

82 Q. Shi et al.

designs that often incur area or routing overhead. Meanwhile, these same devices
are in greatest need of evaluation to have realistic protection standards. Indeed, all
designs eventually become outdated as new attacks are discovered, and these legacy
generations of devices need up-to-date evaluation as well.

5.3.2.2 Stuck on Top Metal Layer

The “entire layer” requirement also leads to another problem, which is active shields
must be placed on top-most metal layers. Due to the “entire layer” requirement,
functional routings cannot penetrate shield layer without leaving an opening on the
shield, therefore all routing layers above a shield layer will be unavailable to the
functional design as well. Placing the shield on top-most metal layers saves routing
layers for the functional design, but might come at cost of shield performance. Since
top layers might not be best layers for them. In fact, top routing layers are known
to have much larger minimum wire widths [32], making them less protective than
lower layers [33].

Due to the popularity of the active shield approach, techniques have also been
developed by attackers to neutralize it. One particularly expedient attack is called
the bypass attack (Fig.5.6). This attack utilizes an FIB milling tool with high aspect
ratio, which allows the attacker to mill a hole so thin it’s not going to completely cut
off any mesh wires, therefore evading detection. Bypass attack is often the preferred
method by the attacker because it does not require additional reverse engineering or
circuit editing to reach the targeted wires, which saves his time and cost. Because of
its advantage in speed, bypass attack is an especially serious challenge that all active
shields must properly address. Another method exploits the fact that active shield
functions by checking signals as received at end of shield wires. If the correct signals
can be replicated, then the shield could be fooled. This is called a reroute attack.
There can be a couple of ways to do this. One simpler approach is made possible
when routing pattern of the shield wires allows rerouting, i.e., creating a short-cut
with FIB so that a section of shield wire is made redundant [2], as shown in Fig. 5.7.
That section of shield wire can then be removed without impacting signals received
by the active shield, effectively creating an opening for probing. Another possible
scenario is that attacker might reverse engineer the pattern generator so that correct
signals can be fed from off-chip. In this case, the whole wire becomes redundant.

New active shield designs have been proposed to prevent these exploits. The
authors in [22] investigated the problem of an attacker predicting the correct signals
if the random vector generation is not secure enough. The authors then presented
a design where block ciphers in Cipher Block Chaining (CBC) mode are used
to generate secure random vectors, whose seed comes from memory and fed by
software. Another research proposed to obfuscate layout routing of the active shield
so that the attacker would not be able to figure out how to perform a successful
reroute attack [27].

Perhaps the most serious threat to active shields comes from the capability of
FIB technology itself. The capability of depositing metal as well as removing them

5 Analyzing Circuit Layout to Probing Attack 83

Pattern generator

With FIB of high aspect ratio attacker
can avoid complete cut

————— Mesh of active shield
— Comparator

| Source of
| sensitive
| information
|

Since no mesh wire

was completely cut,
milling is not detected

Targeted Wire

Fig. 5.6 Example of a bypass attack on active shield

[~ Pattern Generator ~— Hole milled by attacker

~— Mesh of active shield — Comparator

Source of
| sensitive
information

f— Or, Lf pattern generator
-~ is not secure enough,
pattern could be reverse-
engineered and rerouted
from off-chip.

1f neighboring patterns a 2 s5ame, attacker could
create a reroute with FIB so that cut will not be
detected. This is called reroute attack.

Fig. 5.7 Example of a reroute attack on active shield

effectively allows circuit editing, which enables the attacker to directly disable the
active shield by editing its control circuitry or payload if it proves too difficult to
bypass [3].

84 Q. Shi et al.
5.3.3 Other Antiprobing Designs

In addition to active shield designs, other approaches also exist. Authors in [34]
presented a design to detect acts of probing by monitoring change of capacitance
on security critical nets, as a cheaper alternative to the more popular active shield
method as it requires far less area and routing overhead. However, it can only
protect a certain number of specified nets from probing attacks using metal probes.
Additionally, protection on certain specified nets could only be circumvented by
probing at related signals instead [30]. Cryptographical techniques have also been
proposed to address the probing attack. One cryptographical method called #-private
circuits [35] proposed to modify the security critical circuit so that at least ¢ 4 1
probes are required by an attacker to extract one bit of information. This method
is cryptographically sound and does not require detection to deter probing, which
eliminates the problem of protection design itself being disabled by the attacker.
The proposed solution is also helpful in defeating side-channel attacks (SCA)
and inspired further research in that area [36]. The weakness of this approach is
it does incur quite large area overhead, and reliance on secure random number
generation opens up questions on what happens when the random number generator
is compromised, for example, with a probing attack. It has also been shown that
such an approach might be jeopardized during CAD optimization process [37].

Some other approaches are often seen in security products in the market but
less mentioned in academic literature. These approaches receive more discussion
from researchers who publish successful attacks against security hardware in the
market. For example, many security devices in the field also perform encryption of
memories, for which a common problem is insufficient security when storing the
keys for the encryption [31]. Some use one-time programmable (OTP) memories
which can be read optically, or Electrically Erasable Programmable Read-Only
Memories (EEPROM) which can be reprogrammed with ultra-violet (UV) light
[38]. Other examples include scrambling of bus wires in the layout as a way to
throw off attackers, password protection for boot strap loaders, and using one single
sense signal for serpentine wires that elbow and bend to cover the layout [31]. These
designs might not be as effective as they intended—since our knowledge of them
is from their failure—but could serve as examples of “Do Nots” in antiprobing
designs.

Another category consists of single-issue remedies that seek to disrupt specific
steps during probing attacks. Many such techniques exist as recommendations
by researchers who publish successful attacks [2, 3, 31]. These recommendations
include methods to disrupt positioning of FIB for milling, avoid reusing hardware
IPs to prevent attackers from copying existing reverse engineering knowledge
against compromised IPs, methods to make IC packages more resistant to decap-
sulation, etc. Although not solutions on their own, these recommendations provide
important insights into principles from the other side of the problem.

5 Analyzing Circuit Layout to Probing Attack 85

Table 5.1 Performance against known probing techniques of published designs

Protection against
Bypass Rerouting | Disable | Back-side |Prediction | Related

Designs shield attack shield | attack attack signals
Analog shield Weak [3] | No No N/A Yes
Random active Yes Yes No No Yes
shield [27]

Cryptographically | Yes Yes No Yes Yes
secure shield [22]

PAD [34] N/A N/A No Some? N/A No

“PAD works for back-side attacks that require electrical contact to the targeted wires. It does
not prevent passive back-side attacks such as PE

5.3.4 Summary on Antiprobing Protections

Based on known probing techniques (as was shown in Fig. 5.3) we may assess the
protection of a few published designs, as shown in Table 5.1.

5.4 Layout-Based Evaluation Framework

In this section, we provide a motivation to investigate methods to evaluate antiprob-
ing designs. We then discuss principles of antiprobing designs and rules to assess
them, based on reviewing modus operandi of probing attacks. A layout-driven
algorithm based on mainstream layout-editors is then introduced, which provides
a quantitative evaluation of designs’ vulnerabilities to probing attacks by reviewing
their layout.

5.4.1 Motivation

Existing research on active shield designs focuses on preventing exploits. However,
major problems exist with this approach. It negates the need of mass-produced and
legacy generation security products of having realistic protection evaluations, and
gives us a false sense of security despite the fact that security is always relative.
Should designers focus on beating latest exploit into current shield designs, inherent
problems like these tend to get overlooked. Further, circuit editing capability of
the FIB actually makes it impossible for active shields to have absolute security:
attacker can always choose to edit out the shield itself. Despite that, having a design

86 Q. Shi et al.

that beats all known exploits can make people dangerously comfortable with a false
sense of security and forget that fact. This reality has put the ability to evaluate a
design for vulnerability to probing attacks in dire need.

Evaluation contributes to existing antiprobing design flow in a few ways
(Fig.5.8):

1. First, the evaluation tool can be used to create a feedback for the design process,
and help designers in pursuit of an optimized design (Fig. 5.8a).

2. In addition, comparisons can be made between security evaluations of certain
representative designs. By carefully controlling design methods and parameters,
design principles such as trade-offs in antiprobing designs can be identified and
investigated (Fig. 5.8b).

3. In addition to identifying design principles, evaluation also enables us to study
new design ideas, and optimize them into new design strategies, or establish a
solid understanding of why they wouldn’t work (Fig. 5.8c¢).

5.4.2 Assessment Rules

Before presenting the framework to assess protection designs against probing
attacks, it is essential to establish the principles of antiprobing designs. Otherwise,
research could become sidetracked by objectives unnecessary or insufficient, and
assessment would lack a standard for comparison.

One pitfall for the designer might be to underestimate the capability of the
attacker. When considering tools available to a probing attack, it is important to
remember that attackers capable of nanometer scale milling are not restricted to
probing alone. FIB itself allows circuit editing, which enables attacker to disable
the whole shield by tying its detection bit to ground. Lasers can be used to inject
arbitrary values to confuse protective mechanism. Indeed, both techniques have
been reported successful [3]. As a result, while designs that can defeat all known
attacks might not be impossible, it is certainly impractical to pursue for most
devices.

Meanwhile, another myth is to underestimate the difficulty of probing attack. It
is important to remember that attackers are likely to find a way in does not mean
protection design is futile. The goal of a probing attack is sensitive information, and
sensitivity decays with time. Information expires. Passwords are rotated. Backdoors
are fixed with security updates. Even functional designs are phased out of market by
new generations. Therefore, if delayed long enough, objectives of even an attacker
with infinite resources can be denied.

In addition to delaying the most well-equipped attackers, it is also in the interest
of the designer to deter less well-equipped attackers. This is especially true for
low-cost devices such as security tokens and smartcards. This deterrence can be
performed in terms of capability or information. Countermeasures vulnerable to

5 Analyzing Circuit Layout to Probing Attack

Improve

design to Rated attacker capability
prevent
exploits

Known
Exploits .
~ Can it
< preventall 2
a2 IOV]?e§1g11l Optimized design
Existing . optimization
Research Yes What Evaluation Enables
Good
. Enough
(a)
Improve
designto
prevent _ Controlled SO
__exploits | parameter # 1 E“‘lu‘“‘
Antiprobing Yl Controlled Eva
Design Parameter # 2 .
Known v :
Exploits . | L Controlled
o Canit No Parameter # 3

—+ prevent all

“‘“?XPIOV
% e
Existing N Principles

Research Yes What Evaluation Enables

Good
. Enough

(b)

Improve
design to Dl
prevent — imization

New design

Design

exploits

Antiprobing

IO Evaluate
Design
Known

. Y Better than
Exploits > S o
o an it existing ?

prevent all

o . .
- explmts ; ve m
.« e _
Existing .

Research Yes What Evaluation Enables
Good
. Enough
(©)

Fig. 5.8 Applications of evaluation in antiprobing design

87

88 Q. Shi et al.

the most cutting edge instruments might still filter out attackers that do not have
access to such capabilities, and using custom designs instead of IPs reduce the risk
of having a vulnerability when an IP you use is successfully attacked.

Based on principles above we propose the following rules to assess a design for
vulnerability to probing attacks:

» For each necessary step during a probing attack, enumerate all known alternative
techniques, the capability required by this technique, whether and how much
does the design change the expected time cost on each technique;

* Represent the protection against attackers with infinite resources by the sum of
techniques with the lowest time cost from each necessary step;

* For protection against less well-equipped attackers, repeat the same process
without techniques requiring unavailable capabilities.

Under these rules it is possible for a particular probing technique to have an
infinite time cost against a particular design: for example, an active shield with
wires too thin for current FIB to bypass. However, infinite time cost is unlikely
to appear for an entire step due to existence of very powerful techniques such as
circuit editing: in the aforementioned example, the attacker could opt to remove the
shield and disable it by fault injection or circuit editing at shield control or payload
circuitry, a technique known as disabling shield [3].

From the assessments of existing antiprobing designs we can see that layout is of
central importance in both restricting the attacker’s options and increasing his time
cost. If area exposed to milling can be conveniently found, it will enable designers
to create antiprobing designs with better all-around resilience. For this purpose, we
present an algorithm to evaluate and find exposed area of targeted wires.

5.4.3 State-of-the-Art Active Shield Model

To accurately evaluate exposed area of targeted wires in a layout, a mathematical
model of detection mechanism is necessary. And to choose a proper mathematical
model, one must first establish a set of reasonable assumptions about the detection
system. The complete mathematical equations have been covered in [33]; in this
section we place the emphasis on establishing a set of assumptions that define
a reasonably well-designed active shield to the best of our knowledge based on
published research in the area.

In this study, we assume attacker performs front-side milling with FIB technol-
ogy as shown in Fig. 5.4a. The hollowed-out cone shown in the figure represents a
hole milled with FIB equipment. In reality, a milled hole for the purpose of probing
attack will probably be larger than the hollowed-out cone, since the probes need to
maintain a reliable connection. Here we consider the cone shown in Fig. 5.4a as a
best-case scenario for the attacker and worst-case scenario for the designer, so that
a margin of safety can be left in favor of the shield.

5 Analyzing Circuit Layout to Probing Attack 89

Active shield designers are interested in the scenario where the attacker would
make a mistake and completely cut off (at least) one shield wire. This complete cut
event is desirable because it will make detection easy and robust. It is possible that
a partially cut event may be detected in ways similar to the analog shield idea [24];
however, designers usually only consider complete cuts, and with good reason.

From an electrical engineering point of view, a partially cut wire creates a point
of high resistivity and current density on the wire. For the timescale relevant to
the probing attack and its detection, this manifests mainly as increased delay on
the timing arc of the shield wire. On-chip timing measurement can be done with
a frequency counter, a vernier delay chain, a current ramp and an analog-to-digital
(A/D) converter, or a time-to-voltage converter [39]. None of them is known for
being low on area overhead, or even close to the area overhead of a simple XOR
gate per wire. Further, consider the requirement for the active shield to cover the
entire functional layout, or at least all wires that might leak sensitive information
if probed, the area overhead problem is astronomically worsened. To keep the area
overhead manageable, such a measurement have to be handled either by a shared
measurement module switched among all shield wires, or by only monitoring a few
targeted wires, as is done in Probe Attempt Detector (PAD) [34]. The disadvantage
of the PAD approach is discussed in Sect.5.3.3; For the switched solution, each
wire has to be compared against its own normal state and incur astronomical area
overhead on memories, or use a constant reference and risk false alarms and/or
escapes due to environmental and fabrication variation. Margin will have to be left to
accommodate false alarms, then the same margin could also be used by an attacker
to slip in undetected. In either case, much is traded for possible improvement of
slightly higher FIB aspect ratio the shield is probably able to detect, depending on
environmental variations.

In summary, partial cut detection greatly complicates the problem for dubious
gains. The few (one, in fact) attempts that tries to do this to our knowledge
[25] are rather unconvincing as the proposal(s) can be quite fittingly covered
with the “constant reference” option of our hypothetical “switched” solution, did
not investigate the quite obvious weakness of false alarms and/or escapes, only
performed simulation that verified the intended function, and committed other
design flaws such as creating elbows and bends in shield wires that allows reroute
attacks. So far, we have yet to see a sound shield design that can claim this feat.
Therefore, in this study we focus on detection method based on complete cuts.

As was discussed previously in Sect. 5.3.2, a reroute attack is to create a reroute
between identified equipotential points by circuit editing with FIB, so that the net
would not become open when sections of the wires are removed [2]. This forces
active shield designs to only use parallel wires of minimum spacing and widths
[22], without bending or elbows. In this case, the best placement of center of the
milling (i.e., least likely to result in a complete cut of a wire) by the attacker is to
place it at the middle of the space between any two wires. Conversely, the designer
need to ensure within a certain radius deg of the center of the milling, the milled
hole is at least deep enough to cut open the two closest shield wires. If we further
assume an aspect ratio of the FIB R, then these two conditions together create a

90 Q. Shi et al.

restriction of milling hole diameter d. Since aspect ratio of the FIB Rpp is a ratio
between milling hole diameter d and depth D (which, if we assume the designer
knows where his possible targeted wires are, is a known variable), this requirement
translates into a maximum aspect ratio of the FIB Rpp max the hypothetical active
shield can detect, provided the milling is performed perpendicular to the IC.

5.4.4 Impact of Milling Angle upon Effect of Bypass Attack

One interesting question here is whether attacker would benefit if instead of milling
vertically, he mills at an angle, as shown in Fig. 5.9. This question is directly relevant
to appraising the threat of bypass attack: If the answer to the question is no, that
means conventional vertical milling is the best-case scenario for the attacker in terms
of possibility to bypass the shield; in that case, the security of any given active
shield design against bypass attack can be simply deduced with the aspect ratio
of the FIB milling tool it is able to detect. Otherwise, the problem of protecting
against bypass attack would become much more complicated. If we assume the
attacker were able to mill at an angle 6 < éyr relative to the surface of the IC,
then he would cut off wires within region déff instead of de¢r. We may evaluate déff,

and then taking derivative of Zﬁg and letting it equal to zero yields the minimum
d.; and angles it is reached. If we further assume shield wire height/width ratio
(A/R) = 2.5 as in [32] (ITRS uses 2.34 [9]), minimum d.; over des yields results
shown in Table 5.2 for typical FIB aspect ratio Rgp. From the table we see that
by milling at approximately 68—69° angle the attacker can effectively reduce the
diameter of area by 8—12 %, making it easier to bypass the shield. Since bypass

o] = b " ! l l Two min-width shield
| : wires (red) separated by
min-spacing (white)

-&: d&!" :-i—
S -
RS

Hole left by milling

Deot(a +6)

Dot ff e |

Fig. 5.9 Geometric calculations for non-perpendicular milling scenario

5 Analyzing Circuit Layout to Probing Attack 91

Table 5.2 Maximum
achievable reduction of de¢
by milling at an angle

Rrs 5 6 7 8 9 10
Z:g (%) |92.12 190.58 |89.47 |88.63 |87.98 |87.45
6o (°) 68.93 | 68.69 |68.52 |68.38 |68.28 |68.19

attack is considered a convenient and preferable approach [3], this suggests that
it has the potential of becoming much more devastating. This result shows us that
bypass attack is not a simple one dimensional issue, because obviously the benefit of
milling at an optimized angle would be diminished if that angle would not agree with
the aforementioned “milling center at middle between two wires” rule. Whether this
reduction in milling diameter can be achieved will depend on the relative position
of the shield wires with regard to targeted wires. In other words, this potential threat
must be addressed by optimized positioning of the targeted wires, so that attacker
cannot further reduce the possibility of complete cut by cleverly mill at an angle.
This will require optimization based on layout information, which is best handled
by a tool integrated with layout editors.

5.4.5 Algorithm to Find Exposed Area

We solve the problem of finding exposed area on targeted wires by first finding the
complement area, i.e., the area that attacker wouldn’t want to mill in. Consider wires
above targeted wires in the layout. If the attacker completely cuts off a shield wire,
he risks detection; even if it is merely a functional wire, he still risks corrupting
information he wants to access without complete knowledge of its function through
extensive reverse engineering. Using mathematical models shown in [33], complete
cut will happen if center of milling exists within dfreqqe from the far edge of the
wire, where

D—-H

diaredge =
ge
2RrB

3 (W + S)D
etz = 5 0w 1 §)Rens + (A/R)W) G-

where dfyreqee 18 the maximum distance from the center of the hole to the far side
of the wire (shown in Fig. 5.10), where d is the diameter of the hole, W and § are
minimum width and spacing of the shield layer, D is the depth of the hole, (A/R) is
the aspect ratio of the shield wire metal, H is the thickness of the intersecting wire,
and Rppp is the aspect ratio given by the FIB technology the attacker is using. The
aspect ratio represents the best FIB the shield will be able to defend against. Also,
note that dgyreqge represents the radius within which the milling will cut deep enough
to completely cut open wires; therefore direqge is shorter than the radius (;d) of the
hole radius left on the shield layer (as shown in Fig.5.10a, b).

Iwvww . allitebooks.cond

http://www.allitebooks.org

92 Q. Shi et al.

e \\ a8 x\\ D—H
/ !/ =
\ [\ faredge R
>é‘ ‘ .I‘ e ”:
\
N
—,]+ 1\ Por—p 14 o«

., |D-H
fhcedgsl Target wire area
2&]3 ge
(b)
Centers of hypothetical milling Blank background

Intersecting wire
segment on M-2k

Intersecting wire
segment on M-2k+1

Targeted wire segment

Milling Exclusion
Area (MEA)

Hypothetical milling holes

(©)

Fig. 5.10 Finding milling-exclusion area. (a) Milling-exclusion area on sides of intersecting wire;
(b) Milling-exclusion area on ends of intersecting wire; (¢) Complete milling-exclusion area in the
presence of multiple intersecting wires

Equation 5.1 shows possibility to find the area which milling center should not
fall inside. We term this area the milling-exclusion area. The desired exposed area
will be its complement. Figure 5.10 shows how this area can be found for any given
target wire and a wire on a higher layer capable of projecting this milling-exclusion
area for it (henceforth termed as intersecting wire), assuming both are rectangular.

Boundaries of the milling-exclusion area can be found in two possible cases for
a rectangular intersecting wire: the boundaries on the sides of the intersecting wire,
and at both ends. The first kind is quite intuitive. As shown in Fig. 5.10a, the center
of the milling cannot fall within drredee from the farther edge of the intersecting

5 Analyzing Circuit Layout to Probing Attack 93

wire, therefore boundaries of the first kind are two straight lines, each dgyregge away
from the farther edge. The other kind of boundaries on ends are a bit more complex.
Let’s look at Fig. 5.10b. Consider the milling hole marked by the dotted circle. For it
to precisely cut off the intersecting wire at each corner of the intersecting wire, its
center must be on the edge of another circle centered at that corner, with same radius
as itself. Any point within that other circle will still cut off that corner, although not
necessarily the other corner. Therefore, the intersection area of both circles centered
at both corners at an end constitute the complete set of milling center locations
that will guarantee cut off both corners, i.e., a complete cut. Consequently, any
rectangular intersecting wire will project a milling-exclusion area whose shape is
the union of the shape shown in Fig.5.10a, b.

Now, wires in layout designs are seldom rectangular, but they are always
consisted of a number of rectangular wires, usually called shapes by layout design
tools. Layout design tools, such as Synopsys IC Compiler, are able to provide
sufficient information to determine each of these constituent rectangular wires in
the form of their corner coordinates, with which a bit-map of mill-exclusion areas
can be easily produced. By iterating through each of these constituent rectangular
wires, mill-exclusion areas from each intersecting wire can be projected onto each
wire that may carry sensitive information and become target of probing attack. This
process is elaborated in the pseudocode as shown in Algorithm 5.1.

Algorithm 5.1: Proposed locator algorithm for exposed area.

Input: targeted_nets, precision, all_layers

Output: draw.script

1 begin

2 targeted_wire_shapes <= get_net_shapes(targeted_nets)

3 N <= sizeof_collection(targeted_wire_shapes)

4 for (i=1:N)do

5 targeted_wire_shape <= targeted_wire_shapes(i)

6 canvas_size <= get_sizes(get_bounding_box(targeted_wire_shape))*precision

7 Print command in draw.script to create canvas in draw.script whose size equals to canvas_size
8 layers_above <= get_layers_above(all_layers, get_layerof(targeted_wire_shape))
9 M <= sizeof_collection(layers_above)

10 for (j = 1: M) do

1 this_layer <= layers_above(j)

12 d_faredge_on_thislayer <= 5?;11;

13 intersecting_wire_shapes <= get_net_shapes(targeted_nets) in
get_bounding_box(targeted_wire_shape) on this_layer

14 L <« sizeof_collection(intersecting_wire_shapes)

15 for (k =1:L) do

16 intersecting_wire_shape <= intersecting_wire_shapes(k)

17 Print command in draw.script to create projection in draw.script whose radius/widths

equals to d_faredge_on_thislayer

18 end

19 end

20 end

21 end

As shown in Algorithm 5.1, the presented methodology starts with a set
of logic nets. The algorithm first identifies their constituting wire shapes in

94 Q. Shi et al.

Eile Edit Yiew |Insert Tools [Deskiop Window Help =

NEdS BRSO RAL- S DB D

(b)

Fig. 5.11 Exemplary results produced by proposed algorithm. (a) Exemplary targeted wire
(highlighted) in layout; (b) Mill-exclusion area (black) projected on canvas of same wire

targeted_wire_shapes. For each targeted wire shapes, a bitmap canvas is created,
onto which mill-exclusion areas are to be projected once found. These coordinates
are also given to the layout design tool to find intersecting wire shapes on each
layer above. For each layer, a different dfyeqee is calculated, which is then used
for projections from all intersecting wire shapes on that layer. Coordinates of
each intersecting wire shape are also retrieved to compute its mill-exclusion area,
which is then projected to the aforementioned canvas (results shown in Fig.5.11).
Projection is done by locating ends and sides of each intersecting wire shape and
print the corresponding projected mill-exclusion areas. After all mill-exclusion areas
are projected, running the resulting script draw.script can easily determine existence
and area of exposed area.

For processing efficiency and adaptability, both canvas creation and projection
steps are stored by the layout design tool part of the algorithm in the format of
MATLAB scripts. Considerations of probing attacks at non-perpendicular angles
can also be included with simple modifications with trigonometric functions.
Another possible concern is the precision of the bitmap method. The presented
algorithm rounds towards minus infinity on borders, i.e., errors towards false
positive. However, since mill-exclusion areas are convex, overlapping of mill-
exclusion areas would unlikely cause the algorithm to declare a vulnerable point
when there is none either.

5 Analyzing Circuit Layout to Probing Attack 95

Technology Library |

_/—\

R Proposed Algorithm Exposed area
_/—\

Targeted nets

_/—\

Fig. 5.12 A simplified diagram of presented algorithm to find exposed area

5.4.6 Discussions on Applications of Exposed Area Algorithm

Figure 5.12 shows a simplified diagram of Algorithm 5.1, where only inputs and
output of the algorithm are shown. One apparent observation is that by controlling
inputs to the algorithm, impacts of these inputs upon exposed area of targeted wires
can be studied: for example, controlling Rgg lets us study the threat of improved
attacker sophistication, controlling targeted nets allows us to study benefits by
relocating these wires, etc.

One important question is how the user should choose targeted nets to prepare
against a serious attack. To start, it can be assumed that a designer would have a
rough idea of which nets might attract most attention; and according to [30], linear
combinations of these nets should also be considered. However, although it is always
better safe than sorry, it might not be realistic to consider all possible candidates in
this list, as it can be too many to process. Luckily, locating targeted wires remains a
problem in published attacks [3]; and since we do not consider back-side attacks in
this study, we can safely assume a minimum positioning error on the attacker, and
rule out those nets that do not have a large enough area for attacker to reliably locate.
Such an assumption along with assumption on attacker’s R would constitute the
quantified attacker capability model we advocated in Fig. 5.8a.

5.5 Conclusion

Probing attacks is defined as direct access of sensitive information by probing the
physical wires that carries it. Reaching such wires necessitates milling, which is
often satisfied by employing focused ion beam milling. Active shields detect milling
by covering the layout with signal-carrying wires whose signals are monitored.
Despite recent advances such as back-side attacks, their own limitations and
lack of a better option have kept active shield as the most popular approach to

96 Q. Shi et al.

secure an IC against probing attacks. However, the active shield design is plagued
with weaknesses that could be exploited by attackers. So far, existing research
concentrated on securing the design against these weaknesses, at the cost of
incurring high hardware cost and making themselves prohibitive to common victims
to probing attacks such as smartcards and security tokens. In this chapter, we have
reviewed existing probing attacks and antiprobing research, and presented a layout-
driven framework to assess designs for vulnerabilities to probing attacks. Based on
design principles and assessment rules we have established considering reported
successful probing attacks, we presented an algorithm to analyze layout designs for
potential vulnerabilities to probing attacks. We expect work presented here to serve
as a basis for future methodologies to protect against probing attacks that are more
effective, require lower hardware cost and applicable to a wider variety of ICs.

References

1. S. Skorobogatov, Physical attacks on tamper resistance: progress and lessons, in Proceedings
of 2nd ARO Special Workshop on Hardware Assurance, Washington (2011)

2. C. Tarnovsky, Tarnovsky deconstruct processor, Youtube (2013) [Online]. Available: https://
www.youtube.com/watch?v=w7PTOnrK2BE

3. V. Ray, Freud applications of fib: invasive fib attacks and countermeasures in hardware security
devices, in East-Coast Focused lon Beam User Group Meeting (2009)

4. R. Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems
(Wiley, New York, 2001)

5. WIRED, How to reverse-engineer a satellite tv smart card (2008) [Online]. Available: https://
youtu.be/tnY7UVyaFiQ

6. K. Zetter, From the eye of a legal storm, murdoch’s satellite-tv hacker tells all (2008) [Online].
Available: http://www.wired.com/2008/05/tarnovsky/

7. Invasive attacks (2014) [Online]. Available: https://www.sec.ei.tum.de/en/research/invasive-
attacks/

8. I. Huber, F. Arthur, J.M. Scott, The role and nature of anti-tamper techniques in us defense
acquisition, DTIC Document, Tech. Rep. (1999)

9. International Technology Roadmap for Semiconductors, 2013 edn., Interconnect (2013).
[Online]. Available: http://www.itrs2.net/2013-itrs.html

10. X. Zhuang, T. Zhang, H.-H.S. Lee, S. Pande, Hardware assisted control flow obfuscation for
embedded processors, in Proceedings of the 2004 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems. Ser. CASES ’04 (ACM, New York, 2004),
pp- 292-302. [Online]. Available: http://doi.acm.org/10.1145/1023833.1023873

11. R.S. Chakraborty, S. Bhunia, Harpoon: an obfuscation-based soc design methodology for
hardware protection. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(10), 1493—
1502 (2009)

12. S.E. Quadir, J. Chen, D. Forte, N. Asadizanjani, S. Shahbazmohamadi, L. Wang, J. Chandy,
M. Tehranipoor, A survey on chip to system reverse engineering. ACM J. Emerg. Technol.
Comput. Syst. 13(1), 6 (2016)

13. V. Sidorkin, E. van Veldhoven, E. van der Drift, P. Alkemade, H. Salemink, D. Maas, Sub-
10-nm nanolithography with a scanning helium beam. J. Vac. Sci. Technol. B 27(4), L18-L20
(2009)

https://www.youtube.com/watch?v=w7PT0nrK2BE
https://www.youtube.com/watch?v=w7PT0nrK2BE
https://youtu.be/tnY7UVyaFiQ
https://youtu.be/tnY7UVyaFiQ
http://www.wired.com/2008/05/tarnovsky/
https://www.sec.ei.tum.de/en/research/invasive-attacks/
https://www.sec.ei.tum.de/en/research/invasive-attacks/
http://www.itrs2.net/2013-itrs.html
http://doi.acm.org/10.1145/1023833.1023873

14.

15.

16.

17.

18.

19.

20.

2

—_

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

Analyzing Circuit Layout to Probing Attack 97

Y. Fu, K.A.B. Ngoi, Investigation of aspect ratio of hole drilling from micro to
nanoscale via focused ion beam fine milling, Proceedings of The 5th Singapore-MIT
Alliance Annual Symposium. http://web.mit.edu/sma/about/overview/annualreports/ AR-2004-
2005/research/research06imst10.html

H. Wu, D. Ferranti, L. Stern, Precise nanofabrication with multiple ion beams for advanced
circuit edit. Microelectron. Reliab. 54(9), 1779-1784 (2014)

H. Wu, L. Stern, D. Xia, D. Ferranti, B. Thompson, K. Klein, C. Gonzalez, P. Rack,
Focused helium ion beam deposited low resistivity cobalt metal lines with 10 nm resolution:
implications for advanced circuit editing. J. Mater. Sci. Mater. Electron. 25(2), 587-595 (2014)
C. Helfmeier, D. Nedospasov, C. Tarnovsky, J.S. Krissler, C. Boit, J.-P. Seifert, Breaking and
entering through the silicon, in Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security (ACM, New York, 2013), pp. 733-744

C. Boit, C. Helfmeier, U. Kerst, Security risks posed by modern ic debug and diagnosis
tools, in 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (IEEE,
Washington, 2013), pp. 3—-11

A. Schlosser, D. Nedospasov, J. Kramer, S. Orlic, J.-P. Seifert, Simple photonic emission
analysis of aes, in Cryptographic hardware and embedded systems—CHES 2012 (Springer,
Heidelberg, 2012), pp. 41-57

C. Boit, Fundamentals of photon emission (PEM) in silicon - electroluminescence for analysis
of electronics circuit and device functionality, in Microelectronics Failure Analysis (ASM
International, New York, 2004), pp. 356-368

. C. Boit, R. Schlangen, U. Kerst, T. Lundquist, Physical techniques for chip-backside ic debug

in nanotechnologies. IEEE Des. Test Comput. 3, 250-257 (2008)

J.-M. Cioranesco, J.-L. Danger, T. Graba, S. Guilley, Y. Mathieu, D. Naccache, X.T. Ngo,
Cryptographically secure shields, in 2014 [EEE International Symposium on Hardware-
Oriented Security and Trust (HOST) (IEEE, Arlington, 2014), pp. 25-31

Y. Xie, C. Bao, C. Serafty, T. Lu, A. Srivastava, M. Tehranipoor, Security and vulnerability
implications of 3D ICs. IEEE Trans. Multiscale Comput. Syst. 2(2), 108-122 (2016)

P. Laackmann, H. Taddiken, Apparatus for protecting an integrated circuit formed in a substrate
and method for protecting the circuit against reverse engineering, 28 September 2004, US
Patent 6,798,234

M. Ling, L. Wu, X. Li, X. Zhang, J. Hou, Y. Wang, Design of monitor and protect circuits
against fib attack on chip security, in 2012 Eighth International Conference on Computational
Intelligence and Security (CIS) (IEEE, Guangzhou, 2012), pp. 530-533

A. Beit-Grogger, J. Riegebauer, Integrated circuit having an active shield, 8 November 2005,
US Patent 6,962,294. [Online]. Available: https://www.google.com/patents/US6962294

S. Briais, J.-M. Cioranesco, J.-L. Danger, S. Guilley, D. Naccache, T. Porteboeuf, Random
active shield, in 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC)
(IEEE, Leuven, 2012), pp. 103—-113

Invia., Active Shield IP (digital IP protecting System-on-Chip (SoC) against tampering through
a metal mesh sensor) (2016) [Online]. Available: http://invia.fr/detectors/active-shield.aspx

F. Ungar, G. Schmid, Semiconductor chip with fib protection, 2 May 2006, US Patent
7,038,307. [Online]. Available: https://www.google.com/patents/US7038307

L. Wei, J. Zhang, F. Yuan, Y. Liu, J. Fan, Q. Xu, Vulnerability analysis for crypto devices
against probing attack, in 2015 20th Asia and South Pacific Design Automation Conference
(ASP-DAC) (IEEE, Tokyo, 2015), pp. 827-832

C. Tarnovsky, Security failures in secure devices, in Black Hat Briefings (2008)

Freepdk45: Metal layers (2007) [Online]. Available: http://www.eda.ncsu.edu/wiki/
FreePDK45:Metal_Layers

Q. Shi, N. Asadizanjani, D. Forte, M.M. Tehranipoor, A layout-driven framework to assess
vulnerability of ics to microprobing attacks, in 2016 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST) (2016)

http://web.mit.edu/sma/about/overview/annualreports/AR-2004-2005/research/research06imst10.html
http://web.mit.edu/sma/about/overview/annualreports/AR-2004-2005/research/research06imst10.html
https://www.google.com/patents/US6962294
http://invia.fr/detectors/active-shield.aspx
https://www.google.com/patents/US7038307
http://www.eda.ncsu.edu/wiki/FreePDK45:Metal_Layers
http://www.eda.ncsu.edu/wiki/FreePDK45:Metal_Layers

98 Q. Shi et al.

34. S. Manich, M.S. Wamser, G. Sigl, Detection of probing attempts in secure ICs, in 2012
IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) (IEEE, San
Francisco, 2012), pp. 134-139

35.Y. Ishai, A. Sahai, D. Wagner, Private circuits: securing hardware against probing attacks, in
Advances in Cryptology-CRYPTO 2003 (Springer, Heidelberg, 2003), pp. 463—481

36. M. Rivain, E. Prouff, Provably secure higher-order masking of aes, in Cryptographic Hardware
and Embedded Systems, CHES 2010 (Springer, Heidelberg, 2010), pp. 413-427

37. D.B. Roy, S. Bhasin, S. Guilley, J.-L. Danger, D. Mukhopadhyay, From theory to practice of
private circuit: a cautionary note, in 2015 33rd IEEE International Conference on Computer
Design (ICCD) (IEEE, Washington, 2015), pp. 296-303

38.D. T. Ltd., Known attacks against smartcards (2015) [Online]. Available: http://www.
infosecwriters.com/text_resources/pdf/Known_Attacks_Against_Smartcards.pdf

39. T. Xia, On-chip timing measurement. Ph.D. dissertation, University of Rhode Island (2003)

http://www.infosecwriters.com/text_resources/pdf/Known_Attacks_Against_Smartcards.pdf
http://www.infosecwriters.com/text_resources/pdf/Known_Attacks_Against_Smartcards.pdf

Chapter 6

Testing of Side-Channel Leakage of
Cryptographic Intellectual Properties: Metrics
and Evaluations

Debapriya Basu Roy, Shivam Bhasin, Sikhar Patranabis,
and Debdeep Mukhopadhyay

6.1 Introduction

Semiconductor industry has really flourished under the intellectual property (IP)
based business model, where proven IPs are widely reused to meet complexity
and time constraints. Since security is emerging as the latest design parameter,
along with performance, area, and power consumption, these IPs must be hardened
for security. However, it is not always possible to modify each proven IP and
add security features. To overcome this issue, required security targets are met at
the system level by embedding cryptographic IPs in the system on chip (SoC).
These cryptographic IPs ideally encrypt and decrypt all the sensitive data that is
communicated among various IPs on the SoC and thus protect it from potential
adversaries. The underlying cryptographic algorithms are rigorously tested against
any theoretical weaknesses and often standardized.

D.B. Roy (P<) * S. Patranabis

Secured Embedded Architecture Laboratory (SEAL), Department of Computer Science
and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India

e-mail: deb.basu.roy @cse.iitkgp.ernet.in; dbroy24 @gmail.com;

sikhar.patranabis @cse.iitkgp.ernet.in

S. Bhasin
Temasek Laboratories NTU, Singapore, Singapore

Embedding Security and Privacy (ESP) IIT Kharagpur, Kharagpur, India
e-mail: sbhasin@ntu.edu.sg

D. Mukhopadhyay
Secured Embedded Architecture Laboratory (SEAL) Department of Computer Science
and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India

Embedding Security and Privacy (ESP) IT Kharagpur, Kharagpur, India
e-mail: debdeep @cse.iitkgp.ernet.in

© Springer International Publishing AG 2017 99
P. Mishra et al. (eds.), Hardware IP Security and Trust,
DOI 10.1007/978-3-319-49025-0_6

mailto:deb.basu.roy@cse.iitkgp.ernet.in
mailto:dbroy24@gmail.com
mailto:sikhar.patranabis@cse.iitkgp.ernet.in
mailto:sbhasin@ntu.edu.sg
mailto:debdeep@cse.iitkgp.ernet.in

100 D.B. Roy et al.

Since the used algorithms are provably secure, adversaries try to exploit other
vulnerabilities. A commonly known vulnerability is side-channel attack (SCA [1]).
SCA exploits unintentional physical leakage from semiconductor circuits in the
form of power consumption, electromagnetic emanation, sound, timing, temper-
ature, etc. The most commonly used physical channel is power consumption.
It derives its basic from the behavior of a basic CMOS cell. It is well known
that a CMOS gate draws non-negligible current whenever there is a transition
(1 - 0or 0 — 1) on the input. When the input remains unchanged (0 — 0
or 1 — 1), the current drawn is negligible or zero. Therefore just by observing
the power consumption of a single CMOS gate, an adversary can retrieve some
information about the inputs. Since the security of whole SoC relies on the
embedded cryptographic IP, it should be tested and protected against SCA. SCA
are now also tested by certification labs following Common Criteria [2] or FIPS [3]
standards.

The simplest and the most common way to test for side-channel leakage is
to perform an attack. The attack is based on intuition or characterization of
the leakage model of the target device or IP. The actual power consumption is
statistically compared against a set of key hypothesis, under the chosen leakage
model. The efficiency of the attack can then be measured in terms of standard
metrics like success rate and guessing entropy [4]. However, the attack directly
relies on correctness of the leakage model and the quality of acquired side-channel
measurements. To overcome these dependencies, alternative techniques like leakage
detection and leakage assessment are used. Statistical test can also affect the
efficiency of the attack but it was previously shown that all applied statistical tests
are asymptotically equivalent [5].

Leakage detection is a preprocessing step in SCA testing. It serves two basic
purpose. The first and the most obvious is quality assessment of the acquired side-
channel measurement. In other words, leakage detection test checks if the collected
measurement carries any relevant information as a quality check. This is even more
important when the measurements are not synchronized and the adversary is not
sure to capture good section of the measurement. The other and an important
application of leakage detection is discovering zone of leakage or relevant point-
of-interest (Pol). A side-channel trace or measurement can easily have millions of
samples and the number of measurements can also grow in millions for protected
implementations. To process such amount of data, one needs immense computing
power. Therefore it is important to select the relevant Pol to improve the attack’s
efficiency.

Leakage assessment, on the other hand, is a generic evaluation technique. Normal
SCA testing is highly dependent on the attack parameters (leakage model, statistical
tool, and measurements). For evaluation and certification purpose, this scenario
is not ideal as the number of parameters keep on increasing, which hinder the
evaluation process to be comprehensive. To overcome this problem, evaluators rely
on leakage assessment. These leakage assessment techniques are primarily global
and parameter independent. It tests for any potential side-channel leakage in the

6 Testing of SCA Leakage 101

acquired measurement, without actually performing the attack. If a minimum level
of leakage is found, the target is rendered insecure.

This chapter focusses on various aspect of side-channel testing on cryptographic
IPs. It aims at establishing basic concepts of side-channel attack, leakage detection,
and leakage assessment. Side-channel attack is the simplest and straightforward
technique for testing cryptographic IC. In this context, we provide a formal
description of an SCA along with its evaluation metrics, i.e., success rate and
guessing entropy. Thereafter we describe the notion of leakage detection with a
specific leakage detection tool known as normalized inter-class variance (NICV [6]).
Relationship of NICV with standard parameters like signal-to-noise ratio (SNR),
correlation, and other detection technique is also discussed. Practical case studies
on hardware and software platforms are included to help readers understand the
basic concepts. Lastly, leakage assessment is discussed, in particular test vector
leakage assessment (TVLA [7]). Along with the basic concepts of TVLA, we derive
relationship between TVLA and NICV. TVLA is also supported with a practical case
study with direct application to SCA protected implementation.

The rest of the chapter is organized as follows. Section 6.2 discusses general
background on statistical testing and hypothesis testing. This is followed with
a formal description of side-channel attack with emphasis on evaluation metric,
i.e., success rate and guessing entropy in Sect.6.3. Leakage detection methods
like NICV and SNR are dealt in Sect.6.4 along with practical case studies on
AES implementation. Section 6.5 describes leakage assessment methodology, in
particular TVLA. The relationship between NICV and TVLA is derived in Sect. 6.6
followed by its extension to higher statistical orders in Sect. 6.7. and practical case
study in Sect. 6.8. Finally conclusions are derived in Sect. 6.9.

6.2 Preliminaries on Statistical Testing and Testing
of Hypothesis

Attack based evaluation strategies are difficult in the practical world as the number
of attacks have been steadily increasing. Hence, it is desirable to have a black-box
approach, the objective of which will be to quantify any side-channel information
leakage through the power consumption of the device. The objective of the test
strategy is thus to detect whether there is any information leakage, and not to
precisely quantify how much of the information leakage is exploitable. Thus the
purpose is to develop an estimation technique, which will rely on the Theory of
Statistical Hypothesis and Theory of Estimation. The objective of this subsection is
to provide a quick overview on the topic.

102 D.B. Roy et al.
6.2.1 Sampling and Estimation

Sampling denotes the selection of a part of the aggregate statistical material with a
view to obtaining information of the whole. This totality of statistical information
on a particular character of all the members relevant to an investigation is called
population. The selected part which is used to ascertain the characteristics of
population is called Sample. The main objective of a good sampling is to obtain
maximum information about the population with minimum effort, and to state the
limits of accuracy of estimates based on samples.

Any statistical measure calculated on the basis of sample observations is called a
Statistic, e.g., sample mean, sample variance. On the other hand, statistical measures
based on the entire population are called a Parameter, e.g., population mean,
population variance. The sample depends on chance, and hence the value of a
statistic will vary from sample to sample, while the parameter remains a constant.
The probability distribution of a statistic is called sampling distribution, and the
standard deviation of the sampling distribution is called standard error, denoted as
SE.

In the sequel, we assume simple random sampling, which implies that in the
process of selecting a sample, every unit of the population has an equal probability
of being included. Furthermore, we consider that the sampling is such that the
probability of selection of any particular member remains constant throughout the
selection process, irrespective of the fact that the member has been selected earlier
or not. Such a sampling can be obtained by performing a simple random sampling
with replacement (SRSWR), and is commonly called as simple sampling. It may
be mentioned here that when the population size is infinite, even performing a
simple random sampling without replacement (SRSWOR) will also result in simple
sampling. Thus in cases where the population size is extremely large (say the
plaintext pool in case of a 128 bit block cipher) both SRSWR and SRSWOR will
result in simple sampling. Thus, we can assume that each sample members has
the same probability distribution as the variable x in the population. Hence, the
expectation E [x;] = u, where u is the population mean. Likewise, the variance
Var[xj] = E [(xi - ,u)z] = ¢, which is the population variance.

"n, where n is the
size of the sample. We state formally a subsequent result on standard errors which
will be useful to understand the subsequent discussion on the detection test.

It can be proved that standard error for the mean, SE((x)) =

Theorem 1. Consider two independent simple samples of sizes ny and ny, with
means x| and x,, and standard deviations o) and o, respectively, then:

na

2 2
SE(x; —x3) = \/ ‘;l 4+ % 6.1)
1

Different probability distributions are used in sampling theory, and they are all
derived from the Normal distribution. They are (1) Standard Normal Distribution,

6 Testing of SCA Leakage 103

(2) Chi-square (1#2) Distribution, (3) Student’s ¢ Distribution, and (4) Snedecor’s F
Distribution.

In the following we provide a quick refresher to the Standard Normal Distribu-
tion, and the Student’s ¢ Distribution which shall be useful for understanding the
remaining part of the sequel and in introducing the 7-test.

6.2.2 Some Statistical Distributions

If a random variable x is normally distributed with mean p and standard deviation
o, then the variable z = * # is called a standard normal variate. The probability
distribution of z is called Standard Normal Distribution, and is defined by the
probability density function (pdf), p(z) = (1/+/ 27t)e_zz/ 2, where —co0 < z < +00.

An important result is if x denotes the mean of a random sample of size n, drawn
from a normal population with mean p and standard deviation (s.d.) o, then, z =
:/_jn follows standard normal distribution.

Likewise, a random variable is said to follow Student’s ¢-distribution, or simply ¢-
distribution, if its pdf is of the form: f(f) = K(1 + ':)y~ +D/1 where K is a constant
and —oo < t < 4o00. The parameter n is called the number of degrees of freedom
(df.).

In statistics, the number of degrees of freedom is the number of values in the final
calculation of a statistic that are free to vary. Estimates of statistical parameters can
be based upon different amounts of information or data. The number of independent
pieces of information that go into the estimate of a parameter is called the degrees of
freedom. In general, the degrees of freedom of an estimate of a parameter are equal
to the number of independent scores that go into the estimate minus the number of
parameters used as intermediate steps in the estimation of the parameter itself (i.e.,
the sample variance has N — 1 degrees of freedom, since it is computed from N
random scores minus the only one parameter estimated as intermediate step, which
is the sample mean).

6.2.3 Estimation and Test of Significance

The objective of sampling is to infer the features of the population on the basis
of sample observations. Statistical inference has two different ways: (1) Point
Estimation and (2) Interval Estimation. In point estimation, the estimated value is
given by a single quantity, which is a function of the given observations. In interval
estimation, an interval within which the parameter is expected to lie is given by using
two quantities based on sample values. This is known as Confidence Interval, and
the two quantities which are used to specify the interval are known as Confidence
Limits.

104 D.B. Roy et al.

Let x1,x2, .. .,x, be a random sample from a population of a known mathemati-
cal form which involves an unknown parameter 6. The confidence intervals specify
two functions #; and #, based on sample observations such that the probability of 6
being included in the interval (¢;, ;) has a given value, say c:i.e., P(t; < 0 < 1,) =
c. The probability ¢ with which the confidence interval will include the true value
of the parameter is known as Confidence Coefficient of the interval.

Let us illustrate this using an example. Let us consider a random sample of size n
from a Normal population N(u, 02), where the variance o2 is known. It is required
to find confidence intervals for the mean, u. We know that the sample mean x
follows approximately a normal distribution with mean p and variance o2 /n. Thus,
the statistic z = (x — u)/(0/+/n) has a standard normal distribution. From the
properties of the standard normal curve, 95 % of the area under the standard normal
curve lies between the ordinates at z = 41.96. Thus, we have

P[1.96 < (x — p)/(a/+/n) < 1.96] = 0.95 6.2)

Thus arranging terms, the interval (x — 1.96 ;n ,x+1.96 jn) is known as the 95 %
confidence interval for . For almost sure limits, we replace the value 1.96 by the
value 3.

In some cases, the population may not be truly a normal distribution, but the
sample distributions of statistics based on large samples are approximately normal.

6.2.4 Test of Significance: Statistical Hypothesis Testing

Statistical tests often require to make decisions about a statistical population on
the basis of sample observations. For example, given a random sample, it may be
required to decide whether the population from which the sample has been obtained
is a normal distribution with a specific mean and standard deviation. Any statement
or assertion about a statistical population or its parameters is called a Statistical
Hypothesis. The procedure which enables us to decide whether a certain hypothesis
is true or not is called Test of Significance or Statistical Hypothesis Testing.

A statistical hypothesis which is set up (i.e., assumed) and whose validity is
tested for possible rejection on the basis of sample observations is called Null
Hypothesis. It is denoted as Hy and tested for acceptance or rejection. On the other
hand, an Alternative Hypothesis is a statistical hypothesis which differs from the
null hypothesis, and is denoted as H;. This hypothesis is not tested, its acceptance
(or rejection) depends on the rejection (or acceptance) of that of the null hypothesis.
For example, the null hypothesis may be that the population mean is 40, denoted as
Hy(p = 40). The alternative hypothesis could be H; (u # 40).

The sample is then analyzed to decide whether to reject or accept the null
hypothesis. For this purpose, a suitable statistic, called Test Statistic is chosen.
Its sampling distribution is determined, assuming that the null hypothesis is true.

6 Testing of SCA Leakage 105

The observed value of the statistic would be in general different from the expected
value because of sampling fluctuations. However if the difference is very large, then
the null hypothesis is rejected, Whereas, if the differences is less than a tolerable
limit, then Hj is not rejected. Thus it is necessary to formally determine these limits.

Assuming the null hypothesis to be true, the probability of obtaining a difference
equal to or greater than the observed difference is computed. If this probability is
found to be small, say less than 0.05, the conclusion is that the observed value of
the statistic is rather unusual, and has arisen because the underlying assumption,
i.e., the null hypothesis is not true. We say that the observed difference is significant
at 5 % level of significance, and hence the null hypothesis is rejected at 5 % level
of significance. The level of significance, say « also corresponds to a (1 — &) level
of confidence. If, however, this probability is not very small, say more than 0.05,
the observed difference cannot be considered unusual and is attributed to sampling
fluctuations only. The difference now is not significant at 5 % level of significance.

The probability is inferred from the sampling distribution of the statistic. We
find from the sampling distribution of the statistic the maximum difference which
is exceeded say 5 % of cases. If the observed difference is larger than this value, the
null hypothesis is rejected. If it is less, there is no reason to reject the null hypothesis.

Let us illustrate this with an example. Suppose, the sampling distribution of the
statistic is a normal distribution. Since, the area under the normal curve under the
ordinates at mean + 1.96 (standard deviation) is only 5 %, the probability that the
observed value of the statistic differs from the expected value by 1.96 times or more
the standard error of the statistic (which is the standard deviation of the sampling
distribution of the statistic) is 0.05. The probability of a larger difference will be still

smaller.
. .. (Observed Value)—(Expected Value) . .
If, therefore the statistic z = Standard Error (SE) is either greater

than 1.96 or less than —1.96, the null hypothesis Hy is rejected at 5 % level of
significance. The set of values z > 1.96, or z < —1.96 constitutes what is called
the Critical Region of the test.

Thus the steps in Test of Significance can be summarized as follows:

1. Set up the Null Hypothesis Hy and the Alternative Hypothesis, H;. The null
hypothesis usually specifies some parameter of the population: Hy(6 = 6y).

2. State the appropriate test statistic 7 and also its sampling distribution, when the
null hypothesis is true. In large sample tests, the statistic z = (T — 6y)/SE(T),
which approximately follows standard Normal distribution, is often used. In
small sample tests, the population is assumed to be normal and various test
statistics are used which follow Standard Normal, Chi-Square, ¢ distribution.

3. Select the level of significance, o of the test, or equivalently (1 — «) as the level
of confidence.

4. Determine the critical region of the test for the chosen level of significance.

5. Compute the value of the test statistic z on the basis of sample data and the null
hypothesis.

6. Check whether the computed value of the test statistic lies in the critical region.
If it lies, then reject Hy, else Hy is not rejected.

106 D.B. Roy et al.

With this background, we eventually arrive at the proposed Test Vector Leakage
assessment test, which is essentially a test of equality of two moments drawn
independently and randomly from two populations. The starting point is the first
moment, where equality of two means from the two samples are tested for equality.
Thus, the statistic T = x; — x», and thus the statistic z = s;sx(lxl_fiz) is chosen for
testing the null hypothesis: Hy((t; = w2), where @ and p, are the two means for

the two independent samples. As discussed, the standard error of the difference of

2 2
. o 0
means x; — x, is SE(x; —xp) = n‘I + nz

X1—X2

For a large distribution, the test statistic z = , follows standard normal

T
distribution. However, for tests with any sample lsizeé, a more exact sampling
distribution for z is the #-distribution, and this gives rise to the Welch’s r-test.
The statistic z then follows the r-distribution with degrees of freedom calculated
according to Welch—Satterthwaite, as v = SE@=x2) The null hypothesis of two

((112/111) + ((722/n2)
np—1 np—1

equal means is rejected when the test statistic |z| exceeds a threshold of 4.5, which
ensures with degrees of freedom > 1000, P[|z] > 4.5] < 0.00001, this threshold
leads to a confidence of 0.99999.

6.3 Formalizing SCA and the Success Rate of Side-Channel
Adversary: Guessing Entropy

In order to evaluate the several attack methods and also to compare the several cryp-
tographic designs wrt these attacks several formal metrics have been developed. It
is important to have an understanding of these security metrics which are based on
formalizing these side-channel analysis techniques. In this section, we provide an
overview on some of the fundamental metrics.

6.3.1 Success Rate of a Side-Channel Adversary

Side-channel adversaries work on a divide and conquer strategy, where the key
space is divided into several equivalent classes. The attack is normally unable
to distinguish keys which belong to the same class or partition, but is capable
to distinguish between two keys which fall in different partitions. Thus one can
formalize the adversary as an algorithm which targets a given implementation of a
cryptographic algorithm, formally denoted as Ex, where K denotes the key space.
The adversary also assumes a leakage model for the key denoted as L. The leakage
model provides some information of the key or some other desirable information.
Also the adversary is bounded in terms of computational resources and thus the
adversary Ag, ;. is an algorithm with time complexity T, memory complexity m,

6 Testing of SCA Leakage 107

Algorithm 6.1: Formal definition of success rate of a side-channel attack
Input: K, L, Ex
Output: 0 (failure), 1 (success)
kegr K
s = y(k)
g = [glw ~~vgr)] (_AEk.L
if s € g then
| return 0

else
| return 1

N U AW N -

making g queries to the target implementation of the cryptographic algorithm.
Note that the leakage function is not capable of distinguishing certain keys, hence
inducing a partition S on the entire key space K. The mapping from K to S can be
captured by a function y such that s = y(k), wheres € Sandk € K, and |S| << |K].
The objective of the adversary is to determine the corresponding equivalence class to
which a chosen key & belongs denoted as s = y (k) with a non-negligible probability.

As an analogy consider the Hamming Weight or Hamming-Distance leakage
model, which divides the entire key space into equivalence classes or partitions,
which the attacker tries to distinguish with sufficient observations. The output of
the adversary is based on the ciphertext (black-box information) and the leakage
(side-channel information) outputs a guess vector, which are the key classes sorted
in terms of descending order of being a likely candidate. We thus define an order-
o (o < |S]) adversary when the adversary produces the guessing vector as g =
[g1,---,&0], where g; is the most likely candidate, and so on. Now having defined
the adversary let us try to understand formally the side-channel experiment to define
the metrics.

More precisely, the side-channel attack is defined as an experiment EprEKL
where Ag, ;. is an adversary with time complexity t, memory complexity m, and
making g queries to the target implementation of the cryptographic algorithm. In
the experiment for any k chosen randomly from K, when the adversary A, ; outputs
the guessing vector g, the attack is considered as a success if the corresponding key
class denoted as s = y(k) is such that s € g. More formally the experiment for a
side-channel attack of order-o is as in Algorithm 6.1. The experiment returns O or 1
indicating a success or failure of the attack.

The oth order success rate of the side-channel attack Ag, | against the key
classes or partitions S is defined as:

Succf’AEK~L (r,m, k) = Pr[EprEK.L =1]

108 D.B. Roy et al.

Algorithm 6.2: Formal definition of guessing entropy
Input: K, L, Ex

Output: Key class i

ker K

s = y(k)

g=[g1,..-.8] < Ar.L
return i such that g; = s

W N -

6.3.2 Guessing Entropy of an Adversary

The above metric for an oth order attack implies the success rate for an attack where
the remaining workload is o-key classes. Thus the attacker has a maximum of o-key
classes to which the required k may belong. While the above definition for a given
order is fixed wrt the remaining work load, the following definition of guessing
entropy provides a more flexible definition for the remaining work load. It measures
the average number of key candidates to test after the attack. We formally state the
definition, based on the adversaries experiment as in Algorithm 6.2.

The Guessing Entropy of the adversary Ag, ;. against a key class variable S is
defined as:

GEag, (t,m, k) = E[EprEK_L]

6.4 Leakage Detection in SCA Traces: NICV and SNR

A formal framework for side-channel analysis and the methodology to evaluate
its success was discussed in the previous section. An effective SCA stands on
three parameters: measurements, leakage model, and distinguisher. If any of these
parameters are sub-optimal, then it has a direct impact on SCA and its success.
SCA countermeasures are also designed on the same principle such that it is hard to
estimate the optimal leakage model, distinguisher, or acquire quality measurements.
This section focuses on assessing the quality of side-channel measurements. A
practical problem in SCA is that the measured traces can be huge with multimillion
sample points. Processing traces of such size requires time and computing power.
In order to optimize the attack, it is important to identify a small set of the so-called
zone of leakage or relevant point-of-interest (Pol). This process of finding Pol is
known as leakage detection. Moreover as a first test, leakage detection also informs
if the traces carry any relevant information or not, thus aiding in assessing the
quality of measurements. In the following, we provide the theoretical background
and rationale to normalized inter-class variance (NICV) as a leakage detection tool.
The relation of NICV to signal-to-noise ratio (SNR) is also discussed followed by
case study on practical implementations of AES.

6 Testing of SCA Leakage 109
6.4.1 Normalized Inter-Class Variance

Normalized inter-class variance (NICV) is a technique which is designed to
detect relevant Pol in an SCA trace [6]. Detection of Pol is used to compress
the trace which results in acceleration of SCA. NICV can be computed based
on public parameters like plaintext or ciphertext and doesn’t need a profiling
or pre-characterization of the target device. Moreover, NICV is leakage model
agnostic which means that it can be applied without the knowledge of the target
implementation. These properties make NICV an ideal candidate for accessing
quality of measurements. The technical background of NICV is discussed in the
following.

A side-channel adversary acquired leakage measurement ¥ € R corresponding
to a public parameter X (let’s say a byte of plaintext or ciphertext, i.e., X = Fg).
In general, Y can be continuous, but X must be discrete (and X must be of finite
cardinality). Then, for all leakage prediction function L of the leakage knowing the
value of x taken by X (as per Proposition 5 in [8]), we have

p* [L(X); Y] = p* [LX); E[Y|X]] xp [E[Y|X]: Y] . (6.3)
N’

0< - <I

Here, E and Var denote the expectation and the variance, respectively, whereas
p represents correlation. Equation (6.3) was further simplified in Corollary 8 of [8]
to derive:

Var [E[Y|X]]

2 . —
PEIIX =T

(6.4)

The term in Eq. (6.4) is further called as the normalized inter-class variance (NICV).
It is an ANOVA (ANalysis Of VAriance) F-test, as a ratio between the explained
variance and the total variance.

From Egs.(6.3) and (6.4), we can derive that for all prediction function
L:F§ >R

e < VarEIYIX
0 < p*[L(X); Y] < Var[Y] =NICV <1 . (6.5)

Thus, NICV is the envelop or maximum of all possible correlations computable
from X with Y or NICV denotes the best-case results. Although Eq. (6.5) contains
an equality, however, it is almost impossible to achieve in practical scenario. The
equality can occur if and only if L(x) = E [Y|X = x], i.e., L is the optimal prediction
function. The difference can come from various practical reasons like:

— The adversary knows the exact prediction function, but not the correct key. For
instance, let us assume the traces can be written as ¥ = wy(S(X & k*)) + N,
where k* € Fg is the correct key, S : Fg — Fg is a substitution box, wy is

110 D.B. Roy et al.

the Hamming weight function, and N is some measurement noise, that typically
follows a centered normal distribution N ~ N(0, 02). In this case, the optimal
prediction function L(x) = E [V]|X = x] is equal to: L(x) = wy(S(X & k*)) (the
only hypothesis on the noise is that it is centered and mixed additively with the
sensitive variable). This argument is at the base of the soundness of CPA: Vk #
ko wr(SX @ K)); Y] < plwa(S(X @ k*)); Y] < /Var [E[Y|X]] /Var[Y].

— The leakage model is incorrect, for instance, L(x) = wgy(x @ k*), when ¥ =
wu(S(x® k*)) + N.

— The leakage model is a close approximation of the actual leakage model, for
instance, L(x) = wy(S(x @ k*)), whereas actually ¥ = Z§=l Bi-Si(x®k*)+ N,
where f8; &~ 1, but slightly deviate from one.

The distance between CPA and NICYV, in non-information theoretic attacks (i.e.,
attacks in the proportional / ordinal scale, as opposed to the nominal scale [9]) is
similar to the distance between perceived information (PI) and mutual information
(MD) [10].

In practice, the (square) CPA value does not attain the NICV value, owing to
noise and other imperfections. This is illustrated in Fig. 6.1.

Var[E[Y [X
NICV = /Yeeie Xl
. (envelop)
lp [L(X); Y]] o [L(X); Y]]
\
“090& 0’&90
/ P +©
S° e
0 -

L(X) = wg(X @ k) L(X) = wy(S(X @ k)
L(X)=wy(X @ k), k # k* (ghost peaks, printed with dashed lines)

Fig. 6.1 NICV metric when ¥ = Z?=1 Bi*Si(x® k*) + N, and attack results for some prediction
functions

6 Testing of SCA Leakage 111
6.4.2 NICV and SNR

NICV can be extended to establish relationship with signal-to-noise ratio (SNR),
which is a widely used metric across domains. In the case of SCA, the signal
refers to that part of the measurement which is directly related to sensitive data
manipulation. When power measurements are considered, the signal is the current
drawn for sensitive data computation. For instance, the measurement ¥ = wy (S(X®
k*)) + N. The signal here directly refers to computation related to sensitive key
k* only. Note that a typical cryptographic algorithm will have several key bytes
manipulated independently (16 for AES). The current drawn by computation related
to other key bytes except k* is considered noise and known as algorithmic noise. The
noise N is the sum of algorithmic noise and measurement noise.

Now we derive the relation between NICV and SNR. It should be noted that
we are considering only a byte of the ciphertext which has 2% number of possible
values. If the public parameter X is uniformly distributed, the NICV in itself is not
a distinguisher. Indeed, if we assume that ¥ = L(X) + N = wy(S(X @ k*)) + N,
then:

Var [E [Y[X]] = ¥, PIX = XE[Y|X = x]" — E[¥]?
= % Yrex Ewn(S@x @ k) + NI’
~ (Cex Ebvu(S@ @ k%) + N’
= 3 Lvmorex Eva(S@)P

- (Zx’=x€Bk*€X E [WH(S(X/))])Z
= Var[wgy(S(X))].

Further elaborating denominator of NICV, Var [Y] = Var [wg (S(X))] + Var [N].
To put both the equations together, we get

NICV — Var [E [Y|X]] _ 1 ’ ©.6)

Var[Y] 1+ g

where the SNR is the ratio between:

— the signal, i.e., the variance of the informative part, namely Var [wgy (S(X & £*))],
and

— the noise, considered as the variance Var [N]. An approximate estimation of noise
is the intra-class variance, i.e., E [Var [Y|X]].

Clearly, Eq. (6.6) does not depend on the secret key k* as both Y and X are public
parameters known to the attacker. Moreover, this expression is free from the leakage

112 D.B. Roy et al.

model L(X), which means that NICV does not depend on the implementation. Thus,
NICV searches for all linear dependencies of public parameter X with available
leakage traces Y independent of the implementation.

There are several advantages of computing NICV as compared to SNR. The main
reason for using NICV over SNR is that, NICV is a bounded quantity. As shown in
Eq. (6.5), the value of NICV lies in the range [0,1]. Thus the quality of the trace is
measured directly as a percentage. Owing to this property, it is possible to compare
the quality of measurements directly.

Next, the computation of SNR requires much more traces than NICV. The
noise component Var [N] of SNR is mainly composed of the intra-class variance
E [Var [Y|X]]. In order to properly estimate [E [Var [Y|X]], the adversary must acquire
at least two measurements per class in order to compute the variance. Of course, it
is desirable to have much more traces per class to compute the noise component of
SNR. Since NICV depends on global variance of the measurements, it takes fewer
traces to estimate.

6.4.3 Related Work in Leakage Detection

Initial methods for leakage detection were based on templates [11]. In this method,
Pol are those which maximizes) ', (T; —T;), for T templates for n subkey values.
T; is the average of the traces when the sensitive variable belongs to the class i. It was
improved to Sum Of Squared pairwise Differences (SOSD [12]) as) ; =1(Ti— T;)%,
to avoid cancellation of leakage of opposite polarity. SOSD was then extended
to Sum Of Squared pairwise T—2differences (SOST [12]) by normalizing it with

T,

n

ij=1 2 g2
9i + 7
mj mj

the number of samples in class i. However, template based method needs an access
to clones of a device.

variances as y . Here o; is the variance of T in class i, and m; is

6.4.4 Case Study: Application on AES

The main application of NICV is to find the interesting time samples for accelerating
SCA. An SCA trace can easily have millions of points, however, only few of these
points qualify as Pol. It is of interest of the adversary or evaluator to detect these
Pol and compress the final measurement.

The NICV metric is first tested on a software implementation of AES-256 run-
ning on an ATMEL AVR microcontroller. A standard trace of this implementation
contains seven million points and needs roughly 5.3 Mbytes of disk space when
stored in the most compressed format. These details are in respect to a LeCroy
wavescanner 6100A oscilloscope with a bandwidth of 1 GHz. The NICV is then

(o)}

Testing of SCA Leakage 113

ShiftRows MixColumns
AddRoundKey SubBytes

NICV

" " L L " L " L 1
0 0.5 1 1.5 2 25 3 35 4 4.5 5
Time Samples x 10°

Fig. 6.2 NICV computed for an AES-128 software implementation to detect each round operation

applied to identify operations related to each byte of sensitive key &k — kis™.
Figure 6.2 shows the computation of NICV on the first round. The computations
of kj for round 1 take only ~ 1000 time samples. Since each k* is associated with
a different substitution box (Sbox), the bytes are labeled as the Sbox number, i.e.,
Sbox0 to Sbox15. Once the interesting time samples corresponding to each executed
operation is known, the trace size is compressed from 7,000,000 to 1000, i.e., a
gain of roughly 7000x. NICV also enables us to reverse engineer the underlying
software implementation. We computed NICV for all the 16 bytes of the plaintext
and plotted the 16 NICV curves in Fig. 6.2 (depicted in different colors). By closely
observing Fig. 6.2, we can distinguish individual operations from the sequence of
byte execution. Each NICV curve (each color) shows all sensitive leakages related
to that particular byte. Moreover, with a little knowledge of the algorithm, one can
easily follow the execution of the algorithm. For example, the execution of all the
bytes in a particular sequence indicates the SubBytes or AddRoundKey operation.
Manipulation of bytes in sequence {1, 5,9, 13},{2, 6, 10, 14}, and {3, 7, 11, 15} indi-
cates the ShiftRows operations. The ShiftRows operation of AES shifts circularly 3
out of 4 rows with different constant. This can be clearly seen in Fig. 6.2: only three
rows are manipulated and the bytes in the first row, i.e., {0, 4, 8, 12} are not used
during this time. Similarly MixColumns can also be identified by just looking at the
bytes manipulated together.

Another common problem in SCA is the choice of leakage model which directly
affects the efficiency of the attack. As shown in Sect.6.4.1, the square of the
correlation between modeled leakage (L(X, K)) and traces (Y = L(X,K*) + N) is
smaller or equal to NICV, where N represents a noise. The equality exists only if the
modeled leakage is the same as the traces. A real implementation can have different
active components at different point of time. For example, the activity corresponding
to Sbox input computation will be at different time than Sbox output computation.

114 D.B. Roy et al.
008 T T T T T T T T T
NIC\é —
p(Model ‘I)2 —
p(Model 2) |
0.07 - p(Model 3), ml
p(Model 4) |\
f
0.006 — |
0.06 |- st 5
p(Model 32
p(Model 4) |
0.005 |
0.05 - B
o 0.004 - f
S i
5 0.04 -
= So 0003 |
0.03
0.002 +
0.02 0.001 -
0.01 "_.v"'vo 160 260 31)0 4'00 5loo - 6;)0’ 750 a0
- Time Sample
. HR e i ,,,,»\I,Mr\,,,,\,,AIWWM»\, e \
0 100 200 300 400 500 600 700 800 900 1000

Time Sample

Fig. 6.3 NICV vs p? of four different models

If we test the implementation against these two models, leakage corresponding to
each model shall be visible on the measurement at different times.

We tested the model on an AES-128 hardware implementation using two
different leakage models on an FPGA and acquired SCA traces. The first leakage
model corresponds to the state register present before the Sbox operation of AES,
i.e., wy(val; @ valy) € [0, 8] (Model 1) and val; @ val; € [0,255] (Model 2). wy is
the Hamming weight function. Similar models are built for another register which is
intentionally introduced at the output of the Sbox, i.e., wy (S(val;)) ®S(valy)) € [0, 8]
(Model 3) and S(val;) @ S(valy) € [0,255] (Model 4). Figure 6.3 shows the square
of correlation of four different leakage models with the traces against the NICV
curve. It can be simply inferred from Fig. 6.3 that Model 4 performs the best while
Model 2 is the worst. The gap between NICV and p(Model 4)? is quite large due
to reasons mentioned in Sect. 6.4.1. Thus NICV depicts leakage corresponding to
several leakage model in the measurements.

6.5 Test Vector Leakage Assessment Methodology

The previous section discussed NICV as a leakage detection technique. Leakage
detection is a pre-processing step in the side-channel analysis, which helps in
locating Pol and thus improving attack efficiency. However, it does not provide

6 Testing of SCA Leakage 115

conclusive output about security of the IP. In order to evaluate the security, one
must rely on leakage assessment.

When an IP has to be certified for security evaluation, a certification lab
must conduct series of SCA on the IP under test. The list must be updated
regularly to keep track of state-of-the-art vulnerabilities. These attacks might
involve applying different distinguishers like correlation, mutual information or
linear regression [13], etc. Moreover, several leakage models must be tested. The
range of attacks and leakage model makes certification a time-consuming and non-
comprehensive task. Moreover, it can be error prone as it highly depends on choice
of distinguisher and model.

The aforementioned shortcomings motivate the need of a generic testing method
which could effectively evaluate the security of the IP. Leakage assessment is
a methodology which checks for potential side-channel leakage in the target
without actually performing the attack. The methodology is based on the fact
that SCA exploits side-channel information corresponding to sensitive intermediate
values. This presence of side-channel information can be statistically detected using
hypothesis testing. The seminal work which proposed this methodology named it
Test Vector Leakage Assessment (TVLA [7]).

TVLA partitions the side-channel measurements of traces Y on the basis on
plaintext. In order to compute TVLA, one must acquire two sets of traces. While
one set corresponds to a fixed key and fixed plaintext as input to the cryptographic
IP, the second set collects traces corresponding to fixed key and random plaintext.
Thereafter a hypothesis testing performed by assuming a null hypothesis that the
two sets of traces have identical means and variance. Background on hypothesis
testing was previously discussed in Sect. 6.2. If the null hypothesis is accepted, it
signifies that the traces carry no sensitive information. On the other hand, a rejected
null hypothesis indicates presence of exploitable leakage. In [7], Welch’s z-test is
used for statistical testing and the technique is called non-specific #-test. This can be
expressed as:

tvia~ EA-EMLwe—n)

2
Varly,] Var[¥;] oF L %
my my my mf

where Y, and Y; correspond to set of traces with random and fixed plaintext,
respectively. m,, my signifies the number of traces in set Y,, Yy, respectively. The
mean and standard deviation of set Y, is denoted by u, and o,. Similarly, us and
oy refer to mean and standard deviation of Yy. The TVLA value must be contained
with the range £R, to accept the null hypothesis. If the TVLA value exceeds the
absolute threshold R in either polarity, the device is considered to leak sensitive side-
channel information. The intuitive value generally used is R = 4.5, which for large
m(> 5000) accepts or rejects the null hypothesis with a confidence of 99.9999 %.
So at any time, if the TVLA value of the target IP is either less than —4.5 or more
than 4.5, it can be rendered as leaking side-channel information.

116 D.B. Roy et al.

The non-specific t-test assess the leakage in the target IP without performing
an attack and without any hypothesis on the underlying implementation. It finally
provides a level of confidence on the presence of exploitable leakage from the target.
However no information is provided about the source of leakage and methodology
to exploit that leakage. Further on, the author proposes specific #-test testing, which
is partitioned based on sensitive intermediate value rather than public plaintext, to
potentially find the source of leakage.

TVLA was originally demonstrated on first order leakage in a univariate set-
ting [7]. This work was further extended to a multivariate setting in [14] along with
performance enhancement for efficient computation of TVLA. Another aspect of
T-test based assessment was explored in [15]. While [7, 14] used an unpaired T-test,
the use of paired T-test was proposed in [15]. The main argument for switching to
paired T-test (TVLAp) is that it is less sensitive to environmental noise and gradual
temperature changes. It can be expressed as:

Ma
bl
Vi
m

tq and oy are mean and standard deviation of paired difference of Y, and Y;.
The paired T-test was also combined with a moving average based computation,
leading to better results for multivariate setting. Nevertheless, the moving average
improvement can also be applied to unpaired 7-Test.

TVLAp = (6.8)

6.6 Equivalence of NICV and TVLA

TVLA and NICV were previously discussed in detail. In this section, we derive the
relationship between these two metrics. This allows us to estimate one metric by
knowledge of the other. TVLA is a simple T-test. Actually if we look closely, NICV
is similar to statistical F-test. Now, in case of statistical 7-test, we only consider two
different classes whereas in case of statistical F-test, we consider multiple different
classes. In the scenario of two class statistical F-test, the result of statistical F-test is
found to be proportional to square of the statistical 7-fest result. This shows a clear
relationship between NICV and TVLA. Moreover, this also exhibits relationship
between TVLA and SNR as from NICV, we can easily calculate the SNR of the
underlying attack setup. In the following, we will try to obtain the exact relationship
between NICV and TVLA.

Let us assume that we have some side-channel traces which belong to two
different classes: class 1 and class 2. Both the classes have same cardinality N.
The mean of class 1 is ;| and mean of class 2 is u,. Now, the computation of NICV

6 Testing of SCA Leakage 117

is as follows:

2
é Z(Mz‘ - M)Z
NICV = ’j; (6.9)
2}\1 ;(xi - H)z
Similarly we can compute TVLA? as follows:
2
— K
Tviaz= WK (6.10)
N TN N TN

where V, V, are variance of class 1 and class 2, respectively, and K = (1 — p2)>.
W is the mean of the all side-channel traces and is equal to . = *! ;“2 . Now we will
consider only the numerator part of the NICV formulation which is

2
1
5 2 (i =)’
i=1

1
=, (i - 1)+ (n2 — %)

1 R 2+)’
2 <31 2 “2 2

1 K

Next we will consider the denominator part of the NICV computation which is
as follows:

1 i=2N ,

. ;(x,-—m

_ 2;7 ii(xi_ 23 -;Mz)z

- izv(x?) + P
= v ii(x%—xm T+ j“ o)’

118 D.B. Roy et al.

2
S DTSRI PR D IS N

4
xi€Eclass1 xi€class2

1
= oy 2o (@i—p)? =i+ i — pox)+

xiEclass1

(1 + p12)?

1
N Z (i — p2)? = U3 + pox; — p1xi) + 4

xiE€class2

1 , 1 , 1
=N > -) + N Y (-) +oN > Xl — o)+

xi€Eclass1 xiEclass2 xi€class1

1 + 2 2 2
S s —) + (i +)™ i 1
4 2 2
xiE€class2
Vil 1 (1 + m2)* wi w3
=, + 5 +2(H1 HZ)H1+2(M2 m1)pa + A) T,
_ Vi N Vs N K
2 2 4
(6.12)
Hence the NICV value can be re-written as below
K
NICV = 4
1% 1% K
21 + 22 + 4
_ 1
T2Vt V)
IK 2 +1
1
2N
TVLA2? +1
o TVLA? (6.13)

This demonstrates that NICV value is directly proportional to square of TVLA
value.

6.7 TVLA on Higher Order Side-Channel Attacks

In this section, we will focus on application of TVLA on higher order side channel
analysis. The TVLA methodology, discussed in the previous sections is applicable
to first order side-channel analysis where the adversary is allowed to exploit leakage
of only one intermediate value. Using this methodology, we can analyze first order

6 Testing of SCA Leakage 119

side-channel vulnerability of any crypto-system. Additionally, we can also validate
side-channel security of any countermeasure which claims to be resistant against
first order attacks. However, any countermeasure which prevents first order attack
can be vulnerable against higher order attacks. Hence, it is imperative to analyze
these countermeasures against higher order attacks and for this we also need to
update the formulation of TVLA metric computation. In [14], authors have proposed
a detailed description of how to modify the TVLA metric for higher order attacks. In
this section, we will give a brief overview of that formulation. Now, the difference
between first order and higher order side-channel analysis is that in case of higher
order analysis we need to pre-process the side-channel analysis. For example, in
case of second order side-channel analysis, we need to convert the traces into mean
free squared traces. To compute TVLA on higher order, we need to estimate mean
and variance of these pre-processed side-channel traces.

6.7.1 Estimation of Mean

In this section, we will first describe the estimation of first parameter of TVLA for
higher order analysis which is mean in-case of first order of analysis. For higher
order analysis, we need to pre-process the side-channel traces and then need to
compute the mean of pre-processed side-channel traces. In this subsection, our
objective is to estimate the mean of the pre-processed side-channel traces for higher
order analysis.

A dth order side-channel attack exploits leakage of d different intermediate
variables and tries to get access to the secret key. To formulate the corresponding
TVLA metric for dth order side-channel analysis we introduce the following
notations:

1. M,= dth order raw statistical moment of a random variable X. M, is computed as
follows:

M, = E[x1] (6.14)

where E [.] is the expectation operator. For d = 1, M} = u (mean).
2. CMy = dth order central moment (d > 1) of random variable X. CMy is computed
as follows:

CM, = E[(X — pn)’] (6.15)

For d = 2, CM,= variance of the distribution.
3. SMy= dth order standardized moment (d > 2) of random variable X. SMy is

computed as follows:
X—n a
SM; =E (6.16)
o

where o is the standard deviation of the distribution.

120 D.B. Roy et al.

In case of first order test, we use mean of the two different classes which is
actually raw statistical moment of them. In case of second order, we will use CM,
which is actually the variance of the side-channel traces. For third and higher order
of analysis we will require SM, of side-channel traces. Now, the most efficient way
of calculating these statistical metrics is to use online one pass algorithms which
compute the value of these metrics for each new trace, added to the distribution. This
actually allows computation of these metrics during the acquisition of side-channel
traces and saves storage as well as postprocessing time. There are various ways by
which a user can compute the discussed statistical metrics in one pass fashion. But
care should be taken to avoid any numerically unstable steps as that will introduce
errors in the computation. A stable incremental one pass algorithm was proposed
in [14] which we will describe next.

Let us assume that M; o denote the raw statistical moment of a given set Q.
Additionally. let y be the new acquired side-channel trace added to the set Q. Let
M, ¢ be the new raw statistical moment of the enlarged set Q’. This can be computed
as follows:

A
Mo =M+ " (6.17)

where A = y — M, o and n denotes the number of side-channel traces in enlarged
set Q'. Similarly we can estimate central moment (CM,) using one pass algorithm.
However to do that, we need to estimate another metric central sum (CS,) which
can be computed as follows:

CSq =) (i~ (6.18)
From CS,, we can calculate CM, as follows:

cs
cM; = ¢ (6.19)
n

The one pass incremental computation for CS, is given below:

d—2 d _A k
CSuo = CSug + Z (k) CSu—ro (;) + (6.20)
=1

(-6

Finally, we can compute SMy by using the following formula:

CMy

- 6.21
(v (CM,)? ©20

My

6 Testing of SCA Leakage 121

Using the above described equations, we now have formulations for computing
CM, and SMy, in one pass. This allows us to estimate the mean of the pre-processed
side-channel traces for higher order analysis. For second order, it is the variance of
the side-channel traces. For higher order, we need to compute SM,; which will act
as the mean of the pre-processed side-channel traces.

6.7.2 Estimation of Variance

In this subsection, our focus will be on the estimation of the variance of the pre-
process side-channel traces. In case of second order analysis, the side-channel trace
set Y needs to be converted into mean free squared, i.e., (Y — u)?. Variance of this
mean free squared traces can be calculated as follows:

2
Var [(v~] = Y ((y— W= 0 mz)

1
= (6w M)’
1 2
= Z(Y —)t = nCMz Z(x— w?* + CM;3
= CM, — CM (6.22)

For higher order analysis (for example, dth order), where the traces are needed

d
to be standardized, we first compute Z = (Y ;”) . The computation of variance of

Z can be done as follows:

Var [Z*] = SMy, — SM;

2

= Mo = M (6.23)

CM;

Now, with this formulation we can now estimate mean and variance of pre-

processed side-channel traces for any arbitrary order side-channel analysis and once

we have them, we can compute TVLA very easily. These incremental one pass

computations are not only beneficiary for saving storage and computation time,

but also can be utilized for efficient computation of TVLA on chip [16]. For more

detailed analysis on applying TVLA on higher order side-channel analysis, the
readers are encouraged to read [14].

122 D.B. Roy et al.
6.8 Case Study: Private Circuit

In the previous sections, we have discussed about different metrics which have been
proposed for evaluation of side-channel vulnerability. We have also highlighted how
two such metrics, TVLA and NICV, are actually equivalent, and can be used inter-
changeably. In this section, we will provide a case study where we employ TVLA to
asses side-channel security of a side-channel secured crypto-implementation. Our
case study will be on the seminal work [17] of Ishai, Sahai, and Wagner where
they proposed a theoretical countermeasure against probing attack, which is the
strongest form of SCA. Although the proposed countermeasure [17], here after
referred to as ISW scheme or t-private circuits, is suited for probing attack, it can be
used to prevent power or Electromagnetic SCA. Probing attack considers a strong
adversary who is capable of observing exact values of one or several internal nets
of the circuit including the nets containing sensitive information. In case of SCA,
the adversary cannot observe the exact value of the sensitive information (key bits or
key-dependent nets) but a linear or non-linear transformation of sensitive values like
Hamming weight or Hamming-distance. Thus this countermeasure which prevents
much stronger probing attack can also be used to prevent passive side-channel
attacks like power or EM leakage based attack. Private circuits also form the basis of
much studied countermeasures against SCA known as masking [18]. In particular,
Rivain and Prouff [18] had proposed a dth order provably secure masking scheme
for AES. This masking scheme was derived by optimizing the hardware-oriented
t-private circuits for software implementations. The #-private circuits are secure
against an adversary capable of observing any ¢ nets of the circuit at any given
time instant. Construction of #-private circuits involves 2¢ number of random bits
for each input bit of the circuit. Moreover, it requires 2¢ + 1 random bits for each 2-
input AND gate present in the circuit. The overall complexity of the design is O(n#?)
where n is the number of gates in the circuit.

The countermeasure, proposed in [17] is based on sound theoretical proof but
with some inherent assumptions which may not be valid in practical scenario. In
this case study, we will try to identify the practical scenarios in which private circuit
may fail to provide us the desired security. We would like to state that we are not
making any claim against security of private circuit, but we are pointing out the
dangerous situations where expected security can be compromised. For this we
have implemented a lightweight block cipher SIMON [19] using private circuit
methodology on SASEBO-GII board. As we evaluate private circuits in a pure
hardware setting, we choose to use the original ISW scheme as presented in [17] to
be fair towards various schemes branched out of it. Moreover, the implementation
in [20] is primarily proposed for FPGA target. However, we intend to study the
security of private circuits in general. The choice of block cipher is motivated by its
compact design and simplistic construction using basic gates like AND and XOR.

Detailed case study on side-channel security of private circuits in practical
scenarios can be found in [21]. The implemented private circuits are analyzed
against SCA using EM traces and correlation power analysis [22]. We primarily

6 Testing of SCA Leakage 123

have implemented three different versions of SIMON on FPGA using private circuit,
which are as follows:

— Optimized SIMON: In this case, SIMON is implemented according to the
ISW scheme [17], but the design tool is free to optimize the circuit. As our
implementation platform is a Virtex-5 FPGA which has six-input Look-up table
(LUT), design tool (in our case Xilinx ISE) will optimize the circuit to reduce
the resource requirement of the design. This is an example of lazy engineering
approach, where designer is allowing the tool to do modification on the design
without being aware of its possible impact on the security of private circuits.

— 2-input LUT based SIMON: Here, to mimic the private circuit methodology
exactly on the FPGA, we have constrained the design tool to map each two-
input gate to a single LUT. In other words, though an LUT has six inputs, it is
modeled as two-input gate and gate-level optimization is minimized.

— Synchronized 2-input LUT based SIMON: This is nearly similar to the previous
methodology. The only difference is that each gate or LUT is preceded and
followed by flip-flops so that each and every input to the gates is synchronized
and glitches are minimized (if not suppressed, see [23]).

We will show that among these three, Optimized SIMON can be broken using CPA
whereas, 2-input LUT based SIMON is resistant against CPA, but fails TVLA test.
Finally we will show that Synchronized 2-input LUT based SIMON is not only
resistant against CPA, but also passes TVLA test [24, 25].

We could have based our study on more popular ciphers like AES or PRESENT,
but with the FPGA in consideration, it was not possible to fit protected designs
when using constraints LOCK_PINS and KEEP. In fact, we had to switch from
SIMONG64/96 to SIMON32/64, to be able to fit all the designs on the FPGA.

6.8.1 Experimental Analysis and Result

In this section, we perform practical evaluation of private circuit by executing SCA
on block cipher SIMON. We start with the experimental setup, followed by the
analysis of the obtained result on various implementation of private circuits.

To perform SCA, side-channel traces are acquired using an EM antenna of the
HZ-15 kit from Langer, placed over a power decoupling capacitor. The traces
are captured on a 54855 Infiniium Agilent oscilloscope at a sampling rate of
2 GSample/s. In the following subsections we will discuss the result of SCA on
different variants of ¢-private SIMON.

6.8.1.1 Optimized SIMON

In this setting, we implemented SIMON using private circuit methodology with
t = 1. At this stage, the FPGA tool was not constrained and was allowed to do

124 D.B. Roy et al.
(a) (b)
7 0.015 : : :
ga 6l —— Wrong Key Guess
— == Correct Key Guess
= 0.01
g° 2 3
=4 S o005
X 3 .g 0
g ®
S 2 2
£ -0.005
3 1 8
0 -0.01
0 200 400 600 800 1000
Number of Traces/1000 _0.015
0 10 20 30 40 50 60
Time Samples
(c)

TVLA Plot of Optimized Simon and Corresponding Power Trace

20

-
o
T

o

TVLA Value

_10,
[\ ' . — TVLA Value of Optimized Simon
-20F ‘ ' ' ~ — Safe V?Iue of TVLA : 4
0 200 : 1400 600 800 1000
. + 1« Time Samples
2210 . : ‘
® ! <.-First Round Operation
2 1r ' uf h 1
© fA Y i A
Z 0 [«/\u\ Yy ‘\\w ! \VL Y ‘/) \W\ M \w Hﬂ‘ \‘A\j\ﬂ M A‘M
g g\\\(‘L/\E\ TRYRY H\/\‘m“/
NN N NN N
o L] L]
-2 . ! ' . .
0 200 400 600 800 1000

Time Samples

Fig. 6.4 Side-channel analysis of optimized SIMON. (a) Average key ranking. (b) Correlation
Value of Key Guesses. (¢) TVLA plot

all optimizations if possible. We collected 100,000 EM traces and performed TVLA
test, along with CPA. TVLA test is performed on the first round output of SIMON
for each bit of plaintext. Basically, the traces are partitioned into 2 sets on the basis
of value of concerned bit of round output, i.e., 1 or 0. Thereafter, we compute the
means (U1, (o) and standard deviations (o7, 0g) of the two sets and we compute
the corresponding TVLA value. The result can be seen in Fig. 6.4c. The first few
peaks in the plot are due to the plaintext loading, however, after that it can be seen
that for some bits, value of TVLA is much larger than the safe value of TVLA, i.e.,
+4.5 for secure system [24, 25]. Thus this implementation of SIMON is vulnerable
to SCA though it is designed by private circuit. The leakage comes due to the
optimizations applied by CAD tools. To validate our claim further, we carried out
CPA around the sample points where TVLA peaks can be observed. We have chosen

6 Testing of SCA Leakage 125

Hamming-distance as our attack model and we targeted first round of SIMON32/64.
The leakage model can be written as follows:

Lup = wy (R(xit1, X:) © key; @ Xit+1),

where x;, x;4+ are parts of plaintext, key; is the round key, and R is the round
function. The first round operation of SIMON32/64 involves 16 bits of key and we
try to recover key nibble by nibble. Now, generally for a nibble, key space is 16;
however, as SIMON has no non-linear operation on the key in first round, for each
key guess there is another key candidate which has exactly same value of correlation
coefficient with opposite polarity. Due to this symmetry, total key space reduces
from 16 to 8. To measure the success rate, we have calculated average key ranking
(or equivalently we can calculate guessing entropy) over all the nibbles at intervals
of 1000 power traces and the corresponding result is shown in Fig. 6.4a. At the end
of 100,000 traces, we have been able to recover the correct key for two nibbles and
for the rest of the two nibbles, ranking of correct key is 2, which clearly shows
successful attack. Figure 6.4b shows the correlation values of different key guesses.
Though the gap between the correct key and wrong key guesses is marginal, it is
consistent as indicated by Fig. 6.4b, providing us enough evidence to conclude the
attack as successful. The reason for this small nearest rival distance is the Hamming-
distance attack model which does not incorporate randomization of private circuit.
The key ranking curve is not very smooth. Theoretically addition of traces should
lower the key ranking, but the reverse phenomenon can happen in practical scenario,
as it depends upon the quality of the acquired traces. CPA is a statistical analysis
and this phenomenon is statistical artifact. Moreover, the average key ranking will
depend on the combined progression of all the 4 nibbles. Nevertheless, due to the
CAD tool optimization, it is possible to successfully retrieve secret information from
private circuit (Fig. 6.5).

6.8.1.2 2-Input LUT Based SIMON

In the previous discussion, we provided experimental validations of the disastrous
effect of CAD tool optimization on private circuits. Designer can use various
attributes and constraints to disable the optimization property of CAD tools, and
hence can mimic the private circuit more efficiently (when the input HDL file is
described structurally with LUTs). In this implementation, we have constrained the
Xilinx ISE tool to treat each LUT as a 2-input gate using KEEP and LOCK_PIN
attributes. SIMON 32/64 is then designed using this 2-input LUT gates so that
no optimizations can be applied by the CAD tools. Similar SCA is carried out
for this implementation also and corresponding result is shown in Fig. 6.6. As we
can see, TVLA plot still shows occurrence of information leakage, though it is
less significant compared to information leakage observed for Optimized SIMON.
Average key ranking plot (Fig.6.6b) also shows improvement in terms of more
resistance against SCA. However, as there is still information leakage, as shown

126 D.B. Roy et al.

Plain Text Key
)[32 '1'64
64 _ _ 128
+>| input encoder | | input encoder |<+
random random
96 ’i’ ’{' 96 '17192 ’t 192
compule —_— - compule
196 1192
clk —= : . . -<—clk
e Plain Text Register | | Key Register DI
A A
96 192
- 43 -
48 t—private t—private “
—
random Rouqd Key m
Function Schedule

»i' 96°d0
’1796

output decoder |

round_completion ———

32

Cipher Text

Fig. 6.5 Architectural overview of SIMON

in TVLA plot, the system could be broken by attack which employs better model.
In other words, we cannot be absolutely confident about the side-channel resistance
of the implementation.

6.8.1.3 Synchronized 2-Input LUT Based SIMON

In the previous discussion, we have shown how side-channel attack is resisted by
2-input LUT based SIMON. However, TVLA plot of 2-input LUT based SIMON
still shows some information leakage. In this subsection, we tackle this issue.

It was shown in [21] how delay in random variables can disrupt the security
of private circuit. In our implementation, random variables are generated using
a maximum length LFSR and we suspect that asynchronous random variables
as the reason of the information leakage. To analyze this, we have made a new

6 Testing of SCA Leakage 127

(a) (b)
7
TVLA Plot for 2 i/lp LUT Simon and Corresponding Power Traces o 6
T — T T c
L - =
3 10 : g 5
I TR IR eI TR s A S T TR Tyt e I
>
< 0 >4
,,,,,,,,, 5 Q
s : X
E —-10F NG W — TVLA Value of 2 i/p LUT Simon ‘ o 3
1,‘» : :) — ~Safe Value of TVLA o 2
0 200 1400 600 800 1000 o
Lx10* o Fime Samplgs ‘ i’ 1
3 H 1? First Round Operation 0
S |) o N 0 200 400 600 800 1000
2 ok [A /&\Vw A W ‘ [["\’M M m Number of Traces/1000
§ AN VA Y N
z |V R R T A
o I
_20 200 400 600 800 1000
Time Samples
(c)

0.008
0.006
0.004

o.002 W

-0.002

~0.004

Correlation Value

-0.006

-0.008

o 5 10 15 20 25 30 35 40 45 50

Time Samples

Fig. 6.6 Side-channel analysis of 2-input LUT SIMON. (a) TVLA plot. (b) Average key ranking.
(¢) Correlation value of key guesses

implementation where each 2-input LUT is followed by a flip-flop,' so that if there
is any delay or glitches on random variables, it will be handled locally and will not
propagate across the circuit. We have carried out similar side-channel analysis on
this implementation and the result can be seen in Fig. 6.7. Now before analyzing the
result we will like to state that this implementation has more clock cycle requirement
compared to previous two implementations due to the presence of flip-flops after
each 2-input LUT. For example, in the previous two implementations, first round
operation occurs just after the start of encryption, whereas in this implementation
first round output is obtained in the 9-th clock cycle after the start of encryption.
As we are doing TVLA test on the first round output of SIMON, TVLA peak
should appear near the clock cycle where first round output is obtained. As we
can see, in TVLA plot (Fig. 6.7a), there are few peaks near the start of encryption

'In the ISW scheme [17], logic gates of stateless circuits are combinational instances, which, by
design, evaluate as soon as one input changes. Our addition of the flip-flop after each combinational
gate ensures that they evaluate only once, which is the legal mode of operation for ISW to be sound.

128 D.B. Roy et al.

(a)
TVLA Plot for Synchronized Simoln and Corresponding Power Trace
'
o 10 H : — TVLA of Synchronized Simon | |
2 B | — — Safe Value of TVLA
‘>\, ,,,,,,,,,,,,,,
< O
SI ,,,,,
=-10
| .

0
x 10 Time Samples

2

Power Value
o

L |
-2 I hL |
0 500 1000 1500 2000
Time Samples

(b) (c)

7 0. T T T T T
g’ 6 ——Wrong Key Guess
3 001 == Correct Key Guess
g5 o /\
o 2 ‘\ A
q>,‘ 4 g 0,005 (A
X 3 5 '7"’!’4\"‘\‘1/
g 5 ° (S
@ 2] {‘%‘\9‘«% X

&= -0.005F

S b3 |
<

0 -0.01

0 200 400 600 800 1000
Number of Traces/1000 W P
0 5 10 15 20 25 30 35 40 45 50
Time Samples

(d) (e)

7 0.015 T T T
(<)) —— Wrong Key Guess
-E 6 001 == Correct Key Guess | |
< 5 3 A
g S
[1'4 S 000
o 5
X 3 = ot
o s
E 2 ‘O_ ~0.005
[(]
2 1 -0.011

00 200 400 600 800 1000) 0)] % m % 60

Number of Traces/1000 Time Samples

Fig. 6.7 Side-channel analysis of synchronized 2-input LUT SIMON. (a) TVLA plot. (b) Avg.
key rank (TVLA peak). (¢) Correlation value at TVLA peak. (d) Avg. key rank (first round). (e)
Correlation value at first round

6 Testing of SCA Leakage 129

Table 6.1 Summary of side-channel analysis

Max. TVLA
Design name | TVLA test leakage Avg. key ranking Remarks
Optimized Fails, significant 18 Key ranking is Not secure
SIMON information leakage low, successful attack
2-input LUT | Fails, but less 12 Key ranking is Secure against CPA
based SIMON | information leakage high, attack fails with HD model
Synchronized | Passes: no leakage | 3.5 Key ranking is Secure
2-input LUT | at first round high, attack fails

based SIMON

which indicates plaintext loading, but no peak at the first round operation. However,
to eliminate any ambiguity, we have performed CPA around both the first round
operation and TVLA peak. Result shows that in both cases, side-channel attack is
not working and implementation under attack can be considered secure against side-
channel attack. Thus in this case, theoretically secure private circuit is translated into
practically secure private circuit implementation. The summary of our experimental
analysis is shown in Table 6.1.

6.9 Conclusion

This book chapter focuses on the basic concepts of side-channel vulnerability
evaluation of cryptographic IPs. In this context we have presented three different
metrics: Guessing Entropy, NICV, and TVLA. For each of the metric, we have first
described the basic mathematical background, followed by example case studies.
We have also highlighted how two different metrics TVLA and NICV are related to
each other and how we can modify TVLA formulation to address higher order side-
channel analysis. A thorough case study on popular side-channel countermeasure
private circuit has also been presented where we analyze side-channel security of
three different implementation strategies of private circuits using TVLA.

Acknowledgements We will like to thank Professor Sylvain Guilley from Telecom Paristech for
his valuable inputs on side channel which greatly improved the chapter.

References

1. P. Kocher, J. Jaffe, B. Jun, Differential power analysis, in Annual International Cryptology
Conference (Springer, Berlin, 1999), pp. 388-397

2. Common Criteria consortium, Application of Attack Potential to Smartcards — v2.7, March
(2009)

130 D.B. Roy et al.

3.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

NIST FIPS (Federal Information Processing Standards) publication 140-3, Security require-
ments for cryptographic modules (Draft, Revised). 09/11 (2009), p. 63

F.-X. Standaert, T.G. Malkin, M. Yung, A unified framework for the analysis of side-channel
key recovery attacks, in Annual International Conference on the Theory and Applications of
Cryptographic Techniques (Springer, Berlin, 2009), pp. 443-461

. S. Mangard, E. Oswald, F-X. Standaert, One for all; all for one: unifying standard differential

power analysis attacks. IET Inf. Secur. 5(2), 100-110 (2011)

. S. Bhasin, J.-L. Danger, S. Guilley, Z. Najm, Side-channel leakage and trace compression

using normalized inter-class variance, in Proceedings of the Third Workshop on Hardware and
Architectural Support for Security and Privacy (ACM, New York, 2014), p. 7

. B.J.G. Goodwill, J. Jaffe, P. Rohatgi, et al, A testing methodology for side-channel resistance

validation. NIST Non-invasive Attack Testing Workshop (2011)

. E. Prouff, M. Rivain, R. Bevan, Statistical analysis of second order differential power analysis.

IEEE Trans. Comput. 58(6), 799-811 (2009)

. C. Whitnall, E. Oswald, F.-X. Standaert, The myth of generic DPA and the magic of learning,

in Cryptographers Track at the RSA Conference (Springer, Berlin, 2014), pp. 183-205

M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon, D. Kamel, D. Flandre, A formal study
of power variability issues and side-channel attacks for nanoscale devices, in Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques (Springer,
Berlin, 2011), pp. 109-128

S. Chari, J.R Rao, P. Rohatgi, Template attacks. In International Workshop on Cryptographic
Hardware and Embedded Systems (Springer, Berlin, 2002), pp. 13-28

B. Gierlichs, K. Lemke-Rust, C. Paar, Templates vs. stochastic methods, in International
Workshop on Cryptographic Hardware and Embedded Systems (Springer, Berlin, 2006),
pp. 15-29

J. Doget, E. Prouff, M. Rivain, E-X. Standaert, Univariate side channel attacks and leakage
modeling. J. Cryptogr. Eng. 1(2), 123-144 (2011)

T. Schneider, A. Moradi, Leakage assessment methodology. in International Workshop on
Cryptographic Hardware and Embedded Systems (Springer, Berlin, 2015), pp. 495-513

A.A. Ding, C. Chen, T. Eisenbarth, Simpler, faster, and more robust t-test based leakage
detection, 2016

S. Sonar, D.B. Roy, R.S. Chakraborty, D. Mukhopadhyay. Side-channel watchdog: run-time
evaluation of side-channel vulnerability in FPGA-based crypto-systems. IACR Cryptology
ePrint Archive, 2016:182 (2016)

Y. Ishai, A. Sahai, D. Wagner, Private circuits: securing hardware against probing attacks, in
In Proceedings of CRYPTO 2003 (Springer, Berlin, 2003). pp. 463-481

M. Rivain, E. Prouff, Provably secure higher-order masking of AES. in /2th International
Workshop Cryptographic Hardware and Embedded Systems, CHES 2010, ed. by S. Mangard,
F.-X. Standaert , Santa Barbara, CA, Aug 17-20, 2010. Proceedings. Lecture Notes in
Computer Science, vol. 6225 (Springer, Berlin, 2010), pp. 413427

R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, L. Wingers, The SIMON and
SPECK families of lightweight block ciphers. Cryptology ePrint Archive, Report 2013/404
(2013)

J. Park, A. Tyagi, t-Private logic synthesis on FPGAs. in 2012 IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pp. 63-68, June 2012

D.B. Roy, S. Bhasin, S. Guilley, J. Danger, D. Mukhopadhyay, From theory to practice of
private circuit: a cautionary note, in 33rd IEEE International Conference on Computer Design,
ICCD 2015, pp. 296-303. New York City, NY, Oct 18-21, 2015. [21]

E. Brier, C. Clavier, E. Olivier, Correlation power analysis with a leakage model, in
Cryptographic Hardware and Embedded Systems. Lecture Notes in Computer Science, vol.
3156 (Springer, Berlin, 2004), pp. 16-29, Aug 11-13, Cambridge, MA

A. Moradi, Oliver Mischke. Glitch-free implementation of masking in modern FPGAs, in
HOST (IEEE Computer Society, New York, 2012), pp. 89-95, June 2-3 2012. Moscone Center,
San Francisco, CA. doi:10.1109/HST.2012.6224326

6 Testing of SCA Leakage 131

24. G. Goodwill, B. Jun, J. Jaffe, P. Rohatgi, A testing methodology for side-channel resistance
validation. NIST Non-Invasive Attack Testing Workshop, Sept 2011

25. J. Cooper, G. Goodwill, J. Jaffe, G. Kenworthy, P. Rohatgi. Test vector leakage assessment

(TVLA) methodology in practice, in International Cryptographic Module Conference, Holiday
Inn Gaithersburg, MD, Sept 24-26, 2013

Part 111
Effective Countermeasures

Chapter 7
Hardware Hardening Approaches Using
Camouflaging, Encryption, and Obfuscation

Qiaoyan Yu, Jaya Dofe, Yuejun Zhang, and Jonathan Frey

7.1 Introduction

Under the current global business model, the integrated circuit (IC) supply chain
typically involves multiple countries and companies which do not use the same
regulation rules. Despite reducing the cost of fabrication, assembly and test, the
globalized IC supply chain has led to serious security concerns. Intellectual property
(IP) piracy, IC overbuilding, reverse engineering, physical attack, counterfeiting
chip, and hardware Trojans are recognized as critical security threats on maintaining
the integrity and trust of ICs [6, 7, 14, 24, 27, 29-32, 38, 45, 47, 48, 63]. Those
threats could cause companies lose profit and challenge the national security [1].
Hardware counterfeiting and IP piracy cost the US economy more than 200 billion
dollars a year on defense and military related chips [33]. Growing hardware
IP piracy and reverse engineering attacks challenge traditional chip design and
fabrication [24, 29, 32,47, 48, 50]. Thus, it is imperative to develop countermeasures
to address those attacks.

IP piracy is illegal or unlicensed usage of IPs. An attacker can steal valuable
hardware IPs in the form of register-transfer-level (RTL) representations (“soft
IP”), gate-level designs directly implementable in hardware (“firm IP”), or GDSII
design database (“hard IP”), and sell those IPs as genuine ones [10]. Hardware IP

Q. Yu (24) « J. Dofe
University of New Hampshire, Durham, NH 03824, USA
e-mail: giaoyan.yu@unh.edu; jhs49 @wildcats.unh.edu

Y. Zhang
Ningbo University, Ningbo, Zhejiang, China
e-mail: zhangyuejun@nbu.edu.cn

J. Frey
Charles Stark Draper Laboratory, Inc., Cambridge, MA 02139, USA
e-mail: jfrey @draper.com

© Springer International Publishing AG 2017 135
P. Mishra et al. (eds.), Hardware IP Security and Trust,
DOI 10.1007/978-3-319-49025-0_7

mailto:qiaoyan.yu@unh.edu
mailto:jhs49@wildcats.unh.edu
mailto:zhangyuejun@nbu.edu.cn
mailto:jfrey@draper.com

136 Q. Yuetal.

Hardening
countermeasures

why
e

z

@
Design Team] 8)
a g E E £9
|] E| g =z 2 —;3
IP vendors 15} o S £5
Yy »| 2 2 =4
L 4 af =
Integration Team Original RTL Gate-level netlist Layout (GDSII) IC
Design Synthesis & Verification—————— j¢+—Fabrication & Test—]|
AttaCk — — —
model
Disloyal staff in design team IP user Found
Attacker 3PIP vendor 3PIP vendor Test facirl}il
SoC integrator EDA tool ty

Fig. 7.1 Applying three hardware hardening techniques in the IC design flow

reusing in systems-on-chip (SoCs) design is prevalent practice in silicon industry
as it reduces design time and cost dramatically [8]. The IP piracy attack can take
place at various stages in the IC supply chain. As shown in Fig. 7.1, the potential IP
piracy attackers could be designer, third-party IP (3PIP) vendor, and SoC integrator
at design, synthesis, and verification stages. In the fabrication stage, an untrusted
foundry may overbuild the IP cores and sell them under a different brand name to
make profit.

Reverse engineering of an IC is a process of identifying its structure, design,
and functionality [43]. Product teardowns, system-level analysis, process analysis,
and circuit extraction are different types of reverse engineering [53]. Using reverse
engineering, one can: (1) identify the device technology [29], (2) extract gate-level
netlist [53], and (3) infer the chip functionality [24]. Several techniques and tools
have been developed to facilitate reverse engineering [15, 37, 53]. Traditionally,
reverse engineering is a legal process as per US Semiconductor Chip Protection
Act for teaching, analysis, and evaluation of techniques incorporated in mask
work [25]. However, reverse engineering is a double-edged sword. One could use
reverse engineering techniques to pirate ICs. Reverse engineering attack can be done
at various abstraction level of supply chain depending upon the attacker’s objectives.

The main focus of this chapter is to review hardware hardening techniques to
counteract with IP piracy and reverse engineering attacks. More specifically, we
devote this chapter to study active countermeasures like camouflaging, logic encryp-
tion, and obfuscation. Different terminology used in this chapter is summarized
in Sect.7.2. The state-of-the-art hardware design hardening methods are reviewed
in Sect.7.3. In Sect.7.4, a dynamic deflection-based design obfuscation method
is presented. Furthermore, we introduce design obfuscation for three-dimensional
(3D) ICs in Sect. 7.5. We conclude this chapter in Sect. 7.6.

7 Hardware Hardening Approaches Using Camouflaging, Encryption. . . 137
7.2 Terminology

Before we start to introduce countermeasures for hardening at different levels, we
define the terminology that will be used in the remainder of this chapter. Due to
similar concepts having different names in the literature published in this field, we
categorize the hardware hardening methods into three classes:

(1) Camouflaging: Camouflaging is a means of disguising the original presence of
the design, more specifically, at layout level. This is a type of countermeasure
against the image-analysis-based reverse engineering attack.

(2) Logic Encryption: Logic locking, logic obfuscation, and logic encryption
are three close concepts that are applied to counteract piracy and reverse
engineering attacks of combinational logic circuits. The main principle of logic
locking/obfuscation/encryption is to insert key-controlled logic gates to the
original logic netlist such that the modified netlist will not function correctly
without the right key. Hereafter, we use logic encryption to refer this category.
Ideally, the key-controlled logic gates are mixed with the original logic gates;
only the countermeasure designer would be able to differentiate the protection
gates from the original ones.

(3) State Obfuscation: Obfuscation is often utilized to obscure sequential circuits.
Similar to logic encryption, a key sequence controls the correct state transitions.
State obfuscation typically preserves the original state transitions and adds
several key-authentication states before the power-up state. Theoretically, the
success rate of IP piracy or reverse engineering attacks is extremely low if the
attacker uses brute force methods to find the key.

7.3 State of the Art

This section summarizes three main categories of hardware hardening methods that
can resist reverse engineering and IP piracy attacks.

7.3.1 Camouflaging

Circuit camouflaging is a technique that makes subtle changes within the physical
layout of a logic cell to obfuscate its actual logic function [18, 19, 43]. The main
goal of circuit camouflaging is to disguise the circuit against a reverse engineer who
utilizes scanning electron microscopy (SEM) pictures to recover the original chip
design. For instance, from the SEM image analysis, a camouflaged logic cell appears
as a 2-input NAND gate; however, that logic cell is a 2-input NOR gate in reality.
Such a mislead could be achieved by a subtle change on a metal contact. As shown
in Fig. 7.2, the contact between metal 1 (M1) and the dielectric is fully connected

138 Q. Yuetal.

M1

Contact
Dielectric

@ Top view
M1t0M2via fM1]
d R = "' > ﬂ <

Gate I {4 IS

nwell H m

pwell <+
Side view of a gate Top view Side view of a gate
with true contacts of poly with dummy contacts

Fig. 7.2 Cross-section views of non-camouflaged contact (leff) and camouflaged contact
(right) [43]

1y B

Metal 1 Poly Metal 1 Poly
(a) (b)

Fig. 7.3 SEM images of (a) conventional and (b) Camouflaged 2-input AND gate [19]

in the left cell but disconnected after a thin layer of contact material in the right
cell. The top views of M1 (and polysilicon) for the gates w/wo camouflaging are
identical. The work [19] illustrates that the conventional and camouflaged 2-input
AND gates have the same SEM image, as shown in Fig. 7.3. As a result, the attacker
could easily extract a wrong netlist if he/she relies on the SEM image analysis.
Furthermore, because of the wrong netlist extraction, the attacker cannot precisely
modify the netlist to insert hardware Trojans.

The general principle of camouflaging is either to make the connected nodes
appear to be isolated, or to have the isolated nodes appear to be connected. In
real applications, one can partially camouflage the circuit using a strong custom
cell camouflage library [16, 17, 19] or a generic camouflaged cell layout [43].
In the camouflage library [19], every cell looks identical at every mask layer to
prevent automated layout recognition [16, 17]. However, making every cell identical
in terms of size and spacing with other cells will limit area optimization for the
improvement of cell performance. The generic camouflaged cell [43] can perform
either as an exclusive-OR (XOR), NAND, or NOR gate, depending on whether true
or dummy contacts are used in the cell layout. Rajendran et al. [44] analyze the
vulnerability of randomly chosen nodes for camouflaging. Their work shows that

7 Hardware Hardening Approaches Using Camouflaging, Encryption. . . 139

Fig. 7.4 Layout before (leff) and after (right) using camouflaged smart fill of poly, contact, and
active layers [19]

the reverse engineering on the camouflaged circuit can still reveal the logic function
if the attacker exploits the circuit outputs together with SEM images. Rajendran
et al. [43] further propose a smart camouflaging algorithm to increase the difficulty
for reverse engineering. The camouflaged standard cells can also be applied to every
logic gate [19]. As pointed out above, to camouflage the cells, different logic gates
are designed in a way that every cell has the same size and spacing to its neighbor
cells. This contradicts the use of transistor sizing for delay optimization. Hence,
completely camouflaging the entire chip will sacrifice the system performance,
despite the gain of resistance against reverse engineering and piracy attacks. To
address this limitation, Cocchi et al. provide elementary block camouflage libraries
that are derived from each logic gate layout [17] and could be programmed after
the manufacturing process.

In addition to camouflaging, the contacts in a logic cell, metal, active, and device
layers can be filled with camouflaged smart fills, which consume all silicon area in
the processed layers [19]. Figure 7.4 shows an example of before and after using
camouflaged smart fills. As a result, there is no space for hardware Trojan insertion.
Meanwhile, the smart fill adds one more task for the attacker to differentiate the
real connection trace from the dummy one before he/she identifies the true contacts
within one logic cell.

7.3.2 Logic Encryption

Logic encryption methods insert additional logic gates to the original logic netlist,
where the additional logic gates are controlled by key bits. An incorrect key leads to
netlist mismatch compared to the original netlist and produces different functional
outputs than the original ones. The early work [48] introduces the concept of
logic encryption as shown in Fig. 7.5. Physical Unclonable Function (PUF) circuit
produces a unique challenge. The user key can be stored in a tamper-proof memory.

140 Q. Yuetal.

Original
Input >
Userkey ———————» RSA Encrypted Original Output
Decryption »| Design Module ., (ifthe correct
Designer user key is
PUF PUF Key applied)
Challenge PUF
Response

Fig. 7.5 Example of logic encryption structure

Encryption Key Key Gate Encryption Key:

(a) (b)

Fig. 7.6 Examples of lightweight logic encryption based on (a) XOR and (b) MUX key gates.
Note, the solid gates are key gates and the unsolid gates belong to the original netlist

The correct designer key to unlock the encrypted design module is derived from
the RSA [49] decryption unit, in which the user key and PUF response serve as
ciphertext and crypto key, respectively.

As RSA [49] decryption unit costs 10,000 gates in its ASIC implementation [48],
researchers propose to replace RSA using lightweight logic encryption cells, such
as XOR/XNOR [40, 51]. Alternatively, multiplexers (MUX) [39, 46, 56] can also be
used to encrypt the logic. Figure 7.6 shows examples of simplified logic encryption.
In the XOR-based encryption [40, 41, 46, 48, 51, 60], an incorrect key bit may flip
the primary output. In the MUX-based encryption [39, 46, 56], an arbitrary internal
net is added as an input for the key gate. Without the correct key, the key gate may
select the arbitrary internal net for the primary output computation.

7.3.2.1 Attacks Against Logic Encryption

Although combinational logic can be hardened by logic encryption methods
mentioned above, there exist several specific attacks that could defeat this type of
countermeasures by reducing the number of brute force attempts for key recovery.
The existing attack models assume that the attacker owns a locked logic netlist, and
he/she either has a copy of the activated chip (as a black box) from the open market
or is able to measure the correct chip outputs with given test patterns.

7 Hardware Hardening Approaches Using Camouflaging, Encryption. . . 141

The work [41] demonstrates a sensitization attack, which generates key-leaking
input patterns and then passes the key bits to the primary outputs with those
input patterns. Lee and Touba [35] propose to perform the brute force attack
on the logic cone with the fewest key bits; after the subset of a key vector
is retrieved, they continue the same attack iteratively on the other logic cones
until all key bits are found. Subramanyan et al. propose a stronger satisfiability
checking (SAT) attack [52] that can defeat the encrypted circuit against fault-
analysis attacks [41, 46, 61]. The SAT attack is based on the observation that the
encrypted netlist with the correct key should generate the same outputs as those
from the activated chip, no matter what input pattern is applied to the primary input.
Instead of searching for the correct key, the SAT attack looks for a member of the
equivalence class of keys that generate the correct output for all input patterns. The
SAT attack iteratively searches for the distinguishing inputs (DIP) that cause the
inconsistency between the outputs from the netlist using a wrong key and from the
unlocked netlist. When no more DIP can be found, the equivalent class of keys
is reached. In a hill-climbing attack [39], a key bit is randomly flipped to check
whether the output of the netlist with the new key matches to that of the unlocked
netlist. The output inconsistency reveals the correct key bit by bit.

7.3.2.2 Logic Encryption Algorithms

The original proposal for logic encryption is EPIC [48], in which XOR/XNOR key
gates are randomly placed in the IC. Fault-analysis techniques and tools [34] are
exploited to perform stronger logic encryption [41, 46], through which the Hamming
distance between the outputs after applying the valid key and an incorrect key
is maximized close to 50 %. AND or OR gates can also be used to encrypt the
design [23]. In an XOR/XNOR gate locking scheme, a key gate is either an inverter
or a buffer. An incorrect key turns the key gate into an inverter. The key gate with
the correct key acts as a buffer or a delay unit. Instead of inserting XOR/XNOR key
gates, Baumgarten et al. [5] suggest dividing the entire IP into fixed and configurable
portions. The configurable portion is implemented as a key-controlled lookup table
(LUT). An adversarial foundry is able to observe the geometry of the fixed circuit
portion but does not have a clear picture of the configurable portion. This is because
the geometry of the configurable circuit portion is composed of generic memory
layout, which is programmed by the IP creator after chip fabrication. Encryption
using configurable logic is also discussed in the literature [36], in which the logic
type can be changed after fabrication.

SAT attacks are capable of breaking most of encrypted logic within a few hours,
with the assistance of state-of-the-art SAT solvers. An AES module is utilized to
protect the key inputs and thus increase the time for solving a SAT formula [61].
To reduce the hardware cost of AES, a lightweight Anti-SAT unit that outputs 0
(1) for an invalid (valid) key is proposed in [58] to mitigate the SAT attack on
logic encryption. Alternatively, key scrambling and logic masking techniques are
integrated with the early logic encryption work [41] in their recent work [62].

142 Q. Yuetal.
7.3.3 State Obfuscation

State obfuscation is a countermeasure for sequential circuit protection. The main
purpose of the obfuscation is to prevent the adversary from obtaining the clear state
transition graph. A remote activation scheme [2] is one of the early works to address
IP piracy through the concept of obfuscation. The continuous state transition is
granted by a key uniquely generated by a PUF. This method triples one of the
existing states; only one of the tripled states protected with the correct key will
further drive the state transitions. Hereafter, we refer this method as DUP. The
piracy-aware IC design flow in [48] enriches the RTL description with an on-chip
true random number generator and public-key cryptographic engine. The authors
extended their work further in [32], in which a channel from the normal state
transition to the black hole states is added to prevent the state from returning to
the normal operation.

An SoC design methodology hardware protection through obfuscation of netlist
(HARPOON) is presented for IP protection [10]. The main principle of this method
is to add a key-controlled obfuscation mode before the finite state machine (FSM)
enters the normal mode. Theoretically, an adversary cannot reach the normal mode
without a correct key sequence. This method does not protect the normal mode states
based on the assumption that the key exploration space is too big for the attacker to
reach the true power-up state. Their obfuscation concept is extended to the register
transfer level in [11]. The RTL hardware description is converted into control and
data flow graphs and then dummy states are added to obfuscate the design with
an enabling key sequence. In the gate-level obfuscation work [9], the output of the
FSM in the obfuscation mode also flips a few selected logic nodes. Their follow-up
work [13] increases the number of unreachable states for the obfuscation mode to
thwart hardware Trojan insertion.

The work [20] suggests using obfuscation to thwart hardware tampering. Dif-
ferent than using an external key sequence in [10], this work locks the design
with an internally generated Code-Word (similar to a key sequence), which is
based on a specific state transition path. This method aims at the key-leaking issue
in [10, 11, 13]. Although an incorrect key will cause the FSM temporarily deviate
from the correct transition path, the normal state transition will resume after one or
several state transitions.

The previous key-based obfuscation works [2, 9, 11, 12, 41] provide a strong
defense line against the reverse engineering attacks on the fabricated chip without
a correct key. This is true because the number of possible key combinations is too
large for brute force attack to hit the right key. As fabless IP cores are prevalent
in SoC integration, IP vendors should be aware of the advanced attackers, who
may use electronic design automation (EDA) tools to analyze the netlist and obtain
information like code coverage, net toggle activities, and thermal activities to
accelerate the process of revere engineering. Thus, it is imperative to re-evaluate
the previous obfuscation methods under the assumption that EDA tools may reveal
obfuscation details.

7 Hardware Hardening Approaches Using Camouflaging, Encryption. . . 143
7.4 Dynamic State-Deflection-Based Obfuscation Method

In this section, we present a new state obfuscation method [21], which considers the
reverse engineering attack through EDA tools.

7.4.1 Overview of DSD Obfuscation

Our dynamic state-deflection (DSD) method in [21] protects each normal state ST,
with a black hole state cluster By, as shown in Fig.7.7a. If an incorrect key /KS
is applied to the FSM, a normal state is deflected to its own black hole cluster.
The FSM never returns to the normal state once it enters the black hole cluster.
Each black hole cluster is composed of multiple states (only three are shown in
Fig.7.7a), rather than a single one. This is because we map each black hole state
to a unique incorrect key (to save the hardware cost, multiple incorrect keys can
share one black hole state). As we cannot predict which incorrect keys will be
applied by the attacker, we propose a Mapfunc function to dynamically assign one
black hole state to an incorrect key. The state within the black hole cluster does
not remain unchanged; instead, it constantly switches to other black hole states.
More details of black hole state creation and dynamic transition are provided in
Sects. 7.4.2 and 7.4.3, respectively.

Considering that the gate-level netlist does not provide a clear picture of used
and unused states, we use a state flip vector FlipBit to selectively invert the state
bits using the circuit shown in Fig.7.7b. Thanks to the inherent feedback loops,
the FSM state bits will naturally switch over time without the predetermined
transition specification. The modification on the state transition graph can be
described with a Markov Chain transition matrix, which indicates the probability
for a state transition to another state. Let’s use Sy, ..., S;—; to represent the states
for authentication/obfuscation/black hole cluster and use S;, . .., S, to represent the
normal operation states. The Markov Chain matrix of our obfuscation method is
shown in Fig.7.7c. The non-zero g;,—1) stands for the single transition path from
the obfuscation mode to the normal operation mode. The non-zero sub-matrix H
(composed of A;;) in the matrix means that our method creates the channel for each
normal state to enter one of the black hole states.

The transition matrices for other methods are shown in Fig. 7.8. According to
Fig.7.8a, the DUP method [2] significantly increases one of the self-transition
probability (e.g., p;;) and reduces other probabilities on the same row; no transition
paths are strictly blocked by the key sequence. If the attacker runs sufficient
amount of simulations, he/she will observe a p;; of high probability. Theoretically,
overwriting the state register when the state remains at the same value too long
could be an effective tampering technique. The two zero sub-matrices for the
HARPOON [10] transition matrix shown in Fig. 7.8b obstruct the transition between
the obfuscation states and the true functional states except the reset state in the

144 Q. Yuetal.

Obfuscated
Initialization Mode Operational Mode
Blackhole cluster

KS: Correct key sequence
1KS: Incorrect key sequence

Normal ° Blackhole ———— Lormal _________‘ Deflected

KS Obfuscated 1KS

state state transition transition
(a)
So S; Sy.Si4 S Siz - Sa1Sa
S, ((Poo Por Poz =\ N
FlipBit[i] ';5:;55:::: Sy || P P Ppp e 0
- Sy || P20 P2 P2z e
» Input logic :)D » D Qf-»DOutputlogic ; ..
A o> ‘ s /U7 7 00 - By O)
T S [(Mo ha = rq“ qin‘\
Iw FlipBit(i] ‘ ?M AgsagoRan ™ Ggisr)i Qiisnyd
> Input logic - QD » D Q| » Output logic Sn-l h;n_mh‘n_m
Clock g S" \uehnu hnl VAN Qpi e qny/
(b) (c)

Fig. 7.7 Proposed dynamic state-deflection method for netlist obfuscation. (a) State transition
graph, (b) circuit example of our method, and (c) proposed state transition paths represented with
a Markov Chain matrix

functional mode (therefore g(;—1); is the single non-zero probability). The P (element
pij) and Q (element g;;) matrices are strictly confined in its own sub-matrix. If the
attacker overwrites the original state, the key obfuscation step can be bypassed.
The matrix shown in Fig. 7.8c is the Code-Word-based obfuscation method [20], in
which the obfuscated states are multiple ad-hoc states, thus allowing the FSM return
to the normal state later.

As can be seen, our method is an extension version of HARPOON and DUP. The
main difference is that our H matrix is not a zero matrix, which means the normal
states will transition to obfuscation states if an incorrect key is used or if tampering
is detected. Intuitively, our method can protect the FSM even if the attacker makes

7 Hardware Hardening Approaches Using Camouflaging, Encryption. . . 145

So Si o S 5. S, Sy 51 530S0 S Sup e Sp1Se S S 5 nSiE S Saeimaa 5
So (F Poo Por Pz N s.fo 0 0o =30 0 B}
S Pis: Pei p o Por P o e
N o | T 5/[]0© 0 0 w]| 0 Bysy ™ 0
51 P P e P1n S; Px Pa P2z «ee- 53 || P20 P21 P2z e 0 0 =g
Sia FL e il é,l ") e 0 o)
r Sy ~
5, Pio Pi1 == Py Py = Py, 2. S | © 0 fai ey =g
. i Sl 0 ;9 0 | fapy - Ay
: : i 0 o : 0 0 0
S i - Swalf 0 hper 0 || F
So | Pao Pni Pon s ! 2 S P
il I) B L R WA T LNy
(a) (b) ()

Fig. 7.8 Transition Markov chain matrices. (a) DUP [2], (b) HARPOON [10], and (¢) Code-
Word [20]

the FSM start in one of the normal states. This is because the FSM could leave the
normal mode due to the key authentication before the next state transition. As a
result, the workload of reverse engineering dramatically increases than any of the
other methods discussed above.

7.4.2 Black Hole State Creation for Gate-level Obfuscation

In the RTL obfuscation methods, the team that adds the dummy states to the
obfuscation mode (i.e., the obfuscation mechanism provider) needs to clearly know
(1) what states have been used in the normal operation mode, and (2) the exact
signals that drive the state transitions. Thus, the obfuscation mechanism provider is
assumed to have sufficient knowledge of the original design. The goal of our method
is to eliminate this assumption. We propose to obfuscate the gate-level netlist
without the prior knowledge of the states in use and signals triggering the state
transitions. We believe that the gate-level obfuscation is more attractive and flexible
than the RTL obfuscation, as we can decouple the design obfuscation process from
the original design.

In our method, we assume that the obfuscation provider is able to learn the num-
ber of registers that represent the state binary bits by reading the gate-level netlist.
This is reasonable as one can differentiate flip-flop devices from combinational
logic gates in the netlist. We form the black hole states shown in Fig. 7.7a with the
following procedure [21]. First, each state (e.g., $3, 52, S1, SO, B3, B2, B1, B0) in the
new FSM is composed of all the original state bits (53, $2, S1, S0) and several newly
added flip-flop bits (B3, B2, B1, BO). When the correct key sequence is applied,
the newly added flip-flops (B3, B2, B1, BO) are set to zero and thus the new state
keeps consistent with the FSM state before our state extension. This arrangement
guarantees that the newly added flip-flops do not change the original function if the
key is correct. If B3, B2, B1, BO is non-zero due to an invalid key, then certainly the
new state (53, 52, 51, SO, B3, B2, B1, B0) belongs to one of the black hole states in

146 Q. Yuetal.

the cluster. The correct key can be hard-wired in the netlist or saved in a tamper-
proof memory. The former one is less secure (but more hardware efficient) than the
latter one at a certain degree. Note, more flip-flops added for new states not only
increase the difficulty of hardware tampering but also incur a greater hardware cost.

7.4.3 Dynamic Transition in Black Hole Cluster

To raise the difficulty of reverse engineering, we further harden the FSM by
creating dynamic transitions within the black hole state clusters. Different than
the existing work [2, 10, 13], the transition among the black hole states is not
static and predefined. One example of our state transition is shown in Fig.7.9.
If a wrong key sequence (KS) is used, the new state bits are preset to a non-zero
vector (e.g., 4’b0001) and the original state bits remain whatever they are defined
to be in the original design. After cycle 0, the newly added state bits are modified
by a Rotatefunc algorithm, which changes the vector B3, B2, B1, BO to a new non-
zero vector. Each wrong key sequence will have a unique pattern defined in the
Rotatefunc algorithm. In the example shown in Fig. 7.9, the Rotatefunc is a circular
left-shift function. In parallel to the process of switching the black hole state bits,
we propose a Mapfunc algorithm to deflect the original state bits from the correct
state transition. Our Mapfunc algorithm takes the newly added state bits as an input
to determine how to modify the content of the original state bits. For instance, when
B3,B2,B1, B0 is 4’b0001, the S3 original state bit is flipped. Note, our method
selectively inverts the state bit, rather than set the original state bits to a fixed vector.
Therefore, the black hole state is not determined in the design time. It depends on
which wrong key is used and the corresponding mapping statement specified in the
Mapfunc algorithm. As shown in Fig. 7.9, the vector of 4’b0010 in the newly added
state bits lead to flip S2 and SO bits in the original state.

7.4.4 Experimental Results
7.4.4.1 Experimental Setup

To assess the capability against reverse engineering attacks, we applied three rep-
resentable obfuscation approaches—DUP [2], ISO [12], and HARPOON [10] and
our method to the generic gate-level netlist of ISCAS’89 benchmark circuits (http://
www.pld.ttu.ee/~maksim/benchmarks/iscas89/verilog/). The obfuscated Verilog
codes were synthesized in Synopsys Design Vision with a TSMC 65 nm CMOS
technology. The test benches for the synthesized netlists were generated by
TetraMax. Verilog simulations were conducted in Cadence NClaunch and the
code coverage analyses were performed with the Cadence ICCR tool.

http://www.pld.ttu.ee/~maksim/benchmarks/iscas89/verilog/
http://www.pld.ttu.ee/~maksim/benchmarks/iscas89/verilog/

7 Hardware Hardening Approaches Using Camouflaging, Encryption. . . 147

Fig. 7.9 Flow of state Newly Added Original
transition modification State Bits State Bits
Power'“p‘m ‘ BZ‘BI ‘BO‘ s3 ‘ S2 | Sl ‘ S0 ‘
moment
!KS&Reseti \

CycleO:‘O‘O 0‘1\53‘32 51‘30‘
IKS o 32

(Rotatefunc)

Cyclel:‘O‘O 1‘0‘3‘3‘52 SI‘SO‘
IKS

Rotatefunc

y
CycleZ:‘O‘l 0‘0‘53‘3‘2 SI‘S_O‘

y
Cyclen:‘ 1‘0 0‘0‘83‘82 §1‘so‘

g J
Y
New State Bits

7.4.4.2 Hardening Capability Against Circuit Switching Activity
Analysis Attack

The goal of state obfuscation is to thwart the reverse engineer from retrieving the
circuitry used for the normal operation mode. In the existing work, the researchers
have not extensively discussed the hardening efficiency of different methods in the
scenario that an attacker could exploit the EDA tool to recover the original circuit. In
this work, we fill in this gap by studying the net toggle activities and code coverage
of the circuits hardened with different obfuscation methods.

Complementary Net Toggle Activities

In the existing methods, the use of an invalid key will either cause the FSM to
be stuck in an obfuscation state or an inner loop in a specified obfuscation mode.
Thus, the majority of the true circuit under protection will not switch. If the attacker
compares the net toggle activities for the cases of using different keys, he/she can
sort out the un-toggled nets and recognize those nets are probably used for the true
operational circuit. Therefore, one would design the obfuscation method in a way
that does not lead to complementary net toggle activities between the scenarios of
using the correct key and the wrong keys.

148 Q. Yuetal.

z 3

35 T T g 1 T T T T

2 g [—5 wowro]

B 3

= q Z 05 1

5 5

B 3

k=)

3 8 o

s 40 60 80 100 120 140 2 o 20 40 60 80 100 120 140 160 180
Net ID Net ID

° °

° °

g 1 2

8 g 0 Gareeey

k] 3

Zost 1 20

o o

° °

° °

3 0@ 3 o commsllily

e o 20 40 60 80 100 120 140 2 o 20 40 60 80 100 120 140 160 180
Net ID Net ID
(a) (b)

° °

° °

R 3

° —O Wrong K 2

= rong Key =

B 3

Z 05 Z 0.

5 5

° °

° °

8 0 3

g o 20 40 60 80 100 120 140 160 180 sl
Net ID Net ID

o o

° 9

= |||||| 3!

i) sl —O Correct Key

k] 3

Zosr Zosr

5 5

3 3

3 o . 8 0

e o 20 40 60 80 100 120 140 160 180 © 0 20 40 60 80 100 120 140 160 180 200
Net ID Net ID
(c) (d)

Fig. 7.10 Net toggle activities for s298 obfuscated with (a) DUP, (b) ISO, (¢) HARPOON,
and (d) proposed methods

Figure 7.10a shows the net toggle activities for the s298 circuit protected with the
DUP obfuscation method. As can be seen, if incorrect key sequences are applied,
the majority of nets from the DUP netlist do not toggle due to the blocked state
transitions. In contrast, those un-toggled nets indeed switch if the correct key
sequence is used. Thus, the net toggle activities for the case with/without the correct
key sequence are nearly complementary. As shown in Fig.7.10b, ¢, the number of
toggled nets from the ISO and HARPOON netlist is more than that of the DUP
netlist, due to the transitions in the obfuscation mode. However, a large number of
nets have complementary toggle activities for the obfuscated netlist with a correct
key sequence. The proposed obfuscation method examines the key sequence at
every state transition and deflects the state to a black hole state. In our method,
the FSM does not remain at a small inner loop when an incorrect key is applied to
the FSM. Instead, our FSM further changes over time within the black hole state
cluster, and triggers the other state registers and output ports to start switching.
Consequently, our method obtains nearly the same net toggle activities for the case
of with/without the correct key, as shown in Fig.7.10d. Note, as the test bench
generated by TetraMax does not reach 100 % test coverage, some logic outputs in
the design module are not toggled for both incorrect and correct key cases.

7 Hardware Hardening Approaches Using Camouflaging, Encryption. . . 149

70%
S
& 60%
@ :
8 50% -
8 ®DUP
o A - .
* 40% -
S SO
T 30%
g “HARPOON
. |
2 20% B Proposed
5 10% —
(8]

0% v ,
s298 s344 s1196 s1488 s5378 s9234

Benchmark Circuits

Fig. 7.11 Complementary percentage of the net toggle activities in incorrect and correct key
scenarios for different benchmark circuits

To compare the obfuscation efficiency achieved by different methods, we define
our comparison metric in Eq. (7.1). This expresses the complementary degree of the
net toggle activities for the correct and incorrect keys.

Pcomplemem — N, different toggled nets (71)

N total nets in netlist
A lower complementary degree means that less information will be obtained
through code analysis. As shown in Fig.7.11, the proposed method yields the
lowest complementary percentage over the other methods. Based on the experiments
performed on the given benchmark circuits, our method reduces the complementary
percentage by up to 77 %, 85 %, and 90 % than the DUP, ISO, and HARPOON

methods, respectively.

Code Coverage

We used code coverage as another metric to compare the hardening degree
achieved by different obfuscation methods. If the obfuscated netlist with incorrect
key sequences obtains a higher code coverage, this equivalently indicates that
obfuscation method will yield a lower net toggling complementary percentage. Our
method tightly blends the dummy states with the original states, so that the attacker
cannot determine the dummy states by using code coverage analysis through tools
like Cadence ICCR. As the netlist under attack is a gate-level netlist, only toggle
coverage can be measured. Branch and FSM coverage are not eligible in the code
coverage analysis tool. In the method [12], an incorrect key sequence will lead
to the FSM enter an isolated mode eventually, thus, the FSM will freeze and the
code coverage will be limited. The same reasoning applies to the method [10].
The use of black hole states will lock the chip operation. But, if the attacker has
the soft IP or firm IP running in a code analysis tool, the un-toggled statements will

150 Q. Yuetal.

100%
90%
80% -+
70%
60% 4
50% -
40% -
30% -
20%
10% -

0% -

EDUP
mISO
EHARPOON

Code Coverage

O Proposed

s298 s344 s1196 s1488 s5378 s9234
Benchmark Circuits

Fig. 7.12 Code coverages for the incorrect key scenarios

reveal the information relevant to the black hole states. As shown in Fig.7.12, the
proposed method always achieves the highest code coverage among the methods
under comparison. As our method keeps the state transiting all the time, our method
improves the code coverage by up to 56 % over the existing methods if a wrong
key sequence is applied. Other methods, either stuck at the wrong states, or enter a
small internal obfuscation states, thus having a lower code coverage. Code coverage
proves that the proposed method reveals less information with an incorrect key over
the other obfuscation methods.

7.4.4.3 Number of Unique State Register Patterns in Obfuscation Mode

In the previous work [10, 11, 13], the state registers either remain same or switch
within a loop of different patterns if an incorrect key sequence is applied. Both of the
scenarios will facilitate the attacker to identify the states in the obfuscation mode.
Then, the attacker can add new logic to overwrite the state registers and thus skip the
livelock of the obfuscation state transition. In contrast, our method utilizes Mapfunc
function to “pseudo-randomly” change the state register values. Even though an
attacker may know a Mapfunc function is applied in the obfuscation mode, the fact
that they do not have knowledge of the exact Mapfunc being used will make it
difficult to perform an attack where a register is overwritten to a specific value.
As shown in Fig.7.13, our method generates the largest number of unique state
patterns over the other methods. On average, the proposed method produces 81, 75,
and 75 more unique obfuscation state patterns over DUP, ISO, and HARPOON,
respectively. This observation confirms that our method does not only obfuscate the
state transitions, but is also capable of resisting the register pattern analysis and thus
thwart state register overwrite attacks.

7 Hardware Hardening Approaches Using Camouflaging, Encryption. . . 151

T T T T T

T
120 I buP
100 L | EEiso J
[THARPOON
80 - I Proposed |

Number of Unique Register Patterns

1| I

298 s344 s1196 s1488 s5378 s9234
Benchmark Circuits

Fig. 7.13 Number of unique register patterns in different benchmark circuits

Table 7.1 Area cost i.n a Benchmark | DUP ISO HARPOON | Proposed

65 nm technology (unit: Lm?)
$298 283.32| 392.04| 403.92 345.96
s344 316.08| 432.72| 445.32 386.64
s1196 737.28| 861.12| 873.72 825.12
s1488 657.72| 826.56| 839.16 779.36
$5378 2599.55/3282.48 | 3298.68 2892.6
$9234 3080.16 | 2826.72 | 2840.76 2395.8

7.4.4.4 Area and Power Overhead

The silicon area cost of the benchmark circuits with different obfuscation methods
are compared in Table 7.1. The same key size of 12-bits is applied to all the methods.
Due to the use of simple logic for state-deflection and dynamic black hole state
transitioning, our method reduces the area overhead by up to 12 % over ISO and
HARPOON. Compared to DUP, our method consumes more area but provides better
IP hardening performance as discussed in Sects. 7.4.4.2 and 7.4.4.3.

The power consumption is compared in Table 7.2. We set up the clock period as
Ins for all designs. As our method checks the key sequence and deflect the FSM
state at every state transition cycle, it, on average, consumes 9.5 % and 7.8 % more
power than ISO and HARPOON, respectively. Again, the power of DUP is 19 % less
than our method, but the DUP method loses obfuscation strength over our approach.

152 Q. Yuetal.

Table 7.2 Total power

Y Benchmark | DUP ISO HARPOON | Proposed
consumption in a 65 nm

technology (unit: mW) $298 0.1135 | 0.1565 |0.1597 0.1851
$344 0.1268 |0.1704 |0.1748 0.1865
s1196 0.1883 | 0.2341 |0.2374 0.2299
$1488 0.063 |0.1116 |0.1140 0.1139
$5378 1.6886 | 1.4693 |1.4736 1.7650
$9234 1.6713 | 1.2287 |1.2384 1.3355

7.4.5 Discussion

Key-based design obfuscation methods have become attractive to resist reverse
engineering and IP piracy attacks. The existing RTL obfuscation methods require
the prior knowledge of all the used and unused states and lack protection on the
normal operation states. To address the aforementioned limitations, we propose a
dynamic state-deflection method for gate-level netlist. Our analyses on the code
coverage and net toggle activities show that the proposed method reveals the least
amount of information for the adversary who has access to the obfuscated netlist and
conducts state register overwrite attacks. Simulation results show that our method
achieves up to 56 % higher code coverage than the existing methods if an incorrect
key sequences are applied. Hence our method provides a better hardening solution
against the adversary who utilizes brute force attacks and EDA code analysis
functions to recover the original design. Due to the dynamic deflection feature,
on average, our method generates 75 more unique state register patterns than the
HARPOON method if an incorrect key is applied, at the cost of 7.8 % power increase
in the case study.

7.5 Obfuscation for Three-Dimensional ICs

In this section, we review how three-dimensional (3D) structure can be leveraged to
address the security threats in 2D ICs and potential risks of using 3D ICs. Next, we
introduce the method [22] that extends the obfuscation concept to 3D ICs.

7.5.1 Leveraging 3D for Security

3D integration has attracted a significant amount of attention during the past
two decades to develop diverse computing platforms such as high performance
processors, low power systems-on-chip (SoCs), and reconfigurable platforms such
as FPGAs. The majority of the existing work has leveraged the unique 3D
characteristics to enhance the security of 2D ICs rather than investigating hardware

7 Hardware Hardening Approaches Using Camouflaging, Encryption. . . 153

security within stand-alone 3D ICs [4]. As indicated by leading 3D manufacturing
foundries [3], the stacking process of 3D ICs conceals the details of the circuit
design and therefore thwarts reverse engineering attacks. Secondly, 3D ICs facil-
itate split manufacturing where the entire IC is distributed throughout multiple
dies/planes. Thus, due to the incompleteness of each plane, the design details of
a functional block are not revealed.

Existing 3D split manufacturing approaches fall into two primary categories. In
the first category, as investigated by Valamehr et al. [54, 55], the entire design is
separated into two tiers: one plane is dedicated to being the primary computation
plane whereas the second plane is an optional control plane that should be provided
by a trusted foundry. This control plane is used to monitor possible malicious
behavior within the computation plane and overwrites the malicious signals, if
necessary. The second category, as studied by Imeson et al. [28], relies on the
interconnects of a trusted die to obfuscate the entire 3D circuit. Thus, the circuit
within the untrusted tier cannot be reverse engineered since interconnectivity is
unknown. Similar studies have been performed to further enhance the obfuscation
level achieved by split manufacturing [42, 57, 59]. As exemplified by these studies,
existing approaches rely primarily on the presence of a trusted plane. While effective
to enhance security, these existing techniques do not investigate the potential
security weaknesses inherent to 3D ICs.

7.5.2 Trustworthiness of Vertical Communication

A non-trivial security weakness within 3D ICs is the trustworthiness of vertical
communication. In a heterogeneous 3D stack with dies from different vendors, one
of the dies can attempt to extract secret information such as an encryption key,
authentication code, or certain IP characteristics. Thus, a die within a 3D stack
should not only be protected from external attacks (as is the case in traditional 2D
ICs), but also from attacks originating from a nearby die within the same 3D stack.
Furthermore, since the authentication level of each die is different, the security of
the overall 3D IC is dependent upon the weakest die. The overall 3D IC (including
the die with a strong authentication level) can be compromised once an attacker
succeeds in accessing the weak die. Note that due to high bandwidth inter-die
vertical communication, an attacker has more access points to compromise security,
producing additional security threats that do not exist in 2D ICs.

Another potential weakness is the leakage of connectivity information from an
untrusted 3D integration foundry. Existing approaches that rely on split manufac-
turing typically assume that existing vertical communication is inherently secure.
Unfortunately, this assumption is not always true. For example, the foundry that
manufactures vertical interconnects may leak this connectivity information, result-
ing in weaker design obfuscation than what is assumed with split manufacturing.

154 Q. Yuetal.
7.5.3 Proposed Obfuscation Method for 3D ICs

We propose a new countermeasure for 3D ICs in [22], which is fundamentally
different from the split manufacturing approach. In the existing split manufacturing
methods, one of the dies and vertical connections must be manufactured by a
trusted foundry. Without this assumption, split manufacturing cannot ensure the
trustworthiness of a 3D SoC with dies from different vendors. It is predicted
that commercial dies, rather than customized dies, will be vertically integrated to
develop 3D ICs in the near future. Since the I/O definition and certain specifications
of commerecial dies are public, an attacker can reverse engineer the 3D SoC design,
particularly if each die of the 3D IC can be separated from the stack using a
debonding technique.

7.5.3.1 Overview of Proposed 3D Obfuscation Method

To eliminate the need for at least one trusted foundry for 3D ICs, we propose a
secure cross-plane communication network [22]. The proposed method is based
on the insertion of a Network-on-Chip (NoC)-based shielding plane between two
commercial dies to thwart reverse engineering attacks on the vertical dimension. As
shown in Fig.7.14, the proposed NoC shielding plane (NOC-SIP) obfuscates the
communication among the adjacent dies. As compared to split manufacturing, this
method provides higher flexibility and scalability when developing more secure 3D
ICs. This characteristic is due to the enhanced modularity and scalability of NoCs as
compared to a bus-centric communication network. Ad-hoc algorithms that split IC
functionalities are not suitable for a large-scale system. Furthermore, additional wire
lifting through split manufacturing leads to a larger number of Through-Silicon-Vias
(TSVs), resulting in a larger area overhead and TSV capacitance (and therefore
power).

The essence of the proposed NOC-SIP is to provide an obfuscated communica-
tion channel between two planes that host commercial dies. Our method makes it
significantly more challenging to reverse engineer the 3D IC system. If the proposed
shielding layer is sufficiently strong, the 3D system has more flexibility to use low-
end dies without sacrificing the overall system’s security assurance. We assume each
commercial die has a regular I/O pad map. Those I/O pads are connected to the
proposed NOC-SIP with a regular node array, as shown in Fig. 7.14. Therefore, the
specific I/O connectivity information of the dies is hidden to the 3D foundry. As
a result, the proximity attack [42] is less likely to help to reveal the design details
from split dies.

An example of the proposed method is depicted in Fig.7.15. Without the
proposed NOC-SIP die, node A in plane 2 would be connected to node B in
plane 1 directly with a TSV. If an attacker has the ability to reverse engineer
debonded planes 1 and 2, the 3D IC would be compromised. Alternatively, the
NOC-SIP plane redirects the signal from a TSV-A on node A to several routing

7 Hardware Hardening Approaches Using Camouflaging, Encryption. . . 155

1/0

Plane 1in 3D IC

-

Proposed 3D router

Plane 2in 3D IC

Proposed NOC-SIP

Plane 3in3DIC

Fig. 7.14 Conceptual representation of the proposed countermeasure for 3D IC security

Fig. 7.15 An example of
vertical communication
through the proposed
NOC-SIP

L—~<»® | NOCSIP

TSVA X

Plane 2

hops before the signal truly reaches TSV-B on node B. Thus, the direct connection
from node A to node B is removed. The proposed NOC-SIP enhances security
for the following three reasons: (1) even if the adversary successfully separates
planes 1 and 2, a scanning electron microscope (SEM) picture of the vertical
connection does not reveal useful information for reverse engineers to retrieve the
complete system design, (2) the inserted NOC-SIP facilitates the use of 2D security
countermeasures to address 3D security threats, and (3) the inherent scalability
of the NOC-SIP overcomes the limited flexibility and scalability concerns in the
existing split manufacturing algorithms.

156 Q. Yuetal.

Fig. 7.16 Proposed 3D Cross-Plane Port (CPP) TSV to

t hitect
router arcnitecture Single-PIan Port (SPP) upper
i plane

TSV to
lower plane

7.5.3.2 Proposed 3D Router Design

The proposed 3D router is shown in Fig. 7.16. The single-plane ports (SPP) PTnorth,
PTgast, PTsoum, and PTeg fulfill the communication function within the NOC-SIP.
Alternatively, the two cross-plane port (CPP) PTyp and PTpown are responsible
for cross-plane communication. In contrast, a typical 2D router has five pairs of
input and output ports. Figure 7.17a shows the diagram of one input and one output
port for a 2D router. The proposed 3D router in the NOC-SIP is different than the
router in the traditional 2D NoC. As shown in Fig.7.17b, the logic of the input
and output ports in our 3D router is much simpler than that of a 2D router. Only
single-depth input and output FIFOs are required; FIFO controllers are removed;
the route computing unit is replaced with a simple routing path request unit (no
computation inside); a simpler arbiter can fulfill the routing arbitration. Among the
five ports in a 2D router, one port is connected with a network interface (NI) to
reach a processing element (e.g., microprocessor or a memory core). However, in
the NOC-SIP, no processing element is connected to any port of the 3D router. The
packetization function that is executed in the NI of a 2D NoC is part of our vertical
router’s function.

In our 3D router, the cross-plane ports, PTyp and PTpown, are designed for
vertical connection from/to other planes. The primary functions of these two ports
include: (1) packetize/de-packetize the bit stream from/to the other plane, (2) assign
a source-routing path for each data packet, and (3) buffer the bit stream if the
previous packets do not have available bandwidth.

As shown in Fig.7.17¢c, k-bit data from plane 1 is stored in the buffer before
packetization. The packet leaving the cross-plane port is formatted in a way that
starts with header information, follows with the detailed routing hops, and ends with
the real data. The uniqueness of this cross-plane port is the existence of a router
identifier (that is programmable after fabrication) and source routing table, which
are provided by the 3D chip designer through one-time read-only memory (ROM)
programming equipment. As the router identifier and routing table are initialized
after fabrication, placing malicious hardware in the NOC-SIP during the design
stage cannot guarantee compromised system. Similarly, the knowledge of the 3D

7 Hardware Hardening Approaches Using Camouflaging, Encryption. . . 157

Input | Arbiter , Output
FIFO Ctrl ‘ FIFO Ctrl
Route
—> I > Xbar q >
Computing
Input FIFO Output FIFO
(a)

Diagram of Single-Plane Port PTysw

S R)M

[
o l’ o
gl ki m - g
s o Buffer Packetization 2
= 1 | s
b S
' t 4 [=
Data from | S | B
planelor2 | Router IDs ource | B
| Routing Table I :
I I .
Datato | | 3
plane lorz: : =
3| k! m n | I'n
°s <5‘*‘(Buffer"4v' De-Packetization o< |9
Sl | Port |! B
1Y | |
| | —
| | ﬁFlit format
=== v in NoC-SIP
(c)

Fig. 7.17 Schematics of (a) one pair of input and output ports in a 2D router, (b) single-plane port
in the proposed 3D router, and (¢) cross-plane port in the proposed 3D router

router design does not help the reverse engineer, as the router identifier and source
routing table are unknown before deployment. Once the router ID or the source
routing table is changed, the secret information sniffed by the attack for one case
would not be useful.

Source routing introduces unpredictability for the adversary who intends to insert
hardware Trojans in the NOC-SIP. As there is no computation unit for route path
preparation, the attacker cannot successfully execute a meaningful attack without
the knowledge of router identifier assignment. Another advantage of source routing
is to manually balance the latency for the transmission between different pairs of

158 Q. Yuetal.

I/O pads on planes 1 and 2, shown in Fig.7.14. To thwart the delay-based side-
channel attacks, the source routing design in the 3D router further facilitates a
dynamic routing, which varies the latency of the communication between source
and destination ports within the NOC-SIP.

7.5.3.3 Assessment on 3D Obfuscation Method

We implemented the proposed NOC-SIP in Verilog HDL and synthesized the HDL
code in Synopsys Design Compiler with a 65 nm TSMC technology. The width
of the raw data from a plane (other than NOC-SIP) is set to 5 bits, and the packet
width for the NOC-SIP is 32 bits. The input and output FIFOs are 32-bit single-
depth buffer. XY routing algorithm is applied to the 2D NoC design. Round-robin
arbitration is used in both 2D NoC and NOC-SIP. The NI for the 2D mesh NoC is
OCP-IP compatible [26]. The hardware cost of our NOC-SIP is compared with two
typical 4 x 4 mesh NoCs.

The router switching activity of the NOC-SIP is used as a metric to evaluate
the difficulty of identifying vertical connectivity through reverse engineering. Three
cross-plane communication methods are compared: direct TSV, NOC-SIP with XY
routing, and NOC-SIP with source routing. Direct TSV refers to the case where the
I/0 pads from different dies are statically connected during the 3D IC integration
process. NOC-SIP with XY and source routing stand for the proposed shielding
layer using XY packet routing and dynamic source routing, respectively.

First, we randomly select a single pair of I/O pads from two planes for vertical
communication. The number of switching transitions of each 3D router is recorded
in 5000 clock cycles. As shown in Fig.7.18a, the activity of the TSVs directly
connected to two I/O pads indicates that the TSV nodes 4 and 9 are used in the
cross-plane communication. Note that the color bar represents the number of node
transitions in 5000 cycles. Alternatively, the router activity map (Fig. 7.18b) of the
NOC-SIP with XY routing shows that the routers 4, 8, 9, 10, 11, and 12 are used in
the cross-plane communication. A reverse engineer, however, cannot know which
two TSVs in the routers are actually used for cross-plane communication. The use
of source routing further increases the number of involved routers to 10, thereby
increasing the degree of obfuscation, as shown in Fig.7.18c.

If two pairs of vertical communication are applied, the NOC-SIP achieves
enhanced obfuscation performance. As shown in Fig.7.19, the number of active
routers in the NOC-SIP is always greater than the direct TSV method. The source
routing for NOC-SIP has the ability to distribute the data transmission throughout
the entire NOC-SIP. Thus, the proposed approach makes reverse engineering
significantly more difficult.

The experiments shown by Figs.7.18 and 7.19 are extended by increasing the
number of communication pad pairs to 10. As shown in Fig.7.20, the NOC-
SIP with source routing engages 12 routers with two pairs of pads. In contrast,
the direct TSV method involves 12 routers with 10 pairs of pads. This behavior
demonstrates that the proposed NOC-SIP method effectively obfuscates the cross-

7 Hardware Hardening Approaches Using Camouflaging, Encryption. . . 159

= 10000

8000

£] £3a
£ 3000 2 Moo £ 5000
g 3 3
o 2000 § 4000 O 4000
- b =2

1000 2000 2000

1 2 3 4
X Coordinate

(a)

Fig. 7.18 Single pad-to-pad vertical communication. (a) Direct TSV, (b) NOC-SIP with XY
routing, and (¢) NOC-SIP with source routing

4 |
1 000
9 12
1000
14
0
1 2 3 4

X Coordinate

(a)

4 4 — 15000

w

)
g
¥ Cnorums.!e

)
TR

3

§

¥ Coordinate
¥ Coordinate

1
1 2 3 4

X Coordinate

(c)

Fig. 7.19 Double pad-to-pad vertical communication. (a) Direct TSV, (b) NOC-SIP with XY
routing, and (¢) NOC-SIP with source routing

N
[¢)]
T

3

[6)]
T

—>— Direct TSV

Number of active
nodes/routers in the 3D IC

—&— NOC-SIP with XY routing
—<&— NOC-SIP with source routing

0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Number of 1/0 pad pairs involved in cross-plane communication

Fig. 7.20 The number of active routers versus the number of routers having incoming data

plane communication by increasing the reverse engineering time as compared to
using direct TSV connections. The direct TSV is the most vulnerable method against
reverse engineering on vertical connections.

160 Q. Yuetal.
7.5.4 Discussion

Existing works have demonstrated that 3D integration provides additional security
defense to thwart hardware attacks in 2D ICs. The security threats that are inherent
to true 3D ICs, however, have not received much attention. To thwart reverse
engineering attacks on the cross-plane communication (i.e., vertical communication
channel), an NOC-SIP layer is proposed. The proposed NOC-SIP obfuscates the
vertical communication within a 3D stack. Simulation results demonstrate that the
proposed NOC-SIP engages all of the routers as long as more than two pairs of I/O
pads from different planes are in use. Alternatively, direct TSV connection method
requires ten pairs of I/O pads from two planes to reach the same level of obfuscation
as the proposed method. Thus, the proposed NOC-SIP makes it significantly more
challenging for a reverse engineer to retrieve the vertical connectivity information.

7.6 Summary

Due to the trend of outsourcing designs to overseas foundries, IC designers and
users need to re-evaluate the trust in hardware. The hardware threats such as
reverse engineering, IP piracy, chip overproduction, and hardware Trojan insertion
are major concerns for hardware security. Key-based obfuscation is one of the
promising countermeasures to thwart the hardware attacks like reverse engineering
and IP piracy. This chapter summarizes the state-of-the-art hardware hardening
methods at layout, gate, and register transfer levels. Camouflaging, logic encryption,
and state obfuscation are three representable categories for hardware hardening
against malicious reverse engineering and IP piracy attacks. To address the potential
security threats in 3D ICs, we also introduce an obfuscation method to protect the
vertical communication channels in 3D ICs. As the attackers may obtain extra
knowledge and tools to perform reverse engineering and IP piracy attacks, it is
imperative to explore new hardware-efficient hardening methods to combat the
existing hardware attacks.

References

1. S. Adee, The hunt for the kill switch. IEEE Spectr. 45, 34-39 (2008)

2.Y. Alkabani, F. Koushanfar, M. Potkonjak, Remote activation of ICs for piracy prevention
and digital right management, in Proceedings of IEEE/ACM International Conference on
Computer-Aided Design (ICCAD) (2007), pp. 674-677

3. S. Bansal, 3D IC Design. EETimes (2011). http://www.eetimes.com/document.asp?doc_id=
1279081

4. C. Bao, A. Srivastava, 3D Integration: new opportunities in defense against cache-timing side-
channel attacks, in Proceedings of Computer Design (ICCD) (2015), pp. 273-280

http://www.eetimes.com/document.asp?doc_id=1279081
http://www.eetimes.com/document.asp?doc_id=1279081

V)]

10.

1

—

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Hardware Hardening Approaches Using Camouflaging, Encryption. .. 161

. A. Baumgarten, A. Tyagi, J. Zambreno, Preventing IC piracy using reconfigurable logic

barriers. IEEE Des. Test Comput. 27(1), 66-75 (2010)
D.J. Bernstein, Cache-timing attacks on AES. Technical Report (2005)

. S. Bhunia, M.S. Hsiao, M. Banga, S. Narasimhan, Hardware trojan attacks: threat analysis and

countermeasures. Proc. IEEE 102(8), 1229-1247 (2014)

. E. Castillo, U. Meyer-Baese, A. Garcia, L. Parrilla, A. Lloris, [IPP@HDL: efficient intellectual

property protection scheme for IP cores. IEEE Trans. Very Large Scale Integr. VLSI Syst.
15(5), 578-591 (2007)

. R.S. Chakraborty, S. Bhunia, Hardware protection and authentication through netlist level

obfuscation, in Proceedings of IEEE/ACM International Conference on Computer-Aided
Design (ICCAD) (2008), pp. 674-677

R. Chakraborty, S. Bhunia, HARPOON: an obfuscation-based soc design methodology
for hardware protection. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(10),
1493-1502 (2009)

. R.S. Chakraborty, S. Bhunia, Security through obscurity: an approach for protecting register

transfer level hardware IP, in Proceedings of Hardware Oriented Security and Trust (HOST)
(2009), pp. 96-99

R. Chakraborty, S. Bhunia, RTL Hardware IP protection using key-based control and data
flow obfuscation, in Proceedings of International Conference on VLSI Design (VLSID) (2010),
pp. 405410

R.S. Chakraborty, S. Bhunia, Security against hardware trojan attacks using key-based design
obfuscation. J. Electron. Test. 27(6), 767-785 (2011)

R.S. Chakraborty, S. Narasimhan, S. Bhunia, Hardware trojan: threats and emerging solutions,
in Proceedings of High Level Design Validation and Test Workshop (HLDVT’09) (2009),
pp. 166171

Chipworks (2012). http://www.chipworks.com/en/technical-competitive-analysis/

Circuit camouflage technology (2012). http://www.smi.tv/SMI_SypherMedia_Library_Intro.
pdf

R. Cocchi, J. Baukus, B. Wang, L. Chow, P. Ouyang, Building block for a secure CMOS logic
cell library. US Patent App. 12/786,205 (2010)

R. Cocchi, L. Chow, J. Baukus, B. Wang, Method and apparatus for camouflaging a standard
cell based integrated circuit with micro circuits and post processing. US Patent 8,510,700
(2013)

R. Cocchi, J.P. Baukus, L.W. Chow, B.J. Wang, Circuit camouflage integration for hardware IP
protection, in Proceedings of Design Automation Conference (DAC) (2014), pp. 1-5

A.R. Desai, M.S. Hsiao, C. Wang, L. Nazhandali, S. Hall, Interlocking obfuscation for anti-
tamper hardware, in Proceedings of Cyber Security and Information Intelligence Research
Workshop (CSIIRW) (2013), pp. 8:1-8:4

J. Dofe, Y. Zhang, Q. Yu, DSD: a dynamic state-deflection method for gate-level netlist
obfuscation, in Proceedings of IEEE Computer Society Annual Symposium on VLSI (ISVLSI)
(2016), pp. 565-570

J. Dofe, Q. Yu, H. Wang, E. Salman, Hardware security threats and potential countermeasures
in emerging 3D ICS, in Proceedings of Great Lakes Symposium on VLSI (GLSVLSI) (ACM,
New York, 2016), pp. 69-74

S. Dupuis, P.S. Ba, G.D. Natale, M.L. Flottes, B. Rouzeyre, A novel hardware logic encryption
technique for thwarting illegal overproduction and hardware trojans, in Proceedings of
International On-Line Testing Symposium (IOLTS) (2014), pp. 49-54

ExtremeTech, iphone 5 A6 SoC reverse engineered, reveals rare hand-made custom CPU, and
tri-core GPU (2012)

Federal statutory protection for mask works (1996). http://www.copyright.gov/circs/circ100.
pdf

J. Frey, Q. Yu, Exploiting state obfuscation to detect hardware trojans in NoC network
interfaces, in Proceedings of Midwest Symposium on Circuits and Systems (MWSCAS) (2015),
pp. 14

http://www.chipworks.com/en/technical-competitive-analysis/
http://www.smi.tv/SMI_SypherMedia_Library_Intro.pdf
http://www.smi.tv/SMI_SypherMedia_Library_Intro.pdf
http://www.copyright.gov/circs/circ100.pdf
http://www.copyright.gov/circs/circ100.pdf

162

217.

28.

29.

30.

31.

32

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Q. Yuetal.

U. Guin, K. Huang, D. DiMase, J.M. Carulli, M. Tehranipoor, Y. Makris, Counterfeit
integrated circuits: a rising threat in the global semiconductor supply chain. Proc. IEEE 102(8),
1207-1228 (2014)

F. Imeson, A. Emtenan, S. Garg, M.V. Tripunitara, Securing computer hardware using 3D
integrated circuit (ic) technology and split manufacturing for obfuscation. USENIX Security,
13 (2013)

Intel’s 22-nm tri-gate transistors exposed (2012). http://www.chipworks.com/blog/
technologyblog/2012/04/23/intels-22-nm-tri- gate-transistors-exposed

P.C. Kocher, Timing attacks on implementations of diffie-Hellman, RSA, DSS, and Other
Systems, in Proceedings of the 16th Annual International Cryptology Conference on Advances
in Cryptology. CRYPTO 96 (Springer, London, 1996), pp. 104-113. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646761.706156

P. Kocher, J. Jaffe, B. Jun, Differential power analysis, in Advances in Cryptology—
CRYPTO’99 (Springer, Berlin, 1999), pp. 388-397

. F. Koushanfar, Provably secure active IC metering techniques for piracy avoidance and digital

rights management. IEEE Trans. Inf. Forensics Secur. 7(1), 51-63 (2012)

L. Frontier Economics Ltd, Estimating the global economic and social impacts of counterfeit-
ing and piracy (2011)

H.K. Lee, D.S. Ha, HOPE: an efficient parallel fault simulator for synchronous sequential
circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 15(9), 1048—1058 (1996)
Y.W. Lee, N.A. Touba, Improving logic obfuscation via logic cone analysis, in Proceedings of
Latin-American Test Symposium (LATS) (2015), pp. 1-6

B. Liu, B. Wang, Reconfiguration-based VLSI design for security. IEEE J. Emerging Sel. Top.
Circuits Syst. 5(1), 98-108 (2015)

T. Meade, S. Zhang, Y. Jin, Netlist reverse engineering for high-level functionality reconstruc-
tion, in Proceedings of Asia and South Pacific Design Automation Conference (ASP-DAC)
(2016), pp. 655-660

A. Moradi, M.T.M. Shalmani, M. Salmasizadeh, A generalized method of differential fault
attack against AES cryptosystem, Proceedings of Workshop on Cryptographic Hardware and
Embedded Systems (CHES) (Springer, Berlin, Heidelberg, 2006), pp. 91-100

S.M. Plaza, I.L. Markov, Solving the third-shift problem in ic piracy with test-aware logic
locking. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(6), 961-971 (2015)

J. Rajendran, Y. Pino, O. Sinanoglu, R. Karri, Logic encryption: a fault analysis perspective,
in Proceedings of Design, Automation and Test in Europe (DATE). EDA Consortium (2012),
pp. 953-958

J. Rajendran, Y. Pino, O. Sinanoglu, R. Karri, Security analysis of logic obfuscation, in
Proceedings of Design Automation Conference (DAC), ACM/EDAC/IEEE (2012), pp. 83-89
J. Rajendran, O. Sinanoglu, R. Karri, Is manufacturing secure? in Proceedings of Design,
Automation & Test in Europe Conference & Exhibition (DATE) (2013), pp. 1259-1264

J. Rajendran, M. Sam, O. Sinanoglu, R. Karri, Security analysis of integrated circuit camou-
flaging, in Proceedings of ACM SIGSAC Conference on Computer Communications Security,
CCS ’13 (ACM, New York, 2013), pp. 709-720

J. Rajendran, O. Sinanoglu, R. Karri, VLSI testing based security metric for IC camouflaging,
in Proceedings of IEEE International Test Conference (ITC) (2013), pp. 1-4

J. Rajendran, A. Ali, O. Sinanoglu, R. Karri, Belling the CAD: toward security-centric
electronic system design. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(11),
1756-1769 (2015)

J. Rajendran, H. Zhang, C. Zhang, G.S. Rose, Y. Pino, O. Sinanoglu, R. Karri, Fault analysis-
based logic encryption. IEEE Trans. Comput. 64(2), 410-424 (2015)

M. Rostami, F. Koushanfar, R. Karri, A primer on hardware security: models, methods, and
metrics. Proc. IEEE 102(8), 12831295 (2014)

J. Roy, F. Koushanfar, 1. Markov, EPIC: ending piracy of integrated circuits, in Proceedings of
Design, Automation and Test in Europe (DATE) (2008), pp. 1069-1074

http://www.chipworks.com/blog/technologyblog/2012/04/23/intels-22-nm-tri-gate-transistors-exposed
http://www.chipworks.com/blog/technologyblog/2012/04/23/intels-22-nm-tri-gate-transistors-exposed
http://dl.acm.org/citation.cfm?id=646761.706156

49.

50.

5

—

52.

53.

54.

55.

56.

57.

58.

59.

60.

6

—_

62.

63.

Hardware Hardening Approaches Using Camouflaging, Encryption. .. 163

B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd edn.
(Wiley, New York, 1995)

SEMLI, Innovation is at risk as semiconductor equipment and materials industry loses up to $4
billion annually due to ip infringement (2008). www.semi.org/en/Press/P043775/

. O. Sinanoglu, Y. Pino, J. Rajendran, R. Karri, Systems, processes and computer-accessible

medium for providing logic encryption utilizing fault analysis. US Patent App. 13/735,642
(2014)

P. Subramanyan, S. Ray, S. Malik, Evaluating the security of logic encryption algorithms, in
Proceedings of Hardware Oriented Security and Trust (HOST) (2015), pp. 137-143

R. Torrance, D. James, The state-of-the-art in IC reverse engineering, in Proceedings of
Workshop on Cryptographic Hardware and Embedded Systems (CHES) (Springer, Berlin,
Heidelberg, 2009), pp. 363-381

J. Valamehr et al., A qualitative security analysis of a new class of 3-D integrated crypto
co-processors. in Cryptography and Security, ed. by D. Naccache (Springer, Berlin, Heidel-
berg, 2012), pp. 364382

J. Valamehr et al., A 3-D split manufacturing approach to trustworthy system development.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(4), 611-615 (2013)

J.B. Wendt, M. Potkonjak, Hardware obfuscation using puf-based logic, in 2014 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD) (2014), pp. 270-271

K. Xiao, D. Forte, M.M. Tehranipoor, Efficient and secure split manufacturing via obfuscated
built-in self-authentication, in Proceedings of Hardware Oriented Security and Trust (HOST)
(2015), pp. 14-19

Y. Xie, A. Srivastava, Mitigating sat attack on logic locking. Cryptology ePrint Archive, Report
2016/590 (2016). http://eprint.iacr.org/

Y. Xie, C. Bao, A. Srivastava, Security-aware design flow for 2.5 D IC technology, in Proceed-
ings of the 5th International Workshop on Trustworthy Embedded Devices(TrustED). (ACM,
New York, 2015), pp. 31-38

M. Yasin, O. Sinanoglu, Transforming between logic locking and IC camouflaging, in
Proceedings of International Design Test Symposium (IDT) (2015), pp. 1-4

. M. Yasin, J. Rajendranand, O. Sinanoglu, R. Karri, On improving the security of logic locking.

IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(9), 1411-1424 (2015)

M. Yasin, B. Mazumdar, J. Rajendranand, O. Sinanoglu, SARlock: SAT attack resistant logic
locking, in Proceedings of Hardware Oriented Security and Trust (HOST) (2016), pp. 236241
J. Zhang, H. Yu, Q. Xu, HTOutlier: hardware trojan detection with side-channel signature
outlier identification, in Proceedings of Hardware Oriented Security and Trust (HOST) (2012),
pp. 55-58

www.semi.org/en/Press/P043775/
http://eprint.iacr.org/

Chapter 8

A Novel Mutating Runtime Architecture
for Embedding Multiple Countermeasures
Against Side-Channel Attacks

Sorin A. Huss and Marc Stottinger

8.1 Introduction

In today’s modern communication technology-based society embedded electronic
devices get more and more into our daily life. The purposes of these embedded
systems are quite different, but most of them require to transfer data between
components within a device or between various devices. At least part of the
transferred information is sensitive and thus has to be protected in order to avoid
eavesdropping and misuse. In principle this problem may be solved by means of
cryptographic algorithms implemented in software. However, the related overhead
such as additional power consumption needs to be considered carefully. A more
appropriate solution to achieve the required computational performance is to intro-
duce dedicated microelectronic modules to efficiently speed-up these operations.
One option is to use FPGA-based ciphers to improve the system performance
without losing the important software-like flexibility.

In 1999 new attack methods known as Simple Power Attack (SPA) and Differen-
tial Power Analysis (DPA) have been introduced [9], which since then significantly
changed the view on design requirements of security sensitive applications. An
adversary just needs to observe the physical behavior of the cryptographic module,
while it operates in its normal mode and then to exploit the recorded data by
analyzing key-dependent properties such as execution time, power consumption,

S.A. Huss (X))

CASED - Center of Advanced Security Research Darmstadt, and Integrated Circuits and Systems
Lab, Computer Science Department, Technische Universitdt Darmstadt, Hochschulstrasse 10,
Darmstadt, Germany

e-mail: huss @iss.tu-darmstadt.de; sorn.huss@cased.de

M. Stéttinger
Independent Researcher (formerly with CASED), Darmstadt, Germany
e-mail: marc.stoettinger @ gmail.com

© Springer International Publishing AG 2017 165
P. Mishra et al. (eds.), Hardware IP Security and Trust,
DOI 10.1007/978-3-319-49025-0_8

mailto:huss@iss.tu-darmstadt.de
mailto:sorn.huss@cased.de
mailto:marc.stoettinger@gmail.com

166 S.A. Huss and M. Stottinger

or electromagnetic radiation. Such passive, non-invasive characteristics make side-
channel attacks (SCA) rather dangerous because they are efficient, easy to conduct,
and do not leave any evidence of the attempted assault. Especially the power analysis
attack is one of the most popular classes of passive SCA strategies and is therefore
being thoroughly investigated in academia as well as in industry.

Many countermeasures have meanwhile been proposed aimed to hardening
implementations of cryptographic modules against such attacks. The main goal of
hardening a design by introducing countermeasures is to reduce and, in the best
case, to minimize the amount of exploitable physical information. Thus, next to
modifying an encryption algorithm, the envisaged technology platform as well as
the architectural structure of the module needs to be adapted accordingly.

Countermeasures against power analysis attacks are mainly applied on the
algorithm or on the cell level of the implementation platform. The reason for this
fact is that countermeasures are bound directly to the envisaged platform. This
means that in case of a software implementation the countermeasures can only
be mapped to software as part of the cryptographic algorithm, i.e., on algorithmic
level. Masking is a good example for such a countermeasure. In case of exploiting
a custom chip as platform, the designer may apply circuit-related countermeasures
on cell level such as Dual-Rail logic. Please note that in both cases the physical
architecture of the implementation is not being modified. In contrast, the concept
of an FPGA platform offers much more flexibility. This is because of the inherent
reconfiguration capability of both functional blocks and their interconnection on an
FPGA—even at runtime.

In the context of countermeasures, however, only one approach has been pub-
lished so far which directly addresses the architecture level by exploiting the concept
of modifying the physical structure of the platform. The so-called Temporal Jitter
method proposed by Mentens et al. in [14] exploits the reconfiguration capability of
the data path in order to freely position both registers and combinatoric logic in the
circuit. In doing so, the activity pattern of each clock cycle is being modified and,
similar to Shuffling on algorithmic level, the adversary cannot directly deduce from
the recorded power traces which specific operation is being processed. Platform
reconfiguration is therefore the key method to accommodate on all abstraction levels
highly variable, at runtime mutating architectures as addressed in this chapter.

The paper is structured as follows. Section 8.2 introduces the basic concepts,
multiple countermeasures resulting from a tailored digital system design methodol-
ogy, and the advocated architecture. Section 8.3 summarizes the design flow of the
Mutating Runtime Architecture. In Sect. 8.4 we detail the various design decisions
and demonstrate the advantages of the proposed approach by hardening an AES
block cipher. Finally, Sect. 8.5 concludes the chapter.

8 Mutating Runtime Architecture Against Side-Channel Attacks 167
8.2 Mutating Runtime Architecture

The ongoing research in the area of computer-aided engineering (CAE) has
meanwhile developed various techniques to map a formally denoted algorithm to
an integrated circuit design. High-level synthesis is one of the core concepts in such
a design flow. It consists of the following fundamental design activities in order to
implement an algorithm in hardware: Allocation, Binding, and Scheduling.

First, the elementary operations needed to execute the algorithm are identified
during Allocation. Each such operation is then mapped to one or two multiple types
of suited hardware processing units. An explicit assignment of a specific task of
the algorithm to a unit is addressed by Binding. Finally, Scheduling is required
to order tasks in the time domain. Thus, by performing this activity the designer
decides on the number of operations to be executed in parallel or on the sequence
of data-independent operations. The resulting architectural properties of the circuit
rely directly on the results of the above-mentioned basic activities of the CAE
process, cf. [6]. Thereby, physical characteristics of the implemented algorithm may
be affected significantly. Please note that design decisions in one of these activities
in general do influence decisions in the other ones as well.

8.2.1 Design Properties

The concept of the Mutating Runtime Architecture (MRA) exploits the intrinsic
influence of the mentioned design activities on the architecture in order to enable
a flexible design space exploration. This exploration results in various feasible
implementations of the same cryptographic algorithm, but with quite different
physical properties. The challenge resulting from this approach is to identify
the fundamental design properties which can be controlled individually by the
corresponding design activities.

The outcome of Allocation specifies which types of processing units are required
by the algorithm and thus denotes the first design property. Type of processing
unit inherits its parameters from Allocation, but it is nearly independent from
Binding and Scheduling. Thus, it is possible to replace an individual processing
unit at runtime by means of a novel method named OnlineAllocation. The second
property is the degree of parallelism, which inherits its design parameters from
Binding. Independently from the type of the allocated processing unit, this degree
can be varied based on the amount of available units. However, it can only be
modified if the mutating method named DynamicBinding detailed in the sequel
does not violate task dependencies. The last property is linked to Scheduling and
addresses the progression of tasks, which are to be executed sequentially in a data-
dependent order. The data flow is independent from the utilized processing units
from a functional point of view. The related method FlexibleScheduling thus deals
with task progression, whereas the overall task management shall be addressed by
a middleware approach. Figure 8.1 visualizes the relationships of design activities,
properties, and dedicated countermeasure construction methods.

168 S.A. Huss and M. Stottinger

Formal description

Function

[
| Basic design
: Design properties

|
process steps |
|
1

Mutating methods

Scheduling <«— Progression of tasks FlexibleScheduling
1

Binding «—— Degree of parallelism DynamicBinding
1

Algorithm

Task

abstraction
Hardware
dependency

Basic

operation Allocation <«— Type of processing unit OnlineAllocation

Fig. 8.1 Layer model for design activities, properties, and mutating methods

Hardware/Software co-design seems to be a feasible fundamental approach
according to the discussion outlined above. Both task progression management and
dynamic binding for the selected degree of parallelism are much easier to handle
in software. Only the online allocation of different types of processing units cannot
be assigned to the software partition due to their inherent hardware dependency
thus resulting in a tailored HW/SW architecture on top of the envisaged FPGA
implementation platform.

8.2.2 Online Allocation Method

The overall power consumption of CMOS circuits results to a large extent from
the switching activity of the circuit. More specifically speaking, the various
internal modules, interconnections, and configuration settings of LUTs of the
FPGA platform are the origin of the characteristic controlled transient effects or
glitches. Therefore, different implementations of the same basic operation within
a cryptographic algorithm clearly influence the exploitable power consumption
signature because of their also distinct switching activities. The statistical properties
of the data-dependent power consumption in terms of mean and variance are
thereby strongly affected by the characteristics of the glitches of the circuit. In
case of a static design this property is relatively vulnerable to passive side-channel
attacks, cf. [5, 11, 12, 21]. These attacks exploit the unique distribution of the
power consumption signature. One possibility to compare the power consumption
signature of different design variants featuring the same functionality is to produce
a scatter plot like in Fig. 8.2.

In this figure we visualize the power consumption of four different designs of
an SBox operation. Each of these circuits consists of one 8-bit register and one of
the four different 8-bit AES SBox designs known as COMP, PPRM1, PPMR3, and
TBL, respectively. On the x-axis the power consumption value of SBox design A at
point in time ¢ is displayed. The y-axis marks the related value of SBox design B.
This example clearly indicates the difference in the exploitable power consumption

8 Mutating Runtime Architecture Against Side-Channel Attacks 169

Fig. 8.2 Scatter plot of the - - ’
power consumption of Q:ZPOT/I'\IT—_ Bl? PPPPIEI\'>I/| 13
different SBox design _1.0039} A-PPRM1 — B-TBL
variants % o ACCOMP - B:PPRM3

5 1.002F Rt

c ¥

S e

s 2o

S 1r %

3

(2]

c

8

< 0.998f

[

2

g N

0.9961} v

0.9961 0.998 1 1.002 1.0039
Power consumption of A [W]

signature of design variants. Both variant-specific characteristics, i.e., the LUT
configuration and the interconnect architecture of the LUT on the FPGA platform,
cause different distributions of the power consumption, whereas the distribution
strongly depends on the switching activity. This behavior may well be exploited
as a countermeasure because processing units featuring identical functionality
but different signatures help to minimize the exploitable power characteristics.
However, one has to take into account that a low overall total correlation value
between variants is a necessary, but not a sufficient condition to generate a complex
distribution based on switching randomly between the individual distributions of
different types of units. A more appropriate metric is the total correlation value of
Hamming distance classes between different design variants of the same processing
unit as proposed in [19].

The FPGA technology offers many techniques to take the concept of online
allocation to practice. So, the exchange of processing unit types may be applied
at various places. First, the randomization can be done within the switching
network. Second, it may be applied on platform level by exploiting the partial
reconfiguration features of an FPGA. These techniques differ in the required
amounts of resource consumption and total power consumption as well as of design
time due to the resulting device complexity and the available tool support. One
of the first approaches to replace active units in order to manipulate the overall
power consumption signature is reported in [1, 2]. There, Benini et al. proposed to
utilize two different implementations of a processing unit and to randomly switch
between them by means of a multiplexor. Compared to this work, these authors do
not quantify the power characteristics in terms of statistical properties.

Switching Network A straight-forward approach to reshape the data path at
runtime is to exploit a switching network based on multiplexors. The resulting
advantage is the small amount of time needed to mutate the data path behavior
in terms of its dynamic power consumption. The main drawbacks, however, result

170 S.A. Huss and M. Stottinger

from a considerable enlargement of the data path depth and from a decreased
throughput. A substantial improvement in terms of resource consumption and
throughput is presented in [10]. Here, instead of switching between two complete
processing units to mutate the data path behavior, the randomization addresses
directly the elementary components of the units. A lot of resources on the primitive
layer of the FPGA platform can thus be shared and the unavoidable data path
depth incrementation is under better control. To reach this goal, Madlener et al.
in [10] propose a novel hardened multiplier for GF(2") aimed to public-key ECC
applications denoted as “enhanced Multi-Segment-Karatsuba” (eMSK), which is
an improvement of the Multi-Segment Karatsuba (MSK) multiplier introduced in
[4]. The main advantage of the eMSK scheme is that it combines the efficiency
of the recursive Karatsuba with the flexibility of the MSK scheme. Therefore, the
order of the operations in the sequence strongly affects the power consumption
due to a randomization in both time and amplitude domain resulting in an efficient
countermeasure. Consequently, the varying order of the basic multiplication has a
strong impact on the glitches in the combinatorial multiplier logic as well as on
the bit flips in the accumulator. A similar countermeasure applied to the AES block
cipher is proposed in [7], where the technique of composite-field-based SBoxes is
exploited in order to switch between different variants. Such a concept was first
investigated in [3]. Compared to many other masking schemes such as of, e.g., [17],
the data path in [7] does not need to be doubled thus making this countermeasure
suitable even for resource constrained designs.

Partial Reconfiguration Some RAM-based FPGA platforms such as Xilinx Virtex
5 support dynamic partial reconfiguration, a feature which may be exploited for the
purpose of mutating data paths too. Instead of using more active reconfigurable
resources for processing units operating in parallel, partial reconfiguration can be
applied to save on resources. The data path depth increases not that much compared
to a switching network and the resulting total power consumption is lower.

8.2.3 DynamicBinding Method

The property degree of parallelism influences the time-dependent amount of noise
due to concurrently operating processing units. Therefore, the variance of the power
consumption at a certain point in time is being manipulated. Variance manipulation
strongly compromises the learning phase of a template attack, in which an attacker
tries to establish a multivariable Gaussian-based model for the noise distribution.
In addition, a dynamic activation of several processing units working in parallel
also affects the noise characteristics of the measured power consumption. One
efficient method to provide a dynamic binding of resources stems from the concept
of virtualizing hardware components. Virtualization may be seen as an abstraction
layer, which changes during runtime the link between a processing unit and an
assigned task. Therefore, different tasks, which are bound to one or two multiple

8 Mutating Runtime Architecture Against Side-Channel Attacks 171

Algorithm 8.3: RanParExec algorithm

Require: a given set of n processing units of m different types PUy = {PU[lypes,

PUS™,... PUYP®} with PUP*= {PU', PU2, ... ,PU™}, 1< k < n and two equal
distributed random variables Ry = {1,2,...,m}, R, = {1,2,...,n}

1: for I<w <udo
2: select a realization of the random variable r| y, <— R;
3: assign each oppy,y to the processing unit type PU"
4: end for
5: repeat
6: repeat
7 select a realization of the random variable r, <— R
8: until r,,) < number of currently in parallel executing oppy,w+
9: Execute the following k operations in parallel
10: for 1 <k <rqu,)do
11: execute oppyx With the assigned processing Unit PU
12: end for
130 w=w+rg,
14: until w > u
15: return

resources, can be shared or reordered. This kind of context switching on a processing
unit may be handled transparently and does not need any modification of the
scheduled task sequence within a cryptographic algorithm.

Random Concurrent Binding In this approach the number of units running in
parallel varies as well as the binding of an operation to a specific unit. Therefore,
several random combinations of unit types as provided by the method OnlineAlloca-
tion featuring different degrees of parallelism and bindings may thus be generated.
Algorithm 8.3 named RanParExec illustrates this randomization technique denoted
in pseudocode.

Virtualization Hardware virtualization is a method to abstract and decouple the
executing hardware platform from the allocated algorithms. The virtualization
technique presented in [20] exploits hardware components of the underlying FPGA
platform and is taken as the basis for the approach of this work. A virtualized
component may be shared by one or more tasks of a procedure or even of a complete
algorithm. This component is addressed individually by the utilizing task set. But
this task set allocates the hardware resource without any knowledge on whether it is
being shared with a disjoint set of tasks.

Middleware Concept The application of virtualization between the executing
processing units and the sequence of tasks based on the control and data flow can be
established by an intermediate layer. It features almost the same functionalities as
the so-called Middleware, a commonly used concept in the distributed computing
domain. Thus, this concept may be viewed as an additional executive layer to

172 S.A. Huss and M. Stottinger

Not Virtualizable
Data Path ALU
A
o o |
Communication Bus 7y A 7 - .: |
\ \ \ | :
Distributed Memory Memory Memory Memory - —

UL
1 T 1 T 1 TT |

Virtualization DBus

Processing Elements ModMut. ModMult. ModMult.
I— S— I—
|| | |
T T T T T T T [Ready
tn + TEEAS
Virtualization CBus — ————— :— + ————————— :—#— ———————— -:- | -
[1| |
| | |
| ? | ? | ? T * *
T » - Start : [
—————————— Dttt SR [
Opclode :

Command - | Controller |———

Fig. 8.3 Virtualized public-key ECC cipher architecture [20]

apply the method of virtualization for the outlined DynamicBinding method and has
the administrative duty to organize the required links between tasks and executing
resources. Figure 8.3 illustrates the outlined combined hardware virtualization and
middleware approach applied to an ECC cipher architecture.

8.2.4 FlexibleScheduling Method

The last design property of Fig. 8.2 named progression of tasks is being addressed
by FlexibleScheduling, which is the final method introduced to further enhance
the MRA by additional countermeasures. FlexibleScheduling is thus intended
to directly change the execution behavior of the tasks within the cryptographic
algorithm during runtime, which affects considerably the physical behavior of the
implementation. The impact on the power consumption signature due to progression

8 Mutating Runtime Architecture Against Side-Channel Attacks 173

AES algorithm Increase round
counter

. Routine II: .
Routine I: . f Routine Il
first round intermediate yes » 1 i round
roundf

Basic operations ‘ @ ‘ ‘

(a) Control flow of the AES algorithm

T Routine | Routinel

X X
T11 Routine Ill Routine Il

Time Progression of tasks variation A Progression of tasks variation B

RK := AddRoundKey SB := SBox SR := ShiftRows MX := MixColumn

(b) Example of rearranged basic operations in a routine

Fig. 8.4 Rearrangement of operations by routine (re)shaping within AES. (a) Control flow of the
AES algorithm. (b) Example of rearranged basic operations in a routine

of tasks is comparable to the commonly used method of shuffling independent oper-
ations in a cryptographic algorithm, if the granularity of processed operations per
clock cycle does not change. Therefore, FlexibleScheduling decomposes a routine
such that only the sequence of data-independent basic operations within the routine
is being manipulated. The increased analysis effort for attacking a cryptographic
module, which shuffles its data-independent operations, is well known [13]. Some
interesting effects of FlexibleScheduling are illustrated in Fig. 8.4.

Most cryptographic algorithms are constructed either from basic operations
or exploit other cryptographic functions, which are in turn composed of such
operations. For instance, most block cipher algorithms such as AES or PRESENT
are round oriented schemes. As illustrated in Fig. 8.4a, each different round function
of AES can be implemented in its own routine, which utilizes a set of basic
operations. Each of the three routines can be manipulated in terms of its physical
behavior by means of different basic operations executed in one clock cycle without
needing to change neither the number of bits processed in parallel nor the circuit-
level implementation of these operations. In this example the basic operation of
the SBox is handled by a mutable processing unit, which can be reallocated online
while the device is active. In addition, the number of SBoxes operating in parallel

174 S.A. Huss and M. Stottinger

may be modified by a dynamic binding. As the rearrangement example in Fig. 8.4b
demonstrates, the first round of AES, which is one of the two most common
targets of a power analysis attack, can be merged with some basic operations of the
second one. Therefore, the number of operations executed within one clock cycle is
modified from the original scenario depicted on the left-hand side of Fig. 8.4b to the
rearranged routine shown on the right-hand side. The power consumption signature
is being disturbed by the sum of Gaussian distributions caused by operations being
active during one clock cycle over the observed set of experiments featuring a
varying operational activity. Thus, the resulting complex joint distribution acts as
an additional countermeasure because it combines effects stemming both from
manipulations by means of DynamicBinding and from the exchange of unit types
resulting from OnlineAllocation.

8.3 Design Flow

The overall design flow for a Mutating Runtime Architecture results from the
outlined design strategy and is illustrated in Fig. 8.5. Starting from a given crypto-
graphic algorithm, a HW/SW partitioning needs to be done first such that procedures
dominating the control flow of the algorithm are assigned to the software partition
and the basic operations are grouped to form the hardware partition. Tasks composed
mainly from basic operations should be mapped to software too in order to better
utilize the hardware resources in the data path.

The information clustered in the software partition forms the basis for establish-
ing various schedules by utilizing FlexibleScheduling. This method can be used to
decompose routines or to rearrange procedures within a routine too. In contrast,
OnlineAllocation and DynamicBinding address the hardware partition. First, the
basic operation executed on a processing unit with the most exploitable power
consumption oppy needs to be identified. The units aimed to run the other basic
operations can be implemented directly on the target FPGA as depicted in the lower
part of Fig. 8.5. The generated schedules are then analyzed in order to identify the
amount of oppy usage. After this step, DynamicBinding produces the virtualization
schemes. They are utilized in the sequel to construct the related virtualization
module. The processing of the schemes for OnlineAllocation, FlexibleScheduling,
and DynamicBinding can be conducted concurrently.

In the end, after these construction methods have jointly generated multiple
countermeasures, all required components are assembled into the MRA featuring
a virtualization module and various types of processing units. The randomization
of the active processing units is handled directly by the middleware, i.e., the
virtualization module, via a switching network or, if applicable, by exploiting a
partial reconfiguration of the target FPGA platform.

8 Mutating Runtime Architecture Against Side-Channel Attacks 175
Cryptographic
algorithm
Partition algorithm
into sw & hw
Software | | Hardware
partition partition
Select operation with the
‘} probably most exploitable
power consumption
Partition the control
flow into routines
£
8 OPpy
©
2
©
2)
= Generate different Investigate
5 schedules of routines processing units
E for recomposition performing oppy
(=}
= A\
o
T Analyze the
k=J schedules
(7]
j]
a
Design types of
Generate processing unit
"—\ virtualization
Generate different schemes
schedules of routines
for rearrangement) Evaluate
implementations with
absolute correlation
Generate micro-
programs .
1
- ! I 8
: o emy e e e e e E , - l
1
Download | 3 E i i
1 - Il
i l Design A Y ' |
1
v Middleware | _ % ! |
o - | unit [T , v
2 = 7| Micro- Design B
3] Program . > |
k9] memory machine I %
5 (VLIW) - =
< Design C |
A
| Y |
Shared - Other
| memory | processing units |
Implementation of the l

=3

cryptographic algorithm

l Mutating data path

Fig. 8.5 Design flow for and outline of the Mutating Runtime Architecture

8.4 Case Study: Block Cipher AES 128-Bit

In this section we present the application of the proposed concept on the well-
known symmetric-key AES algorithm. The hardened design will from now on be
referred to as AES Mutate. One property of the advocated MRA is the manipulation

176 S.A. Huss and M. Stottinger

of in-parallel processed data, therefore the envisaged architecture of AES Mutate
shall support a round-based as well as a non-round-based implementation style.
The four basic operations of AES need to be modularized into efficient hardware
components in order to support a 128-bit as well as some smaller word width
processing. Therefore, the key scheduler has to be able to produce a complete new
round key every clock cycle. An additional port is needed to attach a source of
entropy in order to enable to mutate the block cipher non-deterministically.

8.4.1 Partitioning of the AES Modules

The generic MRA outlined in the lower part of Fig. 8.5 needs now to be adapted and
refined according to the requirements of AES Mutate. An overview of the HW/SW
partitioning of AES Mutate and the role of construction methods are illustrated
in Fig.8.6. As visible from this figure the software partition located on the left-
hand side controls both the data flow within and the configuration of the cipher.
Therefore, from a controlling point of view, the behavior in terms of reconfiguring
the system and executing an encryption task is easy to adapt. The VLIW opcode
for the configuration of the data path as well as the opcode to control the basic
operations for an encryption are implemented in hardware and are stored in the
program memory. A RAM module of the FPGA platform can be utilized for this
purpose. Then, a tiny micro-machine addresses this memory in the scheduled order.
The functionality of the middleware is separated into a software part, embedded into
the micro-machine, and into a hardware part. The software part of the middleware
manages the control flow and the execution order in case of changing the binding.
The hardware part consists of the reconfigurable data path, whereas the basic

Plaintext —> Configurable data = Ciphertext
Control path
)}
]
]
]
. N i
Random > Micro-machine Configuration

number with middleware F----=-)

A

Roundkey
\ |

Program | Control > Configurable key
memory scheduler

Fig. 8.6 Countermeasure construction methods and HW/SW partitions of AES Mutate

8 Mutating Runtime Architecture Against Side-Channel Attacks 177

operations for executing a round operation are embodied as hardware components.
The required operations for expanding the secret key according to the round key
are grouped into the hardware partition too. The hardware partition of the key
scheduler located on the lower right-hand side of Fig. 8.6 is reconfigurable too, so
that the variation of the round execution in terms of processing intermediate values
in parallel or of execution length, respectively, does not affect the computational
correctness of the result.

The design-specific reasons for partitioning the functionalities of the mutating
procedure in this way are directly visible from Fig.8.6. The interface between
the construction methods FlexibleScheduling and OnlineAllocation provides the
DynamicBinding functionality. This functionality in turn is realized jointly by
components of the micro-machine and by architecture entities within both the data
path and the key scheduler. More specifically speaking, middleware components are
used to put in place DynamicBinding as the central modification instance according
to the design flow of Fig. 8.5.

8.4.2 Implementation

In the sequel the implementation procedure of the block cipher is being detailed.
First, the attack threat on AES is discussed in order to identify, which basic
operation is most vulnerable due to its power consumption signature and thus has
to be secured. Based on this discussion the different properties of the mutating
architecture are reasoned in order to identify the parts of the data path, which have to
be reconfigurable to increase the effort of a power analysis attack. The development
of the cipher follows the generic design flow and exercises all proposed construction
methods in order to harden the design by multiple countermeasures.

8.4.2.1 Design Requirements

The mutating architecture of the block cipher shall fulfill the following requirements
and features:

» Executing of the SBox operation on quite different implementations

* Dynamically changing the degree of in-parallel processing SBox units
* Merging round operations into one clock cycle

* Manipulating the word width being processed during a clock cycle

* Randomizing the state representation in the shared memory.

The SBox operation is selected as the target of OnlineAllocation as well as for
DynamicBinding, because it is the most vulnerable operation in two of three round
operations. In the studied attack scenarios in [19], the SBox operation was the
central element to determine the estimated exploitable power consumption of the
whole block cipher. It is a bijective operation with a high amount of diffusion and,

178 S.A. Huss and M. Stottinger

as reported in [15], it has the highest power consumption of all the basic operations
of the AES. There is a wealth of various kinds of implementations of SBox units
reported in literature featuring different design-specific characteristics, cf. [15, 18],
which may be exploited to manipulate the power consumption of the operation.

Due to the higher power consumption of in-parallel processing SBox variants
the variance of the power signature is enlarged. Thus, the SNR of extractable
information within the captured power traces will decrease and thereby increase
the attacking effort. Varying the number of operations per clock cycle and merging
round operations (routines of the AES, cf. Fig. 8.4) are means to hide the amount of
concurrently active processing SBoxes. In this context FlexibleScheduling may be
seen as a combination of Shuffling [13] and Temporal Jitter countermeasures [14].
The last point in the list above is intended to prevent an exploitation of the XOR
operation by kind of a randomized Register Pre-charging and Shuffling.

8.4.2.2 Data Path Architecture

Figure 8.7 provides an overview on the structure of the data path. As mentioned
before the data path for the transformation of the plaintext to the ciphertext (upper
circuit part) and the data path for the key expansion (lower circuit part) have to be
mutable. The required degree of in-parallel data processed per clock cycle is scalable
in byte-wise steps from 8 bit up to 128 bit. The key scheduler circuit is extended by
a multiplexor in order to switch between either the updated bytes of the round key
value or the previous bytes of the round key. Thus, the key scheduler can process
in-parallel the next round key on 128 bit at once or in 96, 64, or 32 bit wide chunks.

We selected a set of AES SBox implementations with different physical behavior
and power signatures for usage in the P-units of Fig. 8.7. For the choice of SBox
types we followed the recommendation in [19] due to the outlined evaluation
and a mature selection process. In order to save space on the FPGA platform, a
concurrent SBox management is in place to exchange the SBox type of each byte
section of the AES: The virtualization method discussed above is used to change
the binding between the state register and the SBox implementations in addition to
partial reconfiguration. So, not every SBox in the data path needs to be partially
reconfigurable as depicted in Fig. 8.5. This design decision helps to save resources
and execution time.

The challenge of changing the degree of in-parallel processed data through the
SBox unit stems from the entangled data dependency between columns and rows of
the AES round state matrix. The SBox is embedded in the so-called P-unit, which
also offers the functionality of the AES specific basic operations MixColumn and
AddRoundkey as well as a bypass operation. The P-units work on the columns of the
matrix and they are interconnected by a reconfigurable ShiftRows (RSR) function
in order to process the complete state matrix. The RSR can shift each byte of a
row from one byte to the right up to two bytes on the left as well as bypass the
shift operation in order to maintain the word position of the four bytes in the rows.
This unit can also be used to either shuffle the state representation on-the-fly

8 Mutating Runtime Architecture Against Side-Channel Attacks 179

v Teontig| ¥ Meoniig| v Teontig| Feomia}
[Fo | R4 [Rs | R12
_r _r _r _r > RSR
| config |
I S I g R O I | O
£ E E E
o & iR e E S IR P Output
L L U e
T T J_ T | Input
- |1 I I Reconfig. control
=3 RSR
1 €
|l 8 | EN_stage
YY) < Key
I

Xxor
1
e e———e——=—=====z=z=c=c-z==z=z=z=ZZl!!

Fig. 8.7 Schematic of the AES Mutate data path

or to change the binding to a specific SBox instance. In case of shuffling the
state, the subkeys have also to be shuffled in the same order. Thus, an additional
RSR unit is located between the P-units and the key scheduler. Therefore, the
state randomization can be inserted within a round operation without needing any
additional clock cycles for the reconstruction of the original value of the state
register position.

The AddRoundkey function is merged with the MixColumn function to the so-
called MXOR, which is configurable so as to perform the MixColumn operation
followed by an XOR operation for the AddRoundkey functionality or just to
execute an XOR. Thus, the P-unit provides three functionalities, which can either
be performed in a combination at any level or may be executed individually,' and a
bypass functionality. In order to support the partial reconfiguration on the Virtex 5
platform at moderate costs in terms of resources and execution time, the so-called
reconfigurable P-unit (rP-unit) is added to this data path instead of a forth P-unit,

1SBox, MixColumn, AddRoundkey.

180 S.A. Huss and M. Stottinger

cf. Fig. 8.7. The rP-unit features an additional layer of multiplexors aimed to route
data between the partial reconfigurable areas of the SBox. While one reconfigurable
area is being updated with a new configuration, the other one continues to execute
the SBox operation.

8.4.2.3 Virtualization Scheme

As mentioned in Sect. 8.4.1, the data flow routing functionality of the middleware
is embedded in the data path. A virtualization of this design can be conducted by
utilizing the RSR units to reroute or to shuffle the content of the register states.
Thereby, different SBox implementations may be utilized for each byte-width
entry of the AES state matrix in case each P-unit/rP-unit instance features SBox
implementation variants. The configuration settings of the P-unit/rP-unit are the
second control element supporting the virtualization in order to realize the method
DynamicBinding. Due to these settings the amount of in-parallel working SBoxes
per clock cycle can be controlled.

As visible from Fig. 8.6 a micro-machine is part of AES Mutate, which executes a
tailored VLIW opcode command set for controlling the configuration settings of the
P-units/rP-unit as well as of the RSR units. Due to a flexible VLIW programming
environment and the associated hardware architecture of the middleware this
functionality is embedded into the data path. The outlined virtualization provides
a suitable interface between the DynamicBinding and FlexibleScheduling methods.
The configuration settings for a P-unit/rP-unit can be used in addition to modify the
amount of in-parallel working hardware components. For instance, the execution of
multiple XOR operations can be manipulated in terms of the degree of in-parallel
working XORs as well as the amount of basic AES operations executed within one
clock cycle.

8.4.2.4 Merging Round and Routines

The modularized, flexible, and reconfigurable HW/SW architecture of AES Mutate
is able to randomize the execution of every basic AES operation, because an
application of FlexibleScheduling offers the ability to modify the degree of in-
parallel working processing units of all basic AES operations. The width of the data
path is adaptable for all operations resulting in 32, 64, 96, and 128 bit, respectively,
processed within one clock cycle. The layout of the micro-machine in combination
with the embedded middleware infrastructure present in the data path provides
a flexible rescheduling feature via VLIW operations, which are independent of
the current data path processing width setting. Therefore, the number of data-
dependent operations processed within one clock cycle is randomizable and, thus,
basic operations of different AES round operations can be merged.

The rescheduling of the AES encryption results from utilizing small micro-
programs, which contain just one or few 36 bit wide VLIW opcode commands.
Each round or merged round operation is represented by such a micro-program.

8 Mutating Runtime Architecture Against Side-Channel Attacks 181

Within one clock cycle the opcode controls the processing units of the basic AES
operations and sets the configuration of the data path. Thus, the variable word width
of the data path is defined by just an opcode command.

The MSB bit of the opcode is used as a delimiter in order to identify the end
of a round operation. Therefore, a complete AES encryption can be composed
from randomly selecting different micro-programs for each round operation of the
AES algorithm. The lower 32 bits of the opcode are used to reconfigure the data
path during runtime in order to randomize the overall power consumption. These
micro-programs are therefore more or less reconfiguration settings aimed to change
dynamically the architecture of the data path. This context-based reconfiguration
approach was chosen because the partial reconfiguration scheme offered by the
Xilinx, Inc. design flow takes from our perspective too much time to complete.
Therefore, we decided to aim for a reasonable tradeoff by using only one rP-unit
next to three P-units and a modular micro-programming approach instead.

8.4.3 Side-Channel Analysis Results

We compare the results gained from the hardened cipher to those of an unprotected
implementation in order to emphasize the additional effort of attacking the secured
design by means of a passive power analysis. The unprotected implementation is
a round-based operating AES scheme implementation applying the COMP SBox
variant and is denoted as AES COMP. The resulting block cipher processes 128 bits
per clock cycle. The evaluation was conducted with 500,000 power traces in total,
which were captured from the SASEBO-GII board. In case of the analysis of the
AES Mutate design an additional trivium stream cipher [16] is introduced aimed to
produce the random input data.

For a comparison of the side-channel resistance properties of AES Mutate and
AES COMP the leakage of the SBox computation of the first round was analyzed.
As analysis method we selected the Stochastic Approach [8], because it is a
powerful profiling method that exploits the leakage at best by means of a self-
learning linear regression model. We analyzed 450,000 power traces with random
plaintext in the profiling phase to build the linear model. Then we captured 50,000
additional traces from the same device for the attack phase. Using the same device
for both the profiling and the attack phase of a template-based analysis represents
the optimal case for an attacker and, hence, should yield as the evaluation result
the lower bound of security in terms of side-channel resistance. As distinguisher
and evaluation metric for detecting exploitable leakage we applied the SNR-metric
introduced in [19].

Figure 8.8 depicts the results of the side-channel analysis of these implemen-
tation variants on top of the Xilinx Virtex 5 platform. The figure visualizes the
amount of correctly revealed secret key bytes over the number of required traces
during the attack phase. One can easily derive from this figure that the first correct
subkeys extracted from the unprotected AES COMP design were unveiled after
just a few hundred traces and all secret subkeys were recovered after using 17,780
traces in total. The attack result of the AES Mutate design hardened by multiple

182 S.A. Huss and M. Stottinger

—— AES COMP _
—— AES Mutate -

Number of correct subkeys

| R [TT 1 i
L L L L L L L L L L L L L L L L L L L

0 02505075 1 12515175 2 22525275 3 32535375 4 42545475 5

Number of traces x 10°

O—=NWHrOION®O©

Fig. 8.8 Comparison of the analysis results of AES COMP and AES Mutate ciphers

countermeasures shows in contrast an unstable extraction of just one out of 16
subkeys. Hence, the secret key keeps its strength during the attack phase for the
complete set of applied traces. The unstable analysis result nicely indicates that
the advocated concept of mutating cipher architectures works very well in order
to generate a wide noise distribution intended to protect the real key-characteristic
distribution.

8.5 Summary

We presented in this chapter a novel technique to secure cryptographic modules
of embedded systems against power analysis attacks, which form the most popular
class of passive, non-invasive SCA strategies. Taking the inherent reconfiguration
properties of FPGAs and the generic design methodology of computing systems as
foundations, we first introduced construction methods for multiple countermeasures
and presented subsequently a Mutating Runtime Architecture, which is well-suited
to harden quite different cipher types. We then detailed as proof of concept a
case study aimed to secure an FPGA implementation of the AES algorithm and
highlighted the advantage of an automatic generation of multiple countermeasures.

Acknowledgements This work was funded in part by DFG, the German science foundation,
under grant no. HU620/12 within the DFG Priority Programme 1148 “Reconfigurable Computing
Systems” in cooperation with CASED.

8 Mutating Runtime Architecture Against Side-Channel Attacks 183

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

L. Benini, A. Macii, E. Macii, E. Omerbegovic, M. Poncino, F. Pro, A novel archi-
tecture for power maskable arithmetic units, in GLSVLSI (ACM, New York, 2003),
pp. 136-140

. L. Benini, A. Macii, E. Macii, E. Omerbegovic, F. Pro, M. Poncino, Energy-aware design

techniques for differential power analysis protection, in DAC (ACM, New York, 2003),
pp. 3641

. D. Canright, A very compact Rijndael S-Box. Technical Report, Naval Postgraduate School

(2005)

. M. Ermnst, M. Jung, F. Madlener, S.A. Huss, R. Bliimel, A reconfigurable system on chip

implementation for elliptic curve cryptography over GF(2"), in CHES. Lecture Notes in
Computer Science, vol. 2523 (Springer, Berlin, 2002), pp. 381-399

. W. Fischer, B.M. Gammel, Masking at gate level in the presence of glitches. in CHES, ed. by

J.R. Rao, B. Sunar. Lecture Notes in Computer Science, vol. 3659 (Springer, Berlin, 2005),
pp. 187-200

. D.D. Gajski, S. Abdi, A. Gerstlauer, G. Schirner, Embedded System Design: Modeling,

Synthesis and Verification, 1st edn. (Springer, Berlin, 2009)

. B. Jungk, M. Stéttinger, J. Gampe, S. Reith, S.A. Huss, Side-channel resistant AES architecture

utilizing randomized composite-field representations, in FPT (IEEE, New York, 2012),
pp. 125-128

. M. Kasper, W. Schindler, M. Stéttinger, A stochastic method for security evaluation of

cryptographic FPGA implementations, in FPT ed. by J. Bian, Q. Zhou, P. Athanas, Y. Ha,
K. Zhao (IEEE, New York, 2010), pp. 146-153

. P.C. Kocher, J. Jaffe, B. Jun, Differential power analysis, in CRYPTO 99, ed. by M.J. Wiener.

Lecture Notes in Computer Science, vol. 1666 (Springer, Berlin, 1999), pp. 388-397

F. Madlener, M. Stottinger, S.A. Huss, Novel hardening techniques against differential power
analysis for multiplication in GF(2"), in FPT (IEEE, New York, 2009)

S. Mangard, T. Popp, B.M. Gammel, Side-channel leakage of masked CMOS gates, in CT-RSA,
ed. by A. Menezes. Lecture Notes in Computer Science, vol. 3376 (Springer, Berlin, 2005),
pp. 351-365

S. Mangard, N. Pramstaller, E. Oswald, Successfully attacking masked AES hardware
implementations, in CHES, ed. by J.R. Rao, B. Sunar. Lecture Notes in Computer Science,
vol. 3659 (Springer, Berlin, 2005), pp. 157-171

S. Mangard, T. Popp, M.E. Oswald, Power Analysis Attacks - Revealing the Secrets of Smart
Cards (Springer, Berlin, 2007)

N. Mentens, B. Gierlichs, I. Verbauwhede, Power and fault analysis resistance in hardware
through dynamic reconfiguration, in CHES, ed. by E. Oswald, P. Rohatgi. Lecture Notes in
Computer Science, vol. 5154 (Springer, Berlin, 2008), pp. 346-362

S. Morioka, A. Satoh, An optimized S-box circuit architecture for low power AES design,
in CHES, ed. by B.S.K. Cetin Kaya Kog Jr., C. Paar. Lecture Notes in Computer Science,
vol. 2523 (2002), pp. 172-186

C. Paar, J. Pelzl, Understanding Cryptography - A Textbook for Students and Practitioners
(Springer, Berlin, 2010)

F. Regazzoni, W. Yi, FEX. Standaert, FPGA implementations of the AES masked against power
analysis attacks, in COSADE (2011), pp. 55-66

A. Satoh, S. Morioka, K. Takano, S. Munetoh, A compact Rijndael hardware architecture with
S-Box optimization, in ASTACRYPT, ed. by C. Boyd. Lecture Notes in Computer Science, vol.
2248 (Springer, Berlin, 2001), pp. 239-254

M. Stéttinger, Mutating runtime architectures as a countermeasure against power analysis
attacks. PhD thesis, Technische Universitat Darmstadt (2012)

184 S.A. Huss and M. Stottinger

20. M. Stéttinger, A. Biedermann, S.A. Huss, Virtualization within a parallel array of homoge-
neous processing units, in ARC, ed. by P. Sirisuk, F. Morgan, T.A. El-Ghazawi, H. Amano.
Lecture Notes in Computer Science, vol. 5992 (Springer, Berlin, 2010), pp. 17-28

21. T. Sugawara, N. Homma, T. Aoki, A. Satoh, Differential power analysis of AES
ASIC implementations with various S-box circuits, in ECCTD (IEEE, New York, 2009),
pp. 395-398

Part IV
Security and Trust Validation

Chapter 9
Validation of IP Security and Trust

Farimah Farahmandi and Prabhat Mishra

9.1 Introduction

Hardware Trojans are small malicious components added to the circuit. They
are designed in a way that they are inactive most of the run-time, however, they
change the functionality of the design or defeat the trustworthiness of it by leaking
valuable information when they are triggered. Hardware Trojans can be categorized
into two architectural types: combinational and sequential. A combinational Trojan
is activated based on specific conditions and assignments on a portion of internal
signals or flip-flops. On the other hand, sequential Trojans are small finite state
machines that are activated based on a specific sequence. Each hardware Trojan
consists of trigger and payload parts. Trigger is responsible for producing (activat-
ing) a set of specific conditions to activate the undesired functionality. Payload part
is responsible for propagating the effect of the malicious activity to the observable
outputs.

There are a wide variety of Trojans and they may be inserted during different
phases such as specification time by changing timing characteristics or in design
time by reusing untrusted available IPs offered by third parties or in fabrication time
by altering the mask sets. However, it is more likely that Trojans are inserted during
design time than manufacturing time as the attacker has better understanding of the
design and can design trigger conditions as extremely rare events.

It is difficult to construct a fault model to characterize Trojan’s behavior.
Moreover, Trojans are designed in a way that they can be activated under very
rare conditions and they are hard to detect. As a result, existing testing methods
are impractical to detect hardware Trojans. There are several run-time remedies

F. Farahmandi (P<) ¢ P. Mishra

Department of Computer and Information Science and Engineering, University of Florida,
Gainesville, FL, USA

e-mail: ffarahmandi @ufl.edu; prabhat@ufl.edu

© Springer International Publishing AG 2017 187
P. Mishra et al. (eds.), Hardware IP Security and Trust,
DOI 10.1007/978-3-319-49025-0_9

mailto:ffarahmandi@ufl.edu
mailto:prabhat@ufl.edu

188 F. Farahmandi and P. Mishra

SoC Design Flow

Specification Design Synthesize Physical Design Fabrication

Smor @l B e
Tt 1 1

IP Trust Validation (Functional Validation)
Equivalence Simulation-based Model
Checking Validation Checking

Fig. 9.1 Security validation flow. IPs used in SoC design should be validated against functional
metrics using different methods such as equivalence checking, simulation-based validation, and
model checking to insure security properties (nothing more, nothing less)

including disable backdoor triggers [27, 29], unused component identification [28],
and run-time monitor of some design properties violence.

A major concern with the hardware IPs acquired from external sources (third
party IP) is that they may come with deliberate malicious implants to incorporate
undesired functionality, undocumented test/debug interface working as hidden back-
door, or other integrity issues. Therefore, security validation to identify untrusted IPs
is critical part of the design process of digital circuits. Figure 9.1 shows that security
validation should be done in different phases of SoC design to identify malicious
functionality which may come from untrusted third party vendors.

There are several approaches focused on logic testing and pre-silicon validation
efforts in order to detect and activate the potential hardware Trojans. These
methods are described in Sect. 9.2. We review trust validation techniques based on
equivalence checking in Sect. 9.3. Finally, model checking-based trust validation is
outlined in Sect. 9.4.

9.2 Logic Testing for Trojan Detection

Several approaches are focused on generation of guided test vectors and compare
the produced primary outputs with golden/expected outputs to detect and activate
hardware Trojans. Traditional test generation techniques may not be beneficial
as Trojans are designed in a way that they will be activated under very rare sequences
of the inputs. In this section, we review simulation-based validation approaches
including rare-node activation, redundant circuit detection, N-detect ATPG, and
code coverage techniques as it is shown in Fig. 9.2.

9 Validation of IP Security and Trust 189

Fig. 9.2 Simulation-based
validation for Trojan
detection

Redundant
Circuit
Detection

N-Detect ATP

Rare-Node
Activation

Logic
Testing

9.2.1 Utilization Rarely Used Components for Trojan Detection

Unused Circuit Identification (UCI) algorithm is proposed by Hicks et al. [15] to
report redundant components in pre-silicon verification time based on data flow
dependencies of the design. The authors believed that these components can be
used by an attacker to insert malicious functionality as they want to make sure
that the inserted Trojan cannot be revealed during pre-silicon verification. To detect
the hardware Trojans, the UCI algorithm identifies the signal pairs that they have
the same source and sink first. Then, it simulates the HDL netlist with verification
tests to find unused circuits that they do not affect on primary outputs and the UCI
algorithm deactivates those unused pairs. However, the authors showed in their later
work that there are many other types of malicious circuits that do not exhibit the
hidden behavior and UCI algorithm cannot detect them [25].

Run-time solutions increase the circuit complexities and designers try to come
up with efficient off-chip validation approaches to measure the trustworthiness of
designs. Waksman et al. [28] proposed a pre-fabrication method to flag almost
unused logic components based on their Boolean functions and their control values
(FANCI). The authors believe that the almost-unused logic (rare nodes) will be the
targets of attackers to insert hard-to-detect Trojans as the rare nodes have rarely
impact on the functionality of the design outputs. They construct an approximate
truth table (can also be mapped to vectors) for each internal signal to determine its
effect on primary outputs. They use different heuristics to identify backdoors from
control value vectors. However, this method reports 1-8 % of the total nodes of a
design as potential malicious logic and it may incorrectly flag many as safe gates
(false positives). Moreover, if the design is completely trustworthy, this method still
reports many nodes as suspicious logic.

FANCI sets a probability threshold for trigger conditions and marks every signal
that has lower activation probability than the pre-defined threshold as a suspicious
signal. For example, suppose that the threshold is defined as 2732, If a Trojan trigger
is a 32-bit specific value at a specific clock cycle, the probability of trigger activation
is 2732 and it is marked as malicious signal. DeTrust [32] has introduced a type
of Trojans whose trigger happens across multiple clock cycles so the probability
of their activation is computed higher and FANCI will report them as safe gates
by mistake. For example, if the 32-bit trigger arrives in 8-bit chunks through 4

190 F. Farahmandi and P. Mishra

consecutive clock cycles, FANCI computes the trigger activation probability as 278
and because it is higher than the threshold (2732), it marks them as safe gates.

VeriTrust which is proposed by Zhang et al. [33] tires to find unused or nearly
unused circuits which are not active during verification tests. The method classi-
fies trigger conditions in two categories: bug-based and parasite-based hardware
Trojans. Bug-based Trojan deviates the functionality of the circuit. On the other
hand, parasite-based Trojans add extra functionality to the normal functionality of
the design by introducing new inputs. In order to find the parasite-based trigger
inputs, it first verifies the circuit by the existing verification tests. In the next step,
it finds the entries of design functionality (like entries of Karnaugh-map) that are
not covered during the verification. Then, it sets uncovered entries as don’t cares to
identify redundant inputs. DeTrust [32] introduced a type of Trojans where each of
its gates is driven by a subset of primary inputs. Therefore, VeriTrust cannot detect
this type of Trojan.

9.2.2 ATPG-Based Test Generation for Trojan Detection

In arecent case study [31], code coverage analysis and Automatic Test Pattern Gen-
eration (ATPG) are employed to identify Trojan-inserted circuits from Trojan-free
circuits. The presented method utilizes test vectors to perform formal verification
and code coverage analysis in the first step. If this step cannot detect existence
of the hardware Trojan, some rules are checked to find unused and redundant
circuits. In the next step, the ATPG tool is used to find some patterns to activate
the redundant/dormant Trojans. Code coverage analysis is done over RTL (HDL)
third party IPs to make sure that there are no hard-to-activate events or corner-case
scenarios in the design which may serve as a backdoor of the design and leak the
secret information [1, 31]. However, Trojans may exist in design that have 100 %
code coverage.

Logic testing would be beneficial when it uses efficient test vectors that can
satisfy the Trojan triggering conditions as well as propagate the activation effect
to the observable points such as primary outputs. Therefore, the test can reveal the
existence of the malicious functionality. These kinds of tests are hard to create since
trigger conditions are satisfied after long hours of operation and they are usually
designed with low probability. As a result, traditional use of existing test generation
tools like ATPGs is impractical to produce patterns to activate trigger conditions.
Chakraborty et al. proposed a technique (which is called MERO) to generate tests
to activate rare nodes multiple times [6]. Their goal is to increase the probability
of satisfying trigger conditions to activate Trojans. However, the effect of activation
of trigger conditions caused by MERO tests can be masked as it does not consider
payload when it generates the test. Saha et al. [23] proposed a technique based on
genetic algorithm to guide ATPG tool in order to generate tests that not only activate
Trojan triggers but also propagate the effect using payload nodes. Their goal is to
observe the effect of the Trojan circuit from primary outputs.

9 Validation of IP Security and Trust 191

A Trojan localization method was presented in [1]. The proposed method consists
of four steps. In the first step, the design is simulated using random test vectors
or tests generated by sequential ATPG tool to identify easy-to-detect signals. In
the second step, full scan N-detect ATPG is employed to detect rare nodes. In the
next step, an SAT solver is utilized to perform equivalence checking of suspicious
netlist against the golden netlist to prune the search space of suspicious signals.
Finally, uncovered gates are clustered using region isolation method to find the gates
responsible for malicious functionality. However, as this approach uses SAT solvers,
it fails for large and complex circuits. The method also requires a golden netlist
which is usually hard to get.

Pre-defined templates are used to detect Trust-HUB benchmarks (https:/www.
trust-hub.org/) by Oya et al. [20]. First, a structural template library is constructed
based on existing types of Trojans and their features. In the next step, the templates
are scored based on their structures and whether these structures are observed only in
Trojan circuits. Then a score threshold is defined to classify Trojan-inserted circuits
from Trojan-free circuits. However, this approach may fail when an adversary
inserts new Trojans.

9.3 Trojan Detection Using Equivalence Checking

Equivalence checking is used to formally prove two representations of a circuit
design exhibit exactly the same behavior. From security point of view, verification
of the correct functionality is not enough. The verification engineers have to make
sure that no additional activity exists besides the normal behavior of the circuit. In
other words, it is necessary to make sure that the IP is performing the expected
functionality - nothing more and nothing less [13]. Equivalence checking is a
promising approach to measure the level of trust for a design.

Figure 9.3 shows a traditional approach for performing equivalence checking
using SAT solvers. The primary outputs of specification and implementation are
fed to “xor” gates and the whole design (specification, implementation, and extra
xor gate) are modeled as Boolean formulas (CNF clauses). If the specification
and implementation are equivalent, the output of the xor gate should be always
zero (false). If the output becomes true for any input sequence, it implies that the

Fig. 9.3 Equivalence
checking using SAT solvers

https://www.trust-hub.org/
https://www.trust-hub.org/

192 F. Farahmandi and P. Mishra

specification and the implementation are producing different outputs for the same
input sequence. Therefore, the constructed CNF clauses of the input cone of “O”
are used as an input of an SAT solver to perform equivalence checking. If the
SAT solver finds a satisfiable assignment, the specification and implementation
are not equivalent. SAT solver-based equivalence checking techniques can lead
to state-space explosion when large IP blocks are involved with significantly
different specification and implementation. Similarly, SAT solver-based equivalence
checking approaches fail for complex arithmetic circuits with larger bit-widths
because of bit blasting of arithmetic circuits.

9.3.1 Grobner Basis Theory for Equivalence Checking
of Arithmetic Circuits

A promising direction to address the state-space explosion problem in equivalence
checking of hardware design is to use symbolic computer algebra. Symbolic alge-
braic computation refers to application of mathematical expressions and algorithmic
manipulations methods to solve different problems. Symbolic algebra especially
Grobner basis theory can be used for equivalence checking and hardware Trojan
identification as it formally checks two levels of a design and search for components
that cause mismatch or change the functionality (hardware Trojans).

Computer symbolic algebra is employed for equivalence checking of arithmetic
circuits. The primary goal is to check equivalence between the specification
polynomial f;,e. and gate-level implementation C to find potential malicious func-
tionality. The specification of arithmetic circuit and implementation are formulated
as polynomials. Arithmetic circuits constitute a significant portion of datapath in
signal processing, cryptography, multimedia applications, error root causing codes,
etc. In most of them, arithmetic circuits have a custom structure and can be very
large so the chances of potential malfunction are high. These bugs may cause
unwanted operations as well as security problems like leakage of secret key [3].
Thus, verification of arithmetic circuits is very important.

Using symbolic algebra, the verification problem is mapped as an ideal mem-
bership testing [10, 12, 24]. These methods can be applied on combinational
[18] and sequential [26] Galois Filed F,« arithmetic circuits using Grobner Basis
theory [8] as well as signed/unsigned integer Zy: arithmetic circuits [10, 13, 30].
Another class of techniques are based on functional rewriting [7]. The specification
of arithmetic circuit and implementation are converted to polynomials which
constructs a multivariate ring with coefficients from [F,«. These methods use
Grobner basis and Strong Nullstellent over Galois field to formulate the verification
problem as an ideal membership testing of specification polynomial fq. in the ideal
constructed by circuit polynomials (ideal I). Ideal I can have several generators, one
of these generators is called Grobner basis. First, Grobner basis theory [8] is briefly
described. Next, the application of Grobner basis theory for security verification of
integer arithmetic circuits is presented.

9 Validation of IP Security and Trust 193

Let M = x1“'x* ... x,* be a monomial and f = Ci\M; + CoM;, + - -+ + C:M;
be a polynomial with {cy,cy,...,c} as coefficients and M} > My > --- > M.
Monomial Im(f) = M is called leading monomial and It(f) = C;M; is called
leading term of polynomial f. Let K be a computable field and K[x;, x5, ..., x,]
be a polynomial ring in n variables. Then < fi,fo,....fi >= {d— hfi
hi,hy,....,hs € Klxi,x2,...,x,]} is an ideal I. The set {fi,f>,...,fs} is called
generator or basis of ideal /. If V(I) shows the affine variety (set of all solution
of fif =F, = =f;, =0)ofideal I, I(V) = {f; € K[x1,x2,...,x,] : Yv €
V(I),f;(v) = 0}. Polynomial f; is a member of (V) if it vanishes on V(). Grobner
basis is one of the generators of every ideal / (when [is other than zero) that has a
specific characteristic to answer membership problem of an arbitrary polynomial
f in ideal I. The set G = {g1,g2,...,&:} is called Grobner basis of ideal I, if
Vf; € I,3g; € G : Im(g;)|Im(f;).

The Grobner basis solves the membership testing problem of an ideal using
sequential divisions or reduction. The reduction operation can be formulated as
follows. Polynomial f; can be reducible by polynomial g; if 1t(f;) = C1M; (which is

non-zero) is divisible by It(g;) and r is the remainder (r = f; — ll:g)) .gj)- It can be

denoted by f; . Similarly, f; can be reducible with respect to set G and it can be
represented by f; Enr r.

The set G is Grobner basis ideal [, if Vf € [,f; E)+ 0. Grobner basis can
be computed using Buchberger’s algorithm [4]. Buchberger’s algorithm is shown
in Algorithm 9.1. It makes use of a polynomial reduction technique named S-
polynomial as defined below.

Definition 1 (S-polynomial). Assume f, g € K1, x,,...,x,] are non-zero polyno-
mials. The S-polynomial of f and g (a linear manipulation of f and g) is defined as:
Spoly(f,g) = LCM(%“’;) I]:M(g)) LCM(L%g)*;M(g” , where LCM(a, b) is a notation for
the least common multiple of @ and b.

Algorithm 9.1: Buchberger’s algorithm [4]

1: procedure GROBNER BASIS FINDER

Input: ideal I =< f1, f.,....f; > {0}, initial basis F = {f|.f>, ..., fs}
Output: Grobner Basis G {g1,82,- -, g} for ideal 1

2:

3

4 G=F

5: V=GxG

6: while V # 0do

7: for each pair (f, g) € V do do
8 V=V-(fg

9: Spoly(f,g) =g r
10: if r # 0 then

11: G=GUr

12: V=VU(GXr)

return G

194 F. Farahmandi and P. Mishra

Example 1. Letf = 6%x1* % x2° +24%x,2—x, and g= 2sx12%xy +4%x +2%x3
and we have x; > x, > x3. The S-polynomial of f and g is defined below:

LM(f) = X14 * XQS

LM(g) = x1% % x5’
LCM(x;* % x2°, x12 % 007) = x* % x/

7 4

% % x xtwx

Spoly(f, g) = * f —
poly(f. &) 6 * x14 * xp° 2 % x12 % xp7

1
:4x12*x22— 6 *xz3—2*x12*xz3—x12*X3

|

It is obvious that S-polynomial computation cancels leading terms of the
polynomials. As shown in Algorithm 9.1, Buchberger’s algorithm first calculates all
S-polynomials (lines 7-9 of Algorithm 9.1) and then adds non-zero S-polynomials
to the basis G (line 11). This process repeats until all of the computed S-polynomials
become zero with respect to G. It is obvious that Groebner basis can be extremely
large so its computation may take a long time and it may need large storage memory
as well. The time and space complexity of this algorithm are exponential in terms of
the sum of the total degree of polynomials in F, plus the sum of the lengths of the
polynomials in F [4]. When the size of F increases, the verification process may be
very slow or in the worst-case may be infeasible.

Buchberger’s algorithm is computationally intensive and it may affect the
performance drastically. It has been shown in [5] that if every pair (f;, f;) that belongs
to set F = {fi,f>,...,fs} (generator of ideal I) has a relatively prime leading
monomials (Im(f;).Im(f;}) = LCM(Im(f;).Im(f;))) with respect to order >, the set
F is also Grobner basis of ideal 1.

Based on these observations, efficient equivalence checking between specifica-
tion of an arithmetic circuit and its implementation can be performed as shown in
Fig. 9.4. The major computation steps in Fig. 9.4 are outlined below:

* Assuming a computational field K and a polynomial ring K[x,, x2, . .., x,] (note
that variables {x;,x,,...,x,} are subset of signals in the gate-level implemen-
tation), a polynomial fipee € K[x1,x2,...,x,] representing specification of the
arithmetic circuit can be derived.

* Map the implementation of arithmetic circuit to a set of polynomials that belongs
to K[xy, xa, . .., x,]. The set F generates an ideal /. Note that according to the field
K, some vanishing polynomials that construct ideal Iy may be considered as well.

* Derive an order > in a way that leading monomials of every pair (f;,f;) are
relatively prime. Thus, the generator set F is also Grobner basis G = F. As the
combinational arithmetic circuits are acyclic, the topological order of the signals
in the gate-level implementation can be used.

9 Validation of IP Security and Trust 195

Gate Level

Impiemer?tati_on of Generate Polynomial Set (F) Represent an
the Circuit Ideal |

Compute
Grobner Basis
| (G)
Circuit Reduce fopec
Specification (fspgc) w.r.t G

Remainder
=07

Not Equivalent

Fig. 9.4 Equivalence checking flow

 The final step is reduction of fpec with respect to Grobner basis G and order >. In

. . . G
other words, the verification problem is formulated as fipec —+ 7. The gate-level
circuit C has correctly implemented specification fqp., if the remainder r is equal
to 0. The non-zero remainder implies a bug or Trojan in the implementation.

Galois field arithmetic computation can be seen in Barrett reduction [16],
Mastrovito multiplication, and Montgomery reduction [17] which are critical part
of cryptosystems. In order to apply the method of Fig. 9.4 for verification of Galios
field arithmetic circuits, Strong Nullstellensatz over Galois Fields is used. Galois
field is not an algebraically closed field, so its closure should be used. Strong
Nullstellensatz helps to construct a radical ideal in a way such that I(Vpx) = I + 1.

Ideal I is constructed by using vanishing polynomials xl.zk — x; by considering the
fact that V)c%k € Fy : x%k —x; = 0. As a result, the Grobner basis theory can be

applied on Galois field arithmetic circuits. The method in [18] has extracted circuit
polynomials by converting each gate to a polynomial and SINGULAR [9] has been

used to do the fypec £>+ r computations. Using this method, the verification of
Galois field arithmetic circuits like Mastrovito multipliers with up to 163 bits can be
done in few hours. Some extensions of this method have been proposed in [19]. The

cost of fopec En. r computation has been improved by mapping the computation on
a matrix representing the verification problem, and the computation is performed
using Gaussian elimination.

The Grobner basis theory has been used to verify arithmetic circuits over ring
Z[x1, %2, ..., %,]/2" in [12]. Instead of mapping each gate to a polynomial, the

196 F. Farahmandi and P. Mishra

repetitive components of the circuit are extracted and the whole component is repre-
sented using one polynomial (since arithmetic circuit over ring Z[x1, xa, . .., x,]/2"
contain carry chain, the number of polynomials can be very large). Therefore, the

number of circuit polynomials is decreased. In order to expedite the fpec E)+ r
computation, the polynomials are represented by Horner Expansion Diagrams. The
reduction computation is implemented by sequential division. The verification of
arithmetic circuit over ring Z[x;, X2, ...,x,]/2" up to 128 bit can be efficiently
performed using this method. An extension of this method has been presented in
[10] that is able to significantly reduce the number of polynomials by finding fanout
free regions and representing the whole region by one single polynomial. Similar
to [19], the reduction of specification polynomial with respect to Grobner basis
polynomials is performed by Gaussian elimination resulting in verification time of
few minutes. In all of these methods, when the remainder r is non-zero, it shows
that the specification is not exactly equivalent with the gate-level implementation.
Thus, the non-zero remainder can be analyzed to identify the hidden malfunctions
or Trojans in the system. In this section, the use of one of these approaches for
equivalence checking of integer arithmetic circuits over Zy» is explained. Although
the details are different for Galios Field arithmetic circuits, the major steps are
similar.

9.3.2 Automated Debugging of Functional Trojans Using
Remainders

The previous section describes that a non-zero remainder would be generated if
there is a potential Trojan or bug. This section describes how to debug a Trojan
using the non-zero remainder. To perform verification, the algebraic model of the
implementation is used. In other words, each gate in the implementation is modeled
as a polynomial with integer coefficients and variables from Z, (x € Z; — x*> = x).
Variables can be selected from primary inputs/outputs as well as internal signals in
the implementation. These polynomials are driven in a way that they describe the
functionality of a logic gate. Equation (9.1) shows the corresponding polynomial
of NOT, AND, OR, XOR gates. Note that any complex gate can be modeled as a
combination of these gates and its polynomial can be computed by combining the
equations shown in Eq. (9.1).

71 =NOT(a) > 71 =1—a,

723 = AND(a,b) — z, = a.b,

23 =O0R(a,b) > zz=a+b—a.b,

74 = XOR(a,b) > z4 =a+b—2.a.b

©.1)

9 Validation of IP Security and Trust 197

Finding potential Trojans starts with functional verification. The verification
method is based on transforming specification polynomial (fpec) using information
(polynomials) that are directly extracted from the gate-level implementation. Then,
the transformed specification polynomial is checked to see if the equality to
zero holds. To fulfill the term substitution, the topological order of the circuit
is considered (primary outputs have the highest order and primary inputs have
the lowest). By considering the derived variable ordering, each non-primary input
variable which exists in the fopec is replaced with its equivalent expression based
on corresponding implementation polynomial. Then, the fyp, is achieved and the
process is continued on the updated fpec, , until a zero polynomial or a polynomial
that only contains primary inputs (remainder) is reached. Note that, using a fixed
variable (term) ordering to substitute the terms in the fpcs results in having a
unique remainder [8]. The following example shows the verification process of a
faulty 2-bit multiplier.

Example 2. Suppose, we want to verify a 2-bit multiplier with gate-level netlist
shown in Fig.9.5 to check there is no additional functionality beside the main
functionality in the implementation. Suppose a functional hardware Trojan exists
in the design by putting the OR gate with inputs (A}, By) instead of an AND gate as
in Fig. 9.5. The specification of a 2-bit multiplier is shown by fspec,. The verification
process starts from fgpec, and replaces its terms one by one using information derived
from implementation polynomials as shown in Eq.(9.2). For instance, term 4.7,
from fipec, is replaced with expression (R + O — 2.R.0). The topological order
{Z5, 2} > {Z;,R} > {Zy,M,N,O} > {Ao,A, By, By} is considered to perform
term rewriting. The verification result is shown in Eq. (9.2). Clearly, the remainder
is a non-zero polynomial and it reveals the fact that the implementation is buggy.

|
Sspecy 823 + 4.2y + 2.2y + Zy — 4.A1.B) —2.A1Bg — 2.A9.B1 — Ap.Bo
fspecl :4R+4.0+ 2.21 + Z() — 4.A1.Bl — 2.AlB() — 2.A0.Bl —A().B() (9 2)
Sspee, 1 4.0 +2M +2.N + Zy —4.A1.By —2.A1Bg — 2.A9.B1 — Ap.Bo .
Jfspec, (remainder) : 2.A1 + 2.Bg — 4.A1.By
Fig. 9.5 A Trojan-inserted Ay | | 7
gate-level netlist of a 2-bit Co— ! | ¢
multiplier (an AND gate is A :D I I —
erroneous and it is replaced ! | |
by the shaded OR gate)
By
B4

198 F. Farahmandi and P. Mishra

9.3.2.1 Test Generation for Trojan Detection

It has been shown that if the remainder is zero, there is no malicious functionality
in the implementation and implementation is bug free [30]. Thus, when there is a
non-zero polynomial as a remainder, any assignment to its variables that makes the
decimal value of the remainder non-zero is a bug trace. The remainder is used to
generate test cases to activate unknown faults or inserted Trojans [11]. The test is
guaranteed to activate the existing malicious functionality in the design. Remainder
is a polynomial with Boolean/integer coefficients. It contains a subset of primary
inputs as its variables. The presented approach in [11] takes the remainder as an
input and finds all of the assignments to its variables such that it makes the decimal
value of the remainder non-zero. The remainder may not contain all of the primary
inputs. As a result, the approach may use a subset of primary inputs (that appear in
the remainder) to generate directed test cases with don’t cares.

Such assignments can be found using an SMT solver by defining Boolean
variables and considering signed/unsigned integer values as total value of the
remainder polynomial (i # 0 € Z,check(R = i)). The problem of using SMT
solver is that for each i, it finds at most one assignment to the remainder variables
to produce value of i, if possible.

Algorithm 9.2 finds all possible assignments which produce non-zero decimal
values of the remainder. It gets remainder R polynomial and primary inputs (PI)
exists in the remainder as inputs and feeds binary values to PIs (s;) and computes the
total value of a term (7}). The value of T} is either one or zero as it is multiplication
of some binary variables (line 4-5). The whole term value may be zero or equal
to the term coefficient (Cr;). Then, it computes sum of all terms value to find the
corresponding value of the remainder polynomial. If the summation (value) of all
the terms is non-zero, the corresponding primary input assignments are added to the
set of Tests (lines 8-9).

Example 3. Consider the faulty circuit shown in Fig. 9.5 and the remainder poly-
nomial R = 2.(A; + By — 2.A;.By). The only assignments that make R to have a
non-zero decimal value (R = 2) are (A} = 1,Byp = 0) and (A; = 0,By = 1).

Algorithm 9.2: Directed Test Generation Algorithm

1: procedure TEST-GENERATION
2: Input: Remainder, R

3 Output: Directed Tests, Tests

4 for different assignments s; of PIs in R do
5 for each term 7; € R do

6: if (Tj(s;)) then
‘7.
8
9

Sum+ = Cy;

if (Sum !=0) then

Tests = Tests U s;
return Tests

9 Validation of IP Security and Trust 199

Taple 9.1 D@rected tests to A A, B B,
activate functional Trojan T 1x 1x lo
shown in Fig. 9.5

0 X | X |1

These are the only scenarios that make difference between functionality of an AND
gate and an OR gate. Otherwise, the fault will be masked. Compact directed test
cases are shown in Table 9.1. O

The remainder generation is one time effort, multiple directed tests can be
generated by using it. Moreover, if there are more than one bug in the implemen-
tation, the remainder will be affected by all of the bugs. So, each assignment that
makes the remainder non-zero activates at least one of the existing faulty scenarios.
Thus, the proposed test generation method can also be applied when there are more
than one fault in the design.

Example 4. Suppose that in circuit shown in Fig.9.5, the AND gate with inputs
(Ao, By) is also replaced with an OR gate by mistake (therefore, there are two
functional Trojans in the implementation of the 2 bit multiplier). The remainder
polynomial will be equal to R = 6.A; + 4.By + 2.By — 12.A;.B; — 4.A,.By. It can
be seen that assignment (A; = 1,4y = 0,B; = 0, By = 0) manifests the effect of
the first fault in Z; and assignment (A; = 1,49 = 0, By = 0, By = 1) activates the
second fault in Z,. |

9.3.2.2 Trojan Localization

So far, we know that the implementation is not correct and we have all the necessary
test cases to activate the malicious scenarios. Next goal is to reduce the state space in
order to localize the Trojan by using test cases generated in the previous section. The
Trojan location can be traced by observing the fact that the outputs can possibly be
affected by the existing Trojan. The proposed methodology is based on simulation
of test cases.

The tests are simulated and the outputs are compared with the golden outputs
(golden outputs can be found from the specification polynomials) to track the faulty
(unmatched) outputs in set E = {ey, e, .., ¢,}. Each ¢; denotes one of the erroneous
outputs. To localize the bug/hardware Trojan, the gate-level netlist is partitioned
such that fanout free cones (set of gates that are directly connected together) of the
implementation are found. Algorithm 9.3 shows the procedure of partitioning of
gate-level netlist of a circuit.

Each gate whose output goes to more than one gate is selected as a fanout.
For generality, gates that produce primary outputs are also considered as fanouts.
Algorithm 9.3 takes gate-level netlist (/mp) and fanout list (Lg,) of a circuit as inputs
and returns fanout free cones as its output. Algorithm 9.3 chooses one fanout gate
from Ly, and goes backward from that fanout until it reaches the gate g;, whose input
comes from one of the fanouts from Ly, or primary inputs; the algorithm marks all
the visited gates as a cone.

200 F. Farahmandi and P. Mishra

Algorithm 9.3: Fanout free cone finder algorithm

1: procedure FANOUT-FREE-CONE-FINDER
2: for Each fanout gate g; € L;, do

3 C.add(g)

4 for All inputs g; of g; do

5 if !(gj € Ly, U PI) then
6: C.add(g;)
‘7.

8

9

Call recursive for all inputs of g; over Imp
Add found gates to C

Cones = Cones U C

Algorithm 9.4: Bug Localization Algorithm

1: procedure BUG-LOCALIZATION
2: Input: Partitioned Netlist, Faulty Outputs E
Output: Suspected Regions Cg
for each faulty output ¢; € E do

find cones that construct e; and put in C,,
C_g . CgU
for ¢; € Edo

CS = CS n Cgi
return Cg

PR AW

Algorithm 9.4 shows the bug/Trojan localization procedure. Given a partitioned
erroneous circuit and a set of faulty (unmatched) outputs E, the goal of the automatic
bug localization is to identify all of the potentially responsible cones for the
malicious functionality. First, sets of cones C,, = {c1,¢2, ..., c;} that construct the
value of each e; from set E are found (line 4-5). These cones contain suspicious
gates. All of the suspicious cones C,;s are intersected to prune the search space and
improve the efficiency of Trojan localization algorithm. The intersection of these
cones are stored in Cy (line 7-8).

If simulating all of the tests show the effect of the malicious behavior in just one
of the outputs, it can be concluded that the location of the bug is in the cone that
generates this output. Otherwise, the effect of bug might have been detected in other
outputs. On the other hand, when the effect of the bug can be observed in all of the
outputs, it means that the bug location is closer to the primary inputs as the error
has been propagated through all the circuit. Thus, the location of the bug is in the
intersection of cones which constructs the faulty outputs.

Example 5. Consider the faulty 2-bit multiplier shown in Fig.9.6. Suppose the
AND gate with inputs (M, N) has been replaced with an OR gate by mistake. So,
the remainder is R = 4.A,.By + 4.Ao.B; — 8.49.A|.By.B;. The assignments that
activate the Trojan are calculated based on Algorithm 9.2. Tests are simulated and
the faulty outputs are obtained as E = {Z,,Z3}. Then, the netlist is partitioned
to find fanout free cones. The cones involved in construction of faulty outputs
are: Cz, = {2,3,4,6,7} and Cz, = {2,3,6,4,8}. The intersection of the cones
that produce faulty outputs is Cs = {2, 3,4, 6}. As a result, gates {2, 3,4, 6} are
potentially responsible as a source of the error. O

9 Validation of IP Security and Trust 201

Ao

— 2y
1} >

Faulty)z,
Z, Outputs Z

Fig. 9.6 A Trojan-inserted gate-level netlist of a 2-bit multiplier with associated tests to activate
the Trojan

(A1, A By, B)
(1,%1,0)
(0,1,1,X)
(1,0,1,1)
(1,1,1,0)

Tests

B
—)
— L

Fig. 9.7 Model checker
functionality Assertion

(@) Validate a /
Model | | | Counter-
Checker example of
a

9.4 Trojan Detection Using Model Checking

A model checker checks a design against its specification properties (assertions). It
takes the design along with the properties (functional behaviors written as Linear
Time Temporal Logic formulas) and it formally checks whether properties are
satisfied for all of possible states of the design implementation. The high level
overview of a model checker functionality is shown in Fig. 9.7. Design specification
can be formulated as a set of Linear Time Temporal Logic (LTL) properties [21].
Each property describes one expected behavior of the design. Example 6 shows a
property related to a router design.

Example 6. Figure 9.8 shows a router that receives a packet of data from its
input channel. The router analyzes the received packet and sends it to one of the
three channels based on the packet’s address. F|, F», and F3 receive packets with
address of 1, 2, and 3, respectively. Input data consists of three parts: (1) parity
(data_in[0]) (2) payload (data_in[7..3]), and (3) address (data_in[2..1]). The RTL
implementation consists of one FIFO connected to its input port (F) and three
FIFOs (one for each of the output channels). The FIFOs are controlled by an FSM.
The routing module reads the input packet and asserts the corresponding target
FIFO’s write signal (writel, write2, and write3).

Suppose the designer wants to make sure that whenever router receives a packet
with address 1 (data_in[2..1] = 2'b01), it eventually resides in the F; fifo which is
responsible for receiving the data with address 1 (the corresponding write signal of
the F fifo will be asserted). The property can be formulated as an LTL formula as
follows:

202 F. Farahmandi and P. Mishra

Write1 read1
I GG
—
write . reado data_out1<7..0>
— JFFoFo)|*
data_in<7..0> Write2 read2
-—
[T |FIFO(F2)

data_out2<7..0>

write3 read3
———

FIFO(F3)|—
data_out3<7..0>

Controller

Fig. 9.8 Block diagram of a router design

assert Pl : always ((Fo.data_in[2] = 0 A Fo.data_in[l] = 1) —
eventually (writel = 1)) O

To formally verify the design, model checkers check the design for all possible
states. For example, if a design has a 5-bit input, the input introduces 2° different
states for the design. Therefore, model checkers have state-space constraint when
they are applied on large and complex design. Bounded model checking is used
to overcome some limitations of model checkers. It checks the design for certain
number of transitions and if it finds a violation, it produces a counter-example for
the target property [2]. A bounded model checker unrolls the circuit for certain
number of clock cycles and extracts Boolean satisfiability assignments for the
unrolled design. It feed Boolean satisfiability assignments to the SAT solver to
search for assignments that cause the assertion to fail. The model checker generates
a counter-example whenever it faces a violation in the implementation of a property.
The high level overview of a bounded model checker is shown in Fig.9.9. Since
bounded model checker does not check all states, it cannot formally validate the
given property. In bounded model checking, the assumption is that the designer
knows in how many cycles a property should be held. Then, the number of cycles
(N) is fed to SAT solver engine to find a counter-example within N state sequence
transitions (within N clock cycles).

Karri et al. [22] proposed a method to use bounded model checkers to detect
malicious functionality in the design. Their considered threat model is that whether
an attacker can corrupt the data residing in N-bit data critical registers such
as registers containing secret keys of a cryptography design, stack pointer of a
processor, or address of a router. A set of properties is written describing that
a critical register’s data should be accessed safely. Then properties are fed into

9 Validation of IP Security and Trust 203

Fig. 9.9 Bounded model
checker functionality Assertion

(]

Bounded Counter-
Model = | example of
Checker a

Cycles N

bounded model checker accompanied with the design. The bounded checker tires
to find a set of states showing unauthorized access to the critical registers which
violates the given property.

For example, it is important to make sure that the stack pointer of a processor is
only accessed by one of these three ways: (1) increment by one instruction (/;); (2)
decrement by one instruction (/2); (3) using the reset signal (/3). The stack pointer
should be only accessed from three mentioned ways and if it is accessed from a
different way, it should be considered as a malfunction and a security threat. The
property can be written as follows:

PC_safe_access : assert always (lyigger € 1 = {11, 1>, 13} — PC, = PC,y)

The property is fed to a bounded model checker and malfunctions are detected
whenever the model checker finds a counter-example for the given property.
However, this approach requires prior knowledge to all of the safe ways to access
critical data which may not be available. Moreover, translation of safe access ways
to LTL formulas is not straightforward. Model checkers fail for large and complex
designs and they need the design in a specific language/format. Translation of RTL
design to those languages can be error-probe. Moreover, it will face state-space
explosion when the Trojan is triggered after thousands or millions of cycles.

Model checkers and theorem provers are combined together in [14] to address
the scalability and overhead issues of both methods in verifying security properties.
In this method, security properties are translated to formal theorems. In the next
step, theorems are converted into disjoint lemmas with respect to the design’s
submodules. Next, lemmas are modeled as Property Specification Language (PSL)
assertions. Then model checker is invoked to check the presence of Trojans in the
design.

References

1. M. Banga, M. Hsiao, Trusted RTL: trojan detection methodology in pre-silicon designs, in
Proceedings of 2010 IEEE Internationl Symposium on Hardware-Oriented Security and Trust
(HOST) (2010), pp. 56-59

204

2.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

F. Farahmandi and P. Mishra

A. Biere, A. Cimatti, E. Clarke, Y. Zhu, Symbolic model checking without bdds, in Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems
(Springer, Berlin, 1999), pp. 193-207

. E. Biham, Y. Carmeli, A. Shamir, Bug attacks, in CRYPTO 2008, ed. by Wagner, D. LNCS,

vol. 5157 (Springer, Heidelberg, 2008), pp. 221-240

. B. Buchberger, Some properties of grobner-bases for polynomial ideals. ACM SIGSAM Bull.

10(4), 19-24 (1976)

. B. Buchberger, A criterion for detecting unnecessary reductions in the construction of a

groebner bases, in EUROSAM (1979)

. R.S. Chakraborty, F. Wolf, C. Papachristou, S. Bhunia, Mero: a statistical approach for

hardware trojan detection, in International Workshop on Cryptographic Hardware and
Embedded Systems (CHES’09) (2009), pp. 369410

. M.J. Ciesielski, C. Yu, W. Brown, D. Liu, A. Rossi, Verification of gate-level arithmetic

circuits by function extraction, in IEEE/ACM International Conference on Computer Design
Automation (DAC) (2015), pp. 1-6

. D. Cox, J. Little, D. O’shea, Ideal, Varieties and Algorithm: An Introduction to Computational

Algebraic Geometry and Commutative Algebra (Springer, Berlin, 2007)

. W. Decker, G.-M. Greuel, G. Pfister, H. Schonemann, SINGULAR 3.1.3 A Computer Algebra

System for Polynomial Computations. Centre for Computer Algebra (2012). http://www.
singular.uni-kl.de

F. Farahmandi, B. Alizadeh, Groebner basis based formal verification of large arithmetic
circuits using gaussian elimination and cone-based polynomial extraction, in Microprocessors
and Microsystems - Embedded Hardware Design (2015), pp. 83-96

F. Farahmandi, P. Mishra, Automated test generation for debugging arithmetic circuits, in
2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) (IEEE, New
York, 2016), pp. 1351-1356

F. Farahmandi, B. Alizadeh, Z. Navabi, Effective combination of algebraic techniques and
decision diagrams to formally verify large arithmetic circuits, in 2014 IEEE Computer Society
Annual Symposium on VLSI (IEEE, New York, 2014), pp. 338-343

X. Guo, R.G. Dutta, Y. Jin, F. Farahmandi, P. Mishra, Pre-silicon security verification and
validation: a formal perspective, in ACM/IEEE Design Automation Conference (DAC) (2015)
X. Guo, R.G. Dutta, P. Mishra, Y. Jin, Scalable soc trust verification using integrated theorem
proving and model checking, in IEEE International Symposium on Hardware Oriented
Security and Trust (HOST) (2016)

M. Hicks, M. Finnicum, S. King, M. Martin, J. Smith, Overcoming an untrusted computing
base: detecting and removing malicious hardware automatically, in [EEE Symposium on
Security and Privacy (SP) (2010), pp. 159-172

M. Knezevié, K. Sakiyama, J. Fan, I. Verbauwhede, Modular reduction in gf (2 n) without pre-
computational phase, in International Workshop on the Arithmetic of Finite Fields (Springer,
Berlin, 2008), pp. 77-87

C. Koc, T. Acar, Montgomery multiplication in GF(2¥), Des. Codes Crypt. 14(1), 57-69 (1998)
J. Lv, P. Kalla, F. Enescu, Efficient groebner basis reductions for formal verification of galois
field multipliers, in Proceedings Design, Automation and Test in Europe Conference (DATE)
(2012), pp. 899-904

J. Lv, P. Kalla, F. Enescu, Efficient groebner basis reductions for formal verification of galois
field arithmetic circuits. IEEE Trans. CAD 32, 1409-1420 (2013)

M. Oya, Y. Shi, M. Yanagisawa, N. Togawa, A score-based classification method for
identifying hardware-trojans at gate-level netlists, in Design Automation and Test in Europe
(DATE) (2015), pp. 465-470

A. Pnueli, The temporal semantics of concurrent programs, in Semantics of Concurrent
Computation (Springer, Berlin, 1979), pp. 1-20

J. Rajendran, V. Vedula, R. Karri, Detecting malicious modifications of data in third-party
intellectual property cores, in Proceedings of the 52nd Annual Design Automation Conference
(ACM, New York, 2015), p. 112

http://www.singular.uni-kl.de
http://www.singular.uni-kl.de

23.

24.

25.

26.

217.

28.

29.

30.

3

—_

32.

33.

Validation of IP Security and Trust 205

S. Saha, R. Chakraborty, S. Nuthakki, Anshul, D. Mukhopadhyay, Improved test pattern
generation for hardware trojan detection using genetic algorithm and boolean satisfiability,
in Cryptographic Hardware and Embedded Systems (CHES) (2015), pp. 577-596

N. Shekhar, P. Kalla, F. Enescu, Equivalence verification of polynomial datapaths using ideal
membership testing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(7), 1320-1330
(2007)

C. Sturton, M. Hicks, D. Wagner, S. King, Defeating uci: building stealthy and malicious
hardware, in IEEE Symposium on Security and Privacy (SP) (2011), pp. 64-77

X. Sun, P. Kalla, T. Pruss, F. Enescu, Formal verification of sequential galois field arithmetic
circuits using algebraic geometry, in Design Automation and Test in Europe (DATE) (2015),
pp. 1623-1628

A. Waksman, S. Sethumadhavan, Silencing hardware backdoors, in 2011 IEEE Symposium on
Security and Privacy (IEEE, New York, 2011), pp. 49-63

A. Waksman, M. Suozzo, S. Sethumadhavan, Fanci: identification of stealthy malicious
logic using boolean functional analysis, in ACM SIGSAC Conference on Computer &
Communications Security (2013), pp. 697-708

A. Waksman, S. Sethumadhavan, J. Eum, Practical, lightweight secure inclusion of third-party
intellectual property. IEEE Des. Test Comput. 30(2), 8-16 (2013)

0. Wienand, M. Welder, D. Stoffel, W. Kunz, G.M. Greuel, An algebraic approach for proving
data correctness in arithmetic data paths, in Computer Aided Verification (CAV) (2008), pp.
473-486

. X. Zhang, M. Tehranipoor, Case study: detecting hardware trojans in third-party digital ip

cores, in 2011 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST) (IEEE, New York, 2011), pp. 67-70

J. Zhang, F. Yuan, Q. Xu, Detrust: defeating hardware trust verification with stealthy implicitly-
triggered hardware trojans, in Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security (ACM, New York, 2014), pp. 153-166

J. Zhang, F. Yuan, L. Wei, Y. Liu, Q. Xu, Veritrust: verification for hardware trust. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 34(7), 1148-1161 (2015)

Chapter 10
IP Trust Validation Using Proof-Carrying
Hardware

Xiaolong Guo, Raj Gautam Dutta, and Yier Jin

10.1 Introduction

A rapidly growing third-party Intellectual Property (IP) market provides IP con-
sumers with high flexibility when designing electronic systems. It also reduces
the development time and expertise needed to compete in a market where profit-
windows are very narrow. However, one key issue that has been neglected is
the security of hardware designs built upon third-party IP cores. Historically, IP
consumers have focused on IP functionality and performance than security. The
negligence toward development of robust security policies is reflected in the IP
design flow (see Fig.10.1), where IP core specification usually only includes
functionality and performance measurements.

The prevailing usage of third-party soft IP cores in SoC designs raises security
concerns as current IP core verification methods focus on IP functionality rather than
IP trustworthiness. Moreover, lack of regulation in the IP transaction market adds to
the predicament of the SoC designers and forces them to perform verification and
validation of IPs themselves. To help SoC designers in IP verification, various meth-
ods have been developed to leverage enhanced functional testing and/or perform
probability analysis of internal nodes for IP core trust evaluation and malicious logic
detection [1, 2]. However, these methods were easily bypassed by sophisticated
hardware Trojans [3-5]. Formal methods were also introduced for IP core trust
evaluation [1, 6-10]. Among all the proposed formal methods, proof-carrying
hardware (PCH), which originated from proof-carrying code (PCC), emerged as
one of the most prevalent methods for certifying the absence of malicious logic in
soft IP cores and reconfigurable logic [6—10]. In the PCH approach, synthesizable
register-transfer level (RTL) code of IP core and informal security properties were

X. Guo * R.G. Dutta * Y. Jin (<)
University of Central Florida, Orlando, FL 32816, USA
e-mail: guoxiaolong @knights.ucf.edu; rajgautamdutta@knights.ucf.edu; yier.jin@eecs.ucf.edu

© Springer International Publishing AG 2017 207
P. Mishra et al. (eds.), Hardware IP Security and Trust,
DOI 10.1007/978-3-319-49025-0_10

mailto:guoxiaolong@knights.ucf.edu
mailto:rajgautamdutta@knights.ucf.edu
mailto:yier.jin@eecs.ucf.edu

208 X. Guo et al.

SoC Design Flow SoC Design Flow
— -

In-house

IP Vendor 2
Design Teams

N

8

Physical Synthesis

Layout Verification
Foundry
Test
Package & Assembly
S
u
»| PCB Assembly |«

Design Integration
1
RTL Verification
1
Logic Synthesis
]
Gate-level Netlist

Outdated
System
Recycle/
Repackage

IP Vendor 1

Design Synthesis & Verification Fabrication Testing Packing System Integration

Fig. 10.1 IC design flow within the semiconductor supply chain

first represented in Gallina—the internal functional programming language of the
Coq proof assistant [11]. Then, Hoare-logic style reasoning was used to prove the
correctness of the RTL code in the Coq platform.

The rest of the chapter is organized as follows: In Sect. 10.2, we provide an
overview of existing methods for IP protection, introduce the threat model, and
provide some relevant background on two different formal verification approaches.
In Sect. 10.3, we provide detailed explanation of the PCH method for ensuring
trustworthiness of IP cores. Finally, Sect. 10.4 concludes the chapter.

10.2 Overview of Formal Verification Methods
for IP Protection

To counter the threat of untrusted third-party resources, pre-silicon trust evaluation
approaches have been proposed recently [1, 12, 13]. Most of these methods try
to trigger malicious logic by enhancing functional testing with extra test vectors.
Authors in [12] proposed a method to generate “Trojan Vectors” into the testing
patterns, hoping to activate the hardware Trojans during the functional testing.
In order to identify suspicious circuitry, unused circuit identification (UCI) [13]
method analyzed the RTL code to find lines of code that are never used. However,
these methods assume that the attacker uses rarely occurring events as Trojan
triggers. Using “less-rare” events as trigger will void these approaches. This was
demonstrated in [14], where hardware Trojans were designed to defeat UCI.

10 IP Trust Validation Using Proof-Carrying Hardware 209

Admitting the limitations of enhanced functional testing methods, researchers
started looking into formal solutions. Although at its early stage, formal methods
have already shown their advantages over testing methods in exhaustive secu-
rity verification [8, 9, 15, 16]. A multi-stage approach, which included assertion
based verification, code coverage analysis, redundant circuit removal, equivalence
analysis, and use of sequential Automatic Test Pattern Generation (ATPG), was
adopted in [15] to identify suspicious signals for detecting hardware Trojans. This
approach was demonstrated on an RS232 circuit and the efficiency of the approach
in detecting Trojan signals ranged between 67.7 and 100 %. In [8, 9, 16], a PCH
framework was used to verify security properties on soft IP cores. Supported by
the Coq proof assistant [11], formal security properties were formalized and proved
to ensure the trustworthiness of IP cores. In the following section in this chapter,
we will explain the PCH approach for soft IP core verification in greater details.
This method uses an interactive theorem prover and model checker for verifying the
design.

10.2.1 Threat Model

The IP protection methods in this chapter are based on the threat model that
malicious logic is inserted by an adversary at the design stage of the supply chain.
We assume that the rogue agent at the third-party IP design house can access
the hardware description language (HDL) code and insert a hardware Trojan or
backdoor to manipulate critical registers of the design. Such a Trojan can be
triggered either by a counter at a predetermined time, by an input vector, or under
certain physical conditions. Upon activation it can leak sensitive information from
the chip, modify functionality, or cause a denial-of-service to the hardware. In this
chapter, Trojans which can be activated by a specific “digital” input vector are only
considered.

Meanwhile, verification tools (e.g., Coq) used in all methods are assumed to
produce correct results. The existence of proofs for the security theorems indicates
the genuineness of the design whereas its absence indicates the presence of
malicious logic. However, the framework does not provide protection of an IP
from Trojans whose behaviors are not captured by the set of security properties.
Furthermore, there is also an assumption that the attacker has intricate knowledge
of the hardware to identify critical registers and modify them in order to carry out
the attack.

10.2.2 Formal Verification Methods

Formal methods have been extensively used for verification and validation of
security properties at pre- and post-silicon stages [8, 9, 15-20]. These previous
methods leverage one of the following two techniques, model checking and
interactive/automated theorem proving, for design verification.

210 X. Guo et al.

10.2.2.1 Theorem Prover

Theorem provers are used to prove or disprove properties of systems expressed
as logical statements [21-28]. Over the years, several theorem provers (both
interactive and automated) have been developed for proving properties of hardware
and software systems. However, using them for verification on large and complex
systems require excessive effort and time. Irrespective of these limitations, theorem
provers have currently drawn a lot of interest in verifying security properties on
hardware. Among all the formal methods, they have emerged as the most prominent
solution for verifying large-scale designs.

One leading example of an interactive theorem prover is the open source tool
called Coq proof assistant [11]. Coq is an interactive theorem prover/proof assistant,
which enables verification of software and hardware programs with respect to their
specification [25]. In Coq, programs, properties, and proofs are represented as terms
in the Gallina specification language. By using the Curry—Howard Isomorphism,
the interactive theorem prover formalizes both the program and proofs in its
dependently typed language called the Calculus of Inductive Construction (CIC).
Correctness of the proof of the program is automatically checked using the built-
in type-checker of Coq. To expedite the process of building proofs, Coq provides
a library consisting of programs called factics. However, existing Coq tactics does
not capture properties of hardware designs and thus does not significantly reduce
the time required for certifying large-scale hardware IP cores [6-8].

10.2.2.2 Model Checker

Model checking [29] is an automated method for verifying and validating models
in software and hardware applications [30-42]. In this approach, a model (Ver-
ilog/VHDL code of hardware) .# with an initial state s, is expressed as a transition
system and its behavioral specification (assertion) ¢ is represented in a temporal
logic. The underlying algorithm of this technique explores the state space of the
model to find whether the specification is satisfied. This can be formally stated as,
M, so = ¢. If a case exists where the model does not satisfy the specification, a
counterexample in the form of a trace is produced by the model checker [43, 44].
Recently, model checkers have been used for detecting malicious signals in third-
party IP cores [15, 20]. The application of model checking techniques to SoCs,
including symbolic approaches based on Reduced Order Binary Decision Diagrams
(ROBDD) and Satisfiability (SAT) solving, has had limited success due to the state-
space explosion problem [45]. For example, a model with n Boolean variables can
have as many as 2" states, a typical soft IP core with 1000 32-bit integer variables
has billions of states.

Symbolic model checking using ROBDD is one of the initial approaches used
for hardware systems verification [46—48]. Unlike explicit state model check-
ing where all states of the system are explicitly enumerated, this technique
model states (represented symbolically) of the transition system using ROBDD.

10 IP Trust Validation Using Proof-Carrying Hardware 211

The ROBDD is a unique, canonical representation of a Boolean expression of
the system. Subsequently, the specification to be checked is represented using a
temporal logic. A model checking algorithm then checks whether the specification
is true on a set of states of the system. Despite being a popular data structure for
symbolic representation of states of the system, ROBDD requires finding an optimal
ordering of state variables which is an NP-hard problem. Without proper ordering,
the size of the ROBDD increases significantly. Moreover, it is memory intensive
for storing and manipulating Binary Decision Diagrams (BDDs) of a system with a
large state space.

Another technique called bounded-model checking (BMC) replaces BDDs in
symbolic checking with SAT solving [49-51]. In this approach, a propositional
formula is first constructed using a model of the system, the temporal logic
specification, and a bound. The formula is then provided to an SAT solver to either
obtain a satisfying assignment or to prove that no such assignment exists. Although
BMC outperforms BDD based model checking in some cases, the method cannot
be used to test properties (specification) when the bound is large or cannot be
determined.

10.3 Proof-Carrying Hardware Framework for IP Protection

Various methods have been proposed in the software domain to validate the
trustworthiness and genuineness of software programs. These methods protect
computer systems from untrusted software programs. Most of these methods lay
burden on software consumers to verify the code. However, proof-carrying code
(PCC) switches the verification burden to software providers (software vendors/de-
velopers). Figure 10.2 outlines the basic working process of the PCC framework.

Source
Program

Source Code
Certification

PCC Binary Code |

-1

Fig. 10.2 Working procedure
of the PCC framework [52]

| Executable Security Software
H Code Proof i| vendor
| i |
Enable Proof Validation Security
(Proof Checker) Properties

Software
CPU Consumer

212 X. Guo et al.

d
SecuriFy Coq
Properties Equivalent
(Natural Code
language)
Functional . security
Specifications Theorem Consumer Side
(Coq Logic)
(Integrator)
Security
Theorem
(Coq Logic) >
Proofs
3 Coq
HDL Equivalent n
| e Ve- dor
Codes Side

Fig. 10.3 Working process of the PCH framework [17]

During the source code certification stage of the PCC process, the software provider
verifies the code with respect to the security property designed by the software
consumer and encodes the formal proof of the security property with the executable
code in a PCC binary file. In the proof validation stage, the software consumer
determines whether the code from the potentially untrusted software provider is
safe for execution by validating the PCC binary file using a proof checker [52].

A similar mechanism, referred to as Proof-Carrying Hardware (PCH), was used
in the hardware domain to protect third-party soft IP cores [8—10]. The PCH
framework ensures trust-worthiness of soft IP cores by verifying a set of carefully
specified security properties. The working procedure of the PCH framework is
shown in Fig. 10.3. In this approach, the IP consumer provides design specifications
and informal (written in natural language) security properties to the IP vendor. Upon
receiving the request, the IP vendor develops the RTL design using a hardware
description language (HDL). Then, semantic translation of the HDL code and
informal security properties to Gallina is carried out. Subsequently, Hoare-logic
style reasoning is used for proving the correctness of the RTL code with respect
to formally specified security properties in Coq. As Coq supports automatic proof
checking, it can help IP customers validate proof of security properties with
minimum efforts. Moreover, usage of the Coq platform by both IP vendors and
IP consumers ensures that the same deductive rules will be used for validating the
proof. After verification, the IP vendor provides the IP consumer with the HDL code
(both original and translated versions), formalized security theorems of security
properties, and proofs of these security theorems. Then, the proof checker in Coq is
used by the IP consumer to quickly validate the proof of security theorems on the

10 IP Trust Validation Using Proof-Carrying Hardware 213

translated code. The proof checking process is fast, automated, and does not require
extensive computational resources.

10.3.1 Semantic Translation

The PCH based IP protection method requires semantic translation of circuit design
in HDL to Coq’s specification language, Gallina. Consequently, a formal-HDL is
developed in [10], which includes a set of rules to enable this translation. These
rules can help represent basic circuit units, combinational logic, sequential logic,
and module instantiations. The formal-HDL is further extended in [53] to capture
hierarchical design methodology, which is used for representing large circuits such
as SoC. A brief description of the formal-HDL is given below

* Basic Circuit Units:

In the formal-HDL, basic circuit units are the most important components
and they include signals and buses. During the translation, three digital values
are used for signals: high, low, and unknown. To represent sequential logic,
a bus type is defined as a function, which takes timing variable ¢ and returns
a list of signal values as shown in Listing 10.1. All circuit signals are of bus
type and their values can be modified either by a blocking assignment or a
nonblocking assignment (shown in Listing 10.1). Moreover, inputs and outputs
are also defined as bus type.

Listing 10.1 Basic Circuit Units in Semantic Model

Inductive value := lo|hi|x.
Definition bus value := list value.
Definition bus := nat -> bus value.
Definition input := bus.
Definition output := bus.
Definition wire := bus.

Definition reg := bus.

» Signal Operations: Logic operations such as and, or, not, and xor, as well as bus
comparison operations such as checking for bus equality: bus_eq and less-than:
bus_It are designed to handle bus in Gallina. The conditional statement of RTL
code such as if... . else. .. checks whether signals are on or off. To incorporate this
functionality in Coq, a special function, bus_eq_0, which compares the bus value
to hi or lo is added.

214 X. Guo et al.

Listing 10.2 Signal Operations in Semantic Model
Fixpoint bv bit and (a b : bus value) {struct a} : bus value :=
match a with
| nil => nil
| la :: a’ =>
match b with
| nil => nil
| 1b :: b’ => (v_and la 1b):: (bv bit and a’ b’)
end
end.
Definition bus bit and (a b : bus) : bus :=
fun t:nat => bv bit and (a t) (b t).
Fixpoint bv eq 0 (a : bus value) {struct a} : value :=
match a with
| hi :: 1t => lo
| 1o :: 1t => bv eq 0 1t
| nil => hi
end.
Definition bus eq 0 (a : bus) (t : nat) : value :=bv eq 0 (a t).

» Combinational and Sequential Logic: The definition of signals, expressions, and
their semantics paves the way for converting RTL circuits into Coq represen-
tatives. Combinational and sequential logic are higher level logic descriptions
constructed on top of buses. The keyword assign of the formal-HDL is used for
blocking assignment, while update is mainly used for nonblocking assignment.
During the blocking assignment the bus value will be updated in the current clock
cycle and in the nonblocking assignment the bus value will be updated in the next
clock cycle.

Listing 10.3 Signal Operations in Semantic Model

Fixpoint assign (a:assignblock) (t:nat) {struct a} :=
(» Blocking assignment x)

match a with

| expr assign bus one e => bus one t = eval e t

| assign useless => True

| assign cons al a2 => (assign al t) /\ (assign a2 t)

end.

Fixpoint update (u:updateblock) (t:nat) {struct u} :=
(* Nonblocking assignment *)

match u with

| (upd expr bus exp) => (bus (S t)) = (eval exp t)

| (updcons blockl block2) => (update blockl t) /\ (update block2 t)

| upd useless => True

end.

* Module Definitions: Module definition/instantiation is critical when dealing with
hierarchical circuit structures, but it is never a problem for Verilog (and VHDL),
as long as interfacing signals and their timing are correctly defined. Concerning
the task of security property verification, however, treating a sub-module as a
functional unit by ignoring its internal structure may cause problems. Security
properties that are proven for the top level module and all its sub-modules do not

10 IP Trust Validation Using Proof-Carrying Hardware 215

guarantee that the same properties will hold for the whole hierarchical design,
where attackers can easily insert hardware Trojans to maliciously modify the
interface without violating security properties proven for all modules separately.
As a result, the operation of module definition/instantiation should be defined in
a way that the details of sub-modules are accessible from the top level module
so that any security properties, if proven, remain valid for the whole design.
Thus, in PCH we flatten the hierarchical design such that the sub-modules and
their interfaces are transparent to the top module. module and module-inst are
key words for module definitions and instantiations. In [53], a new syntax for
representing modules is introduced in Coq, which preserves the hierarchical
structure and does not require design flattening.

The underlying formal language of the Coq proof assistant, Gallina, is based on
dependently typed lambda calculus and it defines both types and terms in the same
syntactical structure. During the translation process, syntax and semantics of the
HDL are translated to Gallina using the formal-HDL.

10.3.2 Data Protection Through Information Flow Tracking

Among all potential RT-level malicious modifications, sensitive information protec-
tion has been a research topic within the cybersecurity domain for decades. Various
approaches have been developed, relying on safe languages and software level
dynamic checks, to detect buffer overflow attacks and format string vulnerabilities.
These methods suffer from the limitation that they either have high false-alarm
rates or would cause significant performance overhead. Taking these limitations into
consideration, researchers invented new information protection schemes based on
hardware—software co-design, where the hardware infrastructure is actively involved
in dynamic information flow tracking. This new trend has proven successful in
improving detection accuracy and lowering performance overhead, at the cost of
hardware level modifications. For example, authors in [54] proposed a dynamic
information flow tracking framework with all internal storage elements equipped
with a security tag.

Authors in [55] focused on pointer tainting to prevent both control data and
non-control data attacks. Besides information flow tracking, the hardware is also
enhanced to help prohibit information leakage, such as in the InfoShield architecture
[56], which applies restrictions to operations on sensitive data. Similarly, the RIFLE
architecture is developed on top of an information flow security (IFS) instruction
set architecture (ISA), where all states defined by the base ISA are augmented by
labels [57]. More recently, a new software—hardware architecture was developed to
support more flexible security policies, either to protect sensitive data [58] or to
prevent malicious operations from untrusted third-party OS kernel extensions [59].

Two formal information flow tracking methodologies were also developed,
namely static information flow tracking [60] and dynamic information assurance

216 X. Guo et al.

[9], which address the challenge of hardware Trojans, capable of leaking sensitive
information. These two schemes follow the concept of proof-carrying hardware IP
(PCHIP) [8] to enhance the trustworthiness of third-party IP cores.

These two formal methods are particularly geared toward secret information
protection, counteracting RTL hardware Trojan attacks in hardware soft IPs, and
preventing unintended design backdoors. These two methods differ in complexity
and the approach they take to track information in the design. Static information
flow tracking scheme is suitable for small designs, and requires less effort in
proof development, while dynamic information assurance scheme considers the
requirements of more complex and pipelined designs, and needs much more effort
in constructing the proofs of security theorems. Designers can adopt these two
methodologies based on their requirements.

The static information flow tracking scheme and the dynamic information
assurance scheme are integrated with the PCH IP protection framework and they
accept the data secrecy properties as the security property. Furthermore, because the
target data secrecy properties are independent of circuit functional specifications,
IP vendors may translate the properties from natural language to formal theorems
without specifying target circuits and can store the translated formal theorems in a
property library for similar designs. The development of a Coq property library and
the reuse of theorem-proof contents lowers the burden for IP vendors and stimulates
wider acceptance of the proposed proof-carrying based hardware IP protection
method. Property formalization and proof generation of both schemes are performed
using the Coq proof assistant platform [11].

10.3.2.1 Static Information Flow Tracking Scheme

For the static information flow tracking scheme [60], the IP vendor first designs
the circuit based on the functional specifications provided by the IP consumer, in
the form of HDL codes. Utilizing a formal semantic model and static information
flow tracking rules, the IP vendor then converts the circuit from HDL code into
formal logic. In parallel, the IP vendor uses the property formalization constraints
to translate the agreed-upon data secrecy properties from natural language to formal
theorems. The IP vendor will then try to construct proofs for the translated theorems
within the context of the target circuit. Even though the IP vendor is responsible for
both circuit design and theorem proving, given a set of well-defined theorems, it
is not possible to prove the theorems with a Trojan-infected circuit containing the
prohibited information leakage paths. Both formal theorems and their proofs are
part of the final deliverable handed to the IP consumer.

Upon receiving the hardware bundle which includes the HDL code and theorem-
proof pairs for data secrecy properties, the IP consumer regenerates the formal
logic of the original circuit based on the same formal semantic model and static
information flow tracking rules. The IP consumer also checks whether the security
theorems (in formal language) accurately represent the data secrecy properties (in

10 IP Trust Validation Using Proof-Carrying Hardware 217

natural language). The security theorems and related proofs will then be combined
with the regenerated formal logic to pass through an automatic proof checker. If no
exceptions are raised, then we claim that the delivered IP core fulfills the agreed-
upon data secrecy properties. However, any errors during the proof checking process
warn the user that malicious circuits (or design flaws) may exist in the IP core,
making it violate the data secrecy properties.

10.3.2.2 Dynamic Information Assurance Scheme

The static scheme is effective in detecting data leakage caused by hardware Trojans
and/or design faults. It also requires less effort for constructing proofs. However,
the static scheme is limited by the fact that it can only check circuit trustworthiness
statically. To overcome this shortcoming of the static scheme and to achieve high-
level hardware Trojan detection capability, a dynamic information assurance scheme
is later developed [9].

This dynamic scheme supports various levels of circuit architectures, ranging
from low-complexity single-stage designs to large-scale deeply pipelined circuits.
Similar to the static scheme, the dynamic scheme also focuses on circuits dealing
with sensitive information, such as cryptographic designs, because it sets data
secrecy as the primary goal and tries to prevent illegal information leakage from IP
cores. Within the dynamic scheme, all signals are assigned values indicating their
sensitivity levels. These values will be updated after each clock cycle according to
their original values and the updating rules defined by the signal sensitivity transition
model. Since the sensitivities of all circuit signals are managed in a sensitivity list,
two sensitivity lists are of interests for data secrecy protection: the initial sensitivity
list and the stable sensitivity list. The initial sensitivity list reflects the circuit
status after initialization or powered-on mode when only some input signals contain
sensitive information, such as plaintext and encryption keys. The stable sensitivity
list, on the other hand, indicates the circuit status when all internal/output signals
are of fixed sensitivity levels.

Similar to the static scheme, IP vendor will also translate the agreed-upon
data secrecy properties from natural language to property generation functions,
which can later help to generate formal theorems. Meanwhile, different from the
static scheme, IP consumers will first check the contents of the initial signal
sensitivity list and the stable signal sensitivity list, which represent the circuit’s
initial secrecy status and the stabilized status, respectively. The validity of the initial
list is checked to ensure that sensitivity levels are appropriately assigned to all
input/output/internal signals. The circuit’s stable sensitivity status contains complete
information of the distribution of sensitive information across the whole circuit, so
the stable list will then be carefully evaluated to detect any backdoors that may leak
sensitive information. After both signal sensitivity lists pass the initial checking,
IP consumers proceed to the next step of proof checking. A “PASS” output from
the automatic proof checker provides evidence that HDL codes do not contain any

218 X. Guo et al.

malicious channels to leak information. However, a “FAIL” result is a warning that
some of the data secrecy properties are breached in the delivered IP cores.

10.3.3 Hierarchy Preserving Verification

The above mentioned PCH frameworks treat the whole circuit design as one
module and prove security properties on them [8—10, 60]. That is, the entire design
is first flattened before translating the HDL code of the design into the formal
language and proving it with respect to formal security theorems. Design flattening
increases the complexity of translating HDL code into Gallina. It also adds to the
risk of introducing errors during the code conversion process. Due to flattening,
a verification expert has to go through the entire design in order to construct
proofs of security theorems, which significantly increases the workload for design
verification. Also, any updates to the HDL code will significantly change the proof
for the same security property. Moreover, the PCH framework prevents proof reuse,
i.e., proofs constructed for one design cannot be used in another design even though
the same IP modules are used. All of these limitations prohibit a wide usage of the
PCH framework in modern SoC designs.

To overcome these limitations, the Hierarchy-preserving Formal Verification
(HiFV) framework is developed for verifying security properties on SoC designs
in [53]. The HiFV framework is an extension of the PCH framework. In the HiFV
framework, the design hierarchy of the SoC is preserved and a distributed approach
is developed for constructing proofs of security properties. In the distributed
approach, security properties are divided into sub-properties in such a way that each
sub-property corresponds to an IP module of the SoC. Proofs are then constructed
for these sub-properties and the security property for the SoC design is proven
through the integration of all proofs from sub-properties. Similar to PCH, the HiIFV
framework requires semantic translation of the HDL code and informal security
properties to Gallina. For proving the trustworthiness of the HDL code of the SoC,
Hoare-logic is used. Similar to other PCH methods, the HiFV framework is carried
out in Coq.

As mentioned earlier, before building the formal model for the SoC system, the
syntax and semantics should be defined and then shared by any parties who need
to design or check the proof. In addition, interface and module are incorporated in
the formal-HDL to preserve the design hierarchy of the SoC. That is, in order to
make distributed proof construction applicable on hierarchical designs, an interface
is developed in the HiFV framework which makes the verification process flexible
and efficient for the proof writer. To define the interface, information about each
IP and its corresponding I/O are needed, such as the name, number, and data type.
By using the inferface, the management of the plenty of formal modules would be
much easier in the verification house side. The structure of the interface is shown
in Fig. 10.4. Through the interface, an IP module within an SoC can access other

10 IP Trust Validation Using Proof-Carrying Hardware 219

Fig. 10.4 Structure of the

SoC with interface SoC Formal

Module

ip_interface

ip_ipv_one ip_ipv_two

IP #1 Formal IP #2 Formal
Module Module

modules such as IP #1 Formal Module or IP #2 Formal Module in the figure. The
ip_ipv_one, ip_ipv_two, and SoC_ttp are the name of the corresponding interfaces.

The distributed proof construction process uses Hoare-logic, where the trust-
worthiness of the SoC formal-HDL code is determined by ensuring that the code
operates following the constraints of the pre-condition and the post-condition. The
pre-condition of the formal-HDL code is the initial configuration of the design and
the post-condition is the security theorem. Meanwhile, in order to overcome the
scalability issue, a distributed proof construction approach is developed, which is
dedicated for SoC designs with hierarchical structures. This approach makes the
HiFV framework scalable by reducing the time required for proof construction,
proof correction, and proof modification.

In the HiFV framework, the translated HDL code of the SoC, formal security
theorems, and the initial configuration of the design is represented as a Hoare Triple

(Eq. (10.1)).

(¢)CogEquivalentCode_SoC () (10.1)

In this equation, ¢ is the pre-condition corresponding to the initial configuration
of the design. The translated HDL code of the SoC design hierarchy in Gallina is
given by CoqgEquivalentCode_SoC. In the process of translation, modules in the
SoC HDL code, which correspond to IPs from different vendors, are also translated.
The post-condition is given by ¥ which represents the formal security theorem.

The security theorem is divided into lemmas (Eq.(10.2)), which are post-
conditions for individual IP modules. In Eq. (10.2), post-condition for IPs (lemmas)
are represented as ¥; (1 < i < n), n = maximum number of IP modules required to
prove the security theorem and V¥ is the security theorem. These lemmas correspond
to those IP modules that are required to satisfy the security theorem.

Y=Y AY2 A (10.2)

Similarly, the pre-condition of the SoC design (¢) and the translated HDL code
of the SoC design (CogEquivalentCode_SoC) are divided according to Egs. (10.3)
and (10.4). Here, (¢;) and (CogEquivalentCode_IPmodule_i) (1 < i < n)
represent the pre-conditions and translated HDL code of each IP module of the

220 X. Guo et al.

SoC, respectively.

=i A ANy (10.3)
CogEquivalentCode_SoC := CogEquivalentCode_IPmodule_1
A CoqEquivalentCode_IPmodule_2 . .. (10.4)

A CoqEquivalentCode_IPmodule_n

The HDL code of the IP core is certified to be trustworthy only if it satisfies the
pre-condition and the post-condition. When all the modules of IP cores satisfy the
post-conditions (lemmas), we can state that the security theorem is proven for the
SoC design.

(¢:)CogEquivalentCode_IPmodule_i(1;) (10.5)

The distributed approach of proof construction also enables proof reuse. After
certifying the trustworthiness of each IP core of the SoC, the proofs can be stored
in a library and accessed by the trusted third party (TTP) verification house for
verification of other SoC designs in which the same IP modules are used and similar
security properties are applied. In this way the HiFV framework further reduces the
time for verifying complex designs.

As a summary, in this approach, the previously developed PCH framework is
extended into the SoC design flow and largely simplified the process for proving
security properties through a hierarchical proof construction procedure. To reduce
the workload for circuit verification, the proof of the security properties for
individual IPs can be encapsulated and reused in proving security properties at the
SoC level. Also, in the hierarchical framework, the amount of updates that need to
be done to existing proofs when SoC designs are modified is significantly lowered.
The developed HiFV framework paves the way for large-scale circuit design security
verification.

10.3.4 Integrating Theorem Prover and Model Checker

Although the HiFV hierarchical approach improves scalability of the previous PCH
method, it still suffers from the challenge of proof construction. Meanwhile, model
checkers such as Cadence IFV cannot be used for verifying systems with large state
space because of the space explosion problem. As the number of state variables (7)
in the system increases, amount of space required for representing the system and
the time required for checking the system increases exponentially (7(n) = 2°™)
(Fig. 10.5).

To further overcome the scalability issue and to verify a computer system, an
integrated formal verification framework (see Fig. 10.6) is introduced in [61], where

10 IP Trust Validation Using Proof-Carrying Hardware 221

Fig. 10.5 Security Specification
specification (¢) decomposed (@)
into lemmas T
Theorem
0]
I
< N <
emma| |Lemma| eee |Lemma
(D1 (Dz d’n
Fig. 10.6 Integrated formal Specifications
verification framework ® E>
Proof of ®
SoC Systems |j exists for the
(Assembly Code [D) SoC model
& HDL Code) Integrated
Frame-
Model Checker D) work o) Contradiction
(Cadence IFV) exists for @

Theorem Prover
(Proof Assistant |C)
Coq)

the security properties are checked against SoC designs. In this framework, the
theorem prover is combined with a model checker for proving formal security
properties (specifications). Moreover, the hierarchical structure of the SoC is
leveraged to reduce the verification effort.

Some efforts have been made to combine theorem provers with model checkers
for verification of hardware and software systems [62, 63]. These methods try to
overcome the scalability issue of both techniques. That is, both model checkers and
theorem provers cannot scale well to formally verify large-scale circuit designs.
Some of the popular theorem provers such as higher order logic (HOL Light) and
prototype verification system have integrated model checkers. These tools have
been used for functional verification of hardware systems. For the first time, this
combined technique has been extended toward verification of security properties on
third-party IP cores and SoCs [61].

In the integrated framework, the hardware design, represented in a hardware
description language (HDL), and the assembly level instructions of a vulnerable
program, is first translated to Gallina, which is similar to other PCH methods. Then,
the security specification is stated as a formal theorem in Coq. In the following
step, this theorem is decomposed into disjoint lemmas (see Fig. 10.5) based on sub-
modules. These lemmas are then represented in the Property Specification Language
(PSL) specification language and are called sub-specifications. Subsequently, the
Cadence IFV verifies the sub-modules against the corresponding sub-specifications.
Sub-modules are functions, which have less number of state variables and are

222 X. Guo et al.

connected to primary output of the design. These functions are always from the
bottom level of SoC and have rare dependency relationship with each other.

The HDL code of a large design consists of many such sub-modules. If the
sub-modules satisfy the sub-specifications, lemmas are considered to be proved.
Checking the truth value of the sub-specifications with a model checker eliminates
the effort required for proving the lemmas and translating the sub-modules to Coq.
Upon proving these sub-modules, Hoare-logic is then used to combine proof of
these lemmas to prove the security theorem of the entire system in Coq.

The integrated formal verification framework helps in protecting a large-scale
SoC design from malicious attacks. Given that an interactive theorem prover (e.g.,
Coq) requires lots of effort to manually verify the design and that a model checker
suffers from scalability issues, these two techniques are combined together through
the decomposition of the security property as well as the design in such a way
that the model checker can verify those sub-modules which have much less state
variables. Consequently, the amount of effort required for translating the design
from HDL to Gallina and proving the security theorem in Coq is reduced.

10.4 Conclusion

In this chapter, we explain our interactive theorem proving based PCH approach
for security property verification of hardware IP cores. We also describe application
of the framework for preventing information leakage from soft IPs. To overcome
scalability and reusability issues of original PCH method, a design hierarchy
preserving scheme was then introduced that incorporates both model checking and
interactive theorem proving for verification.

Acknowledgements This work has been partially supported by the National Science Foundation
(NSF-1319105), the Army Research Office (ARO W911NF-16-1-0124), and Cisco.

References

1. M. Banga, M. Hsiao, Trusted RTL: Trojan detection methodology in pre-silicon designs, in
IEEE International Symposium on Hardware-Oriented Security and Trust (HOST) (2010),
pp. 56-59

2. A. Waksman, M. Suozzo, S. Sethumadhavan, FANCI: identification of stealthy malicious
logic using boolean functional analysis, in Proceedings of the ACM SIGSAC Conference on
Computer & Communications Security, CCS’13 (2013), pp. 697-708

3. D. Sullivan, J. Biggers, G. Zhu, S. Zhang, Y. Jin, FIGHT-metric: Functional identification of
gate-level hardware trustworthiness, in Design Automation Conference (DAC) (2014)

4. N. Tsoutsos, C. Konstantinou, M. Maniatakos, Advanced techniques for designing stealthy
hardware trojans, in Design Automation Conference (DAC), 2014 51st ACM/EDAC/IEEE
(2014)

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

IP Trust Validation Using Proof-Carrying Hardware 223

. M. Rudra, N. Daniel, V. Nagoorkar, D. Hoe, Designing stealthy trojans with sequential
logic: A stream cipher case study, in Design Automation Conference (DAC), 2014 51st
ACM/EDAC/IEEE (2014)

. S. Drzevitzky, U. Kastens, M. Platzner, Proof-carrying hardware: Towards runtime verification
of reconfigurable modules, in International Conference on Reconfigurable Computing and
FPGAs (2009), pp. 189-194

. S. Drzevitzky, M. Platzner, Achieving hardware security for reconfigurable systems on
chip by a proof-carrying code approach, in 6th International Workshop on Reconfigurable
Communication-Centric Systems-on-Chip (2011), pp. 1-8

. E. Love, Y. Jin, Y. Makris, Proof-carrying hardware intellectual property: a pathway to trusted
module acquisition. IEEE Trans. Inf. Forensics Secur. 7(1), 25-40 (2012)

. Y. Jin, B. Yang, Y. Makris, Cycle-accurate information assurance by proof-carrying based
signal sensitivity tracing, in IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST) (2013), pp. 99-106
Y. Jin, Y. Makris, A proof-carrying based framework for trusted microprocessor IP, in

2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2013),
pp. 824-829
INRIA, The Coq proof assistant (2010), http://coq.inria.fr/

F. Wolff, C. Papachristou, S. Bhunia, R.S. Chakraborty, Towards Trojan-free trusted ICs:

problem analysis and detection scheme, in I[EEE Design Automation and Test in Europe (2008),
pp. 1362-1365
M. Hicks, M. Finnicum, S.T. King, M.M.K. Martin, J.M. Smith, Overcoming an untrusted
computing base: detecting and removing malicious hardware automatically, in Proceedings of

1IEEE Symposium on Security and Privacy (2010), pp. 159-172
C. Sturton, M. Hicks, D. Wagner, S. King, Defeating UCIL: building stealthy and malicious
hardware, in 2011 IEEE Symposium on Security and Privacy (SP) (2011), pp. 64-77

X. Zhang, M. Tehranipoor, Case study: detecting hardware trojans in third-party digital ip
cores, in 2011 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST) (2011), pp. 67-70
Y. Jin, Design-for-security vs. design-for-testability: A case study on dft chain in cryptographic
circuits, in IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (2014), pp. 19-24
X. Guo, R. G. Dutta, Y. Jin, F. Farahmandi, P. Mishra, Pre-silicon security verification and
validation: a formal perspective, in Proceedings of the 52Nd Annual Design Automation
Conference, DAC’15 (2015), pp. 145:1-145:6
FM. De Paula, M. Gort, A.J. Hu, S.J. Wilton, J. Yang, Backspace: formal analysis for post-
silicon debug, in Proceedings of the 2008 International Conference on Formal Methods in
Computer-Aided Design (IEEE Press, New York, 2008), p. 5
S. Drzevitzky, Proof-carrying hardware: Runtime formal verification for secure dynamic recon-
figuration, in 2010 International Conference on Field Programmable Logic and Applications
(FPL) (2010), pp. 255-258

J. Rajendran, V. Vedula, R. Karri, Detecting malicious modifications of data in third-party
intellectual property cores, in Proceedings of the Annual Design Automation Conference, DAC
’15 (ACM, New York, 2015), pp. 112:1-112:6

J. Harrison, Floating-point verification, in FM 2005: Formal Methods, International Sympo-
sium of Formal Methods Europe, Proceedings, ed. by J. Fitzgerald, 1.J. Hayes, A. Tarlecki.
Lecture Notes in Computer Science, vol. 3582 (Springer, Berlin, 2005), pp. 529-532
S. Owre, J.M. Rushby, N. Shankar, PVS: a prototype verification system, in //th International
Conference on Automated Deduction (CADE) (Saratoga, NY), ed. by D. Kapur. Lecture Notes
in Artificial Intelligence, vol. 607 (Springer, Berlin, 1992), pp. 748-752
D. Russinoff, M. Kaufmann, E. Smith, R. Sumners, Formal verification of floating-point RTL
at AMD using the ACL2 theorem prover, in Proceedings of the 17th IMACS World Congress
on Scientific Computation, Applied Mathematics and Simulation, Paris, France (2005)

J.-D. Quesel, S. Mitsch, S. Loos, N. Aréchiga, A. Platzer, How to model and prove hybrid
systems with KeYmaera: a tutorial on safety. Int. J. Softw. Tools Technol. Transfer 18, 67-91
(2016)

http://coq.inria.fr/

224

25.

26.

217.

28.

29.
30.

31.

32.

33.
34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

X. Guo et al.

A. Chlipala, Certified Programming with Dependent Types: A Pragmatic Introduction to the
Coq Proof Assistant (MIT Press, Cambridge, 2013)

U. Norell, Dependently typed programming in Agda, in Advanced Functional Programming
(Springer, Berlin, 2009), pp. 230-266

R.L. Constable, S.F. Allen, HM. Bromley, W.R. Cleaveland, J.F. Cremer, R.W. Harper, D.J.
Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden, J.T. Sasaki, S.F. Smith, Implementing
Mathematics with the Nuprl Proof Development System (Prentice-Hall, Upper Saddle River,
1986)

L.C. Paulson, Isabelle: the next 700 theorem provers, in Logic and Computer Science, vol. 31
(Academic Press, London, 1990), pp. 361-386

E.M. Clarke, O. Grumberg, D. Peled, Model Checking (MIT press, Cambridge, 1999)

T.A. Henzinger, R. Jhala, R. Majumdar, G. Sutre, Software verification with blast, in Model
Checking Software, (Springer, Berlin, 2003), pp. 235-239

J. O’Leary, X. Zhao, R. Gerth, C.-J.H. Seger, Formally verifying ieee compliance of floating-
point hardware. Intel Technol. J. 3(1), 1-14 (1999)

M. Srivas, M. Bickford, Formal verification of a pipelined microprocessor. IEEE Softw. 7(5),
52-64 (1990)

T. Kropf, Introduction to Formal Hardware Verification (Springer, Berlin, 2013)

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, S. Winwood, seL4: formal
verification of an os kernel, in Proceedings of the ACM SIGOPS 22nd Symposium on Operating
systems principles (ACM, New York, 2009), pp. 207-220

S. Chaki, E.M. Clarke, A. Groce, S. Jha, H. Veith, Modular verification of software components
in C. IEEE Trans. Softw. Eng. 30(6), 388-402 (2004)

H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M.F. Kaashoek, N. Zeldovich, Using crash hoare
logic for certifying the fscq file system, in Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP’15 (ACM, New York, 2015), pp. 18-37

M. Vijayaraghavan, A. Chlipala, N. Dave, Modular deductive verification of multiprocessor
hardware designs, in Computer Aided Verification (Springer, Cham, 2015), pp. 109-127

A.A. Mir, S. Balakrishnan, S. Tahar, Modeling and verification of embedded systems using
cadence SMV, in 2000 Canadian Conference on Electrical and Computer Engineering, vol. 1
(IEEE, New York, 2000), pp. 179-183

M. Kwiatkowska, G. Norman, D. Parker, Prism: probabilistic symbolic model checker, in
Computer Performance Evaluation: Modelling Techniques and Tools (Springer, Berlin, 2002),
pp. 200-204

G.J. Holzmann, The model checker spin. IEEE Trans. Softw. Eng. 23(5), 279 (1997)

D. Beyer, M.E. Keremoglu, Cpachecker: a tool for configurable software verification, in
Computer Aided Verification (Springer, Berlin, 2011), pp. 184-190

A.David, K. G. Larsen, A. Legay, M. Mikucionis, Z. Wang, Time for statistical model checking
of real-time systems, in Computer Aided Verification (Springer, Berlin, 2011), pp. 349-355

E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refine-
ment, in Computer Aided Verification, (Springer, Berlin 2000), pp. 154-169

C. Baier, J. Katoen, Principles of Model Checking (MIT Press, Cambridge, 2008)

A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, Y. Zhu, Symbolic model checking using sat
procedures instead of BDDs, in Proceedings of the 36th annual ACM/IEEE Design Automation
Conference (ACM, New York, 1999), pp. 317-320

R.E. Bryant, Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Comput. Surv. 24(3), 293-318 (1992)

R.E. Bryant, Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput.
100(8), 677-691 (1986)

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
A. Tacchella, Nusmv 2: an opensource tool for symbolic model checking, in Computer Aided
Verification (Springer, Berlin, 2002), pp. 359-364

10

49.

50.

SI.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

IP Trust Validation Using Proof-Carrying Hardware 225

E. Clarke, A. Biere, R. Raimi, Y. Zhu, Bounded model checking using satisfiability solving.
Form. Methods Syst. Des. 19(1), 7-34 (2001)

A. Biere, A. Cimatti, EZM. Clarke, O. Strichman, Y. Zhu, Bounded model checking Adv.
Comput. 58, 117-148 (2003)

S. Qadeer, J. Rehof, Context-bounded model checking of concurrent software, in Tools and
Algorithms for the Construction and Analysis of Systems (Springer, Berlin, 2005), pp. 93-107
G.C. Necula, Proof-carrying code, in POPL ’97: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (1997), pp. 106-119

X. Guo, R.G. Dutta, Y. Jin, Hierarchy-preserving formal verification methods for pre-silicon
security assurance, in /6th International Workshop on Microprocessor and SOC Test and
Verification (MTV) (2015)

G.E. Suh, J.W. Lee, D. Zhang, S. Devadas, Secure program execution via dynamic information
flow tracking, in Proceedings of the 11th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS XI (2004), pp. 85-96

S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, R. Iyer, Defeating memory corruption attacks
via pointer taintedness detection, in Proceedings. International Conference on Dependable
Systems and Networks, 2005. DSN 2005 (2005), pp. 378-387

W. Shi, J. Fryman, G. Gu, H.-H. Lee, Y. Zhang, J. Yang, Infoshield: a security architecture
for protecting information usage in memory, in The Twelfth International Symposium on High-
Performance Computer Architecture, 2006 (2006), pp. 222-231

N. Vachharajani, M. Bridges, J. Chang, R. Rangan, G. Ottoni, J. Blome, G. Reis, M. Vach-
harajani, D. August, RIFLE: an architectural framework for user-centric information-flow
security, in 37th International Symposium on Microarchitecture, 2004. MICRO-37 2004
(2004), pp. 243-254

Y.-Y. Chen, P. A. Jamkhedkar, R.B. Lee, A software-hardware architecture for self-protecting
data, in Proceedings of the 2012 ACM Conference on Computer and Communications Security,
CCS’12 (2012), pp. 14-27

Y. Jin, D. Oliveira, Extended abstract: trustworthy SoC architecture with on-demand security
policies and HW-SW cooperation, in 5th Workshop on SoCs, Heterogeneous Architectures and
Workloads (SHAW-5) (2014)

Y. Jin, Y. Makris, Proof carrying-based information flow tracking for data secrecy protection
and hardware trust, in [EEE 30th VLSI Test Symposium (VTS) (2012), pp. 252-257

X. Guo, R.G. Dutta, P. Mishra, Y. Jin, Scalable soc trust verification using integrated theorem
proving and model checking, in IEEE Symposium on Hardware Oriented Security and Trust
(HOST) (2016), pp. 124-129.

S. Berezin, Model checking and theorem proving: a unified framework. Ph.D. Thesis, SRI
International (2002)

P. Dybjer, Q. Haiyan, M. Takeyama, Verifying haskell programs by combining testing, model
checking and interactive theorem proving. Inf. Softw. Technol. 46(15), 1011-1025 (2004)

Chapter 11
Hardware Trust Verification

Qiang Xu and Lingxiao Wei

11.1 Introduction

Hardware Trojans (HTs) are malicious alterations of normal integrated circuits (IC)
designs. They have been a serious concern due to the ever-increasing hardware
complexity and the large number of third-parties involved in the design and
fabrication process of ICs.

For example, a hardware backdoor can be introduced into the design by simply
writing a few lines of hardware description language (HDL) codes [1, 2], which
leads to functional deviation from design specification and/or sensitive information
leakages. Skorobogatov and Woods [3] found a “backdoor” in a military-grade
FPGA device, which could be exploited by attackers to extract all the configu-
ration data from the chip and access/modify sensitive information. Liu et al. [4]
demonstrated a silicon implementation of a wireless cryptographic chip with an
embedded HT and showed it could leak secret keys. HTs thus pose a serious threat
to the security of computing systems and have called upon the attention of several
government agencies [5, 6].

HTs can be inserted in ICs in almost any stage, e.g., specification, register-
transfer level (RTL) design, logic synthesis, intellectual property (IP) core integra-
tion, physical design, and manufacturing process. Generally speaking, the likelihood
of HTs being inserted at design time is usually much higher than that being
inserted at manufacturing stage, because adversaries do not need to access foundry
facilities to implement HTs and it is also more flexible for them to implement
various malicious functions. Hardware designs can be covertly compromised by
HTs inserted into the RTL code or netlist. These HTs may be implemented by rogue

Q. Xu () « L. Wei

CUhk REliable computing laboratory (CURE Lab.), Department of Computer Science &
Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong

e-mail: gxu@cse.cuhk.edu.hk; Ixwei@cse.cuhk.edu.hk

© Springer International Publishing AG 2017 227
P. Mishra et al. (eds.), Hardware IP Security and Trust,
DOI 10.1007/978-3-319-49025-0_11

mailto:qxu@cse.cuhk.edu.hk
mailto:lxwei@cse.cuhk.edu.hk

228 Q. Xu and L. Wei

designers in the development team or integrated from a malicious third-party IP
core. As it is not feasible to verify trustworthiness of ICs at fabrication stage, it is
important to ensure that the design is HT-free before it enters the next phase of IC
design cycle.

11.2 HT Classification

Generally speaking, a HT is composed of its activation mechanism (referred
to as trigger) and its malicious function (referred to as payload). In order to
pass functional test and verification, stealthy HTs usually employ certain trigger
condition that is controlled by dedicated trigger inputs and difficult to be activated
with verification test cases.

The HTs inserted at design stage can be categorized according to their impact
on the normal functionalities of original circuits. Trojans can either directly modify
the normal functions or insert extra logic to introduce additional malicious behavior
while maintaining original functionality.

They are named bug-based HT and parasite-based HT, respectively.

11.2.1 Bug-Based HT

A bug-based HT changes the circuit in a manner that causes it to lose some of
its normal functionalities. Consider an original design in Fig. 11.1a whose normal
function is f, = d;d>. An attacker may change it to a malicious function, f,, =
did», by adding an additional inverter, as shown in Fig. 11.1b. With this malicious
change, the circuit has lost certain functionalities, i.e., the two circuits behave
differently when d, = 1. Their corresponding K-Maps are shown in Fig. 11.2a,
b. By comparing the two K-Maps, we can observe that some entries of the normal
function have been modified by the malicious function as highlighted in gray.

For bug-based HT, some functional inputs serve as trigger inputs to the HT, e.g.,
for the circuit shown in Fig. 11.1b, d, is both a functional input and a trigger input.

From a different perspective, the bug-based HT can be simply regarded as
a design bug (with malicious intention though), as the design in fact does not
realize all of its normal functionalities designated by the specification. As a result,
the extensive simulation/emulation is likely to detect this type of HTs. From this
perspective, bug-based HT is usually not a good choice for attackers in terms of
the stealthy requirement, and almost all HT designs appeared in the literature (e.g.,
[1, 2, 7-11]) belong to the parasite-based type, as discussed in the following.

11 Hardware Trust Verification 229

dl hl
dy d2
2 }fn 131
fo=dids t2
(a) dy
d d2
! t
fh‘l 1
fm = d_1d2 — — _
(b) f=tididy +tadidy + titadido

(©)

Fig. 11.1 HT classification with a simple example. (a) Original circuit. (b) Bug-based HT. (c)
Parasite-based HT

dids K-Map dids K-Map
00 o1 11 10 tits 00 01 11 10
0 0 1 0 o0 O 0 1 0
(@) o1 o 0 1 0
drdlz reMap 10 1] 0 | 0
00 o1 11 10
(b) (c)

Fig. 11.2 (a) K-Map of original circuit in Fig. 11.1a; (b) K-Map of bug-based HT in Fig. 11.1b;
(¢) K-Map of parasite-based HT in Fig. 11.1c

11.2.2 Parasite-Based HT

A parasite-based HT exists along with the original circuit, and does not cause the
original design to lose any normal functionalities. Again, consider an original circuit
whose normal functionis f, = d,d,. Suppose an attacker wants to insert a HT whose
malicious function is f,, = d,d into the design. To control when the design runs
the normal function and when it runs malicious function, the attacker could employ
some additional inputs as trigger inputs, #; and #,. Usually in order to escape the
functional verification, trigger inputs are carefully selected and the trigger condition
is designed to be an extremely rare event occurred with verification tests.

Let us examine the K-Map of the parasite-based HT-inserted circuit, as shown in
Fig. 11.2¢c. The third row represents the malicious function while other rows show
the normal function. By comparing it with the K-Map of the original circuit (see
Fig. 11.2a), we can observe that the parasite-based HT enlarges the K-Map size
with additional inputs so that it can keep the original function while embedding
the malicious function. The circuit can then perform the normal function and the
malicious function alternately, controlled by trigger inputs.

230 Q. Xu and L. Wei

11.3 Verification Techniques for Hardware Trust

11.3.1 Functional Verification

Ideally, a HT can be detected by activating it and observing its malicious behaviors.
During functional verification, a set of test cases would be applied to verify the
functional correctness of the targeted design. As bug-based HTs utilize some
functional inputs as triggers, it is highly likely to be activated and detected by
extensive simulation in a functional verification process. Hence it is not good
choice for adversaries. For parasite-based HTs, in theory, it can also be activated by
enumerating all possible system state in an exhaust simulation. In reality, however,
even with the sheer volume of states that exist in a simple design, functional
verification can only cover a small subset of the functional space of a hardware
design. Considering the fact that attackers have full controllability for the location
and the trigger condition of their HT designs at design time, which are secrets to
functional verification engineers, it is usually very difficult, if not impossible, to
directly activate a parasite-based HT.

11.3.2 Formal Verification

Theoretically speaking, whether a hardware design contains HTs or not can be
theoretically proven when a given trustworthy high-level system model (e.g., [12])
with formal verification. In practice, however, full formal verification of large
circuits is still computationally infeasible. In addition, the golden model itself may
not be available. Consequently, it is not appropriate to adopt formal verification to
verify hardware trust and dedicated trust verification techniques are developed for
parasite-based HT detection.

11.3.3 Trust Verification

Trust verification techniques flag suspicious circuitries based on the observation that
HTs are nearly always dormant (by design) in order to pass functional verification.
Such analysis can be conducted in a dynamic manner by analyzing which part
of the circuit is not sensitized during functional verification, as in UCI [10] and
VeriTrust [13]. Alternatively, static Boolean functional analysis can be used to
identify suspicious signals with weakly affecting inputs, as in FANCI [14].

11 Hardware Trust Verification 231

11.3.3.1 Unused Circuit Identification

Hicks et al. [10] first addressed the problem of identifying HTs inserted at design
time, by formulating it as an unused circuit identification problem. The primary
assumption in UCI is the hardware designs usually are verified with an extensive
test suite while the HTs inside can successfully avoid being activated to manifest
certain malicious behaviors on the outputs. Hence the “unused circuits,” which are
included in the design but do not affect any output during verification, are considered
to be HT candidates.

One way to define unused circuit is based on the code coverage metrics used
in verification (e.g., line coverage and branch coverage) such that those uncovered
circuitries are flagged as suspicious malicious logic. However, it is not hard for
attackers to craft circuits that are covered by verification but the trojan is never
triggered. Suppose a HT is inserted into a HDL implementation as follows:

X <= (ctrl[0] == ’0’)?normal_func:trojan_func;
Y <= (ctrl[1] == ’0’)?normal_func:trojan_func;
Out <= (ctrl[0] == ’0°)7X:Y;

If the control values 00, 01, and 10 are included in the verification process, all
three lines in the above code will be covered, but the out signal will always equal
to the normal function. This simple definition based on coverage is easily defeated
thus not appropriate for HT detection.

They defined “unused circuits” as follows. Consider a signal pair (s,), where ¢
is dependent on s. If ¢+ = s throughout the entire functional verification procedure,
the intermediate circuit between s and ¢ is regarded as “unused circuit.”

The UCI algorithm is performed in two steps. First, a data-flow graph is
generated in which nodes are signals or state elements and edges indicate data flow
between nodes. Based on the data-flow graph, a list of signal pairs or (data-flow
pairs), where data flows from a source signal to a sink signal, are generated. The
list includes both direct dependencies and indirect dependencies. Second, the HDL
code is simulated with verification tests to detect the signal pairs that do not have
data flows. On each simulation step, UCI checks inequality for each remaining data-
flow pairs. If inequality is detected, the signal pair is regarded safe and are removed
from suspicious list. Finally, after the simulation completes, a set of remaining data-
flow pairs is identified in which the logic between the nodes does not affect the
signal value from source to sink.

For the example circuit shown in Fig. 11.3a, a HT is inserted with malicious
function f;,, = t1t2d, with trigger condition {#;, 2} = {1, 1}. The data-flow graph of
this example circuit is shown in Fig. 11.3b. From the data-flow graph, a list of 11
signal pairs can be constructed in the left part of Table 11.1.

Simulation is performed by applying test cases except those containing {#,,#,} =
{1, 1}, which would activate the HT. Every signal pair’s equality is recorded during
simulation and their results are shown in Table 11.1. The signal pair (h,, f) is always

232 Q. Xu and L. Wei

""""""" ‘ 1 " Hardware Trojan |
fm = titads

f’n = dids

Original Circuit |

, W
@

()
[X
()
f=f+fm

(a) (b)

Fig. 11.3 (a) A HT-infected circuit with trigger inputs #; and #,; (b) Data-flow graph of the HT-
infected circuit

Table 11.1 Signal pairs

ted £ o Signal pairs Always equal under
generated from

Source | Sink | non-trigger condition

151 hy No
193 hy No
d; hy No
d; hy No
d, hy No
hy f No
hy f Yes
I3 f No
t f No
f f No
t f No

equal under non-trigger condition as /; is always 0. Hence the OR gate between
them is regarded as “‘unused circuit” and is suspicious of HT infected.

With the above shown algorithm, given a specific hardware design in HDL code,
the UCI algorithm in [10] traces all signal pairs during verification, and reports
those ones for which the property s = ¢ holds throughout all test cases as suspicious
circuitries.

One of the main limitations of UCI techniques is that they are sensitive to the
implementation style of HTs. Later, Sect. 11.4.1.1 presented how to exploit this
weakness to defeat UCI detection algorithms.

11.3.3.2 VeriTrust

In order to conquer the limitations of UCI, Zhang et al. proposed a HT detection
method called VeriTrust. VeriTrust [13] flags suspicious circuitries by identifying
potential trigger inputs used in HTs, based on the observation that these inputs

11 Hardware Trust Verification 233

d\d, K-Map dyd, K-Map

hip 00 01 11 10 tity 00 o1 11 10
o0o| O 0 1 0 oo| O 0 1 0
01| 0 0 1 0 01| 0 0 I 1 \ 0
11 0 1 0 0 11| X X \ X I X
10| O 0 1 0 10| O 0 \1/ 0

(a) (b)

Fig. 11.4 (a) A HT-infected circuit with trigger inputs #; and #,; (b) Data-flow graph of the HT-
infected circuit

keep dormant under non-trigger condition (otherwise HTs would have manifested
themselves) and hence are redundant to the normal logic function of the circuit.

The intuition behind VeriTrust is the fact that any HT-infected signal must be
driven by at least one dedicated trigger input. Thus the function of a HT-infected
signal can be represented as f = C,f;, + Cyf,n, wherein f,, and f;, denote the circuit’s
normal function and HT’s malicious function while C, is non-triggering condition
and C,, the triggering condition, respectively. As C,, never appear in the verification
process, all its entries in K-map can be set to don’t-cares without affecting the
normal function. After logic simplification, the function f = f;, which means the
triggering inputs, becomes redundant.

Here is an illustration based on the example circuit from Fig. 11.1c. Its Boolean
function is f = 7#1d1d, + tdidy + 1 trd,d,. The K-map of this function is shown
in Fig. 11.4a. Suppose the verification has verified every entries in K-map except
those with triggering condition, highlighted with gray color in Fig. 11.4a. These
entries would be set to don’t-cares in VeriTrust, as shown in Fig. 11.4b. By logic
simplification, the original Boolean function reduced to the normal function d;d,,
leaving the triggering input #;, #, redundant.

VeriTrust can be considered as an “unused input identification” technique by
looking for redundant inputs after setting all un-activated entries in verification tests
to be don’t-cares.

The overall framework of VeriTrust is shown in Fig. 11.5 which contains two
parts: tracer and checker. The tracer traces verification tests to identify those signals
that contain un-activated entries by tracing mechanisms. Then the checker analyzes
these signals and determines whether any of them indeed contain redundant inputs
and hence are potentially affected by HTs.

234 Q. Xu and L. Wei

source code % netlist Z%

mechanisms

Fig. 11.5 The overview of VeriTrust

Tracer

Consider a particular signal whose fan-in logic cone may contain a HT, the
responsibility of the tracer is to find out whether it contains any un-activated entries
after verification tests. A straightforward method is to record the activation history
of each and every entry, but it would require unaffordable memory space for large
circuits and incur high runtime overhead. To resolve this problem, instead of tracing
the activation history of each and every logic entry, a much more compressed tracing
mechanism is proposed.

Before discussing the details, it is necessary to revisit some basics of Boolean
functions. In general, any combinational circuit can be represented in the form
of sum-of-products (SOP) and product-of-sums (POS). SOP uses OR operation to
combine those on-set minterms, while POS uses AND operation to combine those
off-set maxterms. Two minterms (maxterms) are adjacent if they have only one
different literal.

Next, Zhang et al. introduced three new terms, malicious on-set minterm,
malicious off-set maxterm, and dummy term that compose malicious function as
follows.

Definition 1. The malicious on-set minterm is the on-set minterm in the malicious
function whose adjacent minterms in the normal function are off-set.

Definition 2. The malicious off-set maxterm is the off-set maxterm in the mali-
cious function whose adjacent maxterms in the normal function are on-set.

Definition 3. The dummy term is the on-set minterm or off-set maxterm in the
malicious function whose adjacent minterms or maxterms in the normal function
are also on-set or off-set.

With the above definitions, only the malicious on-set minterms and malicious
off-set maxterms have malicious behavior. Consequently, it is not necessary to set
dummy terms as don’t-cares to identify dedicated trigger inputs. Figure 11.6 shows
the K-Maps of two example HT-infected circuits (#; and #, are trigger inputs) to
illustrate the above terms. The entry filled with vertical lines is malicious on-set
minterm, as its neighboring entries in the normal function are all logic “0”’s. The
entry filled with horizontal lines is malicious off-set maxterm, as its neighboring

11 Hardware Trust Verification 235

dido K-Map dido K-Map
t4to 00 o1 11 10 t4t, 00 01 11 10

ch Cci malicious
00 ﬁ)\ 0 1 0 00| O 0 /1\ 0 M on-set minterm
01 , 0\ 0 1 0 01 0 0 1 \ (0] E malicious
off-set maxterm
e o
11 0 e 0 11 0[] 1 0 @
10 \(/ 0 1 0 10| O 0 \1/ 0 E

(a) (b)

o

dummy term

Fig. 11.6 Two HT-affected circuits triggered by {r;,5,} = {1, 1}

entries in the normal function are all logic “1”s. The remaining entries without
vertical lines and horizontal lines in the malicious function are dummy terms, as
they have the same values with their neighboring entries in the normal function.
From the above definitions, when simplifying the circuit into the minimal form of
SOP (POS), following observations have been obtained:

* Malicious on-set minterms and malicious off-set maxterms can only be combined
with terms in the malicious function. This is because all the adjacent minterms
(maxterms) of malicious on-set minterms (malicious off-set maxterms) in the
normal function are off-set (on-set). For example, in Fig. 11.6a, one malicious
off-set maxterm is combined with one dummy term (circled by C2), and in
Fig. 11.6b, one malicious on-set maxterm is combined with one dummy term
(circled by C2).

* Dummy terms can be combined with terms in the normal function as well as
terms in the malicious function. For example, the circle C1 in Fig. 11.6a, b shows
that the dummy term is combined with terms in the normal function; the circle
C2 in Fig. 11.6a, b shows that the dummy term is combined with terms in the
malicious function.

From the above, simplified products or sums containing malicious on-set
minterms or malicious off-set maxterms cannot be activated during the verification.
In other words, during the tracing process, we can record the activation history
of products and sums instead of that of each logic entry, and hence the memory
requirement and runtime overhead of our tracer can be dramatically reduced. The
simplified products and sums can be obtained by simplifying the circuit to the
minimum SOP and POS form, by leveraging the capability of logic synthesis tool.

The tracing procedure might still be time-consuming if the number of products
and sums to be traced is large. Tracing overhead can be further reduced by
periodically removing those activated sums and products and those un-activated
ones whose signal is determined to be HT-free with the checker.

236 Q. Xu and L. Wei

The tracer outputs a number of signals that have un-activated products or sums
after applying verification tests. The checker then checks whether a particular
signal is driven by any redundant input by assigning the corresponding un-activated
products and sums to be don’t-cares. If it is, it would be a suspicious HT-affected
signal; otherwise it is guaranteed to be HT-free.

Checker

To identify whether a signal is driven by redundant inputs could be time-consuming
if its fan-in logic cone is large. To mitigate this problem, three optimization methods
are adopted in sequence for redundant input identification, which differ in the
checking capability and time complexity.

Checker 1 simply checks whether there is any redundant input by removing un-
activated products/sums from the signal’s SOP/POS representation. Take the circuit
in Fig. 11.6a as an example. One SOP can be represented as: f = dd,+t1t2d>. If we
remove the un-activated #f,d> from the SOP, the logic function becomes f = d;d»
with redundant inputs #; and f,. This efficient checking mechanism is effective in
many cases, but it cannot guarantee complete identification of redundant inputs.
This is because, whether checker 1 can find out redundant inputs depends on the
SOP/POS representation of the signal. For example, if the circuit in Fig. 11.6b is
represented as f = t1d\d, + hdidy + t1thd, then removing the un-activated ¢1t,d>
cannot leave #; and #, redundant.

Checker 2 leverages logic synthesis to re-simplify the function by considering
un-activated products and sums as don’t-cares. If an input does not appear in
the synthesized circuit, it is a redundant input. This method is able to find most
redundant inputs, but still cannot guarantee to find all since synthesis tool cannot
guarantee optimality by employing heuristic algorithm for logic minimization.

Checker 3 verifies all inputs that are used in the un-activated products/sums one
by one. If the change of an input would not cause the change of the function in all
input patterns under the condition that un-activated products and sums are set as
don’t-cares, it should be a redundant input. Checker 3 can guarantee to find out all
redundant inputs, but it is more time-consuming than Checker 1 and Checker 2.

To ensure complete identification capability while keeping computational time
low, checker 1, checker 2, and checker 3 are run in a consecutive manner. For each
signal examined, if a more efficient checker (e.g., checker 1) finds out a redundant
input for a particular signal with un-activated products/sums, the products/sums
are marked as a suspicious HT-affected signal. Otherwise, next checker is used for
redundant input identification. If all the three checkers cannot find redundant inputs
for the signal of interest, it is guaranteed to be HT-free. Eventually, the checker
returns a list of suspicious signals that are potentially affected by HTs.

11 Hardware Trust Verification 237

Algorithm 11.1: Suspicious wires detection in FANCI

1 for all modules m do

2 for all gates g in m do
3 for all output wires w of g do
4 T <— TruthTable (FanInCone (w));
5 V <= Empty vector of control values;
6 for all columns c in T do
7 Compute control value of ¢;
8 Add control(c) to vector V;
9 end for
10 Compute heuristics for V;
11 Decide w as suspicious or not;
12 end for
13 end for
14 end for

11.3.3.3 FANCI

FANCI [14], which stands for Functional Analysis for Nearly unused Circuit
Identification, is a kind of static Boolean function analysis to find signals with
weakly affecting inputs. It is based on the observation that a HT trigger input
generally has a weak impact on output signals. Thus these weakly affecting inputs
are probably inserted by adversaries as backdoor triggers. The primary goal of
FANCT is to identify the “weakly affecting” dependency between inputs and outputs
via a metric called control value, which measure the degree of control that an input
has on the outputs of a digital circuit.

The overall detection algorithm can be seen in Algorithm 11.1. FANCI examines
outputs of every gate in all modules inside the hardware design and constructs
functional truth table from its fan-in cone. For each input feeding into the examined
output, FANCI determines whether the input is suspicious by control value com-
puted from truth table. Given an input wire w; and output wire w,, FANCI algorithm
traverses all rows in the truth table of w,,, denoted by 7', and count rows in 7 that w,
changed when flipping the value of w;. The control value of w; on w, is defined as

count
CV(wi,w,) = . 11.1
(Wi, wo) size(T) (11.1)

where count denotes the total number of rows the change of w; affecting the value of
w, while size(T) denotes the size of truth table (i.e., the total number of rows in T').

For example, shown in Fig. 11.3a, which function can be denoted as f = d1d» +
tithd,. Its truth table is shown in Table 11.2. There are only two rows, highlighted
in gray, under which flipping #; leads to the change of the output, and hence the
control value of t; on f is CV(t;,f) = 2/2* = 0.125. In the similar manner, a
vector of control values V is acquired for f as V = [0.125,0.125,0.375, 0.625]
containing the control values for input ¢, 2, d;, d>. Since the sizes of truth tables

238 Q. Xu and L. Wei

Table 11.2 Truth table of

able n|t |d |d |f ho|h |d |d |f
circuit f = did, + t11,d; ololo lo o L0 lo o lo
0|0 |0 |1 |0 1 /0 [0 |1 |O

o0 |1 (0 |0 1 /0 (1 |O |O

0 [0 |1 1 1 1 10 |1 1 1

o f1r 0 |0 |O 1 {1 0 |0 |O

o/l |0 |1 |0 1 |1 |0 |1 1

o |1 |1 (0 |0 1 |1 (1 |0 |0

0o |1 |1 1 1 1|1 |1 1 1

grow exponentially with respect to the number of input wires, computing control
values deterministically is exponentially hard. Necessary optimization is required
for efficient and practical detection. They proposed to compute approximate control
value by selecting a subset of rows from the complete truth table at uniformly
random. For instance, N cases are chosen randomly for computing and for each
case w; is flipped and the total number of times that w, changes is recorded, denoted
by n. The approximate control value is . It shall be noted that rows in truth table
are selected uniformly at random to prevent potential adversaries from exploiting
the sampling procedure and designing HT's evade FANCI.

When the vector of control values is computed for a signal under analysis, it is
not trivial to determine whether it contains a HT trigger. Having only one weakly
affecting input or a input that is only borderline weakly affecting is not sufficiently
suspicious as it could simply be an inefficient implementation. FANCI includes
the several heuristics, such as median and mean, to decide whether the signal is
suspicious by considering all elements in the CV vector.

Median If an output is affected by HT triggers, the median is often close to zero. If
the distribution in CV vector is irregular, the median may bring in unnecessary false
positives.

Mean This metric is similar to median, but slightly sensitive to outliers. It is more
effective when there are few unaffecting dependencies.

Median and Mean Consider the signals with both extreme median and mean
values to mitigate the limitations and diminish false positives.

Triviality This metric calculates a weighted average of the vector of control values.
Each weight of the wires in CV vector is measured by how often they are the only
wire influencing the output to determine how much an output is influenced overall
by its input. Suppose an output wire with w, = w;, @& ... & w;, is analyzed by
FANCT, all input wires have the control value of 1.0, but it is never the case that one
input completely controls the output. Thus the triviality, i.e., the weight of every
input is 0.5.

11 Hardware Trust Verification 239

Table 11.3 HT detection with hardware functional verification and trust verification

Static/dynamic | Detection method Runtime
Functional verification Dynamic Activate the HT Good
UCI by code coverage Dynamic Identify uncovered parts Good
UCI by Hicks et al. [10] | Dynamic Identify equal signal pair Fair
VeriTrust [13] Dynamic Identify HT trigger inputs Fair
FANCI [14] Static Identify weakly affecting inputs | Fair

False negatives False positive
Functional verification HTs with rare trigger condition | None
UCI by code coverage HTs in [2] Few with thorough verification
UCI by Hicks etal. [10] |HTsin[2, 11] Some with thorough verification
VeriTrust [13] Unknown Some with thorough verification
FANCI [14] Possible with low threshold Many with high threshold

For each metric, it is necessary to have a cut-off threshold for what is suspicious
and what is not. The value is chosen either a priori or after examining the distribution
of computed values.

11.3.3.4 Discussion

Table 11.3 summarizes the characteristics of existing solutions for HT detection.
Since dynamic trust verification techniques (i.e., UCI and VeriTrust) analyze
the corner cases of functional verification for HT detection, these two types of
verification techniques somehow complement each other. Generally speaking, with
more FV tests applied, the possibility for HTs being activated is higher while the
number of suspicious circuitries reported by UCI and VeriTrust would decrease.
As a static solution that does not depend on verification, one unique advantage of
FANCT over the other solutions is that it does not require a trustworthy verification
team. On the other hand, however, adversaries could also validate their HT designs
using FANCI without necessarily speculating the unknown test cases used to catch
them.

All trust verification techniques try to eliminate false negatives (a false negative
would mean a HT that is not detected) whilst keeping the number of false positives
as few as possible in order not to waste too much effort on examining benign
circuitries that are deemed as suspicious. However, their detection capability is
related to some user-specified parameters and inputs during trust verification. For
example, FANCI defines a cut-off threshold for what is suspicious and what is not
during Boolean functional analysis. If this value is set to be quite large, it is likely to
catch HT-related wires together with a large number of benign wires. This, however,
is a serious burden for security engineers because they have to evaluate all suspicious
wires by code inspection and/or extensive simulations. If this value is set to be quite
small, on the contrary, it is likely to miss some HT-related wires. Similarly, if only a

240 Q. Xu and L. Wei

small number of FV tests are applied, UCI and VeriTrust would flag a large number
of suspicious wires (all wires in the extreme case when no FV tests are applied),
which may contain HT-related signals but the large amount of false positives make
the following examination procedure infeasible.

11.4 Stealthy HT Designs Defeating Trust Verification

HT design and HT identification techniques are like arms race, wherein designers
update security measures to protect their system while attackers respond with more
tricky HTs. With the state-of-the-art hardware trust verification techniques such
as UCI, VeriTrust, and FANCI being able to effectively identify existing HTs, no
doubt to say, adversaries would adjust their tactics of attacks accordingly and it has
been revealed that new types of HTs can be designed to defeat these hardware trust
verification techniques.

11.4.1 HTs Evade UCI

UCT tracks signal pairs whose values remain the same during the verification
process. The circuits between these signals are regarded as “unused circuit” and are
potential HT candidates. The obvious way to evade UCI is to make all dependable
signal pairs in HT differ at least once under non-trigger condition.

11.4.1.1 Motivational Case

Sturton et al. [11] showed a simple design consisting only of two multiplexers
evades UCI. The design is illustrated in Fig. 11.7. This circuit evades detection by
UCT because there is no dependent signal pairs that are always equal under non-
trigger condition. There are two non-trigger inputs dj,d, and two trigger inputs
11, I, with trigger condition {#1,#,} = {1, 1}. The output function f = dyd; + fotd,
and its truth table are shown in Table 11.4. Under trigger condition, the malicious
function f = dod, is showed while under non-trigger condition, the normal function
f = dod, is facilitated.

Fig. 11.7 Example d,
defeating UCI h
Ty

dy

11 Hardware Trust Verification 241

Table 11.4 Truth table of

apie L to |t |dy |dy |h |f | Comments
circuits in Fig. 11.7
1 /0 0 0 [0 (O]O
2 10 {0 |0 |1 (0|0 |f#4d
310 (0 |1 |0 |1 |0 |hz#1,1
4 (0 |0 |1 |1 |1 |1 |f#t,n
5 /0|1 0 |0 (0|0
6 [0 |1 |0 |1 |00
7 10 |1 |1 |0 (0|0 |h#d
8 |0 |1 [1 |1 |0 |1 |f#h
9 1 /0 0 |O (0|0
10 |1 ([0 |0 |1 |0 |O
11 |1 {0 |1 [0 |1 |0 [f#do
12 (1 (0 (1 |1 |1 |1
13 |1 |1 0 |0 |1 |1 |Trigger
14 |1 |1 |0 |1 |1 |1 |Trigger
15 |1 |1 |1 |0 |1 |0 |Trigger
16 |1 |1 '1 |1 |1 |1 |Trigger

In Table 11.4, the rows in gray are the signal values under triggering condition,
thus it cannot be seen during the verification tests. The final column notes when
an input makes a dependent pair of signals unequal. If the verification test includes
non-triggering patterns in row 2, 3, 4, 7, 8, 11, UCI would not flag any part of the
circuit as malicious. Since the trigger condition for all of these inputs is false and
the normal function is dyd, this circuits behaves identically with an AND gate in
all test cases.

A rogue designer may utilize this fact and replace any AND gate with the
malicious circuit in Fig. 11.7 and can hide from UCI detection. If this affects
some security critical element of hardware, a hidden vulnerability is introduced by
this HT.

The reason why UCI missed this behavior is that there is no intermediate function
equivalent to the output function so that UCI cannot find a short-circuit with the
output. The key idea to defeat UCI is to create a non-trigger function that is not
equivalent to any internal functions.

11.4.2 HT Design Against UCI

Sturton et al. proposed to construct malicious Trojan in an incremental manner. They
first built a set of small circuits that evade UCI and construct more stealthy HTs by
combing these small circuits with basic circuit-building elements (e.g., AND gate,
OR gate, MUX, etc.) via exhaustive search. Every newly created circuit is verified
by UCI to determine whether it can evade UCIL.

242 Q. Xu and L. Wei

The intuition behind this incremental search is based on the fact every subcircuit
of a UClI-evading circuit also evades UCI. This is simple to understand by
considering the definition of “unused circuit.” If a circuits evades UCI, meaning
that every internal signal inside this circuits does not always equal to the signals in
its fan-in cone. Thus the circuits between each internal signal and its primary inputs
are a subcircuit and it evades UCL

Before presenting the HT design algorithm, Sturton et al. defined several
concepts for the ease of discussion:

Definition 4. An admissible circuit is a circuit that (1) contains exactly one trigger
condition, (2) has at least one trigger inputs, (3) its output is independent from
trigger input under non-trigger condition.

Definition 5. A circuit is obviously malicious if there exist two valuations to the
inputs of the circuit, x = (d,1), ¥ = (d,7'), in which ¢ is a non-trigger condition
while ¢ is trigger condition and the output of the circuit is different under these two
conditions.

Definition 6. A circuit is a stealthy circuit if it evades UCI, i.e., there is no pair of
dependent signals always equal in verification tests.

These three definitions perfectly characterize the three aspects of HTs that
evades UCIL. Firstly, HT shall contain a malicious function that can be triggered
in specific conditions, i.e., obviously malicious. Second, HT shall pass the design-
time verification, the output has nothing to do with trigger inputs, i.e., admissible.
Finally, it cannot contain any signals that would be flagged as suspicious by UCI.
The goal of HT construction algorithm is to find the class of HT's that contains above
mentioned characters.

Algorithm 11.2 shows the proposed way to generate HTs from scratch. HT
designers first shall fix the number of input signals to the circuit and the size
of the circuit. Also, the basic blocks for building the circuit shall be determined.
The construction algorithm maintains a workqueue of newly formed circuits which
would serve as building blocks for future circuits. The workqueue initially contains
the circuits that contains only one input.

Roughly speaking, in each iteration of the algorithm, one circuit is removed out
of the workqueue and consider all ways to expand it to make a new stealthy circuit.
If a new circuit is found satisfying three definitions, it is added to the database of all
constructed HTs. The algorithm can be run multiple times with different parameters
(e.g., number of inputs, size of circuit, basic building gates, etc.), and more versatile
HTs would be added to the database.

After the searching algorithm is finished, a database containing circuits with
various normal functions and malicious functions is formed. Rogue designers can
replace arbitrary circuit in the normal design with HT-infected circuit with the same
normal function by searching the database.

11 Hardware Trust Verification 243

Algorithm 11.2: Construct circuits to defeat UCI

// Initial Circuit, one for each input
1 Gy = (do);C1 = (dh)s. . 5Cu = (tm)s

// Set of circuits found that evades UCI
2 completed_circuits = &;

// Set of circuits used as building block for larger circuits
3 workqueue = {Cy, Cy,...,C,};

// Set of basic gates in building circuits

4 gate_basis = {AND, OR, NOT, NAND, 2-input MUX};
5 while length(workqueue) > 0 do
6 curr_circuit = workqueue.pop();
7 if curr_circuit is stealthy, admissible and oblivious malicious then
8 | Print curr_circuit;
9 else
10 for all gate in gate_basis do
11 for all circ in completed_circuits U {curr_circuit} do
12 new_circuit = gate(curr_circuit, circ);
13 if new_circuit is stealthy and not in completed_circuits then
14 | workqueue.append(new_circuit);
15 end if
16 end for
17 end for
18 completed_circuits.add(curr_circuit);
19 end if

20 end while

11.4.3 HTs Evade VeriTrust

As discussed earlier, VeriTrust flags suspicious HT trigger inputs by identifying
those inputs that are redundant under verification. Consequently, as it is shown
in [15], the key idea to defeat VeriTrust is to make HT-affected signals driven by
non-redundant inputs only under non-trigger condition.

11.4.3.1 Motivational Case

For any input that is not redundant under non-trigger condition, the following lemma
must be true.

Lemma 1. Consider a HT-affected signal whose Boolean function is f(hy, ha,
...,). Any input, h;, is not redundant under non-trigger condition, as long as
the normal function, denoted by f,,, cannot be completely represented without h;.

Proof. Since f,, cannot be completely represented without /;, there must exist at
least one pattern for all inputs except #; under which f,(h; = 0) # f,(hi = 1).
Therefore, h; is not redundant.

244 Q. Xu and L. Wei

d2 hl h2 K-map

d Ry B\ 00 01 11 10
FF. 3
t@_ : f olofo|1]o
1-

(a) (b)

Fig. 11.8 Motivational example for defeating VeriTrust (a) HT-infected circuit (b) K-map

Inspired by Lemma 1, Fig. 11.8a shows a HT-infected circuit that is revised
according to the circuit shown in Fig. 11.4, wherein the HT is activated when
{t;, 12} = {1, 1}. In this implementation, the malicious product #,1,d, is combined
with the product t,d;d, from the normal function and hidden in the fan-in cones
of hy and h,, where hy = td, and h, = d; + t,. The K-map of f is shown in
Fig. 11.8b, where entries that cannot be activated under non-trigger condition are
marked as “don’t-cares.” For this circuit, VeriTrust, focusing on the combinational
logic, would verify four signals, f, h;, hy, and h3. According to the K-map shown
in Fig. 11.8b, it is clear that &, h;, and h3 are not redundant for f under non-trigger
condition. Moreover, h, h,, and h3, which are not HT-affected signals, have no
redundant inputs as well, since all of their input patterns can be activated under
non-trigger condition. Therefore, the HT in Fig. 11.8a is able to evade VeriTrust.

By examining the implementation of this motivational case, it is clear that the
mixed design of the trigger and the original circuit makes trigger condition for the
HT-affected signal not visible for VeriTrust. In order to differentiate existing HTs
and HTs like the one shown in Fig. 11.8a, two new terms are introduced in [15]: the
explicitly triggered HT and the implicitly triggered HT as follows.

Definition 7. A HT is explicitly triggered if in the HT-affected signal’s fan-in logic
cone, there exists an input pattern that uniquely represents the trigger condition.

Definition 8. A HT is implicitly triggered if in the HT-affected signal’s fan-in
logic cone, there does not exist any input pattern that uniquely represents the trigger
condition.

All explicitly-triggered HTs can be detected by VeriTrust, as they contain
dedicated trigger inputs which can be identified by VeriTrust. The HT shown in
Fig. 11.8a is implicitly-triggered, since the trigger condition is hidden in the hh;
which also contains certain circuit’s normal functionalities.

The HT design method shown in next section is motivated by the above example
and observations by implementing implicitly-triggered HTs to defeat VeriTrust.

11 Hardware Trust Verification 245

11.4.3.2 HT Design Against VeriTrust

As VeriTrust only focused on detecting HT trigger inputs in the combinational
logic block wherein the output is HT-affected signal. The HT design methodology
evading VeriTrust also focused on the combinational logic. According to Lemma 1,
the approach to defeat VeriTrust implements the implicitly triggered HT with the
following two steps:

o Combine all malicious on-set terms' with on-set terms from normal function,
and re-allocate sequential elements (e.g., flip-flops) to hide the trigger in multiple
combinational logic blocks.

» Simplify all remaining on-set terms and re-allocate sequential elements if they
contain trigger inputs.

Note that, only on-set terms are selected, since the circuit can be explicitly
represented by the sum of all on-set terms.

The defeating method against VeriTrust can be further illustrated as follows.
Consider a circuit with an explicitly triggered HT, and its Boolean function can
be represented by

f= }: 2: CniPn; + 2: E: CmiPm; (11.2)

Cnivcna DPnj VP, Cmj VYCn, Dmj VPy

where P, and P,, driven by functional inputs denote the set of all patterns that make
the normal function and malicious function output logic “1”, while C, and C,, driven
by trigger inputs denote the set of non-trigger conditions and the trigger conditions,
respectively.

For the sake of simplicity, the analysis began with the case where the malicious
function contains only one malicious on-set term, Cyu,Pm,. SUPPOSE CyyPn, from the
normal function is selected to combine with ¢, pm,. Let f,: be all the on-set terms
from the normal function except c,,p,,. Then, f can be given by

=11+ CuoPro + CmoPrmo)- (11.3)

Suppose ¢,pn, and cu,pm, have the common literals, c‘p¢, and then

I =14 cDCchPhy + ChnoPino)- (11.4)
where
Cno = CCC;O; DPny = pcp:m;
o r ., (11.5)
Cmpg = € Cpys Pmg = D Dy~

"Malicious on-set term is the on-set term in the malicious function whose adjacent terms in the
normal function are off-set [13]. On-set term and off-set term are terms that make the function
output logic “1” and logic “0”, respectively.

246 Q. Xu and L. Wei

After that, the circuit is re-synthesized and the flip-flops are re-allocated to make f
become

f=hihy + hs, (11.6)
where
hy = cp°
hy = ¢ Pro + ConoPrng- (11.7)
hs = f,

hi, hy, and hs are outputs of the re-allocated flip-flops.

As can be observed in Egs. (11.6) and (11.7), the key of the defeating method is
to extract common literals from the malicious on-set term and the on-set term from
the normal function and hide the trigger into different combinational logic. With the
above, f, hi, h,, and h3 would have no redundant inputs under non-trigger condition.

For multiple malicious on-set terms, the above method can also be used to
combine each of them with one on-set term from the normal function and then hide
the trigger in different combinational logic blocks. Finally, the output function f can
be represented as:

k=1
£ = (haipihaiga) + ot (11.8)
i=0
where
hyiv1 = c“ip“
hyita = clipyi + i pi . (11.9)
hoks1 = £,
It is easy to prove that &y, hy, ..., hy+ and f have no redundant inputs under non-
trigger condition. Note that the HT can be spread over multiple sequential levels by
further combining the trigger logic driving hy, ha, ..., hax4+1 with normal logic.

The defeating approach shown above can defeat VeriTrust in theory if a complete
verification is performed. However, in practice, due to stringent time limit and ever-
increasing circuit complexity, it is very hard to guarantee the verification is enough
for HT detection. Hence probability of HT trigger inputs being flagged as redundant
inputs still exists because of insufficient verification. The authors proposed the
following three optimizations:

* Combine simplified malicious products (rather than malicious on-set terms) with
on-set terms from the normal function, so that fewer terms from the normal
function are required to be activated to evade VeriTrust.

11 Hardware Trust Verification 247

Algorithm 11.3: The flow to defeat VeriTrust

1 Simplify Boolean function of this combinational logic;

2 Conduct the simulation with tests guessed by attackers to obtain the probability of each
product;

3 foreach simplified malicious product do

4 Greedily combine it with the product from the normal function with the largest

activation probability and hide the trigger in different combinational logic blocks;
5 end foreach
6 Re-allocate flip-flops for the remaining products.

* Choose simplified products from the normal function to be combined with
simplified malicious products, so that any of the terms in the product from the
normal function being activated can make HT evade VeriTrust.

* Choose those simplified products from the normal function with high activation
probabilities to be combined with malicious products. This method requires
the knowledge about the probability of products from the normal function,
which can be estimated by speculating on the test cases used in functional
verification [2, 11].

The flow to defeat VeriTrust is illustrated in Algorithm 11.3. It first simplifies
the Boolean function of the combinational logic of HT-affected signals, and then
conducts simulation with speculated test cases to obtain the probability of each
product. After that, a loop is used to hide HT triggers whenever possible. In
each iteration, one malicious product is combined with one product from the
normal function with the largest activation probability and it is hidden in different
combinational logic blocks. At last, flip-flops are re-allocated for the remaining
products.

11.4.4 HTs Evade FANCI

Since FANCI identifies signals with weakly affecting inputs within the combina-
tional logic block, the key idea to defeat FANCI is to make the control values of all
HT-related signals comparable to those of functional signals.

11.4.4.1 Motivational Case

The authors in [15] started with the case shown in Fig. 11.9 to illustrate the key
idea of defeating FANCI. Figure 11.9a, b presents a regular multiplexer (MUX)
and a malicious one with a rare trigger condition, respectively. FANCI is able to
differentiate the two types of MUXes and flag the malicious one since the trigger
inputs, denoted by 1y, t1, . . ., f3, have very small control values for the output O(2}}5).

248 Q. Xu and L. Wei

do do

a1 d1

d> MUX o d2 MUX o

ds ds

So St to-te3 S0S1
CV(dy) = CV(dy) = CV(dy) = CV(ds) = 0.25 CV(do) = CV(dy) = CV(da) = CV(ds) = 0.25
CV(SU) = Cv(él) =0.5 Cv(fo) = CV(tl) =..= Cv(fsg) = 2—;5
(a) (b)
fo —
: FF
ts —

1

tot's] sos1

tso_— FF

to3——

CV(dy) = CV(dy) = CV(dy) = CV(ds) = 0.25
CV(ty) = CV(t;) = ... = CV(tg3) = %
(c)

Fig. 11.9 Motivational example for defeating FANCI. (a) A standard MUX. (b) A malicious
MUX. (¢) A malicious MUX with modified implementation

From this example, we can see that the main reason for HT-related signals (e.g.,
o in Fig. 11.9b) having weakly affecting inputs is that it is driven by a number of
trigger inputs in its fan-in combinational logic cone. Consider a signal driven by a
combinational logic block with m trigger inputs and n functional inputs. The size of
the truth table for this particular HT-related signal is given by:

size(T) = 2"t (11.10)

11 Hardware Trust Verification 249

For any trigger input, denoted by #;, those input patterns under which #; influences the
output should meet two requirements: (1) all trigger inputs other than #; are driven by
the trigger values?; (2) flipping #; results in the change of the output value. There are
in total 2”1 input patterns meeting the first requirement. Among them, how many
further satisfying the second requirement depends on the actual difference between
the malicious function and the normal function, because they may output the same
value under certain functional inputs. At the same time, they cannot always output
the same value because otherwise there would be no malicious behavior. Therefore,
the number of input patterns satisfying both requirements is bounded at:

2! < counter < 2", (11.11)

With Eqgs. 11.10 and 11.11, the control value of # on the corresponding HT-
related signal is bounded at:

counter 1

<CV() = < .
(@) size(T) — 2m—1

et = (11.12)

In order to make FANCI difficult to differentiate HT-related signals and function
signals, the control values of HT-related signals shall be comparable to those of
functional signals. As indicated by Eq.(11.12), reducing m has an exponential
impact on the increase of control values. Thus, the authors modify the implementa-
tion of the malicious MUX by balancing these trigger inputs into multiple sequential
levels (see Fig. 11.9¢). In this way, the number of trigger inputs is controlled to be
no more than four for any combinational block, rendering the control value of each
trigger input comparable with those of functional inputs.

Motivated by the above, the approach of defeating FANCI is to reduce the
number of trigger inputs in all the combinational logic blocks that drive HT-related
signals, and it can be achieved by spreading HT trigger inputs among multiple
sequential levels.

11.4.5 HT Design Against FANCI

In this section, two kinds of HT's are considered. Typically, the trigger of a stealthy
HT consists of both combinational part (@ in Fig.11.10) and a sequential part
(® in Fig.11.10). The defeating algorithm for FANCI need to deal with them
separately because different methods are adopted to handle the extra delay induced
by additional sequential levels. Algorithm 11.4 presents the flow to defeat FANCI.
For the combinational logic blocks in @, the defeating method is similar to the
one shown in Fig. 11.9¢c. As can be seen, the original trigger combinational logic

Trigger values are logic values for trigger inputs to satisfy trigger condition.

250 Q. Xu and L. Wei

Part Il: combinational logic|

e _\

u 0
combinational . o =% t2
logic Part I: sequential logic s g
/
trigger
Fig. 11.10 Trigger design for a typical HT
Algorithm 11.4: The flow to defeat FANCI
1 NT = 2;
2 do
3 | DefeatFANCI(N; + +);
4 while (The hardware cost is larger than a given constraint.);
/* One step to defeat FANCI %/
5 DefeatFANCI(Nr)
/x For combinational logic of @ */
6 foreach The fan-in cone of the input of the flip-flop do
7 if the number of trigger inputs > Ny then
8 | Balance the trigger in the multiple sequential levels;
9 end if
10 end foreach
/x For combinational logic of @ */
11 Find out the maximum number of trigger signals, denoted by N,,,,, within a
combinational logic cone;
12 if N,,.c > N then
13 | Introduce multiple small FSMs until N, < N7;
14 end if
15 end

with a large number of trigger inputs is spread among multiple combinational logic
blocks, such that the number of trigger inputs in each combinational logic block is
no more than N7 (a value used to tradeoff HT stealthiness and hardware overhead).
As shown in Algorithm 11.4 (Lines 6-10), only the inputs of flip-flops are examined,
rather than all signals. This is because, as long as the number of trigger inputs for
the input of every flip-flop is smaller than N7, the number of trigger inputs for every
internal signal is also smaller than N7.

The sequential part of a HT trigger can be represented by a finite-state
machine (FSM) and the trigger inputs are used to control the state transitions
(see Fig. 11.11a). For the combinational logic blocks in @ that sits inside the FSM,
the above defeating method is not applicable because it introduced extra sequential
levels. The additional pipeline delay incurred would change trigger condition.

11 Hardware Trust Verification 251

P[0:63] = P1 P[0:63] = P2

OFROEO

otherwise

(a)

P[8:15] = P21 P[8:15] = P22 P[8:15),= P2n
[) []

otherwise

P 56:.612] 5 Pan

otherwise

(b)

Fig. 11.11 The proposed sequential trigger design to defeat FANCI. (a) The original FSM. (b)
The multiple small FSMs

Instead, the original FSM is partitioned into multiple small FSMs, e.g., as shown in
Fig. 11.11b, the FSM with 64 trigger inputs is partitioned into eight small FSMs.
By doing so, the number of trigger inputs in each small FSM is reduced to eight for
this example, and it can be further reduced by introducing more FSMs. The HT is
triggered when all the small FSMs reach certain states simultaneously.

Note that the proposed defeating method against FANCI has no impact on both
circuit’s normal functionalities and HT’s malicious behavior, because this method
only manipulates the HT trigger design, which is separated from the original circuit
and the HT payload.

As the stealthiness of a HT is mainly determined by the number of trigger inputs
in each combinational logic, this is achieved by finding the value of N7 in a greedy
manner. That is, as shown in Algorithm 11.1, we start with Ny = 2 and gradually
increase it until the cost of applying the defeating method is lower than the given
constraint.

252 Q. Xu and L. Wei

11.4.6 Discussion

The defeating approach against FANCI and that against VeriTrust do not interfere
with each other. On the one hand, defeating algorithm for FANCI focuses on
reducing the number of trigger inputs in the combinational logic blocks used in HT
triggers without changing their logic functions; on the other hand, defeating method
for VeriTrust implements the implicitly triggered HT without increasing the number
of trigger inputs in any combinational logic.

Moreover, the HTs designed for defeating FANCI and VeriTrust would not
influence the stealthiness of HT designs in Sect.11.4.1.1 against UCI. Firstly,
these methods do not change HT trigger condition and hence it has no impact on
functional verification. For the UCI technique in [10], on the one hand, the signals
introduced in algorithm for defeating FANCI are within the HT trigger unit driven
by different trigger inputs and they are unlikely to be always equal during functional
verification; on the other hand, VeriTrust defeating method combines parts of the
normal functionalities with the HT trigger and hence is also unlikely to create equal
signal pairs during verification.

With the above, all three HT design methodologies can be mixed in a single
design to make the HT resistant to all known trust verification techniques while still
passing functional verification.

References

1. S.T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, Y. Zhou, Designing and implementing
malicious hardware, in LEET, vol. 8 (2008), pp. 1-8

2.J. Zhang, Q. Xu, On hardware Trojan design and implementation at register-transfer level, in
Proceedings of the IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST) (2013), pp. 107-112

3. S. Skorobogatov, C. Woods, Breakthrough silicon scanning discovers backdoor in military
chip, in Proc. International Conference on Cryptographic Hardware and Embedded Systems
(CHES) (2012), pp. 2340

4. Y. Liu, Y. Jin, Y. Makris, Hardware Trojans in wireless cryptographic ICs: silicon demon-
stration & detection method evaluation, in Proc. IEEE/ACM International Conference on
Computer-Aided Design (ICCAD) (2013), pp. 399-404

5. M. Beaumont, B. Hopkins, T. Newby, Hardware Trojans-Prevention, Detection, Countermea-
sures (A Literature Review) (Australian Government Department of Defense, 2011)

6. Defense Science Board Task Force on High Performance Micorchip Supply, Office of
the Under Secretary of Defense for Acquisition, Technology, and Logistics (United States
Department of Defense, 2005)

7. Y. Jin, N. Kupp, Y. Makris. Experiences in hardware trojan design and implementation, in
Proceedings of the IEEE International Workshop on Hardware-Oriented Security and Trust
(2009), pp. 50-57

8. Trust-Hub Website, https://www.trust-hub.org/

9. S. Wei, K. Li, F. Koushanfar, M. Potkonjak, Hardware Trojan horse benchmark via optimal cre-
ation and placement of malicious circuitry, in Proceedings of ACM/IEEE Design Automation
Conference (2012), pp. 90-95

https://www.trust-hub.org/

11

10.

11.

12.

13.

14.

15.

Hardware Trust Verification 253

M. Hicks, M. Finnicum, S.T. King, M.K. Martin, J.M. Smith, Overcoming an untrusted
computing base: detecting and removing malicious hardware automatically, in Proceedings
of the IEEE Symposium on Security and Privacy (SP) (2010), pp. 159-172

C. Sturton, M. Hicks, D. Wagner, S. T King, Defeating UCI: building stealthy and malicious
hardware, in Proceedings of the IEEE International Symposium on Security and Privacy (SP)
(2011), pp. 64-77

J. Bormann, et al., Complete formal verification of TriCore2 and other processors, in Design
and Verification Conference (2007)

J. Zhang, F. Yuan, L. Wei, Z. Sun, Q. Xu, VeriTrust: verification for hardware trust, in Proc.
IEEE/ACM Design Automation Conference (DAC) (2013), pp. 1-8

A. Waksman, M. Suozzo, S. Sethumadhavan, FANCI: identification of stealthy malicious logic
using boolean functional analysis, in Proceedings of the ACM Conference on Computer and
Communication Security (CCS) (2013), pp. 697-708

J. Zhang, F. Yuan, Q. Xu, DeTrust: defeating hardware trust verification with stealthy
implicitly-triggered hardware trojans, in Proceedings of the ACM Conference on Computer
and Communication Security (CCS) (2014), pp. 153-166

Chapter 12
Verification and Trust for Unspecified
IP Functionality

Nicole Fern and Kwang-Ting (Tim) Cheng

12.1 Introduction

Electronic devices and systems are now ubiquitous and influence the key aspects of
modern life such as freedom of speech, privacy, finance, science, and art. Concern
about the security and reliability of our electronic systems and infrastructure is
at an all-time high. Securing electronic systems is extremely difficult because an
attacker only needs to find and exploit a single weakness to perform malicious
actions whereas defenders must protect the system against an infinite set of possible
vulnerabilities to ensure it is secure.

Security techniques target detection/prevention of a class of vulnerability given
a specific threat model. The task of enumerating and addressing all threat models
and vulnerabilities is never complete, but this chapter contributes to this task by
exploring a novel class of vulnerability: the opportunity in most hardware designs
for an attacker to hide malicious behavior entirely within unspecified functionality.

12.1.1 Unspecified IP Functionality

Verification and testing is a major bottleneck in hardware design, and as design com-
plexity increases, so does the productivity gap between design and verification [1].
It is estimated that over 70 % of hardware development resources are consumed

N. Fern (<)
UC Santa Barbara, Santa Barbara, CA, USA
e-mail: nicole @ece.ucsb.edu

K.-T. (Tim) Cheng
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
e-mail: timcheng @ust.hk

© Springer International Publishing AG 2017 255
P. Mishra et al. (eds.), Hardware IP Security and Trust,
DOI 10.1007/978-3-319-49025-0_12

mailto:nicole@ece.ucsb.edu
mailto:timcheng@ust.hk

256 N. Fern and K.-T. (Tim) Cheng

by the verification task. To address this challenge, commercial verification tools
and academic research developed over the past several decades have focused
on increasing confidence in the correctness of specified functionality. Important
design behavior is modeled, then various tools and methods are used to analyze
the implementation at various stages in the chip design process to ensure the
implementation always matches the golden reference model.

Behavior which is not modeled will not be verified by existing methods, meaning
any security vulnerabilities occurring within unspecified functionality will go
unnoticed. In modern complex hardware designs, which now contain several billion
transistors, there always exists unspecified functionality. It is simply impossible to
enumerate what the desired state of several billion transistors or logic gates should
be at every cycle when behavior depends not only on the internal state of the system,
but also on external input from the environment the device is embedded in. It is only
feasible to model and verify aspects of the design with functional importance.

Because behaviors at a good fraction of signals for many operational cycles
are unspecified, an attacker can modify this functionality with impunity
without detection by existing verification methods.

This chapter explores how an attacker can embed malicious behavior completely
within unspecified functionality whereas most related research explores how to
detect violations of specified behavior occurring under extremely rare conditions,
where the main challenge is identifying these conditions.

12.1.2 Hardware Trojans

Malicious functionality inserted into a chip is called a Hardware Trojan. Hardware
Trojans are a major concern for both semiconductor design houses and the US
government due to the complexity of the chip design ecosystem [2, 3]. Economic
factors dictate that the design, manufacturing, testing, and deployment of silicon
chips are spread across many companies and countries with different and often
conflicting goals and interests. If a single party involved deems it advantageous to
insert a Hardware Trojan, the consequences can be catastrophic.

Goals of previously proposed Hardware Trojans range from denial-of-service
attacks such as forcing premature circuit aging [4] and on-chip system bus deadlock
[5] to subtler attacks which attempt to gain undetected privileged access on a
system [6], leak secret information through power or timing side channels [7],
or weaken random number generator output [8]. Many Trojan taxonomies exist
[9-11], categorizing Trojans based on the design phase they are inserted, the

12 Verification and Trust for Unspecified IP Functionality 257

triggering mechanism, and malicious functionality accomplished (payload). Most
existing Trojans can be divided into the following categories:

1. The logic functions of some design signals are altered, causing the circuit to
violate the system specification

2. The Trojan leaks information through side-channels, and no functionality of any
existing signals is modified

This chapter introduces and addresses a third, less studied type of Trojan:

3. The logic functions of only those design signals which have unspecified
behavior are altered to add malicious functionality without violating system
specifications

An example of a Class 3 Trojan is the malicious circuitry shown in red in
Fig.12.1. The behavior of the Trojan-infested circuit differs from the normal
functionality of the FIFO only when the value of read data is unspecified.
The FIFO writes the data currently at the input write data to the buffer when
the signal write enable is 1 and the FIFO is not full, and places data from the
buffer on the read data output when the signal read enable is 1 and the
FIFO is not empty. One could ask what should the value of read data be when
read enable is 0 or the FIFO is empty?

It may seem logical to assume the value of read data under such conditions
retains its value from the previous valid read, but what if the FIFO has never been
written to or read from before? In this case the value is unknowable, and cannot
be specified. It is very likely the verification effort will only examine the value of
read data when read enable is 1 and the FIFO is not empty because it is
assumed that any circuitry in the fan-out of read data is only used during a valid
FIFO read. The value of read data when read enable is 0 is unspecified.

However, this means an attacker can modify the FIFO design to leak secret
information on the read data output during all cycles for which the unverified
conditions hold. This malicious circuitry is shown in red in Fig. 12.1. It should

Main Module

write_enable - read_enable
> FIFO -

—<—>) >4 read_data
write_data
0

secret_data

N
\ 4

Fig. 12.1 FIFO infested with a Class 3 Trojan (Trojan circuitry affecting unspecified functionality
to leak information shown in red)

258 N. Fern and K.-T. (Tim) Cheng

be emphasized that these conditions occur quite frequently making this Trojan
behavior hard to flag using existing pre-silicon detection methodologies relying on
the identification of behavior occurring only under rare conditions.

Many of the Trojans proposed in literature hide from the verification effort
using extremely rare triggering conditions (Class 1 Trojans). Examples of stealthy
Trojan triggers are counters, which wait thousands of cycles before changing circuit
functionality, or pattern recognizers, which wait for a “magic” value or sequence
to appear on the system bus [12] or as plaintext input in cryptographic hardware
[13-15]. Trojans with these triggering mechanisms generally deploy a payload
which clearly violates system specifications (such as causing a fault during a
cryptographic computation or locking the system bus).

Existing pre-silicon Trojan detection methods assume Trojans violate the design
specification under carefully crafted rare triggering conditions, and focus on identi-
fying the structure of this triggering circuitry in the RTL code or gate-level netlist
[16-19]. These methods identify “almost unused” logic, where rareness is quantified
by an occurrence probability threshold. This probability is either computed statically
using approximate boolean function analysis [16, 17] or based on simulation traces
[18, 19].

The Trojans addressed in this chapter do not rely on rare triggering conditions to
stay hidden, but instead only alter the logic functions of design signals which have
unspecified behavior, meaning the Trojan never violates the design specification.
Addressing this Trojan type requires a different approach from both existing Trojan
detection and hardware verification methods, since traditional verification and
testing excludes analysis of unspecified functionality for efficiency, and focuses
primarily on conformance checking. Identifying unspecified functionality that either
contains a Hardware Trojan or could be exploited by an attacker in the future is
difficult because by definition unspecified functionality is not modeled or known by
the design/verification team.

The remainder of this chapter provides techniques to ensure unspecified design
functionality is secure. Section 12.2 explores the most straightforward unspecified
functionality to define: RTL don’t cares. Several examples of how information
can be leaked by only modifying don’t care bits are given, then a design analysis
method identifying the subset of don’t care bits susceptible to Trojan modification
is provided [20]. Section 12.3 presents a method to identify unspecified functionality
beyond RTL don’t cares (for example, the read data signal in the FIFO
example may not necessarily be assigned X’s when read enable is 0). The
identification method is based on mutation testing and in a case study presented
in Sect. 12.3 an entire class of Trojan modifying bus functionality only during idle
cycles is discovered [21]. Section 12.4 expands upon this discovery and presents
a general model for creating a covert Trojan communication channel between SoC
components by altering existing on-chip bus signals only when they are unspecified
and outlines how a Trojan channel can be inserted undetected in several widely
used standard bus protocols such as AMBA AXI4 [22]. We then summarize our
contributions and conclude in Sect. 12.5.

12 Verification and Trust for Unspecified IP Functionality 259
12.2 Trojans in RTL Don’t Cares

Don’t cares are a concept used to describe the set of input combinations to a boolean
function for which the output can be either 0 or 1. For example, imagine the first
10 letters of the alphabet are to be displayed on a 7-segment display based on the
binary value encoded using 4 switches. A logic function for each LED segment
(there are seven in total) determines if the segment is ON or OFF for each of the ten
combinations. However, 4 switches allow for 16 possible input combinations even
though only 10 are required for the design. For six input combinations, the ON/OFF
value of the LED segments does not matter given the problem specification.

If truth tables and Karnaugh maps for each segment are used to derive the gate-
level representation for this toy design, the rows in the truth table corresponding to
the 6 don’t care input combinations can be assigned either 0 or 1 to minimize the
overhead of the resulting logic. Modern designs are not specified using truth tables,
but instead by Hardware Description Languages such as Verilog or VHDL. Both
languages allow don’t cares to be expressed, and the freedom provided by these
don’t cares allows the synthesis tool to optimize the resulting logic. In this chapter
we focus on Verilog, but the concepts easily apply to VHDL. In Verilog, don’t cares
can be expressed using the literal “X” in the right-hand side of an assignment,
meaning for the conditions under which the assignment statement executes, the
variable being assigned “X”” can be 0 or 1.

Unfortunately X’s are also used to represent unknowns in addition to don’t
cares making the interpretation of X’s confusing. X’s appearing in RTL code have
different semantics for simulation and synthesis. In RTL simulation, an X represents
an unknown signal value, whereas in synthesis, an X represents a don’t care,
meaning the synthesis tool is free to assign the signal either O or 1.

During RTL simulation there are two possible sources of X’s: (1) X’s specified
in the RTL code (either explicitly written by the designer or implicit such as a case
statement with no default), and (2) X’s resulting from uninitialized or un-driven
signals, such as flip-flops lacking a known reset value or signals in a clock-gated
block. X’s from source 1 are don’t cares, and are assigned values during synthesis,
meaning they are known after synthesis, whereas X’s from source 2 may be unknown
until the operation of the actual silicon.

The Trojans we propose take advantage of source 1 X’s, and clearly, if the
design logic is fully specified, and don’t cares never appear in the Verilog code,
these Trojans cannot be inserted. However, don’t cares have been used for several
decades to minimize logic during synthesis [23], and forbidding their use can lead
to unacceptable area/performance/power overhead. For the case study presented in
Sect. 12.2.3, replacing all X’s in the control unit Verilog with 0’s results in almost
an 8 % area increase for the block.

Turpin [24] and Piper and Vimjam [25] give an industry perspective and overview
of the many problems caused by RTL X’s during chip design/verification/debug
along with a survey of existing techniques and tools which address X-issues.
Simulation discrepancies between RTL and gate-level versions of a design due to

260 N. Fern and K.-T. (Tim) Cheng

X-optimism and X-pessimism, and propagation of unknown values due to improper
reset or power management sequences [26] are all issues addressed by existing
research and commercial tools.

This section presents yet another issue resulting from the presence of X’s
in RTL code, and provides further incentive to allocate verification resources to
these existing X-analysis tools. However, existing tools aim to uncover accidental
functional X-bugs, while the Trojans we propose can be considered a special
pathological class of X-bug specifically crafted with malicious intent to avoid
detection during functional verification.

This means that X-analysis tools which focus only on providing RTL simulation
with accurate X semantics, perform X-propagation analysis only for scenarios
occurring during simulation-based verification, or formal methods which only
analyze a limited number of cycles (ex. the reset sequence) do not adequately
address the proposed threat. Through the examples in the remainder of the section
we aim to highlight the aspects of this new threat that differ most from the existing
X-bugs targeted by commercial and academic tools.

12.2.1 Illustrative Examples

Example 1 (Trojan Modifying Don’t Care Bits to Leak Key). To illustrate how don’t
cares can be exploited to perform malicious functionality, a contrived example is
presented for illustrative purposes. The module given in Listing 12.1 transforms a
4-bit input by either inverting, XORing with a secret key value, or passing the data
to the output unmodified. The choice between the three transformations is selected
using a 2-bit control signal, control. When control=11, Line 17 specifies that
tmp can be assigned any value by the synthesis tool to minimize the logic used.

Listing 12.1 simple.v

1 | module simple (clk,reset,control ,bdata,key,out);
2 |input clk, reset;

3 [input [1:0] control;

4 |input [3:0] data, key;

5 | output reg [3:0] out;

6 |reg [3:0] tmp;

7 | //tmp only assigned a meaningful value
8 |//if control signal is 00, 01 or 10

9 | always @ (*) begin

10 case(control)

11 2°b00: tmp <= data;

12 2°b01: tmp <= data ” key;

13 2’b10: tmp <= ~data;

14 // Trojan logic ————

15 //2°bll: tmp <= key;

16 /7

17 default: tmp <= 4’ bxxxx;

18 endcase

12 Verification and Trust for Unspecified IP Functionality 261

19 | end

20 | always @ (posedge clk) begin
21 if (~reset) out <= 4°b0;
22 else out <= tmp;

23 | end

24 | endmodule

An attacker can take advantage of the implementation freedom given by the RTL
by assigning key to tmp, causing the secret key value to appear at the output of this
module. The Trojan can be inserted in the RTL code by uncommenting Line 15, or
at gate-level by modifying the netlist after synthesis.

It should be emphasized that in either case, since the assignment of tmp during
the control=11 condition is unspecified, it is impossible to detect the Trojan
even if the design can be exhaustively simulated, or a perfect equivalence checker
can compare the golden and Trojan implementations. As an example, Cadence
Conformal LEC [27] was used to perform two experiments: equivalence checking
between Golden RTL and Trojan RTL, and equivalence checking between Golden
RTL and a Trojan infested netlist. In both cases, the equivalence checker was unable
to detect the presence of the Trojan functionality.

It should also be noted that the don’t cares assigned to tmp in Line 17 are useful
to the attacker because:

1. The don’t care assignment is reachable
2. A primary output (which the attacker can observe) differs depending on the value
of the don’t care bits

Example 2 (Unreachable and Non-Propagating X’s). In the previous example, all
the don’t care bits are dangerous and should be disambiguated in the RTL code. The
following example (similar to Example 1 with the addition of a 3-bit FSM with five
reachable states) illustrates that not all don’t cares are dangerous, and that the goal of
any Trojan prevention or X-analysis technique is to identify only the dangerous X’s
and allow the synthesis tool to use the remaining don’t cares for logic minimization.

In Listing 12.2 there are six total assignments of 1-bit don’t care values. One
could replace these X’s in the Verilog code with 6 1-bit signals, dcy, dc, ..., dcs.
The attacker can then choose to assign other internal design signals (such as key
bits) to the don’t care bits or leave them for the synthesis tool to assign. Line 27 can
be re-written as:

default: pattern <= {dcy, dcy, dcy, dci};

Listing 12.2 simple_state.v

module simple_state (clk ,reset ,control ,data , key,out);
input clk, reset;

input [1:0] control;

input [3:0] data, key;

output reg [3:0] out;

reg [3:0] tmp;

reg [2:0] counter , next_counter;
reg [3:0] pattern;

// Truncated Counter 0—4

//5,6, and 7 never appear

[N BEN He Y N

—_

262 N. Fern and K.-T. (Tim) Cheng

11 | always @(*) begin

12 if (counter < 3°h4)

13 next_counter <= counter + 3’bl;

14 else next_counter <= 3’°b0;

15 | end

16 | always @(posedge clk) begin

17 if (~reset) counter <= 3’b0;

18 else counter <= next_counter;

19 | end

20 | always @(x) begin

21 case (counter)

22 3°d0: pattern <= 4°b1010;

23 3°dl: pattern <= 4°b0101;

24 3°d2: pattern <= 4°b0011;

25 3°d3: pattern <= 4°b1100;

26 3’°d4: pattern <= 4’blxxl1;

27 default: pattern <= 4’bxxxx;

28 endcase

29 | end

30 | always @ (*) begin

31 case (control)

32 2°b00: tmp <= data;

33 2°b01: tmp <= data * key;

34 2’b10: tmp <= ~data;

35 2°bll: tmp <= data ~ {pattern[3], pattern[2:0] & counter
1

36 endcase

37 | end

38 |always @ (posedge clk) begin

39 if (~reset) out <= 4°b0;

40 else out <= tmp;

41 | end

42 | endmodule

Line 27 is unreachable (and thus pattern will never be assigned dcy — dc3)
because the variable counter only takes on values 0-4. These X’s are safe, and
cannot be used to leak information, therefore are best left in the RTL to aid in logic
optimization. A more interesting X-assignment occurs on Line 26, which can be
re-written as:

3'd4: pattern <= {1, dcy4, dcs, 1};

The assignment of {dcs, dcs} to pattern[2:1] is reachable, however, by
manual inspection, one can see that the only assignment influenced by pattern
(Line 35) contains a bitwise AND between counter and pattern[2:0], which
prevents dcs from propagating further, but not dc,! This is because when counter
= 3'd4, Line 35 effectively becomes:

2'bll: tmp <= data * {1, dcy, 0, 0};

12 Verification and Trust for Unspecified IP Functionality 263

In this example only 1 of 6 don’t cares is dangerous and necessary to remove.
In a design with hundreds of don’t cares, it is expected that only a small subset is
dangerous, which motivates why it is valuable for an X-analysis tool to take a fine-
grain approach and distinguish between unreachable, reachable but non-propagating
don’tcares, and don’t cares that have the potential to propagate to outputs or attacker
observable points.

12.2.2 Automated Identification of Dangerous Don’t Cares

Through the examples in the previous section, we have seen that a don’t care bit,
dc;, is dangerous if an input sequence can be found for which circuit outputs differ
depending on if dc; is 0 or 1. For this to be possible, the statement assigning dc; to a
design variable must be reachable, and the value of the variable must propagate
to circuit outputs. The problem of finding if such an input sequence exists has
been formulated in [28] as a sequential equivalence checking problem. In [28], the
analysis was performed to find X-bugs, not prevent Hardware Trojans, but like the
Hardware Trojans we are proposing, X-bugs result from reachable X-assignments
that affect primary outputs in the design.

One key difference between X-bugs and the proposed Trojan type is that in many
designs, for example, a serial multiplier, or the Elliptic Curve Processor analyzed in
Sect. 12.2.3, the values at the primary outputs of the unit during intermediate cycles
in the computation typically don’t matter, as long as the final computation result is
correct. X’s propagating to primary outputs during intermediate cycles generally
aren’t considered X-bugs if the final result is unaffected, however, information
leakage can still occur during these intermediate cycles if the attacker can observe
the primary outputs of the circuit.

The equivalence check is performed between two near identical versions of the
design: one where dc; = 0 and one where dc; = 1. If the designs are identical under
all possible input sequences, dc; cannot possibly be used to leak design information.

We build upon this idea further by addressing the relationship between multiple
don’t cares in the design, and we formulate the problem in terms of combinational
equivalence checking and state reachability analysis. For scalability reasons, our
solution may over-approximate the set of don’t cares classified as dangerous.

While combinational equivalence checking between two nearly identical designs
is efficient and scalable, state reachability analysis is not. In the Elliptic Curve
Processor case study presented in Sect. 12.2.3, we illustrate how commercial code-
reachability tools can be used in place of symbolic state reachability analysis
to re-classify don’t cares erroneously marked as dangerous after combinational
equivalence checking as safe.

Consider the generic example circuit in Fig. 12.2, where the sequential behavior
has been removed by making all flip-flop inputs pseudo primary outputs (PPOs)
and all flip-flop outputs pseudo primary inputs (PPIs). There are n don’t care bits
in the design, and it is clear that dc; and dc; have the ability to block each other

264 N. Fern and K.-T. (Tim) Cheng

ps{ }m
] T N

Fig. 12.2 Generic circuit with don’t care bits

{dco, dc;,..., dcn-1}

Co
D_< {POs, PPOs}
, e
C1
, ==

Fig. 12.3 Equivalence checking formulation

{Pls, PPIs}

XOR

from propagating. dcj, is in the fan-in cone for signal a, and can also influence
the propagation of dc; and dc;, while dc; is completely independent from dc;, dc;,
and dcy,.

Combinational equivalence checking can be performed between two versions
of the original design: Cy,=¢, and Cg.,=1, by constructing the miter in Fig. 12.3
and checking the satisfiability of node z. If z is not satisfiable, then dc; is safe.
Otherwise, the equivalence checker returns a distinguishing input vector. Note that
when analyzing dc;, all remaining n — 1 don’t care bits are made primary inputs.
This ensures the distinguishing input vector contains information about how the
remaining don’t care bits are constrained if dc; is to successfully leak information.

Since we are not considering the sequential behavior of the design, the distin-
guishing input vector could require that the pseudo primary inputs be assigned a
value that can never occur, in other words an unreachable state. State reachability
analysis can be performed before analysis of all don’t care bits, and a logic
formula describing the set of unreachable states can be incorporated into the miter
circuit to prevent the equivalence checker from finding distinguishing input vectors
containing these states.

12 Verification and Trust for Unspecified IP Functionality 265

State reachability is a hard problem, but recent advances in model checking [29]
and techniques such as [30], which over-approximate the set of reachable states,
can aid in addressing non-trivial designs. Additionally, since don’t cares can often
be traced back to single-line assignments in the Verilog code, dead-code analysis
and code reachability tools can help easily eliminate don’t care assignments that
are unreachable. For Trojan prevention, an over-approximation is ideal because
it ensures that a dangerous don’t care will never be classified as safe due to the
elimination of a distinguishing input vector containing a state erroneously marked
as unreachable.

12.2.3 Elliptic Curve Processor Case Study

We now present a case study in which manual inspection was used to identify don’t
cares in the control unit which provide an opportunity for a Trojan to leak all key
bits. We then show how our automated prevention method classifies the don’t cares
which make this exploit possible as dangerous in addition to unearthing several
previously unknown opportunities for information leakage.

Elliptic curve cryptography (ECC) is a public key cryptosystem whose funda-
mental operations use the mathematics of elliptic curves to perform key agreement
and generate/verify digital signatures. ECC is currently used in SSH and TLS, and
offers more security/key bit than RSA [31]. Like other cryptographic algorithms,
ECC operations can be accelerated if implemented in hardware. Our case study
examines a publicly available Elliptic Curve Processor (ECP) which performs the
point multiplication operation optimized for an FPGA implementation [32].

Point multiplication is the fundamental operation on which all ECC protocols are
built, and the reader should refer to [32] for more background on the mathematics
behind this operation. Point multiplication takes as input, elliptic curve parameters,
an initial point on the elliptic curve, P, and a secret k, and computes G = [k]P, which
is P “added” to itself k times using the formulas for elliptic curve point addition and
doubling. ECC is secure because it is very difficult to discover k knowing only G
and P.

12.2.3.1 The Hardware Trojan

The Trojan inserted into the ECP allows an attacker who only is allowed to
observe primary output signals to discover the secret k. This design contains a
state machine with 38 states (shown in Fig. 12.4), multiple register files, and several
custom arithmetic units used by various scheduled operations. The final point, G, is
computed when State 38 is reached. The ECP Trojan exploits don’t cares specified
in a case statement during the assignment of control signals in the state machine
logic.

266 N. Fern and K.-T. (Tim) Cheng

© Point Addition
O Point Doubling

. Inversion

Fig. 12.4 ECP state machine

During State 15, don’t cares assigned to control signals (cwl and cwh) propagate
to a register bank address and write enable signal, effectively making the contents
of the register bank unspecified during State 15. One of the registers is tied to a
primary output signal, making it possible for an attacker to directly leak all the key
bits to an observable output point. We refer the reader to [20] for details including
code listings showing the exact design modifications required to leak the key bits.

Normally, an unknown value in a circuit output during an intermediate cycle
in the computation is not considered an error, because it does not affect
the final point computed during the point multiplication. We emphasize that
with the knowledge of this new Trojan type, any X-propagation to primary
outputs during any cycle must be prevented.

12.2.3.2 Automated X-Analysis

The ECP design has 572 primary input bits, 467 primary output bits, and 11,232
state elements, resulting in a gate count over 300, 000. There are 538 don’t care
bits in the design analyzed by our tool. 282 correspond to assignments made during
states 0—38 to bits in cwl and cwh, 33 correspond to the default assignments
(state > 38, which should be unreachable) of these signals, and 233 are from a
default assignment in the quadblk module.

12 Verification and Trust for Unspecified IP Functionality 267

Table 12.1 Classification of don’t cares
Row #|# don’t|Signal(s) affected

care bits
Class 1: definitely dangerous (35 bits)
1 2 cwh[4],cwh([7] , when state==15
2 1 cwh[12] , when state==
3 32 cwl, for various states < 38
Class 2: possibly dangerous (272 bits)
4 6 nextstate[5:0], when state > 38
5 23 cwh[22:0], when state > 38
6 10 cwh[9:0], when state > 38
7 233 d[232:0],whencwh([19:16]==10orcwh[19:16]==15

Class 3: definitely safe (231 bits)

Combinational equivalence checking between two very similar designs scales
well, and each don’t care only requires a few minutes of analysis by ABC [33].
Using only combinational equivalence checking, the 538 don’t cares are separated
into two groups: definitely and possibly dangerous (307 bits), and definitely safe
(231 bits).

Note that the dangerous don’t cares in Row 1 of Table 12.1 correspond exactly
to the don’t cares selected by our original manual analysis to implement the Trojan!
Rows 2 and 3 highlight additional don’t cares which an attacker may be able utilize
to leak up to 33 bits of information during various states. The distinction between
definitely and possibly dangerous don’t cares requires state reachability analysis,
because the distinguishing input vector may contain an unreachable state. For
example, the variable next state is assigned don’t cares (see Row 4 of Table 12.1)
only if the current state variable state is outside the 0-38 range, which a quick
analysis of the RTL code will reveal can never occur.

Full blown state reachability analysis does not scale well, and we were unable
to extract the exact set of unreachable states using ABC. However, we were able
to determine that the lines of code containing the X-assignments in Rows 4-6 in
Table 12.1 are unreachable using Spyglass, an RTL lint tool from Atrenta [34]. The
exact Spyglass rules used to classify the don’t cares in Rows 46 is given in [20].

We remove the opportunity for Trojan insertion by replacing the don’t care bits
listed in Table 12.1 with 0’s and use Synopsys Design Compiler (ver I-2013.12-SP2)
to synthesize the design and measure the area overhead of the modification. The
don’t cares in Rows 1-6 and Row 7 are from the ecsmul and quadblk modules,
respectively.

Table 12.2 shows how replacing only dangerous, both dangerous and possibly
dangerous, and all don’t cares affects the area overhead of the ecsmul and
quadblk modules. Even though using only combinational equivalence check-
ing over-approximates the number of dangerous don’t cares, being cautious and
removing all don’t cares in Classes 1 and 2 is still preferable to the 8 % area
increase resulting from indiscriminately replacing every don’t care bit (305 total)
in ecsmul.

268 N. Fern and K.-T. (Tim) Cheng

Table 12.2 Area overhead of
specifying don’t cares

% area increase
Don’t cares defined | ecsmul | quadblk

Class 1 0.04 -
Classes 1 and 2 1.80 3.87
All don’t care bits 8.00 3.87

12.3 Identifying Dangerous Unspecified Functionality

The don’t care analysis technique proposed in the previous section relies on the
maturity of combinational equivalence checking tools for RTL designs, making
it hard to generalize to SystemC, C, and other high level modeling languages.
Additionally, only unspecified functionality captured by don’t care bits can be
analyzed. This section builds upon the ideas in the previous section, but the proposed
mutation-based method is more general since mutation testing is applicable to FSM,
C, SystemC, TLM, RT, and gate-level models, only requiring that the model be
executable and that a testing scheme exists.

The analysis methodology presented in this section randomly samples possible
design modifications (known as mutations in mutation testing [35]). We filter out
modifications that are not dangerous (do not affect unspecified or poorly tested
functionality) by monitoring functional coverage and signals observable to the
attacker/user. After our analysis, the verification team is presented with a list of
design modifications ordered from most dangerous to least dangerous which are
representative of functionality which either needs to be specified or better tested to
ensure the absence of Trojans.

12.3.1 Background: Mutation Testing and Coverage
Discounting

The goal of mutation testing is to gauge the effectiveness of the verification effort
by inserting artificial errors (faults) into the design code then recording how many
faulty versions of the design (mutants) are detected. Mutation analysis is motivated
by the observation that if the test bench is unable to detect artificial errors, it is likely
that real design errors are also going unnoticed.

Mutation testing has been used for software security analysis to verify security
protocols, determine program susceptibility to buffer overflow attacks, and identify
improper error handling [35, 36]. In the hardware domain, mutation testing is
primarily used for test bench qualification [37]. Fault models and fault injection
tools exist for SystemC [38], TLM [39], and RTL [40].

12 Verification and Trust for Unspecified IP Functionality 269

Two well-known drawbacks of mutation analysis are (1) long runtime and (2)
large manual effort required to analyze undetected mutants, some of which may be
redundant. Redundant mutants are those under all possible inputs, can never cause
any change in the design “care” outputs.

Coverage Discounting [41] is a technique which identifies undetected mutants
which cause changes in functional coverage. In doing so (1) redundant mutants are
filtered out from analysis, (2) the remaining undetected mutants are associated with
specific functional coverpoints making analysis easier, and (3) the coverage score is
revised to reflect the error propagation and detection properties of the test bench.

Our technique builds upon Coverage Discounting by identifying mutants
which cause changes in attacker-observable signals (in addition to those which
cause changes in functional coverage) to filter out redundant mutants while
highlighting mutants related to functionality vulnerable for use in information
leakage Trojans.

To motivate how mutation testing can identify functionality susceptible for
modification by information leakage Trojans, consider Listing 12.3 which gives the
Verilog code describing the read behavior of the FIFO in Fig. 12.1. To illustrate
the potential of mutation analysis to highlight the weakness in the verification
infrastructure allowing this Trojan to exist undetected, consider a fault which
changes the AND operator (highlighted in pink) to an OR operator in Line 2 of
Listing 12.3. This fault causes read_data to update whenever the FIFO is not
empty, even if a read operation is not occurring. If a read operation occurs, the read
pointer will increment as seen in Line 7 of Listing 12.3 and in the following cycle,
even if read_enable == 0, read data will be updated with the value of the
next FIFO item.

isting 12.3 FIFO Read Behavior

|//Mem0ry Access Behavior

|if (read_enable && !buffer_empty)
read_data <= mem[read_ptr];

Li
1
2
3
4 ...
5 |//Pointer Update Behavior

6 | if (read_enable && !buffer_empty)

7 read_ptr <= read_ptr + 1;

During testing, it is likely that a read operation will occur, but the FIFO will
not immediately become empty, meaning the spurious updating of read data
can be observed if the waveforms of the fault-free and faulty design are compared.
However, it is unlikely that this fault will cause any tests to fail since the fault does
not cause the read pointer to spuriously update, and when read enable == 0,
the test bench has no incentive to check the value of read data. Notice that the
functionality affected by this fault is useful for an attacker because:

270 N. Fern and K.-T. (Tim) Cheng

1. Observable signals at the boundary of the main module deviate from the fault-
free version during testing (indicating that information can be leaked during
normal operation without requiring the attacker to force the design into a
rare state)

2. The fault is undetected

The methodology presented in Sect. 12.3.2 would flag this fault for analysis,
forcing the verification team to define behavior for the read data signal when
read_enable == 0 then write a test case or checker for this behavior in order
to detect the fault, resulting in an improved test bench able to detect the Trojan in
Fig. 12.1.

12.3.2 Identification Procedure

In a security context, for a fault to be dangerous, it must be (1) undetected by the test
suite and (2) cause changes in attacker-observable signals. Figure 12.5 shows how
undetected faults can be classified based on their influence over attacker-observable
signals and functional coverage. Dangerous faults fall into Regions A and B.2 in
Fig. 12.5.

The labeling of attacker-observable signals depends on the design and attack
model. For example, if an attacker can run a malicious user-level software program
which interfaces with the hardware Trojan, certain registers will be marked as
attacker-observable in addition to network interfaces. If the design being analyzed
is a peripheral or co-processor, and it is assumed the main processor may contain
a Trojan, the bus interfaces between modules are considered attacker-observable.

B.1 A

Undetected

Functional Attacker-

Faults
coverage observable
differs signals differ

C

Fig. 12.5 Scenarios for undetected faults

12 Verification and Trust for Unspecified IP Functionality 271

If the attacker has physical access to the device, then all chip output pads are
attacker-observable. A key point to note is that even if the correct values of some
attacker-observable signals are unknown to the verification team, our technique only
requires discovering differences in the simulation trace between the faulty and fault-
free designs.

What about undetected faults affecting specified functionality (Regions B.1 and
B.2 in Fig. 12.5)? The faults in Region B.1 do not affect attacker-observable signals
but should be examined because they indicate design functionality is not adequately
tested! The faults in Region B.1 cause the coverage score to be revised downward
during Coverage Discounting [41]. Discounting separates faults affecting design
functionality from redundant faults by recording changes in functional coverage
caused by each fault. Discounting can be applied to any design where it is possible
to define and record functional coverage.

We are able to add our analysis to the existing Coverage Discounting flow
with only the additional overhead of tracking attacker-observable signals. The
following flow both identifies test bench weakness affecting specified functionality
and highlights dangerous unspecified functionality:

1. Record values of attacker-observable signals and functional coverage in the
original design during all tests

2. Analyze the design and generate a set of faults, then inject each fault and re-run
all tests, recording the same information as in Step 1

3. Only examine undetected faults (ones which do not cause any tests/assertions
to fail)

The following details the actions that should be taken for every undetected fault,
based on the region in Fig. 12.5 the fault belongs to:

* Region A: Functional coverage did not change under the fault, but a change
in some attacker-observable signals occurred. It is likely that the fault affects
unspecified design functionality susceptible to the insertion of information
leakage Trojans. Behavior for the functionality affected by the fault must be
specified, and then the test bench must be improved to check this newly defined
behavior.

* Region B (Regions B.1 and B.2): Functional coverage changes under the fault
meaning specified design functionality has been modified and this modification
has gone unnoticed by the test bench. This indicates a weakness in the test bench,
and the verification engineer must examine why this change in functionality went
undetected and fix the test bench.

* Region C: Neither functional coverage nor attacker-observable signals change
meaning the fault is likely redundant (for example, changing the loop condition
in for (x=0;x<10;x++) to for(x=0;x!=10;x++)), and is not worth
examining.

Although less than the total number of undetected faults, the number of unde-
tected faults in Region A of Fig. 12.5 can still be too costly to completely analyze.
By computing metrics for each fault such as the number of attacker-observable bits

272 N. Fern and K.-T. (Tim) Cheng

differing, the total time attacker-observable signals differ, and the number of distinct
tests producing differences in attacker-observable signals fault ranking metrics can
prioritize the most dangerous faults for analysis first. We refer the reader to [21] for
details on these ranking heuristics.

12.3.3 UART Communication Controller Case Study

We analyze a UART (universal asynchronous receiver/transmitter) design from
OpenCores [42] using the methodology presented in Sect. 12.3.2. After analysis
of just four of the most dangerous undetected faults returned by our method,
we identify unspecified bus functionality and poorly tested interrupt functionality
vulnerable to the insertion of information leakage Trojans. After further defining
portions of the bus specification and correcting an error in the interrupt checker, the
test infrastructure is able to detect these faults as well as an example Trojan inserted
in the UART bus functionality.

The test bench used in this case study is a propriety OVM-based suite provided
by an EDA tool vendor consisting of 80 directed tests with constrained random
stimuli, functional checkers, and 846 functional cover points. This test bench is
representative of a typical mature regression suite. There are 38 attacker-observable
bits. 32 bits belong to the wo_dat o signal, which is the data bus the UART
places values onto when the bus master (often a processor core) issues read
requests. The signals wb_ack o, int o, and baud_o, are single bit signals
which acknowledge bus transactions, signal interrupts, and define the baud rate,
respectively. These 35 signals comprise the interface to the processor core, while
the remaining 3 attacker-observable signals are the off-chip serial output, request to
send, and data terminal ready signals. For this experiment, we make the assumption
that the attacker is able to see all 38 signals.

Mutation analysis is performed using the commercial mutation analysis tool
Certitude [40]. Certitude faults are simple modifications made to the design source
code, for example replacing an AND operator with an OR operator, or tying a
module port to a static 0 or 1. 1183 faults are injected one by one in the design, and
tests are run until the fault is detected. Out of the 1183 faults, 110 are not detected
by any of the 80 tests. The classification of these faults into Regions A, B, and C in
Fig. 12.5 is presented in Table 12.3. Using our methodology, the number of faults
requiring manual analysis (those in Regions A and B) is reduced from 110 to 32.

Table 12.3 Categorization 110 undetected faults

of undetected faults Region A | Region B | Region C

30 faults |2 faults | 78 faults

12 Verification and Trust for Unspecified IP Functionality 273

12.3.3.1 The Wishbone Bus Trojan

The three most dangerous faults determining by our ranking heuristics relate to
Wishbone Bus [43] interface signals. All faults affect the assignment of the output
enable (oe) signal, causing spurious changes on the data output bus. In the original
design, oe is only set during a valid read transaction. Under the three faults, oe is
incorrectly set during write transactions, when the UART slave is not selected, and
when a valid bus cycle isn’t in progress. These faults are undetected because during
these cycles the bus master never captures data from wb_dat o, so the extra data
bus changes never cause incorrect data to be read from or written to the UART
registers.

This analysis indicates the UART design may be infested with a Trojan that can
leak information with impunity on the data bus as long as a valid read transaction
is not taking place and the test bench would be none the wiser! Specifically, the
Trojan can take advantage of the fact that the value of the output data on the bus
(wb_dat_o)is unspecified during a write transaction or invalid cycle.

We implement one possible bus Trojan by changing the assignment of oe to one
of the undetected faulty versions which allow wb_dat_ o to spuriously update, then
leak the value 0xdeadbeef over the bus only during write transactions and invalid
cycles.

Figure 12.6 illustrates the ability of the Trojan to leak 32 bits of data during
every write transaction while not interfering with read transactions. For exam-
ple, at 135ns, the UART responds to a read request with the correct data,
not 0xdeadbeef. Simply placing Oxdeadbeef on the data bus is good for
illustrative purposes, but may not be useful to an attacker. One should note that any
32-bit value can be assigned to wb_dat_o, including other secret internal design
signals.

This Trojan is fundamentally different from Trojans relying on rare triggering
conditions for stealth as it is active during every write transaction, which is certainly
not a rare design state, as evidenced in Fig. 12.6. It is unlikely that this Trojan would
be detected by existing methods targeting the identification of rarely used logic.

To detect these dangerous faults, the following additional check is added to the
existing bus protocol checker: wbo_dat o cannot change unless the design has been
reset, or a read request is being acknowledged. In addition to detecting the three
faults, the Output Enable Bus Trojan is also detected.

31:0]=00000075 00000000

Fig. 12.6 Output enable Trojan waveform for bus protocol test

274 N. Fern and K.-T. (Tim) Cheng

In a traditional verification setting, it would be unnecessary and cumbersome
to add this additional check, and the three faults would be considered a waste of
time to analyze because they do not affect the correctness of normal read/write
operations. We would like to highlight the relationship between undetected faults
affecting attacker-observable signals and hardware Trojans, providing motivation to
analyze and improve the test bench to detect these seemingly meaningless artificial
errors.

Through mutation analysis, which is a random sampling of very specific design
modifications, we have actually found a more general class of Trojan, the bus pro-
tocol Trojan. The bus protocol Trojan takes advantage of unspecified functionality
such as data bus values when no valid transactions are taking place, and the value
of the data output bus during a WRITE cycle. The FIFO Trojan actually belongs to
this class of Trojan.

12.3.3.2 Interrupt Output Signal Checker Bug

After improving the test bench to detect the three faults related to the Wishbone bus,
the next most dangerous fault affects specified functionality, and belongs to Region
B.2 in Fig. 12.5. Interestingly, this fault is not highlighted by Coverage Discounting,
but is by our technique.

The UART uses a single bit signal, int o, to notify the host processor of
pending interrupts. There are five different events which can cause an interrupt,
and the Interrupt Identification Register (IIR) indicates the highest priority interrupt
currently pending. A commonly used interrupt is the received data available (RDA)
interrupt, which fires when a threshold number of characters is received.

The fault causes int o to become unknown for many cycles during 49 of
the 80 tests. More specifically, the fault causes the RDA interrupt pending signal
rda_int pnd to become X instead of 1 under certain conditions, making it
possible to selectively suppress the RDA interrupt (and consequently int o)
without the test bench noticing.

Although the test bench checks if IIR bits are set correctly when conditions for
each interrupt type are met, and most of the time checks that int o reflects the IIR
interrupt pending bit within ten clock cycles, the behavior of int o is not checked
if int o becomes X. Moreover, even if a Trojan set int o to a non-X value in
order to leak information, as long as int_ o becomes both 0 and 1 within 10 clock
cycles, the interrupt checkers would not notice that int_o is changing spuriously
with respect to the IIR interrupt pending bit. This oversight in the test bench is an
example of poorly tested specified functionality, since the value of int o is clearly
being checked in the interrupt checker, but not thoroughly enough.

It is interesting to note that this fault did not cause a change in functional
coverage, perhaps suggesting that the coverage model is not detailed enough to
highlight meaningful verification holes in the interrupt functionality illustrating
the potential of our analysis technique to highlight and qualify the verification of
important design functionality outside of the coverage model.

12 Verification and Trust for Unspecified IP Functionality 275
12.4 Trojans in Partially Specified On-chip Bus Functionality

The general method to identify dangerous unspecified functionality in any type of
design requires mutant simulation and analysis, which is expensive but necessary
if one cannot identify dangerous unspecified functionality directly by inspection.
Since bus systems are characterized by well-defined protocols and set of common
topologies, we are able to directly present a general model for dangerous unspecified
bus functionality in this section. This work takes inspiration from the Wishbone bus
Trojan presented in the previous section, and generalizes the Trojan to other bus
protocols and more complex bus topologies.

The ability to manipulate the bus system is extremely valuable to an attacker
since the bus controls communication between critical system components. A
denial of service Trojan halting all bus traffic can render an entire SoC useless.
Any information transferred to/from main memory, the keyboard, system display,
network controller, etc. can be passively captured or actively modified by Trojans
inserted in the interconnect.

There exist many different bus protocols designed to optimize different design
parameters such as area/timing overhead, power consumption, and performance
[44]. Regardless, all protocols employ signals to mark when valid bus transactions
occur and handshakes to provide rate-limiting capabilities, meaning valid and idle
bus cycles can be clearly differentiated. While bus protocols clearly define the
desired values for each data or control signal during valid transactions, the values of
these signals during idle cycles are unspecified and largely ignored by bus protocol
checkers, formal verification properties, and scrutiny during simulation-based ver-
ification. Trojan behavior during these cycles will not be detected by traditional
verification methodologies. For example, Fig.12.7 shows the VALID/READY
handshake used by each channel in the widely used AXI4 protocol. When VALID
is LOW, the information lines can take on any value, including Trojan information.

The bus Trojans we propose in this section operate entirely within idle bus cycles,
with the goal being to provide a covert communication channel built upon existing

T1 T2

U 11\1)((111((

Y I \l
| | s X

INFORMATION | D N
VALID | w/ ! § \\
READY | : : // ; §§

Fig. 12.7 AXI bus protocol VALID/READY handshake [45]

276 N. Fern and K.-T. (Tim) Cheng

bus infrastructure. This Trojan channel can be used to connect Trojan components
spread across the SoC in addition to enabling information leakage from legitimate
components not possible in the original design. Unlike previously proposed bus
Trojans, which lock the system bus, modify bus data, and allow unauthorized bus
transactions [5, 46], our Trojans never hinder normal bus functionality or affect valid
bus transactions.

12.4.1 Threat Model

Since a covert communication channel is useless without a sender and receiver of
information, we assume that at least one component connected to the system bus
contains a Trojan utilizing the information received on the channel, and that there
is another Trojan to either leak data from the component it resides in or snoop bus
data otherwise not visible to the receiver and send it over the channel.

Since the proposed Trojans operate entirely within unspecified bus functionality
they cannot suppress or alter valid bus transactions, meaning any Trojan actions
must be contained to cycles and signals where no valid transactions are occurring.
Although it is possible for the Trojan to create new bus transactions adhering to
the bus protocol during unused cycles, verification infrastructure often includes
bus checkers which count and log all valid bus transactions. For this reason, our
proposed Trojans do not suppress, alter, or create valid bus transactions, but instead
re-use existing bus protocol signals to define a new “Trojan” bus protocol allowing
communication between different malicious components across the SoC.

It is assumed the Trojans are inserted in the RTL code or higher-level model,
meaning no golden RTL model exists to aid in Trojan detection at later stages in
the design cycle. A complex SoC requires hundreds of engineers to design and
test, and relies on third party IP cores and tools to meet time to market demands.
A single rouge design engineer or malicious 3rd party IP or CAD tool vendor has
the potential to implement a Trojan communication channel.

12.4.2 Trojan Communication Channel

The structure and size of the Trojan channel circuitry depends on the following:

1. Bus Topology: Determines necessity of FIFO and extra Leakage Conditions
Logic at receiver interface

2. Bus Protocol: Defines Leakage Conditions Logic and selection of signal(s) to
mark valid Trojan transactions

3. Trojan Channel Connectivity: Channel can be one-way or bi-directional,
contain an active or snooping sender, and involve information leakage between
two masters, two slaves, or a master and a slave

12 Verification and Trust for Unspecified IP Functionality 277

4. Data Width of Trojan Channel (k): number of bits leaked during a Trojan
transaction

5. FIFO Depth (d): FIFO used to buffer Trojan channel data if the receiver is busy
accepting valid bus transactions

Bus topology and protocol are selected by the system designer, whereas Trojan
channel connectivity is chosen by the attacker. Data width (k) and Trojan FIFO
depth (d) are parameters selected by the attacker to trade-off performance and
overhead of the Trojan channel. The black-colored components in Fig. 12.8 are
necessary to implement a Trojan communication channel for a shared bus topology,
which is shown in Fig. 12.9a. For this case, the Data and Control lines from the
sender component are directly visible at the receiver. The red-colored components
in Fig.12.8 show the extra circuitry required to implement the channel in an
interconnect with a MUX based topology, which is shown in Fig. 12.9b.

The sender and the receiver can be any master or slave component on the
interconnect. The goal of the Trojan channel is to use only pre-existing interconnect

Sender Interconnect Receiver

Original

Data

Original Trojan

: Trojan E E : i : :
! b T FIFO Read)]
i 3 - B
: Leakage b § Leakage 5 N :
i+ | Conditions o Conditions § - ;
: (Sender) E (Receiver) — . :
: = N '
E Original i E Original E E i
E Trojan E E Trojan i E E

a b Interconnect
Write Data Crossbar
Mo M1 So S1
R W R W R W R W

Read Data Crossbar

Fig. 12.9 Bus topologies on opposite ends of the area v. throughput spectrum. (a) Shared R/W
data channels [44]. (b) Concurrent data channels [47]

278 N. Fern and K.-T. (Tim) Cheng

interfaces to pass data from the sender to the receiver. For example, the line labeled
Data in Fig. 12.8 on the sender’s side could be the write data or read/write address
port if the sender is a bus master and the read data port if the sender is a bus slave
and vice versa for the Data on the receiver’s side.

Since the Trojan data is transmitted using the same lines as normal bus traffic,
additional signaling must mark when valid Trojan data is being transmitted. These
signals are labeled as Control in Fig. 12.8, and like the Trojan data, are mapped to
pre-existing data/address/control signals, meaning no additional interface ports are
created. The Leakage Conditions Logic is protocol dependent and examines signals
at the sender’s interconnect interface to determine when it is “safe” to replace the
original bus signal values with Trojan values.

12.4.2.1 Topology Dependent Trojan Channel Properties

All bus signals can be classified as address, data, or control signals, and additionally
classified as belonging to read and/or write functionality. The interconnect topology
specifies the degree of parallelism between the different categories of bus signals,
and the connectivity between masters and slaves [44].

Figure 12.9a and b show the read and write data channels for topologies sitting at
opposite ends of the area efficiency and channel throughput trade-off. Figure 12.9a
is the most area efficient, but can only support a single transaction at a time,
whereas Fig. 12.9b contains significantly more circuitry, but can support multiple
simultaneous transactions.

In Fig. 12.9a, all read and write transactions are visible to all bus components,
meaning no Trojan circuitry is required to simply snoop bus data. If a Trojan bus
component wishes to send information, the black-colored circuitry inside the sender
block of Fig.12.8 is required. In Fig. 12.9b, data is not visible to a component
uninvolved in the transaction. Unlike Fig. 12.9a, forming a channel between two
slaves or two masters requires extra circuitry inside the interconnect, shown in red
in Fig. 12.8. Because the signals at the sender’s interconnect interface are not visible
at the receiver’s interface and vice versa, new leakage conditions are required, which
monitor the receiver’s interface and determine when it is safe to leak data without
altering valid bus transactions. Signals available at the receiver’s interface must also
be selected to implement the Data and Control lines. The FIFO is necessary because
leakage conditions at the sender and receiver may not occur simultaneously.

12.4.2.2 Protocol Dependent Trojan Channel Properties

The specifics of the Leakage Conditions Logic, which produces leak_s and leak_r,
and the selection of Data and Control signals depend on the bus protocol used.
Because of the similarities between various bus protocols, a general procedure for
determining the Leakage Conditions Logic and the selection of Data and Control
signals can be given.

12 Verification and Trust for Unspecified IP Functionality 279

Data Signal Selection In order to remain stealthy, the Trojan cannot create
additional signals to transmit data, and must send data via pre-existing signals in
the bus protocol. Being that the primary purpose of a bus is to transmit data, all bus
protocol/topology combinations have signals that are suitable for sending/receiving
Trojan data. In a protocol with separate read and write data signals, selection
depends on if the Trojan Sender/Receiver resides in a master or slave component,
since masters drive write data and observe read data signals, and vice versa for slave
components. If the Trojan Sender resides in a master component, the read and write
address signals can also be used to send Trojan data.

Leakage Conditions Logic Since pre-existing bus signals are used to transmit
Trojan data, logic ensuring that normal bus operation is not compromised by the
Trojan is necessary. The Leakage Conditions Logic examines protocol control
signals to identify when Trojan Data signals are not being used to transmit valid
data, and have unspecified values. Every bus protocol clearly defines the conditions
for which data, address, and error reporting signals are valid. Some protocols, such
as AXI4, designate a “valid” signal for each data channel, while others such as APB
use the current state within the protocol to identify which signals are valid. leak_s is
set when the Trojan Sender has data to transmit and the Data signals are not involved
in a valid transaction. If the Trojan Sender is leaking valid bus transactions instead
of actively sending information, then leak_s is not needed. leak_r is set when there
are items in the Trojan FIFO and the Data signals at the receiver interface are not
currently involved in a valid transaction.

Control Signal Selection When a Trojan Data signal is not being used in a valid
bus transaction, its value is unspecified. During idle bus cycles, either Trojan data is
being transmitted, or the bus is truly idle, and no data (Trojan or valid) is sent.
To distinguish between these two cases, existing bus signals are selected to be
Trojan Control signals, which mark when Trojan data is on the bus. The criteria
for selecting these signals and their corresponding values is that when leak_s/leak_r
is asserted, the normal behavior of the signal is predictable, but also unspecified.
For most protocols, control signals are good candidates because they often are
unused during idle cycles, yet their values remain static when idle for a given
implementation.

We refer the reader to [22] for a detailed comprehensive presentation of the
selection of Trojan Data and Control signals and Leakage Conditions Logic for the
AMBA AXI4 protocol, and instead explain the reasoning behind a single selection
of these signals for the AXI4-Lite based example system in the following section.

12.4.3 AXI4-Lite Interconnect Trojan Example

The system shown in Fig. 12.10 is created to verify the AXI4-Lite Interconnect
Fabric through RTL simulation. The two slaves are simple 8-bit adder coprocessors
which receive three operands to add via the interconnect from three processors.

280 N. Fern and K.-T. (Tim) Cheng

SystemVerilog Testbench S0 Sl
8-bit 8-bit
AXI4-Lite AXI BFM Adder Adder
Compliance AXI4-Lite | | AXI4-Lite || AXI4-Lite . I
Checker Master Master Master AXI4-Lite | [AXI4-Lite

—+ & & 1 3

AXI4-Lite Interconect Fabric

2-way Trojan Channel

Fig. 12.10 AXI4-lite example system verification infrastructure

Interconnect
W — -
MO N 0 WDATA
R| !
1
=
k n—=k 8
3
o
1<)
[¢]
. FIFO Data 0
M1 p Data 11k
r| i RVALID l
: leakr WSTRB

(Original)

4’b1001

Leakage Conditions Logic

Fig. 12.11 Trojan channel logic for AXI4-lite interconnect

Since the specifics of the main processors are irrelevant, in the example infrastruc-
ture, they are replaced by AXI4-Lite bus functional models (BFMs) from [48].
Additionally, AXI4-Lite assertions packaged by ARM for protocol compliance
checking [49] are active during system simulation.

The AXI4-Lite Interconnect Fabric IP block used is the LogiCORE IP AXI
Interconnect (v1.02.a) from Xilinx [47] configured in Shared-Address Multiple-
Data (SAMD) mode (the topology shown in Fig. 12.9b).

The AXI4-Lite Interconnect IP in Fig. 12.10 is infected with two copies of the
circuitry shown in red in Fig. 12.11 to allow S1 to snoop on read requests for SO and
vice versa. Without the Trojan, the read data channel for SO is not visible to S1 and
vice versa. We now provide the reasoning behind the selection of Data and Control
signals and Leakage Conditions Logic for the Trojan channel circuitry shown in
Fig. 12.11.

12 Verification and Trust for Unspecified IP Functionality 281

Data Signal Selection k-bits of the n-bit AXI4-Lite write data signal (WDATA)
are chosen to transfer the leaked information stored in the FIFO to the bus interface
at S1 because S1 is a slave component, driving data signals on the read data channel,
and receiving signals on the write data channel. There is no Trojan Data signal for
the Sender since k bits of valid read data from SO are being snooped, not actively
transmitted.

Leakage Conditions Logic In AXI4 and AXI4-Lite 5 independent transaction
channels are seen at the interface of every master and slave: the read address
channel, read data channel, write address channel, write data channel, and write
response channel [45]. Each channel uses a VALID/READY handshake signal pair,
as shown in Fig. 12.7, to indicate when the receiver is ready to process bus data, and
to mark when valid data is on the bus. Since the Trojan Data is being transmitted
using the write data signal, the write data channel valid signal (WVALID) can be
used to define leak_r as follows: leak_r = troj_data_ready & '"WVALID.

Control Signal Selection The WSTRB signal is used to indicate when leaked data
is on the bus. Normally WSTRB == 1, because the bus data width is 32-bits,
however the adder coprocessors have registers which are 8-bits wide. Because of
this, any values for WSTRB with Hamming weight greater than 1 have no functional
relevance in this system and are unused, making such values good candidates for
marking when leaked data is on the bus. In this example Trojan channel, when
information is leaked on WDATA, WSTRB == 9.

The waveform in Fig. 12.12 first demonstrates how 3 read data responses (values
42, 15, then 14) from S1 are snooped and routed to SO’s write channel, then shows a
single read data response (value 96) from SO routed to S1’s write channel, and finally
another read data response from S1 (value 13) leaked to SO. All Trojan transactions
are highlighted in red in Fig. 12.12.

SO Signals

AU U U U U U U U U U UL

_BUS_A RDATA[31:0]=5 \3 | ji

8_axi BUS_A RVALID=0 1

8_axi BUS_A WDATA[31:0]=1 [3Z I) 2] il I i g JEIH
8_axi_BUS_A_WVALID=0 Il 1 1 1
e _axi_BUS A NsTRB(3:0)=1)T [[0 B 5 T
V€ axi BUS A RDATA[31:0]=3TY13
s_axi_BUS_A_RVALID=0]] 1 1
i BUS_A WDATA[31:0)=1 [T
s_axi_BUS_A WVALID=1 =i
fo_axi BUS A WSTRB[3:0)=1 J1

Org

S1 Signals

Fig. 12.12 2-Way information leakage waveform

282 N. Fern and K.-T. (Tim) Cheng

Table 12.4 Trojan-free

o Frequency
fgjtgl results (after place and 60 ation | #FF | #LUT | #BRAM | [MHz]
3 masters 2 slaves | 1814 | 2474 2 250
4 masters 6 slaves | 3071 | 4247 3 250

Table 12.5 Area overhead of Data
2-way HW-Trojan channel

% increase in FF | % increase in LUT
width | FIFO depth |3M2S |4M6S 3M2S | 4M6S

2 2 0.8 0.5 0.9 0.4
4 1.1 0.7 1.5 0.6
8 1.4 0.8 1.8 1.1
4 2 1.0 0.6 1.4 0.7
4 1.3 0.8 2.0 0.8
8 1.7 1.0 2.0 1.5
8 2 1.4 0.8 1.8 1.0
4 1.8 1.0 2.4 1.2
8 2.1 1.2 3.0 1.7

For AXI4-Lite, there are over 50 assertions monitoring bus signals during
simulation, and none of them are violated even when information is flowing
through the Trojan channel.

12.4.3.1 Overhead

To determine the area and timing overhead of implementing a 2-way Trojan channel
between SO and S1, the SystemVerilog Testbench in Fig.12.10 is replaced by
several simple bus masters. Table 12.4 shows results for the Trojan-free design,
after placement and route, assuming 3 masters and 2 slaves (labeled as 3M2S) as
well as 4 masters and 6 slaves (labeled as 4M6S) for a Virtex-7 FPGA (7vx330t-3).
Table 12.5 illustrates how the selection of Trojan channel parameters Data Width
(k) and FIFO Depth (d) affects the results. The Trojan channel does not affect the
operating frequency of the design, and stays within 3 % of the original FF and LUT
utilization. As the number of masters and slaves increases, the interconnect and
overall design area increases, but the size of the Trojan circuitry does not change.
The Trojan channel is easier to hide as the complexity of the interconnect and
the number of components connected increases. The master and slave components
used to generate the results in Tables 12.4 and 12.5 are far simpler than those in a
typical SoC, so the results in Table 12.5 give a loose upper bound on the expected
percentage of area increase caused by the Trojan channel in a modern design.

12 Verification and Trust for Unspecified IP Functionality 283
12.5 Conclusion

In this chapter we have addressed the threat of Hardware Trojans in unspecified
design functionality. Due to the complexity of modern chips, a design specification
usually only defines a small fraction of behavior. Traditional verification techniques
only focus on ensuring the correctness of specified behavior, meaning any modifica-
tions or bugs (malicious or accidental) only affecting unspecified functionality will
likely go undetected.

We have shown how this verification hole allows an attacker with the ability
to modify the design to stealthily undermine the security of a system. We have
shown that all secret key bits in an Elliptic Curve Processor can be leaked by
only modifying RTL don’t cares, and that it is possible to create a covert Trojan
communication channel on top of existing on-chip bus infrastructure for common
bus protocols by only modifying the on-chip bus interface signals when the channel
is idle.

By viewing security as an extension of the verification problem we develop
several analysis methodologies based on existing techniques such as equivalence
checking and mutation testing which both prevent Trojans and increase confidence
in the correctness of specified design functionality. These techniques include a
Trojan prevention methodology based on equivalence checking that classifies all
don’t care bits in a design as dangerous or safe and a mutation testing based method-
ology capable of identifying dangerous unspecified functionality regardless of the
abstraction level or class of design analyzed. Because unspecified functionality is
by nature unknown, there is still much work to be done in fully exploring the scope
of the Trojan threat in this space.

References

1. M. Dale, Verification crisis: managing complexity in SoC designs. EE Times (2001) [Online].
Available: http://www.eetimes.com/document.asp?doc_id=1215507

2. S. Adee, The hunt for the kill switch. IEEE Spectr. 45(5), 34-39 (2008)

3. S. Mitra, H.-S.P. Wong, S. Wong, The Trojan-proof chip. IEEE Spectr. 52(2), 46-51 (2015)

4. Y. Shiyanovskii, F. Wolff, A. Rajendran, C. Papachristou, D. Weyer, W. Clay, Process reliability
based trojans through NBTI and HCI effects, in 2010 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS) (IEEE, Anaheim, 2010), pp. 215-222

5. L.-W. Kim, J.D. Villasenor, C.K. Kog, A Trojan-resistant system-on-chip bus architecture, in
Proceedings of the 28th IEEE Conference on Military Communications. Ser. MILCOM’(09
(2009), pp. 2452-2457

6. S.T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, Y. Zhou, Designing and implementing
malicious hardware, in Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and
Emergent Threats (LEET) (USENIX Association, Berkeley, CA, 2008), pp. 5:1-5:8

7. L. Lin, W. Burleson, C. Paar, Moles: malicious off-chip leakage enabled by side-channels, in
2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical
Papers, November (2009), pp. 117-122

http://www.eetimes.com/document.asp?doc_id=1215507

284 N. Fern and K.-T. (Tim) Cheng

8. G.T. Becker, F. Regazzoni, C. Paar, W.P. Burleson, Stealthy dopant-level hardware trojans, in
Cryptographic Hardware and Embedded Systems (CHES). Ser. Lecture Notes in Computer
Science, vol. 8086, ed. by G. Bertoni, J.-S. Coron (Springer, Berlin, Heidelberg, 2013),
pp. 197214

9. M. Tehranipoor, F. Koushanfar, A survey of hardware trojan taxonomy and detection. IEEE
Des. Test Comput. 27(1), 10-25 (2010)

10. R.S. Chakraborty, S. Narasimhan, S. Bhunia, Hardware trojan: threats and emerging solutions,
in High Level Design Validation and Test Workshop, 2009. HLDVT 2009. IEEE International
(IEEE, San Francisco, 2009), pp. 166-171

11. C. Krieg, A. Dabrowski, H. Hobel, K. Krombholz, E. Weippl, Hardware malware. Synth. Lect.
Inf. Secur. Priv. Trust 4(2), 1-115 (2013)

12. A. Waksman, S. Sethumadhavan, Silencing hardware backdoors, in Proceedings of the 2011
IEEE Symposium on Security and Privacy, Ser. SP’11 (2011), pp. 49-63

13. S.S. Ali, R.S. Chakraborty, D. Mukhopadhyay, S. Bhunia, Multi-level attacks: an emerging
security concern for cryptographic hardware, in 2011 Design, Automation Test in Europe
(2011), pp. 14

14. S. Bhasin, J.L. Danger, S. Guilley, X.T. Ngo, L. Sauvage, Hardware Trojan horses in
cryptographic IP cores, in 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), August (2013), pp. 15-29

15. D. Agrawal, et al., Trojan detection using IC fingerprinting, in IEEE Symposium on Security
and Privacy, 2007

16. A. Waksman, M. Suozzo, S. Sethumadhavan, FANCI: Identification of stealthy malicious logic
using Boolean functional analysis, in Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, CCS’13 (ACM, New York, 2013), pp. 697-708

17. D. Sullivan, J. Biggers, G. Zhu, S. Zhang, Y. Jin, FIGHT-metric: functional identification of
gate-level hardware trustworthiness, in Proceedings of the 51st Annual Design Automation
Conference, DAC’14 (ACM, New York, 2014), pp. 173:1-173:4

18. J. Zhang, F. Yuan, L. Wei, Z. Sun, Q. Xu, VeriTrust: verification for hardware trust, in
Proceedings of the 50th Annual Design Automation Conference, DAC’13 (ACM, 2013),
pp- 61:1-61:8

19. M. Hicks, et al., Overcoming an untrusted computing base: detecting and removing malicious
hardware automatically, in Proceedings of the 2010 IEEE Symposium on Security and Privacy,
SP’10 (IEEE Computer Society, Washington, 2010), pp. 159-172

20. N. Fern, S. Kulkarni, K.-T. Cheng, Hardware Trojans hidden in RTL don’t cares - Automated
insertion and prevention methodologies, in Test Conference (ITC), IEEE International, October
(2015), pp. 1-8

21. N. Fern, K.-T. Cheng, Detecting hardware trojans in unspecified functionality using mutation
testing, in Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, ICCAD’15 (IEEE Press, Piscataway, 2015), pp. 560-566

22. N. Fern, I. San, C.K. Kog, K.T. Cheng, Hardware Trojans in incompletely specified on-chip bus
systems, in 2016 Design, Automation Test in Europe Conference Exhibition (DATE), March
(2016), pp. 527-530

23. R.A. Bergamaschi, D. Brand, L. Stok, M. Berkelaar, S. Prakash, Efficient use of large don’t
cares in high-level and logic synthesis, in 1995 IEEE/ACM International Conference on
Computer-Aided Design, 1995. ICCAD-95. Digest of Technical Papers , November (1995),
pp. 272-278

24. M. Turpin, The dangers of living with an x (bugs hidden in your verilog), in Boston Synopsys
Users Group (SNUG), October 2003

25. L. Piper, V. Vimjam, X-propagation woes: masking bugs at RTL and unnecessary debug at the
netlist, in Design and Verification Conference and Exhibition (DVCon), 2012

26. H.Z. Chou, H. Yu, K.H. Chang, D. Dobbyn, S.Y. Kuo, Finding reset nondeterminism in rtl
designs - scalable x-analysis methodology and case study, in 2010 Design, Automation Test in
Europe Conference Exhibition (DATE 2010), March (2010), pp. 1494-1499

217.

28.

29.

30.

31.

32.

33

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.
46.

47.
48.
49.

Verification and Trust for Unspecified IP Functionality 285

Cadence conformal equivalence checker [Online]. Available: http://www.cadence.com/
products/ld/equivalence_checker

M. Turpin, Solving verilog x-issues by sequentially comparing a design with itself. you’ll never
trust unix diff again! in Boston Synopsys Users Group (SNUG), 2005

A.R. Bradley, SAT-based model checking without unrolling, in Verification, Model Checking,
and Abstract Interpretation (Springer, Berlin/Heidelberg 2011), pp. 70-87

G. Cabodi, S. Nocco, S. Quer, Improving SAT-based bounded model checking by means of
BDD-based approximate traversals, in Design, Automation and Test in Europe Conference and
Exhibition, 2003 (2003), pp. 898-903

J.W. Bos, J.A. Halderman, N. Heninger, J. Moore, M. Naehrig, E. Wustrow, Elliptic curve
cryptography in practice, in Financial Cryptography and Data Security (Springer, 2014),
pp. 157-175

C. Rebeiro and D. Mukhopadhyay, High performance elliptic curve crypto-processor for FPGA
platforms, in /2th IEEE VLSI Design and Test Symposium, 2008

. ABC [Online]. Available: http://www.eecs.berkeley.edu/~alanmi/abc/
34.
35.

Atrenta spyglass lint tool [Online]. Available: http://www.atrenta.com/pg/2/

Y. Jia and M. Harman, An analysis and survey of the development of mutation testing. IEEE
Trans. Softw. Eng. 37(5), 649-678 (2011)

B. Breech, M. Tegtmeyer, L. Pollock, An attack simulator for systematically testing program-
based security mechanisms, in 2006 17th International Symposium on Software Reliability
Engineering, November (2006), pp. 136-145

N. Bombieri, F. Fummi, G. Pravadelli, M. Hampton, F. Letombe, Functional qualification
of tlm verification, in 2009 Design, Automation Test in Europe Conference Exhibition, April
(2009), pp. 190-195

P. Lisherness, K.T. Cheng, Scemit: a systemc error and mutation injection tool, in Design
Automation Conference (DAC), 2010 47th ACM/IEEE, June (2010), pp. 228-233

N. Bombieri, F. Fummi, G. Pravadelli, A mutation model for the systemC TLM 2.0 communi-
cation interfaces, in 2008 Design, Automation and Test in Europe, March (2008), pp. 396401
Synopsys certitude [Online]. Available: https://www.synopsys.com/TOOLS/VERIFICATION/
FUNCTIONALVERIFICATION/Pages/certitude-ds.aspx

P. Lisherness, N. Lesperance, K.T. Cheng, Mutation analysis with coverage discounting, in
Design, Automation Test in Europe Conference Exhibition (DATE), 2013, March (2013),
pp. 31-34

UART 16550 core [Online]. Available: http://opencores.org/project,uart16550

Wishbone bus [Online]. Available: http://opencores.org/opencores, wishbone

S. Pasricha, N. Dutt, On-Chip Communication Architectures: System on Chip Interconnect
(Morgan Kaufmann Publishers Inc., Burlington, 2008)

AMBA AXI and ACE Protocol Specification, Issue E, ARM, 2013

L.-W. Kim, J.D. Villasenor, A system-on-chip bus architecture for thwarting integrated circuit
Trojan horses, in [EEE Transactions on VLSI Systems 19(10), 1921-1926 (2011)

DS768: LogiCORE IP AXI Interconnect (v1.02.a), Xilinx Inc., March 2011

Axi4 bfm [Online]. Available: https://github.com/sjaeckel/axi-bfm

Amba 4 axi4, axi4-lite and axi4-stream protocol assertions bp063 release note (rOp1-00rel0),
ARM [Online]. Available: https://silver.arm.com/browse/BP063

http://www.cadence.com/products/ld/equivalence_checker
http://www.cadence.com/products/ld/equivalence_checker
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.atrenta.com/pg/2/
https://www.synopsys.com/TOOLS/VERIFICATION/FUNCTIONALVERIFICATION/Pages/certitude-ds.aspx
https://www.synopsys.com/TOOLS/VERIFICATION/FUNCTIONALVERIFICATION/Pages/certitude-ds.aspx
http://opencores.org/project,uart16550
http://opencores.org/opencores,wishbone
https://github.com/sjaeckel/axi-bfm
https://silver.arm.com/browse/BP063

Chapter 13
Verifying Security Properties in Modern SoCs
Using Instruction-Level Abstractions

Pramod Subramanyan and Sharad Malik

13.1 Introduction

In the era of Dennard-scaling, advances in computing performances were driven by
transistor scaling. With each succeeding generation, transistors were smaller, faster,
and more power-efficient than before [7, 17]. These gains were used to increase
integrated circuit (IC) performance by designing more complex chips with a higher
frequency of operation. The end of Dennard-scaling led to the multicore era where
increases in performance were driven by parallelism rather than increased operating
frequency [31]. However power and thermal constraints still limit performance and
we are now in the dark silicon era where significant parts of an IC must be powered-
off in order to stay within its power and thermal budgets [18].

Despite the technological limitations imposed by the dark silicon era, the demand
for increased application performance and power-efficiency has not subsided and
this has led to the rise of accelerator-rich system-on-chip (SoC) architectures [12].
Application-specific functionality is implemented using fixed-function or semi-
programmable accelerators to obtain increased performance and power-efficiency.
These accelerators are controlled and orchestrated by firmware which executes
on programmable cores. Overall system functionality is implemented by this
combination of firmware, programmable cores, and hardware components.

Figure 13.1 shows the structure of a modern SoC. It contains multiple pro-
grammable cores, accelerators, memories, and I/O devices connected by an on-chip
interconnect [41, 44]. These components are organized into hierarchical modules,
also referred to as intellectual property (IP) blocks. Typically each IP block contains
a processor core, private memory, and several accelerators and I/O devices. Simpler
IPs may contain only accelerators and/or I/O devices.

P. Subramanyan (<) ¢ S. Malik
Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
e-mail: psubrama@princeton.edu; sharad @princeton.edu

© Springer International Publishing AG 2017 287
P. Mishra et al. (eds.), Hardware IP Security and Trust,
DOI 10.1007/978-3-319-49025-0_13

mailto:psubrama@princeton.edu
mailto:sharad@princeton.edu

288 P. Subramanyan and S. Malik

external I/O, storage, etc. shared memory

! !

on-chip interconnect

i ! ! i !

IP 1 IP 2 IP3 IP 4 IP &
acc acc ||
ACC ACC ACC
mem mem mem

Fig. 13.1 Overview of a system-on-chip design

Due to time-to-market pressures imposed by the competitive environment, IP
blocks are often obtained from semi-trusted or untrusted third-party vendors. This
has two effects on the security verification problem: (1) the functionality of these
blocks may not be fully or clearly specified (e.g., verification engineers may only
have access to gate-level netlists instead of RTL designs) making verification more
challenging, and (2) due to their untrusted nature, the designs may have subtle bugs
which violate system-level security requirements of the SoC.

It is important to emphasize the role of firmware in modern SoC designs.
Firmware is code that executes on programmable cores. It is shipped with the
hardware and sits “below” the operating system and interacts closely with hardware
accelerators, the on-chip interconnect, and I/O devices. System-level functionality
including security features and protocols are orchestrated by firmware—firmware
initiates operation of the hardware accelerators involved, collects and coordinates
their responses, and manages resource acquisition and release.

13.1.1 Challenges in SoC Security Verification

The prevalence of firmware in today’s SoCs poses an important challenge in
SoC security verification. Both firmware and hardware make many assumptions
about the other component. Since functionality is implemented by a combination
of hardware and firmware, verifying these two components separately requires
explicitly enumerating these assumptions and ensuring the other component satisfies
them. Bugs may exist in hardware or firmware alone, but some bugs may also
be caused by incorrect assumptions made by hardware/firmware about the other
component.

13 Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 289

13.1.1.1 Need for Hardware/Firmware Co-verification

As an illustrative example, consider the runtime binary authentication protocol
discussed by Kirstic et al. [30] The objective of the protocol is to read a binary
from an I/O device, verify it is signed by a trusted RSA public key, and if this is
the case, load the binary into local memory for execution. Krstic et al. demonstrate
that such a protocol is vulnerable to various attacks; e.g., a malicious entity may
modify the loaded binary after its signature is verified, but before it is loaded for
execution. To prevent this, firmware needs to configure the memory management
unit (MMU) to “lock” the pages containing the binary during and after signature
verification. Verifying that this protection works requires precise specification of
the hardware/firmware interface for the MMU, ensuring that hardware correctly
implements the protection such that untrusted hardware components cannot write
to locked pages, and verifying that firmware sets the MMU configuration correctly.
A mistake in any of these steps could violate the security requirements of the SoC.
The above example demonstrates: (1) the need for verification that analyzes
the hardware and firmware together and (2) the need for precise specification of
the hardware/firmware interface so that assumptions made by either side about the
other are explicit. One way of achieving these two objectives is formal verification
of firmware along with the cycle-accurate and bit-precise register transfer level
(RTL) model of SoC hardware. Unfortunately, this naive approach does not work
in practice: formal verification of the RTL description along with the firmware is
not feasible even for very small SoCs due to scalability limitations of formal tools.

13.1.1.2 SoC Verification Through Abstraction

A general technique for making SoC verification tractable is to use an abstraction
that accurately models all updates to firmware-accessible hardware states [24, 33,
38, 49, 54, 55]. When verifying properties involving firmware, the abstraction is
used instead of the bit-precise cycle-accurate hardware model.

Although the idea of constructing abstractions for firmware verification is
attractive, there are several challenges in applying this technique. Firmware interacts
with hardware components in a myriad of ways. For the abstraction to be useful, it
needs to model all interactions and capture all updates to firmware-accessible states.

* Firmware usually controls accelerators in the SoC by writing to memory-mapped
registers within the accelerators. These registers may set the mode of operation of
the accelerator, the location of the data to be processed, or return the current state
of the accelerator’s operation. The abstraction needs to model these “special”
reads and writes to the memory-mapped I/O space correctly.

* Once operation is initiated, the accelerators step through a high-level state
machine that implements the data processing functionality. Transitions of this
state machine may depend on responses from other SoC components, the

290 P. Subramanyan and S. Malik

acquisition of semaphores, external inputs, etc. These state machines have to
be modeled to ensure there are no bugs involving race conditions or malicious
external input that cause unexpected transitions or deadlocks.

* Another concern is preventing compromised/malicious firmware from accessing
sensitive data. To prove that such requirements are satisfied, the abstraction needs
to capture issues such as a sensitive value being copied into a firmware-accessible
temporary register.

Completeness of the abstraction is very important for security verification as
finding security vulnerabilities requires reasoning about al/l inputs and states of
the system including invalid/illegal inputs. A specific example of this is given
in [48] which describes a bug affecting certain misaligned store instructions in
a commercial SoC. A misaligned store instruction will cause an exception and
therefore should not be executed by a well-behaved program. However, malicious
code may specifically execute this instruction in order to exploit the bug and
corrupt MMU state. If verification were limited to “legal” inputs and states, or if an
abstraction did not precisely model the behavior under illegal inputs, such violations
will be missed.

Manual construction of abstractions which capture these details, as proposed,
for example, in [54, 55], is not practical because it is error-prone, tedious, and
time-consuming. Manual construction can be especially challenging for third-
party IPs because RTL “source code” may not be available so the abstraction has
to be “reverse-engineered” from a gate-level netlist. If the manually constructed
abstraction is incorrect, i.e., the hardware implementation is not consistent with the
abstraction, properties proven using it are not valid.

13.1.1.3 Challenges in Specifying Security Properties

Another challenge in security verification is property specification. Traditional
property specification languages based on temporal logic cannot express security
requirements involving information flow: e.g., confidentiality and integrity [34].
As a result, existing formal tools such as model checkers and symbolic execution
engines cannot verify information flow properties.

Confidentiality and integrity can be intuitively specified using information flow
properties. One method for verifying these properties is through dynamic taint
analysis [3, 13, 14, 29, 42, 46]. Dynamic taint analysis (DTA) associates a “taint
bit” with each object in the program/design. Taint propagation rules then set the
taint bit of the output of a computation if its input(s) are also tainted. Confidentiality
violations are detected by tainting the secret and raising an error when the taint
propagates to an untrusted object. Integrity violations are detected by tainting
untrusted objects and raising an error when the taint propagates to a trusted location.

While DTA enables intuitive property specification, it has deficiencies in the
verification aspect. DTA can determine if the property has been violated given
an instruction trace. However, since it is a dynamic analysis, it cannot be used to

13 Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 291

exhaustively search over the space of all possible instruction sequences to prove
the absence of property violations. Secondly, creating taint propagation rules is
challenging due to the problems of under- and over-tainting [3, 29]. Over-tainting
can result in a deluge of false-positives [29] while under-tainting can miss bugs [42].

Static taint analysis can ensure information flow properties are satisfied in pro-
grams. However, current static taint analysis techniques are based on programming
languages with secure type systems [37, 39]. These techniques cannot be applied
on existing firmware because significant parts are written in assembly language.
This necessitates analysis at the level of binary code rather than a high-level
programming language. The above discussion points to the need for tools that can
perform exhaustive analysis of information flow properties on binary code in the
context of hardware/firmware co-verification.

13.1.2 SoC Security Verification Using Instruction-Level
Abstractions

In this chapter, we introduce a principled methodology for the construction of
abstractions for verification of system-level security properties in SoCs. The insight
underlying our work is that firmware can only view changes in system state at
the granularity of instructions. Therefore, it is sufficient to construct an abstraction
which models hardware components of the SoC at this granularity. We call this an
instruction-level abstraction (ILA) [49].

13.1.2.1 ILA Synthesis and Verification

To help easily construct the abstraction in a semi-automated manner, we build
on recent progress in syntax-guided synthesis [2, 26, 27, 43]. Instead of manual
construction of the complete ILA, the verification engineer constructs a template
abstraction, which can be regarded as an abstraction with “holes.” Our synthesis
framework fills in the “holes” through directed simulation of hardware components.

The synthesis algorithm requires a simulator that can be used in the following
manner: start simulation at a specified initial state, execute a given instruction, and
return the state after the state update(s) corresponding to this instruction are carried
out. This only requires minor modifications to an architectural, RTL, or gate-level
simulator. The key advantages of ILA synthesis are that it significantly reduces
manual effort in ILA construction and allows ILAs to be constructed easily and
correctly even in the case of third-party IPs for which RTL descriptions may not be
available.

The ILA can be verified to be a correct over-approximation of the hardware
implementation. This uses model checking and ensures the ILA accurately captures
the behavior of the RTL description. If the model checking is completed, we have a
strong guarantee that all properties proven using the ILA are valid.

292 P. Subramanyan and S. Malik

13.1.2.2 Security Verification Using the ILA

To address the problem of security property specification, we introduce a specifica-
tion language for information flow properties of firmware. These properties specify
that information cannot “flow” from a given source to a given destination and can be
used to verify confidentiality when the source is a secret and the destination is any
untrusted location. Integrity can be verified when the source is an untrusted location
and the destination is a sensitive firmware register.

Using the ILA as a formal model of the underlying hardware, we introduce an
algorithm based on symbolic execution to verify these information flow properties.
The algorithm exhaustively explores all paths in the program and creates symbolic
expressions of computation performed on each path. It then uses a constraint solver
to check whether two different values at the source can result in different values
at the destination. If yes, it means information flow can occur from source to
destination as the destination value depends on the source. This means the property
is violated. If no such value can be found, the property holds along this particular
path.

13.1.2.3 Summarizing ILA-Based Verification

An overview of the complete methodology is shown in Fig. 13.2. The methodology
has two parts: (a) synthesis and verification of correctness of the ILA and (b)
using the ILA to verify security properties. The rest of this chapter is organized
as follows. The definition of the ILA, ILA synthesis, and verification of ILA
correctness are described in Sect. 13.2. The security property specification language
and use of the ILA for verification properties is described in Sect. 13.3. A discussion

a b
Template Model Checker k— RTL Security
abstraction Properties
Synthesis Instruction-Level Symbolic Symbolic | Proofs/
Algorithm Abstraction Sim Gen Simulator CEXs
. Sim Interface (for Symbolic
it MMIO) Simulator Core FW

Fig. 13.2 Overview of ILA-based security verification methodology. (a) ILA synthesis and
verification of correctness. (b) Security verification using ILAs

13 Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 293

of potential extensions, limitations of the methodology, and related work is in
Sect. 13.4. Section 13.5 provides concluding remarks.

13.2 Instruction-Level Abstractions

An instruction-level abstraction (ILA) is an abstraction that captures the firmware-
visible hardware behavior in the context of an SoC. The key insight underlying
the ILA is to model all firmware-visible state and associated state updates, and
nothing more. Therefore, microarchitectural states, such as pipeline registers and
reorder buffers, are not modeled in the ILA. However, all firmware-visible registers,
including MMU state and on-chip network state are modeled in the ILA. This results
in an abstraction which can be used for co-verification of hardware and firmware,
but omits unnecessary detail that can cause scalability bottlenecks.

In the rest of this section, we first provide an intuitive overview of ILAs. We then
formally define ILAs and describe how ILAs can be semi-automatically synthesized
and verified to be correct abstractions of SoC hardware.

13.2.1 ILA Overview

Recall that the ILA is an abstraction of the firmware-visible behavior of a hardware
module. Therefore, in the case of programmable cores, the ILA is the same as
the instruction-set architecture (ISA) specification of the programmable core. An
important aspect of the ILA that it is a formal, machine-readable abstraction
that models all architectural state and associated state updates performed by the
programmable core upon the execution of each instruction supported by it. Formal
specifications of ISAs can be quite difficult to construct in practice [22, 23]. Our
methodology mitigates this challenge by enabling semi-automated synthesis of
ILAs.

The ILA models semi-programmable and fixed-function accelerators using an
abstraction that is similar to an ISA. Accelerators in today’s SoC designs are event-
driven. Computation is performed in response to commands sent by programmable
cores and is typically bounded in length. Our insight here is to view commands from
the programmable cores to the accelerators as analogous to “instruction opcodes”
and state updates in response to these commands as “instruction execution.” The key
insight here is to model accelerators using the same fetch/decode/execute sequence
as a programmable core. The command is analogous to “fetch,” the case-split
determining how the command is processed is “decode,” and the state update is
instruction “execution.”

The ILA models the effects of its abstracted “instructions” much like an ISA.
It specifies the computation performed by each instruction and what updates to
architectural state will occur. For ILAs, the architectural state now includes all

294 P. Subramanyan and S. Malik

software-visible state that is accessible to its execution in the system, including
memory-mapped registers, shared memory buffers, accelerator scratchpads, etc. For
example, in the accelerator from [49] implementing the SHA-1 hashing algorithm,
the ComputeHash instruction reads the source data from memory, computes its
hash, and writes this result back to memory. The location of this instruction’s input
and output data in memory is set by previous configuration instructions.

Imposing this structure on an abstraction for accelerators has two advan-
tages. First, the ILA becomes a precise and formal specification of the HW/SW
interface for accelerators. It can be used in various design tasks such as full-
system simulation to support FW/SW development and system-level verification.
Second, interactions of FW with accelerators can be modeled using well-understood
instruction-interleaving semantics, enabling use of standard tools such as model
checkers for verification. Third, verification of SoC hardware also becomes more
tractable because conformance with an ILA can be done compositionally on a
“per-instruction” basis leveraging the body of work in microprocessor verification
[28, 35].

13.2.2 ILA Definition

We now provide a formal definition of an instruction-level abstraction.

13.2.2.1 Notation

Let B = {0, 1} be the Boolean domain and let bvec; denote all bitvectors of width
l. Myx; : bvecy — bvec; maps from bitvectors of width k to bitvectors of width
! and represents memories of address width k bits and data width [bits. Booleans
and bitvectors are used to model state registers while the memory variables model
hardware structures like scratchpads and random access memories. A memory
variable supports two operations: read(mem, a) returns data stored at address a in
memory mem while write(mem, a, d) returns a new memory which is identical to
mem except that address a maps to d, i.e., read(write(mem, a,d), a) = d.

13.2.2.2 Architectural State and Inputs

The architectural state variables of an ILA are modeled as Boolean, bitvector,
or memory variables. As with ISAs, the architectural state refers to state that is
persistent and visible across instructions.

Let S represent the vector of state variables of an ILA consisting of Boolean,
bitvector, and memory variables. In an ILA for a microprocessor, S contains all the
architectural registers, bit-level state (e.g., status flags), and data and instruction

13 Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 295

memories. In an accelerator, S contains all the software-visible registers and
memory-structures. A state of an ILA is a valuation of the variables in S.

Let vector W represent the input variables of the ILA; these are Boolean and
bitvector variables which model input ports of processors/accelerators.

Let types) be the “type” of state variable S[i]; types;; = B if S[i] is Boolean,
types;) = bvec it S[i] is a bitvector of width [and typesy = Mix; if S[i] is a
memory.

13.2.2.3 Fetching an Instruction

The result of fetching an instruction is an “opcode.” This is modeled by the function
F, : (S x W) — bvec,, where w is the width of the opcode. For instance, in the
8051 microcontroller, F,(S, W) £ read (IMEM, PC) where IMEM is the instruction
memory and PC is the program counter.'

Programmable cores repeatedly fetch, decode, and execute instructions, i.e., they
always “have” an instruction to execute. However, accelerators may be event-driven
and execute an instruction only when a certain trigger occurs. This is modeled by
the function F, : (S x W) +— B. Suppose an accelerator executes an instruction
when either Cmd1Valid or Cmd2Valid is asserted, then F, (S, W) 2 Cmdl1Valid v
Cmd2Valid.

13.2.2.4 Decoding an Instruction

Decoding an instruction involves examining an opcode and choosing the state
update operation that will be performed. We represent the different choices by
defining a set of functions D = {§; | | < j < C} for some constant C where
each §; : bvec,, = B. Recall F,, : (S x W) — bvec, is a function that returns the
current opcode. Each §; is applied on the result of F,,. The functions §; must satisfy
the condition: Vj,j' : j #j <= —(6; A §y).

For convenience let us also define the predicate op; 2 8j(Fo(S, W)). When op; is
1, it selects the jth instruction. For example, in the case of the 8051 microcontroller,
D=1{8() 2 =060 2f=1.. 65 £ f = 2552 Recall we had
defined F, for this microcontroller as F,(S, W) 2 read(IMEM, PC). Therefore,
op; <= read(IMEM,PC) = j— 1. We are “case-splitting” on each of the 256
values taken by the opcode and each of these possibly performs a different state
update. The functions §; choose which of these updates is to be performed.

'Note F,(S, W) must contain the instruction opcode. It may also (but is not required to) contain
additional data such as the arguments to the instruction.

2We are writing bitvectors of width 8 (elements of bvecg) as 0. . .255.

296 P. Subramanyan and S. Malik

13.2.2.5 Executing an Instruction

For each state element S[i] define the function Nj[i] : (S x W) = typegp). Nli]
is the state update function for S[i] when op; = 1. For example, in the 8051
microcontroller, opcode 0x4 increments the accumulator. Therefore, N4[ACC] =
ACC + 1. The complete next state function N : (S x W) > S is defined in terms of
the functions N;[i] over all i and ;.

Defining the next state function N compositionally in terms of the functions
Nj[i] has an important advantage: it enables compositional verification [28, 35].
The behavior of the RTL can now be verified separately for each state element S[i]
and for each opcode op;. This results in a simpler verification problem and enables
scalable verification of large designs.

13.2.2.6 Syntax

The language of expressions allowed in F,, F,,, D, and N;[i] is shown in Fig. 13.3.
Expressions are quantifier-free formulas over the theories of bitvectors, bitvector
arrays, and uninterpreted functions. They can be of type Boolean, bitvector, or
memory, and each of these has the usual variables, constants, and operators with

(exp) = (bv-exp) | (bool-exp) | (mem-exp) | (func-exp)
| (choice-exp)

(bv-exp) ::= var (id) width | cnst val width
| bvop (exp) ...
| read (memexp) {addrexp)

| read-block (memexp) (addrexp)

| apply (func) (bv-exp) ...

| extract-bitslice (bv-exp) width

| extract-subword (bv-exp) width

| replace-bitslice (bv-exp) (bv-exp)

| replace-subword (bv-exp) (bv-exp)

| in-range (bv-exp) (bv-exp)

(bool-exp) ::= var | true | false
| boolop (exp) ...

(mem-exp) ::= (id) |

| write (mem-exp) (bv-exp) (bv-exp)

| write-block (mem-exp) (bv-exp) (bv-exp)
(func-exp) == func (id) widthyy widthiy, ...

(choice-exp) ::= choice (exp) (exp) ...

Fig. 13.3 Syntax for expressions

13 Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 297

S 10 Ni[1] S'[1]
61 : > -

N N — Ni[K] S'[2]

N E | = 17‘_7> FO opcode' N N
A
— 19 Nell]

dc : <

S Sk

S: Current State F,: fetch valid

. . /.
W Inputs Fy: fetch opcode D: Set of Decode Fns. N: Next State Fn. §’: Next State

Fig. 13.4 Pictorial overview of the ILA definition

standard interpretations. The synthesis primitives, shown in bold, will be described
in Sect. 13.2.3.

13.2.2.7 Putting It All Together

To summarize, an instruction-level abstraction (ILA) is the tuple: A =
(S,W,F,,F,,D,N). S and W are the state and input variables. F,, F,, D, and
N are the fetch, decode, and next state functions, respectively.

A pictorial overview of this definition is shown in Fig. 13.4. The leftmost box
shows the state vector S. The function F,, (“fetch valid”’) examines the state vector
S and input vector W and determines if there is an instruction to execute. If this
is the case, i.e., if F,,(S, W) = 1, then F,(S) is used to get the opcode from the
current state and input vectors. This opcode is used to evaluate each of the functions
81,82,...,8;,...,8¢c. If §; = 1, then N;[i] is evaluated for each S[i] to get the next
state S'[i]. The vector S’ then defines the next state of the ILA and the above process
is repeated again from this state to execute the next “instruction.”

298 P. Subramanyan and S. Malik
13.2.3 ILA Synthesis

For ILAs to be useful, one must be able to generate them correctly and preferably
automatically. Due to the prevalence of third-party IPs, SoC hardware blocks often
exist before the ILA is constructed, and so ILAs need to be constructed post hoc
without IP designer support. To address the error-prone and tedious aspects of this
construction, we have developed an algorithm for template-based synthesis of ILAs.

To semi-automatically synthesize the functions N;[i] in the ILA, we build on the
counterexample guided inductive synthesis (CEGIS) algorithm [26, 27]. We assume
availability of a simulator that models state updates performed by the hardware. This
simulator can be gate-level, RTL, or a high-level C/C++/SystemC simulator of the
design; it is only used as a black-box. Its implementation does not matter except
that it be possible to set the initial state, execute an instruction, and read out the final
state after execution.

13.2.3.1 Notation and Problem Statement

Let Sim : (Sx W) + S be the I/O oracle for the next state function N. Define Sim; as
the function that projects the state element S[i] from Sim; Sim; : (S x W) — types;.
In order to help synthesize the function implemented by Sim;, the SoC designers
write a template next state function, denoted by .7; : (@ x § x W) — typegy;.

@ is a set of synthesis variables, also referred to as “holes” [45], and different
assignments to (interpretations of) @ result in different next state functions. Unlike
NIi], 7 is a partial description and is therefore easier to write. It can omit certain
low-level details, such as the mapping between individual opcodes and operations,
opcode bits and source and destination registers, etc. These details are filled-in
by the counterexample guided inductive synthesis (CEGIS) algorithm [26, 27] by
observing the output of Sim; for carefully selected values of (S, W).

(Problem Statement: ILA Synthesis): For each state element S[i] and
each op;, find an interpretation of @, &;[i], such that VS, W : op; —
(F(@il.S. W) = Simi(S. W)).

The synthesis procedure is repeated for each instruction (each j) and each state
element (each i), and the synthesis result &;[i] is an interpretation of @ for i and j.
13.2.3.2 Template Language

The synthesis primitives in the currently implemented template language are shown
in bold in Fig. 13.3. It is important to emphasize that our algorithm and methodology

13 Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 299

are not dependent on the specific synthesis primitives used. The only requirement
placed on the primitives is that it be possible to “compile” them to some quantifier-
free formula over bitvectors, bitvector arrays, and uninterpreted functions.

Synthesis Primitives

The expression choice ¢; ¢, asks the synthesizer to replace the cheice primitive with
either &; or &, based on simulation result. choice ¢; ¢, is translated to the formula
ITE(¢p, €1, £2) Where ¢, € @ is a new Boolean variable associated with this instance
of the choice primitive. Its value is determined by the synthesis procedure.

The primitives extract-slice and extract-subword synthesize bitvector extract
operators. The synthesis process determines the indices to be extracted from. These
operators are used to extract bit-fields from a register. The advantage of using these
operators instead of an extract operator is that the indices of the bitfield need not be
specified. This is advantageous for two reasons: (1) it reduces manual effort when
constructing the ILA and (2) it also eliminates errors in specifying indices, as these
are now automatically determined by the synthesis procedure. The replace-slice and
replace-subword are the counterparts of these primitives; they replace a part of the
bitvector with an argument expression.

The primitive in-range synthesizes a bitvector constant that is within the speci-
fied range. We note that adding new synthesis primitives is easy and straightforward
in our language.

13.2.3.3 An Illustrative Example

We illustrate the definition of an ILA and template next state function using the
processor shown in Fig. 13.5. The instruction to be executed is read from the
ROM. Its operands can either be an immediate from the ROM or from the 4-entry
register file. For simplicity, we assume that the only two operations supported by
the processor are addition and subtraction.

The architectural state for the processor is S = {ROM, PC, Ry, Ry, Ry, R3} and
input set W is empty. typerom = Mszxs while all the other variables are of type

Fig. 13.5 A simple processor
for illustration En al d2
il ROM

a2 d1 op
res
src, | ALU

3 Src,

+1

300 P. Subramanyan and S. Malik

bvecs. The opcode which determines the next instruction is stored in the ROM and
s0 F, £ read(ROM, PC); F,, £ true. D = {8; | 1 < j < 256} where each &,(f) £
f =j— 1. The template next state functions, Jpc and Jg,, are as follows.

Ipc = choice (PC + 1) (PC 4 2)

imm = read(ROM,PC + 1)
Srcy = choice R() R1 R2 R3
Srcy = choice R() R1 R2 R3 imm
res = choice (src; + srcy) (srcy — srea)
Tk, = choiceresR; (0<i<3)

13.2.3.4 Synthesis Algorithm

The counterexample-guided inductive synthesis (CEGIS) algorithm from [49] is
shown in Algorithm 1. The inputs to the algorithm are the following.

1. op; which determines the opcode for which synthesis is performed,

2. The template next state function 7.

3. The simulator Sim;. The suffix i here denotes that the value of state element S[i]
is extracted from the output of the simulator.

4. A is a conjunction of assumptions under which synthesis is to be carried out.
For example, suppose the opcode is read(ROM, PC), and functionality is only
defined for opcodes in the range 0x0 to 0xFO0, then the assumption A would
express this as A = read(ROM, PC) > 0x0 A read(ROM, PC) < 0xFO.

The algorithm is executed for each op; and each S[i]. In each case it returns ;[i]
which is used to compute the next state function as N;[i](S, W) = Zi(§;[i], S. W).

Algorithm 1 Synthesis algorithm

1: function SYNCEGIS(op;, 7}, Sim;, A)

2 k<1

31 R« AAop A0 < (TP, S, W) # F(Ps, S, W)))

4 while sat(R; A 6) do

5: A <= MODELs,w) (R A 6) > get dist. input A
6: 0 < Sim;(A) > simulate A
7 01 < (Z(®1,4) = 0)

9: Ri+1 < Rk ANOy A Oy > enforce output O for A
10: k<—k+1

11: end while

12: if sat(Ry A —0) then

13: return MODELg, (R A —0)
14: end if

15: return L

16: end function

13 Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 301

Fig. 13.6 Distinguishing *

inputs for the illustrative ROM=[0]; PC=0;
example. Notation A 2 2
ROM = [0] means all ROM RF=(0,0,0x47,0x7)

addresses contain the value 0

B Simg,=0 |

v

ROM=[0]; PC=0;
C RF=(0x47,0xF,0,0)
v
D | Simp,=0x8E |
v
E | N;[Ro] =R, + R, |

To understand the algorithm, observe that .Z;(®, S, W) defines a family of next
state functions. Different functions are selected by different interpretations of @.
The algorithm tries to find an interpretation of (S, W), say A, which for some two
interpretations of @, &;[i] and &;[i] is such that .Z;(%[i], A) # Fi(3,[i], A). A is
called a distinguishing input. Once A is found, the simulation oracle Sim; can be
evaluated to find the expected output for this scenario. We then add constraints
enforcing this input/output relation and try to find another distinguishing input.
This process repeats until no more distinguishing inputs can be found. When this
happens, it means that all remaining interpretations of @ result in the same next
state function, and any such interpretation is the solution.

Consider the computation of N;[Rg] shown in Fig. 13.6. We are constructing the
next state function for Ry for opcode op;, <= read(ROM, PC) = 0x0. The first
distinguishing input computed is node A in Fig. 13.6. This distinguishes between
next state functions like Ry + R», Ry + R3 and functions like Ry +Ry. Node B shows
the output from the simulator for A is 0x0 ruling out Ry + R, and Ry + R3. We
now compute distinguishing input C. This input distinguishes among the functions
Ro+Ro, Rp—Rp, Ro+R; , Rp—Rj, and so on. When this input is simulated, it results
in output D. At this point, we have a unique next state function: Ny [Rg] = Rg + Rg
and the algorithm terminates.

13.2.4 ILA Verification

Once we have ILA, the next step is to verify that it correctly abstracts the hardware
implementation. Our first attempt at this might be to consider the ILA and the RTL
as finite state transition systems executing in parallel and verify properties of the

302 P. Subramanyan and S. Malik

form G(xya = xgr7r). This property says that state variable xy; 4 in the ILA is equal
in every time step® to the state variable xgyy in the RTL. Unfortunately, this property
is likely to be false for most state variables in hardware designs.

For example, consider a pipelined microprocessor with branch prediction. In this
case, the processor may mispredict a branch and execute “wrong-path” instructions.
Although these instructions will eventually be flushed, while they are being executed
registers in the RTL will contain the results of these “wrong-path” instructions and
S0 xgtr, Will not match x .

13.2.4.1 Verifying Abstraction Correctness

When considering the internal state of the hardware components, we verify the ILA
by defining refinement relations as proposed by McMillan [35]: G(cond; =—
xiLa = xrrL). The predicate cond;; specifies when the equivalence between state in
the ILA and the corresponding state in the implementation holds. For example, in
a pipelined microprocessor, we might expect that when an instruction commits, the
architectural state of the implementation matches the ILA. Note the suffix ij here
denotes that the refinement relation may be different for each state element S[i] and
each opcode op;, i.e., the state update of the RTL may occur in a different cycle for
each combination of S[i] and op;.

Defining the refinement relations as above allows compositional verification [28].
Consider the property —(¢ U (cond; A (xia # xrrL))) where ¢ states that all
refinement relations hold until time ¢ — 1. This is equivalent to the above property,
but we can abstract away irrelevant parts of ¢ when proving equivalence of xj. 5 and
xrrL. For example, when considering op;, we can abstract away the implementation
of other opcodes op; and assume these are implemented correctly. This simplifies
the model but these proofs are still valid because we are still considering the
correctness of all opcodes, albeit separately.

For state variables that are outputs of hardware components being modeled, we
expect that ILA outputs always match the implementation. In this case, the property
is G(x;LA = XrrTL).

13.2.4.2 Discussion of Verification Issues

One part of our case study is a pipelined microcontroller with limited specula-
tive execution. Our refinement relations are of the form G(inst_finished —
(xi.a = xgrrL)), ie., the state of the ILA and implementation must match
when each instruction commits. The other part involves the verification of two
cryptographic accelerators. Here the refinement relations are of the following form:
G (hism_state_changed —> xya = xgryL). The predicate hism_state_changed is

3This is the meaning of the G linear temporal logic (LTL) operator.

13 Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 303

equal to 1 whenever the high-level state machine in the accelerator changes state.
This refinement relation states that the high-level state machines of the ILA and
RTL have the same transitions. The RTL state machine has some “low-level” states.
These states do not exist in the ILA and are not visible to the firmware.

If we had to verify a superscalar processor, the ILA would execute multiple
instructions in each transition. The exact number of instructions to be executed with
each transition is an output of the implementation and an input to the abstraction.
The property would state that after these many instructions are executed, the states
of the ILA and implementation match.

Propagating auxiliary execution information from the implementation to the
abstraction can help verify many complex scenarios. Consider the verification of
weak memory models [1] where loads and stores in a microprocessor can be
reordered in (well-defined) ways that affect program semantics. The information
about the order in which load/store instructions are executed will be an output of
the implementation and an input to the ILA. The refinement relations would verify
that the execution of the ILA matches the implementation assuming instructions are
executed in the same order.

13.2.4.3 Verification Correctness

If we prove the refinement relations for all outputs of the ILA and implementation:
G(xia = xgrrL), then we know that the ILA and implementation have identical
externally visible behavior. Hence any properties proven about the behavior of the
external inputs and outputs of the ILA are also valid for the implementation.

In practice, proving the property G(xia = xgryr) for all external outputs may not
be scalable, so we adopt McMillan’s compositional approach. We prove refinement
relations of the form —(¢ U (cond;; A xiLa 7 xr7r)) for internal state and use these
to prove the equivalence of the outputs.

If these compositional refinement relations are proven for all firmware-visible
state in the ILA and implementation, then we know that all firmware-visible state
updates are equivalent between the ILA and the implementation. Further, we know
that transitions of the high-level of state machines in the ILA are equivalent to
those in the implementation. These properties guarantee that firmware/hardware
interactions in the ILA are equivalent to the implementation, ensuring correctness
of the abstraction.

13.2.5 Practical Case Study

This section describes the evaluation methodology, the example SoC used as a case
study, and then briefly describes the synthesis and verification results.

304 P. Subramanyan and S. Malik

13.2.5.1 Methodology

The template-based synthesis framework was implemented as a Python library using
the Z3 SMT solver [16]. A modified version of Yosys was used to synthesize netlists
from behavioral Verilog [53]. We used ABC for model checking [5]. The synthesis
framework, template abstractions, synthesized ILA, and other experimental artifacts
are available online [19].

13.2.5.2 Example SoC Structure

Experiments were conducted on an example SoC constructed from open source
components containing the 8051 microcontroller and two cryptographic accelerators
(Fig. 13.7). One accelerator implements encryption/decryption using the Advanced
Encryption Standard (AES) while the other implements the SHA-1 cryptographic
hash function [25,47]. The RTL description of the 8051 is from OpenCores.org [51].
We also used i8051sim for instruction-level simulations of the 8051 [32].4

The firmware running on the 8051 initiates operation of the accelerators by
writing the addresses of the data to be encrypted/decrypted/hashed to memory-
mapped registers within the accelerators. Operation is started by writing to the
start register which is also memory-mapped. Once the operation is started, the
accelerators use direct memory access (DMA) to fetch the data from the external
memory (XRAM), perform the operation, and write the result back to XRAM. The
processor determines completion by polling a memory-mapped status register.

13.2.5.3 Summary of Synthesis Results

We constructed two ILAs: one for the 8051 microcontroller and another for the
arbiter, XRAM, AES, and SHA modules. The insight here is that the 8051 commu-
nicates with the accelerators and XRAM by reading/writing to XRAM addresses.
So from the perspective of the 8051, it is sufficient to show that all instructions that

Fig. 13.7 Example SoC

block diagram ROM l—> XRAM
8051 uC

1/O Ports [« <> Arbiter [«+>| AES

T—> SHA

“We could have used the Verilog implementation itself for simulation. However, we chose to
replicate the common scenario where simulators are developed and used for validation before the
RTL design is complete.

13 Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 305

modify the internal state of the 8051 are executed correctly and instructions which
read/write XRAM produce the correct results at the external memory interface.
What happens after these instructions “leave” the external memory interface—
whether they modify the XRAM or start AES encryption, or return the current state
of the SHA accelerator—need not be considered in this model. For the accelerators
and the XRAM, we construct a separate ILA and the only instructions we need to
consider here are reads and writes to XRAM addresses. In this ILA, we verify that
these operations produce the expected results.

As an indication of the effort involved in building the model, the size of the
template ILA, the simulator, and the RTL implementations for the two ILAs is
shown in Table 13.1. The table shows that the template ILA is typically much
smaller than the RTL. These numbers also demonstrate the template ILA can be
written with relatively less effort.

Execution times of the synthesis algorithm for the 8051 ILA are shown in
Table 13.2. We report the average and maximum values over all 256 opcodes. Except
for the internal RAM, all other elements are synthesized with a few seconds. ILA
synthesis found five bugs in i8051sim.

13.2.5.4 Typical ILAs

Tables 13.3 and 13.4 show “instructions” in the ILAs for the accelerators. Firmware
first configures the accelerator with the appropriate instructions and then starts
operation with the StartEncryption and StartHash instructions. It can then
poll for completion using the Get Status instruction. Each of these instructions

Table 13.1 Lines of code (LoC) and size in bytes of each model for the 8051 ILA

8051 AES+SHA+XRAM
Model LoC Size (KB) | LoC Size (KB)
Template ILA ~ 650 |30 ~ 500 |26
Instruction-level simulator =~ 3000 | 106 ~400 |14
Behavioral verilog implementation |~ 9600 | 360 ~ 2800 |87

Table 13.2 Synthesis execution time for 8051 ILA

AVG |MAX AVG | MAX
State Time (s) State Time (s)
ACC 4.3 85 |B 3.6 5.1
DPH 2.7 5.0 |DPL 2.6 4.4
IRAM 1245.7 |14043.6 | PO 1.8 2.7
P1 2.4 38 |P2 2.2 3.5
P3 2.7 4.6 | PC 6.3 141.2
PSW 7.3 159 |SP 2.8 5.0

XRAM/addr 0.4 0.4 | XRAM/dataout | 0.3 0.4

306 P. Subramanyan and S. Malik

Table 13.3 ILA instructions for AES accelerator

Instruction Description of operation
Rd/Wr DataAddr Get/set the address of data to encrypt
Rd/Wr Datalen Get/set the length of data to encrypt

RdA/Wr Key0 <index> | Get/set specified byte of keyO
Rd/Wr Keyl <index> | Get/set specified byte of keyl
Rd/Wr Ctr <index> Get/set specified byte of counter

RdA/Wr KeySel Get/set the current key (keyO/key1)
StartEncryption Start the encryption state machine
GetStatus Poll for completion

Table 13.4 ILA instructions for SHA1 accelerator

Instruction Description of operation

RA/Wr DataInputAddr Get/set address of data to be hashed
Rd/Wr DataLength Get/set length of data to be hashed
Rd/Wr DataOuptutAddr | Get/set the address of output
StartHash Start the SHA1 state machine
GetStatus Poll for completion

is “triggered” by a memory-mapped I/O write to an appropriate address; F, is of
following form F, £ ((memop = WRVmemop = RD) Amem_addr = REG_ADDR)
where REG_ADDR is the address of the corresponding configuration register.

13.2.5.5 Summary of Verification Results

We generated Verilog “golden models” from the ILAs and defined a set of
refinement relations specifying that the golden models were equivalent to the RTL.
We then used bounded and unbounded model checking to verify these refinement
relations. These verification results are described below.

Verification of the 8051 ILA

We first attempted to verify the 8051 by generating a large monolithic golden model
that implemented the entire functionality of the processor in a single cycle. The
IRAM in this model was abstracted from a size of 256 bytes to 16 bytes. This
abstracted golden model was generated automatically using the synthesis library.
We manually implemented the abstraction reducing the size of the IRAM in the
RTL implementation.

We used this golden model to verify properties of the form G(inst_finished —>
xia = xrry). For the external outputs of the processor, e.g., the external RAM
address and data outputs, the properties were of the form G(output_valid —

13 Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 307

Table 13.5 Results with per-instruction golden model

BMC bounds
Property CEX | <20 | <25 | <30 |[<35 |Proofs
PC 0 0 25 10 204 96
ACC 1 0 8 39 191 56
IRAM 0 0 10 36 193 1
XRAM/dataout |0 0 0 0 239 238
XRAM/addr 0 0 0 0 239 239

XxiLa = xgrpL). Verification was done using bounded model checking (BMC) with
ABC using the bmc3 command. After fixing some bugs and disabling the remaining
(17) buggy instructions, we were able to reach a bound of 17 cycles after Sh of
execution.

To improve scalability, we generated a set of “per-instruction” golden models
which only implement the state updates for one of the 256 opcodes, the imple-
mentation of the other 255 opcodes is abstracted away. We then verified a set of
properties of the form: —(¢ U(inst_finished A op; A xia # xrrL)). Here ¢ states
that all architectural state matches until time r — 1. We then attempted to verify
five important properties stating that: (1) PC, (2) accumulator, (3) the IRAM, (4)
XRAM data output, and (5) XRAM address must be equal for the golden model and
the implementation.

Results for these verification experiments are shown in Table 13.5. Each row
of the table corresponds to a particular property. Columns 2—6 show the bounds
reached by BMC within 2000s. For example, the first row shows that for 25
instructions, the BMC was able to reach a bound between 21 and 25 cycles without
a counterexample; for 10 instructions, it achieved a bound between 26 and 30
cycles, and for the remaining 204 instructions, BMC reached a bound between 31
and 35 cycles. The last column shows the number of instructions for which we
could prove the property. These proofs were done using the pdr command which
implements the IC3 algorithm [8] with a time limit of 1950s. Before running pdr,
we preprocessed the netlists using the gate-level abstraction [36] technique with a
time limit of 450s.

Bugs Found During 8051 Verification

In the simulator, we found five bugs in total. Bugs in CJINE, DA, and DIV
instructions were due to signed integers being used where unsigned values were
expected. Another was a typo in AJMP and the last was a mismatch between RTL
and the simulator when dividing by zero. These bugs were found during synthesis.

308 P. Subramanyan and S. Malik

An interesting bug in the template was for the POP instruction. The POP
<operand> instruction updates two items of state: (1) <operands> =
RAM[SP] and (2) SP = SP - 1. But what if operand is SP? The RTL set
SP using (1) while the ILA used (2). This was discovered during model checking
and the ILA was changed to match the RTL. This shows one of the benefits of our
methodology: all state updates are precisely defined and consistent between the ILA
and RTL.

In the RTL model, we found a total of 741 bugs. One of these is an entire class
of bugs related to the forwarding of special function register (SFR) values from an
in-flight instruction to its successor. This affects 17 different instructions and all
bit-addressable architectural state. We partially fixed this. A complete fix appears to
require significant effort.

Another interesting issue was due to reads from reserved/undefined SFR
addresses. The RTL returned the previous value stored in a temporary buffer. This
is an example of the methodology detecting and preventing unintended leakage of
information through undefined state.

Verifying the XRAM+AES+SHA ILA

We generated a Verilog golden model that combined the ILAs for the XRAM,
AES, and SHA modules. We reduced the size of the XRAM in the ILA and the
implementation to just one byte because we were not looking to prove correctness
of reads and writes to the XRAM. We then attempted to prove a set of properties of
the form G (hism_state_change —> (xiLa = xr7L)). We were able to prove that
the AES:State, AES:Addr, and AES:Len in the implementation matched the ILA
using the pdr command. For other firmware-visible state, BMC found no property
violation up to 199 cycles with a time limit of 1 h.

13.3 Security Verification Using ILAs

The ILA is a complete formal specification of hardware behavior and enables
scalable system-level verification. Firmware that interacts with accelerators and I/O
devices can now be analyzed in terms of firmware-visible behavior as specified by
the ILA instead of ad hoc manually constructed models, or at the other extreme,
very detailed bit-precise cycle-accurate RTL descriptions.

In this section, we describe how ILAs can be used to verify confidentiality and
integrity properties of firmware using symbolic execution. We first describe the
system and threat model. We then describe a specification language for firmware
security properties and briefly provide an overview of an algorithm based on
symbolic execution for verifying these properties.

13 Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 309
13.3.1 System and Threat Model Overview

This section provides a brief overview of the system model and threat model
considered in this work.

13.3.1.1 System-On-Chip Model

As described in Sect.13.1 and shown in Fig.13.1, we consider SoC designs
consisting of a set of interacting IPs, a shared I/O space, an on-chip interconnect
and possibly a shared memory. Each IP consists of a microcontroller, specialized
hardware components, and private read-only and read-write memories (i.e., ROMs
and RAMs). The firmware executes on the microcontroller interacts with the
specialized hardware in its own IP as well as other IPs through memory-mapped
/O (MMIO).

The firmware’s view of the system consists of a set of architectural registers, a
special register known as the program counter, an instruction ROM which contains
the firmware, and a data RAM which is used by the firmware during execution.
We consider single-threaded firmware, however, other hardware and firmware
interactions are also modeled and execute concurrently with the firmware thread.
We use the ILA of the microcontroller to model the state updates performed by each
instruction in the firmware.

13.3.1.2 Threat Model

The verification problem is tackled in a modular manner. Each IP is verified
separately and the threat model is defined from the perspective of the individual IPs.

For each IP we identify the other IPs which are its trust boundary. The trust
boundary is the subset of other IPs this IP fully trusts. For example, an IP involved
in security critical functionality such as secure boot will likely not trust the camera
and GPS IPs. Therefore, these IPs will be outside its trust boundary and any inputs it
receives from these IPs are untrusted. Keeping the trust boundary small helps keep
the attack surface small.

13.3.1.3 Security Objectives

The two classes of security objectives we consider are confidentiality and integrity
of firmware assets. We wish to keep firmware secrets, e.g., encryption keys,
confidential from untrusted IPs. Similarly, we wish to preserve the integrity of
firmware assets. For example, we wish to ensure the integrity of firmware control-
flow by ruling out stack smashing/buffer overflow attacks in the presence of arbitrary

310 P. Subramanyan and S. Malik

inputs from untrusted IPs. We also wish to ensure that untrusted IPs cannot modify
the value of sensitive control/configuration registers, such as memory protection
configuration registers. In this work, we do not consider other security requirements
like availability and side channel attacks.

13.3.1.4 Modelling the Attacker

We assume that memory, I/O, and hardware registers controlled by untrusted IPs
contain arbitrary values. In other words, outputs of an untrusted IP are unconstrained
so reads from these locations return arbitrary values. Similarly, untrusted IPs may
send invalid commands in an attempt to exploit, for example, buffer overflow bugs.

13.3.2 Specifying Information Flow Properties

The property specification language for firmware security properties is based on the
following insights. First, security requirements such as confidentiality and integrity
are essentially statements about information flow. These express the requirement
that either a firmware secret must not “flow” to an untrusted value (confidentiality),
or an untrusted value must not “flow” to a sensitive asset (integrity). Note such
properties cannot be expressed using specification languages based on temporal
logic [34].

Second, almost all interesting firmware security assets, such as secret keys,
sensitive configuration registers, and untrusted input registers, are accessed through
memory-mapped I[/O (MMIO). Therefore, firmware address ranges and architectural
registers are first class entities in the property specification language.

Third, a mechanism for declassification is required [40]. This allows information
flow when certain conditions hold during execution; information flow is disallowed
if these do not hold.

Based on the above requirements, we introduce a specification language for
information flow properties consisting of:

1. An src which is a range of firmware memory addresses.

2. A predicate srcpred associated with the source which specifies when
the data at src is valid. For example, we may allow a register to be
programmed from an input port during the boot process, but not afterwards
with the predicate —boot.

3. A dst which is an element of the ILA state.

(continued)

13 Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 311

4. A predicate dstpred for dst which specifies when data at dst is valid
similar to (2) above.

The property holds if data read from src when srcpred=1 never influ-
ences a value written to dst when dstpred=1. srcpred and dstpred are
evaluated at the time of the read and write, respectively.

13.3.3 Firmware Execution Model

We now describe firmware state and the execution model.

13.3.3.1 Execution State

Firmware state is modeled using an ILA of the microcontroller hardware: A =
(S,W,F,,Fy,,D,N). The firmware state S is assumed to contain the following
special elements:

1. A set of bit-vector variables S.mem = {S.memop,S.memaddr,S.datain,
S.dataout} which contain information about the current memory operation.
S.memop = NOP means that the current instruction does not read/write from
memory or memory-mapped 1/O, S.memop = RD denotes a read and WR is a
write. S.memaddr is the address of the current memory operation, S.datain is
the data read from memory (or I/O), and S.dataout is the data being written to
memory or I/O. These variables help model memory-mapped I/O and accesses
to untrusted memory.

2. S.ROM contains the read-only memory which contains the firmware to be
executed. We assume that the instruction and data memories are separate.

3. The set S.regs which contains all the remaining state variables of the ILA. S.regs
contains the special element S.PC which refers to the program counter of the
microcontroller.

The initial state of the microcontroller, i.e., the state from which execution starts
is defined by the symbolic expression inits. N is the next state function, and Ny,
and N, are the projections of N to the sets S.mem and S.regs, respectively.

13.3.3.2 A Review of Symbolic Execution

Our verification algorithm builds on symbolic execution using constraint solvers
[9, 21]. In this section, we provide a brief overview of these techniques. Section
13.3.4 will describe the extensions required to verify information flow properties.

—_

312 P. Subramanyan and S. Malik

void foo(int a, int b) {
int c;
if (a <0 || b < 0)
c = 0;
else
Cc = a+b;

assert (¢ >= a && c >= b);
return c;

[=RNRe BEN He Y R N

}

Listing 13.1 Example code to demonstrate symbolic execution

Consider the code shown in Listing 13.1. To make understanding the algorithm
easier, the code is shown in a C-like language but symbolic execution is actually
performed on the equivalent binary code. For simplicity, let us assume that the
line numbers shown in the listing correspond to program counter (PC) values. The
following steps outline how a typical symbolic execution algorithm verifies the
correctness of the assertions on line 8.

Execution starts in the symbolic state initg £ §.PC = 3. This means the initial
state constrains the value of S.PC to be 3 but all other variables/registers/memory
values are unconstrained, i.e., they can take arbitrary values. The algorithm uses
a constraint solver to enumerate all concrete values of S.PC consistent with this
symbolic state. In this case, this is just S.PC = 3. The conjunction of S.PC = 3
and inits is pushed onto a stack. This stack contains all paths in the program and
associated symbolic states that need to be explored by the algorithm.

Symbolic Execution Main Loop

The main loop of the symbolic execution algorithm starts by popping the symbolic
state at the top of the stack. Note symbolic states in the stack always have a specific
(concrete) value for S.PC, so we know what instruction is to be executed next. This
instruction is retrieved from the program memory and is executed symbolically,
which means that we create symbolic expressions corresponding to the state update
for each register and memory value in the program.

In our example, initially S.PC = 3, this instruction is a conditional branch which
updates the PC according to the following expression: ite(a < 0 vV b < 0,4,6).
In the above formula, ite is the if-then-else operator and the formula states that the
next PC value will be 4 if a < 0 or b < 0, and 6 otherwise. All other variables and
memory states are left unchanged; they retain the same values as in inits.

Now the algorithm uses a constraint solver to evaluate all values of S.PC
consistent with these next state expressions. This gives us S.PC = 4 and S.PC = 6.
The conjunction of each of these, inits, and a path condition is now pushed onto

13 Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 313

Ss | SPC—3 |

/\

S.PC=4Nc=0Aite(a< S S S.PC=6ANc=a+bAite(a<
0Vh<0,4,6)=4 4 6 0Vh<0,4,6)=6

. .

S.PC=8ANc=0Aite(a < s g SPC=8ANc=a+bAite(a<
0Vh<0,4,6)=4 8 8 0Vh<0,4,6)=6
¥

Sy A(c >=ahc>=b)? ‘

‘ Ss A=(c>=aAc>=b)? ‘Ag Ag

Fig. 13.8 State evolution in symbolic execution

the stack. The path condition records the constraints under which this branch is
taken. Figure 13.8 shows that the path condition for symbolic state Sy is ite(a <
0Vvb < 0,4,6) = 4. This path condition can be syntactically simplified to
a < 0V b < 0 and records the fact that line 4 is only reached when a < 0 or
b < 0. We now have two paths to explore, one with PC = 4 which is reachable
when a < 0V b < 0 and another with PC = 6 which is reachable under the
path condition —=(a < 0 v b < 0). When we reach final instruction, in this case
PC = 9, nothing is pushed onto the stack, signifying that no additional paths need
to be explored.
This loop is repeated until the stack is emptied, i.e., all paths are visited.

Verifying Assertions

The symbolic state expressions constructed when verifying the code in Listing 13.1
are shown in Fig. 13.8. The white boxes show the symbolic state expressions and
are labelled with their corresponding PC values. We see that PC = 8 is reached on
both paths in the program with different path conditions.

The gray boxes show the assertions on line 8. Assertions are verified by negating
the assertion condition, conjoining this with the state expressions and checking if
the result is satisfiable in a constraint solver. In this example, Ag is not satisfiable,
so the assertion holds along this path. But the Ag is satisfiable because the result of
¢ = a + b can overflow. This violation is reported by the algorithm.

The assertions shown in the listing are predicates on program states. Unfortu-
nately, such predicates cannot be used to reason about information flow [34] and so
the algorithm described above cannot be used to verify information flow properties.
An algorithm that can verify information flow properties is given in Sect. 13.3.4.

314 P. Subramanyan and S. Malik
13.3.4 Verifying Information Flow Properties

Algorithm 2 shows how information flow properties can be verified using symbolic
execution. It performs a depth-first search (DFS) of all reachable instructions
and checks whether the information flow property specified by (src, dst, srepred,
dstpred) holds for all of them. The stack keeps track of paths to be visited and the
path constraints P4 and Pp determine the conditions under which each path is taken.

Algorithm 2 Symbolic execution

Inputs: inits, (src, srcpred, dst, dstpred)
1: stack.push({inits, inits, t rue, true))
2: while —empry(stack) do
3: > S4 and Sp represent the current firmware state.

4: (S4, S, Py, Pg) < stack.pop()

S:

6: T < Py A Py A [dstpred]s, A [dstpred]s, A [dst]s, # [dst]s,

7. if sat(T) then > check properties
8: display violation

9: endif

10:

11: if finished(S4, Sg) then > check for completion
12: continue

13: endif

14:

15: > S, and S} is state after this instruction is executed.

16: Sy.mem < Ny (Sa)

17: Sg.mem < Nyem(Sp)

18:

19: > check for MMIO and handle it
20: if isMMIO(S)) then

21: (S, Sg) < execMMIO(S4, Sp)

22: endif

23: D rewrite datain if memaddr matches the source

24: if overlaps(S), src) then

25: S).datain = ite(overlaps(S,.memaddr, src) A srcpred(Sy), newVar(), Sy .datain)
26: Sp.datain = ite(overlaps(Sy.memaddr, src) A srcpred(Sg), newVar(), Sg.datain)
27: endif

28: > compute next value of the registers

29: (S,.regs, Sp.regs) <= (Nrugs(Sa)s Nyegs(Sp))

30:

31: > find all concrete values PC; consistent with the symbolic value [PC], and add to stack.
32: forall pC; |= [PC];, do

33: (S4.PC,S.PC) = (PC;, PCy)

34: Py <= P4 ASy.PC = PC;

35: PB<—PB/\SB.PC=PCi

36: stack.push({S}, Sy, Pa, Pg))

37: end for

38: end while

13 Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 315

uint8 t tbl[] = { 1, 1 }; // address of tbl = 0x100
uint8 t data = 3; // &data=0x102
uint8 t IO REG = 1; // &IO REG=0x200.

void foo(int rl)
if (rl < 0 || rl »>= N) return;
IO REG = tblI[rl];

0NN W=

}

Listing 13.2 Integrity property example: src=rl@, dst=dataout@, srcpred=true and
dstpred=memaddr = 0x200 A memop = WR

There are two main enhancements over previous symbolic execution engines
[4,9, 10, 15]. The first is that the engine maintains two copies of the state in S4 and
Sp. This is so that we can functionally test whether assigning different values to src
results in different values at dst. This check is performed in line 7. The substitution
of the source with “fresh” unconstrained variables is performed in lines 24-27. The
other difference is the handling of MMIO instructions in lines 20-22 which are
executed using simulation.

To understand Algorithm 2, let us consider its execution on the code shown in
Listing 13.2. We show the algorithm in C-like pseudocode to make understanding
easier but the analysis is done on binary code. The property here states that the
untrusted value r1 must not influence the value of IO_REG.

Suppose, due to a typo N=3 instead of the correct value 2. The symbolic state
computed by the algorithm when it reaches the assignment to I0O_REG would be:

Py =—(x4 <0Vxy>3) Pp=—(xp <0Vxg>3)
Sa.dataout = My[0x100 + x4] | Sp.dataour = Mp[0x100 + xg]
Sa.memaddr = 0x200 Sp.memaddr = 0x200
Sa.memop = WR Sg.memop = WR

S4.M = Sp.M = [0x100 > 1, 0x101 > 1,0x102 > 3,...]

In the above, P4 and Ppg are the two path conditions which specify the conditions
that must hold for this path in the program to the taken. S4.M and Sg.M represent
the values of the RAM. The state variables dataout, memaddr, and memop refer
to the elements of S.mem which contain information about the memory operation
being executed by this statement in each “copy” of the execution. x4 and xp are
the new variables created to represent the untrusted value r1. At this point, when
the solver evaluates whether dataout, # dataouty is possible along with Py, Pp
and the predicates, it will find x4 = 1,xp = 2. This means that if r1 =x4 = 1,
then value stored in IO_REG is different from the value stored in IO _REGif r1 =
xg = 2. This means the property being violated. Once we fix the bug and set N=2,
then (P4, Pg) = (xa = 0 Axq < 2,x5 > 0 Axg < 2). Now it is not possible make
dataouty # dataoutg while satisfying P4 and Pg, so the algorithm will not report in
an error.

316 P. Subramanyan and S. Malik

An alternative technique for verifying information flow properties is dynamic
taint analysis (DTA) [3, 13, 14, 29, 42, 46]. DTA works by associating a taint bit
with each variable/object and propagating the taint bit from inputs to the outputs of a
computation. DTA is a dynamic analysis: it is implemented by analysis of execution
traces in which the source of the information flow property is tainted and the analysis
checks if this taint propagates to the destination. DTA cannot search over the space
of all possible executions.

Listing 13.2 is an example where DTA fails. Typically taints are tracked
separately for memory addresses and memory data [42]. Therefore, if the address
for a memory read is tainted but the data pointed to by the address is not tainted,
the result of the memory read is not tainted. Under such a policy, the bug would not
be detected by DTA as the taint would not propagate from r1l to IO_REG. If we
change the policy and taint the result of memory read when the address is tainted,
we will have overtainting. DTA will report a problem even when the bug is fixed
and N=2.

Now suppose src is data, while dst and dstpred are the same as before. This
property states that the secret value data must not influence untrusted register
IO _REG. Clearly, a violation exists if N=3 and it will be detected by Algorithm 2.

To detect this issue, DTA needs an instruction sequence where r1=2 in order to
expose the violation. In other words, DTA cannot detect a violation without a trace
that “activates” the problem. The above examples demonstrate the advantages of our
technique: exhaustive static analysis of all program paths and states, and improved
precision over DTA.

MMIO and Symbolic Execution

Memory-mapped I/O (MMIO) poses unique challenges for symbolic execution,
because a read/write from/to MMIO might have “side-effects,” e.g., initiating a
hardware state machine. Ideally, we would model all these symbolically. However,
this is difficult in practice because constructing a symbolic model for the entire
MMIO space will be very time-consuming.

Therefore, we use selective symbolic execution to model the MMIO side-effects.
Simulation models of the SoC are usually available during SoC design and these
model MMIO accesses. We use these to execute the “side-effects” of MMIO
reads/writes. This means we have to convert the symbolic expressions into sets of
concrete values, execute the simulator for each concrete value, and then resume
symbolic execution with the simulation results. This process is shown in Fig. 13.9b,
which is contrast to fully symbolic execution shown in Fig. 13.9a. This process
of conversion from symbolic to concrete states and back is tractable for firmware
because typical accesses to only made to a small number of hardware registers.

13 Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 317

inits inits
A
- R

T L

(a) (b)

Fig. 13.9 Execution model. In (b) the shaded boxes show single-path (concrete) execution through
the simulation model due to MMIO. (a) Fully symbolic execution. (b) Selective symbolic execution

13.3.5 Evaluation

We evaluated our approach by examining part of the firmware of an upcoming
commercial phone/tablet SoC. The SoC consists of a number of IPs for various
functions such as display, camera, and touch sensing. This evaluation examined a
single component IP, called the PTIP which is involved in security sensitive “flows”
such as secure boot. It contains a proprietary 32-bit microcontroller which executes
the firmware. The firmware interacts with the other IPs in the SoC through hardware
registers accessed using MMIO.

13.3.5.1 Methodology

We synthesized an instruction-level abstraction (ILA) of the PTIP microcontroller
and then used the ILA to generate a symbolic execution engine. Z3 v4.3.2 was the
constraint solver [16] used. This symbolic execution engine was integrated with a
pre-existing simulator for this microcontroller to model MMIO reads and writes to
other parts of the SoC.

13.3.5.2 Security Objectives

The PTIP firmware interacts with system software, device drivers, and other
untrusted IPs. Since these entities, especially the system software and drivers,
may be compromised by malware, these are all untrusted. We explored two main
security objectives as part of the evaluation. First, the PTIP memory holds a sensitive
cryptographic key called the IPKEY. We verify that these untrusted entities cannot
access IPKEY. Second, we verify control-flow integrity of the PTIP firmware. Three
representative information flow properties we formulated to capture these security
requirements.

318 P. Subramanyan and S. Malik

The total size of the PTIP firmware is approximately a few tens of thousands of
static instructions. Due to limited time, this evaluation focused on a set of message
handler functions which send and receive commands/messages from the (untrusted)
system software, drivers, and other IPs. The size of these handler functions was
approximately several hundred static instructions.

13.3.5.3 Summary of Verification Results

In terms of scalability, the symbolic execution engine could explore up to about
half a million instructions within the assigned time limit of 30 min. This was
sufficient for exploring all possible paths in 4 out of 6 handlers examined in the
evaluation. Full exploration of paths could not be completed for the other two
handlers. While these results are promising and show that some real-world firmware
can be examined, further improvements in scalability are likely possible with more
sophisticated analysis techniques.

The PTIP firmware had previously undergone simulation-based testing and
manual code review. However, we were still able to identify a tricky security bug
that could lead to JPKEY exposure. Symbolic analysis involving reasoning over all
possible input values was essential in helping discover this bug.

13.4 Discussion and Related Work

This chapter described a methodology for SoC security verification that is based on
the construction of instruction-level abstractions and the use of symbolic simulation
to verify information flow properties. We now discuss the applicability of potential
extensions to this methodology. We also discuss related work.

13.4.1 SoC Security Verification

The ILA is a complete formal specification of hardware behavior that precisely
defines the hardware/software interface. A key feature of the ILA is that it
is machine-readable. Section 13.3 showed how symbolic execution on ILAs of
microprocessors could be used to verify information flow properties in SoC designs.
However, ILA-based verification is not limited to symbolic execution. Symbolic
execution is just one way of carrying out the proof obligations posed by SoC security
requirements. Other verification techniques, such as model checking and abstract
interpretation, can also be used to carry out these proof obligations.

In particular, software model checkers [6, 11] can be more scalable than symbolic
simulators because they avoid the path explosion problem by implicitly enumerating
paths. However, current software model checkers do not support information flow
properties. Therefore, extending model checkers with richer property specification

13 Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 319

schemes in order to verify information flow properties is an important area for
further work. Using ILAs in other formal frameworks such as interactive theorem
provers may also be beneficial.

13.4.2 Related Work

There is a rich body of literature studying synthesis and verification. We survey
some of the most closely related work below.

13.4.2.1 Synthesizing Abstractions

Our work [33, 49] builds on recent progress in syntax-guided synthesis which
is surveyed in [2]. Our synthesis algorithm is based on oracle-guided synthesis
from [26]. Our contribution is the use of synthesis for constructing abstractions of
SoC hardware. Also related is the work of Godefroid et al. [22] They synthesize a
model for a subset of the x86 ALU instructions using I/O samples. In comparison,
our contributions are strong guarantees about the correctness of the synthesized
abstraction and general abstractions for SoC hardware, not just ALU outputs.
For example, they do not consider issues like the mapping between opcodes and
instructions, the source registers, the memory addressing modes, how the PC is
updated, etc. Our model considers all these details.

Also related is the work of Udupa et al. [52] They synthesize distributed protocols
using a partial template specification and input/output traces. Similar to our work,
they verify the correctness of the synthesized protocol using model checking. This
idea of synthesis synergistically combining synthesis with model checking is also
used by Gascon et al. [20] who synthesize cryptographic protocols which satisfy
certain specifications.

13.4.2.2 SoC Verification

Refinement relations, used in proving the abstraction and the implementation match,
are from [28, 35]. One approach to compositional SoC verification is by Xie
etal. [54, 55] They suggest manually constructing a “bridge” specification that along
with a set of hardware properties can be used to verify software components that rely
on these properties. Our methodology makes it easy to construct the equivalent of
the bridge specifications. Most importantly, it ensures correctness of the abstraction.

Horn et al. [24] suggest symbolic execution on a software model that contains
both firmware and software models of hardware components. This approach is
complementary to ours because it can be used for early design stage verification,
when an RTL model may not be available. However, once the RTL model is
constructed, there is no easy way of ensuring that the software model and the RTL
are in agreement. This is the critical challenge addressed by our work.

320 P. Subramanyan and S. Malik

13.4.2.3 Symbolic Execution and Taint Analysis

The DART and KLEE projects are the precursors of subsequent work in symbolic
execution [9, 21]. They combined modern constraint solvers and dynamic analysis
to generate tests for software programs. Subsequent projects, such as FIE and S?E,
have applied symbolic execution to firmware and low-level software [10, 15]. The
most important difference between these frameworks and our work is that they only
verify safety properties, not confidentiality and integrity.

A large body of work also studies dynamic taint analysis (DTA) [3, 29, 42, 46].
DTA suffers from both false positives and false negatives due to the problems
of under- and over-tainting. Our work [50] does not result in false positives. An
overview of DTA and symbolic execution is presented in [42]. We show how
symbolic execution can be used to verify information flow; this is missing from
[42] which treats DTA and symbolic execution separately.

13.5 Conclusion

In this chapter, we described a principled methodology for security verification of
SoCs. The first component of the methodology is the construction of Instruction-
Level Abstractions (ILAs) of SoC hardware components. The ILA of a hardware
component is an abstraction that treats commands sent from firmware to the
component as the equivalent of “instructions” and models all firmware-visible state
updates due to these instructions. We described how ILAs can be semi-automatically
synthesized and verified to be correct abstractions of hardware components.

The second component of the methodology is using the ILA for the verifica-
tion of system-level security properties. We introduced a property specification
language that can express requirements like confidentiality and integrity and an
algorithm based on symbolic execution to verify these properties. Experimentally,
we found that both components—ILA construction and verification using symbolic
execution—helped to find several bugs in an SoC built out of open source
components and part of a commercial SoC design.

References

1. S.V. Adve, K. Gharachorloo, Shared memory consistency models: a tutorial. IEEE Comput.
29(12), 66-76 (1996)

2. R. Alur, R. Bodik, G. Juniwal, M.M.K. Martin, M. Raghothaman, S.A. Seshia, R. Singh,
A. Solar-Lezama, E. Torlak, A. Udupa, Syntax-guided synthesis, in Formal Methods in
Computer-Aided Design (2013)

3. G.S. Babil, O. Mehani, R. Boreli, M.-A. Kaafar, On the effectiveness of dynamic taint analysis
for protecting against private information leaks on Android-based devices, in Security and
Cryptography (2013)

13

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 321

O. Bazhaniuk, J. Loucaides, L. Rosenbaum, M.R. Tuttle, V. Zimmer, Symbolic Execution
for BIOS Security, in Proceedings of the 9th USENIX Conference on Offensive Technologies
(2015)

. Berkeley Logic Synthesis and Verification Group, ABC: a system for sequential synthesis and

verification (2014). http://www.eecs.berkeley.edu/~alanmi/abc/

. D. Beyer, T.A. Henzinger, R. Jhala, R. Majumdar, The software model checker blast. Int. J.

Softw. Tools Technol. Transfer 9(5-6), 505-525 (2007)

. M. Bohr, The new era of scaling in an SoC world, in IEEE International Solid-State Circuits

Conference-Digest of Technical Papers (IEEE, New York, 2009), pp. 23-28

. AR. Bradley, SAT-based model checking without unrolling, in Verification, Model Checking,

and Abstract Interpretation (2011)

. C. Cadar, D. Dunbar, D. Engler, KLEE: unassisted and automatic generation of high-coverage

tests for complex systems programs, in Operating Systems Design and Implementation (2008)
V. Chipounov, V. Kuznetsov, G. Candea, S2E: a platform for in-vivo multi-path analysis
of software systems, in Architectural Support for Programming Languages and Operating
Systems (2011)

E. Clarke, D. Kroening, F. Lerda, A tool for checking ANSI-C programs, in Tools and
Algorithms for the Construction and Analysis of Systems (2004)

J. Cong, M.A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj, G. Reinman, Accelerator-
rich architectures: opportunities and progresses, in Proceedings of the 51st Annual Design
Automation Conference (ACM, New York, 2014), pp. 1-6

M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, P. Barham, Vigilante:
end-to-end containment of internet worms, in Symposium on Operating Systems Principles
(2005)

J.R. Crandall, ET. Chong, Minos: control data attack prevention orthogonal to memory model,
in [EEE/ACM International Symposium on Microarchitecture (2004)

D. Davidson, B. Moench, S. Jha, T. Ristenpart, FIE on firmware: finding vulnerabilities in
embedded systems using symbolic execution, in USENIX Conference on Security (2013)

L. De Moura, N. Bjgrner. Z3: an efficient SMT solver, in Tools and Algorithms for the
Construction and Analysis of Systems (2008)

R.H. Dennard, V. Rideout, E. Bassous, A. LeBlanc, Design of ion-implanted MOSFET’s with
very small physical dimensions. IEEE J. Solid State Circuits 9(5), 256-268 (1974)

H. Esmaeilzadeh, E. Blem, R.S. Amant, K. Sankaralingam, D. Burger, Dark silicon and the end
of multicore scaling, in Proceedings of the International Symposium on Computer Architecture
(IEEE, New York, 2011), pp. 365-376

Experimental artifacts and synthesis framework source code (2016). https://bitbucket.org/
spramod/ila-synthesis

A. Gascon, A. Tiwari, A synthesized algorithm for interactive consistency, in NASA Formal
Methods (2014)

P. Godefroid, N. Klarlund, K. Sen, DART: directed automated random testing, in Programming
Language Design and Implementation (2005)

P. Godefroid, A. Taly, Automated synthesis of symbolic instruction encodings from I/O
samples, in Programming Language Design and Implementation (2012)

S. Heule, E. Schkufza, R. Sharma, A. Aiken, Stratified synthesis: automatically learning the
x86-64 instruction set, in Proceedings of Programming Language Design and Implementation
(2016)

A. Horn, M. Tautschnig, C. Val, L. Liang, T. Melham, J. Grundy, D. Kroening, Formal co-
validation of low-level hardware/software interfaces, in Formal Methods in Computer-Aided
Design (2013)

H. Hsing, http://opencores.org/project,tiny_aes (2014)

S.Jha, S. Gulwani, S.A. Seshia, A. Tiwari, Oracle-guided component-based program synthesis,
in International Conference on Software Engineering (2010)

S. Jha, S.A. Seshia, A theory of formal synthesis via inductive learning, in CoRR,
abs/1505.03953 (2015)

http://www.eecs.berkeley.edu/~alanmi/abc/
https://bitbucket.org/spramod/ila-synthesis
https://bitbucket.org/spramod/ila-synthesis
http://opencores.org/project,tiny_aes

322 P. Subramanyan and S. Malik

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

SI.

R. Jhala, K.L. McMillan, Microarchitecture verification by compositional model checking, in
Computer-Aided Verification (2001)

M.G. Kang, S. McCamant, P. Poosankam, D. Song, DTA++: dynamic taint analysis with
targeted control-flow propagation, in Network and Distributed System Security Symposium
(2011)

S. Kirstic, J. Yang, D.W. Palmer, R.B. Osborne, E. Talmor, Security of SoC firmware load
protocols, in Hardware-Oriented Security and Trust, pp. 70-75 (2014)

R. Kumar, K.I. Farkas, N.P. Jouppi, P. Ranganathan, D.M. Tullsen. Single-ISA heterogeneous
multi-core architectures: the potential for processor power reduction, in Proceedings of
International Symposium on Microarchitecture (IEEE, New York, 2003), pp. 81-92

R. Lysecky, T. Givargis, G. Stitt, A. Gordon-Ross, K. Miller, http://www.cs.ucr.edu/~dalton/
18051/i8051sim/ (2001)

S. Malik, P. Subramanyan, Invited: specification and modeling for systems-on-chip security
verification, in Proceedings of the Design Automation Conference, DAC ’16, New York, NY
(ACM, New York, 2016), pp. 66:1-66:6

J. McLean, A general theory of composition for trace sets closed under selective interleaving
functions, in IEEE Computer Society Symposium on Research in Security and Privacy (IEEE,
New York, 1994), pp. 79-93

K.L. McMillan, Parameterized verification of the FLASH cache coherence protocol by
compositional model checking, in Correct Hardware Design and Verification Methods
(Springer, Berlin, 2001)

A. Mishchenko, N. Een, R. Brayton, J. Baumgartner, H. Mony, P. Nalla, GLA: gate-level
abstraction revisited, in Design, Automation and Test in Europe (2013)

A.C. Myers, JFlow: practical mostly-static information flow control, in Principles of
Programming Languages (1999)

M.D. Nguyen, M. Wedler, D. Stoffel, W. Kunz, Formal hardware/software co-verification by
interval property checking with abstraction, in Design Automation Conference (2011)

A. Sabelfeld, A. Myers, Language-based information-flow security. IEEE Sel. Areas Commun.
21, 5-19 (2003)

A. Sabelfeld, D. Sands, Declassification: dimensions and principles, J. Comput. Secur. 17(5),
517-548 (2009)

R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux, P.P. Pande, C. Grecu,
A. Ivanov, System-on-chip: reuse and integration. Proc. IEEE 94(6), 1050-1069 (2006)

E. Schwartz, T. Avgerinos, D. Brumley, All you ever wanted to know about dynamic taint
analysis and forward symbolic execution (but might have been afraid to ask), in IEEE Security
and Privacy (2010)

S.A. Seshia, Combining induction, deduction, and structure for verification and synthesis.
Proc. IEEE 103(11), 2036-2051 (2015)

R. Sinha, P. Roop, S. Basu, The AMBA SOC platform, in Correct-by-Construction Approaches
for SoC Design (Springer, New York, 2014)

A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, V. Saraswat. Combinatorial sketching for
finite programs, in Architectural Support for Programming Languages and Operating Systems
(2006)

D. Song, D. Brumley, H. Yin, J. Caballero, 1. Jager, M.G. Kang, Z. Liang, J. Newsome,
P. Poosankam, P. Saxena, BitBlaze: a new approach to computer security via binary analysis,
in Information Systems Security (2008)

J. Strombergson, https://github.com/secworks/shal (2014)

P. Subramanyan, D. Arora, Formal verification of taint-propagation security properties in a
commercial SoC design, in Design, Automation and Test in Europe (2014)

P. Subramanyan, Y. Vizel, S. Ray, S. Malik, Template-based synthesis of instruction-level
abstractions for SoC verification, in Formal Methods in Computer-Aided Design (2015)

P. Subramanyan, S. Malik, H. Khattri, A. Maiti, J. Fung, Verifying information flow properties
of firmware using symbolic execution, In Design Automation and Test in Europe (2016)

S. Teran, J. Simsic, http://opencores.org/project,8051 (2013)

http://www.cs.ucr.edu/~dalton/i8051/i8051sim/
http://www.cs.ucr.edu/~dalton/i8051/i8051sim/
https://github.com/secworks/sha1
http://opencores.org/project,8051

13 Verifying Security Properties in Modern SoCs Using Instruction-Level. . . 323

52. A. Udupa, A. Raghavan, J.V. Deshmukh, S. Mador-Haim, M.M. Martin, R. Alur, TRANSIT:
specifying protocols with concolic snippets, in Programming Language Design and Imple-
mentation (2013)

53. C. Wolf, http://www.clifford.at/yosys/ (2015)

54. FE. Xie, X. Song, H. Chung, N. Ranajoy, Translation-based co-verification, in Formal Methods
and Models for Co-Design (2005)

55. E Xie, G. Yang, X. Song, Component-based hardware/software co-verification for building
trustworthy embedded systems. J. Syst. Softw. 80(5), 643—-654 (2007)

http://www.clifford.at/yosys/

Chapter 14
Test Generation for Detection of Malicious
Parametric Variations

Yuanwen Huang and Prabhat Mishra

14.1 Introduction

Third-party IPs are widely used in SoC design methodology. Some of these IPs may
come from untrusted third-party vendors. It is crucial to ensure that an IP block
is not vulnerable to input conditions that violate its non-functional (parametric)
constraints, such as power, temperature, or performance. Power supply voltages,
increased integration densities, and higher operating frequencies, among other
factors, are producing devices that are more sensitive to power dissipation and
reliability problems.

Figure 14.1 shows a scenario where an adversary can construct a specific test
(input sequence) that can maximize the pear power or the peak temperature. We use
the terms power virus and temperature virus to refer to the tests that can violate
the peak power and peak temperature, respectively. Excessive power dissipation can
lead to overheating, electromigration, and a reduced chip lifetime. Moreover, large
instantaneous power consumption causes voltage drop and ground bounce, resulting
in circuit delays and soft errors. Therefore, accurate power estimation during the
design phase is crucial to avoid a time-consuming re-design process and in the
worst-case an extremely costly tape-out failure. As a result, reliability analysis has
steadily become a critical part of the design process of digital circuits.

Figure 14.2 shows different types of power and temperature viruses for different
IPs. For gate-level or RTL-level IPs, a power virus is a set of test vectors that can
create excessive instantaneous power consumption. For a processor IP, a power virus

Y. Huang (0<) * P. Mishra

Computer and Information Science and Engineering Department, University of Florida,
Gainesville, FL, USA

e-mail: ynanwenhuang @ufl.edu; prabhat@ufl.edu

© Springer International Publishing AG 2017 325
P. Mishra et al. (eds.), Hardware IP Security and Trust,
DOI 10.1007/978-3-319-49025-0_14

mailto:yuanwenhuang@ufl.edu
mailto:prabhat@ufl.edu

326 Y. Huang and P. Mishra
Fig. 14.1 Malicious inputs Tests / Inputs

can cause excessive &)
power/temperature xcessive
dissipation IP Power / Temperature

Dissipation

Fig. 14.2 Different types of "
power viruses Power Vl_rUS Temperature Virus
Generation Generation
Gate-level IPs Processor IPs
r
rograms /
est Vectors Bk st

is a program that can cause peak power during its execution. Similarly, temperature
virus generation can be for gate-level IPs or processor IPs. The reminder of this
chapter describes these four test generation scenarios in detail.

14.2 Power Virus for Gate-Level IPs

The basic idea is to generate a power virus that can maximize the switching activity
in the IP block. In case the peak power violates the threshold, the designers may
need to re-design the IP block to reduce the peak power. In CMOS circuits, power
dissipation depends on the extent of circuit switching activity, which is input-pattern
dependent. The instantaneous power dissipation due to two consecutive input binary
vectors is proportional to:

P o Y T(g) * C(g) (14.1)

all gates

where C(g) denotes the output capacitance of gate g, and T'(g) indicates whether
gate g switches or not when the circuit is fed with the two input vectors. T'(g) is 1
if the gate switches, and it is O if the gate does not switch. P is an estimation of the
total power consumption.

The maximum circuit activity estimation problem aims at finding the input
patterns which cause peak instantaneous dynamic power, a worst-case scenario
where excessive simultaneous gate switching imposes extreme current demands
on the power grid, leading to unwanted voltage drops. One naive approach is to
exhaustively search for two consecutive binary input vectors which can induce the

14 Test Generation for Detection of Malicious Parametric Variations 327

maximum number of switching. Unfortunately, this problem is NP-complete for
combinational as well as sequential circuits. The time complexity for this exhaustive
search is O(4"), where n is the number of primary input pairs of the circuit and each
input signal has four possible pairs of values (i.e., 0-0, 0-1, 1-1, 1-0).

Existing methods for maximum power estimation can be classified into two
broad categories: simulation based and non-simulative approaches. For a circuit
with large number of primary inputs, it is not possible to exhaustively search all
input patterns for maximum power consumption. The only practical way to solve
the problem is to generate a tight lower bound for maximum attainable power.
During circuit simulation, Monte Carlo based technique can be used to estimate
the maximum power [3, 22]. By estimating the mean and deviation of power and
monitor the maximum power during simulation, a lower bound of the peak power
can be measured from a statistical point of view. Non-simulative approaches use
characteristics of the circuit and stochastic properties of input vectors to perform
power estimation without explicit circuit simulation.

In the following subsections, we will explain in detail a few non-simulative meth-
ods for combinational circuits, including a pseudo-Boolean satisfiability approach
and three other approaches based on Automatic Test Pattern Generation (ATPG).
Then we will show how to extend the methods from combinational circuits to
sequential circuits.

14.2.1 Pseudo-Boolean Satisfiability Approach

In CMOS circuits, the capacitance load of a gate output is proportional to the number
of fanout. Hence, the power dissipation of two consecutive input vectors x' and x?
can be rewritten as:

Y Fi (g @ gi(x)) (14.2)

i=1

where g;(*) denotes the Boolean function output of gate g; with the specified input
vector, and F; denotes the fanout factor of gate g;. This equation is an estimation
of the total power consumption of the circuit, and it is the objective function to be
maximized.

The pseudo-Boolean satisfiability approach was proposed in [14]. Figure 14.3b
shows the new circuit N that is constructed for the pseudo-Boolean SAT problem.
The new circuit N consists of two replicas of the original circuit T, namely 7'
and T2. The primary input vectors (x! and x?) are applied to the two replicas (7" and
T?), respectively. For every pair of corresponding gates, for example, g% in 7! and
g7 in T2, a new XOR gate xor is constructed with g} and g7 as inputs. The output
of each XOR gate xor; yields g;(x') @ g;(x?).

328 Y. Huang and P. Mishra

i e & o Fi=?
1|] &1 g2

X2 gl _
= e e o
B o] 52y
% T ||| & gl
X32 g3 T2
N

Fig. 14.3 Pseudo-Boolean optimization (PBO) formulation for combinational circuits [14].
(a) The original circuit. (b) The new circuit

The pseudo-Boolean SAT problem can be formed to maximize P as follows:

P = ZFi - XOr;
i=1
subject to ¥ = CNF(N) (14.3)

The objective function P is the total number of switches in the original circuit.
CNFE(N) is the Conjunctive Normal Form of the new circuit N, which is the
constraints that the pseudo-Boolean problem needs to satisfy.

The problem in Eq.(14.3) can be solved using pseudo-Boolean optimization
(PBO) solvers. However, as a formal method, this approach is not scalable due to
the complexity of pseudo-Boolean SAT problem for large circuits.

14.2.2 Largest Fanout First Approach

Instead of directly searching for input vector pairs (x!,x?) to maximize P, the
Largest Fanout First approach [22] assigns transitions to the internal gates in a
greedy way as shown in Fig. 14.4. The gates are sorted by the fanout number in
decreasing order. In every iteration, a gate g; which is not tried and has the largest
fanout is selected to assign a transition: g;(x') @ gi(x?) = 1. The assignment of gate
gi is justified by two processes: backtracking (backward to inputs) and implication
(forward to outputs) in the circuit. If the justification of the transition assignment
fails, i.e., conflicts happen during justification, the node values of the circuit will be

14 Test Generation for Detection of Malicious Parametric Variations 329

l success
Untried Select Largest .| Transition
Gates Fanout Gate Assignment
fail
Circuit
Recovery

Fig. 14.4 Largest fanout first approach [22]

recovered, which means the newly implied values will be reset to previous values.
The algorithm tries gates one by one to assign transitions until all gates have been
processed. Interested readers can refer to [22] for details of the justification process.

14.2.3 Cost-Benefit Analysis Approach

The Largest Fanout First (LFF) approach [22] is a greedy algorithm that assigns
transitions to high-fanout gates first. However, LFF neglects an important fact that
when a specific gate (node) is marked for switching, it does create certain number
of switching events but it may restrict some other switching in the future. To address
the flaw in LFF , the cost-benefit approach [7] suggests that every assignment should
have a cost-benefit analysis. After applying a certain assignment to a gate, there
might be changes in future switching possibility for all other untried gates. The cost-
benefit analysis on all possible assignments selects the most favorable assignment,
which facilitates the overall optimization process to enable more efficient power
virus generation. The switching probability of a gate and the cost-benefit function
for an assignment are defined as follows:

number of fanin combinations that make g; switch

SP(g;) =
(&) total number of available fanin combinations

CB(a)= Y ASP(g)*F;

untried gates

(14.4)

where a is the assignment made at the current iteration and F; is the fanout number
of gate g;. SP(g;) is the switching probability of gate g;, which is the ratio of
the number of fanin combinations that can make g; switch to the total number of
available fanin combinations. ASP(g;) is the difference in switching probability
after and before the assignment. If ASP(g;) is positive, this assignment increases
the switching probability of gate g;. In this case, ASP(g;) * F; is considered as the
benefit because of this assignment; otherwise, it is considered as the cost. CB(a) is
the sum of benefit/cost of all untried gates. The assignment with the largest CB(a)
is the most beneficial one, and it is most favorable for untried gates to switching in
the future.

330 Y. Huang and P. Mishra

Untried _|All Candidate| | Cost-Benefit
Gates "] Assignments “| Evaluation

A Y

Select Most
Beneficial Gate

Circuit s Transition |

Values Update Assignment

Fig. 14.5 Cost-benefit analysis approach [7]

The workflow for the cost-benefit approach is shown in Fig.14.5. At the
beginning of each iteration, the cost-benefit analysis is done for all possible
assignments of all untried gates. The cost-benefit analysis also involves justification
of the assignment throughout the circuit. Only feasible assignments are evaluated
for cost-benefit values. The gate with the most beneficial assignment is selected, and
the assignment is applied to the circuit to update values in the circuit. The algorithm
stops when all gates have been tried. Interested readers can refer to [7] for details.

14.2.4 Power Virus for Sequential Circuits

So far, we have described how to construct power virus for combinational circuits.
The estimation of power consumption for sequential circuits [9, 10, 16, 17] is a
natural extension of the above approaches. The dynamic power of the combinational
portion in a sequential circuit is still the same as shown in Eq. (14.1). The problem of
single-cycle peak power in a sequential circuit is very similar to that of instantaneous
power in combinational circuit. The only difference is that sequential circuits have
state elements (flip-flops or storage elements). Let S; denote the state of flip-flops at
the beginning of the i-th clock cycle. Let I; denote the primary input vector for the
i-th clock cycle. The sequence (Sy, 11,52, I, ..., I, Sy+1) represents the change of
states of the circuit with a set of input vectors.

The approaches discussed above for power virus generation for combinational
circuits can be extended to sequential circuits for single-cycle peak power gen-
eration. The outputs of one clock cycle depend on both the input vector and the
state of flip-flops from previous cycle. To apply the above approaches, we need to
initialize the state of flip-flops to a known state. If the circuit is full-scan design, the
state of the flip-flops can be initialized to any arbitrary value. For circuits without a
full scan chain inserted, the initialization can be done by warming up the circuit as
discussed in [10, 17]. The initial state of flip-flops are assumed to be undefined and
input vectors are generated to feed the circuit until all the flip-flops hold a definite
value. In the case that the initial state of a circuit is not fully controllable, the above
procedure cannot initialize some of the flip-flops. As stated in [10], random values

14 Test Generation for Detection of Malicious Parametric Variations 331

can be speculated to these flip-flops. Once the state of the circuit is defined, we can
apply the approaches for power virus generation for combination circuits, which is
to find a pair of input vectors for maximum power consumption. In Sect. 14.4, we
will discuss more about peak k-cycle power and peak sustainable power.

14.3 Power Virus for Processor IPs

A power virus in an architecture-level IP, or a processor, is a computer program
that can execute specific machine code to have excessive CPU power consumption.
Since the cooling system of a computer is designed with the budget of thermal
design power, rather than the maximum power, a power virus could cause the system
to overheat. If the power management logic cannot stop the processor in time, the
power virus may permanently damage the system. In order to design a suitable
power budget and various power management features, it is crucial to understand
the power characteristics of the system and get accurate estimation of the attainable
worst-case power dissipation. It is important to note that power virus for processor
is a special case of power virus discussed above.

14.3.1 Stress Benchmarks

Power virus programs, or stress benchmarks, are often used for thermal testing
of computer components during the design phase. Thermal testing is part of the
stability testing when designing and benchmarking a reliable computer system.
MPrime [15] and CPUburn-in [2] are the most popular benchmarks to stress-test
a CPU.

MPrime [15] is a freeware application that searches for Mersenne prime
numbers. It is called the torture test which has been extremely popular among
PC enthusiasts and overclockers as a stability testing utility. The stress-test feature
can be configured by setting the size for fast Fourier transform during its primality
check. The program can subject the processor and memory to an incredibly intense
workload, and it halts when it encounters even one minor error. The amount of
time that a processor remains successfully stable while running MPrime is used as a
measure of the system’s stability. This feature has made MPrime suitable to test the
stability of processor and memory, as well as the cooling efficiencies.

CPUburn-in [2] is a stability testing tool for overclockers, written by Michal
Mienik. The program heats up any x86 processor to the maximum possible operating
temperature. The program constantly runs FPU intensive functions for a user
specified period of time, and it continuously monitors for errors ensuring that the
CPU does not generate errors under overclocking conditions.

The torture tests such as MPrime [15] and CPUburn-in [2] can put heavy
workload on the processor and push the system towards high power dissipation.

332 Y. Huang and P. Mishra

But there is no guarantee that the worst-case power dissipation can be attained by
these benchmarks. Chip designers have to write hand-crafted power virus programs
for a good estimation of the attainable peak power. However, it is very tedious
and inefficient to manually design effective power virus for a given architecture.
Moreover, power virus designed for one specific architecture usually cannot be
directly used for a different processor IP. An automatic exploration and code
generation methodology is needed to generate power viruses for architecture-level
IPs. The following two subsections will introduce such an automatic approach
which can generate power viruses for any architecture using genetic algorithm.

14.3.2 Power Virus Generation for Single-Core IPs

The goal is to generate a power virus program that can create the maximum
worst-case power consumption. It is important to note that the worst-case power
of a processor is not simply the sum of the maximum power of all components.
It is almost impossible to have all components/resources achieve the maximum
utilization at the same time. Due to the stalls in processor pipelines and contention
of other shared resources, such as cache or memory ports, the peak total power is
significantly smaller than the sum of peak power of all components.

When an instruction goes through different pipeline stages (fetch, decode, exe-
cute, memory, and commit), it will activate certain functional units and components
in the processor. The power consumed by one instruction depends on three factors:
(1) the opcodes and operands of the instruction, (2) the other instructions that
are competing resources with this instruction, (3) the hardware constraints of the
architecture. A power virus consists of a sequence of instructions that would create
maximum power in a given architecture.

It is crucial that if the power virus can evolve and adapt to the hardware
configurations of the processor IP, so as to best utilize all the components at all
stages of the pipeline. Machine learning and genetic algorithms can be used to
drive this process to search for power viruses with maximum power consumption.
Such a learning approach (such as [12] and [5]) is not constrained by the hardware
configurations, thus is applicable to different processor IPs.

The framework for automatic generation of synthetic power virus programs is
shown in Fig. 14.6. The Genetic Algorithm generates the parameter values for the
potential candidates for the power viruses as it searches through the parameter space.
These abstract program parameters are fed to the Code Generator that generates
a synthetic C program containing embedded assembly instructions based on these
specified parameters. The C programs will be compiled into binary programs, which
are candidates for power viruses. The simulator executes each binary program and
gets the estimated maximum power consumption. The power consumption for each
binary program will be the fitness value, which indicates the fitness of the set of
program parameters used to generate this program. The Genetic Algorithm will take
all the fitness values as feedback, tune the parameters to intelligently search for next

14 Test Generation for Detection of Malicious Parametric Variations 333
Synthetic 1: <P11, ..., P1m>
Fitness Genetic Tune S)Irmhehc 2:<P21, ..., P2m>
Values Algorithm /~Parameters :
1 Synthetic n: <Pn1, ..., Pnm>
System
Simulator y
7 Y Code
Generator
Binary Programs Synthetic C-code |

(Power Viruses)

with assembly
instructions

Fig. 14.6 A framework to construct synthetic benchmarks (power virus) using genetic algo-

rithm [5]

Table 14.1 Search space and parameter settings [5]

Category

Control flow predictability

Instruction mix weights

Instruction level parallelism

Data locality

Memory level parallelism

Program parameter

Number of basic blocks

Average block size

Average branch predictability

Integer instructions (ALU, mul, div)

FP instructions (add, mul, div)

Load/store instructions (1d, st)

Register dependency distance distribution

Stride value distribution for load/store

Data footprint

Mean of memory level parallelism

Range
(10-200)
(10-100)
(0.8-1.0)

(04, 04,04
(04, 04,04
(04, 0-4)

(1-200)
(1-6)

generation of parameters which can have even higher power consumption (fitness
value). The process iteratively continues until the genetic algorithm converges to
find the best power virus for a given system configuration. The program parameter
space is presented in Table 14.1 in Sect. 14.3.2.1. The process of Code Generator is
explained in detail in Sect. 14.3.2.2.

14.3.2.1 Exploration Space of Program Characteristics

Given a specific architecture, we would like to adaptively change the parameters of
the power virus program to maximize power consumption. The parameters of the
program include control flow predictability, instruction mix parameters, instruction

334 Y. Huang and P. Mishra

level parallelism, data locality, and memory level parallelism. The exploration space
of all these parameters is shown in Table 14.1.

The control flow predictability of the program is set by three different parameters:
the number of basic blocks, the average block size, and the average branch
predictability. The number of basic blocks and block size defines the instruction
footprint of the program. The branch predictability of a program is important as it
affects the overall throughput of the pipeline. When a misprediction happens, the
pipeline has to be flushed and this would result in reduced activity in the pipeline.
The percentage of correctly predicted branches dictates the activity level of the
branch predictor. The power consumption of a branch predictor is usually around
5 % of the overall processor power.

The instruction mix determines the frequency of each type of instruction in the
program. Let us consider eight types of instructions (three types of integer instruc-
tions, three types for FP instructions and load/store instructions) in Table 14.1. Since
different instructions have various latencies and power consumption, the instruction
mix has a major impact on the overall power consumption. The typical power
consumption of the integer and floating point ALU is around 4-6 % and 6—12 %,
respectively.

The instruction level parallelism is determined by the register dependency
distance distribution. The register distance between instructions can be (1, 2, 4, 8,
14, 16, 20, 32, 48, 64) and the program will search for the best distribution in these
ten bins. This parameter impacts the throughput of the pipeline directly. The overall
throughput of the pipeline is related to the power consumption of the instruction
window, clock, and rename logic. The typical power consumption for the instruction
window and the clock subsystem is around 8 % and 20 %, respectively.

The data level parallelism is determined by data locality and memory level
parallelism. Data locality includes two aspects: the stride value between load/store
instructions, the data footprint (the number of iterations before resetting to the
beginning of the data array). The stride value between the addresses of load/store
instructions can be (0, 4, 8, 12, 16, 32, 64) and the program will search for the best
distribution. Data footprint controls the number of cache lines that will be touched
by load/store instructions. The average number of long-latency outstanding loads
(loads with big strides that will cause miss in the last level cache) represents the
memory level parallelism. Interested readers can refer to [5] for details.

14.3.2.2 Code Generation

The process of code generation is illustrated in Fig. 14.7. First, the number of basic
blocks in the synthetic program is fixed. For each basic block, the instruction type
for every instruction using the instruction mix is selected. The basic blocks are then
bound together using conditional jumps. For each instruction, one needs to find a
producer instruction to assign a register dependency. The destination registers are
assigned by round-robin. The source registers are assigned based on dependency.
Memory access is modelled by having load/store accesses to a set of 1-D arrays

14 Test Generation for Detection of Malicious Parametric Variations 335

Fig. 14.7 Example of code
generation of a synthetic
power virus program [5]

Outer Loop

¥
add, fadd, mul, fmul, Id,t, Br
sub, fsub, div, fdiv, Id, Id, Id, Br :|

(add) fadd, mul, fmul, Id, st, st, Br
div, fdiv, mul, fmul, Id, st, Br
add, fadd, mul, fmul, Id, st, Br
Gub)fsub, div, fdiv, Id, Id, Id, Br
add, fadd, mul, fmul, Id, st, st, Br
div, fdiv, mul, fmul, Id, st, Br

|

sayoueig
[euonIpuoD

K ouepuade(]

in a stride fashion. Load/store instructions are grouped into pools and assigned
to different arrays. The pointer of arrays are reset to the beginning of array when
required data footprint is touched. Interested readers can refer to [5] for details.

14.3.3 Power Virus for Multi-Core IPs

For a multi-core IP, a power virus would be a multi-threaded program that has
maximum power consumption. It is more challenging than single-core IP because of
components like the interconnection network, shard caches, DRAM, and coherence
directory, which also contribute significantly to the power consumption of a multi-
core parallel system. We need to exploit these features of multi-core systems to
the right extent. The parameter exploration space should take these features into
consideration and use genetic algorithm to search for optimal parameters [1, 4, 13].

14.3.3.1 Space Exploration of Program Characteristics

Table 14.2 shows the program parameters for multi-threaded power virus genera-
tion. The first two categories (parallelism and shared data access) are specifically
for multi-thread exploration, and the rest of the parameters are the same as in
Table 14.1. The number of threads controls the amount of thread level parallelism of
the synthetic program. The thread class and process assignment parameter choose
various patterns which decides the assignments of threads to cores that they are

336 Y. Huang and P. Mishra

Table 14.2 Search space and parameter settings for multi-core IP [4]

Category Program parameter Range
Parallelism Number of threads (1-32)
Shared data access Thread class and processor assignment
Percent memory accesses to shared data (10-90)
Shared memory access strides (0-64)
Coupled load-stores (True/false)
Control flow predictability | Number of basic blocks (10-200)
Average block size (10-100)
Average branch predictability (0.8-1.0)
Instruction mix weights Integer instructions (ALU, mul, div) (04, 04, 0-4)
FP instructions (add, mul, div) (04, 04, 0-4)
Load/store instructions (1d, st) (04, 04)
Instruction level parallelism | Register dependency distance distribution
Data locality Stride value distribution for load/store
Data footprint (1-200)
Memory level parallelism Mean of memory level parallelism (1-6)

bound to execute. The percentage of memory accesses to shared data and the shared
memory access strides will influence accesses to shared data. A coupled load-store
is a load with a following store, which mimics a migratory sharing pattern of access.
The coupled load-store parameter can be either set or unset.

14.3.3.2 Multi-Threaded Power Virus Generation

Figure 14.8 shows the flowchart of automatic generation of multi-threaded power
viruses using genetic algorithm. The work flow is very similar to the power virus
generation for single core, except that there are more parameters related to the multi-
thread characteristics. Each set of parameters contain specification for the multi-
thread characteristics as well as for each thread. Interested readers can refer to [4]
for details.

14.4 Temperature Virus

14.4.1 Temperature Virus for Gate-Level IPs

Temperature virus can be built on the idea of power virus, because sustained high
power could produce peak temperature. The sequence (Sy,11,S2, D, ..., 1;, Sut1)
represents the change of states of the circuit with a set of input vectors. Figure 14.9
shows the definitions of peak single-cycle power, peak n-cycle power, and peak

14 Test Generation for Detection of Malicious Parametric Variations 337

-“|Thread 1;: <P11, ..., P1m>
L7 Multithreaded Synthetic 17 Tl"nread 2:<P21, ..., P2m>

Fitness Genetic L L»Multithreaded Synthetic 2
Values Algorithm : "\

[

System
Simulator

o

P — Synthetic C-code
& Y ng \ Compiler with assembly [
(Fower Viruses, instructions

Fig. 14.8 A framework for multi-threaded power virus generation using genetic algorithm [4]

Thread k: <Pk1, ..., Pkm>

-

-

Tune
Parameters

[Multithreaded Synthetic n

(a)
1§ I
Initial State Input Next State Input
Vector Vector
(b)
I; 5 | wss I, |
Initial State
(c)
_[] _[2 see _[n

Fig. 14.9 Definitions of peak power measures. (a) Peak single-cycle power. (b) Peak n-cycle
power (power measured and averaged over n cycles). (¢) Peak sustainable power (power measured
and averaged over n cycles, circuit returns initial state for every n cycles) [8]

sustainable power. For peak single-cycle power, the power virus would be a tuple
(81, 1, 1) that has the maximum power consumption during one clock cycle. For
peak n-cycle power, the power virus would be a sequence (S, 11,1, ..., 1, Li+1)
that has the maximum average power consumption over n clock cycles. For peak
sustainable power, the power virus can make the circuit return to the initial state S;
after n clock cycle. The power virus which can produce the peak sustainable power
is actually a temperature virus, because we can repeatedly apply the input sequence
(I, I, . .., I,) to have the circuit indefinitely remain on high power consumption.

338 Y. Huang and P. Mishra

Fig. 14.10 Lower bound for A
peak power dissipation [8] s <«— Peak Single-cycle Power
=}
©
% : Peak n-cycle Power
2 1
(=] 1
= 1
e 1]
% 1 1 Peak Sustainable Power
o 1 | memmme==
1]
1 1
L L ;
1 n

Vector Sequence Length

The initial state S; is important in determining the peak power/temperature of the
sequential circuit. If the circuit state is fully controllable, the approaches for power
virus generation discussed in Sect. 14.2 can be extended for peak single-cycle power
and peak n-cycle power estimation. Genetic algorithm can also be used to generate
the sequence (Sy, Iy, I, . .., I, I,+1), with the initial state S; chosen from a pool of
reachable and controllable states.

For peak sustainable power (peak temperature), the problem is to derive a long
sequence of vectors that have high power dissipation which can be sustained. Hsiao
et al. [8] have shown a typical trend for peak n-cycle power dissipation and the
process of searching for peak sustainable power. As shown in Fig. 14.10, when
n equals to 1, it is the peak single-cycle power. As n increases, the peak n-cycle
power is expected to decrease if the vector sequence cannot sustain the power
dissipation. The peak power levels off when # is large enough or a loop is found in
the state transitions. There are two approaches to search for power virus with peak
sustainable power. The first one is to start with a peak n-cycle power sequence, and
then search for vectors to close the loop with as few state transitions as possible. But
the initial state might take a lot of cycles to reach. Moreover, the state transitions to
close the loop can act as a cool-down stage, which might reduce the average power
dissipation. The second approach is to start with an initial state which is easy to
reach, and return to the easy state with very few additional transitions. Hsiao et al.
[8] used the second approach and pushed it to an extreme that they start from entirely
don’t care states. It takes one extra cycle to return to the initial state, since don’t care
states is superset of all states. The sequence generated by [8] would be one that has
transitions from any unknown state to another state, which can be repeatedly applied
to the circuit indefinitely.

14.4.2 Temperature Virus for Processor IPs

The approaches discussed in Sect. 14.3 for power virus generation for processor IPs
can be directly applied to temperature virus generation. The genetic algorithm based
approach can search for the synthetic program which has the best fitness with the

14 Test Generation for Detection of Malicious Parametric Variations 339

specified system configurations. We can simply change the fitness function from
peak power to sustainable power or peak temperature. The new fitness function will
direct the genetic algorithm towards the search for temperature viruses.

14.5 Conclusion

In this chapter, we discussed power/temperature viruses that might cause excessive
heating of IPs. At the gate level, we illustrated test generation techniques to generate
automatic power viruses for both combinational and sequential circuits. At the
system level, genetic algorithm can be used to automatically and effectively generate
synthetic assembly programs for a given processor architecture. The test vectors
and synthetic programs of power viruses can be very useful in maximum power
estimation and thermal threshold selection. The power viruses can be used to test
the power/thermal behaviors of a chip and the robustness of the power/thermal
management design. In general, modern processor IPs have very advanced dynamic
power management (DPM) and dynamic thermal management (DTM) features,
such as dynamic voltage/frequency scaling [20, 21] and dynamic reconfiguration
[6, 11, 18, 19, 23-25]. A power virus needs to bypass all those DPM/DTM
techniques to cause real harm to the system.

References

1. R. Bertran, A. Buyuktosunoglu, M.S. Gupta, M. Gonzélez, P. Bose, Systematic energy charac-
terization of cmp/smt processor systems via automated micro-benchmarks, in Proceedings of
the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture, December
(2012), pp. 199-211

2. CPUburn-in. http://cpuburnin.com/

3. N.E. Evmorfopoulos , G.I. Stamoulis, J.N. Avaritsiotis. A Monte Carlo approach for maximum
power estimation based on extreme value theory. IEEE Trans. Comput. Aided Des. 21(4),
415-432 (2002).

4. K. Ganesan, L.K. John, MAximum Multicore POwer (MAMPO): an automatic multithreaded
synthetic power virus generation framework for multicore systems, in Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage ACM Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis,
Article No. 53 (2011)

5. K. Ganesan, J. Jo, W.L. Bircher, D. Kaseridis, Z. Yu, L.K. John, System-level Max Power
(SYMPO) - a systematic approach for escalating system-level power consumption using
synthetic benchmarks. in The 19th International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2010

6. H. Hajimiri, P. Mishra, S. Bhunia, Dynamic cache tuning for efficient memory based computing
in multicore architectures, in International Conference on VLSI Design, 2013

7. H. Hajimiri, K. Rahmani, P. Mishra, Efficient peak power estimation using probabilistic cost-
benefit analysis, in International Conference on VLSI Design, Bengaluru, January 3-7, 2015

8. ML.S. Hsiao, E.M. Rudnick, J.H. Patel, K2: an estimator for peak sustainable power of VLSI
circuits, in IEEE International Symposium on Low Power Electronics and Design, 1997

http://cpuburnin.com/

340 Y. Huang and P. Mishra

9. M.S. Hsiao, E.M. Rudnick, J.H. Patel, Effects of delay models on peak power estimation of
VLSI sequential circuits, in Proceedings of the 1997 IEEE/ACM International Conference on
Computer-aided Design, 1997

10. M.S. Hsiao, E.M. Rudnick, J.H. Patel, Peak power estimation of VLSI circuits: new peak power
measures. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 8(4), 435—439 (2000)

11. Y. Huang, P. Mishra, Reliability and energy-aware cache reconfiguration for embedded
systems, in /[EEE International Symposium on Quality Electronic Design, 2016

12. A.M. Joshi, L. Eeckhout, L.K. John, C. Isen, Automated microprocessor stressmark generation,
in IEEE 14th International Symposium on High Performance Computer Architecture (HPCA)
(2008), pp. 229-239 (2008)

13. Y. Kim, L.K. John, S. Pant, S. Manne, M. Schulte, W.L. Bircher, M.S.S. Govindan, AUDIT:
stress testing the automatic way, in 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO) December (2012), pp. 212-223

14. H. Mangassarian, A. Veneris, F. Najm, Maximum circuit activity estimation using pseudo-
Boolean satisfiability. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31(2), 271-284
(2012)

15. MPrime, wikipedia page. https://en.wikipedia.org/wiki/Prime95

16. K. Najeeb, V.V.R. Konda, S.K.S. Hari, V. Kamakoti, V.M. Vedula, Power virus generation
using behavioral models of circuits, in 25th IEEE VLSI Test Symposium (VTS’07), Berkeley,
CA (2007), pp. 35-42

17. K. Najeeb, K. Gururaj, V. Kamakoti, V. Vedula, Controllability-driven power virus generation
for digital circuits, in IEEE 20th International Conference on VLSI Design (VLSID) (2007),
pp. 407412

18. X. Qin, W. Wang, P. Mishra, TCEC: temperature- and energy-constrained scheduling in real-
time multitasking systems. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. (TCAD) 31(8),
1159-1168 (2012)

19. K. Rahmani, P. Mishra, S. Bhunia, Memory-based computing for performance and energy
improvement in multicore architectures, in ACM Great Lakes Symposium on VLSI (GLSVLSI),
2012

20. W. Wang, P. Mishra, Pre-DVS: preemptive dynamic voltage scaling for real-time systems
with approximation scheme, in ACM/IEEE Design Automation Conference (DAC) (2010),
pp. 705-710

21. W. Wang, P. Mishra, System-wide leakage-aware energy minimization using dynamic voltage
scaling and cache reconfiguration in multitasking systems. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. (TVLSI) 20(5), 902-910 (2012)

22. C.Y. Wang, K. Roy, Maximum power estimation for CMOS circuits using deterministic and
statistical approaches. IEEE Trans. VLSI 6(1), 134-140 (1998)

23. W. Wang, P. Mishra, S. Ranka, Dynamic cache reconfiguration and partitioning for energy
optimization in real-time multi-core systems, in ACM/IEEE Design Automation Conference
(DAC) (2011), pp. 948-953

24. W. Wang, P. Mishra, S. Ranka, Dynamic Reconfiguration in Real-Time Systems - Energy,
Performance, Reliability and Thermal Perspectives (Springer, New York, 2013). ISBN: 978-1-
4614-0277-0

25. W. Wang, P. Mishra, A. Ross, Dynamic cache reconfiguration for soft real-time systems. ACM
Trans. Embed. Comput. Syst. (TECS) 11(2), article 28, 31 pp. (2012)

https://en.wikipedia.org/wiki/Prime95

Part V
Conclusion

Chapter 15
The Future of Trustworthy SoC Design

Prabhat Mishra, Swarup Bhunia, and Mark Tehranipoor

15.1 Summary

This book provided a comprehensive coverage of IP security and trust issues with
contributions from academic researchers, SOC designers as well as SoC verification
experts. The topics covered in this book can be broadly divided into the following
three categories.

15.1.1 Trust Vulnerability Analysis

Chapter 1 highlighted how security of IP can be compromised at various stages in
the overall SoC design-fabrication-deployment cycle affecting various parties. This
book presented five efficient techniques for trust vulnerability analysis.

» Security Rule Check: Chap.2 presented a framework to analyze design vulnera-
bilities at different abstraction levels and assessed its security at design stage.

* Vulnerability Analysis at Gate and Layout Levels: Chap. 3 described vulnerabil-
ity analysis for both gate- and layout-level designs to quantitatively determine
their susceptibility to hardware Trojan insertion.

* Code Coverage Analysis: Chap. 4 presented an interesting case study to identify
suspicious signals using both formal and semi-formal coverage analysis methods.

* Layout Analysis for Probing Attack: Chap.5 surveyed existing techniques in
performing probing attacks, protection against probing attacks, and presented a
layout-driven framework to assess designs for vulnerabilities to probing attacks.

P. Mishra (<) « S. Bhunia * M. Tehranipoor
University of Florida, Gainesville, FL, USA
e-mail: prabhat@ufl.edu; swarup @ece.ufl.edu; tehranipoor @ece.ufl.edu

© Springer International Publishing AG 2017 343
P. Mishra et al. (eds.), Hardware IP Security and Trust,
DOI 10.1007/978-3-319-49025-0_15

mailto:prabhat@ufl.edu
mailto:swarup@ece.ufl.edu
mailto:tehranipoor@ece.ufl.edu

344 P. Mishra et al.

Side Channel Vulnerability: Chap.6 covered side channel testing using three
metrics as well as practical case studies on real unprotected and protected targets.

15.1.2 Effective Countermeasures

The next two chapters provided effective countermeasures against various attacks.
The goal of these approaches is to make it hard for the attacker to introduce
vulnerability.

Camouflaging, Encryption, and Obfuscation: Chap.7 reviewed three major
security hardening approaches—camouflaging, logic encryption/locking, and
design obfuscation—that are applied to ICs at layout, gate, and register transfer
levels.

Mutating Runtime Architecture: Chap. 8 presented a mutating runtime archi-
tecture to support system designers in implementing cryptographic devices
hardened against side channel attacks.

15.1.3 Security and Trust Validation

The final six chapters presented efficient techniques for validation of IP security and
trust vulnerabilities.

Validation of IP Trust: Chap. 9 surveyed the existing security validation methods
for soft IP cores using a combination of simulation-based validation and formal
methods.

Proof-Carrying Hardware: Chap. 10 utilized model checking and theorem prov-
ing using proof-carrying hardware for trust evaluation.

Trust Verification: Chap. 11 described three methods to detect potential hardware
Trojans by utilizing Trojan characteristics. It also outlined how a stealthy Trojan
can evade these methods.

Unspecified IP Functionality: Chap.12 outlined how to exploit unspecified
functionality for information leakage and presented a framework for preventing
such attacks.

Security Property Validation: Chap. 13 proposed mechanism for specifying
security properties and verifying these properties across firmware and hardware
using instruction-level abstraction.

Malicious Parametric Variations: Chap. 14 described how to perform test gener-
ation for detecting malicious variations in parametric constraints.

These chapters provided a comprehensive coverage of hardware IP trust analysis

as well as effective trust validation techniques to enable secure and trustworthy SoC
design.

15 The Future of Trustworthy SoC Design 345
15.2 Future Directions

Although significant research has been carried out over the past decade for securing
IPs, there are still many challenges ahead, especially as the IC and IP supply
continuously change. For example, the IP vendors are shifting towards using encryp-
tion to protecting their IPs from piracy. This would make logic simulation, trust
verification, and integration with other IPs in an SoC more difficult. Furthermore,
addressing one security issue may create unwanted new vulnerabilities to some
other security concerns. We briefly outline some of the challenges ahead in verifying
security and trustworthiness of future IPs.

15.2.1 Security and Trust Verification for Encrypted IPs

Recent trends in IP piracy have raised serious concerns to IP developers. IP piracy
can take several forms, for example, an untrusted SoC designer may legally purchase
a third party IP (3PIP) core from an IP vendor and then make illegitimate copies of
the original IP and sell them under their own name [4]. The SoC designer may also
add some extra features to the original IPs to make them look like a new one and then
sell them to another SoC designer for making easy profit. To prevent IP piracy, the IP
developers are increasingly adopting the IEEE P1735 encryption scheme developed
by Design Automation Standards Committee of the IEEE [7]. Most EDA tools also
support IEEE P1735 standard which utilizes two levels of encryption to produce an
encrypted IP core [8]. IEEE P1735 standard ensures that the IP in plaintext format
is never exposed to the SoC integrator while allowing the EDA tools to perform
functional simulation, synthesis, etc., of the encrypted IP core.

Unfortunately, IEEE P1735 encryption scheme introduces new challenges and
complications for IP trust verification and security rule check by restricting the
SoC designer to analyze the RTL code. This would prohibit the SoC integrator
from applying some of the IP trust verification techniques proposed in this book
as well as in the literature. For example, IP trust verification techniques proposed
in [1-3, 5, 6, 12] cannot be applied on encrypted IPs as they require analysis of
RTL code which needs to be in plaintext format. The academic research community
should focus their effort to ensure that IP trust verification is possible even when
the IP is given in an encrypted format. One possible solution is to investigate IP
trust verification techniques which work on the gate-level netlist. The reason is that
most IP providers allow the visibility of the gate-level netlist in unencrypted format
according to IEEE P1735 standard.

346 P. Mishra et al.
15.2.2 Security and Trust Verification for Obfuscated IPs

Logic obfuscation approach does not address all the issues associated with IP
piracy. The untrusted SoC integrator can add some additional functionality to the
obfuscated IP and sell it to other SoC integrators as a firm IP. For example, an
untrusted SoC integrator may purchase an encryption engine from an IP provider
in encrypted format. Then, the SoC integrator can include hashing functionality
with the encryption engine and synthesize them to gate-level netlist (unencrypted
format). The untrusted SoC integrator can then illegitimately sell it as a firm
IP which can perform encryption and hashing operation to other SoC designers
under its own name. To address this issue, academic researchers have proposed to
obfuscate and functionally lock the IP [10, 11]. This approach works by placing
locking gates (XOR/ XNOR) into the design. The IP produces functionally correct
output when it receives the correct chip unlock key. The obfuscation approaches
have gained interest in the industry and are expected to be included in design flows
in the near future.

The IP obfuscation technique would help address the problem of IP piracy.
However, from SoC designer’s point of view it would make the IP trust verification
extremely challenging. Similarly, logic obfuscation makes it difficult to perform
security rule check. To date, no IP trust verification approach has been proposed
in the literature to take IP obfuscation into account. Most existing techniques
like FANCI [16], rare net identification [13], security rule check [18] for IP trust
verification would not work on netlist which is functionally locked. The academic
research community should direct their attention and effort to developing new and
innovative IP trust verification techniques that can be applied to obfuscated and
functionally locked IPs.

15.2.3 Security and Trust Verification for Hard IPs

Another growing concern in the industry is verifying the trust of hard IPs. Most
foundries have begun to offer more and more hard IPs to SoC designers. These hard
IPs have comparatively lower cost, have a high yield since they have been produced
many times before and been tested for high yield, and offer minimal time to market
delay. However, these IPs are incorporated in the design at the very last stages of
SoC design flow (physical layout). Any analysis done on the layout level would be
very complex and time consuming. One possible solution to this problem would be
to take inspiration from postsilicon debugging techniques and develop postsilicon
security and trust verification techniques.

15 The Future of Trustworthy SoC Design 347

15.2.4 Security and Trust Verification During
SoC Design Flow

It is of utmost importance to identify IP security and trust issues at all levels of
abstraction in the SoC design flow and during transition from one stage to the next
stage of the design process. In most literature, the 3PIP vendor and the foundry
are considered as untrusted [17]. However, there are other entities in the SoC
design flow that can maliciously incorporate hardware Trojans in the design or
create security vulnerability. For example, many SoC designers outsource the design
for test (DFT) insertion task to third party entities. These entities can incorporate
malicious circuitry in the design before returning it to the SoC designer. Therefore,
it is important for the SoC developers to not only verify trustworthiness of third
party IP but also to verify trustworthiness of their design at subsequent levels of
abstraction, namely synthesis, DFT insertion, physical layout, etc. Researchers can
draw inspiration from different fields in order to address this problem. For example,
techniques proposed for IP piracy prevention can be adopted in order to establish
trust in the design. The SoC designers can obfuscate and functionally lock their
design and restrict other entities in the SoC design flow from making any malicious
modifications.

15.2.5 Unintentional Vulnerabilities

Many security vulnerabilities in SoCs could be created unintentionally by CAD
tools and by designers’ mistakes. CAD tools are extensively used for synthesis,
DFT insertion, automatic place and route, etc. However, today’s CAD tools are not
equipped with understanding security vulnerabilities in SoCs. Therefore, the tools
can introduce additional vulnerabilities in the design. For example, during synthesis
process, the tool tries to optimize a design for power, area, and/or performance
of the design. If there exists any don’t-care conditions in the RTL specification,
the synthesis tool introduces deterministic values for the don’t-care conditions for
design optimization. This could facilitate attacks such as fault injection or side
channel-based attacks [18]. Another example worthy of mentioning here would
be the vulnerabilities introduced by the DFT tool. The inserted DFT can create
numerous vulnerabilities by allowing attackers to control or observe internal assets
of an SoC. Vulnerabilities in an SoC design can also be introduced by designer’s
mistakes.

Traditionally, the design objectives are driven by cost, performance, and time-to-
market constraints, while security is generally neglected during the design phase. In
[9], authors have shown that if a finite state machine is designed without security
into consideration, it can introduce vulnerabilities by facilitating fault injection
attack. It is of paramount importance to identify these security vulnerabilities during
hardware design and validation process. However, given the growing complexity

348 P. Mishra et al.

of modern SoC designs, it is extremely difficult, if not impossible, to manually
identify these vulnerabilities. This calls for the development of CAD tools which
can automatically evaluate the security of a design in reasonable time without
significantly impacting time-to-market. Also to avoid some common security
problems in early design stages, security-aware design practices must be developed
and used as guidelines for design engineers.

15.2.6 Multi-Security Objectives Design

The evaluation time for IP security and trust verification and finding vulnerabilities
in an IP need to be scalable with the design size in order to have low impact on
time-to-market. It is therefore important to identify which security analysis methods
and countermeasures need to be applied given the application of the target SoC.
For example, for a crypto IP, side channel vulnerability analysis and mitigation
are recommended. However, for non-crypto IP the side channel leakage may not
pose any threat and therefore, side channel vulnerability analysis and mitigation are
not required for such IPs. However, if an SoC designer blindly starts applying side
channel leakage countermeasures for all IPs, it would not only cause unnecessary
area overhead but also could have negative impact on Trojan detection approaches
which rely on side channel evaluation. In summary, addressing one security issue
may negatively impact another security feature, hence during design process multi-
security objectives must be considered. To perform this analysis, a designer needs
to select the security vulnerabilities he/she may be concerned about for the target
SoC, and the tool should perform an optimization process to ensure highest security
for all vulnerabilities.

15.2.7 Metrics and Benchmarks

Finally, a major limitation for the performance evaluation of any IP security and trust
verification technique is the inadequate number and quality of benchmark circuits.
Benchmarks and metrics are necessary components for establishing baseline for
comparison between different techniques developed by the research community.
The Trojan benchmark circuits developed in [14, 15] are not adequate to help
address some of the challenges raised by the emerging IP trust issues, such as
encrypted IPs. There is currently no encrypted IP with Trojan in [15]. Therefore,
it is important for the research community to design new and innovative metrics and
Trojan benchmark circuits that incorporate these features.

15

The Future of Trustworthy SoC Design 349

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

F. Farahmandi, Y. Huang, P. Mishra, Trojan localization using symbolic algebra, in Asia and
South Pacific Design Automation Conference (ASPDAC), 2017

X. Guo, R. Dutta, Y. Jin, F. Farahmandi, P. Mishra, Pre-silicon security verification and
validation: a formal perspective, in ACM/IEEE Design Automation Conference (DAC), 2015
X. Guo, R. Dutta, P. Mishra, Y. Jin, Scalable SoC trust verification using integrated theorem
proving and model checking, in IEEE International Symposium on Hardware Oriented
Security and Trust (HOST) (2016), pp. 124-129

. U. Guin, Q. Shi, D. Forte, M.M. Tehranipoor, FORTIS: a comprehensive solution for

establishing forward trust for protecting IPs and ICs. ACM Trans. Des. Autom. Electron. Syst.
(TODAES) 21(4), 63 (2016)

. Y. Huang, S. Bhunia, P. Mishra, MERS: statistical test generation for side-channel analysis

based Trojan detection, in ACM Conference on Computer and Communications Security
(CCS), 2016

. M. Hicks, M. Finnicum, S.T. King, M.M.K. Martin, J.M. Smith, Overcoming an untrusted

computing base: detecting and removing malicious hardware automatically, in Proceedings of
IEEE Symposium on Security and Privacy (2010), pp. 159-172

. IEEE Approved Draft Recommended Practice for Encryption and Management of Electronic

Design Intellectual Property (IP) (2014)

. Microsemi 2014, Libero SoC Secure IP Flow User Guide for IP Vendors and Libero

SoC Users (2014). http://www.microsemi.com/document-portal/docview/133573-libero-soc-
secure-ip-flow-user-guide

. A. Nahiyan, K. Xiao, K. Yang, Y. Jin, D. Forte, M. Tehranipoor, AVFSM: a framework for

identifying and mitigating vulnerabilities in FSMs, in Design Automation Conference, 2016
M.T. Rahman, D. Forte, Q. Shi, G.K. Contreras, M. Tehranipoor, CSST: preventing distribution
of unlicensed and rejected ICs by untrusted foundry and assembly, in IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) (2014),
pp. 46-51

J.A. Roy, F. Koushanfar, I.L. Markov, EPIC: ending piracy of integrated circuits, in Proceed-
ings of the on Design, Automation and Test in Europe (2008), pp. 1069-1074

H. Salmani, M. Tehranipoor, Analyzing circuit vulnerability to hardware Trojan insertion at
the behavioral level, in IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT) (2013), pp. 190-195

H. Salmani, R. Karri, M. Tehranipoor, On design vulnerability analysis and trust benchmarks
development, in Proceedings of IEEE 3l1st International Conference on Computer Design
(ICCD), pp. 471-474 (2013)

H. Salmani, M. Tehranipoor, R. Karri, On design vulnerability analysis and trust benchmark
development, in IEEE International Conference on Computer Design (ICCD), 2013
Trust-HUB, http://trust-hub.org/resources/benchmarks

A. Waksman, M. Suozzo, S. Sethumadhavan, FANCI: identification of stealthy malicious logic
using Boolean functional analysis, in Proceedings of the ACM Conference on Computer and
Communications Security (2013), pp. 697-708

K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, M. Tehranipoor, Hardware Trojans: lessons
learned after one decade of research. ACM Trans. Des. Autom. Electron. Syst. 22(1), article 6
(2016)

K. Xiao, A. Nahiyan, M. Tehranipoor, Security rule checking in IC design. Computer 49(8),
54-61 (2016)

http://www.microsemi.com/document-portal/doc view/133573-libero-soc-secure-ip-flow-user-guide
http://www.microsemi.com/document-portal/doc view/133573-libero-soc-secure-ip-flow-user-guide
http://trust-hub.org/resources/benchmarks

Index

A

Active shield, 75, 80-85, 88-90, 95, 96

Advanced Encryption Standard (AES), 25-27,
32,78, 101, 108, 111-115, 122, 123,
141, 166, 168, 170, 173-182, 304-306,
308

Aspect ratio, 77, 78, 89-91

Attack models, 19-23, 125, 140

Automatic code generation, 332

Automatic test generation

B

Bug-based hardware Trojans, 190, 228-229,
230

Bypass attack, 82, 83, 90-91

C

Camouflaging, 12, 135-160, 344

Cell Analysis, 40, 41

Code coverage, 21-70, 142, 146, 147,
149-150, 152, 188, 190, 209, 231, 239,
343

Countermeasure generation

Cryptography, 192, 202

D

Delay analysis, 38, 40, 46

Design obfuscation, 12, 136, 145, 152, 153,
344

© Springer International Publishing AG 2017

Design security, 18, 23-33, 35, 220
Don’t cares, 26, 30, 190, 198, 258-268, 283,
338

E
Equivalence checking, 6, 11, 60, 188, 191-201,
261, 263, 264, 267, 268, 283

F

FIB. See Focused Ion Beam (FIB)

Field Programmable Gate Array (FPGA), 5, 7,
114, 122, 123, 152, 165, 166, 168-171,
174, 176, 178, 182, 227, 265, 282

Focused Ion Beam (FIB), 77-79, 81, 82,
84-86, 88-91, 95

Formal verification, 11, 54, 56, 57, 59-62, 70,
190, 208-211, 218, 220-222, 230, 275,
289

FPGA. See Field Programmable Gate Array
(FPGA)

H

Hard to detect, 31, 32, 38, 39, 57, 58,
187, 189

Hardened embedded systems, 182

Hardware attacks, 160

Hardware intellectual property, 3, 4, 6, 8, 12,
57,74, 135, 188, 210, 216, 222, 344

Hardware security, 18, 34, 73, 160

351

P. Mishra et al. (eds.), Hardware IP Security and Trust,

DOI 10.1007/978-3-319-49025-0

352

Hardware Trojan (HT), 4, 7, 12, 18, 22, 28-30,
37, 38, 40, 41, 43, 46, 50, 54-59, 70,
135, 138, 139, 157, 160, 187-190, 192,
197, 199, 207-209, 215-217, 227-252,
256-258, 263, 265-266, 270, 274, 283,
343
detection, 37, 46, 70, 217, 230-232, 239,
246
localization, 191, 199-201
Hardware/firmware co-verification, 289, 291
HT. See Hardware Trojan (HT)

1
Instruction-level abstraction (ILA), 287-320,
344
Intellectual property (IP)
piracy, 55, 135-137, 142, 152, 160,
345-347
protection, system-on-chip, 142, 346
trust, 3-13, 53-70, 187-203, 207-222,
255-283, 309, 343, 348
IP. See Intellectual property (IP)

L

Leakage detection, 100, 101, 108-114
Logic locking, reverse engineering, 137
Logic testing, 56, 58, 188-191

M

Malicious Parametric Variations, 325-339

Metering, logic encryption

Metrics and rules, 29-33

Milling angle, 90-91

Milling exclusion area, 92, 93

Model checking, 12, 57, 60, 188, 201-203,
209-211, 222, 265, 291, 304, 306-308,
318, 319, 344

Mutation testing, 258, 268-270, 283

N

Net analysis, 4245

Network-on-Chip (NoC), 154, 156, 158

NICV. See Normalized inter class variance
(NICV)

Normalized inter class variance (NICV), 101,
108-114, 116-118, 122, 129

Index

(o)
Obfuscation, 12, 76, 135-160, 344, 346
On-chip bus, 258, 275-283

P

Parasite-based hardware Trojan, 190, 228-230

PCH. See Proof-carrying hardware (PCH)

Physical cryptanalysis, 165

Power analysis, 9, 17, 38, 40, 122, 165, 166,
174,177, 181, 182

Power virus, 11, 325-339

Probing attack, 4, 12, 29-31, 73-96, 122, 343

Proof-carrying hardware (PCH), 207-209,
211-222, 344

R
Routing Analysis, 40, 41

S
SCA. See Side-channel analysis (SCA)
Secure hardware design methodology, 207
Security
rule checking, 17-35, 343, 345, 346
verification, 192, 288-293, 308-318, 320
vulnerability, 3, 18, 19, 23, 24, 26, 27, 256,
290, 347, 348
Side-channel analysis (SCA), 106, 108, 114,
118, 119, 121, 124, 127-129,
181-182
Signal to Noise Ratio (SNR), 101, 108-114,
116, 178, 181
SNR. See Signal to Noise Ratio (SNR)
SoC. See System-on-Chip (SoC)
Structural Analysis, 11-12, 39, 40, 56-58
Symbolic Simulation, 318
Synthesis, 4, 5, 26, 29, 31, 34, 55, 63, 67-69,
136, 167, 235, 236, 259-261, 291-293,
297-301, 303-307, 319, 345, 347
System-on-Chip (SoC), 3-13, 19-22, 26, 31,
33, 40, 53-55, 57, 59-61, 99, 100, 136,
142, 152, 154, 188, 207, 213, 218-222,
258, 275, 276, 287-320, 325, 343-348
IP verification, 207

T
Temperature virus, 11, 325, 336-339

Index

Test vector leakage assessment (TVLA), 101,
114-129

3D integration, 152, 153, 160

Trust verification, 10, 11, 53-70, 227-252,
344-348

TVLA. See Test vector leakage assessment
(TVLA)

U
Unspecified functionality, 13, 255-258,
268-274, 275, 283

353

Untrusted intellectual property, 4, 912, 188,
309, 310, 317

\'%
Verification, 4-6, 9-11, 32, 53-70, 136,
189-192, 194-196, 197, 207-211, 212,
214, 218-222, 227-252, 255-283,
288-293, 294, 296, 301-303, 306-320,
343-348
Vulnerability
analysis flow, 38-45, 50
metric, 30

	Acknowledgements
	Contents
	Abbreviations (Acronyms)
	Part I Introduction
	1 Security and Trust Vulnerabilities in Third-Party IPs
	1.1 Introduction
	1.2 Design and Validation of SoCs
	1.3 Security and Trust Vulnerabilities in Third-Party IPs
	1.4 Trustworthy SoC Design Using Untrusted IPs
	1.5 Book Organization
	References

	Part II Trust Analysis
	2 Security Rule Check
	2.1 Introduction
	2.2 Security Assets and Attack Models
	2.2.1 Asset
	2.2.2 Potential Access to Assets
	2.2.3 Potential Adversary for Intentional Attacks

	2.3 DSeRC: Design Security Rule Check
	2.3.1 Vulnerabilities
	2.3.1.1 Sources of Vulnerabilities
	2.3.1.2 Vulnerabilities at Different Abstraction Levels

	2.3.2 Metrics and Rules
	2.3.3 Workflow of DSeRC Framework

	2.4 Development of DSeRC Framework
	2.4.1 Vulnerabilities, Metrics, and Rules
	2.4.2 Tool Development
	2.4.3 Development of Design Guidelines for Security
	2.4.4 Development of Countermeasure Techniques

	2.5 Conclusion
	References

	3 Digital Circuit Vulnerabilities to Hardware Trojans
	3.1 Introduction
	3.2 The Gate-Level Design Vulnerability Analysis Flow
	3.3 The Layout-Level Design Vulnerability Analysis Flow
	3.3.1 Cell and Routing Analyses
	3.3.2 Net Analysis

	3.4 Trojan Analyses
	3.5 Conclusions
	References

	4 Code Coverage Analysis for IP Trust Verification
	4.1 Introduction
	4.2 SoC Design Flow
	4.3 Hardware Trojan Structure
	4.4 Related Work
	4.5 A Case Study for IP Trust Verification
	4.5.1 Formal Verification and Coverage Analysis
	4.5.2 Techniques for Suspicious Signals Reduction
	4.5.2.1 Phase 1: Test Bench Generation and Suspicious Signal Identification
	4.5.2.2 Phase 2: Suspicious Signals Analysis

	4.6 Simulation Results
	4.6.1 Benchmark Setup
	4.6.2 Impact of Test Bench on Coverage Analysis
	4.6.3 Reducing the Suspicious Signals
	4.6.4 Trojan Coverage Analysis

	4.7 Conclusion
	References

	5 Analyzing Circuit Layout to Probing Attack
	5.1 Introduction
	5.2 Microprobing Attack Techniques
	5.2.1 Essential Steps in a Probing Attack
	5.2.2 Microprobing Through Milling
	5.2.3 Back-Side Techniques
	5.2.4 Other Related Techniques

	5.3 Protection Against Probing Attacks
	5.3.1 Active Shields
	5.3.2 Techniques to Attack and Secure Active Shields
	5.3.2.1 Routing Overhead
	5.3.2.2 Stuck on Top Metal Layer

	5.3.3 Other Antiprobing Designs
	5.3.4 Summary on Antiprobing Protections

	5.4 Layout-Based Evaluation Framework
	5.4.1 Motivation
	5.4.2 Assessment Rules
	5.4.3 State-of-the-Art Active Shield Model
	5.4.4 Impact of Milling Angle upon Effect of Bypass Attack
	5.4.5 Algorithm to Find Exposed Area
	5.4.6 Discussions on Applications of Exposed Area Algorithm

	5.5 Conclusion
	References

	6 Testing of Side-Channel Leakage of Cryptographic Intellectual Properties: Metrics and Evaluations
	6.1 Introduction
	6.2 Preliminaries on Statistical Testing and Testing of Hypothesis
	6.2.1 Sampling and Estimation
	6.2.2 Some Statistical Distributions
	6.2.3 Estimation and Test of Significance
	6.2.4 Test of Significance: Statistical Hypothesis Testing

	6.3 Formalizing SCA and the Success Rate of Side-Channel Adversary: Guessing Entropy
	6.3.1 Success Rate of a Side-Channel Adversary
	6.3.2 Guessing Entropy of an Adversary

	6.4 Leakage Detection in SCA Traces: NICV and SNR
	6.4.1 Normalized Inter-Class Variance
	6.4.2 NICV and SNR
	6.4.3 Related Work in Leakage Detection
	6.4.4 Case Study: Application on AES

	6.5 Test Vector Leakage Assessment Methodology
	6.6 Equivalence of NICV and TVLA
	6.7 TVLA on Higher Order Side-Channel Attacks
	6.7.1 Estimation of Mean
	6.7.2 Estimation of Variance

	6.8 Case Study: Private Circuit
	6.8.1 Experimental Analysis and Result
	6.8.1.1 Optimized SIMON
	6.8.1.2 2-Input LUT Based SIMON
	6.8.1.3 Synchronized 2-Input LUT Based SIMON

	6.9 Conclusion
	References

	Part III Effective Countermeasures
	7 Hardware Hardening Approaches Using Camouflaging, Encryption, and Obfuscation
	7.1 Introduction
	7.2 Terminology
	7.3 State of the Art
	7.3.1 Camouflaging
	7.3.2 Logic Encryption
	7.3.2.1 Attacks Against Logic Encryption
	7.3.2.2 Logic Encryption Algorithms

	7.3.3 State Obfuscation

	7.4 Dynamic State-Deflection-Based Obfuscation Method
	7.4.1 Overview of DSD Obfuscation
	7.4.2 Black Hole State Creation for Gate-level Obfuscation
	7.4.3 Dynamic Transition in Black Hole Cluster
	7.4.4 Experimental Results
	7.4.4.1 Experimental Setup
	7.4.4.2 Hardening Capability Against Circuit Switching Activity Analysis Attack
	7.4.4.3 Number of Unique State Register Patterns in Obfuscation Mode
	7.4.4.4 Area and Power Overhead

	7.4.5 Discussion

	7.5 Obfuscation for Three-Dimensional ICs
	7.5.1 Leveraging 3D for Security
	7.5.2 Trustworthiness of Vertical Communication
	7.5.3 Proposed Obfuscation Method for 3D ICs
	7.5.3.1 Overview of Proposed 3D Obfuscation Method
	7.5.3.2 Proposed 3D Router Design
	7.5.3.3 Assessment on 3D Obfuscation Method

	7.5.4 Discussion

	7.6 Summary
	References

	8 A Novel Mutating Runtime Architecture for Embedding Multiple Countermeasures Against Side-Channel Attacks
	8.1 Introduction
	8.2 Mutating Runtime Architecture
	8.2.1 Design Properties
	8.2.2 Online Allocation Method
	8.2.3 DynamicBinding Method
	8.2.4 FlexibleScheduling Method

	8.3 Design Flow
	8.4 Case Study: Block Cipher AES 128-Bit
	8.4.1 Partitioning of the AES Modules
	8.4.2 Implementation
	8.4.2.1 Design Requirements
	8.4.2.2 Data Path Architecture
	8.4.2.3 Virtualization Scheme
	8.4.2.4 Merging Round and Routines

	8.4.3 Side-Channel Analysis Results

	8.5 Summary
	References

	Part IV Security and Trust Validation
	9 Validation of IP Security and Trust
	9.1 Introduction
	9.2 Logic Testing for Trojan Detection
	9.2.1 Utilization Rarely Used Components for Trojan Detection
	9.2.2 ATPG-Based Test Generation for Trojan Detection

	9.3 Trojan Detection Using Equivalence Checking
	9.3.1 Gröbner Basis Theory for Equivalence Checking of Arithmetic Circuits
	9.3.2 Automated Debugging of Functional Trojans Using Remainders
	9.3.2.1 Test Generation for Trojan Detection
	9.3.2.2 Trojan Localization

	9.4 Trojan Detection Using Model Checking
	References

	10 IP Trust Validation Using Proof-Carrying Hardware
	10.1 Introduction
	10.2 Overview of Formal Verification Methods for IP Protection
	10.2.1 Threat Model
	10.2.2 Formal Verification Methods
	10.2.2.1 Theorem Prover
	10.2.2.2 Model Checker

	10.3 Proof-Carrying Hardware Framework for IP Protection
	10.3.1 Semantic Translation
	10.3.2 Data Protection Through Information Flow Tracking
	10.3.2.1 Static Information Flow Tracking Scheme
	10.3.2.2 Dynamic Information Assurance Scheme

	10.3.3 Hierarchy Preserving Verification
	10.3.4 Integrating Theorem Prover and Model Checker

	10.4 Conclusion
	References

	11 Hardware Trust Verification
	11.1 Introduction
	11.2 HT Classification
	11.2.1 Bug-Based HT
	11.2.2 Parasite-Based HT

	11.3 Verification Techniques for Hardware Trust
	11.3.1 Functional Verification
	11.3.2 Formal Verification
	11.3.3 Trust Verification
	11.3.3.1 Unused Circuit Identification
	11.3.3.2 VeriTrust
	11.3.3.3 FANCI
	11.3.3.4 Discussion

	11.4 Stealthy HT Designs Defeating Trust Verification
	11.4.1 HTs Evade UCI
	11.4.1.1 Motivational Case

	11.4.2 HT Design Against UCI
	11.4.3 HTs Evade VeriTrust
	11.4.3.1 Motivational Case
	11.4.3.2 HT Design Against VeriTrust

	11.4.4 HTs Evade FANCI
	11.4.4.1 Motivational Case

	11.4.5 HT Design Against FANCI
	11.4.6 Discussion

	References

	12 Verification and Trust for Unspecified IP Functionality
	12.1 Introduction
	12.1.1 Unspecified IP Functionality
	12.1.2 Hardware Trojans

	12.2 Trojans in RTL Don't Cares
	12.2.1 Illustrative Examples
	12.2.2 Automated Identification of Dangerous Don't Cares
	12.2.3 Elliptic Curve Processor Case Study
	12.2.3.1 The Hardware Trojan
	12.2.3.2 Automated X-Analysis

	12.3 Identifying Dangerous Unspecified Functionality
	12.3.1 Background: Mutation Testing and Coverage Discounting
	12.3.2 Identification Procedure
	12.3.3 UART Communication Controller Case Study
	12.3.3.1 The Wishbone Bus Trojan
	12.3.3.2 Interrupt Output Signal Checker Bug

	12.4 Trojans in Partially Specified On-chip Bus Functionality
	12.4.1 Threat Model
	12.4.2 Trojan Communication Channel
	12.4.2.1 Topology Dependent Trojan Channel Properties
	12.4.2.2 Protocol Dependent Trojan Channel Properties

	12.4.3 AXI4-Lite Interconnect Trojan Example
	12.4.3.1 Overhead

	12.5 Conclusion
	References

	13 Verifying Security Properties in Modern SoCs Using Instruction-Level Abstractions
	13.1 Introduction
	13.1.1 Challenges in SoC Security Verification
	13.1.1.1 Need for Hardware/Firmware Co-verification
	13.1.1.2 SoC Verification Through Abstraction
	13.1.1.3 Challenges in Specifying Security Properties

	13.1.2 SoC Security Verification Using Instruction-Level Abstractions
	13.1.2.1 ILA Synthesis and Verification
	13.1.2.2 Security Verification Using the ILA
	13.1.2.3 Summarizing ILA-Based Verification

	13.2 Instruction-Level Abstractions
	13.2.1 ILA Overview
	13.2.2 ILA Definition
	13.2.2.1 Notation
	13.2.2.2 Architectural State and Inputs
	13.2.2.3 Fetching an Instruction
	13.2.2.4 Decoding an Instruction
	13.2.2.5 Executing an Instruction
	13.2.2.6 Syntax
	13.2.2.7 Putting It All Together

	13.2.3 ILA Synthesis
	13.2.3.1 Notation and Problem Statement
	13.2.3.2 Template Language
	13.2.3.3 An Illustrative Example
	13.2.3.4 Synthesis Algorithm

	13.2.4 ILA Verification
	13.2.4.1 Verifying Abstraction Correctness
	13.2.4.2 Discussion of Verification Issues
	13.2.4.3 Verification Correctness

	13.2.5 Practical Case Study
	13.2.5.1 Methodology
	13.2.5.2 Example SoC Structure
	13.2.5.3 Summary of Synthesis Results
	13.2.5.4 Typical ILAs
	13.2.5.5 Summary of Verification Results

	13.3 Security Verification Using ILAs
	13.3.1 System and Threat Model Overview
	13.3.1.1 System-On-Chip Model
	13.3.1.2 Threat Model
	13.3.1.3 Security Objectives
	13.3.1.4 Modelling the Attacker

	13.3.2 Specifying Information Flow Properties
	13.3.3 Firmware Execution Model
	13.3.3.1 Execution State
	13.3.3.2 A Review of Symbolic Execution

	13.3.4 Verifying Information Flow Properties
	13.3.5 Evaluation
	13.3.5.1 Methodology
	13.3.5.2 Security Objectives
	13.3.5.3 Summary of Verification Results

	13.4 Discussion and Related Work
	13.4.1 SoC Security Verification
	13.4.2 Related Work
	13.4.2.1 Synthesizing Abstractions
	13.4.2.2 SoC Verification
	13.4.2.3 Symbolic Execution and Taint Analysis

	13.5 Conclusion
	References

	14 Test Generation for Detection of Malicious Parametric Variations
	14.1 Introduction
	14.2 Power Virus for Gate-Level IPs
	14.2.1 Pseudo-Boolean Satisfiability Approach
	14.2.2 Largest Fanout First Approach
	14.2.3 Cost-Benefit Analysis Approach
	14.2.4 Power Virus for Sequential Circuits

	14.3 Power Virus for Processor IPs
	14.3.1 Stress Benchmarks
	14.3.2 Power Virus Generation for Single-Core IPs
	14.3.2.1 Exploration Space of Program Characteristics
	14.3.2.2 Code Generation

	14.3.3 Power Virus for Multi-Core IPs
	14.3.3.1 Space Exploration of Program Characteristics
	14.3.3.2 Multi-Threaded Power Virus Generation

	14.4 Temperature Virus
	14.4.1 Temperature Virus for Gate-Level IPs
	14.4.2 Temperature Virus for Processor IPs

	14.5 Conclusion
	References

	Part V Conclusion
	15 The Future of Trustworthy SoC Design
	15.1 Summary
	15.1.1 Trust Vulnerability Analysis
	15.1.2 Effective Countermeasures
	15.1.3 Security and Trust Validation

	15.2 Future Directions
	15.2.1 Security and Trust Verification for Encrypted IPs
	15.2.2 Security and Trust Verification for Obfuscated IPs
	15.2.3 Security and Trust Verification for Hard IPs
	15.2.4 Security and Trust Verification During SoC Design Flow
	15.2.5 Unintentional Vulnerabilities
	15.2.6 Multi-Security Objectives Design
	15.2.7 Metrics and Benchmarks

	References

	Index

