
www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 02:15:28:PM 01/08/2014 Page ii

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 02:15:28:PM 01/08/2014 Page i

Hacking Point of Sale

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 02:15:28:PM 01/08/2014 Page ii

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 02:15:28:PM 01/08/2014 Page iii

Slava Gomzin

Hacking Point of Sale

Payment Application Secrets,
Threats, and Solutions

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 02:15:28:PM 01/08/2014 Page iv

Hacking Point of Sale: Payment Application Secrets, Threats, and Solutions

Published by

John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-81011-8

ISBN: 978-1-118-81010-1 (ebk)

ISBN: 978-1-118-81007-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections

107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or

authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood

Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be

addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,

fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties

with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties,

including without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended

by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation.

This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other

professional services. If professional assistance is required, the services of a competent professional person should be

sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization

or Web site is referred to in this work as a citation and/or a potential source of further information does not mean

that the author or the publisher endorses the information the organization or website may provide or recommenda-

tions it may make. Further, readers should be aware that Internet websites listed in this work may have changed or

disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the

United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with

standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media

such as a CD or DVD that is not included in the version you purchased, you may download this material at http:
//booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013954096

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or

its affi liates, in the United States and other countries, and may not be used without written permission. All other

trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product

or vendor mentioned in this book.

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 02:15:28:PM 01/08/2014 Page v

To all of us who pay and get paid with plastic.

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 02:15:28:PM 01/08/2014 Page vi

www.allitebooks.com

http://www.allitebooks.org

vii

ffi rs.indd 02:15:28:PM 01/08/2014 Page vii

Slava Gomzin is a Security and Payments Technologist at

Hewlett-Packard, where he helps create products that are

integrated into modern payment processing ecosystems

using the latest security and payments technologies. Prior

to joining Hewlett-Packard, Slava was a security architect,

corporate product security offi cer, R & D and application

security manager, and development team leader at Retalix,

a Division of NCR Retail. As PCI ISA, he focused on secu-

rity and PA-DSS, PCI DSS, and PCI P2PE compliance of POS systems, pay-

ment applications, and gateways. Before moving into security, Slava worked in

R & D on design and implementation of new products including next-generation

POS systems and various interfaces to payment gateways and processors. He

currently holds CISSP, PCIP, ECSP, and Security+ certifi cations. Slava blogs about

payment and technology security at www.gomzin.com.

About the Author

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 02:15:28:PM 01/08/2014 Page viii

www.allitebooks.com

http://www.allitebooks.org

ix

ffi rs.indd 02:15:28:PM 01/08/2014 Page ix

About the Technical Editor

Rob Shimonski (www.shimonski.com) is an experienced entrepreneur and an

active participant in the business community. Rob is a best-selling author and

editor with over 15 years of experience developing, producing, and distribut-

ing print media in the form of books, magazines, and periodicals. To date, Rob

has successfully created over 100 books that are currently in circulation. Rob

has worked for countless companies including CompTIA, Wiley, Microsoft,

McGraw-Hill Education, Elsevier, Cisco, the National Security Agency, and

Digidesign. Rob has over 20 years of experience working in IT, networking, sys-

tems, and security. He is a veteran of the U.S. military and has been entrenched

in security topics for his entire professional career. Rob has an extremely diverse

background in security and networking and has successfully helped over a

dozen major companies get on track with PCI.

ffi rs.indd 02:15:28:PM 01/08/2014 Page x

xi

ffi rs.indd 02:15:28:PM 01/08/2014 Page xi

Credits

Executive Editor
Carol Long

Senior Project Editor
Adaobi Obi Tulton

Technical Editor
Rob Shimonski

Production Editor
Daniel Scribner

Copy Editor
Christina Haviland

Editorial Manager
Mary Beth Wakefi eld

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Vice President and Executive
Group Publisher
Richard Swadley

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Proofreader
Sarah Kaikini, Word One

Indexer
Robert Swanson

Cover Designer
Ryan Sneed/Wiley

Cover Image
© defun/iStockphoto.com

ffi rs.indd 02:15:28:PM 01/08/2014 Page xii

xiii

ffi rs.indd 02:15:28:PM 01/08/2014 Page xiii

Acknowledgments

First, I would like to thank Wiley for providing me with this unique authorship

opportunity. Thanks to my editor, Adaobi Obi Tulton, for her patience, atten-

tion, and support throughout the entire publishing process. Special thanks to

Carol Long who believed in this book and made it possible. Thanks also to my

fi rst editor, Jeannette de Beauvoir, who helped me to polish and promote my

book proposal.

Writing a book like this wouldn’t be possible without gaining experience and

learning from other professionals over the years. I would like to thank my former

coworkers. Special thanks to Shmuel Witman, Doug McClellan, Sagi Zagagi,

and Ofer Nimtsovich, who infl uenced me at different stages of my career by

sharing their knowledge and vision, and helped me to survive in this industry

and develop myself professionally.

Finally, special credit goes to my wife, Svetlana, and my daughters, Alona,

Aliza, and Arina, for understanding the reasons for my absence from their

lives on countless weekends and evenings while I was working on this book.

ffi rs.indd 02:15:28:PM 01/08/2014 Page xiv

xv

ffi rs.indd 02:15:28:PM 01/08/2014 Page xv

Introduction xxiii

Part I Anatomy of Payment Application Vulnerabilities 1

Chapter 1 Processing Payment Transactions 3

Chapter 2 Payment Application Architecture 25

Chapter 3 PCI 55

Part II Attacks on Point of Sale Systems 91

Chapter 4 Turning 40 Digits into Gold 93

Chapter 5 Penetrating Security Free Zones 125

Chapter 6 Breaking into PCI-protected Areas 147

Part III Defense 165

Chapter 7 Cryptography in Payment Applications 167

Chapter 8 Protecting Cardholder Data 195

Chapter 9 Securing Application Code 219

Conclusion 249

Appendix A POS Vulnerability Rank Calculator 251

Appendix B Glossary 257

Index 265

Contents at a Glance

ffi rs.indd 02:15:28:PM 01/08/2014 Page xvi

xvii

ftoc.indd 02:20:50:PM 01/09/2014 Page xvii

Introduction xxiii

Part I Anatomy of Payment Application Vulnerabilities 1

Chapter 1 Processing Payment Transactions 3

Payment Cards 3
Card Entry Methods 5

MSR 5

Pinpad 6

Key Players 6
Consumer (Cardholder) 7

Merchant 7

Acquirer 7

Issuer 7

Card Brands 8

More Players 8
Payment Processor 8

Payment Gateway 9

Even More Players 11
Payment Software Vendors 11

Hardware Manufacturers 11

Payment Stages 12
Authorization 12

Settlement 13

Payment Transactions 16
Sale vs. PreAuth/Completion 16

Void and Return 16

Fallback Processing 17

Contents

xviii Contents

ftoc.indd 02:20:50:PM 01/09/2014 Page xviii

Timeout Reversals 18

Special Transaction Types 18

Key Areas of Payment Application Vulnerabilities 19
Summary 22

Chapter 2 Payment Application Architecture 25

Essential Payment Application Blocks 25
Interfaces 25

Processing Modules 28

Data Storage 31

Typical Payment Transaction Flow 32

Communication Between Modules 34
Physical Connections 34

Communication Protocols 35

Local Communication 36

Message Protocols 36

Internal Protocols 38

Communication Summary 38

Deployment of Payment Applications 39
The Concept of EPS 39

Payment Switch 40

Comparing Deployment Models 41

Store EPS Deployment Model 43

POS EPS Deployment Model 44

Hybrid POS/Store Deployment Model 46

Gas Station Payment Systems 46

Mobile Payments 48

Summary 50

Chapter 3 PCI 55

What is PCI? 56
PCI Standards 57

PA-DSS vs. PCI DSS 59

PA-DSS 59

PCI DSS 67

Comparing PA-DSS and PCI DSS Requirements 77

PTS 80

P2PE 81

PCI Guidelines 83
Fallacy of Tokenization 83

EMV Guidance 85

Mobile Payments Guidelines for Developers 86

Summary 86

www.allitebooks.com

http://www.allitebooks.org

 Contents xix

ftoc.indd 02:20:50:PM 01/09/2014 Page xix

Part II Attacks on Point-of-Sale Systems 91

Chapter 4 Turning 40 Digits into Gold 93

Magic Plastic 93
Physical Structure and Security Features 94

Why Security Features Fail 97

Inside the Magnetic Stripe 98
Track 1 98

Track 2 100

PAN 101

Expiration Date 102

ISO Prefi x and BIN Ranges 103

PAN Check Digit 105

Service Code 106

Card Verifi cation Values 107

Regular Expressions 110
Getting the Dumps: Hackers 111

Security Breach 112

Largest Point-of-sale Breach 113

Converting the Bits into Cash: Carders 114
Monetization Strategies: Cashers 115
Producing Counterfeit Cards 116

Encoders 118

Printers 120

Summary 121

Chapter 5 Penetrating Security Free Zones 125

Payment Application Memory 125
RAM Scraping 126

WinHex 126

MemoryScraper Utility 127

Windows Page File 134

Sniffi ng 134
Traffi c on Local Networks 135

Network Sniffers 135

NetScraper Utility 136

More Communication Vulnerability Points 139

Exploiting Other Vulnerabilities 140
Tampering With the Application 140

Tampering With the Hardware 141

Targeting New Technologies 142

Attacks on Integrity and Availability 143

Summary 144

xx Contents

ftoc.indd 02:20:50:PM 01/09/2014 Page xx

Chapter 6 Breaking into PCI-protected Areas 147

PCI Areas of Interest 147
Data at Rest: The Mantra of PCI 148

Temporary Storage 149

Application Logs 150

Hashed PAN 152

Insecure Storage of Encryption Keys 153

DiskScraper Utility 157

Data in Transit: What is Covered by PCI? 160
SSL Vulnerabilities 160

Man-in-the-Middle 161

Summary 162

Part III Defense 165

Chapter 7 Cryptography in Payment Applications 167

The Tip of the Iceberg 167
Symmetric, Asymmetric, or One-way? 168
Does Size Matter? 170

Key Entropy 170

Key Stretching 171

Symmetric Encryption 172
Strong Algorithms 173

EncryptionDemo 173

Implementing Symmetric Encryption 174

Generating the Key 174

Blocks, Padding, and Initialization Vectors 175

Encryption and Decryption 175

Asymmetric Encryption 176
Implementing Public-key Encryption 177

Generating the Keys 178

Self-signed Certifi cate 178

PFX Certifi cate File 179

Encryption 180

Decryption 180

One-way Encryption 181
Implementing One-way Encryption 181

Salting Tokens 182

Salting Passwords 184

Validating Passwords 184

Digital Signatures 186
Attached vs. Detached Signatures 186

Code and Confi guration Signing 187

Data File and Message Signing 187

 Contents xxi

ftoc.indd 02:20:50:PM 01/09/2014 Page xxi

Cryptographic Hardware 188
Cryptographic Standards 188

NIST and FIPS 189

ANSI 191

PKCS 191

Summary 191

Chapter 8 Protecting Cardholder Data 195

Data in Memory 195
Minimizing Data Exposure 196

Encrypting Data End to End 196

Data in Transit 197
Implementing SSL 197

Using Encrypted Tunnels 206

Data at Rest 207
Secure Key Management 207

Multiple Key Components 207

KEK and DEK 208

Key Rotation 209

Point-to-point Encryption 209
What Point-to-point Really Means 209

Levels of P2PE 209

Hardware P2PE 210

DUKPT Key Management 211

EMV 214
Mobile and Contactless Payments 215
Summary 215

Chapter 9 Securing Application Code 219

Code Signing 219
Authenticode 220

Code Signing Certifi cates 220

Creating the Root CA Using OpenSSL 221

Certifi cate Formats 222

Creating a Production-grade Code Signing Certifi cate 223

Timestamp 226

Implementing Code Signing 227

Signing Confi guration and Data Files 229
Attached or Detached? 229

Data Signing Certifi cate 230

Certifi cate Store 231

Implementing Detached Signature 232

Attached Signatures 235

Signing XML Files 235

Implementing Attached Signature 235

xxii Contents

ftoc.indd 02:20:50:PM 01/09/2014 Page xxii

Code Obfuscation 237
Reverse Engineering 237

Obfuscating the Code 240

Secure Coding Guidelines 242
OWASP Top 10 242

CWE/SANS Top 25 243

Language-specifi c Guidelines 245

Summary 246

Conclusion 249

Appendix A POS Vulnerability Rank Calculator 251

Security Questionnaire and Vulnerability Rank 251
The Scoring System 252
Instructions 252
POS Security Questionnaire 252
Decoding the Results 255

Appendix B Glossary of Terms and Abbreviations 257

Index 265

xxiii

fl ast.indd 02:22:54:PM 01/08/2014 Page xxiii

Nearly fi ve million point-of-sale (POS) terminals process about 1,500 credit

and debit card transactions every second in the United States alone.1, 2, 3 Most

of these systems, regardless of their formal compliance with industry security

standards, potentially expose millions of credit card records—including those

being processed in memory, transmitted between internal servers, sent for

authorization or settlement, and accumulated on hard drives. This sensitive data

is often weakly protected or not protected at all. It is just a matter of time before

someone comes along and takes it away. Valuable cardholder information can

be stolen from many places in a merchant’s POS system, such as unprotected

memory, unencrypted network transmission, poorly encrypted disk storage,

card reader interface, or compromised pinpad device.

There are more than one billion active credit and debit card accounts in the

United States.4 It is not surprising that such cards have become an attractive

target for hackers. In 2011, payment card information was involved in 48% of

security breaches—more than any other data type.5 In 2012, POS terminals and

payment data were record breakers in three different categories: The variety of

compromised assets, the variety of compromised data, and the breach count

by data variety.6

Information about breaches and new types of malware aimed specifi cally at

payment systems is popping up in the mass media almost every day, and yet

we’re seeing only the tip of the iceberg since many incidents aren’t reported to

the public. In such a critical situation, it’s very important to assess the balance of

power between offensive and defensive sides in order to decide what to do next.

PCI standards provide a great security baseline, but they still don’t protect

electronic payments adequately. Once merchants and software vendors achieve

Introduction
False facts are highly injurious to the progress of science, for they often long endure; but false

views, if supported by some evidence, do little harm, as everyone takes a salutary pleasure in

providing their falseness; and when this is done, one path towards error is closed and the road

to truth is often at the same time opened.

—Charles Darwin

xxiv Introduction

fl ast.indd 02:22:54:PM 01/08/2014 Page xxiv

PCI compliance, they should continue securing their systems beyond the basics

in order to reach a reasonable level of protection.

This book summarizes, systemizes, and shares knowledge about payment

application security. All the aspects of card payment processing—from the

structure of magnetic stripe to architecture and deployment models to com-

munication protocols— are reviewed from the security viewpoint. Usually,

information security takes care of three major subjects: confi dentiality, integrity,

and availability. All three are very important. When we talk about security of

payment applications, all three subjects are still applicable: the payment data

should be protected from disclosure at all times, it should not be altered, and

the payment service should be ready to use 100% of the time. However, as we

know, the greatest threat related to electronic payments is stealing sensitive

authentication data, specifi cally Track 1, Track 2, or PAN. Therefore, payment

application security is naturally focused on the fi rst information security prin-

ciple, confi dentiality, and its associated threat, information disclosure. This fact

explains why security standards related to payments, such as PCI, primarily

talk about controls which take care of confi dentiality.

Speaking of POS and electronic payments, we certainly are not thinking of

just traditional brick and mortar stores. Online payments are another huge

fi eld which probably deserves no less attention. Since both of these areas are

equally huge, they would not fi t properly into the framework of a single book.

Discussion about online payments requires at least an overview of special top-

ics such as security of data centers and, obviously, web application security.

At the same time, some very important subjects, such as POI devices, are not

applicable when talking about e-commerce security. This book is dedicated to

in-store payment systems and all the aspects of their security. Perhaps online

payments will be a great topic for my next book.

Before we dive into the details of vulnerabilities and attack vectors, let’s

defi ne the scope of the threats. It is important to understand that while we are

talking about threats to POS systems, most of the attacks are performed on

payment applications which can be either an internal part of the POS system or

a completely separate module. Payment application is a desired target because

in most cases it is a piece of software running under a Windows operating

system on PC-based devices connected to a local network or even directly to

the Internet. In combination with the fact that it accepts, processes, stores, and

transmits sensitive payment card information, this opens various possibilities

to steal the money remotely. From this point forward when we say “point of

sale” it means “payment application” and vice versa.

 Introduction xxv

fl ast.indd 02:22:54:PM 01/08/2014 Page xxv

Author’s Note

In the spring of 2011, I was urgently called to my then employer’s corporate

headquarters in Israel to work on a special project. I was asked to lead the design

and development of a new payment system for one of the largest supermarket

chains in Europe (name withheld for privacy). I had been working full time

on security and PCI compliance rather than development, but my 10 years of

experience in the development of payment interfaces gave them some hope

of saving the project after several previous failures. I was given substantial

resources, but the schedule was very tight for a project of such magnitude: we

had two months to release a working version. In addition, the solution needed

to be designed using the latest technology and security standards.

The development team I was given was made up of the best possible pro-

grammers. Almost immediately, however, I ran into an unexpected problem:

Since the product was new, no one in the group had a clue about payment inter-

faces—despite the fact that they already had experience in POS development.

Of course, there was no question about security or PCI compliance.

The fi rst few days and even weeks were spent explaining electronic payments

in general, the details of the architecture of payment applications, and security

standards in this area. Everyone knew what a credit card was and how to swipe

it, but that was it! I thought it would be useful to have a guide to introduce new

architects and programmers to the fi eld, but I knew that such a guide didn’t

exist. My own knowledge in this area was accumulated through many years

of work on a variety of payment systems and studying the application security.

That’s when the idea for this book was born.

Eventually, the payment solution was successfully delivered on time and I

returned to the United States to continue with my regular job. But I couldn’t stop

thinking about the book. Since then, the idea was slightly transformed to refl ect

the latest developments in the industry. For example, the widespread introduc-

tion of PCI standards has led to a shift in attack vectors, from data storage to

memory. Also, newborn P2PE standards brought high hopes for merchants

and great challenges for software developers and hardware manufacturers.

However, the essential goal remained the same: Create a guide for developers,

security professionals, users of payment systems, and executives, to help them

understand the incredible blending of architecture principles, industry stan-

dards, software vulnerabilities, attack vectors, and cryptographic techniques

that together make up payment application security.

xxvi Introduction

fl ast.indd 02:22:54:PM 01/08/2014 Page xxvi

Who This Book Is For

There are several types of users that will benefi t from reading and using the

information in this book.

Point of Sale and Payment Application Developers, Development Managers, and

Software Architects working for software vendors and service providers will

learn the basics of payment applications and how to protect their products from

security threats. There are a few code samples provided for this group at the

end of the book. (I know, hackers do not code in C#, but they know to translate

it to C when needed.)

QA Analysts and Managers will get some ideas on how to create and conduct

security penetration testing of payment software.

Security Architects, Managers, Consultants, and Executives working for merchants

will learn what questions they should ask payment application vendors and

service providers in order to determine the level of protection of their software

and hardware.

Solutions Architects, Project and Product Managers, and Executives working for

both vendors and merchants will learn about areas of potential vulnerabilities

in order to be able to estimate the risks associated with implementing payment

solutions and efforts necessary to mitigate them.

Pros and Cons of Security Through Obscurity

I was thinking about this issue when I started writing the book and was notic-

ing a signifi cant amount of sensitive information I potentially disclose to “bad

guys.” I am sure there will be people asking “Why are you talking about these

issues in the fi rst place? We are putting so much effort into achieving PCI

compliance, and you are saying it is not enough and showing how to hack PCI

compliant applications! You are ruining our work! Let’s keep these vulner-

abilities secret until the PCI Council notices them, admits their importance,

develops countermeasures, includes them into the next version of standards,

and requires us to implement them!” Well, it sounds already too complicated

to do in a reasonable period of time. And what if the bad guys already learned

some of this stuff? They won’t tell you about their knowledge. They will also

keep it secret until the day they break your system.

There are two “clubs” in this game—hackers and developers. Both are closed

clubs and both are trying to keep their secrets from each other. The problem

begins when hackers become developers, or developers become hackers. In the

 Introduction xxvii

fl ast.indd 02:22:54:PM 01/08/2014 Page xxvii

fi rst case, you get an “insider”—someone who knows your application’s secret

tricks, back doors, and weaknesses. This information can be disclosed to third

parties, or used directly by that person. In the second case, you have “secret”

information that went with the person who left the company and was then free

to use it or sell it to others. Both cases are bad if application security is mostly

achieved through obscurity.

As Bruce Schneier said, “Disclosed vulnerability is one that—at least in

most cases—is patched. And a patched vulnerability makes us all more secure.

Minimize the number of secrets in your security system. To the extent that you

can accomplish that, you increase the robustness of your security. To the extent

you can’t, you increase its fragility. Obscuring system details is a separate deci-

sion from making your system secure regardless of publication; it depends on

the availability of a community that can evaluate those details and the relative

communities of “good guys” and “bad guys” that can make use of those details

to secure other systems”.7, 8 I am sure there is a community that is ready for

this publication.

What This Book Is Not

This book is not about payment card fraud protection. Those controls only pro-

tect the cardholder and the merchant before the card is swiped. However, they

do not secure the sensitive cardholder data once it is entered into the system.

Examples of such security measures are using CVV or ZIP code verifi cation

during authorization.

Although there is an entire chapter about PCI, as well as multiple references

to the standards which became an essential part of the payment industry, this

book is not a guide on PCI compliance. There are publications and training

courses that will teach you about PCI. Rather, this book looks beyond PCI and

provides practical recommendations on how to implement real application

security controls. Neither is it about security of payment processing from the

point of view of credit card brands. PCI standards help to secure only selected

fragments of the big picture. However, the entire process, including implemen-

tation and deployment of payment applications, is vulnerable by design, and

responsibility for its security is delegated to merchants, payment processors,

software/hardware vendors, and service providers.

Security of payment processing data centers is also outside the scope of this

book because it requires much more than just a single chapter. This book is

focused on the retail store which is more vulnerable than any other electronic

payment fl ow players.

xxviii Introduction

fl ast.indd 02:22:54:PM 01/08/2014 Page xxviii

How This Book Is Structured

Good programmers follow coding conventions and best practices. One of the

basic development principles is dividing the code into small, relatively inde-

pendent pieces—several lines of code in size—which can be easily read and

understood. The same approach was implemented in this book to minimize

the size of each single section. The text is structured in a manner similar to

professional technical documents, with a detailed table of contents that makes

it simple to quickly locate and read specifi c pieces of information.

The book is divided into three main parts:

 1. Technology overview

 2. Description of attacks and vulnerabilities

 3. Solutions for the problems (mitigations and protection measures)

Part I, “Anatomy of Payment Application Vulnerabilities” (Chapters 1, 2,

and 3), sets the scene for Parts II and III by explaining the technological back-

ground of electronic payments. Even though it’s an introduction to the world

of cards and payment applications, all their components are reviewed from a

security point of view.

Chapter 1, “Processing Payment Transactions,” covers the basics of payment

processing: How different organizations—players in the plastic game—partici-

pate in the transaction fl ow, their responsibilities and challenges, and the differ-

ences between various payment transaction types, with detailed explanations

of exception and error-handling scenarios.

Chapter 2, “Payment Applications Architecture,” introduces basic design

concepts, compares different deployment models, and explains the main func-

tional modules of payment application divided into two groups—interfaces and

processors. It also explains the types of connectivity and differences between

communication and message protocols.

Chapter 3, “PCI,” describes security standards that regulate the industry

employing payment applications, and shows how they protect the sensitive

cardholder data from being stolen. This chapter explains the difference between

PCI DSS and PA-DSS from both merchant and software vendor perspectives.

There is a description of standards (such as ISO and FIPS) that indirectly affect

payment application security. The chapter introduces the PCI P2PE standard

(the technical details of P2PE implementation are also explained in Chapter 8).

Part II, “Attacks on Point-of-sale Systems” (Chapters 4, 5, and 6) explains

how card data can be stolen from POS machines, and why particular areas of

payment applications are more vulnerable than others.

Chapter 4, “Turning 40 Digits Into Gold,” explains what is inside the payment

card and how this knowledge helps the bad guys use stolen cards to get cash.

www.allitebooks.com

http://www.allitebooks.org

 Introduction xxix

fl ast.indd 02:22:54:PM 01/08/2014 Page xxix

The goal of this chapter is to demonstrate the ease and simplicity of the credit

card fraud by providing a step-by-step explanation of the process, from obtain-

ing the “dump” to getting the cash. There’s a detailed description of the carding

that includes hidden and small but important tricks of encoding, embossing,

and tipping fake cards.

Chapter 5, “Penetrating Security Free Zones,” describes payment application

vulnerabilities not addressed by existing PCI security regulations. Although

PCI defi nes a great security baseline, many areas of payment applications are

covered by neither PCI nor other standards. This chapter also contains “bonus”

sections about non-software attacks that are not directly related to payment

applications but aimed at other areas of POS, such as the physical security of

pinpad devices and design fl aws in POS payment processes.

Chapter 6, “Breaking into PCI-protected Areas,” covers payment applica-

tion vulnerabilities in areas that are supposed to be protected by current PCI

security standards. Even though PCI standards require encryption on “data

at rest,” there are various vulnerabilities associated with data storage, such as

weak encryption mechanisms and poor key management.

Part III, “Defense” (Chapters 7, 8, and 9), addresses the issues described in

the previous part. It describes how to prevent attacks on payment applications

by employing powerful cryptographic tools for protecting the cardholder data

and payment application code.

Chapter 7, “Cryptography in Payment Applications,” explains the basics of

cryptography in the context of payment application security, which provides

necessary foundations for implementing protection controls defi ned in sub-

sequent chapters. Information in this chapter includes a description of main

cryptographic principles and applications such as symmetric and asymmetric

encryption, digital signatures, and cryptographic standards. It provides the

reader with knowledge needed for understanding and designing powerful

protection mechanisms such as sensitive cardholder data encryption, digital

signing, and point-to-point encryption.

Chapter 8, “Protecting Cardholder Data,” explains how the power of modern

cryptography can be utilized in order to protect sensitive cardholder infor-

mation from the moment of swiping the card at the POS to the transaction

settlement. The chapter describes various methods of data encryption at any

possible state—in memory, in transit, and at rest—including an introduction

to the latest industry trend—a technology capable of protecting them all called

point-to-point encryption. The chapter defi nes the different types of point-to-

point encryption implementation—hardware, software, and hybrid—and how

they affect security. It also explains the essentials of typical P2PE solutions such

as DUKPT key management scheme.

Chapter 9, “Securing Application Code,” explains how to protect the pay-

ment application itself from attacks in the hazardous environment of retail

stores. Attacks on sensitive data in memory, in transit, and at rest are not the

xxx Introduction

fl ast.indd 02:22:54:PM 01/08/2014 Page xxx

only ways to penetrate POS systems. This chapter explains how to protect the

application itself by utilizing client and server certifi cates, digital signatures,

and code obfuscation.

Appendix A, “POS Vulnerability Rank Calculator,” is a handy tool for

merchants, software vendors, and security assessors. The questionnaire will

assist in security risk assessment by evaluating the availability and quality of

payment application security controls.

Appendix B, “Glossary of Terms and Abbreviations” deciphers the acronyms

and defi nes the terminology used by payment application security professionals.

Notes

 1. “Point-of-sale terminals (per 100,000 adults),” The World Bank, 2008 –

2012, http://data.worldbank.org/indicator/FB.POS.TOTL.P5

 2. “Table 26. Age Distribution of the Population by Sex and Generation:

2011,” United States Census Bureau, http://www.census.gov/popula-

tion/age/data/2011comp.html

 3. “The 2007 Federal Reserve Payments Study,” Federal Reserve System

(2007), http://www.frbservices.org/files/communications/pdf/

research/2007_payments_study.pdf

 4. “Credit card statistics, industry facts, debt statistics,” CreditCards.com,

http://www.creditcards.com/credit-card-news/credit-card-industry-

facts-personal-debt-statistics-1276.php#Circulation

 5. 2012 Data Breach Investigations Report, Verizon, http://www.verizonenter-

prise.com/resources/reports/rp_data-breach-investigations-report-

2012-ebk_en_xg.pdf

 6. 2013 Data Breach Investigations Report, Verizon, http://www.verizonenter-

prise.com/DBIR/2013/

 7. Bruce Schneier, “Secrecy, Security, and Obscurity,” Crypto-Gram Newsletter

(May 2002), http://www.schneier.com/crypto-gram-0205.html#1

 8. Bruce Schneier, “The Vulnerabilities Market and the Future of Security,”

Crypto-Gram Newsletter (June 2012), http://www.schneier.com/crypto-

gram-1206.html#1

c01.indd 08:1:53:AM 01/16/2014 Page 1

Par t

I
Anatomy of Payment Application

Vulnerabilities

Science in the service of humanity is technology, but lack of wisdom may make the service harmful.

 —Isaac Asimov

In This Part

Chapter 1: Processing Payment Transactions

Chapter 2: Payment Application Architecture

Chapter 3: PCI

c01.indd 08:1:53:AM 01/16/2014 Page 2

3

c01.indd 08:1:53:AM 01/16/2014 Page 3

C H A P T E R

1

Processing Payment Transactions
Because people have no thoughts to deal in, they deal cards, and try and win one another’s

money. Idiots!

 —Arthur Schopenhauer

In order to understand the vulnerability points of point-of-sale and payment

applications, it is necessary to know the basics—how, when, and why sensitive

cardholder data moves between different peers during the payment transac-

tion cycle:

 ■ Why (the reason): Is it really necessary to hold, store, and transmit this

data throughout the entire process?

 ■ How (the location and the routes): What are the areas with a concentra-

tion of sensitive records?

 ■ When (the timing): How long is this information available in those areas?

Payment Cards

The use of payment cards is obviously one of the main subjects of this book.

There are several main types of payment cards commonly used for payments:

The credit card was the fi rst payment card and it is still very common.

By paying with a credit card, customers use their available credit and pay

the bill afterwards. Credit cards are not usually protected by a Personal

Identifi cation Number (PIN), which allows them to be used for online

purchases.

The debit (ATM, Cash) card is a relatively new method of payment. It is

different from a credit card because the debit cardholder pays with the

money available in their bank account, which is debited immediately in

4 Part I ■ Anatomy of Payment Application Vulnerabilities

c01.indd 08:1:53:AM 01/16/2014 Page 4

real time. A debit card seems to be more dangerous compared to a credit

card because the debit card is directly linked to the bank checking account

and usually allows ATM cash withdrawals. On the other hand, it is more

protected by the required two-factor authentication (PIN number plus

card itself). The real dangerous element of many branded debit cards is

that they can be processed as credit cards, without entering the PIN.

The gift card is similar to a debit card but usually does not have the protec-

tion provided by a PIN. The gift card is not linked to a bank account and

normally “contains” fi xed amounts of funds. The card itself does not hold

any fi nancial information—the point-of-sale (POS) terminal communicates

with the gift card provider during payment transactions in order to get

authorization. Gift cards are less dangerous than credit and debit cards

because only fi xed, often very limited, amounts of money can be stolen.

The fl eet (or proprietary) card is similar to a credit card but can be used

only at particular locations (usually gas stations and convenience stores)

and for purchasing only limited types of merchandise (such as fuel and

other automobile items). Fleet cards, even though often issued by major

card brands, are less interesting to “bad guys” because they cannot be

used for ATM withdrawal, online shopping, or purchases in department

or grocery stores.

Table 1-1 shows a list of major payment card types and their main features.

Table 1-1: Payment Card Types

CARD

TYPE ISSUED

PURCHASE

POWER, $$ ACCEPTANCE

PROTECTED

ACCORDING

TO PCI DATA

SECURITY

STANDARDS?

Credit By banks under

payment brands

(such as Visa) or

directly by pay-

ment brands

(such as American

Express)

Several

thousand

Virtually any brick-

and-mortar or

online merchant.

Yes

Debit By banks with or

without payment

brands

Several

thousand

Virtually any brick-

and-mortar or

online merchant;

bank ATM .

Only if issued

under payment

brand

Continues

 Chapter 1 ■ Processing Payment Transactions 5

c01.indd 08:1:53:AM 01/16/2014 Page 5

CARD

TYPE ISSUED

PURCHASE

POWER, $$ ACCEPTANCE

PROTECTED

ACCORDING

TO PCI DATA

SECURITY

STANDARDS?

Gift By payment

brands or propri-

etary providers

Several

hundred

If branded, virtu-

ally any brick-and-

mortar or online

merchant. If

proprietary,

only particular

merchants.

Only if issued

under payment

brand

Fleet By banks, payment

brands, or propri-

etary providers

Several

hundred

Particular mer-

chants (usually

gas stations and

c-stores) and lim-

ited merchandise

types (usually

fuel).

Only if issued

under payment

brand

PCI: Payment Card Industry

Card Entry Methods

There are two main methods used to enter the card data into the POS in order

to start a payment transaction: swipe and manual entry.

MSR

The fi rst method uses a Magnetic Stripe Reader, or MSR, which is a device that

reads the magnetic stripe on payment cards. Modern MSR devices have encryp-

tion capabilities and can be used in point-to-point encryption (P2PE) solutions

(see Chapter 8 for more details). The easiest way to enter the card data into the

POS is to just swipe the card in the MSR so it can read the magnetic stripe and

automatically enter all the necessary information. However, if the magnetic stripe

is damaged, the customer or cashier can manually enter the account number

and expiration date embossed on the front of the card.

Some MSR devices emulate keyboard input, so swiping the card is equiva-

lent to simply typing numbers and letters on the computer keyboard. Stealing

the track data in this case is as simple as sniffi ng the MSR input by installing

a keystroke logger.1

Table 1-1 (continued)

6 Part I ■ Anatomy of Payment Application Vulnerabilities

c01.indd 08:1:53:AM 01/16/2014 Page 6

Pinpad

The second method uses a pinpad. A pinpad, or Point of Interaction (POI) with a

built-in MSR, is a more sophisticated device because it has fi rmware which can

be customized for various functions including protection of the card’s sensitive

data. Most pinpads also have hardware encryption capabilities implemented

as TRSM (Tamper-Resistant Security Module). In addition to MSR, POI also

includes other peripherals, such as a customer display and keyboard (in addi-

tion to the pinpad), for better direct interaction with the customer throughout

the payment process.

Key Players

According to Visa, there are fi ve key players in the card payment processing

game: Consumers, Merchants, Acquirers, Issuers, and Card Brands.2 However, in prac-

tice, there are usually more participants. In addition to Consumers, Merchants,

Acquirers, Issuers, and Card Brands, there are also Gateways, Processors, Software
Vendors, and Hardware Manufacturers who facilitate the payment transaction

processing.

Before diving into the details of these players, I would like to remind you that

the scope of this book is security of POS and associated payment applications

which are located in brick-and-mortar stores. Despite the fact that merchants

account for a relatively small percentage of the overall payment processing life

cycle, their portion of responsibility and risk is incomparably larger than anyone

else’s share. There are several reasons for this:

 1. First, merchants have a very distributed structure compared to others—a

typical retail chain may consist of dozens to thousands of stores. Compare

this to a processor who may have a few enterprise-scale data centers where

it is much easier to organize the security measures.

 2. Second, retail stores are public places with all the ensuing consequences

for security.

 3. Third, most merchants rely on hardware and software vendors as their

technology providers (including security) and simply are not ready to

accept the fact that they have a technology which is vulnerable by design.

When the PC and Internet revolution in the late 1990s started replacing

the old cash registers and standalone credit terminals with complex POS

systems with integrated payment applications, it also began bringing

countless system and network security fl aws and eventually made them an

inescapable day-to-day nightmare reality for millions of retailers around

the world.

 Chapter 1 ■ Processing Payment Transactions 7

c01.indd 08:1:53:AM 01/16/2014 Page 7

Consumer (Cardholder)

It’s us. We go to stores, swipe the cards, and pay the bills.

Ideally, consumers are not supposed to care about security beyond keeping

their PIN a secret. If the card is lost or stolen, the consumer just wants to call

the bank and get a new one. When our card is swiped, our private information

is shared with the merchant, whose POS system is supposed to protect our

information throughout the process. We rely on modern high-end technologies

to protect our plastic money.

In practice, unfortunately, it’s not happening. Not all the cards are protected

by a PIN. So if the card is lost or stolen, and this fact went unnoticed, the con-

sumer’s money can be easily stolen. And when the card is swiped at the POS,

the data is not being kept confi dential 100 percent of the time, so the bill arriving

at the end of month might contain surprising charges.

Merchant

Merchants, such as supermarkets, convenience stores, restaurants, or hotels, are

central fi gures in the process. They make a lot of decisions, both business and

technical: what types of payments to accept—credit, debit, or both; what brands

to accept; what bank to open a merchant account with; what kind of POS and

payment terminal hardware and software to purchase (or lease); and, fi nally,

how to protect the cardholder data. This last decision might sound different and

irrelevant compared to others, but this is the reality—merchants must take care

of payment data security because other players often fail to do so.

Nevertheless, merchants still take card payments because they want to sell

their goods and services. Their POS hardware and software accepts and processes

the card information, sends it to their payment processor for authorization and

settlement, and eventually receives money on their merchant account.

Acquirer

Acquirers, or Acquiring Banks, authorize the payment transactions and settle

them with the card issuers. Payment processors route transactions, based on

transaction and card type, to a corresponding acquirer for authorization and

settlement. Acquirers regulate the basic merchant discount rates (the fees that

a merchant pays for each processed payment transaction).

Issuer

Issuers, or Issuing Banks, maintain the customer accounts and issue the cards

to customers. They bill the customers for their transactions and send money

8 Part I ■ Anatomy of Payment Application Vulnerabilities

c01.indd 08:1:53:AM 01/16/2014 Page 8

back to acquirers so they can pay the merchants. Issuers manufacture the cards

and so are responsible for physical security features.

Card Brands

Card Brands, or Card Networks, facilitate the entire process of payment autho-

rization and settlement. Networks, such as VisaNet, maintain connections

between acquirers and issuers. Some card brands, such as Visa and MasterCard,

do not participate directly in acquiring and issuing, but rather delegate those

functions to third-party independent organizations.3 Other brands, such as

American Express, issue cards and acquire payment transactions themselves.

Card brands regulate the payment processing but do not intervene directly

in most cases, including security of sensitive cardholder data in the stores. The

various card brands founded the PCI Security Standards Council (PCI SSC)

which creates and maintains security standards in order to make merchants

responsible for payment data protection.

More Players

In addition to the main players in the payment processing game, there are

“man-in-the-middle” participants who provide a lot of “extras” to merchants.

Theoretically, a merchant might be able to accept electronic payments without

these additional organizations by communicating directly with acquirers. In

practice, however, given the complexity of the payment processing schemes and

the enormous amount of different payment cards and methods, such implemen-

tation would be almost impossible without involvement of payment processors

and gateways.

Payment Processor

Payment Processors handle the payment transactions between the merchant

and multiple acquirers. They also maintain merchant accounts where merchants

actually receive their money paid by the cardholders for their goods or services.

Processors route payment transactions to the appropriate acquirer based

on the payment type and card brand, such as credit, debit, gift, or fl eet cards

issued by Visa, MasterCard, American Express, or others. Payment processors

create fi nancial (transaction) reports for merchants. There are many other help-

ful functions that payment processors provide. In many cases, however, they

cannot provide payment data security to merchants simply because they have

no presence at their stores.

Processors may offer extra functions such as tokenization and even point-to-

point encryption. However, this often does not resolve the security problems

www.allitebooks.com

http://www.allitebooks.org

 Chapter 1 ■ Processing Payment Transactions 9

c01.indd 08:1:53:AM 01/16/2014 Page 9

entirely as many merchants use third-party hardware and software to support

more than one payment processor. Moreover, tokenization features provided

by many processors do not resolve the card data security problem.

C R O S S  R E F E R E N C E See Chapter 3 for more details on PCI.

In the example shown in Figure 1-1, the merchant may process all credit

transactions with processor B, but send gift card transactions to processor C.

Merchant A

POS Machine

POS App Payment
Application

Payment
Processor B

Payment
Processor C

Figure 1-1: Merchant connected to payment processor

Unlike acquirers, payment processors support various payment card types

and methods, such as gift cards, fl eet cards, Electronic Benefi t Transfers (EBTs),

and more. They are not limited to credit and debit cards only.

Payment Gateway

In many cases, a merchant’s POS payment system talks directly to the pay-

ment processor. Sometimes, however, in-between the merchant and payment

processor there is another “man in the middle” called Payment Gateway (or

Payment Switch). Its primary function is providing gateway, or routing, services

to merchants.

Imagine the situation when merchant A has a service agreement with payment

processor B which takes $0.30 plus a 2 percent fee for each processed transaction.

Everything is great until the merchant sees a commercial for payment processor

C which promises to charge $0.29 plus a 1.9 percent fee per transaction. This

10 Part I ■ Anatomy of Payment Application Vulnerabilities

c01.indd 08:1:53:AM 01/16/2014 Page 10

apparently small difference could save a lot of money for merchant A who makes

thousands of transactions every day. However, in order to switch from payment

processor B to C, merchant A must pay the POS software vendor $200,000 for

making changes in its payment application so it would be able to communicate

with processor C; because originally it was designed to only work with proces-

sor B. Figure 1-2 shows that if merchant A were using a payment gateway, such

a change would be transparent for its POS software because the routing would

be done at the payment gateway’s switch that runs in a data center.

Merchant A

POS Machine

POS App Payment
Application

Payment
Processor B

Payment Gateway

Payment
Switch

Payment
Processor C

Figure 1-2: Merchant connected to payment gateway

Payment gateways might provide additional convenient services, such as

point-to-point encryption, centralized reporting, POI device management,

tokenization, and more.

The main difference between a payment processor and a gateway is that

the processors, in addition to the switch functions provided by gateways, also

maintain merchant accounts and facilitate settlement processes.

Another important role that a payment gateway might play is providing

a piece of software that runs at the store and talks with the POS/payment

application on one end, and the gateway’s switch (server running in the data

center) on the other end. In this way, the payment gateway might infl uence

the security of the merchant’s payment infrastructure. It can either improve it

(for example, by providing P2PE functionality) or damage it (by implanting its

insecure component into a previously secure POS system). In most cases, the

merchant is still responsible for the security of the gateway’s client application

running at the store.

 Chapter 1 ■ Processing Payment Transactions 11

c01.indd 08:1:53:AM 01/16/2014 Page 11

Even More Players

Even though the key players such as issuers, acquirers, and card brands are

necessary elements in payment processing, the reality is that they have minimal

to no infl uence on security of the payment data in the merchant stores because

their part of the process happens “up in the clouds,” far away from the danger-

ous surface of the retail environment. Processors and gateways are a bit closer to

reality because they communicate directly with the stores and sometimes even

provide their piece of software running at the POS. However, they still have

no control over the situation because their interfaces are just a single fragment

of a complex integrated payment environment, and there are other players in

the payment processing game who are located right at the front line: payment

software vendors and hardware manufacturers.

Payment Software Vendors

Third-party software vendors develop POS and payment applications for mer-

chants. These applications handle (process, transmit, and store) the sensitive

data during the entire payment cycle in the retail store, from the moment of

card swipe to the settlement. If you take a look at the information brochures

provided by payment brands, you will not fi nd software vendors in the list of

payment-process players. This is wrong. Software vendors create applications

which are installed at the stores and, among other things, are supposed to protect

the cardholder data from being stolen. Unlike merchants, application developers

are in a good position to invent and implement complex security technologies.

If a POS system, which is usually created by a third-party software vendor and

not by the merchant itself, fails to protect the cardholder data, the entire pay-

ment security fails because retail stores are the main target of hacker attacks.

Payment application vendors are obligated to obey the PCI PA-DSS (Payment

Application Data Security Standard), which is not strong and effective enough

to protect sensitive data (see Chapter 3 for more about PA-DSS).

Hardware Manufacturers

Hardware manufacturers are another example of misrepresentation of the

payment-processing cycle. They create the peripheral devices necessary for

transaction processing, such as MSR and pinpads (see more information about

these devices later in this chapter). These devices are located at the front line of

the payment data security because they accept, process, and transmit the sensi-

tive authorization data, in the form of magnetic stripe swipe or manual entry,

at the very fi rst phase of the payment cycle. Pinpad devices must be PCI PTS

compliant in order to be allowed to process debit transactions. Both MSR and

12 Part I ■ Anatomy of Payment Application Vulnerabilities

c01.indd 08:1:53:AM 01/16/2014 Page 12

pinpad devices must be PCI PIN Transaction Security (PTS) compliant in order

to be included in P2PE solutions. For all that, their manufacturers are often still

not mentioned while describing the payment-processing fl ow.

Payment Stages

Card payment transactions go through the stages starting with the initial swipe

at the POS and ending by the bill being sent to the cardholder. From the entire

payment system perspective, there are two main stages of payment processing:

authorization and settlement. From the POS and payment application viewpoints,

however, there is more granularity behind these two phases.

Authorization

The very fi rst step in a card payment process is called authorization. It is nec-

essary in order to check the cardholder’s credit or, in the case of a debit card,

check whether the cardholder’s bank account has enough funds to process the

payment. The authorization fl ow is shown in Figure 1-3.

Cardholder
Swipes the

card

Processes
payment;
Transmits
request

Transmits
request

Transmits
request

Routes
request

Routes
request

Merchant’s
payment
hardware

Accepts and
transmits the

card data

Issuer
Checks

available
credit or funds

Payment
brand’s
network

Acquirer
Processor

Gateway

Merchant’s
payment
software

Figure 1-3: Authorization flow

 Chapter 1 ■ Processing Payment Transactions 13

c01.indd 08:1:53:AM 01/16/2014 Page 13

In a retail store, for example, as soon as the cashier fi nishes scanning the items

selected by the customer, he hits the subtotal button which usually switches the

POS to payment mode. The customer is then prompted to select the method of

payment and, if it is a credit, debit, gift, or EBT card, swipes the card at the card

reader, which can be either a simple MSR or a sophisticated POI device. The

payment application analyzes the card data and initiates the payment transac-

tion according to card type and Bank Identifi cation Number (BIN) range (more

details about BIN range are discussed in Chapter 4). The next “station” for the

payment transaction is either payment gateway or payment processor. The

transaction data is routed to the appropriate acquirer which then communicates

with the issuer in order to get an approval. The issuer is the one who maintains

the database with the information about the cardholder’s account and checks

its status in real time.

If a credit transaction is being performed, the issuer will check the amount of

credit and compare it with the transaction amount. If the customer has enough

credit to cover the full payment transaction amount, the issuer will return an

approval response to the acquirer which returns it to the payment processor

and so on back to the POS. In the case of a debit card, the issuer will check

the cardholder’s bank checking account to make sure the account has enough

funds. A similar checkup is performed for gift cards with the only difference

that a gift card has no bank account associated with it. Instead, each gift card

is linked to a special database record maintained by the gift card provider. In

any case, if the customer does not have appropriate credit or enough funds in

their bank account or gift card record, the transaction will be declined by the

issuer, and the decline response will be returned all the way back to the POS,

which will display an appropriate message prompting the customer to use a

different method of payment.

The authorization stage is most important from a data security viewpoint

because it requires sending all available sensitive authentication data (Track 1

or Track 2 or both) from the POS throughout the entire system to the acquirer.

Most of the attacks on card data occur at this stage.

Settlement

Once authorization is obtained and the transaction is fi nalized by the POS

system, the payment must be settled, which means that the payment is reconciled

between the merchant, its acquirer, and the issuer. During the settlement, the

merchant (or more precisely, its payment system) sends the transaction data to

the processor which forwards it to the acquirer. The acquirer or the processor

14 Part I ■ Anatomy of Payment Application Vulnerabilities

c01.indd 08:1:53:AM 01/16/2014 Page 14

credits the merchant’s account, and sends the data to the issuer who posts the

transaction to the cardholder’s account. Figure 1-4 shows the settlement fl ow.

Cardholder
Receives the
statement;

Pays the bill

Creates, sends, and
reconciles the batch

Credits merchant’s
account; Transmits

transaction for settlement

Facilitates the
settlement

Transmits the
batch

Processes the batch;
Creates reports; Credits

merchant’s account

Issuer
Posts transaction to

cardholder’s account;
Sends the statement

Payment
brand’s
network

Acquirer
Processor

Gateway

Merchant’s
payment
software

Figure 1-4: Settlement flow

From a security viewpoint, settlement is less dangerous than the authoriza-

tion stage because it usually does not operate with full sensitive authentication

data (Tracks 1 and 2). On the other hand, the settlement process requires accu-

mulation of multiple transactions in batches as well as storage of the Primary

Account Number (PAN), while authorization data is normally destroyed as

soon as approval is received by the POS (Table 1-2). Therefore, in the case of a

security breach associated with data storage, information about multiple trans-

actions stored in the batches and awaiting settlement can be “sucked out” in

a short period of time. Stealing an equivalent amount of card data during the

authorization stage would require long term “listening” to the system.

 Chapter 1 ■ Processing Payment Transactions 15

c01.indd 08:1:53:AM 01/16/2014 Page 15

Table 1-2: Participation in Authorization and Settlement Processing

INVOLVED

PARTY AUTHORIZATION SETTLEMENT

Cardholder Swipes the card or keys the account

number at POS.

Pays the bill!

Merchant (per-

sonnel, network

and server

infrastructure)

Accepts, processes, and transmits

the sensitive authentication data.

Stores and transmits the sen-

sitive cardholder data.

Merchant’s hard-

ware (MSR, pin-

pad devices)

Accepts, processes, and transmits

the sensitive authentication data to

the payment application.

N/A

Merchant’s soft-

ware (POS, pay-

ment application)

Processes the payment transaction;

Routes transaction to appropriate

payment gateway or processor.

Stores transaction batches;

Initiates and processes the

settlement through the pay-

ment gateway or processor.

Payment gateway Routes the request to appropriate

payment processor or acquirer.

Stores transaction batches;

Initiates and processes the

settlement through appro-

priate processor or acquirer.

Payment

processor

Sends the request to appropriate

acquirer.

Stores transaction batches;

Initiates and processes the

settlement;

Credits the merchant’s

account

Acquirer Sends the request to the payment

brand’s network or issuer.

Credits the merchant’s

account.

Payment brand Passes the request from acquirer to

issuer.

Facilitates settlement.

Issuer Checks the cardholder’s available

credit (credit card) or funds (debit,

gift cards);

Provides online response.

Posts transaction on card-

holder’s account;

Sends the bill to the

cardholder.

16 Part I ■ Anatomy of Payment Application Vulnerabilities

c01.indd 08:1:53:AM 01/16/2014 Page 16

Payment Transactions

Each payment transaction has two parameters: authorization amount and trans-
action amount. At the authorization stage, the acquirer authorizes the merchant

to charge the cardholder for the amount of money which is less or equal to the

authorization amount. Once the payment is fi nalized, the merchant sends the

transaction to the acquirer for the settlement with the transaction amount which

cannot exceed the authorization amount.

Sale vs. PreAuth/Completion

Depending on transaction and merchant type, authorization can be requested

for a particular payment amount or for an abstract limit amount. For example,

if you purchase groceries in the local supermarket, the POS will likely obtain

authorization for the exact amount of your purchase. This “plain” transaction

is called Sale.
However, if you pay for fuel at the gas station, the payment application fi rst

obtains pre-authorization (PreAuth) for some predefi ned “limit” amount which

can be either dictated by the card brand or set by the merchant. This is because

the POS system does not know exactly how much fuel will be pumped into

the tank. Once the fueling is fi nished, the POS at the fuel pump will calculate

and send the exact amount of the payment. Such an additional step in payment

processing is called completion.

An important difference from a security viewpoint between Sale, PreAuth, and

Completion messages is that both Sale and PreAuth contain sensitive authentica-

tion information (full track data or PAN), while a Completion message usually

contains only the PAN or no card data at all because the transaction was already

initiated so Completion can be linked with the original PreAuth using other

forms of identifi cation, such as transaction number or token.

Void and Return

It’s fair to say that Void and Return are just the opposite of Sale or PreAuth/

Completion. If the payment is done by mistake, or the customer wants to return

the merchandise and get their money back, the cashier can initiate a Void or

Return payment transaction. There is a difference between Void and Return

though. Void is usually triggered when the customer or merchant wants to

cancel the entire transaction which might include several items and payment

methods. Return, or Refund, is normally used when the customer returns a

 Chapter 1 ■ Processing Payment Transactions 17

c01.indd 08:1:53:AM 01/16/2014 Page 17

single item and the merchant needs to return only a partial amount rather than

the entire payment.

Another important difference (from a security viewpoint) between Void

and Return is that Void cannot be performed without a link to the original

Sale transaction, while Return can be initiated any time. Void is just a cancella-

tion of a previously existing payment, while Return is placing the money into

the cardholder’s account without any connection to previous activity. In other

words, it is much easier to use Return to steal money from a merchant’s account

and put it into the bad guy’s account. Also, Void transactions (if implemented

correctly by payment application vendor and processor) do not necessarily

contain sensitive information because the original transaction record already

contains the card data.

Fallback Processing

Fallback processing (also referred as Stand-In, or Store & Forward, or Offl ine
Authorization) is a very important function for a merchant’s business continu-

ity. It provides the ability to accept card payments “offl ine” when the network

connectivity or payment-processing hosts are down for any reason. If a pay-

ment application cannot obtain online authorization from the acquirer, under

some circumstances (depending on card type, transaction amount, and other

parameters) it is allowed to generate internal approval and store transactions

for further processing. Fallback authorization can be almost transparent for

untutored cashiers and customers. In many cases, however, some evidence of

offl ine authorization is present and can be recognized:

 ■ Transaction processing time for offl ine approval can be noticeably longer

compared to online authorization because a payment application can be

programmed to wait for response timeout before it is allowed to approve

the payment internally. Response timeout values are defi ned by pay-

ment processors as part of the message protocol and may vary signifi cantly

depending on connectivity and communication type. However, in most

cases the value can be set to several seconds, which is distinctly longer than

the several milliseconds required for online processing on fast networks.

Failover processing (such as dial-up fallback) can be another reason for

signifi cant delay in obtaining offl ine approval. Some processors require the

payment application to switch to a backup host or different communica-

tion line in order to attempt online authorization if the main connection

or host is down.

18 Part I ■ Anatomy of Payment Application Vulnerabilities

c01.indd 08:1:53:AM 01/16/2014 Page 18

 ■ When a payment application receives online approval for a payment

transaction, the host response contains an authorization code generated

by the acquirer’s software. This code is often printed on the payment slip

of the transaction receipt. If the POS goes to the offl ine mode, the pay-

ment application generates its own authorization code while approving

the transaction offl ine. Such a code can be generated using a different

algorithm (sometimes simply running a counter or current timestamp)

and, therefore, it can be easily distinguished by the cashier or customer

from the code created by the host. For example:

Authorization code returned by the host: FVIKP0.

Offl ine authorization code generated by payment application: LA1234.

A very important feature of fallback processing is the fact that the POS must

store sensitive cardholder data on disk for the entire period of network outage,

which may vary from a few seconds to several days. Such a need to accumu-

late sensitive information in potentially very large amounts opens an obvious

opportunity for the bad guys. Normally, if the system is properly designed, the

cardholder data is no longer stored at the POS machine after the authorization

phase is done. However, in the case of Store & Forward (S&F), the authoriza-

tion cannot be technically done because there is no communication with the

authorization host.

Timeout Reversals

Timeout Reversal, or TOR, is a mechanism that prevents duplicate charges,

which is described in more detail in Chapter 2. TOR is another example (after

S&F) of a situation when the POS must store locally (even if only temporarily

and in encrypted form) the sensitive authentication data which could then be

retrieved by an attacker.

Special Transaction Types

There are less common POS transaction types (Table 1-3) that are mostly used

either in exceptional situations or when handling special card types. Examples

of such transactions are gift card balance inquiry and recharge. Balance inquiry is

used to check the remaining balance of the gift card, and the resulting transac-

tion data may contain full track data. Recharge is used to add funds to a gift card

using another method of payment (such as cash or credit card), thus containing

sensitive card data information.

www.allitebooks.com

http://www.allitebooks.org

 Chapter 1 ■ Processing Payment Transactions 19

c01.indd 08:1:53:AM 01/16/2014 Page 19

Table 1-3: Payment Transaction Types

TRANSACTION

TYPE SYNONYM FUNCTION SECURITY CONCERNS

Sale Purchase Regular payment

transaction (mostly

used)

Contains full sensitive

authentication data

(magnetic Tracks 1 and 2)

PreAuth Authorization Checks available

balance and obtains

authorization

Contains full sensitive

authentication data

(magnetic Tracks 1 and 2)

Complete Completion Finalizes the payment

initiated by PreAuth

May contain PAN

Void Post Void Cancels previously

processed payment

Requires a link to the

original transaction; May

contain full sensitive

authentication data

Return Refund Credits cardholder’s

account (opposite to

Sale)

Contains full sensitive

authentication data

(magnetic Tracks 1 and

2); Can be used to move

money out of merchant’s

account

TOR Reversal Attempts to can-

cel transaction of

any type when no

response was received

from the host

Contains full sensitive

authentication data

(magnetic Tracks 1 and 2)

Balance Inquiry Check Balance Checks available

balance on gift card

account

Contains full sensitive

authentication data

(magnetic Tracks 1 and 2)

Recharge Reload Adds funds to gift

card account

Contains full sensitive

authentication data

(magnetic Tracks 1 and 2)

Key Areas of Payment Application Vulnerabilities

There are several ways to attack a POS system and its associated payment

application in order to steal sensitive card data. Such methods are often called

Attack Vectors in information security theory. An attack vector usually includes

a scenario of the attack—a description about the performed steps and tools

20 Part I ■ Anatomy of Payment Application Vulnerabilities

c01.indd 08:1:53:AM 01/16/2014 Page 20

used. If you know that a particular invasion is possible, at least theoretically, the

particular scenario (for example, penetration methods, specifi c instructions, and

tools used during the attack) is not so important when discussing the applica-

tion security controls (protection measures). Therefore, instead of attack vectors,

there will be a focus on Vulnerability Areas of the attacks throughout this book.

Assuming that in the context of this research the target (object) of the attack

is always sensitive payment data (or cardholder information), and the environ-

ment (subject) is a brick-and-mortar merchant POS and payment application,

vulnerability area usually describes the location (both physical and logical) of

the data in the application at the moment of the attack. There are three such

locations, or states of the data, in any software program including a payment

application:

 1. Data in Memory—When the payment application processes an authoriza-

tion or settlement, it performs various manipulations with the payment

card data in the memory of the hosting computer (usually the RAM of

the POS machine).

 2. Data at Rest—The payment application stores data, either temporarily or

for long term, on the hard drive.

 3. Data in Transit—The payment application sends and receives data to and

from other applications and devices.

With the exception of data in memory, other data states have sub-areas deter-

mined by a difference in technology around them. For instance, data at rest can

be stored in database or log fi les, and data in transit can be sent via a LAN or

serial connection.

Another key vulnerability area is payment Application Code itself and its

Confi guration (confi g). The code or confi g do not contain any cardholder infor-

mation by themselves, but can be tampered with (modifi ed) by an attacker or

malicious software in order to gain unauthorized access to the data in other

key vulnerability areas.

With that said, there are four key vulnerability areas of payment applications

which are shown in Figure 1-5:

 1. Data in memory

 2. Data at rest

 3. Data in transit

 4. Application code and confi guration

Table 1-4 lists the key vulnerability areas with all sub-areas. These terms will

be used in the discussions about payment application threats and mitigations

throughout this book. More details about vulnerability areas and their examples

can be found in Chapter 2.

 Chapter 1 ■ Processing Payment Transactions 21

c01.indd 08:1:53:AM 01/16/2014 Page 21

Retail Store Payment Processor
Data Center

Payment-
Processing

Host
Payment

Application

Hard Drive

POI Device

POS Machine

POS App

Memory

Data in transit

Application Code
& Configuration

Data at rest

Data in transit,
Application Code

Data in
memory

Data in transit

Data in transit

Figure 1-5: Key vulnerability areas

Table 1-4: Vulnerability Areas of Payment Applications

KEY AREA SUBAREA EXAMPLES

TYPICAL

DATA

USUALLY

PROTECTED?

Data in memory Full No

Data at rest Temporary

storage

S&F, TOR, active

transaction

databases

Full Yes

Long-term

storage

Batch, settle-

ment, archive

records

PAN Yes

Log fi les Random

Data in transit Local

communication

LAN between

application

modules

Full No

Communication

between POI

device and POS

Full No

Communication

to processors

Host links Full No

Continues

22 Part I ■ Anatomy of Payment Application Vulnerabilities

c01.indd 08:1:53:AM 01/16/2014 Page 22

KEY AREA SUBAREA EXAMPLES

TYPICAL

DATA

USUALLY

PROTECTED?

Application

code and

confi guration

Application code N/A No

Application

confi guration

N/A No

Summary

There are several main types of payment cards: credit, debit, gift, and fl eet. Credit

and debit cards are the most vulnerable because they are widely accepted and

carry signifi cant amounts of money.

There are several participants or “players” in electronic payment processing:

cardholder, merchant, software vendor, hardware manufacturer, gateway,

processor, acquirer, card brand, and issuer. The merchant is the most vulnerable

element in this chain because it faces the public directly, and its interaction with

the customers has a signifi cant surface: multiple stores and POS.

The process of payment by plastic card consists of two main stages: autho-

rization and settlement. The authorization phase is more dangerous because it

requires transmission of sensitive authentication data, which is often unencrypted,

throughout multiple systems. Such data can be intercepted by an attacker and

used to produce counterfeit cards.

There are several key vulnerability areas of a POS system and its associated

payment application:

 ■ Data in memory

 ■ Data at rest

 ■ Data in transit

 ■ Application code and confi guration

Each of these vulnerability areas has its specifi cs and can be attacked using

different methods at different times throughout the payment processing cycle.

Table 1-4 (continued)

 Chapter 1 ■ Processing Payment Transactions 23

c01.indd 08:1:53:AM 01/16/2014 Page 23

Notes

 1. USB Keystroke Loggers, Amazon.com, http://www.amazon.com/s/ref=nb_

sb_noss?url=search-alias%3Daps&field-keywords=USB%20keystroke%20

Logger

 2. Card Acceptance Guidelines for Visa Merchants, Visa, http://usa.visa.

com/download/merchants/card-acceptance-guidelines-for-visa-

merchants.pdf

 3. Merchant Acquirer List, Visa, http://usa.visa.com/merchants/new-

acceptance/merchant-acquirer-list.html

25

c02.indd 08:3:32:AM 01/16/2014 Page 25

In order to understand all of the different types of threats that may break the

payment application (PA), it is fi rst necessary to learn about the internal struc-

ture of these systems. The details of concrete implementations may vary from

vendor to vendor, but the main design principles remain closely similar due to

the narrow specialization of such applications.

Essential Payment Application Blocks

Typical payment application architecture, shown in Figure 2-1, consists of external

interfaces and processing modules. Interfaces are the bridges to the outer world.

Processing modules drive the fl ow of the payment transaction.

Interfaces

All systems need to communicate with the outside world of peripheral hardware

and external software, so device and application interfaces are essential parts of

any payment application. There are three types of external interfaces that connect

the PA with devices and applications:

 1. POI device interface

 2. POS API

 3. Payment processor link

 C H A P T E R

2

Payment Application Architecture
No fathers or mothers think their own children ugly; and this self-deceit is yet stronger with

respect to the off spring of the mind.

 —Miguel de Cervantes

26 Part I ■ Anatomy of Payment Application Vulnerabilities

c02.indd 08:3:32:AM 01/16/2014 Page 26

Payment Application

POS API

POI Device
Interface

S&F TOR

Flow
Processor

Router
Payment

Processor
Link

Payment
Processor

Link

Payment
Processor

Link

Card Parameters Routing
Tables

Batch

S&F Records TOR Records Batch Records

Figure 2-1: Architecture blocks of a typical payment application

A single payment application may have several implemented interfaces of

any type, depending on the required number of supported peripherals, POS

models, and authorization networks.

POI Device Interface

The POI Device Interface is in charge of the data exchange with the pinpad or

standalone MSR devices. This interface includes implementation of device-specifi c

communication and message protocol (or several protocols if the application sup-

ports multiple peripheral types). Typical communication is done either through

a serial (COM) port or using TCP/IP over LAN. However, message protocols

vary, and vendors implement their own “languages.” Recent models allow the

use of encryption methods such as Secure Socket Layer (SSL) or data payload

encryption, as well as authentication with certifi cates for added security.

A common “feature” of many POI devices’ communication and message pro-

tocols is a lack of built-in communication security mechanisms for cardholder

data protection. Default communication implementations don’t require any

encryption of sensitive data or device authentication by the payment applica-

tion, which means that sensitive data can be easily eavesdropped or the device

can be altered.

 Chapter 2 ■ Payment Application Architecture 27

c02.indd 08:3:32:AM 01/16/2014 Page 27

POS API

The Point-of-Sale Application Programming Interface (POS API) is responsible

for communication with the POS application to handle the payment transaction

fl ow, which includes receiving transaction parameters, processing cashier and

customer prompts, and returning the results. This type of communication can

be done in different ways depending on the particular application design of

POS and PA, from an in-process memory data exchange to a remote TCP/IP or

HTTP connection. It is typically called an API because a single PA can support

different POS applications, and the integration is done by POS developers using

API specifi cations provided by the PA vendor.

Security concerns remain the same as those for device interfaces: there are

no standard security mechanisms. Specifi c issues depend on the type of con-

nectivity. If POS and PA run under the same OS process, the memory of the

process can be scanned using RAM scraping in order to retrieve sensitive data.

In the case of remote communication interfaces based on network protocols

such as TCP/IP (or higher in OSI Model protocol stack HTTP and Web Services),

the vulnerabilities are the same as those for any network communication (see

Chapter 5 for details).

PA vendors may state that communication between POS and PA doesn’t carry

sensitive data because PA handles all the aspects of any payment transaction

and only returns the masked results to the POS at the end without exposing the

details of the magnetic stripe. Such statements can be only partially true due to

the following concerns. First, in the case of manual entry, when the MSR fails

to read the magnetic stripe, the PAN is usually entered by the cashier at the POS

and sent to the PA along with additional sensitive data such as expiration date,

CVV, or ZIP code. Second, the PA interface may expose methods that return

an unmasked PAN or even whole tracks in clear text. Such API methods, if not

protected by access controls, can be manipulated by malicious software.

Payment Processor Link

The processor link supports two main functions:

 1. It converts transaction parameters from the application internal repre-

sentation to a special format according to the payment processor message
protocol.

 2. It communicates with the authorization host using a communication protocol
supported by the payment processor.

28 Part I ■ Anatomy of Payment Application Vulnerabilities

c02.indd 08:3:32:AM 01/16/2014 Page 28

Each processor link is hard-coded to communicate with a particular processor.

However, the location of the processor’s server is usually soft-coded (confi gured).

For example, a host confi guration may contain the IP address and server port

for TCP/IP-based communication protocols on private networks, or the URL

for HTTP-based protocols over the Internet.

If the confi guration isn’t protected and there is no authentication between client

and server, those parameters can be tampered with so the payment application

may end up communicating with a bogus host. Such modifi cation is invisible to

the payment system because the fake host may just log all the traffi c (in order

to extract and steal all sensitive cardholder information) and then reroute it to

the legitimate processor (so the intrusion will remain undisclosed).

Special links can be created for development testing or in-house applications.

Such “dummy” links do not necessarily communicate with the outside world

in order to obtain authorization, but can be programmed to simply return

automatic “approval” responses based on minimal or no conditions. If regular

card transactions are routed to such a link (see the upcoming “Router” section

of this chapter), the payment will be processed by the POS without any actual

transaction being recorded.

Processing Modules

The second group of payment application blocks consists of fl ow-processing

modules that drive the payment process from the moment of swiping the card

to getting the merchant paid and the cardholder’s account charged. The main

processing modules include:

 ■ Router

 ■ S&F (Store and Forward)

 ■ TOR (Timeout Reversal)

 ■ Batch

Router

The router module is intended to send (“route”) the payment transaction for

authorization, completion, or settlement to a particular payment processor link

based on the card BIN range, card type, transaction type, or other predefi ned

system parameters. Usually, PA has more than one payment processor link

www.allitebooks.com

http://www.allitebooks.org

 Chapter 2 ■ Payment Application Architecture 29

c02.indd 08:3:32:AM 01/16/2014 Page 29

implemented on different levels—POS, store, or data center switch—depending

on the particular system architecture. For example, credit card payments can

be routed to a standard payment processor; PIN transactions can be sent to a

particular debit network; and gift cards can be sent to a proprietary (“closed

loop”) switch. In order to make decisions, the router uses a routing table that

contains (at least) PAN range records with pointers to particular payment pro-

cessor links. For example, according to the confi guration defi ned in Table 2-1,

all transactions made with Visa cards will be sent for authorization to Bank of

America, while American Express card transactions will be routed for process-

ing directly to American Express Bank.

Table 2-1: Example of PAN Range Routing Table

PAN FROM PAN TO LINK ID

4000000000000000 4999999999999999 BOA

340000000000000 349999999999999 AMEX

370000000000000 379999999999999 AMEX

Routing decisions can also be made based on other criteria, such as transac-

tion type. For example, all gift card activations, reloads, and balance inquiries

can be set up to be routed to a gift card processing network regardless of the

card’s PAN.

A person familiar with the payment application design (such as an intruder

or a former employee) may be able to play with the routing confi guration (if it

isn’t protected from tampering) and force the system to forward transactions

with fake cards from predefi ned PAN ranges to “dummy” processor links.

Such transactions will obtain legitimate approval without recording the actual

payment in the processor’s database.

S&F: Store and Forward

The S&F module implements a very important fallback function that allows

merchants to support business continuity by the uninterrupted acceptance of

electronic payments.

N O T E See the “Fallback Processing” section in Chapter 1 for more details. Do not

confuse this type of fallback with dial-up fallback, which is described in the “Physical

Connections” section of this chapter.

30 Part I ■ Anatomy of Payment Application Vulnerabilities

c02.indd 08:3:32:AM 01/16/2014 Page 30

When the authorization network is down and the transaction fi ts the offl ine

processing criteria defi ned by the payment processor, the S&F module gener-

ates offl ine approval and stores the transaction in the S&F database. As soon

as the authorization network becomes available again, S&F forwards the stored

transactions to the host. Another option is forwarding stored transactions as part

of the end-of-day process for settlement (see the upcoming “Batch” discussion

for details about the Settlement process).

The most notable feature of S&F, from a security point of view, is that offl ine

transaction records can be stuck on a POS or BO machine for periods of time

ranging from seconds to days, depending on the scale of the network outage.

Such records often include full track data necessary for host processing. PCI

DSS and PA-DSS standards don’t allow full track data storage, as noted in these

references:

Sensitive authentication data must not be stored after authorization (even if
encrypted)1, 2

However, “after authorization” is the key word in this sentence. When applied

to fallback processing, this requirement means that track data can be stored for

S&F, and in reality almost all payment applications do so.

TOR: Timeout Reversal

Timeout reversal is the error-control mechanism that prevents duplicate charges

on the cardholder account. Duplicate charges occur when the POS doesn’t receive

an authorization response from the host (called response timeout) when the

transaction is actually approved and recorded by the processor. In this case, the

transaction doesn’t appear to be fi nalized from the POS, cashier, and customer

viewpoints, but the customer’s account is charged. If the cashier swipes the card

again and receives approval, the customer account will be charged twice. In

order to prevent such situations, when the payment application doesn’t receive

a host response (or, in other words, receives a response timeout), it generates

and sends the timeout reversal (TOR) message instructing the host to cancel the

transaction—whether it was approved or not. If the TOR module cannot com-

municate with the host (expected behavior in this situation, due to the same

reason that caused the original response timeout), it accumulates timeout rever-

sal messages in the TOR database and forwards them to the server as soon as

the network comes back online again. This process is very similar to the S&F

mechanism. The main security concern about TOR is also similar to the one

with S&F: sensitive authentication data storage.

Thanks to S&F and TOR features, the exposure of sensitive authentication

data is expanded to new media (disk storage instead of just memory handling)

 Chapter 2 ■ Payment Application Architecture 31

c02.indd 08:3:32:AM 01/16/2014 Page 31

and extended for longer periods of time (from minutes to hours to days, instead

of just the several milliseconds required for online processing).

Batch

The Batch Module (also called Close Batch, Close Shift, End of Day, or Settlement
Module) is responsible for the recording and settlement of payment transactions

processed during a specifi c period, usually one business day.

The word batch is inherited from the days when credit cards were processed

manually by imprinting the card using a special manual imprinter device. The

imprint left traces of PAN, expiration date, and cardholder name (embossed

on the front of the plastic card) on the transaction slip. During the workday,

those pieces of paper were stocked in batches and sent to the credit companies

for settlement. Nowadays, the settlement process in general remains the same

with the only difference being that it’s performed automatically by computers.

There are a couple of details about the batch closing process that may require

your attention. First, some processors still require sending full PAN during the

settlement, which means that large amounts of account numbers are accumu-

lated by the PA during the day to send later for settlement. As you can imagine,

this fact didn’t go unnoticed by the concerned party. However, some payment

processors have already changed their interfaces so they don’t require sending

PAN on settlement anymore.

The second issue is much more serious because there’s still no solution. It has

to do with reconciliation and chargebacks. Some protocols require resending

transaction records at the end of the day if the total dollar amount of processed

payments at the host doesn’t match the total calculated by the store payment

system. This error-correction process is called reconciliation. During the end-of-

day settlement and reconciliation, transactions can be rejected by the processor

for any reason. For example, a payment may have been approved offl ine and

processed by the S&F module. Such a rejection is called a chargeback. The problem

with both reconciliation and chargeback is that they require the full PAN to be

re-sent to the host, which means that all account numbers should be archived

for at least several days. This “feature” of the batch processing module is very

attractive for some individuals.

Data Storage

Besides the “data in transit” which is mostly associated with communication

interfaces and protocols, another possible state of sensitive cardholder informa-

tion is “data at rest,” a term used to describe any form of hard-drive storage

such as database, fl at-data fi le, or log fi le. There are multiple use cases for data

32 Part I ■ Anatomy of Payment Application Vulnerabilities

c02.indd 08:3:32:AM 01/16/2014 Page 32

storage in payment applications: TOR, S&F, batch records, and application log

fi les. Even single-payment applications can utilize different technologies (and

protection mechanisms) for different modules. For example, TOR, S&F, and batch

may use a database such as the MS SQL Server, while application logs can be

stored as simple fl at fi les. In this case, the payment application may implement

separate encryption schemes for databases and fl at fi les.

Unlike communication and message protocols, there have been no attempts

to establish standards for payment-application data storage. Available technolo-

gies are diverse, and software vendors are free to pick whichever one they like.

In most situations, there is no standard approach to the encryption of data at

rest. Therefore, developers “invent” proprietary encryption and key manage-

ment solutions often assumed to use strong encryption algorithms approved

by industry standards. In practice, it means that the application calls a standard

cryptographic library such as .NET’s System.Security.Cryptography or Java’s

JCE—which is great, because the more a crypto library is used, the more it is

secure. However, the overall implementation of the encryption mechanism in

those applications is still proprietary which means its vulnerability level is

undetermined.

The point is that the code of any encryption algorithm is only one side of the

entire cryptographic mechanism. Even the strongest cryptography will fail if it’s

surrounded by weak authentication and poor key management. DUKPT used

for debit PIN protection is a notable exception and an example of a standard-

ized technology that defi nes not only an encryption algorithm (3DES) but also

key management and even the physical environment around it (see Chapter 8

for more details about DUKPT).

Using multiple data storage technologies may require the use of different

cryptographic protection mechanisms, which increases application vulner-

ability. The lack of standard security technology for payment application data

storage results in various vulnerabilities associated with data at rest. Those

vulnerabilities are reviewed in Chapter 6.

Typical Payment Transaction Flow

In order to understand how the modules just described communicate with

each other, let’s review a simple best-case scenario of a payment transaction to

see how sensitive authentication data fl ows between different payment applica-

tion modules.

Figure 2-2 shows that even the simplest fl ow is divided into three relatively

independent sub-fl ows, and the entire process is event-driven.

 Chapter 2 ■ Payment Application Architecture 33

c02.indd 08:3:32:AM 01/16/2014 Page 33

Simplified “Best Case Scenario” Payment Authorization Flow

P
O

S
 A

P
I

Fl
o
w

P
ro

ce
ss

o
r

P
O

I
D

ev
ic

e
R

o
u
te

r
P

ro
ce

ss
o
r

L
in

k
B

at
ch

Request to
Start Payment

from POS

Start
Payment

Transaction

Prompt
Customer to
Swipe Card

Identify the
Card

Enable MSR
and Ask to

Swipe the Card

Customer
Swipes
Card

Route to
Appropriate Link

Receive
Host

Response

Record Transaction in
Batch DB for Settlement

Format Message,
Send Message,

Wait for Response

Load Card
Parameters

Analyze
Response

Process Host
Result

Return Payment
Approval to POS

Figure 2-2: Typical Payment Transaction Flow

From a payment application point of view, everything starts when the cashier

fi nishes scanning the items and hits the “payment” button (various POS models

call it by different names, but the idea is always the same), which switches control

from the POS to the payment application. The customer is prompted to swipe

the card. As soon as the card is swiped, it is identifi ed and an authorization

request message is created and routed to the appropriate payment processor

link (based on card type and other parameters loaded from the confi guration

database). The processor link formats the message according to message pro-

tocol rules, establishes a connection with the host, and sends the message for

authorization using the communication protocol. In this best-case scenario,

everything works well, so the application quickly receives an approval response

from the host, records the results in the batch database, and signals to the POS

that payment is done.

34 Part I ■ Anatomy of Payment Application Vulnerabilities

c02.indd 08:3:32:AM 01/16/2014 Page 34

As you can see in Figure 2-2, even in the simplest optimistic case (with straight

online approval, without exceptions, customer prompts, S&F, TOR, and before

settlement), the cardholder information is present at almost every step of the

payment process. In a single transaction lifetime, sensitive data is squeezed

(more than once) through all possible states: in memory, at rest, and in transit.

There are endless possibilities for hacking.

Communication Between Modules

In addition to external API and device interfaces, different PA modules should

communicate with each other using some kind of internal message protocol that

defi nes a proprietary format for commands and messages. At fi rst glance this

communication is unnoticeable, especially if the modules are either compiled

into a single binary or located at the same machine.

There is a signifi cant risk of sniffi ng and tampering if:

 ■ The modules reside on different computers, or

 ■ They are located on the same machine but can be easily distinguished by

their function and have their own API

The following sections present more details about internal PA communication.

Physical Connections

The fi rst credit card payment terminals communicated with their payment net-

works over regular telephone lines using dial-up modems. A modem is a device

that translates serial communication signals from computers to electric waves

(similar to voice) that can be transmitted over regular ground-phone wires. This

communication was extremely slow because it took a long time for a modem to

establish the connection (“dial up”) to the server even before the message could

be sent. There were, however, some advantages, one of which was that sensitive

information couldn’t be captured remotely using traditional network sniffers.

Some merchants still use dial-up modems, while many use them as a failover

mechanism to be used in case the main network connection through the leased

line, frame relay, or Internet is down for any reason. In those cases, the payment

application automatically switches to the dial-up fallback line so the payment

processing continues uninterrupted. As soon as the network connection comes

back online, the payment application switches back to the main channel.

 Chapter 2 ■ Payment Application Architecture 35

c02.indd 08:3:32:AM 01/16/2014 Page 35

Leased line and frame relay systems are used by merchants as an underlying

connection for traditional network communication. They are common forms of

connectivity between retail stores and their headquarters or payment processors.

The obvious security advantage of WAN—its isolation from public networks

such as the Internet—is at the same time problematic: PCI security standards

don’t require encryption on these networks.

Serial connections through RS232 are used primarily between the POI device

and the computer hosting the POS and payment applications. Dial-up modems

also use serial COM ports for communication with their hosting computer. Even

though the serial port isn’t vulnerable to traditional network sniffi ng, it can be

eavesdropped upon using special serial sniffers.

Communication Protocols

The message exchange between sender and recipient is done using communica-
tion protocols that live at the high levels of the Open System Interconnect (OSI)

stack (as shown in Table 2-2). A payment application module implementing this

communication protocol is responsible for establishing connection, delivery of

the message bits from the sender to the recipient, and error control. High-level

communication protocols can utilize several OSI stack levels3, which is usually

transparent for the payment application as it communicates with the tip of the

iceberg on application level 7 of the OSI stack.

Web Services is one example of a complex protocol associated with security

challenges on different OSI stack levels.4

Table 2-2: Payment Application Communication and OSI Stack

LAYER

NUMBER

LAYER

NAME

PAYMENT APPLICATION

COMMUNICATION EXAMPLES

Layer 7 Application Communication Protocols HTTP, SOAP

Layer 6 Presentation Communication Protocols SSL

Layer 5 Session Communication Protocols Named Pipes, RPC, Full

Duplex

Layer 4 Transport Communication Protocols TCP

Layer 3 Network IP

Layer 2 Data Link Physical Connections Ethernet (LAN), Frame

Relay (WAN)

Layer 1 Physical Physical Connections DSL, RS-232, 10BASE

36 Part I ■ Anatomy of Payment Application Vulnerabilities

c02.indd 08:3:32:AM 01/16/2014 Page 36

Local Communication

Internal interfaces and POS APIs use communication protocols such as DLL

API or Windows COM. DLL APIs and In-Process COM calls are used if both

client (for example, POS application) and server (EPS) are running under the

same OS process (in the same address space). Out-of-Process COM can be used

for communication between different processes when the POS and EPS (or two

internal PA modules) are separate executable applications.

Local (inter-process or in-process) in-memory communication is not exposed

to remote sniffi ng because there’s no network communication involved. However,

such communication is exposed to RAM scraping (see Chapter 5 for details).

Message Protocols

When talking about payment-application communication, it’s necessary to

distinguish between two different types of protocols—message and communica-
tion—that are important from a security viewpoint.

Message protocols work on the application software level above the OSI stack.

Message protocols provide two main functions:

 1. Conversion, using a special message format, of transaction parameters (such

as dollar amount, Track 2, and PAN) from their internal application rep-

resentation into a different form understandable by the other peer of the

communication channel. This conversion process is usually called message
serialization. Once the transaction message is serialized by the sender, it

can be sent using a communication protocol to the recipient, who performs

the opposite transformation—deserialization—to convert the data back into

a format readable by the receiving application (not necessarily the same

as the one used by the sender).

 2. Defi nition and implementation of message processing rules such as response

timeouts, number of resend attempts, fallback, and many other exception

and error-handling rules.

 3. Figure 2-3 demonstrates the implementation of message protocol by the

payment application’s processor link module.

Standard versus Proprietary Message Protocols

As a rule, message protocols for any data exchange between the payment

application and the processor are developed by the latter. While there’s a solid

standardization and regulation of the payment card format (such as physical

characteristics of the magnetic stripe and format of magnetic tracks), there is

a clear lack of similar standards in the message-protocols area. Despite the

fact that a formal industry standard exists for fi nancial transaction messages

 Chapter 2 ■ Payment Application Architecture 37

c02.indd 08:3:32:AM 01/16/2014 Page 37

(ISO 85835), the majority of processors have created their own proprietary pro-

tocols, in some cases just mutated versions of ISO 8583 but often having com-

pletely different formats and rules. There are a few publicly available examples

of proprietary message protocols (mostly outdated) that can be found online.6, 7, 8

Internal Data Representation:

Amount: $10.00

Store ID: 1

POS ID: 5

Track 2: ;4005554444444403=1512101000000012300?

Transaction Type: Sale

CVV2: 123

Formatted Message Buffer:

10.00,1,5,;4005554444444403=1512101000000012300

?,1,123

TCP/IP Data Packet:

Header + Data (10.00,1,5,;4005554444444403=151210

1000000012300?,1,123)

Router:
Routing transaction

data to Payment
Processor Link

Processor Link

Network

Message Protocol
Implementation:

Serializing transaction
data using

proprietary format

Communication protocol
Implementation:

Establishing connection,
sending data packet

over the LAN

Network

Figure 2-3: Interaction between protocols in processor link

38 Part I ■ Anatomy of Payment Application Vulnerabilities

c02.indd 08:3:32:AM 01/16/2014 Page 38

The fact that many payment processors still keep their specifi cations confi -

dential is a shining example of security through obscurity.9

Many message protocols were designed in the 1990s, and most of them were

created without security in mind. The only concerns back then were reliability

and scalability. There was no built-in functionality to protect data confi dential-

ity and integrity (such as encryption, cryptographic authentication, or digital

signing). When it comes to security, the processors and payment application

vendors mostly rely on two factors:

 1. Security through obscurity which is based on assuming that many links

to processors are maintained via leased lines that aren’t supposed to be

accessed by unauthorized parties.

 2. Communication security which is provided by the network infrastructure

(such as VPN or IPSec) instead of the payment software or hardware.

The obvious disadvantage of both approaches is that sensitive data is trans-

mitted in clear text and can be easily wiretapped.

Internal Protocols

As covered earlier in this chapter, there are three main types of payment-

application interfaces: POS API, Payment Processor Link, and POI Device Interface.

All three are external communication interfaces. However, the PA may have a

distributed architecture in which separate modules are deployed at physically

separate locations (see the “Hybrid POS/Store System” section later in this chap-

ter). In this case, there is also an internal communication interface that transmits

data (including sensitive cardholder information) between different modules

of the entire payment application. Such an internal channel usually employs

proprietary, often undocumented, message and communication protocols that

are different from external protocols.

Internal communication can be even more vulnerable than its external coun-

terpart because it usually lives on an unprotected local network, since PCI DSS

and PA-DSS don’t require encrypting LAN traffi c.

Communication Summary

Table 2-3 shows how different types of PA interfaces use various types of con-

nectivity, communication, and message protocols.

www.allitebooks.com

http://www.allitebooks.org

 Chapter 2 ■ Payment Application Architecture 39

c02.indd 08:3:32:AM 01/16/2014 Page 39

Table 2-3: Summary of Payment-Application Interfaces and Protocols

PAYMENT

APPLICATION

INTERFACE CONNECTION

COMMUNICATION

PROTOCOLS

MESSAGE

PROTOCOLS

MANDATORY

DATA

ENCRYPTION

MANDATORY

CLIENT

AUTHENTICATION

Payment

Processor

Link

Dial-up Serial Proprietary - -

LAN, WAN TCP/IP, HTTP, WS ISO 8583,

Proprietary

- -

Internet TCP/IP, HTTP, WS ISO 8583,

Proprietary

● -

POI Device COM, USB Serial Proprietary - -

LAN TCP/IP Proprietary - -

POS API,

Internal

Memory DLL API, COM Proprietary - -

LAN TCP/IP, HTTP, WS Proprietary - -

There are a couple of common trends of PA communication that can be observed

in the Table 2-3:

 ■ Most interfaces use proprietary message protocols, which usually results

in a lack of security.

 ■ Only one type of connection (over the Internet) has mandatory encryption

(PCI DSS/PA-DSS requirement).

Deployment of Payment Applications

Payment application modules can be distributed (deployed) between different

physical locations. For example, on POS and BO machines in the store, and even

remote servers running in data centers. The deployment model determines the

level of vulnerability of the payment system. This section explains how various

design approaches affect the security of the entire system.

The Concept of EPS

EPS stands for Electronic Payment System. Sometimes, the third letter of this

abbreviation is interpreted as “Server” or “Service,” which doesn’t change the

40 Part I ■ Anatomy of Payment Application Vulnerabilities

c02.indd 08:3:32:AM 01/16/2014 Page 40

meaning of the term signifi cantly. The main purpose of EPS is isolating the

electronic payment processing application from the rest of the point-of-sale

functions. Many experts think that payment processing is a separate and self-

suffi cient business domain. At the same time, there’s no doubt that payment is

an integral part of the point-of-sale transaction fl ow.

Despite the fact that there’s no clear “academic” defi nition of EPS, and the bor-

der between generic POS functionality and payment processing is vague, there

are obvious benefi ts to such a separation from a security viewpoint. Vendors

who create EPS software are subject experts in payment technologies (including

security), whereas POS developers have to be experts in many fi elds (taxation,

inventory, and others) so they cannot be fully focused on security. A logical (and

often physical) separation of the POS and payment system allows “removing POS

from the scope” (security auditors terminology meaning that security standard

requirements like PCI are not applicable to a particular application or machine).

Placing the POS application or machine “out of scope” saves a lot of devel-

opment and implementation work for both software manufacturers and

consumers. However, EPS isn’t a silver bullet solution and there are many other

factors, such as deployment model and encryption schemes, affecting the overall

system security.

Payment Switch

There are at least two functional types of computers in a typical retail store:

POS and BO. The payment application modules can be distributed between

these two types depending on the particular design of the software vendor or

sometimes the requirements of the merchant’s payment processor. In fact, there

is another (third) possible location outside the store.

Many payment software vendors or merchants have their own processing host

that consolidates transaction messages from multiple stores and forwards them

to the appropriate payment processors. This host is usually called the payment
switch. Its primary function is to separate the payment application from jobs

that can be done better in a central location, for example, routing a transaction

to the appropriate processor based on its BIN range or card type (see Figure 2-4).

At fi rst glance, the deployment model with a proprietary payment switch

appears more secure, because it is easy to protect an application in a data center

that isn’t exposed to the kind of hazardous environment one fi nds in a retail

store. However, the payment application is still there—something has to talk to

the pinpad, POS, and the switch, handle cashier and customer prompts, process

and store S&F and TOR messages, and perform many other necessary functions

that can’t be exported to a remote location.

Although implementing a proprietary payment switch helps reduce the

exposure of sensitive data at some points (such as long-term cardholder data

 Chapter 2 ■ Payment Application Architecture 41

c02.indd 08:3:32:AM 01/16/2014 Page 41

storage of settlement records), it does not signifi cantly improve the overall

security level of the store.

Payment Gateway
Data Center

Payment Processor
Data Center

Proprietary
Payment
Switch

POS

Retail Store

POS

POS

Payment
Processing

Host

Figure 2-4: Payment switch

Comparing Deployment Models

In order to compare the risks associated with different architecture and deploy-

ment models, I suggest using the following method of vulnerability score

calculation by counting points of exposure to security threats.

Calculating Vulnerability Score

Let’s assume we have a hypothetical store with a single POS machine and a BOS

(back offi ce server) computer used as the store server. In practice, most stores

have more than just one register; a typical grocery retailer, for example, main-

tains dozens of lanes. However, the number of POS machines doesn’t directly

affect the vulnerability of the system. All the lanes have the same or very similar

hardware, software, and confi guration. As soon as the store network and fi rst

POS machine are penetrated, it’s easy to “export” the breach to other machines.

The store server is a different story, because usually it is more protected, at

least from a physical point of view—it’s located at the “back” of the store and

isn’t exposed directly to customers. Also, it is much easier to harden a single

machine than dozens of POS machines.

On the other hand, the store server may consolidate sensitive data from

all the lanes in the store, so once it’s broken, there’s no need to penetrate any

of the POS machines. Therefore, the store server should be weighted the same

42 Part I ■ Anatomy of Payment Application Vulnerabilities

c02.indd 08:3:32:AM 01/16/2014 Page 42

as multiple POS machines when calculating the vulnerability score, and the

overall store score should be calculated as follows:

Vulnerability Score = POS Score + Server Score

For a deployment model with a payment switch, when long-term data storage

(settlement data and transaction history for chargeback processing containing

primary account numbers) is taken outside the store and implemented in the

data center, it is common practice to subtract one point from the overall vulner-

ability score. However, I would not recommend doing so because hidden, often

undocumented data can still be there (see Chapter 6 for more details about

hidden data).

The score for each PA component (machine) is calculated based on the factors

(exposure areas) derived from the key vulnerability areas of payment applications

defi ned in Chapter 1:

 ■ Data in memory

 ■ Data at rest

 ■ Data in transit

 ■ Application code and confi guration

Data in memory and application code & confi g are calculated as single exposure

areas, while data at rest and data in transit are divided to several sub-categories

(Table 2-4).

Table 2-4: Vulnerability Score Factors

EXPOSURE AREA KEY VULNERABILITY AREA

Memory Data in memory

Temporary data storage Data at rest

Settlement records Data at rest

Application code & confi g Application code & confi g

Connection to POI Data in transit

Internal communication Data in transit

Host links Data in transit

If a particular exposure area is not covered by PCIDSS and PA-DSS require-

ments, the score is multiplied by 2 in order to accommodate a risk associated

with lack of regulation.

 Chapter 2 ■ Payment Application Architecture 43

c02.indd 08:3:32:AM 01/16/2014 Page 43

Store EPS Deployment Model

In a store EPS deployment model, payment processing is done by the EPS in a

central location at the store server, as depicted in Figure 2-5. The EPS is maintain-

ing direct communication with all POS and POI devices. The EPS is handling

everything from card-entry fl ow to processing payment transactions, therefore,

no sensitive data is transferred between the POS and the EPS.

Retail Store Payment Processor
Data Center

POS Machine Store Server

App Memory Payment
Processing

HostPayment
Server App

POS App

POI Device

Data Storage

Figure 2-5: Store EPS deployment model

Some of the security pros and cons of this model are:

 ■ Pro—The POS machine isn’t exposed to sensitive data because it doesn’t

communicate with POI devices.

 ■ Pro—Communication between the POS and the store server machines

doesn’t contain sensitive data, so there’s no need to encrypt this traffi c.

 ■ Con—Communication between POI devices and the store server is

implemented through the store LAN (usually TCP/IP packets), exposing

sensitive cardholder information to the network.

The input data and results of vulnerability score calculation for the store EPS

deployment model are listed in Table 2-5.

44 Part I ■ Anatomy of Payment Application Vulnerabilities

c02.indd 08:3:32:AM 01/16/2014 Page 44

Table 2-5: Vulnerability Score of Store EPS Deployment Model

EXPOSURE

AREA

NO

MANDATORY

APPLICATION

PROTECTION

X2

VULNERABILITY

AT POS

MACHINE

+1

VULNERABILITY

AT STORE

SERVER

+1 SCORE

Memory ● - ● 2

Temporary

data storage

- - ● 1

Settlement

records

- - ● 1

Application

code & confi g

● - ● 2

Connection to

POI

● - ● 2

Internal com-

munication

● - - 0

Host links ● - ● 2

Vulnerability

Score

10

POS EPS Deployment Model

In a POS EPS deployment model, payment-processing is done by an EPS located

at each POS machine, as depicted in Figure 2-6. The EPS is maintaining direct

communication with POS and POI devices and is handling everything from

card entry fl ow to processing payment transaction; therefore, no sensitive data

is transferred between the POS and the EPS. The EPS is maintaining a direct

connection with the payment processor’s switch located outside the store.

Some of the security pros and cons of this model are:

 ■ Pro—There’s no central location in the store that accumulates all the sensi-

tive data in memory, disk storage, or network traffi c. It is easier (and less

expensive!) to protect a single machine and application instance; however,

once it is broken, all the store data is gone.

 ■ Pro—POS application (code) is not handling sensitive data because all

payment functionality is delegated to a separate EPS application.

 ■ Con—All POS machines (memory, data storage) at the store are exposed

to sensitive data as well as communication between the POS machine

and the payment host.

 Chapter 2 ■ Payment Application Architecture 45

c02.indd 08:3:32:AM 01/16/2014 Page 45

The input data and results of vulnerability score calculation for the POS EPS

deployment model are listed in Table 2-6.

Retail Store Payment Processor
Data Center

POS Machine

App Memory Payment
Processing

HostPayment
Client App

POS App

POI Device

Data Storage

Figure 2-6: POS EPS deployment model

Table 2-6: Vulnerability Score of POS EPS Deployment Model

EXPOSURE

AREA

NO MANDATORY

APPLICATION

PROTECTION

X2

VULNERABILITY

AT POS

MACHINE

+1

VULNERABILITY

AT STORE

SERVER

+1 SCORE

Memory ● ● - 2

Temporary

data storage

- ● - 1

Settlement

records

- ● - 1

Application

code & confi g

● ● - 2

Connection

to POI

● ● - 2

Internal com-

munication

● - - 0

Host links ● ● - 2

Vulnerability

Score

10

46 Part I ■ Anatomy of Payment Application Vulnerabilities

c02.indd 08:3:32:AM 01/16/2014 Page 46

Hybrid POS/Store Deployment Model

The hybrid POS/Store deployment model is the most vulnerable solution because

the PA modules are spread across different physical machines. As depicted in

Figure 2-7, initial payment processing (such as interfacing with POI and handling

payment transaction fl ow) is done at the POS machine, which also communicates

with the server module at the store level. The links to the payment switch or

processors are implemented from the store server.

Retail Store Payment Processor
Data Center

POS Machine

App Memory Payment
Processing

HostPayment
Client App

POS App

POI Device

Data Storage

Store Server

App Memory

Payment
Server App

Data Storage

Figure 2-7: Hybrid POS/Store deployment model

There are no security pros associated with this model. The security con is

that both the POS and the store server machines and almost all their compo-

nents (memory, data storage, application code, and communication lines) are

entirely vulnerable.

The input data and results of vulnerability score calculation for the Hybrid

POS/Store EPS deployment model are listed in Table 2-7.

Gas Station Payment Systems

Deployment of a payment system at a gas station looks different from that of a

regular retail store because it involves additional pieces of hardware and software:

the fueling pump and the forecourt controller. As with POS and POI hardware, there

are many pump models that are manufactured by several different vendors.

From the viewpoint of payment security, they can be divided into at least two

groups: Dispenser Payment Terminals (DPT) and Island Payment Terminals (IPT).

 Chapter 2 ■ Payment Application Architecture 47

c02.indd 08:3:32:AM 01/16/2014 Page 47

Table 2-7: Vulnerability Score of Hybrid POS/Store Deployment Model

EXPOSURE

AREA

NO

MANDATORY

APPLICATION

PROTECTION

X2

VULNERABILITY

AT POS MACHINE

+1

VULNERABILITY

AT STORE

SERVER

+1 SCORE

Memory ● ● ● 4

Temporary

data storage

- ● ● 2

Settlement

records

- - ● 1

Application

code & confi g

● ● ● 4

Connection

to POI

● ● - 2

Internal com-

munication

● ● ● 4

Host links ● - ● 2

Vulnerability

Score

19

The difference between the two is simple—the former has MSR and pinpad

devices built into the pump, while the latter has independent POI devices logi-

cally isolated from the pump and controller (there are models of DPT, however,

that are logically isolated from the pump). Obviously, the second type is more

secure because it allows implementing the EPS concept with a complete separa-

tion between the POS and payment fl ows.

The first group—the integrated payment terminal—is vulnerable for

two reasons:

 1. Sensitive cardholder data is exposed in additional areas of software and

hardware, such as the fuel pump controller and related communication

lines.

 2. Most built-in card readers and fuel pump controllers currently do not

support Hardware P2PE (see Chapter 8 for details about P2PE).

In addition, fueling pumps are often unattended, which obviously does

not contribute to the security of their pinpads and opens a Pandora’s box of

skimming.10

The bottom line is that gas station payment applications can be even more

dangerous than their counterparts in regular retail stores.

48 Part I ■ Anatomy of Payment Application Vulnerabilities

c02.indd 08:3:32:AM 01/16/2014 Page 48

Mobile Payments

When speaking nowadays about electronic payments, it is impossible not to

mention the most promising industry trend—mobile payments. Even though

paying with a cell phone in brick-and-mortar stores is not yet a common trend

in the United States, it might be just a matter of a few years before it becomes

a common behavior. Many payment processors, payment software vendors,

cellular communication providers, banks, payment brands, startup companies,

and even Internet search engines11, 12, 13 are fi ghting for the right to be the fi rst

to accept mobile payments and become the standard in this fast-rising sector.

As always, the new technology brings new security challenges.

Currently, there are two main types of mobile payment technology:

 1. Near Field Communication (NFC)-based

 2. Anything else

Both approaches have the same issues associated with specifi cs of mobile

and web application security. NFC-based payment applications, however, have

additional vulnerabilities associated with the way a mobile device communicates

with the merchant’s POS. Let’s review the architecture and deployment model

of typical mobile payment solutions for retail stores.

NFC-based Mobile Payment Technology

The common feature of this group of mobile payment solutions is utilizing Near

Field Communication (NFC) technology, which allows exchanging information

between electronic devices within very close proximity using high frequency

(13.56 MHz) radio communication. NFC, which is essentially a collection of

several protocols and standards14, 15, 16, is employed by different applications

including proximity cards, NFC Tags, and, most recently, mobile payments.

There are mobile payment solutions, such as Google Wallet, that utilize unique

NFC features (Table 2.8) such as short maximum range (less than a few inches)

and very fast connection setup time (<0.1s).

Table 2-8: Comparing NFC with Other Contactless Communication Technologies

TECHNOLOGY TYPICAL RANGE

CONNECTION SETUP

TIME

OUTOFTHEBOX

ENCRYPTION

NFC ~ 1 inch less than 0.1 second No

Bluetooth 30 ft. less than 6 seconds Yes

WiFi 120 ft. several seconds Yes

 Chapter 2 ■ Payment Application Architecture 49

c02.indd 08:3:32:AM 01/16/2014 Page 49

In such solutions17, 18, a mobile phone equipped with an NFC device emulates

a contactless payment card which can be read by an NFC-enabled POI (see

Figure 2-8).

Retail Store Payment Processor
Data Center

POS Machine

App Memory Payment
Processing

HostPayment
Client App

POS App

NFC-enabled
POI Device

NFC-enabled
Mobile Device

Data Storage

Figure 2-8: Architecture and deployment of an NFC-based payment solution

The payment card authentication data (the content of plastic cards’ magnetic

stripes) can either be stored on the mobile device or downloaded from the cloud.

In any case, the sensitive data should be transmitted from the mobile to the

POI device in order to initiate payment transaction, which opens the door to

potential attacks and raises security concerns19, 20, 21. These security concerns

are discussed in Chapter 8.

Non-NFC Mobile Payment Solutions

There are many “alternative” mobile payment solutions that are not NFC-based.

Such applications have strong advantages over the NFC-based products because

they do not require NFC equipment. This is an advantage because:

 ■ Many popular mobile phones, such as the Apple iPhone, are not equipped

with an NFC transmitter.

 ■ Only limited numbers of merchants have deployed POI devices with

NFC readers.

An example of “Non-NFC” mobile payment applications is Starbucks’ Mobile

App which shows the card number as well as a barcode on the phone’s display.

In order to start the payment, the card number is entered manually or the

50 Part I ■ Anatomy of Payment Application Vulnerabilities

c02.indd 08:3:32:AM 01/16/2014 Page 50

barcode is scanned by a cashier, and the payment is processed as a typical card

payment from this point.

If a mobile payment application is designed with security in mind, instead of

storing the card number in the device and showing it on the screen, the randomly

generated one-time token is displayed (and encoded into the barcode) in order

to establish the link between the customer’s mobile device and merchant’s POS

(see Figure 2-9). The actual authentication data (such as PAN and expiration

date) is transferred “in the cloud” between the mobile solution’s and payment

processor’s data centers (or even inside the same data center if the payment

processor is also the mobile payment solution provider).

Retail Store Payment Processor
Data Center

POS Machine

App Memory Payment
Processing

HostPayment
Client App

POS App

NFC-enabled
POI Device

NFC-enabled
Mobile Device

Data Storage

Figure 2-9: Secure architecture and deployment of mobile payments without NFC

In a well-designed “non-NFC” mobile payment solution, sensitive authentica-

tion data never touches the mobile device and POS payment application, which

is a huge security benefi t compared to contactless/NFC models which require

transmission of actual card data through the mobile device to the POS.

Summary

Typical payment applications consist of several interfaces and processing modules:

 ■ Interfaces

 ■ POI Device

 ■ POS API

 ■ Payment Processor Link

 Chapter 2 ■ Payment Application Architecture 51

c02.indd 08:3:32:AM 01/16/2014 Page 51

 ■ Processing Modules

 ■ Router

 ■ S&F

 ■ TOR

 ■ Batch

Interfaces communicate with the outside world using various types of con-

nectivity, communication technologies, and message protocols. Processing

modules execute the workfl ows and store the sensitive cardholder data on

hard drives. There is no standard security (encryption) technology defi ned for

either interface protocols (data in transit) or processing modules (data at rest)

of payment applications.

There are three main payment application deployment models:

 1. Store EPS

 2. POS EPS

 3. Hybrid Store/POS

Each model has its own security advantages and disadvantages. However,

the Hybrid Store/POS model is the most vulnerable.

Mobile payment solutions are divided into two major groups:

 1. NFC-based

 2. Non-NFC

 NFC-based applications are potentially more vulnerable because they store

and/or transmit sensitive cardholder data.

Notes

 1. PCI DSS Requirements and Security Assessment Procedures Version 2.0, PCI

SSC (October 2010), https://www.pcisecuritystandards.org/documents/

pci_dss_v2.pdf

 2. PCI PA-DSS Requirements and Security Assessment Procedures Version 2.0, PCI

SSC (October 2010), https://www.pcisecuritystandards.org/documents/

pa-dss_v2.pdf

 3. INTERNATIONAL STANDARD ISO/IEC 7498-1, Information Technology
– Open Systems Interconnection – Basic Reference Model: The Basic Model,
ISO/IEC (1996), http://www.ecma-international.org/activities/

Communications/TG11/s020269e.pdf

52 Part I ■ Anatomy of Payment Application Vulnerabilities

c02.indd 08:3:32:AM 01/16/2014 Page 52

 4. Mark O’Neil, Web Services Security, (New York: McGraw-Hill/Osborne,

2003).

 5. ISO 8583-1:2003, Financial transaction card originated messages – Interchange
message specifications – Part 1: Messages, data elements and code values, ISO.

(2003), http://www.iso.org/iso/iso_catalogue/catalogue_tc/cata-

logue_detail.htm?csnumber=31628

 6. Online Processing, Technical Specification, Paymentech. (2001), http://www

.chasepaymentech.com/library/pdf/Online_5.0.pdf

 7. Orbital Gateway Interface Specification, Chase Paymentech. (2008),

http://rafeekphp.files.wordpress.com/2009/04/orbital-gateway-

interface-specification-43.pdf

 8. Technical Reference Guide, Open Terminal Requirement Specification - Book
1, Nets (2012), http://www.nets.eu/dk-da/Service/verifikation-af-

betalingsloesninger/Documents/ct-trg-otrs-en.pdf

 9. Bruce Schneier, “Secrecy, Security, and Obscurity,” Crypto-Gram Newsletter,

(May 2002), http://www.schneier.com/crypto-gram-0205.html#1

 10. Credit Card Skimmers Found On Walnut Creek , CBS, (May

2013), http://sanfrancisco.cbslocal.com/2013/05/17/

credit-card-skimmers-found-on-walnut-creek-gas-station-pumps/

 11. Google Wallet, http://www.google.com/wallet/buy-in-store/

 12. Starbucks Mobile Apps, http://www.starbucks.com/coffeehouse/

mobile-apps

 13. Square Wallet, https://squareup.com/wallet

 14. ISO/IEC 18000-3, Information technology – Radio frequency identification
for item management – Part 3: Parameters for air interface communications
at 13,56 MHz, ISO/IEC (2004), http://www.iso.org/iso/home/store/

catalogue_tc/catalogue_detail.htm?csnumber=53424

 15. ISO/IEC 14443-1, Identification cards – Contactless integrated circuit
cards – Proximity cards – Part 1: Physical characteristics, ISO/IEC (2008),

http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_

detail_ics.htm?csnumber=39693

 16. ISO/IEC 13157-1, Information technology – Telecommunications and informa-
tion exchange between systems – NFC Security – Part 1: NFC-SEC NFCIP-1
security services and protocol, ISO/IEC, (2010), http://www.iso.org/iso/

home/store/catalogue_tc/catalogue_detail.htm?csnumber=53430

 17. Barclaycard PayTag, http://www.barclaycard.co.uk/personal/

pay-with-barclaycard/what-is-paytag

 18. Isis, https://www.paywithisis.com/

 Chapter 2 ■ Payment Application Architecture 53

c02.indd 08:3:32:AM 01/16/2014 Page 53

 19. Charlie Miller, Don’t stand so close to me: an analysis of NFC attack surface,

DefCon 20, (2012), https://media.blackhat.com/bh-us-12/Briefings/

C_Miller/BH_US_12_Miller_NFC_attack_surface_Slides.pdf

 20. Kristin Paget, Credit Card Fraud: The Contactless Generation, ShmooCon,

(2012), http://www.shmoocon.org/2012/presentations/Paget_

shmoocon2012-credit-cards.pdf

 21. Eddie Lee, NFC Hacking: The Easy Way, (DefCon 20, 2012), http://black-

winghq.com/assets/labs/presentations/EddieLeeDefcon20.pdf

55

c03.indd 08:2:51:AM 01/16/2014 Page 55

Standards are an interesting phenomenon, especially in the information tech-

nology fi eld. On the one hand, they create bureaucracy, kill creativity, and scare

away many talented people. On the other hand, standards save resources, pro-

vide reliability, and allow totally different people and organizations to speak

to each other using the same language.

In the payment card industry (PCI), this phenomenon is even more

interesting. There are established security standards without underlying technol-

ogy standards. Simply put, most security standards for payment applications tell

you what to protect without explaining how to do it. This in no way means that

the technology does not exist. It’s just not defi ned and not standardized enough.

These days, whenever there is a discussion about security standards regu-

lating payment applications, the fi rst thing that comes to mind is PCI. Such an

instinct is unsurprising today because, since 2004, PCI standards have been fi lling

the niche that was empty for a long time. However, it does not mean that PCI

rules are the only ones regulating payments. There are other standards which

infl uence the industry, especially these days when new promising technologies

such as P2PE come to the arena and bring with them a new wave of hitherto

unknown hardware and software requirements. This chapter reviews “known”

PCI standards. Other standards that infl uence payment application security

(cryptographic and coding) are reviewed in subsequent chapters.

N O T E Although PCI stands for payment card industry, it is common to say PCI when

talking about a set of standards developed to regulate the security of various elec-

tronic payment systems.

C H A P T E R

3

PCI
If a lot of cures are suggested for a disease, it means that disease is incurable.

 —Anton Chekhov

56 Part I ■ Anatomy of Payment Application Vulnerabilities

c03.indd 08:2:51:AM 01/16/2014 Page 56

Although this might be the most boring chapter in the book, I recommend

at least browsing through it in order to understand what standards should be

followed and what shouldn’t be used if you care about real security.

What is PCI?

PCI is a great invention. It helps to make payment systems much more secure. The

problem with PCI standards is that they came out too late, when the (insecure)

technologies around payment card processing had already been established and

widely deployed. Any deviation from current technologies (which is necessary

in order to provide real security) would require rebuilding the entire system

from scratch, which would cost millions of dollars if implemented worldwide.

As a result, instead of offering a new secure technology, the main method of PCI

security standards is compensating for the vulnerability (by design) of electronic

payment systems by building up several extra layers of security controls around

existing technologies. This makes the end users (payment processors, service

providers, hardware/software vendors, and fi nally merchants who often have

no clue about security) responsible for their implementation. Therefore, the

payment systems are often insecure even if they are PCI compliant.

Figure 3-1 shows the number of data breaches in the United States (retail/

merchant sector only) offi cially registered by the Privacy Rights Clearinghouse

since 2005, the same year when PCI Data Security Standards (DSS) were fi rst

introduced to the world (December 2004 to be more precise).

2005

0

10

20

30

40

50

60

70

80

90

2006 2007 2008 2009 2010 2011 2012

Figure 3-1: Number of retail/merchant data breaches in United States, 2005–20121

 Chapter 3 ■ PCI 57

c03.indd 08:2:51:AM 01/16/2014 Page 57

Unfortunately, there are no statistics on the number of PCI compliant mer-

chants, but let’s assume this number has been growing since 2005. The number

of breaches decreased in 2008–2009 and then started climbing again in 2010.

Such “strange” behavior can be easily explained. The 2008–2009 reduction was

the result of more and more merchants implementing PCI DSS requirements.

However, hackers adapted to the new rules relatively quickly, which resulted in

signifi cant protection in only one area—data at rest—as they learned to exploit

the remaining unprotected key vulnerabilities of payment applications—memory,

data in transit, and application code and confi guration—as well as physical

weaknesses of POI devices. This caused the 2010 jump in the number of breaches.

Since 2010, the situation has continued to worsen so that today we are in the

same position as several years ago with no signifi cant barriers that could stop

the bad guys from doing their job. Even if these numbers are not precise, we

know from the media that payment card data breaches still occur and in even

greater numbers, despite the eight years of PCI.

Don’t get me wrong—criticism of PCI security standards is not a goal of this

book. PCI is a necessary security baseline, a starting point for further improve-

ments, especially for service providers and large merchants. What I am trying

to achieve is making it clear that “PCI compliance” is not equal to “security,”

especially when applied to POS systems and payment applications deployed by

small- and mid-size merchants. Nothing helps the attackers more than a false

sense of security on the part of the merchant.

PCI Standards

PCI standards cover several different aspects of the electronic payment

life cycle. The fi rst and most famous piece is PCI Data Security Standard (PCI

DSS) which tells merchants (such as retailers) and service providers (such as pay-

ment processors and gateways) how to protect sensitive cardholder information.

The second and most important piece for payment software vendors is Payment

Application Data Security Standard (PA-DSS) which tells the payment application

developers how they should design their products to be compliant with PCI

DSS. The third piece is PTS, which takes care of hardware devices, such as POI

and HSM (hardware security modules), and their cryptographic modules and

fi rmware. And fi nally, the newbie—P2PE—which had absorbed the complica-

tions of the previous three pieces and added new hitherto unknown challenges

in the form of extra software and hardware validation requirements. Table 3-1

shows the applicability of the four PCI standards.

58 Part I ■ Anatomy of Payment Application Vulnerabilities

c03.indd 08:2:51:AM 01/16/2014 Page 58

Table 3-1: Applicability of PCI standards

PCI

STANDARD OBJECTS OBJECTIVES SUBJECTS

PCI DSS Environment Payment transaction

processing environ-

ment such as retail

stores and payment

processing data centers

Merchants, service providers

(payment processors, gate-

ways, banks)

PA-DSS Software Payment applications Software vendors

PTS Hardware SCD (including fi rm-

ware): POI, HSM

Hardware manufacturers

P2PE Environment,

Hardware,

Software

P2PE solutions, P2PE

applications

P2PE solution providers, P2PE

software vendors

Since there is always confusion and many questions about the applicability of

particular PCI standards, let’s look (Table 3-2) at this issue from different angles:

if you are _____, what standards should you comply with?

Table 3-2: Compliance with PCI standards

IF YOU … YOU SHOULD COMPLY WITH …

develop and sell payment applications PA-DSS

buy and use payment applications PCI DSS

resell and install payment applications -

develop payment application for single

customer

-

develop and use payment applications PCI DSS

provide payment application as a service PA-DSS and/or PCI DSS

process payment transactions PCI DSS

manufacture POI device PTS

manufacture HSM device PTS

develop and sell P2PE payment applications P2PE

develop and provide P2PE solution as a

service

P2PE

hack payment applications your own moral standards

 Chapter 3 ■ PCI 59

c03.indd 08:2:51:AM 01/16/2014 Page 59

PA-DSS vs. PCI DSS

The real difference between PCI DSS and PA-DSS is not objects, objectives, or

subjects, but responsibility: who compensates for the lack of credit card secu-

rity and mitigates the attack vectors? Such responsibility is shared between the

merchant and software vendors without any reasonable proportion, with the

main burden put on merchants. Table 3-3 reviews the high-level attack vectors

and responsibility for their mitigation as defi ned by PCI DSS and PA-DSS.

Table 3-3: Responsibility for Implementing Security Controls According to PCI

VULNERABILITY AREA

ADDRESSED

IN

RESPONSIBLE FOR

MITIGATION

Payment application memory PCI DSS Merchant

Communication over local network PCI DSS Merchant

Communication over public network PA-DSS, PCI DSS PA Vendor, Merchant

Communication between PA and POI PCI DSS Merchant

Link to payment processor (if not via public

network)

PCI DSS Merchant

Application code PCI DSS, PA-DSS Merchant

Application Confi guration PCI DSS Merchant

POI device (physical) PCI DSS Merchant

Encryption key management PCI DSS, PA-DSS Merchant

Sensitive data storage PA-DSS, PCI DSS PA Vendor, Merchant

Overall responsibility for card data breach PCI DSS Merchant

As you can see in Table 3-3, even protection of areas such as memory or applica-

tion code, which are natively associated with software, fall under user (merchant)

responsibility. PA-DSS does not require application developers to encrypt the

sensitive data in memory or obfuscate their compiled code. Merchants must

protect the payment applications by implementing all sorts of work-arounds,

such as fi rewalls and fi le integrity monitoring. It is not surprising that those

controls often fail because the end users aren’t the ones trained to care about

the security of their applications.

PA-DSS

The Payment Application Data Security Standard (PA-DSS) was created as

a validation program for POS software vendors who sell their products to

60 Part I ■ Anatomy of Payment Application Vulnerabilities

c03.indd 08:2:51:AM 01/16/2014 Page 60

multiple customers. It provides the buyers with assurance that their new purchase

will not violate the PCI DSS rules. PA-DSS is the only one of the PCI family of

standards that directly takes care of payment application security.

Validation Process

In a nutshell, the validation process consists of going through the list of test-

ing procedures (168 in PA-DSS) and putting the “V” in the right column: “In

place” or “Not in place.” The assessment begins as soon as the PA vendor selects

the Qualifi ed Security Assessor (QSA) from the list published on the PCI SSC

website2 and signs the non-disclosure and statement of work agreements (and

pays the bill, of course). Currently, 80 companies are listed as PA-QSA (not to

be confused with QSA companies which are authorized to perform PCI DSS

assessments only, although the same company or person can be both QSA and

PA-QSA).

The validation process is not too complicated and is usually comprised of

the following steps:

 1. Initial meeting (can be onsite or phone call)—PA developers and PA-QSA

review the scope of the project, the time lines, and the high-level applica-

tion design, and discuss the lab and documentation requirements.

 2. On-site assessment—Includes two steps:

 a. Testing the actual application in the vendor’s lab—The auditor, PA-QSA,

is instructed by the developers because this is the fi rst (and maybe

also the last) time he/she is seeing the system. Penetration testing is

conducted by running all possible types of transactions and cards to

make sure there is no sensitive data written to the hard drive. They

may do some network sniffi ng to make sure no credentials are sent

in clear text. No catchy tools or techniques are needed, and no one

tries to actually break the system because QSA is not a professional

penetration tester. In most cases, if the application does not store (or

pretends it does not store) the sensitive data in clear text, it passes the

test.

 b. Interview with the personnel—This is a formality. The auditors have

to ask a few questions and record the names of the developers and QA

team for the report.

 3. Reviewing implemented processes, documentation, and evidences—This

step is mostly paperwork. The most painful part (especially, for the fi rst-

timer) is creating the PCI Implementation Guide—the document that

 Chapter 3 ■ PCI 61

c03.indd 08:2:51:AM 01/16/2014 Page 61

each PA vendor must provide to the customers (the users of the payment

software). The content of this document is mostly technical disclaimers

that remind the merchants that credit card acceptance is a dangerous

business and it is the merchant’s responsibility to fi x the security design

fl aws of payment card processing.

 4. Creating Report of Validation (ROV)—This document is prepared by

PA-QSA and it is sent to the PCI Council for acceptance. This step may

take time as the Council might reject any statement in the report and return

it to QSA. Then QSA rewrites all rejected portions in a more secure way

and resubmits the document. Once the ROV is accepted (approved) by the

Council, the invoice is issued to the vendor and the validated application

is listed (as long as the bill is paid).

N O T E ROV is not required for revalidation (self-validation of a minor release

without major changes). In this case, the process is even simpler: the attestation of

validation (AOV) letter is created by the vendor (without QSA) and sent directly to the

Council along with payment, which automatically renews the listing.

List of Validated Payment Applications

The PCI Council maintains the List of Validated Payment Applications on its

website.3 Before purchasing new payment software or installing a new version,

the merchant should check the website to make sure the product is validated

and eligible for new deployment. Revalidation is required for every new release

of a payment application, or at least annually. Obviously, no software vendor

can afford to revalidate each and every patch version, which would be unfea-

sible (validation process eats human resources) and economically unprofi table

(each revalidation and listing costs money). Therefore, since it is unlikely that

the list refl ects the real picture (exact versions of software that run at stores), it

is symbolic, yet still an important tool for merchants.

The 13 Requirements and POS Security

Table 3-4 reviews how 13 of the PA-DSS requirements help developers protect

the main vulnerability areas of payment applications. Note that this review is

not a generic assessment of the entire standard, but particularly applies to the

POS and payment applications primarily deployed in brick-and-mortar business

locations, such as retail stores or gas stations.

62 Part I ■ Anatomy of Payment Application Vulnerabilities

c03.indd 08:2:51:AM 01/16/2014 Page 62

Table 3-4: PA-DSS Requirements and Payment Application Key Vulnerability Areas

PADSS REQUIREMENT

DATA IN

MEMORY

DATA IN

TRANSIT

DATA AT

REST

PA CODE &

CONFIG

1 Do not retain full mag-

netic stripe, card verifi ca-

tion code or value (CAV2,

CID, CVC2, CVV2), or PIN

block data

- - ○ -

2 Protect stored cardholder

data

- - ● -

3 Provide secure authenti-

cation features

- - - -

4 Log payment application

activity

- - - -

5 Develop secure payment

applications

- - - ○

6 Protect wireless

transmissions

- ○ - -

7 Test payment applications

to address vulnerabilities

- - - ○

8 Facilitate secure network

implementation

- - - -

9 Cardholder data must

never be stored on a

server connected to the

Internet

- - - -

10 Facilitate secure remote

access to payment

application

- - - -

11 Encrypt sensitive traffi c

over public networks

- ○ - -

12 Encrypt all non-console

administrative access

- - - -

13 Maintain instructional

documentation and

training programs for

customers, resellers, and

integrators

- - - -

● – provides an adequate, full protection if implemented correctly

○– provides only limited or selective protection

- – provides no direct protection

 Chapter 3 ■ PCI 63

c03.indd 08:2:51:AM 01/16/2014 Page 63

As you can see in the Table 3-4, these 13 requirements, even if fanatically

followed, will probably not protect cardholder data from being stolen in one

way or another. The only full coverage PA-DSS provides is for the data at rest,

as historically that was the fi rst and easiest data from which to steal the mag-

netic tracks (during the “before PCI” era developers did not care to encrypt

anything, so the hacker’s job was as simple as choosing which merchant to rob

fi rst). However, Chapter 6 shows how even the strongest PA-DSS requirement

can easily be rendered useless.

Now let’s go through these 13 PA-DSS requirements again in more detail to

see why they are mostly helpless as explicit application security controls.

Requirement 1: Do Not Retain Full Magnetic Stripe, Card Verification Code or

Value (CAV2, CID, CVC2, CVV2), or PIN Block Data

The most important sub-requirement here is 1.1:

Do not store sensitive authentication data after authorization (even if encrypted)4

The keyword here is “after authorization.” This means that any sensitive data

(such as Tracks 1 and 2, PAN, CVV2) is allowed to be stored before the transac-

tion is approved by the processor. If the processor is unreachable for any reason

(for example, the network is down), such a transaction goes to S&F and/or TOR

databases, usually along with all sensitive data, and can be stored there for

seconds, minutes, hours, or even days until the connectivity comes back. If the

network is down for a signifi cant period of time, the local POS database might

end up containing thousands of records of sensitive data.

So what exactly does this requirement secure? If the information is properly

encrypted, no matter how many records are stored at any given time, no one

will be able to decrypt them. On the other hand, if information is not reliably

protected, nothing will stop someone who wants to steal the temporary records

before the authorization just by pulling them out one after the other as POS is

processing more and more transactions.

Conclusion: This requirement is concerned with the magnitude of the potential

data breach—the less data stored, the less damage is caused once the breach

occurs.

Requirement 2: Protect Stored Cardholder Data

It is important to admit that this requirement is the most signifi cant achievement

of the PCI. If it is implemented correctly (for example, using hardware-based

strong cryptography and key management) it provides a real data protection

mechanism. However, there are two issues here. First, it is rarely implemented

correctly (and it is not necessarily developers who are to blame for it). Second,

data storage is only one target from several other vulnerability areas. Even if

64 Part I ■ Anatomy of Payment Application Vulnerabilities

c03.indd 08:2:51:AM 01/16/2014 Page 64

the data storage is completely sealed, other application surfaces (memory, data

in transit, and application code and confi guration) are still welcoming strangers.

Requirement 3: Provide Secure Authentication Features

This requirement is divorced from reality if applied to POS. Normally, a payment

application does not allow any access to cardholder data at the POS machine,

and often not even at the store level. There is simply no need for the cashier to

see the tracks or PAN. This requirement might be relevant to server systems

but not to the POS. Therefore, any efforts to enforce POS authentication man-

agement are helpless.

Requirement 4: Log Payment Application Activity

Implementation of this requirement does not protect anything. Logs belong to

reactive security controls5 which are supposed to help computer forensic inves-

tigators trace the origins of the attack. Usually it happens several months after

the fi rst records are leaked through the data breach.

Requirement 5: Develop Secure Payment Applications

This requirement contains several recommendations regarding good practices

for secure coding, which are supposed to help protect the application code, such

as sub-requirement 5.2:

Develop all payment applications (internal and external, and including web admin-
istrative access to product) based on secure coding guidelines. Cover prevention of
common coding vulnerabilities in software development processes.6

Unfortunately, there is a small problem with these recommendations: they

are mostly useless for POS systems running in brick-and-mortar stores where

hackers use other applications’ and operating systems’ vulnerabilities to break

in. Indeed, what is the point of exploiting a payment application’s buffer over-

fl ow vulnerability in order to steal the card data, if all you need to do is sniff

the local network connection or scan the POS machine memory? However,

without doubt, the guidelines about some vulnerabilities (such as SQL injection)

would be helpful for e-commerce developers. More details about secure coding

guidelines can be found in Chapter 9.

Requirement 6: Protect Wireless Transmissions

This requirement is confusing. It sends the wrong message to payment applica-

tion developers. Instead of taking care of ANY kind of communication, they

 Chapter 3 ■ PCI 65

c03.indd 08:2:51:AM 01/16/2014 Page 65

either rely on end users by instructing them to enable the built-in wireless

encryption (which can be weak because it is implemented by people who are not

supposed to deal with cryptography), or simply declare that this requirement

is not applicable because their product does not require wireless.

Requirement 7: Test Payment Applications to Address Vulnerabilities

Beyond all doubt, risk assessment and integrity protection, which are being

promoted by this requirement, are necessary attributes of secure development

processes. However, they do not directly help to defend against any particular

threat. As already explained for Requirement 5, vulnerabilities of the payment

application code itself are rarely exploited in order to gain access to sensitive data.

It is rather the vulnerable design of the entire payment system that is exploited

by the hackers. It is not the buffer overfl ow in the payment application code,

but clear text Track 2 data in POS machine memory and store LAN (both are

allowed by PCI standards!) that cause the security breach.

Requirement 8: Facilitate Secure Network Implementation

This is the shortest and funniest one: “Payment application cannot interfere with

antivirus protection, fi rewall confi gurations, or any other device, application, or

confi guration required for PCI DSS compliance.” Programmers—does anyone

know how to write an application that interferes with antivirus? Oh, by the

way, don’t forget to test your application with all known brands of antiviruses

and fi rewalls! Perhaps the authors had a really bad experience with some free

antivirus program.

Requirement 9: Cardholder Data Must Never be Stored on a Server Connected to

the Internet.

I would agree! However, does the fact that “the payment application stores card-
holder data in the internal network” (Requirement 9.1.a) prevent that data from

being stolen? Unfortunately, no.

Requirement 10: Facilitate Secure Remote Access to Payment Application

This requirement basically admits that the security of payment systems relies

on the security of its perimeter and the honesty of its operators. With such an

approach, once the perimeter is broken (or penetrated from inside!), the data is

gone! Note that two-factor authentication, which is promoted in Requirement 10.1,

is not the same as dual control or split knowledge. Two-factor authentication is a

really great feature, but it is intended for a different kind of security and cannot

66 Part I ■ Anatomy of Payment Application Vulnerabilities

c03.indd 08:2:51:AM 01/16/2014 Page 66

protect the system from bad users and insiders. More about split knowledge can

be found in the “Point-to-Point Encryption” section of Chapter 8.

Requirement 11: Encrypt Sensitive Traffic Over Public Networks

This requirement raises three more questions:

 1. How signifi cant is the difference between public and private network

security?

 2. Since when are private networks considered secure?

 3. If payment application vendors are capable, according to PCI require-

ments, of encrypting communication on public networks, wouldn’t it be

better to do the same on ALL networks and connections?

The following testing procedure is especially alarming:

11.1.b If the payment application allows data transmission over public networks,
examine the PA-DSS Implementation Guide prepared by the vendor, and verify
the vendor includes directions for customers and resellers/integrators to use strong
cryptography and security protocols.7

Does this really say that the payment application developers should delegate

implementation of “strong cryptography and security protocols” to “customers

and resellers/integrators”?

Requirement 12: Encrypt All Non-console Administrative Access

This requirement is laconic and self-explanatory: “Instruct customers to encrypt

all non-console administrative access with strong cryptography.” This seems

like an attempt to transfer the responsibility for designing secure systems

from software vendors to the end users. Instead of a request to develop secure

payment-processing technology so that merchants can operate their comput-

ers and networks without a constant risk of data breach, the standard wants

to require the merchants’ employees to study secure protocols “such as SSH,

VPN, or SSL/TLS.”

Requirement 13: Maintain Instructional Documentation and Training Programs

for Customers, Resellers, and Integrators

Documentation is the most powerful application security mechanism… on paper.

PA-DSS and Merchants

Merchants (actually, their IT and security experts and managers) must understand

PA-DSS because they should be able to identify “lawful” payment application

vulnerabilities. They should be ready to ask developers the right questions

about their applications’ security controls beyond just PCI. Merchants must

 Chapter 3 ■ PCI 67

c03.indd 08:2:51:AM 01/16/2014 Page 67

learn the weaknesses of PA-DSS in order to make sure their applications have

adequate protection mechanisms that compensate for lack of environmental

security (and vice versa—they have access, network, and physical controls

strong enough to compensate for payment application vulnerabilities). There

are multiple examples of this.

For instance, PCI DSS allows a payment application to send sensitive data

unencrypted on local networks, which is a great exposure area. In this case,

the merchant should verify whether or not its payment application is compliant

with the standards (i.e., sends sensitive cardholder data over the local network

in clear text). If it is, the network should be protected by different methods, for

example, encrypted tunnel with IPSec (see Chapter 8 for more details). Such

multiple “misunderstandings” may cause a situation when neither the PA vendor

nor the merchant protect the data. The PA vendor thinks the merchant protects

the network according to PCI DSS requirements, while the merchant relies on

the security expertise of software developers.

PCI DSS

Unlike PA-DSS where the process of compliance status achievement is called

validation, the similar PCI DSS process is called assessment. Perhaps, because of

the difference between their objectives: single payment application in PA-DSS,

versus the entire payment-processing environment in PCI DSS.

Even though technically the PCI DSS assessment process is the same as

PA-DSS validation—putting “V” in the right column of the testing procedures

list and creating the report—there are signifi cant differences:

The scope of the PCI DSS assessment is too wide (even physically – it

may include multiple locations such as retail stores, offi ces, and data

centers), which consumes a lot of resources from both the auditor and

the merchant, and does not allow them to concentrate on any particular

topic or conduct any thorough testing. There are 310 testing procedures

in PCI DSS, almost twice as many as PA-DSS’s 168 tests, so the cycle is

longer and requires more evidence (read: paperwork). Indeed, even assum-

ing that addressing each testing procedure requires only 30 minutes (in

practice, it can be even more because it includes explaining the require-

ment, interviewing the employees, reviewing the evidence, testing the

environment, and writing down the report), the assessment takes almost

a month of full-time work days! It can be even worse for large multi-store

chains because the efforts would be multiplied by the number of stores

and/or data centers because some evidences require samples from more

than just one instance.

By the time the audit is ended and a report is written and accepted, the

actual picture at the starting point of the assessment might already be

68 Part I ■ Anatomy of Payment Application Vulnerabilities

c03.indd 08:2:51:AM 01/16/2014 Page 68

different because the subject is not a particular version of software or

hardware, but a constantly changing environment.

PCI DSS is a double standard. The form and scale of the assessment vary

signifi cantly depending on the size of the merchant or service provider.

The merchants are divided into several levels based on the amount of

card transactions they process each year. Every payment brand has its

own defi nition rules and requirements for those levels, so different rules

from different brands should be correlated in order to get a clear picture

of the certifi cation path. Depending on the level, the merchants might

be required to either hire the QSA or complete the self-assessment

questionnaire (SAQ).

Large merchants such as well-known big supermarket chains defi nitely go

through the most diffi cult path with a third-party auditor, while smaller

merchants just complete the paperwork themselves. Even without going

into the details, it is clear that the same POS system may have different

security levels depending on its owner, simply because many deployments

are never tested by third-party auditors.

The PCI Council does not maintain the list of PCI DSS certifi ed organi-
zations as it does for PA-DSS validations. The compliance status of service

providers such as payment gateways and processors can be verifi ed at the

Visa website in the Global Registry of Service Providers.8 However, there

is no such information about merchants available for consumers. When

you swipe your card in a store, there is no way to know whether, at least

formally, your sensitive account data are secure. According to Visa, 1,700

U.S.-based merchants processing more than 20,000 transactions annually

are still not PCI compliant.9 Statistics for the smaller stores (processing

less than 20,000 transactions) do not exist.

The 12 Requirements and Payment Application Security

Let’s go through the list of PCI protection measures and try to understand why

hackers constantly manage to steal the payment card data despite the almost

10-year old merchants’ PCI compliance.

Table 3-5 shows how the user (merchant) of the software (payment applica-

tion) is tasked with implementing the security controls which, logically, should

be present out of the box. It also shows which requirements are really effective

when applied to the POS payment application running in a store, which will

be explained in more detail after review of Table 3-5.

 Chapter 3 ■ PCI 69

c03.indd 08:2:51:AM 01/16/2014 Page 69

Table 3-5: PCI DSS Requirements and Payment Application Key Vulnerability Areas

PCI DSS REQUIREMENT

DATA IN

MEMORY

DATA IN

TRANSIT

DATA AT

REST

PA CODE &

CONFIG

1 Install and maintain a

fi rewall confi guration to

protect cardholder data

○ ○ ○ ○

2 Do not use vendor-sup-

plied defaults for system

passwords and other

security parameters

- ○ ○ -

3 Protect stored cardholder

data

- - ● -

4 Encrypt transmission of

cardholder data across

open, public networks

- ○ - -

5 Use and regularly update

antivirus software or

programs

○ - ○ ○

6 Develop and maintain

secure systems and

applications

○ ○ ○ ○

7 Restrict access to

cardholder data by

business’ need to know

- - - -

8 Assign a unique ID to

each person with com-

puter access

○ ○ ○ ○

9 Restrict physical access to

cardholder data

- - - -

10 Track and monitor

all access to network

resources and cardholder

data

- - - -

11 Regularly test security

systems and processes

- - - -

12 Maintain a policy that

addresses information

security for all personnel

- - - -

● – provides an adequate, full protection if implemented correctly

○ – provides only limited or selective protection

- – provides no direct protection

70 Part I ■ Anatomy of Payment Application Vulnerabilities

c03.indd 08:2:51:AM 01/16/2014 Page 70

You probably noticed that only about 50% of the requirements are somewhat

effective in practice to restrain the attacks of hackers. In fact, only one requirement

(#3: Protect stored cardholder data) contains a concrete measure that adequately

(more or less, depending on interpretation and implementation) covers only

one vulnerability area. Let’s review each of the 12 PCI DSS requirements that

payment brands created for merchants so they could plug the gaps in leaking

payment software.

Requirement 1: Install and Maintain a Firewall Configuration to Protect

Cardholder Data

The idea behind this requirement is to create a barrier between the area where

payments live (sensitive cardholder data in clear text) and the rest of the world

(where hackers live, in networking terms). This is a really great idea which was

probably based on the sterile conditions of data centers. In a decent data center,

all the servers are physically secured and logical access to them is very limited

(for instance, normally no one is browsing the Internet on the domain control-

ler). The network is the only bridge that allows access to this space. In such an

almost ideal environment, perhaps, a properly set up fi rewall might be capable of

creating a decent secure zone isolated from the outer world. Qualifi ed network

engineers will make sure the fi rewall is confi gured correctly to fi lter out any

alien data coming in and confi dential information going out.

Now, imagine an average retail store. The POS computer and POI device

is on the counter, and all network and serial connections are totally exposed,

both physically and logically. Anyone can either physically touch or logically

access both open and “protected” sides of the network. In such a hazardous

environment, where exactly are the outer and the inner zones? Someone can

just plug a fl ash drive into the hosting POS computer, or check e-mail and click

on attachment in the back offi ce store server, and the malware is installed right

in the heart of the payment system!

Another question: Are there people qualifi ed to properly set up the fi rewall—

not just one but thousands and thousands of them—in each and every shop?

Requirement 2: Do Not Use Vendor-supplied Defaults for System Passwords and

Other Security Parameters

This is the right requirement from a generic security point of view, but doesn’t

it sound too basic to be placed as a separate rule? Isn’t it supposed to be part

of the education for the people who are supposed to implement other pretty

sophisticated requirements, such as fi rewall confi gurations (Requirement 1), or

installation and confi guration of antiviruses and software patches (Requirements

5 and 6)? Isn’t it supposed to be an obvious rule for in-store security experts who

 Chapter 3 ■ PCI 71

c03.indd 08:2:51:AM 01/16/2014 Page 71

are going to “track and monitor all access to network resources” and “regularly

test security systems and processes” (Requirements 10 and 11)?

Requirement 3: Protect Stored Cardholder Data

From the beginning of the PCI era, this requirement has been in primary focus.

That’s because the very fi rst vectors of attacks against payment systems were very

simple: penetrate the environment and take the sensitive card data which was

always stored in clear text. So Requirement #3 was introduced in order to stop

this particular trend. The goal has been accomplished, although only partially:

 ■ First, many merchants still are not PCI compliant.

 ■ Second, even those who are still might have the clear text data they don’t

know about, for example, error messages in log fi les.

 ■ Finally, payment applications often use weak encryption algorithms or

poorly implemented key management.

Another issue with this security measure is that it only protects 1 out of 4

key vulnerability areas (see Table 3-5).

Requirement 4: Encrypt Transmission of Cardholder Data Across Open Public

Networks

Even though this measure is one of the few that recall the real application secu-

rity controls, its scope is too limited. In today’s reality when networks are easily

penetrated from both outside and inside, everyone (not just security experts)

knows that a message must be encrypted when sent via a wireless network or

the Internet. It’s true that it wasn’t obvious for many people 10 years ago, exactly

the same way it is not obvious to everyone that everything must be encrypted

while transmitted through wires, no matter whether it is Internet, LAN, or serial

cable between pinpad and POS machine.

Heartland Payment Systems, one of the largest payment processors, experi-

enced a data breach in 2008:

The source of the breach: a piece of malicious software planted on the company’s
payment-processing network that recorded payment card data as it was being
sent for processing to Heartland by thousands of the company’s retail clients.10

Requirement 5: Use and Regularly Update Antivirus Software or Programs.

There is something irrational in this requirement. It sounds like a cry for help

and disengagement at the same time. “There is nothing we can offer to protect

your customers’ data. Please ask someone else to come and try to do something!”

72 Part I ■ Anatomy of Payment Application Vulnerabilities

c03.indd 08:2:51:AM 01/16/2014 Page 72

There is nothing wrong with having antivirus on a POS machine. In fact,

every PC is running antivirus today as a security precaution measure. It is

wrong, however, to rely on antivirus as a protective measure against payment

card data fraud. A regular cardholder might ask: Does the security of my private

information depend on antivirus vendors? Are the AV vendors aware of their

responsibility for protecting sensitive cardholder data? Are they familiar with

architecture, vulnerabilities, and threats of POS and payment systems?

During a four-month long cyberattack by Chinese hackers on The New York

Times, the company’s antivirus software missed 44 of the 45 pieces of malware
installed by attackers on the network.11

The malware created for stealing credit card data is often the zero-day soft-

ware which is crafted for a specifi c task, usually customized for a particular

payment application and masked as part of that application or operating sys-

tem. It is not the same as a generic virus or worm which are created to infect

as many computers as possible. Antivirus programs can be helpful only when

such malware become very common “off the shelf” products.

Another issue with using antivirus is that it requires continuous updates

(downloads) of virus signature databases in order to be effi cient. Such updates

can either be provided by a centralized system created by corporate IT or direct

download from the Internet. Large retailers might be able to create their own

update systems. However, most merchants still use the direct download which

requires maintaining a constant Internet connection. Yes, the fi rewall can be

confi gured to allow only specifi c protocols, port numbers, and servers, but you

cannot expect the average user to do it right.

Requirement 6: Develop and Maintain Secure Systems and Applications

This is a reasonable requirement that may provide protection from many exploits.

It works perfectly with software equipped with automatic, invisible for the user,

update mechanisms like Windows or Google Chrome. Unfortunately, many

software vendors, including those who develop payment applications, still do

not have such automated systems in place, so their update processes require

human intervention, which makes them ineffective.

In addition, even totally up-to-date software is not a silver bullet. Many vul-

nerability areas such as exposed sensitive data in memory are diffi cult, if not

impossible, for mitigation in software, and therefore their presence in payment

applications is legalized by PCI security standards.

Requirement 7: Restrict Access to Cardholder Data by Business Need-to-know

This sounds obvious even for non-experts and provides some protection, mostly

against particular threats such as insiders, although it does not eliminate them

completely. The problem is that even if the payment applications and environ-

ments are fully PCI compliant, the data in clear text is still present in the system

 Chapter 3 ■ PCI 73

c03.indd 08:2:51:AM 01/16/2014 Page 73

in one form or another, and there are always people having full access to it—

system admins, network engineers, customer-support personnel, technicians,

security analysts, and sometimes even developers. There must be highly trusted

employees who are allowed to touch the most intimate parts of the system in

order to perform maintenance or troubleshooting. Those people are not neces-

sarily bad guys (even though sometimes they are!) but their credentials can be

stolen with Trojans and key loggers or social engineering and used by hackers

to gain the same highest level of access.

Requirement 8: Assign a Unique ID to Each Person with Computer Access

Unique identifi cation is not a security mechanism that would protect against

any specifi c threat in any payment application vulnerability area. Rather, this

is a forensic tool that is helpful in post-mortem investigation of data breach

for tracing the hackers. Some security experts may say this can be qualifi ed as

deterrent security control (an access control that discourages violation of security

policy).12 However, it is diffi cult to imagine that traceability would scare away

the bad guys sitting somewhere in Russia or China.

Nevertheless, Requirement 8 contains a couple of important sub-requirements:

8.3 Incorporate two-factor authentication for remote access (network-level access
originating from outside the network) to the network by employees, administra-
tors, and third parties.

8.4 Render all passwords unreadable during transmission and storage on all system
components using strong cryptography.13

Those are right and somewhat effective measures if implemented correctly,

although they still cover only limited areas of potential threats (attempts to

access the network from outside in Requirement 8.3, and network sniffi ng in

Requirement 8.4), and do not provide total protection in any particular area of

payment application vulnerabilities.

Requirement 9: Restrict Physical Access to Cardholder Data

This is the right requirement for service providers such as banks, payment

processors, and gateways who store and process their data in data centers. It

is also an easy one for them to implement because decent data centers mostly

have the necessary physical security controls already in place.

This requirement is nonsense and totally useless, however, for merchants and

their payment applications running in the stores. Imagine customers “autho-

rized before entering” a retail store and “given a physical token (for example, a

badge or access device) that expires and that identifi es the visitors as not on-site

personnel” (Requirements 9.3.1 and 9.3.2). The retail store environment is fully

exposed to strangers, and software developers must accept this fact as a given

condition and understand that they cannot fully rely on any physical security

controls when designing protection mechanisms for payment applications.

74 Part I ■ Anatomy of Payment Application Vulnerabilities

c03.indd 08:2:51:AM 01/16/2014 Page 74

Requirement 10: Track and Monitor All Access to Network Resources and

Cardholder Data

In general, this requirement has the same issue as the previous requirement. It

makes sense for data centers of payment processors and headquarters of large

retailers, but it does not fi t the fi eld conditions of retail stores and therefore

cannot make much contribution to payment application security.

This requirement is focused on total logging that is supposed to provide two

main functions: tracking and monitoring. The fi rst part is irrelevant to the pay-

ment application and data protection because it only provides “post-mortem”

services (similar to Requirement 8) which are helpful only when investigating

the data breach after the fact. The second part, theoretically, may help to rec-

ognize the intrusion, but it still cannot prevent it.

In addition, those monitoring activities are infeasible in retail store environ-

ments, especially in situations where small merchants do not have dedicated

IT personnel able to “review logs for all system components at least daily”

(Requirement 10.6).

Requirement 11: Regularly Test Security Systems and Processes

This is another instance of security control which is good in theory but ineffec-

tive in practice. Let’s take, for example, Requirement 11.3:

Perform external and internal penetration testing at least once a year and after
any signifi cant infrastructure or application upgrade or modifi cation (such as an
operating system upgrade, a sub-network added to the environment, or a web server
added to the environment).14

Good penetration testing conducted by true experts is not cheap. The chances

are very small that all of the millions and millions of stores out there will go

through really thorough penetration testing after any changes. Now, imagine

the situation where the successful penetration testing was done on January 1.

On January 2, there was a change made in a fi rewall confi guration which left the

payment network segment with POS machines open for outside access. During

the next penetration testing on January 1 of the next year the vulnerability will

be found, reported, and then probably fi xed on January 2. The hackers will have

a one-year window for scanning the network, fi nding the hole, penetrating the

environment, and planting the malware.

Another example is Requirement 11.5:

Deploy fi le-integrity monitoring tools to alert personnel to unauthorized modifi ca-
tion of critical system fi les, confi guration fi les, or content fi les; and confi gure the
software to perform critical fi le comparisons at least weekly.15

First, small merchants are unable to implement this due to lack of in-house

expertise. Both large and small merchants can purchase and install good fi le

 Chapter 3 ■ PCI 75

c03.indd 08:2:51:AM 01/16/2014 Page 75

integrity monitoring tools. However, it’s not the presence of a tool in the system

but its proper confi guration and usage that defi nes whether or not it will be

able to detect an intrusion. Many users will either partially disable the detec-

tion functionality (for example, to allow silent automatic updates from payment

application vendors) or ignore the notifi cation messages (if the system does not

block new fi les immediately but instead just creates and sends warnings).

Requirement 12: Maintain a Policy That Addresses Information Security for All

Personnel

This is the most exciting one of the 12 requirements. Unfortunately, this is

also probably the least effective one from an application security perspective.

Indeed, it is hard to imagine how a bunch of paper can protect, for instance, a

Track 2 data traveling in clear text from the pinpad device to the POS machine,

or unencrypted PAN and CVV2 remaining in a volatile memory of a payment

application process after a manual transaction. Seriously, do you know anyone,

at least in the retail and payment industry, who ever reads their security poli-

cies—except of course the poor people who write them, security auditors (once

a year), and lawyers (after a security breach occurs)?

It does not mean, however, that Requirement 12 is incorrect in general when

applied to the right organization. In fact, some sub-requirements such as 12.1.2,

Establish, publish, maintain, and disseminate a security policy that … includes an
annual process that identifi es threats, and vulnerabilities, and results in a formal
risk assessment.16

are very useful as a common security best practice (again, the same as for many

previous requirements: for large organizations only). The problem is that the

cardholders cannot rely on ephemeral policies and procedures as a strong

security control that is supposed to be capable of preventing the disclosure of

their private information. No one can vouch for the fact that these policies and

procedures are executed in reality, and even if they are actually carried out, no

one knows how frequently and what their real effi ciency is.

The programmers say that documentation does not fail, it’s the code that does.

I would rephrase it this way: policy does not leak, the payment application does.

PCI DSS and Small Merchants

As you probably noticed in previous sections that reviewed the 12 PCI DSS

requirements, there are many cases when the effectiveness of a particular require-

ment was linked to the size of the merchant. Some security measures, such as

fi rewall confi guration, can be effi cient with large retailers who have IT and

security resources, but they are almost completely useless for small merchants

who fully rely on security provided by their payment hardware, application

vendors, and payment processors.

76 Part I ■ Anatomy of Payment Application Vulnerabilities

c03.indd 08:2:51:AM 01/16/2014 Page 76

In addition, most of the merchants (normally those with less than 6 million

annual transactions) don’t even pass the third-party assessment by QSA and

just fi ll in the SAQ, which questions the quality and even the fact of implemen-

tation of many controls.17 Let’s go through the 12 requirements one more time

(see Table 3-6) and see what level of protection they carry depending on the

size of the merchant.

Table 3-6: Effi ciency of PCI DSS Requirements Depending on Merchant Size

PCI DSS REQUIREMENT

LARGE

MERCHANTS

SMALL

MERCHANTS

1 Install and maintain a fi rewall con-

fi guration to protect cardholder data

● -

2 Do not use vendor-supplied defaults

for system passwords and other

security parameters

● -

3 Protect stored cardholder data ○ ○

4 Encrypt transmission of cardholder

data across open, public networks

● ○

5 Use and regularly update antivirus

software or programs

● ●

6 Develop and maintain secure sys-

tems and applications

○ -

7 Restrict access to cardholder data by

business need-to-know

● -

8 Assign a unique ID to each person

with computer access

● -

9 Restrict physical access to cardholder

data

- -

10 Track and monitor all access to net-

work resources and cardholder data

● -

11 Regularly test security systems and

processes

● -

12 Maintain a policy that addresses

information security for all personnel

● -

● – can be implemented by merchant

○ – merchant relies on payment application vendor

- – it is unrealistic to expect a proper implementation from merchant as it requires special expertise and/or

extra (expensive) resources

 Chapter 3 ■ PCI 77

c03.indd 08:2:51:AM 01/16/2014 Page 77

As you can see from the data in Table 3-6, small merchants cannot be adequately

protected from data breach by PCI DSS because they are unable to implement

effectively most of the controls required by the standard.

PCI DSS and PA Developers

Unlike PA-DSS, which implicitly takes care of payment application, PCI DSS

is focused on the entire operation environment rather than particular soft-

ware products. It is valid to say that PA-DSS is a subset of the more pervasive

PCI DSS. Does it mean that the payment application developer can ignore PCI

DSS? Probably not. PA-DSS was created to support more sophisticated PCI DSS

requirements in payment software. PA developers must understand the potential

hazards of the environment where PA lives through learning PCI DSS. They

should realize that PA does not run in a vacuum, but in a retail store environ-

ment that is insecure by defi nition.

Not all payment applications pass PA-DSS validation. There are rules defi n-

ing the scope of the PA-DSS assessment applicability. The following groups of

payment applications are not eligible for PA-DSS audit, but their developers

should still follow the requirements of either PCI DSS or PA-DSS.

 ■ Payment applications developed in-house by merchants.

 ■ Payment applications developed by software vendors for single customers.

 ■ Payment applications that are sold “off the shelf” without much customiza-

tion required after installation (this is rarely used, so is a strange exception).

The idea behind the “exceptions” is that such applications are going through

the PCI DSS audit of their owner anyway. In this case, the application should be

“PA-DSS ready,” meaning that it does not formally pass through the PA-DSS audit

but complies with the PA-DSS requirements. The PCI DSS auditor is supposed

to do the assessment instead of the PA-DSS auditor, according to correspond-

ing PCI DSS standard requirements. Thus, the people responsible for such an

application’s security design and development should be familiar with PA-DSS

or PCI DSS or both.

Comparing PA-DSS and PCI DSS Requirements

PCI DSS is big, having 12 requirements with 211 sub-requirements containing a

total of 310 testing procedures. Although PA-DSS has more high-level require-

ments (13), the numbers of sub-requirements (90) and testing procedures (168)

are signifi cantly lower than PCI DSS. Reviewing and commenting on each and

every sub-requirement and testing procedure would be the topic for an entirely

separate book. Therefore, our goal can be narrowed by fi ltering, focusing on

whatever is directly relevant to the payment application. If you look closely at the

78 Part I ■ Anatomy of Payment Application Vulnerabilities

c03.indd 08:2:51:AM 01/16/2014 Page 78

12 PCI DSS requirements, you immediately notice that some of them duplicate

the PA-DSS requirements (or vice versa).

Table 3-7 compares the two standards and shows that the overlapping require-

ments make a bit more sense, so it might be helpful to distinguish them from a

few standalone requirements that are often useless from an application security

point of view.

Table 3-7: Comparing PA-DSS and PCI DSS Requirements

PADSS

REQUIREMENT PCI DSS REQUIREMENT

GUARANTEES

STRONG

PROTECTION

OF:

FACILITATES

CASUAL

PROTECTION

OF:

1. Do not retain

full magnetic

stripe, card veri-

fi cation code or

value (CAV2, CID,

CVC2, CVV2), or

PIN block data

3.2 Do not store sensi-

tive authentication data

after authorization (even if

encrypted)

None Data at rest

2. Protect stored

cardholder data

3. Protect stored cardholder

data

Data at rest Data at rest

3. Provide secure

authentication

features

8. Assign a unique ID to

each person with computer

access

None Data at rest

4. Log payment

application

activity

10. Track and monitor all

access to network resources

and cardholder data

None None

5. Develop

secure payment

applications

6. Develop and main-

tain secure systems and

applications

None Application

code

6. Protect wireless

transmissions

4. Encrypt transmission

of cardholder data across

open, public networks

None Data in transit

7. Test pay-

ment applica-

tions to address

vulnerabilities

6. Develop and main-

tain secure systems and

applications

None Application

code

8. Facilitate

secure network

implementation

None None

Continues

 Chapter 3 ■ PCI 79

c03.indd 08:2:51:AM 01/16/2014 Page 79

PADSS

REQUIREMENT PCI DSS REQUIREMENT

GUARANTEES

STRONG

PROTECTION

OF:

FACILITATES

CASUAL

PROTECTION

OF:

9. Cardholder data

must never be

stored on a server

connected to the

Internet

1.3.7 Place system compo-

nents that store cardholder

data (such as a database)

in an internal network

zone, segregated from the

DMZ and other untrusted

networks

None Data at rest

10. Facilitate

secure remote

access to payment

application

8.3 Incorporate two-factor

authentication for remote

access (network-level access

originating from outside the

network) to the network by

employees, administrators,

and third parties

None None

11. Encrypt sensi-

tive traffi c over

public networks

4. Encrypt transmission

of cardholder data across

open, public networks

None Data in transit

12. Encrypt all

non-console

administrative

access

2.3 Encrypt all non-console

administrative access using

strong cryptography. Use

technologies such as SSH,

VPN, or SSL/TLS for web-

based management and

other non-console adminis-

trative access

None Data in transit,

Data at rest

13. Maintain

instructional

documentation

and training pro-

grams for custom-

ers, resellers, and

integrators

None None

5. Use and regularly update

antivirus software or

programs

None Data at rest,

Data in mem-

ory, Application

code

7. Restrict access to card-

holder data by business

need to know

None None

Continues

Table 3-7 (continued)

80 Part I ■ Anatomy of Payment Application Vulnerabilities

c03.indd 08:2:51:AM 01/16/2014 Page 80

PADSS

REQUIREMENT PCI DSS REQUIREMENT

GUARANTEES

STRONG

PROTECTION

OF:

FACILITATES

CASUAL

PROTECTION

OF:

9. Restrict physical access to

cardholder data

None None

11. Regularly test security

systems and processes

None None

12. Maintain a policy that

addresses information secu-

rity for all personnel

None None

PTS

PIN Transaction Security (PTS) isn’t so important for payment application vendors

unless their application runs on a pinpad device. In integrated POS solutions,

the PIN Entry Devices (PED) or POI devices, which are the main objects of the

PTS assessment, take care of debit PIN security using well known Triple DES

encryption and DUKPT key management mechanisms. If the same scheme was

used by payment terminals for card data protection, it would eliminate most of

the payment application security problems.

However, before the era of almost universal acceptance of PIN cards, POS

machines were not equipped with PED or integrated with POI devices. Regular

MSR devices, which were used for swiping credit cards, did not have crypto-

graphic capabilities that would allow them to implement DUKPT (now some

of them do). Therefore, unfortunately, PTS provides no direct protection to

sensitive payment data, although there is an exception: when a PTS-validated

device is part of a P2PE solution. PA developers just started hearing about PTS

after P2PE standards entered the scene, and some PA vendors became a P2PE

solution provider which requires loose integration between various software and

hardware components and standards. More information about P2PE standard

requirements can be found in the next section.

Recently, HSM manufacturers also began validating their products with a

special version of PTS created for HSM.18 The list of PTS validated pinpads,

HSM, and other devices is published on the PCI SSC website.19

Table 3-7 (continued)

 Chapter 3 ■ PCI 81

c03.indd 08:2:51:AM 01/16/2014 Page 81

P2PE

The PCI SSC provides a vague defi nition of the P2PE standard:

Detailed security requirements and testing procedures for application vendors and
providers of P2PE solutions to ensure that their solutions can meet the necessary
requirements for the protection of payment card data.20

However, P2PE is a huge jump from existing PCI standards which tried to

build the secure payment system from physically, logically, and organization-

ally separated, poorly protected blocks of compliance, that were untrusting

and trying to blame each other: merchants, POS and PA software vendors,

hardware manufacturers, and payment processors. PCI P2PE is the fi rst serious

attempt to create a really secure single system built from the pinpad device to

the POS to the bulletproof (from the merchant’s store environment perspective)

data center of a payment gateway or processor. In addition, security of P2PE

systems is designed to be solely dependent on strong cryptography protected

by hardware rather than the odd ephemeral controls and naked, home-brewed,

software-based cryptography usually offered by software vendors and backed

by PCI DSS and PA-DSS.

Before we start the review of P2PE, it is important to note that there are dif-

ferent types of point-to-point encryption: hardware, software, and hybrid (more

details about implementation of each version can be found in the Point-to-Point

Encryption section of Chapter 8). Currently available versions of the standard

only cover Hardware21 and Hardware/Hybrid22 P2PE solutions. Software

P2PE requirements are planned for the future, but no specifi c dates have yet

been provided. Only Hardware P2PE has a real capability to provide maximal

protection to cardholder data. Any software implementation of cryptography

on the store level is vulnerable in one way or another.

The PCI P2PE standard is huge, even compared to the pretty heavy PCI DSS:

6 domains having 491 requirements and total of 648(!) testing procedures. The

good news is that not all domains are applicable to all solutions. For example,

domains 2 and 4 can be excluded from the scope of assessment for many Hardware

P2PE solutions.

The fact that P2PE covers the entire payment processing cycle also dictates

the structure of the standard, which consists of six domains:

 ■ Domain 1: Encryption Device Management is about security of POI

devices. In order to be allowed as part of a P2PE solution, the device must

82 Part I ■ Anatomy of Payment Application Vulnerabilities

c03.indd 08:2:51:AM 01/16/2014 Page 82

be PCI PTS validated23, with SRED (secure reading and exchange of data)

listed as a “function provided.”

 ■ Domain 2: Application Security is not applicable to a solution with a

payment application that does not touch sensitive data in clear text. It is

applicable only if the POI device’s fi rmware takes care of all key manage-

ment and cryptographic operations and sends only encrypted data to the

PA hosted by POS.

 ■ Domain 3: Encryption Environment takes care of POI device deploy-

ment and environment issues such as secure transportation procedures,

maintenance, and key injections.

 ■ Domain 4: Segmentation between Encryption and Decryption
Environments, according to PCI P2PE, “has no applicable requirements

for hardware/hardware solutions since the account data is encrypted for

transmission by the PCI-approved POI device before the data leaves the

device, and the merchant has no access to the decryption environment

or the cryptographic keys.”

 ■ Domain 5: Decryption Environment and Device Management is about

security of the payment processor’s data center environment. All key

management and decryption operations must be done in HSM certifi ed

with FIPS 140-2 and/or PCI PTS. In addition, the entire environment must

be PCI DSS compliant.

 ■ Domain 6: P2PE Cryptographic Key Operations is all about cryptographic

keys: secure generation, rotation, and injection. It takes care of the key

management in both encrypting Secure Cryptographic Device (SCD) of

the POI and decrypting HSM in the data centers. In addition, it contains

a set of requirements to KIF (Key Injection Facilities) which inject the

encryption keys into the SCD of POI devices. Such facilities should also

be validated by P2PE QSA in order to be included in the P2PE solution.

The list of validated P2PE solutions is supposed to be published on the PCI

SSC website24. However, at the time of this publication no single P2PE solution

has yet been certifi ed by the PCI Council. The list has remained empty for a

relatively long time, which is not typical for other PCI standards. There are at

least two reasons:

 1. First, the designers of the standard took a big corporation—which would

control the entire solution from the stores to the processing data centers—as

a model for creating the requirements. Unfortunately, it turned out that the

reality is different and there are more signifi cant players in this complex

game.

 2. Second, the level of requirements set by the standard is higher than today’s

de facto technological and compliance status of hardware/software vendors

 Chapter 3 ■ PCI 83

c03.indd 08:2:51:AM 01/16/2014 Page 83

and merchants. In order to comply with some requirements, P2PE solu-

tion providers may need to purchase new hardware and implement new

versions of software which in some cases are not yet certifi ed with the

necessary standards by other vendors.

There are obvious benefi ts of implementing P2PE for merchants: more security

for their customers, fewer expenses on lawsuits associated with data breaches,

and lower investments into PCI DSS controls. Merchants who implement P2PE are

entitled to use the special P2PE Self-Assessment Questionnaire (SAQ P2PE-HW)
25, 26 which allows them to:

Reduce the scope of their PCI DSS assessments and validate to a reduced set of
PCI DSS requirements.27

PCI Guidelines

PCI DSS and PA-DSS compliance is not required by law. However, if you have

developed a POS application and want to sell it, you need to pass the PA-DSS

validation in order to get some of the benefi ts, such as ability to sell your product

to any customer. Unlike the standards, guidelines are similar to whitepapers in

that they review industry trends and provide recommendations on best practices

and new technologies. If you have developed a mobile POS app and want to sell

it, no one can require you to follow the PCI mobile guidelines. However, there

is a good chance of guidelines becoming the standard in the future.

Currently, PCI SSC offers several guidelines that are directly related to POS

and payment application security.

Fallacy of Tokenization

Tokenization was introduced to the payment card industry in an attempt to ease

the burden of PCI DSS compliance on merchants by replacing the original credit

card account number (PAN) with a substitution called token. Token uniquely

identifi es the PAN and represents it in database queries without, however,

compromising the security of the original account numbers. There are various

tokenization technologies employing different methods of token generation,

from hash function to randomly generated Globally Unique Identifi er (GUID)

to encryption schemes that imitate the original format of the card account

numbers, preserving the original characteristics such as numeric format (using

only characters 0-1), length (16 digits), ISO prefi x (fi rst 6 digits), and last 4 digits.

Tokens can be generated at the POS by the client payment application or in the

data center by the payment application server or payment processor. However

and wherever the token is created, tokenization has a huge limitation which is

84 Part I ■ Anatomy of Payment Application Vulnerabilities

c03.indd 08:2:51:AM 01/16/2014 Page 84

impossible to overcome: it cannot protect the sensitive authentication data because

the payment processor and acquirer have to have the original data (Track 1 or

2, or PAN and expiration date) in order to authorize the payment. Therefore,

even the most secure tokenization solution is unable to provide adequate overall

security to the payment system.

When the fi rst tokenization technologies began to emerge several years ago,

they attracted a lot of attention because they provided an answer to the main

PCI DSS concern—data at rest. In the course of time, however, it turned out

that tokenization is one of the PCI fallacies. It defi nitely provides some relief

in particular areas, but it still does not mitigate most of the threats associated

with payment applications.

Table 3-8 shows how implementation of tokenization solutions affects differ-

ent areas of payment application vulnerabilities.

Table 3-8: Tokenization and Payment Application Vulnerabilities

PAYMENT APPLICATION VULNERABILITY

AREA

PROTECTION PROVIDED BY

TOKENIZATION TO PA AT POS

Memory -

Temporary storage (S&F, TOR, active

transactions)

-

Long-term storage (batch, settlement records) ○

Long-term storage (transaction archives) ●

Log fi les ○

Local communication -

Communication between POI device and POS -

Links to processors -

Application code and confi guration -

● – provides an adequate, full protection if implemented correctly

○ – provides only limited or selective protection

- – provides no direct protection

PCI DSS Tokenization Guidelines28 contain helpful recommendations on best

practices for token generation as well as secure deployment and maintenance

of tokenization solutions. There is a chance that those guidelines may become

a standard in the future.

 Chapter 3 ■ PCI 85

c03.indd 08:2:51:AM 01/16/2014 Page 85

EMV Guidance

In October 2010, the PCI Council issued a guidance document called PCI DSS

Applicability in an EMV Environment.29 The 10-page paper explains why the

EMV has failed to protect the confi dentiality of sensitive payment data, and

why merchants should still comply with PCI DSS, regardless of whether or not

they process EMV cards:

EMV by itself does not protect the confi dentiality of, or inappropriate access to
sensitive authentication data and/or cardholder data.30

The problem with EMV (from a payment application security viewpoint) is

that originally it was not designed to provide total protection of the payment

data confi dentiality. The goal of EMV creation was credit card fraud protec-

tion: the EMV terminal, independently from its payment processor, is able to

authenticate the cardholder and ensure the legitimacy of the payment card and

transaction. It doesn’t really care about security of the information it processes.

Once the data is obtained as a result of conversation between the EMV chip on

the card and EMV reader at the POS, it is processed, stored, and transmitted in

clear text, the same way it is done for regular magnetic stripes.

There is another major issue described in the guidance:

Most environments processing EMV transactions today are hybrid environments,
handling both EMV and non-EMV transactions.31

This explains everything. Most EMV cards have a magnetic stripe in addition

to the EMV chip, and vice versa—most EMV terminals are equipped with an

MSR so the merchant could accept both EMV cards and also regular magnetic

stripe cards. If an EMV card is processed at a regular MSR (by either an EMV

or non-EMV terminal), or a regular card is swiped at an EMV-enabled terminal,

such transactions are as vulnerable as any regular magnetic stripe transaction.

There are several reasons to process magnetic stripe cards in an EMV-enabled

environment:

 ■ First and most obvious, the card does not have a chip (it is a regular, non-

EMV card). There are still a lot of cards with magnetic stripes only, and

the merchants still want to accept them.

 ■ Technical fallback—if the chip is broken and cannot be read, some termi-

nals will prompt to swipe the card and use its magnetic stripe as a backup

source of information in order to keep the customer.

 ■ Manual entry—if both the magnetic stripe and chip cannot be read, the

terminal might prompt for manual keying of the embossed PAN (which

is equivalent to entering the magnetic stripe in clear text).

86 Part I ■ Anatomy of Payment Application Vulnerabilities

c03.indd 08:2:51:AM 01/16/2014 Page 86

 ■ The merchant might process telephone orders through the same payment

application (the operator will manually enter the PAN, expiration data,

and CVV2 given by the customer over the phone).

Mobile Payments Guidelines for Developers

A few years ago when mobile payments began becoming a strong trend, it

turned out that PCI standards were completely unfi t for this new area of pay-

ment processing. Someone might say that the situation now is the opposite—it’s

mobile payments that do not comply with PCI standards. Such a discussion is a

waste of time. Mobile payments are the current and future reality of electronic

payments, and standards should be adjusted in order to defi ne necessary tech-

nology and provide adequate security.

In 2012, in order to fi ll this gap, PCI SSC came up with PCI Mobile Payment
Acceptance Security Guidelines for Developers.32 The guidelines contain many

helpful recommendations, but also have multiple problems:

 ■ The guidelines do not defi ne or recommend any particular technology

that could be utilized to protect sensitive data, so if you are developer

looking for practical technical advice, this is not the right source for you.

 ■ Again, as in the case with PCI DSS, the responsibility for data protection

is shared between fi ve parties, including, of course, end users (merchants)

and even OS developers.

 ■ Even if the payment application follows all the recommendations listed

in the mobile payment guidelines, it still will not be “PCI compliant”:

No presumption should be made that meeting the guidelines and recom-
mendations expressed in this document would cause a solution to be
compliant with PA-DSS.33

Summary

PA-DSS and PCI DSS, even if implemented in full, provide minimal to no protec-

tion against threats in the three (out of four) payment application key vulner-

abilities: data in memory, data in transit, application code and confi guration.

Both PA-DSS and PCI DSS facilitate signifi cant (but not full) protection in one of

these four key vulnerability areas—data at rest—if the software vendor imple-

ments strong cryptographic mechanisms.

 Chapter 3 ■ PCI 87

c03.indd 08:2:51:AM 01/16/2014 Page 87

PCI DSS does not provide adequate protection to POS systems and payment

applications deployed by small merchants who do not have signifi cant in-house

IT and security resources.

Many PA-DSS and PCI DSS requirements were designed for large organiza-

tions, data center environments, or web applications, and therefore are ineffective

when applied to typical POS systems deployed by brick-and-mortar merchants.

Tokenization does not provide adequate protection for sensitive data because

it is focused on the single area of payment application vulnerabilities.

EMV technology was designed to protect against credit card fraud, but it was

not intended to provide confi dentiality for sensitive cardholder and authentica-

tion data.

PCI mobile payment guidelines contain helpful recommendations, but they

do not provide information about concrete security technologies that could be

used as strong application security controls.

Notes

 1. Chronology of Data Breaches: Security Breaches 2005, Present, Privacy

Rights Clearinghouse, https://www.privacyrights.org/data-breach

 2. Payment Application QSAs, PCI SSC, https://www.pcisecuritystan-

dards.org/approved_companies_providers/payment_application_qsas.

php

 3. List of Validated Payment Applications, PCI SSC, https://www.pcise-

curitystandards.org/approved_companies_providers/validated_pay-

ment_applications.php?agree=true

 4. PCI PA-DSS Requirements and Security Assessment Procedures Version 2.0, PCI

SSC (October 2010), https://www.pcisecuritystandards.org/documents/

pa-dss_v2.pdf

 5. James Michael Stewart, Ed Tittel, and Mike Chapple, CISSP: Certified

Information Systems Security Professional, Study Guide, 3rd Edition, (Hoboken,

NJ: Sybex, 2005), pp. 3, 461.

 6. PCI PA-DSS Requirements and Security Assessment Procedures Version 2.0, PCI

SSC (October 2010), https://www.pcisecuritystandards.org/documents/

pa-dss_v2.pdf

 7. Ibid.

 8. Global Registry of Service Providers, Visa USA, http://www.visa.com/

splisting/

88 Part I ■ Anatomy of Payment Application Vulnerabilities

c03.indd 08:2:51:AM 01/16/2014 Page 88

 9. U.S. PCI DSS Compliance Status, Visa (December 2012), http://usa.

visa.com/download/merchants/cisp-pcidss-compliancestats.pdf

 10. Brian Krebs, “Payment Processor Breach May Be Largest Ever,” The

Washington Post (January 2009), http://voices.washingtonpost.com/

securityfix/2009/01/payment_processor_breach_may_b.html

 11. David Goldman, “Your antivirus software probably won’t prevent a cyberat-

tack,” CNNMoney (January 31, 2013), http://money.cnn.com/2013/01/31/

technology/security/antivirus/index.html?iid=EL

 12. Stewart, Tittel, and Chapple, CISSP: Certified Information Systems Security

Professional, Study Guide, 3rd Edition, (Hoboken, NJ: Sybex, 2005), pp. 3,

461.

 13. PCI DSS Requirements and Security Assessment Procedures Version 2.0, PCI

SSC (October 2010). https://www.pcisecuritystandards.org/documents/

pci_dss_v2.pdf

 14. Ibid.

 15. Ibid.

 16. Ibid.

 17. Merchant levels and compliance validation requirements defined, Visa

USA, http://usa.visa.com/merchants/risk_management/cisp_mer-

chants.html

 18. Payment Card Industry (PCI) PIN Transaction Security (PTS) Hardware

Security Module (HSM) Security Requirements, Version 2.0, PCI SSC

(May 2012), https://www.pcisecuritystandards.org/documents/

PCI_HSM_Security_Requirements_v2.pdf

 19. Approved PIN Transaction Security Devices, PCI SSC, https://www.

pcisecuritystandards.org/approved_companies_providers/approved_

pin_transaction_security.php

 20. Frequently Asked Questions for PCI Point-to-Point Encryption (P2PE), PCI

Security Standards Council (August 2012), https://www.pcisecurit-

ystandards.org/documents/P2PE_v1_1_FAQs_Aug2012.pdf

 21. Payment Card Industry (PCI) Point-to-Point Encryption Solution Requirements

and Testing Procedures: Encryption, Decryption, and Key Management within

Secure Cryptographic Devices Version 1.1, PCI SSC (April 2012), https://

www.pcisecuritystandards.org/documents/P2PE_%20v%201-1.pdf

 22. Payment Card Industry (PCI) Point-to-Point Encryption Solution Requirements

and Testing Procedures: Encryption and Key Management within Secure

Cryptographic Devices, and Decryption of Account Data in Software (Hardware/

 Chapter 3 ■ PCI 89

c03.indd 08:2:51:AM 01/16/2014 Page 89

Hybrid) Version 1.1, PCI SSC (December 2012), https://www.pcisecuri-

tystandards.org/documents/P2PE_Hybrid_v1.1.pdf

 23. Approved PIN Transaction Security Devices, PCI SSC, https://www.

pcisecuritystandards.org/approved_companies_providers/approved_

pin_transaction_security.php

 24. Validated P2PE Solutions, PCI SSC, https://www.pcisecuritystandards.

org/approved_companies_providers/validated_p2pe_solutions.php

 25. Payment Card Industry (PCI) Data Security Standard Self-Assessment
Questionnaire P2PE-HW and Attestation of Compliance, Hardware Payment
Terminals in a Validated P2PE Solution only, No Electronic Cardholder Data

Storage, Version 2.0, PCI SSC (June 2012), https://www.pcisecuritystan-

dards.org/documents/PCI_SAQ_P2PE-HW_v2.docx

 26. Payment Card Industry (PCI) Data Security Standard Self-Assessment
Questionnaire, Instructions and Guidelines, Version 2.1, PCI SSC,

(June 2012), https://www.pcisecuritystandards.org/documents/

pci_dss_SAQ_Instr_Guide_v2.1.pdf

 27. PCI Security Standards Council Releases Point-to-Point Encryption (P2PE)

Resources: Program Guide and Self-Assessment Questionnaire now avail-

able, PCI SSC Press Release, (June 28, 2012), https://www.pcisecurit-

ystandards.org/pdfs/120627-P2PE-Program-Guide_SAQ_Update.pdf

 28. Information Supplement: PCI DSS Tokenization Guidelines, PCI SSC,

(August 2011), https://www.pcisecuritystandards.org/documents/

Tokenization_Guidelines_Info_Supplement.pdf

 29. PCI DSS Applicability in an EMV Environment, A Guidance Document, Version

1, PCI Security Standards Council, October 2010, https://www.pcisecu-

ritystandards.org/documents/pci_dss_emv.pdf

 30. Ibid

 31. Ibid.

 32. PCI Mobile Payment Acceptance Security Guidelines for Developers,

Version : 1 .0 , PCI Security Standards Council , (September

2012), https://www.pcisecuritystandards.org/documents/

Mobile_Payment_Security_Guidelines_Developers_v1.pdf

 33. Ibid.

c04.indd 09:31:4:AM 12/31/2013 Page 91

PAR T

II
Attacks on Point-of-Sale Systems

In This Part

Chapter 4: Turning 40 Digits into Gold

Chapter 5: Penetrating Security Free Zones

Chapter 6: Breaking into PCI-protected Areas

Yet across the gulf of space, minds that are to our minds as ours are to those of the beasts

that perish, intellects vast and cool and unsympathetic, regarded this earth

with envious eyes, and slowly and surely drew their plans against us.

 —Herbert Wells

c04.indd 09:31:4:AM 12/31/2013 Page 92

93

c04.indd 09:31:4:AM 12/31/2013 Page 93

There is much talk about payment application security, specifi cally, how to

protect cardholder data from theft. But what exactly is this cardholder data and

why should it be protected at all? What is this particular piece of information

that is stolen when they talk about card data breach? And if it is stolen already,

is it really so easy to use it in order to make money? Shouldn’t we fi rst know

the answers to such questions before we even start talking about security? This

chapter will try to address these concerns.

Magic Plastic

“In a commercial sense credit is the promise to pay at a future time for valu-

able consideration in the present.”1 Combined with technology (I could not call

something that is already more than half a century old “modern technology”),

it produced a magnetic credit card which was the fi rst and, up until now, very

successful implementation of a magnetic payment card.

Most of us are familiar with credit, debit (PIN), and gift cards, which represent

the biggest group of the payment cards. The basic difference between those cards

is that a credit card manipulates with money that we owe to the card issuer, a

debit card with our own money, and a gift card with money that we already

spent. From a security point of view, it looks like a debit card is the most secure

of these three types because it requires a PIN number as a second authentica-

tion factor in order to process payment.2 However, this is not exactly true since

a PIN is not always required, so most debit cards are “dual purpose”—they

C H A P T E R

4

Turning 40 Digits into Gold
Man is pre-eminently a creative animal, predestined to strive consciously for an objective and

to engage in engineering . . . But why has he a passionate love for destruction and chaos also?

 —Fyodor Dostoyevsky

94 PART II ■ Attacks on Point-of-Sale Systems

c04.indd 09:31:4:AM 12/31/2013 Page 94

can be processed with or without PIN. Therefore, from a thief’s point of view,

such dual purpose cards are still useful even if no PIN number was obtained.

Physical Structure and Security Features

Before we dive into the digital jungle, let’s review something that seems obvi-

ous at fi rst glance—the physical structure of payment cards. Although this

book mostly focuses on software security, we cannot forget about the real

world because physical controls are an integral part of the information security

discipline, and security of electronic payments is no exception. In fact, in most

cases stolen credit card data is useless without creating a good looking replica

of the plastic card.

There are several hallmarks that are supposed to distinguish a genuine pay-

ment card from counterfeited plastic (although it does not mean these features

cannot be faked). 3, 4, 5, 6, 7

 ■ Payment brand logo, background color, and image distinguish the various

card brands and types, and this is exactly why they cannot be relied on

as strong security controls. The artwork can be easily replicated or even

created from scratch (because there are no visual design standards!) using

a PVC printer. There are too many issuing banks each having dozens of

different card fl avors. Since there is no standardization, it is virtually impos-

sible to tell whether the artwork is authentic by just looking at the card.

 ■ Embossed Primary Account Number (PAN), expiration date, and cardholder
name (shown in Figure 4-1) are passed down from the era of manual credit

card processing. In the old days, embossed information was the only way

to process transactions by pressing the plastic card in an imprinter—a

mechanical device that copies the embossed data from the plastic to the

transaction slip made from carbon paper. Many merchants still keep

them to support business continuity in events like power outages or POS

software failures. Nowadays, embossed data mostly remains as an extra

security feature, even though it is not a very strong security feature—an

embosser can be bought online for less than $300.

 ■ Card Verifi cation Value (CVV2) is a 3- to 4-digit code printed on the front

or back of the card (circled in Figure 4-2). It is rarely validated during

card-presenting transactions and is mostly intended for card-not-present

(online) payments (see more details in the “Card Verifi cation Values”

section of this chapter).

 ■ Ultraviolet (UV) marks, which are drawn on the front of the plastic

(Figure 4-3), glow when highlighted by special UV fl ashlight (Figure 4-4)

 Chapter 4 ■ Turning 40 Digits into Gold 95

c04.indd 09:31:4:AM 12/31/2013 Page 95

which can be bought for less than $10.8, 9 Cashiers can validate them just

the same simple way TSA security offi cers check our driver’s license in

the airport. However, almost no one does it because such a procedure

would damage the buying experience and dramatically increase transac-

tion processing time. Also, UV marks can be relatively easily replicated

by a regular inkjet printer with UV ink.10

Figure 4-1: Front of the plastic payment card

Figure 4-2: Back of the plastic payment card

Figure 4-3: Credit card under regular visible light

96 PART II ■ Attacks on Point-of-Sale Systems

c04.indd 09:31:4:AM 12/31/2013 Page 96

Figure 4-4: Credit card under black light showing the UV marks

 ■ Customer service phone numbers enable one to speak with the issuer bank’s

customer service representative who may confi rm the validity of the

card, ensure it was not stolen, and has enough credit for the transaction.

However, it is used only when a transaction is declined by an automatic

authorization system or when a payment amount is extremely high.

 ■ Metallic tipping (optional) is a gold or silver coating applied to the embossed

numbers and letters in order to contrast them so they can be easily distin-

guished from the card front’s background colors. This good-looking feature

can be replicated with a hot foil stamping machine for less than $250.

 ■ Cardholder Signature (optional) on the back of the card (Figure 4-2) is sup-

posed to be compared with the cardholder’s signature on the transaction

receipt payment slip. In reality, have you ever signed the back of your

credit card?

 ■ Cardholder photo (optional), which is added on the front or back of the card

by some issuers, can transform the card into a photo ID. Any picture,

including a photo, can be painted on a counterfeited card as part of a

background image by a PVC printer.

 ■ Hologram (optional) with the logo of the payment brand or the card issuer

can be found on the front or back of the card. There is no consistency in

presence, location, or content of the holograms, so cashiers are not certain

what to look for or where it should be located.

 ■ Holographic magnetic stripe (optional) is a relatively new feature which prob-

ably is not the simplest one to counterfeit, but what if it’s just not there?

Who knows whether it is supposed to be on the card or not?

 Chapter 4 ■ Turning 40 Digits into Gold 97

c04.indd 09:31:4:AM 12/31/2013 Page 97

Why Security Features Fail

There are several concerns associated with physical security controls of the

payment cards:

 ■ Protection mechanisms are not consistent. There are a few de facto stan-

dard features (such as embossed account number, expiration date, and

cardholder name) but still there is no formal standard. For example, the

card validation code has many different names (CSC, CVV, CAV, CVC,

CID, CAV2, CVC2, or CVV2), different lengths (3 or 4 digits), and different

locations (magnetic tracks, front or back of the card), which is confusing

to inexperienced cashiers. (The “Card Verifi cation Values” section of this

chapter explains these codes in detail.)

 ■ Many security features are not mandatory. For example, it was a great

idea to print the cardholder’s photo on the credit card. In fact, such a rela-

tively simple feature would turn a credit card into a photo ID and could

prevent regular fraud (when the cardholder’s wallet is stolen). Holographic

magnetic stripe is another example of a pretty strong physical protection

feature that is not easy to replicate (at least, it would seriously raise the

cost of counterfeit card production). However, since those features are

optional and not required by any standard or law, they are not widely

used and cannot be relied on.

 ■ Payment cards do not have physical security controls that can be vali-
dated automatically by magnetic stripe readers. All physical protection

mechanisms are designed to be recognized and validated by humans

(cashiers, attendants, waiters). Therefore, unattended payment termi-

nals such as an ATM, gas pump, or automated kiosk are the easiest

fraud targets because there is no one present who could determine the

authenticity of the plastic.

 ■ Most physical controls can be easily counterfeited. Unlike high tech

features such as EMV chips, regular physical controls can be easily repli-

cated at home. (The “Producing Counterfeit Card” section in this chapter

contains more details about required equipment.)

 ■ Validation of physical protection features is not mandatory and often
omitted by store attendants. Even though credit cards have some rela-

tively strong physical security controls such as holographic magnetic

stripes, cashiers rarely validate them. Many merchants, especially large

chains with high turnover, do not incorporate the validation of physical

controls in their transaction processing fl ow. Such rules would make the

98 PART II ■ Attacks on Point-of-Sale Systems

c04.indd 09:31:4:AM 12/31/2013 Page 98

process of payment less attractive, but even more importantly it would

seriously affect their transaction processing time, which defi nes how many

customers each cashier can serve during the shift. The longer an average

transaction time, the more cashiers merchants need to hire. Therefore,

many protection mechanisms, especially physical security controls requir-

ing human intervention, are not cost-effective. The risk of an occasional

unpaid transaction is much less dangerous than periodic payment of

wages for extra cashiers.

Thus, all existing non-automated protection methods of payment cards require

manual validation and therefore are largely ineffective, which opens the door

to one of the largest fraud monetization strategies—in-store purchases. This is

discussed in more detail later in this chapter.

Inside the Magnetic Stripe

Information about the cardholder is stored on the magnetic stripe located on

the back of the plastic payment card. There are 2 tracks (called Track 1 and

Track 2) which are used for processing electronic payments. There is also a

third track, Track 3, which is not involved in POS transactions. The data format

of the magnetic tracks is defi ned by the ISO 7813 standard11 and it is the same

for all types of credit, debit, gift, fl eet, EBT, and other payment cards. When a

magnetic card is swiped at the register, the MSR device reads the tracks from

the magnetic stripe and sends them to the payment processing system which

parses them to several sub-elements: PAN, Expiration Date, Service Code, and

additional discretional data (which is normally required only in special cases

such as fl eet cards processing).

“Magstripe is quite effi cient but not terribly smart technology”12, especially

from a security viewpoint. Magnetic stripe can be copied (or re-created from

its elements by assembling them together) and written into a blank plastic card

using the Magnetic Stripe Encoder. Such devices are relatively cheap and avail-

able for purchase by anyone. Track 1 and Track 2 are the two most important

elements since they are suffi cient for processing most payments. Either Track

1 or Track 2 can be used to manufacture a fully functional physical payment

card for brick-and-mortar store transactions or ATM cash withdrawals. The

PAN (which is located on both tracks) allows online purchases.

Track 1

Track 1 contains full information about the cardholder including fi rst and last

name. The maximum length of Track 1 is 79 bytes. The fi rst bytes are the PAN,

then the cardholder name which is separated by a “̂ ” character from the PAN on

 Chapter 4 ■ Turning 40 Digits into Gold 99

c04.indd 09:31:4:AM 12/31/2013 Page 99

the left and Expiration Date on the right. Here is a Track 1 example, which is fol-

lowed by Table 4-1 that lists the components used in the example:

%B4005554444444403^GOMZIN/SLAVA 1̂512101000000012300?

Table 4-1: Components of Track 1 Example

FIELD DATA

PAN 4005554444444403

Expiration Date 1512 (December 2015)

Cardholder’s fi rst name SLAVA

Cardholder’s last name GOMZIN

Service Code 101

CVV 123

Neither Track 1 nor 2 are protected, so the data is stored in clear text. In other

words, it is possible to create a full copy of a payment card if you can obtain just

79 bytes of Track 1 (or only 40 bytes of Track 2!). Such a duplicated card can then

be swiped the same way as the original at any payment terminal. Track 1 is the

only track that contains alphanumeric characters—the cardholder name is not

required for payment processing. Table 4-2 lists the detailed structure of Track 1.

Table 4-2: Detailed Track 1 Structure

ELEMENT LENGTH BYTES

DATA TYPE

AND FORMAT DESCRIPTION

% 1 Always ‘%’

character

Start Sentinel

B 1 Always ‘B’

character

Format Code

PAN Max. 19 Digits 0–9 See PAN section for detailed

structure.

^ 1 Always ‘̂ ’

character

Separator between the PAN

and Cardholder Name

Name 2 – 26 Characters Last Name

“/” Separator

First Name

Continues

100 PART II ■ Attacks on Point-of-Sale Systems

c04.indd 09:31:4:AM 12/31/2013 Page 100

ELEMENT LENGTH BYTES

DATA TYPE

AND FORMAT DESCRIPTION

^ 1 Always ‘̂ ’

character

Separator between

Cardholder Name and

Expiration Date

Expiration

Date

4 Digits Usually YYMM

Service Code 3 Digits Contains 3 sub-fi elds. See

Service Code section for

detailed structure.

Discretionary

Data

Variable (but limited

by total length of

the Track which

should not exceed

79)

Characters Optional information

depending on card type.

For example, special prompt

codes on fl eet cards instruct

the payment application

to request entering driver’s

license number or odometer

reading.

? 1 Always ‘?’

character

End Sentinel

LRC 1 Digit Longitudinal redundancy

check defi ned in ISO 7811-2.13

Normally, validated by the

MSR to check the integrity

of the data reading. Do not

confuse with PAN Check Digit

which is usually validated by

the payment application.

Track 2

Track 2 contains minimal information required for payment processing: the PAN,

Expiration Date, Service Code, and additional information which may vary depend-

ing on the card issuer and card type. Track 2 was introduced as a shorter version

of Track 1 in order to improve performance of old dial up payment terminals

which were using ground phone lines for communication with the authorizers.

Track 2 is still suffi cient for payment processing with most payment acquirers,

so Track 1 is optional in most applications.14 The standard length of Track 2 is

40 ASCII characters (each ASCII character has a length of 1 byte). First digits

(usually 16 but vary from 15 to maximum 19) are reserved for the PAN. The ‘=’

character separates the PAN from the 4 bytes of Expiration Date followed by

Table 4-2 (continued)

 Chapter 4 ■ Turning 40 Digits into Gold 101

c04.indd 09:31:4:AM 12/31/2013 Page 101

additional discretional data. Here is a Track 2 example, which is followed

by Table 4-3 that lists the components used in the example:

;4005554444444403=1512101000000012300?

Table 4-3: Components of Track 2 Example

FIELD DATA

PAN 4005554444444403

Expiration Date 1512 (December 2015)

Service Code 101

CVV 123

Table 4-4 lists the detailed structure of Track 2.

Table 4-4: Detailed Track 2 Structure

ELEMENT LENGTH BYTES

DATA TYPE

AND FORMAT DESCRIPTION

; 1 Always ‘;’

character

Start Sentinel

PAN Max. 19 Digits 0–9 The same as on Track 1

= 1 Always ‘=’

character

Separator between PAN

and Expiration Date

Expiration Date 4 Digits The same as on Track 1

Service Code 3 Digits The same as on Track 1

Discretionary Data Variable (but

limited by total

length of the Track

which should not

exceed 40)

Digits See Discretionary Data on

Track 1.

? 1 Always ‘?’

character

End Sentinel

LRC 1 Digit See LRC on Track 1.

PAN

The Primary Account Number (PAN) usually has 16 digits, with some excep-

tions such as American Express which uses only 15 digits. The maximum length

of a PAN is 19 digits, and there are some card types having 19-digit account

numbers, such as fl eet cards.

102 PART II ■ Attacks on Point-of-Sale Systems

c04.indd 09:31:4:AM 12/31/2013 Page 102

PAN is embossed on the front of most payment cards which allows manual

entry at the POS when the MSR fails to read the magnetic stripe for any reason

(usually caused by physical damage to the card). An embossed PAN can be used

for manual transaction processing when the electronic system is down. This

is also the easiest and oldest way to steal money from the cardholder without

any computer hacking: just write down the PAN digits and use them for phone

or online purchase.

Table 4-5 shows the PAN location on magnetic tracks.

Table 4-5: PAN Location on Magnetic Tracks

TRACK DATA

1 %B4005554444444403^GOMZIN/SLAVA 1̂512101000000012300

2 ;4005554444444403=1512101000000012300?

Both Track 1 and Track 2 contain the same PAN, which is also constructed

from several elements: ISO Prefi x, account number, and check digit. Although

having dumps with full Track 1 or 2 is ideal for counterfeiting the payment card,

knowing only the PAN in some cases, such as card-not-present online purchases,

would be suffi cient for performing the fraudulent transaction.

The PAN might be suffi cient for online purchases when the payment card

is not swiped but is entered manually. During the online purchase, the pay-

ment application may prompt for many elements such as PAN, expiration date,

cardholder’s fi rst and last name, cardholder’s street address and ZIP code, phone

number, or others. In fact, if CVV2 is not requested, only the PAN is validated

in order to get the approval (more on that in following sections).

Expiration Date

Expiration date is encoded as four digits: two digits each for month and year.

Both Track 1 and 2 contain expiration date which follows the = PAN separator

on Track 2 and the second cardholder name separator “̂ ” on Track 1 (Table 4-6).

The order of month and year is defi ned by the ISO standard: fi rst are the last

two digits of the year and then the two digits representing the month (YYMM).

For example, the card expiring on December 2015 will have the expiration date

encoded as 1512.

 Chapter 4 ■ Turning 40 Digits into Gold 103

c04.indd 09:31:4:AM 12/31/2013 Page 103

Table 4-6: Expiration Date Location on Magnetic Tracks

TRACK DATA

1 %B4005554444444403^GOMZIN/SLAVA^1512101000000012300

2 ;4005554444444403=1512101000000012300?

The expiration date is also embossed on the front of the card. Note that the

location of the month and year numbers in the embossed expiration date is

opposite to the format of the date encoded in tracks, and there is a / or - separa-

tor between the month and year digits like these: MM/YY or MM-YY.

Payment applications and most payment processors and acquirers do not

check the expiration date (or many or sometimes even all other elements

besides the PAN). The expiration date validation procedure just ensures

that the date is not past due. There is no verifi cation of the authenticity of

the expiration date, meaning that the expiration date sent for validation is

not compared with the original expiration date in the card issuer’s database.

Therefore, virtually any randomly generated expiration date that is later

than the current date would pass the validation (note that some limitations

for maximum year numbers can be in place, for example, “7012” will likely

be rejected by a payment application because it would interpret the card as

expired in December 1970).

In addition, expiration dates—while in transit or at rest—are usually not

encrypted by payment applications (PCI standards do not require it), and can

be easily obtained from the memory, communication, databases, or log fi les.

ISO Prefi x and BIN Ranges

The fi rst 6 digits of the PAN (Table 4-7) are called the ISO Prefi x, also known as

BIN or IIN Prefi x which is the offi cial name.

Table 4-7: ISO Prefi x Location on Magnetic Tracks

TRACK DATA

1 %B4005554444444403^GOMZIN/SLAVA 1̂512101000000012300?

2 ;4005554444444403=1512101000000012300?

104 PART II ■ Attacks on Point-of-Sale Systems

c04.indd 09:31:4:AM 12/31/2013 Page 104

Technically, ISO Prefi x is not part of the account number because it contains

generic information about the card issuer, so the real account number, which

identifi es the cardholder, contains only 9 digits. A 16-digit PAN would look

like this:

16 (PAN) − 6 (ISO Prefi x) − 1 (Check Digit – see below) = 9.

There are several reasons why PCI standards allow disclosure of the fi rst six

PAN digits:

 ■ ISO Prefi x is not a secret number because it does not identify the card-

holder and many cardholders have the same ISO Prefi x on their cards.

 ■ ISO Prefi x can be generated artifi cially because it contains data which is

publicly known.

 ■ Most client payment systems must know the ISO prefi x of the card in

order to route the transaction to the appropriate processor. Therefore,

even when the sensitive card data is encrypted using P2PE encryption

(see P2PE section for details), the system should still be able to see the ISO

Prefi x in order to process the transaction.

The fact that the fi rst 6 and last 4 digits are almost always exposed in clear

text, and “check digit” is a function that can be calculated based on PAN value,

is very important for breaking the hash function of the PAN because only six

digits should be brute forced.

C R O S S  R E F E R E N C E See Chapter 6 for more details about hash function

vulnerabilities.

The fi rst digit of the ISO prefi x (and PAN) is called MII (Major Industry

Identifi er) and, as the name implies, it identifi es the industry. In practice, major

payment brands have allocated MII numbers from 1 through 6 and they can be

identifi ed by the fi rst 1 to 4 digits of the ISO Prefi x (Table 4-8).

Table 4-8: BIN Ranges

MII 1ST DIGIT BIN RANGE PAYMENT BRAND

1 1800xx JCB

2 2131xx JCB

3 34xxxx, 37xxxx American Express

300xxx – 305xxx, 36xxxx, 38xxxx Diners Club

35xxxx JCB

4 4xxxxx Visa

 Chapter 4 ■ Turning 40 Digits into Gold 105

c04.indd 09:31:4:AM 12/31/2013 Page 105

MII 1ST DIGIT BIN RANGE PAYMENT BRAND

5 51xxxx – 55xxxx MasterCard

6 6011xx, 65xxxx Discover

This table describes only the high level division. Detailed BIN ranges can be obtained through payment brands15,

banks16, or other online sources17.

PAN Check Digit

The last digit of any PAN (with very rare exceptions) is called a check digit

which allows distinguishing between real card account numbers and random

sequences of digits when looking for PANs in memory or in fi les. The check

digit is not really part of the account number. For example, if the PAN length is

16 digits, the account number consists of the fi rst 15 digits, and the 16th digit is

the check digit (Table 4-9). The check digit is determined by a special Mod 10

(Modulus 10) calculation (implementation is shown in the code sample below),

also known as the Luhn formula invented by Hans Peter Luhn who was one of

the fi rst information scientists in America.18 The offi cial Mod 10 algorithm for

payment cards is defi ned in Annex B of ISO 7812-1.19

Table 4-9: PAN Check Digit Location on Magnetic Tracks

TRACK DATA

1 %B4005554444444403^GOMZIN/SLAVA 1̂512101000000012300?

2 ;4005554444444403=1512101000000012300?

Check digit validation is less important in a search for full Track 1 or 2 because

they can be very well distinguished by the combination of data separators

(= in Track 2 or a pair of ^ in Track 1) with PAN and Expiration Date patterns.

(The “Regular Expressions” section of this chapter contains more details about

using check digits.)

Code Sample: Mod 10 - PAN Check Digit Verifi cation

public bool LuhnTest(string cardNumber)
{
 // Clean the card number - remove dashes and spaces
 cardNumber = cardNumber.Replace("-", "").Replace(" ", "");

 // Convert card number into digits array
 int[] digits = new int[cardNumber.Length];
 for (int len = 0; len < cardNumber.Length; len++)

106 PART II ■ Attacks on Point-of-Sale Systems

c04.indd 09:31:4:AM 12/31/2013 Page 106

 {
 digits[len] = Int32.Parse(cardNumber.Substring(len, 1));
 }
 int sum = 0;
 bool alt = false;
 for (int i = digits.Length - 1; i >= 0; i--)
 {
 int curDigit = digits[i];
 if (alt)
 {
 curDigit *= 2;
 if (curDigit > 9)
 {
 curDigit -= 9;
 }
 }
 sum += curDigit;
 alt = !alt;
 }
 // If Mod 10 equals 0, the number is good and this will return true:
 return sum % 10 == 0;
}

Service Code

The three bytes of Service Code (Table 4-10) consist of 31-byte subfi elds. The

values of those fi elds are important because they tell the payment application

and payment processor how to handle the card during payment acceptance.

Table 4-10: Service Code Location on Magnetic Tracks

TRACK DATA

1 %B4005554444444403^GOMZIN/SLAVA 1̂512101000000012300?

2 ;4005554444444403=1512101000000012300?

The most common service codes are 101 and 201. The seemingly small one-digit

difference is, in fact, very signifi cant for cardholders. The fi rst digit determines

whether the card has the EMV chip or not. Thus, the 101 cards are simple mag-

netic stripe cards which can be accepted virtually anywhere in the United States

(thanks to ignoring the European EMV revolution), while 201 cards contain the

chip which puts some limitations on the card (the swipe might not be accepted

by an EMV-enabled POI device).

 Chapter 4 ■ Turning 40 Digits into Gold 107

c04.indd 09:31:4:AM 12/31/2013 Page 107

Table 4-11 shows additional important instructions to payment applications and

processors that are defi ned by the service codes. Those instructions can include

acceptance region (international or domestic), prompt for PIN requirement, and

product restrictions (goods and services only, ATM only, or no restrictions).

Table 4-11: Service Code Instructions

INSTRUCTION SERVICE CODE

1ST

DIGIT

2ND

DIGIT

3RD

DIGIT

Technology The card has a chip 2 or 6

Acceptance International 1 or 2

Domestic 5 or 6

Authorization Normal 0

By Issuer 2

Restrictions No restrictions 0, 1, or 6

Goods and services only 2, 5, or 7

ATM only 3

PIN requirements PIN required 0, 3, or 5

Note that most of these service code instructions are usually ignored by local point-of-sale systems and analyzed only by

processor or acquirer host.

Card Verifi cation Values

Now it’s time to understand what all those three-letter abbreviations using

the letters C and V mean. Card Verifi cation Value (CVV) was invented by

payment brands in order to fi ght the massive credit card fraud. There are

two types of CVV, which are often confused, and the fact that each payment

brand has its own naming convention for virtually the same code adds to the

confusion and demonstrates another example of the lack of standardization

in the industry.20

The fi rst group of codes, which are listed in Table 4-12—let’s call them CVV,

although each credit company uses different combinations of three letters—is

embedded into the discretional data of the magnetic Tracks 1 and 2.

108 PART II ■ Attacks on Point-of-Sale Systems

c04.indd 09:31:4:AM 12/31/2013 Page 108

Table 4-12: Card Verifi cation Values Encoded on Magnetic Stripes

PAYMENT BRAND CODE NAME LOCATION LENGTH

American Express CSC Card Security Code Track 1,2 3

Discover CVV Card Verifi cation Value Track 1,2 3

JCB CAV Card Authentication

Value

Track 1,2 3

MasterCard CVC Card Validation Code Track 1,2 3

Visa CVV Card Verifi cation Value Track 1,2 3

The second group of codes is usually called CVV2 but, as in the case with

CVV, each payment brand has its own names (Table 4-13). Those numbers are

printed on the front or back of the plastic payment cards.

Table 4-13: Card Verifi cation Values Printed on Plastic

PAYMENT BRAND CODE NAME LOCATION LENGTH

American Express CID Card Identifi cation Number Card front 4

Discover CID Card Identifi cation Number Card back 3

JCB CAV2 Card Authentication Value 2 Card back 3

MasterCard CVC2 Card Validation Code 2 Card back 3

Visa CVV2 Card Verifi cation Value 2 Card back 3

CVV Encoded on Magnetic Tracks

CVV (also known as CSC, CAV, and CVC depending on payment brand), which is

encoded in a discretional area of magnetic Tracks 1 and 2 as shown in Table 4-14,

was introduced before CVV2. It is derived from the track data elements using a

special cryptographic function.

Table 4-14: CVV Location on Magnetic Tracks

TRACK DATA

1 %B4005554444444403^GOMZIN/SLAVA 1̂512101000000012300?

2 ;4005554444444403=1512101000000012300?

 Chapter 4 ■ Turning 40 Digits into Gold 109

c04.indd 09:31:4:AM 12/31/2013 Page 109

CVV is verifi ed by the acquirer’s host during the authorization phase when

the POS sends full Track 1 or 2 data, or both. The idea behind this validation is

simple—before PCI security standards were introduced and even after, when

merchants just started encrypting the data storage, it was easy to steal the PAN

numbers because they are usually stored for long periods of time for settlement

processing and customer services enquiries. During the early days of credit card

fraud, the thieves’ job was much easier—they did not have to steal the entire

tracks in order to create fake plastic cards. Back then, PAN and expiration date

(which is not validated by many authorizers and can be randomly generated

to match simple validation criteria) contained enough information for crafting

the full Track 2, as follows:

Start sentinels: always “;”

+

PAN: “1234567890123456”

+

Separator: always “=”

+

Expiration date: “1512” (just put any year and month in the future)

+

End sentinels: always “?”

=

Track 2: ;1234567890123456=1512?

Nowadays, thanks to the CVV validation feature, the tracks cannot be so

easily reconstructed. The thieves need to either obtain the entire track (which

is somewhat more diffi cult but not impossible) or guess the value of CVV which

is problematic with 1,000 possible values.

The Track 1 or 2 reconstructed from only PAN can still be used to make

counterfeit cards for use in offl ine transactions because no payment application

has the capability of validating CVV offl ine.

C R O S S  R E F E R E N C E See Chapter 5, “Penetrating Security Free Zones,” for

more details about forcing offl ine authorization attack.

CVV2 Printed on Plastic

CVV2 (also known as CAD, CAV2, and CVC2 depending on payment brand)

validation is optional and can be provided as an additional service for the

merchants.21 This code is rarely validated in brick-and-mortar stores since the

110 PART II ■ Attacks on Point-of-Sale Systems

c04.indd 09:31:4:AM 12/31/2013 Page 110

card is physically present and can be validated by an attendant. CVV2 is mostly

important for card-not-present transactions (online and phone payments) as it

helps to verify that the actual physical card (not just its account number) is in

hands of the customer. This is made possible by the fact that CVV2 is not pres-

ent on the magnetic stripe but only printed on the front or back of the plastic

card, as shown in Figure 4-2.

If the card data (Tracks 1 and 2) is stolen from the in-store payment system

that is processing the card-present transactions, it normally does not contain

CVV2 and, therefore, it can’t be used for online shopping (although there are

still alternative monetization methods explained later). On the contrary, if the

card data (PAN) is stolen from the online payment system, the “dump” may

contain CVV2 but it will not contain full magnetic tracks (and CVV1).

Regular Expressions

A special programming technique called regular expressions (or regex) is employed

by malware to fi nd Track 1, Track 2, and PAN components in computer memory

or disk fi les. Regular expressions are a notation for specifying patterns of text

as opposed to exact strings of characters.22 Credit and debit card numbers have

known format patterns which are easily translated to instructions written in

special regular expression syntax. Those instructions can be interpreted by

software in order to fi lter out the actual tracks and account numbers from huge

streams of data loaded from memory or disk fi les. For example, all MasterCard

accounts start with the numbers 51 through 55, and the remaining 14 digits

contain any number from 0 through 9, for example, 510000000000000. So the

regular expression for a MasterCard PAN would be ^5[1-5][0-9]{14}$.

If you just use simple patterns, however, the search results will also return

many false positives—random numbers which look like PAN but in fact con-

tain garbage. The example above with fourteen zeros is not a real MasterCard

account number but it fi ts the right pattern. In order to fi lter out false positives,

various methods of validation are utilized by scanning software. One of them

is Mod 10 validation. The last digit of a credit card account number is always

checksum which can be compared with the Mod 10 calculated for the remaining

numbers (See the “PAN Check Digit” section earlier in this chapter for sample

Mod 10 code.) Regular expressions for the PANs of major payment brands are

shown in Table 4-15.

Table 4-15: Regular Expressions for the PAN of Major Payment Card Brands

PAYMENT BRAND REGULAR EXPRESSION

Visa ^4[09}{12}(?:[0-9]{3})?$

 Chapter 4 ■ Turning 40 Digits into Gold 111

c04.indd 09:31:4:AM 12/31/2013 Page 111

PAYMENT BRAND REGULAR EXPRESSION

MasterCard ^5[1-5][0-9]{14}5

American Express ^3[47][0-9]{13)$

Diners Club ^3(?:0[0-5]|[68][0-9])[0-9]{11}$

Discover ^6(?:01115(0-9)(2))(0-9){12}$

JCB ^(?:2131|1800|35\d{3})\d{11}$

The following C# code samples contain additional false positive fi lters. They

include patterns for all major credit card brands.

Regex searching for PAN only (all card brands):

string pan_regex = @"(?<![\d])(?:4[0-9]{12}|4[0-9]{3}\s?[0-9]{4}\s?[0-9]
{4}\s?[0-9]{4}|5[1-5][0-9]{14}|6(?:011|5[0-9][0-9])[0-9]{12}|3[47]
[0-9]{13}|3(?:0[0-5]|[68][0-9])[0-9]{11}|(?:2131|1800|35\d{3})\d{11})
(?![\d])";

Search for Tracks 1 and 2 (starts from PAN regex which is followed by

additional regex for Track 1 and 2 patterns):

string track_pan_regex = @"(?:4[0-9]{12}|4[0-9]{15}|5[1-5][0-9]
{14}|6(?:011|5[0-9][0-9])[0-9]{12}|3[47][0-9]{13}|3(?:0[0-5]|[68][0-9])
[0-9]{11}|(?:2131|1800|35\d{3})\d{11})";
string track_main_regex = @"(?:(?:\=[0-2][0-9][0-1][0-2]|\^.+\^[0-2]
[0-9][0-1][0-2]))";
string full_track_regex = track_pan_regex + track_main_regex;

Chapters 5 and 6 contain practical examples of regular expression applications.

Getting the Dumps: Hackers

I am not a hacker. I never wanted to be one. There are so many interesting things

I could do without breaking the law and making trouble for innocent people.

However, it does not mean I could not become a hacker. In fact, anyone can. If

you think about hackers as super gurus with above average IQs and abnormal

skills, you are wrong—there are very few like that. Usually, they are ordinary

people who simply want to do something unauthorized which would position

them above the crowd. And this is good news for us, because it means that we

do not have to be super smart in order to defend against them. What we do have

to do though, in order to protect ourselves, is understand our vulnerabilities

and learn how to mitigate them in the most effi cient way.

112 PART II ■ Attacks on Point-of-Sale Systems

c04.indd 09:31:4:AM 12/31/2013 Page 112

As for many other cyber targets, there are three major motivations for a hacker

to break into a payment system: fun, politics and terrorism, or money. This book

is focused on the third reason which is the most dangerous for electronic pay-

ments. However, all three still should be taken into account when performing

risk assessment and threat modeling.

Security Breach

The activities listed in Table 4-16 can be described by a single word: security

breach. The term Security Breach (or Data Breach) is widely used in the payment

industry and security community to name the sequence of events related to

the leak and fraudulent use of sensitive cardholder data. There are references

to this term found in offi cial documents, such as PCI DSS and PA-DSS secu-

rity standards.23, 24 It is not so simple to fi nd detailed information about card

data breaches. Companies do not rush to disclose their security breaches, even

though in most states they are required to do so by state laws.25, 26, 27 Even if a

data breach is disclosed, they try to minimize the amount of facts that are being

published and distract public attention from the event. When a security breach

happened in 2008 at one of the nation’s biggest payment processors, the public

announcement was made on the day of President Obama’s Inauguration.28

Table 4-16: Phases of Typical Card Data Breach

PHASE ACTION DURATION

1. Gathering Information Learning about retail store environ-

ment controls (for example, vulnerability

scanning).

Learning about target payment application

technology and vulnerabilities.

Days to Weeks

2. Preparing Malware Based on information about payment appli-

cation, customizing existing malware, or

creating a new one.

Days to Weeks

3. Penetrating Store

Environment

Breaking physical or/and logical controls of

the store.

Installing malware.

Hours to Days

4. Retrieving Sensitive

Data

Collecting sensitive data from memory, disk

storage or communication, and uploading it

to the attacker’s computer.

Hours to Years

5. Carding Hackers selling “dumps” to monetization

gangs.

Hours to

Weeks

 Chapter 4 ■ Turning 40 Digits into Gold 113

c04.indd 09:31:4:AM 12/31/2013 Page 113

PHASE ACTION DURATION

6. Monetization For credit cards:

Making online purchases or shopping in

retail stores.

Selling purchased goods and getting cash.

For PIN (Debit) cards:

Withdrawing cash from ATM.

Hours to Years

7. Disclosure Internal discovery (abnormal system behav-

ior) of public disclosure (customers report-

ing about fraudulent transactions).

Investigation and mitigation.

Days to

Months

Privacy Rights Clearinghouse maintains a history of every reported security

breach since 2005 including data breaches of payment systems.29

The most sophisticated types of security breaches do not happen often. In

fact, some of them have not happened yet. Why would hackers want to spend

more time and resources on a diffi cult attack scenario if a simpler vulnerability

can be exploited and bring the same result? However, as time goes on and more

security measures are being implemented to protect against simple intrusions,

new attacks do become more sophisticated. Security is a perpetual competition.

There are several steps that would need to be performed in order to make

money from stolen credit card data (refer to Table 4-16). First of all, the sensi-

tive records need to be obtained by breaking into the store payment system

and exploiting one of the vulnerabilities described in next two chapters. So the

very fi rst step is penetrating the store environment, which can be done either

remotely from the Internet, or from inside by breaking the physical security

of the store or using the help of insiders or social engineering.30 Once physical

and/or logical (network) protection layers are broken, the next step is installing

malware—specially crafted software that breaks the payment application controls,

retrieves and records sensitive data, and fi nally, uploads it to the “command

center” of the attacker.

Largest Point-of-sale Breach

The data breach at The TJX Companies, Inc. (TJX), which is the parent company

of T.J. Maxx and Marshalls, was the largest example in the history of merchants’

payment card data theft.31 The initial attacks were performed using a method of

wardriving—hacking into the stores’ networks through the wireless communication

114 PART II ■ Attacks on Point-of-Sale Systems

c04.indd 09:31:4:AM 12/31/2013 Page 114

that was poorly protected by Wired Equivalent Privacy (WEP) encryption, which

can be broken in minutes. Millions of records containing sensitive authentica-

tion data were stored by POS systems on the company servers and included

full magnetic tracks, CVV2, and even debit PIN numbers.32 According to one

report, in addition to TJX stores, the breach also affected “Offi ceMax, Barnes &

Noble, Target, Sports Authority, and Boston Market, and probably many other

companies that never detected a breach or notifi ed the authorities.”33

The main fi gure who organized the TJX and other similar “operations”—Albert

Gonzales—was sent to jail for 20 years.

Converting the Bits into Cash: Carders

Once the sensitive data is retrieved, transmitted, and stored outside the targeted

store environment, the batches of stolen records, which are called dumps, are

usually sold online through special forums to other people.34, 35 This market

is called carding, and people making deals with stolen records of card data are

called, accordingly, carders. Misha Glenny, the author of Dark Market: Cyberthieves,
Cybercops and You (Knopf, 2011), defi nes carding as “the practice of buying or

selling stolen or hacked credit-card details” and calls it “the daily bread of cyber-

crime.”36 Usually, hackers who steal card data do not deal with monetization

issues directly. They make money by selling dumps to individuals or groups who

specialize in converting the bits into money. After those “operations” guys buy

the dumps from hackers on a carding website, they manufacture fake plastics

and fi nally switch from virtual reality to the real world in order to perform the

last step which depends on the type of their dump.

With regular credit cards they make online purchases (which do not even

require creating the plastics), or shop at retail stores for fancy goods, and then

sell these items online to get cash. With debit cards, if they also have the PIN

codes, they withdraw money directly from the ATM. Debit card dumps eliminate

the risk of making purchases with fake cards, as well as remove any trouble

and expense associated with obtaining the cash by selling the goods. In addi-

tion, requirements to the exterior look of the fake credit cards are much higher

because they must pass visual inspection by a cashier at the time of purchase.

A bogus debit card can be as simple as a piece of white plastic with a magnetic

stripe on it in order to be accepted by an unattended ATM terminal. According

to BankInfoSecurity, in January 2013 “Visa issued an advisory to U.S. payment

card issuers” warning about a “recent case involving a limited number of stolen

payment cards used to conduct thousands of withdrawals at ATMs in numerous

countries over the course of a single weekend.”37

 Chapter 4 ■ Turning 40 Digits into Gold 115

c04.indd 09:31:4:AM 12/31/2013 Page 115

Even though CVV2 validation has become very common these days, there are

still some websites that do not prompt for card verifi cation codes. For example,

many non-profi t organizations collecting donations on their websites still employ

payment applications that do not require CVV2. And even if CVV2 is required, such

websites can still be used by carders for testing the validity of their dumps.38, 39 Here

is how it works: First, they fi nd a non-profi t organization’s website which does not

require any further interaction such as shipment details (there is no purchase—it

is donation!). Then, they try to donate a very small amount ($1 or even less). If the

transaction goes through, the PAN is valid and the dump most defi nitely can be

used to create the fake card and go shopping.

N O T E Unfortunately, many interesting details in every step of this process remain

beyond the scope of this book which is focused mostly on the technical side of this

phenomenon. More information about the carding world can be found in references

40, 41, and 42 listed at the end of this chapter.

Monetization Strategies: Cashers

After the credit or debit dumps are obtained using one of the methods described

previously, it’s time to make some money. This is where cashers enter the game.

There are two major kinds of monetization strategies which require differ-

ent technical and psychological skills, as well as different types of card data

dumps. Thus, cashers typically stick with one of the two strategies: online or

real-world action.

The online monetization strategy includes any cashing activities that can

be performed via the Internet, such as online shopping and games, and can be

completed almost entirely through the computer without even leaving home.

In addition to the fact that they don’t have to leave their couch, online moneti-

zation has another undisputable benefi t: it is dependent solely on technology

and does not require having any special psychological, social engineering, or

communication skills. The dump for online cashing often contains the PAN,

expiration date, and CVV2 required for online payment processing.

In contrast, the real-world action monetization strategy requires interaction

with the material world—shopping at brick-and-mortar stores or cash withdrawal

at ATMs. In some cases additional investments in manufacturing equipment

are necessary for creating good-looking fake credit cards. The dump for in-store

cashing includes Track 1 or Track 2 or both (having only one readable track is

suffi cient for payment authorization by most systems).

116 PART II ■ Attacks on Point-of-Sale Systems

c04.indd 09:31:4:AM 12/31/2013 Page 116

Producing Counterfeit Cards

As previously described, at least two monetization strategies require having

a physical card in-hand: in-store purchase and ATM withdrawal. The process

of credit or debit card counterfeiting is much easier than it may seem at fi rst.

There are 4 to 5 steps in the process, depending on the desired quality of the

resulting product, and only the encoding step is necessary in all cases. Each step

requires special equipment which may cost from a couple of hundred dollars

to a few thousand dollars, depending on the desired quality and fi nal look of

the product. Each step is defi ned as follows:

 1. Encoding is writing the dump into the magnetic stripe of the blank card

template with a special device called a magnetic stripe encoder.

 2. Printing is necessary in order to apply background colors, the payment

brand logo, and any other images (such as the cardholder photo) to the

card. A special thermal PVC or inkjet printer (Figures 4-5 and 4-6) can

produce very decent images that sometimes cannot be easily distinguished

from the original. Also, invisible UV marks can be printed at this stage.

Figure 4-5: Thermal PVC printer

 3. Embossing is necessary to create the embossed PAN, cardholder name,

and expiration date. It is done using an embosser, shown in Figure 4-7.

 4. Tipping is the process of painting the embossed numbers and letters using

gold or silver foil using a tipper like the one shown in Figure 4-8.

 Chapter 4 ■ Turning 40 Digits into Gold 117

c04.indd 09:31:4:AM 12/31/2013 Page 117

Figure 4-6: Inkjet printer for printing on flat surfaces

Figure 4-7: Embosser

Various types of embossers and tippers can be purchased online.43, 44

The printing, embossing, and tipping steps are only needed when a perfect-

looking card is needed to be presented to the salesperson in a fancy boutique for

quite expensive booty without arousing any suspicion. In such cases, replication

of additional security features such as holograms might be needed in order to

achieve a top quality card.

118 PART II ■ Attacks on Point-of-Sale Systems

c04.indd 09:31:4:AM 12/31/2013 Page 118

For a debit card that is going to be used in an ATM for cash withdrawal, or

a credit card that is going to be swiped at the point of sale by an “insider” (an

accomplice who works as a cashier), simple white plastic will work just fi ne:

there will be no need for embossing or fancy pictures.

Figure 4-8: Tipper

Encoders

A magnetic stripe reader (MSR) device can be a simple reader or both a reader

and a writer (encoder). Readers are utilized in legitimate POS systems as well as

in skimming attacks (see Chapter 7). Magnetic stripe encoders are considered in

this chapter because they are capable of writing any information into the mag-

netic stripe of blank plastic card templates. Both card encoders and blank card

templates can be purchased online and used for manufacturing fake cards.45,

46 With a simple encoder such as the one shown in Figure 4-9, which can be

purchased anonymously online for less than $200, magnetic tracks stolen from

payment systems (“dumps”) can be written into blank plastic card templates.

After some additional artwork, the resulting product can be used for making

fraudulent transactions.

Usually, a brand new device includes drivers for a major OS, a simple manag-

ing application with an intuitive graphic user interface, and several blank plastic

cards to start using on the spot. A typical encoder can be connected to any

 Chapter 4 ■ Turning 40 Digits into Gold 119

c04.indd 09:31:4:AM 12/31/2013 Page 119

computer via a USB or serial port. The track data (Tracks 1 and 2 only—Track 3

is not used in fi nancial transactions) from the dump can simply be copied and

pasted into the managing utility interface window, as shown in Figure 4-10.

Figure 4-9: Magnetic Stripe Encoder

Figure 4-10: Encoding utility is ready to write track data to the magnetic stripe

120 PART II ■ Attacks on Point-of-Sale Systems

c04.indd 09:31:4:AM 12/31/2013 Page 120

After the track data is entered into the corresponding text boxes, only a single

click on the “Write” button and a quick card-swipe separate us from the com-

plete card (Figure 4-11).

Figure 4-11: Encoding is done

If the dump has debit card tracks with a complementary PIN code, no further

steps are required: the card is ready to be used to withdraw cash because the

ATM does not validate the exterior of the plastics. Payment cards do not have

physical controls (besides the magnetic stripe which is replicated by encoding)

that could be verifi ed by ATM.

Printers

There are two types of printing devices capable of creating images on blank

PVC cards:

 1. Thermal PVC printers cost from $1,000 and up47 (see Figure 4-5). It is capable

of producing high quality color images of background and payment brand

logos on blank plastic cards.

 2. Inkjet printers capable of printing on fl at surfaces (shown on Figure 4-6) are

cheap compared to thermal PVC printers.48 Such printers, while initially

 Chapter 4 ■ Turning 40 Digits into Gold 121

c04.indd 09:31:4:AM 12/31/2013 Page 121

designed to print images on CD and DVD, can be easily upgraded to print

on PVC cards by adding a special PVC card tray for just $25.49 However,

the quality and especially the durability of the image produced by a ther-

mal printer is higher.

Another important function that can be performed by inkjet printers is

creating UV marks. In order to do this, the ink cartridge should be reloaded

with special UV ink, which is invisible in normal conditions but glows

under a black light.

Summary

Magnetic stripe payment cards are insecure by design, primarily due to the

following:

 ■ There are multiple physical security features which still do not provide

adequate protection from theft.

 ■ Sensitive cardholder information is encoded on a magnetic track in

clear text.

Card data breach, which consists of several stages, can remain undisclosed

for many months and result in thousands of stolen credit and debit card records.

Counterfeited cards can be relatively easily manufactured using full Track 1

and 2 data from the original cards. The main steps of this process are encoding,

printing, embossing, and tipping.

 ■ Only encoding is necessary for ATM cash withdrawal (if PIN is available).

 ■ Selected elements of card track data (PAN and CVV) can be used for

online shopping without the need to produce the physical plastic card.

Notes

 1. The Encyclopedia Britannica, A Dictionary of Arts, Science, Literature, and

General Information, 11th Edition, Volume 7 (New York: The Encyclopedia

Britannica Company, 1910), p.390.

 2. Slava Gomzin, “Free Two-Factor Authentication with Your Smartphone,”

PayAppSec blog (June 2011), http://www.gomzin.com/1/post/2011/06

/free-two-factor-authentication-with-your-smartphone1.html

 3. American Express cards security features, American Express, https:

//secure.cmax.americanexpress.com/Internet/International

122 PART II ■ Attacks on Point-of-Sale Systems

c04.indd 09:31:4:AM 12/31/2013 Page 122

/japa/SG_en/Merchant/PROSPECT/WorkingWithUs/AvoidingCardFraud

/HowToCheckCardFaces/Files/Guide_to_checking_Card_Faces.pdf

 4. VISA Card Security Features, Visa Inc. (2012), http://usa.visa.com

/download/merchants/card-security-features-mini-vcp-111512.pdf

 5. Help Prevent Fraud with MasterCard Card Security Features, MasterCard

Worldwide, 2008, http://www.mastercard.com/us/merchant/pdf

/MST08004_CardFeatures_r4.pdf

 6. Discover Card Identification Features, Discover, http://www.

discovernetwork.com/merchants/fraud-protection/prevention.html

 7. Holographic magnetic stripe JCB Cards, JCB Co. Ltd., http://partner

.jcbcard.com/acceptance/holographicstripe.html

 8. How to verify US Dollars, Credit Cards, and Travelers Cheques, AccuBanker,

http://www.accubanker.com/docs/verify_en.pdf

 9. UV flashlights on Amazon, http://www.amazon.com/s/ref=nb

_sb_noss?url=search-alias%3Daps&field-keywords=UV+flashlight

 10. Invisible UV ink on Amazon.com, http://www.amazon.com/s/ref=nb

_sb_noss_1?url=search-alias%3Daps&field-keywords=invisible+uv+ink

 11. International Standard ISO/IEC 7813, Information technology – Identification

cards – Financial transaction cards, ISO/IEC, 2006.

 12. David S. Evans and Richard Schmalensee, Paying with Plastic: The Digital
Revolution in Buying and Borrowing, 2nd ed., (Cambridge, MA: The MIT

Press, 2005), p.9.

 13. International Standard ISO/IEC 7811-2, Identification cards — Recording

technique — Part 2: Magnetic stripe — Low coercivity, ISO, 2001.

 14. Technical Reference Guide, Open Terminal Requirement Specification - Book 1,

Nets (December 2012), pp. 2-4-7, http://www.nets.eu/dk-da/Service

/verifikation-af-betalingsloesninger/Documents/ct-trg-otrs-en.pdf

 15. Requirements for POS Software Applications and Devices Support for Discover®

Network Cards, Discover (April 2012), http://www.discovernetwork.com

/value-added-reseller/images/Discover_IIN_Bulletin_Apr_2012.pdf

 16. “Card Identification and Validation,”, Range and Rules, Barclaycard

(March 2013), http://www.barclaycard.co.uk/business/documents

/pdfs/bin_rules.pdf

 17. Visa BIN Lookup Information, bin-iin.com, http://bin-iin.com

/visa-BIN-range.html

 18. Carolyn Watters, Dictionary of Information Science and Technology

(New York: Academic Press, 1992), p. 132.

 Chapter 4 ■ Turning 40 Digits into Gold 123

c04.indd 09:31:4:AM 12/31/2013 Page 123

 19. International Standard ISO/IEC 7812-1, Identification cards — Identification

of issuers — Part 1: Numbering system, ISO/IEC, 2006.

 20. PCI Forensic Investigator (PFI) Program Guide, Version 2.0, PCI SSC (November

2012), https://www.pcisecuritystandards.org/documents/PFI_Program

_Guide.pdf

 21. Fraud, CVV/CVC and CVV2/CVC2 Checking, Pulse, A Discover Financial

Services Company, https://www.pulsenetwork.com/fraud/index.html

 22. Findstr, Windows XP Professional Product Documentation, Microsoft,

http://www.microsoft.com/resources/documentation/windows/xp

/all/proddocs/en-us/findstr.mspx?mfr=true

 23. PCI PA-DSS Requirements and Security Assessment Procedures Version 2.0, PCI

SSC (October 2010), https://www.pcisecuritystandards.org/documents

/pa-dss_v2.pdf

 24. PCI DSS Requirements and Security Assessment Procedures Version 2.0, PCI

SSC (October 2010), https://www.pcisecuritystandards.org/documents

/pci_dss_v2.pdf

 25. California Bill SB-1386, California State Senate (July 2003), http://info

.sen.ca.gov/pub/01-02/bill/sen/sb_1351-1400/sb_1386

_bill_20020926_chaptered.html

 26. State Security Breach Notification Laws, The National Conference of

State Legislatures, http://www.ncsl.org/issues-research/telecom

/security-breach-notification-laws.aspx

 27. Security Breach Disclosure Law Matrix by State, VigilantMinds, Inc. (February

2007), http://www.contrib.andrew.cmu.edu/~dmarkiew/docs/breach

_matrix_200702.pdf

 28. Brian Krebs, “Payment Processor Breach May Be Largest Ever,” The

Washington Post (January 2009), http://voices.washingtonpost.com

/securityfix/2009/01/payment_processor_breach_may_b.html

 29. Chronology of Data Breaches: Security Breaches 2005 – Present, Privacy Rights

Clearinghouse, https://www.privacyrights.org/data-breach

 30. Anatomy of an Attack, From Spear Phishing Attack to Compromise in Ten

Steps, Mandiant, http://www.mandiant.com/threat-landscape

/anatomy-of-an-attack/

 31. “TJX hack the biggest in history,” ComputerWeekly.com (April

2007), http://www.computerweekly.com/news/2240080607

/TJX-hack-the-biggest-in-history

 32. Gary G. Berg, Michelle S. Freeman, and Kent N. Schneider, “Analyzing

the T.J. Maxx Data Security Fiasco: Lessons for Auditors,” The CPA

124 PART II ■ Attacks on Point-of-Sale Systems

c04.indd 09:31:4:AM 12/31/2013 Page 124

Journal (August 2008), http://www.nysscpa.org/cpajournal/2008/808

/essentials/p34.htm

 33. James Verini, “The Great Cyberheist,” The New York Times (November

2010), http://www.nytimes.com/2010/11/14/magazine/14Hacker-t

.html?pagewanted=all&_r=0

 34. Carding Forum, Forum Jar, http://www.forumjar.com/forums/Carding

 35. Skimmed Dumps Seller Forum, http://www.voy.com/195759/36.html

 36. Misha Glenny, Dark Market: Cyberthives, Cybercops and You (New York:

Alfred A. Knopf, 2011), p. 8.

 37. “Visa Issues ATM Cash-Out Warning,” BankInfoSecuri ty

(January 22, 2013), h t t p : / / w w w . b a n k i n f o s e c u r i t y . c o m

/visa-warns-banks-atm-fraud-a-5438/op-1

 38. Brian Krebs, “Scammers Play Robin Hood to Test Stolen Credit Cards,”

The Washington Post (July 2007), http://voices.washingtonpost.com

/securityfix/2007/07/odd_charity_donations_could_pr.html

 39. “Bank to refund fees to children’s charity,” Irish Examiner (July 2013),

http://www.irishexaminer.com/archives/2013/0722/ireland

/bank-to-refund-fees-to-childrenaposs-charity-237504.html

 40. Misha Glenny, Dark Market: Cyberthives, Cybercops and You (New York:

Alfred A. Knopf, 2011).

 41. Kevin Poulsen, Kingpin: How One Hacker Took Over the Billion-Dollar

Cybercrime Underground (New York: Crown, 2011).

 42. Carding School, http://browse.feedreader.com/c/Carding_School

 43. PVC Card Embossers on eBay, http://www.ebay.com/bhp

/pvc-card-embosser

 44. Credit Card Tippers on eBay, http://www.ebay.com/bhp

/credit-card-tipper

 45. Credit Card Encoders on eBay, http://www.ebay.com/bhp

/credit-card-encoder

 46. Blank magnetic plastic cards on eBay, http://www.ebay.com/sch/i

.html?_trksid=m570.l1313&_nkw=Blank+Magnetic+Plastic+C

ard&_sacat=0&_from=R40

 47. Thermal PVC printers on Amazon, http://www.amazon.com/s

/ref=nb_sb_noss?url=search-alias%3Doffice-products&field-

keywords=thermal+pvc+printers

 48. Inkjet PVC printers on Amazon, http://www.amazon.com/s/ref=nb_sb

_noss?url=search-alias%3Daps&field-keywords=inkjet+pvc+printers

 49. PVC card trays for inkjet PVC printers on Amazon.com, http://www

.amazon.com/s/ref=nb_sb_noss_1?url=search-alias%3Daps&field-

keywords=PVC+ID+Card+Tray

125

c05.indd 01:32:57:PM 12/31/2013 Page 125

PCI security standards put the responsibility for implementing security controls

on the payment processing industry—merchants, payment gateways and proces-

sors, and software vendors. An interesting trend is emerging, however, where

instead of requiring payment system vendors (either hardware or software—in

this case, there is no big difference from the merchant’s viewpoint) to supply

secure systems “out of the box,” the standards allow multiple vulnerabilities to

be built into software and hardware by design. At the same time, merchants are

required to implement security controls that compensate for the lack of security

in their payment systems. The merchants hope that security comes from the

software and hardware vendors, who are in turn relying on the merchants to

secure their own store environments. The results: multiple security breaches.

Examples of this scenario include unprotected data in memory, unencrypted local

network traffi c, and other vulnerabilities, which are discussed in this chapter.

Payment Application Memory

In November 2009, Visa issued its Data Security Alert called “Targeted Hospitality

Sector Vulnerabilities” where the biggest payment card brand admitted that “the

increasing use of debugging tools that parse data from volatile memory suggests

that attackers may have successfully adapted their techniques to obtain payment

card data that is not written to POS system disks.”1 In April 2013, Visa issued a

new version of the Security Alert with the subtitle “Preventing Memory-Parsing

Malware Attacks on Grocery Merchants” which warned about an “increase

in network intrusions involving grocery merchants. Once inside a merchant’s

C H A P T E R

5

Penetrating Security Free Zones
If you give to a thief he cannot steal from you, and then he is no longer a thief.

—William Saroyan

126 Part II ■ Attacks on Point-of-Sale Systems

c05.indd 01:32:57:PM 12/31/2013 Page 126

network, hackers install memory-parsing malware on Windows-based cash

register systems or back-of-house (BOH) servers to extract full magnetic-stripe

data.”2

RAM Scraping

Memory Scraping, also known as RAM (Random Access Memory) Scraping or

Memory Parsing, is a technology used for retrieving sensitive payment card

data from the memory of the payment application process. Memory scraping is

implemented in specially crafted malware which attacks payment applications

by stealing cardholder information from the memory.3, 4 Most payment appli-

cations, even if they encrypt the secret fi elds (Track 1, 2, and PAN) at rest and

in transit, still have to have such data in clear text in volatile memory in order

to retrieve parameters they need for routing, processing cashier and customer

prompts, and many other functions. There is no reliable software technology

today that would easily resolve this problem without investing in new systems

which introduce new protection methods such as encrypting the data end to

end. Therefore, payment software vendors are currently not obligated by any

standards to protect the memory of their applications. Instead, the merchants—

users of the software—are obligated to protect the memory of their computers

running such applications by implementing different types of compensating

mechanisms, such as physical and network controls listed in PCI DSS require-

ments (more details in Chapter 3).

It is relatively easy to connect to a payment application process and scrape

its memory, especially, if the malware has managed to become a part of the

payment application. Memory scraping malware was reported in additional

Visa Data Security Alerts.5, 6

WinHex

It’s possible to see the memory of the Windows system using special tools.

WinHex is one such tool used for security testing and forensics investigations.7

WinHex has an ability to load, view, and edit the entire image of computer

memory or hard disk, as shown in Figure 5-1. The utility also has search capa-

bilities required for this task. QSA uses WinHex during PA-DSS and PCI DSS

assessments by running various types of transactions with a predefi ned card

number and then searching the entire disk for this number. However, even if

the PAN is found in clear text in memory, the audit is still passed because PCI

standards do not require memory protection. Figure 5-2 shows Track 1 found

in the memory of a payment application.

 Chapter 5 ■ Penetrating Security Free Zones 127

c05.indd 01:32:57:PM 12/31/2013 Page 127

Figure 5-1: WinHex utility

Figure 5-2: WinHex memory search results with Track 1 in clear text

MemoryScraper Utility

This section describes the implementation of a sample .NET C# utility that can

attach to any Windows application process and search for payment card PANs

and tracks using regular expressions. If you are not a programmer, you can skip

the following details and simply test this code on your favorite POS applica-

tion. Just launch the MemoryScraper.exe along with your payment software,

then select the application’s process from the combo box and click the Start

button (Figure 5-3). As soon as the search is complete, if any cards were found

in the memory of the selected application, the numbers of the records will be

displayed and the View Log button will be enabled (Figure 5-4). The detailed

search results will be available in the log fi le located in the MemoryScraper

home directory (Figure 5-5).

128 Part II ■ Attacks on Point-of-Sale Systems

c05.indd 01:32:57:PM 12/31/2013 Page 128

Figure 5-3: MemoryScraper utility

Figure 5-4: MemoryScraper scan results

Figure 5-5: MemoryScraper log

This is not the code that would normally be used by actual malware. Hackers

mostly write in languages that can be built into binary executables like Assembler,

 Chapter 5 ■ Penetrating Security Free Zones 129

c05.indd 01:32:57:PM 12/31/2013 Page 129

C, C++, or Delphi (Pascal). Such code has fewer (or no) dependencies on other

libraries, so it can be executed in any environment. However, this utility dem-

onstrates some basics of the memory scraping process.

The full source code and compiled executable of MemoryScraper can be

downloaded from Wiley’s website at www.wiley.com/go/hackingpos.

Loading Data from Memory

Windows OS provides the ability to connect to any application process and

load data from its memory. There are three Windows API functions that should

be imported and called in order to do this (ProcessMemoryLoader class). The

names and the order of those methods are self-explanatory:

DllImport("kernel32.dll")]
public static extern IntPtr OpenProcess(
 UInt32 dwDesiredAccess,Int32 bInheritHandle, UInt32 dwProcessId);

DllImport("kernel32.dll")]
public static extern Int32 ReadProcessMemory(
 IntPtr hProcess, IntPtr lpBaseAddress, [In, Out] byte[] buffer,
 UInt32 size, out IntPtr lpNumberOfBytesRead);

DllImport("kernel32.dll")]
public static extern Int32 CloseHandle(IntPtr hObject);

The process memory cannot be read all at once, so multiple ReadProcessMemory

function calls are required in order to load the data chunk by chunk. The default

memory page size is 4 KB (4,048 bytes) so we will use it as the value of the chunk

size parameter for each iteration (MemoryScanner class):

const int MEM_PAGE_SIZE = 4096;

Another parameter required for the ReadProcessMemory API call is lpBaseAd-

dress. Obviously, we want to start from the beginning of the process memory

(address 0) and move forward until the end by incrementing the base address

by MEM_PAGE_SIZE:

while (memAddress + MEM_PAGE_SIZE <= processMemSize)
{
 buffer = loader.LoadMemory(
 (IntPtr)memAddress,(uint)bufferSize, out readCount);
 if (readCount > 0)
 {
 // regex search code
 }
 memAddress += MEM_PAGE_SIZE;
}

130 Part II ■ Attacks on Point-of-Sale Systems

c05.indd 01:32:57:PM 12/31/2013 Page 130

The maximum address (processMemSize) can be calculated using one of the

process’s parameters:

long processMemSize = process.PeakVirtualMemorySize64;

Looking for Card Data

In order to fi lter out the PAN and track data of the payment cards from the byte

stream of the payment application memory, the MemoryScraper uses regular

expressions (regex) which were briefl y described in Chapter 4. Since regex should

be applied to a string data type, the chunk of memory that is being scanned

for sensitive data should fi rst be converted from binary format to string. There

are different types of data encoding that can be used by payment applications

for PAN and to track data in-memory storage. Various development environ-

ments may represent the same string in different formats, but most probably

are either ASCII or Unicode. For example, .NET will use the Unicode string

by default, while a Delphi or C++ coded application would probably store the

PAN and tracks as an array of ASCII characters. The difference between ASCII

and Unicode strings is simple: an ASCII string stores each character as a single

byte (8 bits), while a Unicode string reserves 2 bytes (16 bits) for each character.

However, they both use the same ASCII codes for digits and basic symbols

which are used by regular expressions to match the PAN and track patterns

(as shown in Table 5-1).

Table 5-1: ASCII and Unicode Codes for Digits and Track Data Field Separators

CHARACTER

ASCII CODE

DECIMAL

ASCII CODE

HEXADECIMAL

UNICODE

DECIMAL

UNICODE

HEXADECIMAL

0 48 30 0 48 00 30

1 49 31 0 49 00 31

2 50 32 0 50 00 32

3 51 33 0 51 00 33

4 52 34 0 52 00 34

5 53 35 0 53 00 35

6 54 36 0 54 00 36

7 55 37 0 55 00 37

8 56 38 0 56 00 38

9 57 39 0 57 00 39

= 61 3D 0 61 00 3D

^ 94 5E 0 94 00 5E

 Chapter 5 ■ Penetrating Security Free Zones 131

c05.indd 01:32:57:PM 12/31/2013 Page 131

The only difference is that Unicode characters contain an extra zero byte.

Table 5-2 shows an example of PAN as it is stored in memory in ASCII and

Unicode formats. The actual data in memory is usually displayed in hexadecimal

format. In source code, the hexadecimal number usually has a “0x” prefi x so

it can be distinguished from decimal numbers. For example, the “0” character

has ASCII code 48 (decimal) or 0x30 (hexadecimal).

Table 5-2: ASCII and Unicode Encoding of Sample PAN

ENCODING STRING REPRESENTATION

ACTUAL DATA

IN MEMORY

HEXADECIMAL

FORMAT

LENGTH

BYTES

ASCII 4005554444444403 34 30 30 35 35 35 34 34 34

34 34 34 34 34 30 33

16

Unicode 4 0 0 5 5 5 4 4 4 4 4 4 4 4 0 3 00 34 00 30 00 30 00 35 00

35 00 35 00 34 00 34 00 34

00 34 00 34 00 34 00 34 00

34 00 30 00 33

32

Since it is probably unknown in advance whether the application uses ASCII

or Unicode strings (or may be even both!), the MemoryScraper will transform

the memory buffer (and scan it using regex) twice (MemoryScanner class):

string ASCIItext = Encoding.ASCII.GetString(buffer);
string Unicodetext = Encoding.Unicode.GetString(buffer);
searchLine.Search(
 ASCIItext, pageNumber.ToString(), string.Empty, ref res);
searchLine.Search(
 Unicodetext, pageNumber.ToString(), string.Empty, ref res);

The results and statistics of the search are accumulated in the res list and

logged in the text fi le once the scraping is done:

ScanInfo scanInfo = new ScanInfo();
scanInfo.searchResults = res;
Logger.GetLogger(LogType.MemoryScraper).AddToLog(scanInfo);

How Regex Search Works

Regular expressions use patterns, or a set of consistent parameters, of the object

that’s being searched. In our case, the objects are PAN, Track 1, and Track 2.

Those parameters are translated into special instructions (see Table 5-3) which

create the fi nal expression.

132 Part II ■ Attacks on Point-of-Sale Systems

c05.indd 01:32:57:PM 12/31/2013 Page 132

Table 5-3: Regex Instructions Used in PAN and Tracks Search Expressions

INSTRUCTION DESCRIPTION USAGE

\s? \s matches any

white-space

character.

? matches the

previous ele-

ment zero or

one time.

4[0-9]{3}\s?[0-9]{4}\s?[0-9]{4}\s?[0-9]{4} fi nds

account numbers grouped by 4 digits, for example:

4005 5544 4444 4403

[x-y] [x-y] matches

any digit in the

range between

x and y.

Example 1: 5[1-5][0-9]{14} fi nds all cards with ISO

prefi xes 51, 52, 53, 54, and 55

Example 2: [0-2][0-9][0-1][0-2] fi nds expiration data

in yymm format, for example: 1402

{n} {n} matches the

previous ele-

ment exactly n

times.

5[1-5][0-9]{14} fi nds the body of the PAN after the

prefi x, for example:

5499830000000601

x Matches the

exact digit x.

5[1-5][0-9]{14} fi nds any PAN with prefi x 5, for

example:

5499830000000601

+ Matches the

previous ele-

ment one or

more times.

\^.+\^ fi nds cardholder name fi eld of Track 1 which

has variable length and is located between two

fi eld separators ‘̂ ’, for example:

4005554444444403^GOMZIN/SLAVA^1512

Regular Expression Language - Quick Reference8

PAN has a known length, contains only digits, and starts with known prefi xes.

Those properties are translated into the set of regex instructions:

(?:4[0-9]{12}|4[0-9]{3}\s?[0-9]{4}\s?[0-9]{4}\s?[0-9]{4}|5[1-5][0-9]
{14}|6(?:011|5[0-9][0-9])[0-9]{12}|3[47][0-9]{13}|3(?:0[0-5]|[68][0-9])
[0-9]{11}|(?:2131|1800|35\d{3})\d{11})

In addition to the PAN recognition patterns, Tracks 1 and 2 also have a fi xed

structure with a predetermined sequence of components: PAN plus 4-digit

expiration date in yymm format, separated by the fi eld separator characters =

for Track 2 and ^ for Track 1:

(?:(?:\=[0-2][0-9][0-1][0-2]|\^.+\^[0-2][0-9][0-1][0-2]))

 Chapter 5 ■ Penetrating Security Free Zones 133

c05.indd 01:32:57:PM 12/31/2013 Page 133

Fighting False Positives

One of the issues with using regular expressions for PAN lookup is the high

probability of catching false positives—random sequences of numbers which

look exactly like normal PAN. There are several methods that can be used in

order to avoid such bad results.

Let’s take a look at the regex that is used to search for standalone PAN. It is

started and concluded with (?<!) and (?!) expressions. For example, the regex

4[0-9]{12} will fi nd the 13-digit Visa PAN which always starts with 4 and is

followed by 12 digits. In order to search for all card types at once, several regex

can be combined into one:

string pan_pattern =
 @"(?<![\d])(?:4[0-9]{12}|4[0-9]{3}\s?[0-9]{4}\s?[0-9]{4}\s?[0-9]
{4}|5[1-5][0-9]{14}|6(?:011|5[0-9][0-9])[0-9]{12}|3[47][0-9]
{13}|3(?:0[0-5]|[68][0-9])[0-9]{11}|(?:2131|1800|35\d{3})\d{11})
(?![\d])";

(?<! subexpression) is a zero-width negative look-behind assertion, (?!

subexpression) is a zero-width negative look-ahead assertion, and [\d] matches

any decimal digit. Thus, (?<![\d]) and (?![\d]) expressions are added in

order to make sure the PAN is not a part of a random stream of numbers, by

checking that there are no digits before and after the PAN.

The test_pattern is used by test_rgx regex as another method of false

positive prevention:

string test_pattern =
 @"(?:0{7}|1{7}|2{7}|3{7}|4{7}|5{7}|6{7}|7{7}|8{7}|9{7})";

The PAN of test cards, which are generated by payment brands and proces-

sors and used by payment software vendors for testing their systems, often have

the same digit repeated several times, usually 7 or more times (see Table 5-4).

Table 5-4: Examples of False Positive Test Cards

TEST CARD PAN CARD TYPE

4005554444444403 Visa

4485530000000127 Visa

5499830000000601 MasterCard

5567300000000016 MasterCard

371111111111114 American Express

134 Part II ■ Attacks on Point-of-Sale Systems

c05.indd 01:32:57:PM 12/31/2013 Page 134

The test_rgx regex will fi lter out any test card numbers containing 7 or more

repeated digits:

test_rgx = new Regex(test_pattern, RegexOptions.IgnoreCase);
MatchCollection test_matches = test_rgx.Matches(result.PAN);
if (test_matches.Count > 0)
 break;

Validating the Mod 10 check-digit is also one of the basic protection measures

for catching multiple false positives (the Mod 10 [Luhn] verifi cation procedure

and code were discussed in Chapter 4):

if (!PassesLuhnTest(result.PAN))
 break;

Note that all these measures against false positives are not necessary for the

PAN part of the regex looking for Track 1 and Track 2. That’s because Tracks 1

and 2 have very distinguishable marks—fi eld separators and expiration date

format, also discussed in detail in Chapter 4.

Windows Page File

Windows page fi le (pagefi le.sys, sometimes also called the swap fi le) is normally

located in the root directory (C:\) and contains the OS memory image. When

Windows is running out of physical memory, it starts using virtual memory

by saving currently unused memory pages (for example, the ones belonging to

applications that have been inactive for a long time) to the disk. The less physical

memory is available in the system, the more frequently the memory pages are

stored to or loaded from the hard drive. Since this process is managed by the

operating system, it is transparent to the applications. Payment applications are

no exception, so when they perform any operation with sensitive cardholder

information in memory, such data is most defi nitely being swapped as well.

The content of the page fi le is not encrypted by default and can be scanned by

malware in order to extract the cardholder data.9

Sniffi ng

Wiretapping on data in transit is probably the second most dangerous security

threat to payment applications, after memory scraping. Modern POS systems,

both hardware and software, have modular architecture, meaning they consist

of different, often physically separated modules, such as POS machine and

 Chapter 5 ■ Penetrating Security Free Zones 135

c05.indd 01:32:57:PM 12/31/2013 Page 135

Store Server, POS app and Payment Application, Payment Application and POI

device, Payment Application and Payment Gateway, and others. Thus, those

modules have to communicate with each other using different technologies

such as Ethernet (LAN, TCP sockets), Serial (COM), or in-memory (Windows

COM, DLL API). Since payment software vendors are not obligated by PA-DSS

to encrypt such connectivity10 and merchants are not required by PCI DSS to

encrypt their local networks11, wiretapping, especially of store LAN, remains

one of the biggest vulnerabilities of payment applications.

C R O S S  R E F E R E N C E Refer to Chapter 2 for more detailed information on pay-

ment application architecture.

Traffi c on Local Networks

There are different ways to “tap into the wire.”12 One of various sniffi ng attack

scenarios would be a hidden network tap device plugged into the store network.

The tap device will catch the payment application traffi c and mirror it to the

remote control center.13 This little computer which costs less than $1,000 can be

masked as an air freshener or power strip, and equipped with 4 G/GSM cel-

lular, Wireless (802.11b/g/n), high-gain Bluetooth, and USB-Ethernet adapters.14

Let’s focus on understanding how dangerous this type of vulnerability can

be when it happens at the brick-and-mortar merchant location. Both PCI DSS

and PA-DSS require network traffi c encryption only when communication is

implemented on public networks, such as the Internet. Communication between

modules of a payment system, which are often located at different machines,

is done through the store LAN. This type of attack is especially dangerous for

Hybrid POS/Store Server architecture because they send sensitive cardholder

payment data from each POS to the Store Server for further processing. However,

POS EPS or Store EPS systems can also be affected because of the links they

maintain to payment processors.

Network Sniff ers

Special software called a network sniffer, or a packet analyzer, is used to intercept

the network traffi c. If payload is not encrypted, the sensitive data can be easily

fi ltered out using the methods similar to what’s been described previously for

memory scraping. Wireshark is an example of a network sniffer application.15

Figure 5-6 shows the TCP/IP packets between POS client and server (upper

window) and Track 1 data in clear text inside the TCP packet payload.

136 Part II ■ Attacks on Point-of-Sale Systems

c05.indd 01:32:57:PM 12/31/2013 Page 136

Figure 5-6: Wireshark network sniffer displays Track 1 inside TCP/IP packet

References to network sniffi ng malware can be found in Visa Data Security

Alerts.16, 17 Of course, malware does not use such tools directly, but it may contain

the sniffi ng code written using similar principles.

NetScraper Utility

NetScraper is an example .NET C# application which demonstrates the ability

to extract and store the payment card sensitive data from the network com-

munication traffi c while installed on a POS machine. As with the previously

described MemoryScraper utility, if you are not interested in the details of this

implementation, you can just test the executable which can be downloaded from

the Wiley website, and skip to the next section.

After the NetScraper application is launched, it checks for local active network

interfaces and prompts to select the IP address which will be scanned. The fi rst

IP address in the list will be preselected automatically (Figure 5-7).

 Chapter 5 ■ Penetrating Security Free Zones 137

c05.indd 01:32:57:PM 12/31/2013 Page 137

Figure 5-7: NetScraper Utility

Since there may be more than one network adapter installed in the system

(Ethernet, Wireless card, VMware, for example), the correct address can be

determined using the Windows ipconfi g utility. Figure 5-8 shows an example of

ipconfi g output which shows the local LAN IP address 192.168.0.27.

Figure 5-8: Ipconfig output shows IP addresses for different network adapters.

138 Part II ■ Attacks on Point-of-Sale Systems

c05.indd 01:32:57:PM 12/31/2013 Page 138

The NetScraper begins scanning the TCP/IP packets after the Start button is

pressed (Figure 5-9) and continues until the Stop button is pressed. Then it cre-

ates the log fi le with search results which can be accessed by hitting the View
Log button (Figure 5-10).

Figure 5-9: NetScraper scanning the traffic on a local network at 192.168.0.27

Figure 5-10: NetScraper log with the results of a network scan

Scanning the Net

The code of NetScraper is pretty simple. First it creates a socket that listens for

the IP address selected by the user:

socket = new Socket(
 AddressFamily.InterNetwork, SocketType.Raw, ProtocolType.IP);
socket.Bind(new IPEndPoint(IPAddress.Parse(listeningAddress), 0));

 Chapter 5 ■ Penetrating Security Free Zones 139

c05.indd 01:32:57:PM 12/31/2013 Page 139

The socket is set to capture any IP-level packet data:

socket.SetSocketOption(
 SocketOptionLevel.IP, SocketOptionName.HeaderIncluded, true);

This way, several protocols that are based on IP can be captured—UDP and

TCP, for example.

The socket will raise an event (captured by OnDataReceived procedure) each

time the IP packets are sent back and forth through the specifi ed address:

socket.BeginReceive(
 dataBuffer, 0, dataBuffer.Length, SocketFlags.None,
 new AsyncCallback(OnDataReceived), null);

Once the data is received, the IP packet is fi rst analyzed to check the protocol

ID of the data it carries:

IPHeader ipHeader = new IPHeader(dataBuffer, dataLength);
if (ipHeader.ProtocolID == BaseHeader.PROTOCOL_TCP)
 TCPHeader tcpHeader = new TCPHeader(
 ipHeader.Payload, ipHeader.PayloadLength);

NetScraper is interested only in TCP packets because TCP/IP is used mostly in

application communication, but other protocols can also be captured if needed

(UDP, for example).

Once the TCP packet payload is retrieved, NetScraper scans it for the tracks

and PAN traces exactly the same way as MemoryScraper does it with the data

extracted from the application memory:

string ASCIItext = Encoding.ASCII.GetString(ipHeader.Payload);
string Unicodetext = Encoding.Unicode.GetString(ipHeader.Payload);
string route =
 ipHeader.SourceAddress + ":" + tcpHeader.SourcePort +
 " - " + ipHeader.DestinationAddress + ":" +
 tcpHeader.DestinationPort;
searchLine.Search(ASCIItext, route, "", ref res);
searchLine.Search(Unicodetext, route, "", ref res);

In fact, both NetScraper and MemoryScraper use the same search logic,

which is encapsulated in the PANandTracksSearch class located in HackingPOS

.Scrapers.Common.dll.

More Communication Vulnerability Points

Although LAN communication is probably the most convenient way to wiretap

sensitive data, there are other possible methods related to communication.

140 Part II ■ Attacks on Point-of-Sale Systems

c05.indd 01:32:57:PM 12/31/2013 Page 140

Communication Between POS and POI Devices

POS devices are usually connected to the hosting (POS) machine via a serial

(COM) port, USB, or LAN. Even though COM ports look archaic these days,

they are still widely used in retail. POI devices connected via serial ports can

even be accessed remotely through the network.18

Communication Between POS and PA

This sort of communication can be done in two different ways—remotely or

locally—depending on system architecture and deployment. If POS and PA

physically reside on the same machine, they communicate locally using Windows

COM, DLL API, or even TCP sockets. In any case, the data transfer goes through

the local machine memory and can be tapped using memory scraping. When

POS and PA are physically separated (for example, several POS talking to a

single PA located at the store server), they most defi nitely communicate using

LAN, so the traffi c can be wiretapped using network sniffi ng.

 Exploiting Other Vulnerabilities

Besides the “standard” exploitations which are focused primarily on stealing

sensitive data through the software, there are exotic deviations of attack vectors

in two different areas. First, there are attacks against the hardware rather than

software. Secondly, there are attacks when confi dentiality of sensitive cardholder

data is not targeted, but instead the same fi nancial results are achieved through

compromising the integrity or availability of the payment application.

Tampering With the Application

There are several payment application attack vectors that can be grouped by one

feature: they exploit the vulnerabilities of the application code. The difference

between “mainstream” attacks (such as memory scraping and network sniffi ng)

and attacks on application code is that in order to perform the latter the attackers

have to have signifi cant knowledge about the application. The former are more

generic methods which can be applied to virtually any payment application.

The following sections provide brief scenarios of some attacks on applications.

Abusing Exposed PA API

Sensitive data can be exposed through the payment application API, which

is supposed to be exposed to POS only. However, since PA API is usually not

protected by access controls such as client application authentication, malware

 Chapter 5 ■ Penetrating Security Free Zones 141

c05.indd 01:32:57:PM 12/31/2013 Page 141

applications can pretend to be POS and call special API methods that return

unmasked PAN or Tracks 1 and 2 in clear text.

Tampering Confi guration

The application confi guration (.config fi le in .NET applications, or .cfg fi les

in legacy applications) can be modifi ed to change the workfl ow of the applica-

tion. For example, the server address can be changed in order to route all the

communication traffi c to a bogus server which scans the packets for sensitive

data before rerouting them to the legitimate server.

Tampering Software Updates

All software providers periodically issue new versions of their applications with

new features as well as patches which fi x bugs or security issues. There are dif-

ferent update systems, either commercial or proprietary, that can be tampered

with in order to insert the malware that pretends to be a legitimate update patch.

Disassembling the Application Code

The payment application code is compiled and built into binary fi les which

are installed on the POS systems. Those fi les can be disassembled, or reverse
engineered, to get the original source code, analyze the application logic, and

as a result modify it or retrieve some hard-coded sensitive information such as

cryptographic key components. Modern languages like C# and Java are mostly

vulnerable to this type of attack because they use intermediate code that can be

easily reversed to the source code which looks almost like the original one.

Spoofi ng Client Credentials

POS systems with client/server architecture, where the client is located at the

POS machine and the server is running in the data center, store server, or cloud,

are vulnerable to spoofi ng attacks. Even if the system has some sort of authen-

tication mechanism between the client and the server, there is really no safe

place at the client to store the credentials. If an attacker has access to the client

POS machine, the client credentials can be stolen and used to access the server

from a different location by the bogus client software which pretends to be a

legitimate client.

Tampering With the Hardware

Hacking POS software is very reliable, but it’s not the only way to steal card-

holder data. Hardware is an essential part of any payment solution, and it can

be attacked as well.19

142 Part II ■ Attacks on Point-of-Sale Systems

c05.indd 01:32:57:PM 12/31/2013 Page 142

Injecting Malicious Code into POI Devices

The malicious code can be injected into POI devices to modify the device behav-

ior, install plug-ins that retrieve sensitive data, and translate it to the command

center. Examples of unauthorized malicious code injection were presented at

the Black Hat 2012 security conference.20

Skimming POI devices

In general, skimming is modifi cation of the original payment terminal by installing

bogus hardware parts that duplicate the original MSR and keypad functions.

They capture cardholder data and send it to the attacker.21 The skimming threat

is big enough to be treated as a separate topic by PCI.22 In fact, this is prob-

ably one of the most promising attack methods as the industry moves toward

hardware point-to-point encryption, and the software hacking becomes a more

complex task. Information about pinpad device skimming attacks is available

in Visa Security Alerts.23

Targeting New Technologies

As new payment processing and data protection technologies evolve, new

hacking methods emerge as well. There is not enough information available

yet about specifi c attack vectors for two reasons: those technologies are not

yet widely implemented, and it is still too easy to steal cardholder data using

traditional software hacking methods such as memory scraping and network

sniffi ng. Therefore, we can only speculate on potential methods of hacking

future POS systems.

Hardware P2PE

The idea of Hardware P2PE is to prevent the stealing of sensitive data through

software. In response to Hardware P2PE, hackers will probably develop alterna-

tive attack vectors—such as hacking the hardware and social engineering—to

break the P2PE. For example, the same hardware skimming used today to attack

payment terminals could still be applied to future P2PE solutions. The encryp-

tion key components can be obtained by either social engineering methods (for

instance, from key custodians) or by intercepting the communication between

the solution provider and key injection facility.

Mobile Payments

Mobile Payments (payments made using smartphones) are vulnerable because

this is relatively new area which is not yet regulated by security standards.

 Chapter 5 ■ Penetrating Security Free Zones 143

c05.indd 01:32:57:PM 12/31/2013 Page 143

In addition, most smartphones are not protected by antivirus and other security

software. Smartphones are consumer-grade devices, so their maintenance can-

not be controlled by corporate security policies, and malware can be installed

and remain unrevealed for a long time.24

EMV

Even though EMV is old technology, it is still new for some countries such as the

United States which is still using magnetic stripes. However, even in countries

where EMV is already implemented, there are ways to bypass the chip. According

to PCI EMV guidelines, “Most EMV cards contain a magnetic stripe, for either

backwards compatibility in non-EMV environments, or to support technical

fallback if the EMV-enabled chip is unreadable (technical fallback describes an

exception process wherein the magnetic stripe, rather than the chip data on an

EMV card, is read by an EMV-capable device). In such situations the security

mechanisms provided by EMV are effectively bypassed, and the transaction

security reverts to that of a magnetic stripe.”25

Attacks on Integrity and Availability

Although this book is mainly focused on vulnerabilities related to software

rather than the payment processing system itself, I think it is important to

demonstrate that the payment application is not the only target, and even if it

was fully protected from attack via software vulnerabilities (which is virtually

impossible), the entire payment system is still imperfect and can be attacked

from other directions.

Fake Voice Authorization

This type of attack on system integrity exploits the vulnerability of standard

Force Post (also known as Voice Authorization) feature. Force Post means that a

payment transaction can be authorized (“forced”) by the merchant even if it

was rejected by the payment processor. Normally this type of authorization is

obtained via the phone (which is why it is called “Voice Authorization”). When

a credit card is rejected after it is swiped at the POS, the cashier may decide to

call the telephone number usually located on the back of the card and ask for

voice authorization. The bank operator checks the cardholder account and may

decide to approve the transaction. In this case, a special authorization code is

given to the cashier (usually 6 digits or letters), who manually enters it into the

POS. There is a security fl aw in this system: usually the voice authorization

code is not validated online, thus any combination of digits or letters can be

entered.26, 27

144 Part II ■ Attacks on Point-of-Sale Systems

c05.indd 01:32:57:PM 12/31/2013 Page 144

Forcing Offl ine Authorization

When a payment processing host or network goes down, most POS systems

switch to offl ine authorization (also called Store and Forward) mode. Payment

transactions are authorized locally by the payment application, with no real

validation of the cardholder information. Thus, any card swiped at the POS

that passes the basic validations (PAN check digit and expiration date) would

be accepted for payment. This fact can be used by attackers if they manage to

force the network connectivity to go down. For example, if a remote store uses

satellite antenna to communicate with the payment network, the attackers cover

the antenna receiver with tin foil which disturbs the reception and puts the

payment application into Store and Forward mode.28, 29

Summary

There are two major payment application attack vectors: POS memory scraping

and local network sniffi ng. PCI security standards lack explicit requirements

that would protect these areas. The malware installed on a POS machine can

use regular expressions to scan the payment application memory or communica-

tion traffi c between remote payment application modules. MemoryScraper and

NetScraper are sample utilities that demonstrate how to write the code needed

to fi nd and collect sensitive card data in memory and on networks. In addition

to these two “mainstream” attack vectors, there are many alternative ways to

attack POS systems by exploiting vulnerabilities in application code, hardware,

or the integrity of payment systems.

Notes

 1. Targeted Hospitality Sector Vulnerabilities, Visa Data Security Alert

(November 2009), http://usa.visa.com/download/merchants/targeted-

hospitality-sector-vulnerabilities-110609.pdf

 2. Preventing Memory-Parsing Malware Attacks on Grocery Merchants, Visa Data

Security Alert (April 2013), http://usa.visa.com/download/merchants

/alert-prevent-grocer-malware-attacks-04112013.pdf

 3. McAfee Labs, VSkimmer Botnet Targets Credit Card Payment
Terminals, https://blogs.mcafee.com/mcafee-labs/vskimmer-

botnet-targets-credit-card-payment-terminals/

comment-page-1#comment-453678

 4. Point-of-Sale and memory scrappers (December 2012), http://www.xylibox

.com/2012/12/point-of-sale-and-memory-scrappers.html

 Chapter 5 ■ Penetrating Security Free Zones 145

c05.indd 01:32:57:PM 12/31/2013 Page 145

 5. Dexter Malware Targeting Point-of-Sale (POS) Systems, Visa Data Security

Alert (December 2012), http://usa.visa.com/download/merchants

/alert-dexter-122012.pdf

 6. Retail Merchants Targeted by Memory-Parsing Malware – UPDATE, Visa Data

Security Alert (August 2013), http://usa.visa.com/download/merchants

/Bulletin__Memory_Parser_Update_082013.pdf

 7. X-Ways Software Technology AG, WinHex: Computer Forensics & Data

Recovery Software, Hex Editor & Disk Editor, http://winhex.com/winhex

/index-m.html

 8. Microsoft, Regular Expression Language - Quick Reference, http://msdn

.microsoft.com/en-us/library/az24scfc.aspx

 9. Swap file may contain sensitive data, Stackexchange, http://security.

stackexchange.com/questions/29350/swap-file-may-contain-sensi-

tive-data

 10. PCI PA-DSS Requirements and Security Assessment Procedures Version 2.0

(October 2010), Req. 11.1, p. 43, https://www.pcisecuritystandards

.org/documents/pa-dss_v2.pdf

 11. PCI DSS Requirements and Security Assessment Procedures Version 2.0 (October

2010), Req. 4.1, p. 35, https://www.pcisecuritystandards.org/documents

/pci_dss_v2.pdf

 12. Chris Sanders, Practical Packet Analysis, Using Wireshark to Solve Real-
World Network Problems, 2nd Edition (San Francisco: No Starch Press, 2011),

pp. 17–33,

 13. Robert McMillan, “The Little White Box That Can Hack Your Network,”

Wired, (March 2012), http://www.wired.com/wiredenterprise/2012/03

/pwnie/

 14. Pwn Plug Elite, Pwnie Express, http://pwnieexpress.com/products

/pwnplug-elite

 15. Wireshark download, http://www.wireshark.org/download.html

 16. Malicious Software and Internet Protocol Addresses, Visa Data Security

Alert (April 2009), http://usa.visa.com/download/merchants

/20090401_malware_ip.pdf

 17. Top Vulnerability - Packet Sniffing, Visa Data Security Alert (February 2009),

http://usa.visa.com/download/merchants/20090202_packet_sniffing

.pdf

 18. H.D. Moore, “Serial Offenders: Widespread Flaws in Serial

Port Servers,” Security Street Rapid7 (April 2013), https://

community.rapid7.com/community/metasploit/blog/2013/04/23

/serial-offenders-widespread-flaws-in-serial-port-servers

146 Part II ■ Attacks on Point-of-Sale Systems

c05.indd 01:32:57:PM 12/31/2013 Page 146

 19. 5 Ways Thieves Steal Credit Card Data, Bankrate.com, http://www.bankrate

.com/finance/credit-cards/5-ways-thieves-steal-credit-

card-data-1.aspx

 20. Henry Schwarz, PinPadPwn, http://henryschwarz.blogspot.com/2012/07

/black-hat-usa-2012-versus-atm-and-eft.html

 21. Don’t Get Sucker Pumped, Krebs on Security (July 2013), http://

krebsonsecurity.com/2013/07/dont-get-sucker-pumped/

 22. Skimming Prevention: Overview of Best Practices for Merchants, PCI SSC (2009),

https://www.pcisecuritystandards.org/documents/skimming_preven-

tion_overview_one_sheet.pdf

 23. Help Protect Cardholder Data from Attacks on PIN Entry Devices, Visa Security

Alert (November 2012), http://usa.visa.com/download/merchants

/alert-compromised-PED-reminder.pdf

 24. “Report: Fraud Threat to Mobile Payments to Grow in 2013,” Mobile Payments

Today (December 2012), http://www.mobilepaymentstoday.com

/article/205561/Report-fraud-threat-to-mobile-payments-to-

grow-in-2013

 25. PCI DSS Applicability in an EMV Environment – A Guidance Document,
PCI Security Standards Council (October 2010), p. 7, https://www.

pcisecuritystandards.org/documents/pci_dss_emv.pdf

 26. “New Credit Card Scam Making the Rounds,” The Dealertrack Sales,

F&I, and Compliance Blog, http://www.dealertracksfi.com/content

/new-credit-card-scam-making-the-rounds

 27. “What if you get a Card Declined or Pick Up Card message?,” John Mayleben

Blog, Michigan Retailers Association (April 2013), http://www.retail-

ers.com/john-mayleben-blog/what_if_you_get_a_card_declined_or_

pick_up_card_message#.Unrzv_nbOPZ

 28. “‘Tin Foil’ Fraud Resurfaces at Gas Stations,” ISO & Agent Weekly (August 29,

2013), p. 5, http://www.isoandagent.com/media/pdfs/29Aug2013ISOAgent

.pdf?ET=isoandagent:e17675:

 29. “Station’s Satellite Blocked to Steal Gas,” Northwest Times (October 22,

2012), http://www.nwitimes.com/news/local/laporte/michigan-city

/station-s-satellite-blocked-to-steal-gas/article_50980df5-d933-

5e4c-9721-c287557458e9.html

147

c06.indd 01:34:27:PM 12/31/2013 Page 147

Most payment application vendors today sell PA-DSS validated software, and

many merchants are PCI DSS compliant. It would be reasonable to assume that

vulnerability areas which are protected already by PCI rules are in practice less

vulnerable than others. However, even though this is true to a certain extent, it

is not the case for all of them and there are security holes in PCI-protected areas.

PCI Areas of Interest

For mostly historical reasons, PCI security standards take care of very specifi c

places where sensitive card data can be intercepted. If you take a look at the

detailed review of PCI DSS and PA-DSS requirements provided in Chapter 3,

you will be able to easily distinguish those two key zones: data at rest and data
in transit. It is important to note that data-at-rest protection is supported by PCI

almost in full, while data in transit protection is very limited and mostly ineffec-

tive inside the store or data center. These fi ndings are summarized in Table 6-1.

 C H A P T E R

6

Breaking into PCI-protected

Areas
And when memory failed and written records were falsifi ed-when that happened, the claim of

the Party to have improved the conditions of human life had got to be accepted, because there

did not exist, and never again could exist, any standard against which it could be tested.

—George Orwell

148 Part II ■ Attacks on Point-of-Sale Systems

c06.indd 01:34:27:PM 12/31/2013 Page 148

Table 6-1: Payment Application Protection Provided by PCI

VULNERABILITY

AREA SUBAREA

MANDATORY

PROTECTION

PCI DSS

REQUIREMENT

Data in memory -

Data at rest Temporary stor-

age (S&F, TOR,

active transaction

databases)

● Requirement 3: Protect

stored cardholder data

Long-term storage

(batch, settlement,

archive records)

● Requirement 3: Protect

stored cardholder data

Log fi les ● Requirement 3: Protect

stored cardholder data

Data in transit Local

communication

-

Communication

between POI

device and POS

-

Communication to

processors

○ Requirement 4: Encrypt

transmission of card-

holder data across

open, public networks

Application code

and confi guration

Application code -

Application

confi guration

-

● – full protection is required by PCI DSS

○ – only limited protection is required by PCI DSS

- – no particular protection measures required by PCI DSS

Data at Rest: The Mantra of PCI

Data at rest is a security term for information stored on hard drives. To a

certain extent, it is the opposite of data in transit, which is information that travels

between various devices and computers. And it is also mostly what PCI is after.

PCI rules are focused mainly on defense against attacks on data at rest because

historically it was one of the two easiest ways to steal cardholder information

(another one is “data in transit” which is discussed in the next section).

 Chapter 6 ■ Breaking into PCI-protected Areas 149

c06.indd 01:34:27:PM 12/31/2013 Page 149

Before the PCI era, sensitive data was stored on hard disks and backup drives

unencrypted, and it was only protected by merchants’ network and physical

security controls, which were often weak or in many cases missing completely.

Since PCI was introduced, payment software vendors started protecting stored

information by using cryptography which signifi cantly reduced the possibility

of exploiting these kinds of vulnerabilities. However, the level of protection

provided by cryptography depends on specifi c implementation which includes

different factors such as encryption algorithm, key length, and key management

scheme. Using weak algorithms and poor key management for database and

log protection is common practice, even in PA-DSS validated software.

The situation with application confi guration is even grimmer: PCI does not

require payment software vendors or users to encrypt application confi guration,

and it is usually stored in clear text and open to uncontrolled modifi cations. At

fi rst glance, this does not seem to be too dangerous since confi guration informa-

tion itself does not contain sensitive cardholder data. However, in the following

paragraphs, you will see how the payment application can also be compromised

through misconfi guration.

Temporary Storage

Some payment application vendors claim that they do not store sensitive data

on POS machines, and as a result their systems are not vulnerable to attacks on

data at rest. Such statements can be untrue, even though it is possible that they

do not lie, and here is why. Product managers typically think about storage as

long-term records of information, such as archive databases, while developers

know that there are many occasions when data is stored temporarily. “There is

nothing in this world constant, but inconstancy.”1

The best examples of such temporary storage are S&F (Store and Forward)

and TOR (Timeout Reversals) records which can be implemented as either

local database tables or simply fl at data fi les. Without entering into discussion

about the importance and functional necessity of these two containers (for more

details about S&F and TOR, see Chapter 2), just note that they exist in almost

any POS payment system. Most important is the fact that despite the famous

PCI prohibition of sensitive authentication data storage.

Sensitive authentication data must not be stored after authorization (even if
encrypted).2

In practice these fi les still include full Tracks 1 and 2, which makes them very

desirable targets for hacking. There is a simple explanation to such a severe

“violation” of PCI rules: S&F and TOR records are normally generated when

150 Part II ■ Attacks on Point-of-Sale Systems

c06.indd 01:34:27:PM 12/31/2013 Page 150

the authorization host is offl ine, which means no authorization is received, and

thus storage of sensitive authentication data is allowed.

By prohibiting storage of sensitive authentication data after authorization, the
assumption is that the transaction has completed the authorization process and
the customer has received the fi nal transaction approval.3

An important characteristic of S&F and TOR implementation is the necessity

to perform both encryption and decryption operations at the same machine

because those records are encrypted when temporarily stored to hard disk,

but must also be decrypted immediately after they are restored so they can

be further processed. Therefore, only a symmetric encryption scheme can be

utilized. The inability to use hashing or public key cryptography means that

the cryptosystem is vulnerable because the decryption key (the same as the

encryption key in symmetric algorithms) is always available in the system, even

if it is hidden and encrypted, and will be found sooner or later by an attacker.

Additional common security issues with such temporary storage are weak

encryption algorithms and poor cryptographic key management, such as lack of

key rotation, hard-coded key components, or insecure key storage (these vulner-

abilities are discussed in more detail later in this chapter). Poorly designed key

management can easily compromise even the strongest encryption algorithm.

That said, the temporary character of S&F and TOR data often leads to them

being overlooked during security assessments, and their exploitability level not

being adequately protected.

Application Logs

Payment application log fi les may contain much more interesting information

for hackers than you can even imagine. Unlike primary application functions

which are supervised by product management, log fi les and their content are

usually controlled by developers who often do not care about security. Developers

want to know as much as they can about their application runtime in order to

troubleshoot it remotely, and log fi les containing as much detail as possible are

their only way to gather such information. Thus developers may decide (without

telling anyone) to write everything to the log fi les, including card tracks and

account numbers. Yes, at best they may encrypt the sensitive data. However, the

encryption keys can either be hard-coded or badly managed. If the same key

is used for encrypting all the data for a long period of time, the history of the

log fi les may contain enough information for cryptanalysis: “the art and science

of breaking ciphertext.”4

Another threat associated with logging is tokens generated using the hash

function of the PAN. At fi rst glance, tokens are supposed to be safe by defi nition

and are recommended to replace the actual card account numbers. However,

 Chapter 6 ■ Breaking into PCI-protected Areas 151

c06.indd 01:34:27:PM 12/31/2013 Page 151

when generated using hashing, they can be relatively easy to crack (more details

about vulnerabilities of PAN hash functions are discussed in the next section).

Locating Temporary Storage and Log Files

Both temporary storage and logs are usually present in one of the following forms:

 ■ Databases

 ■ Flat data fi les

 ■ Text fi les

Many POS and payment applications store temporary data using commercial

database management systems such as Microsoft SQL Server, Oracle, Interbase, or

MySQL. The fact that one of those systems is installed at the POS machine or

store server means that the POS and/or payment application most likely uses

this particular database for data storage.

The databases are typically password protected. However, payment applications

often use default, well known administrative accounts with default passwords

(as shown in Table 6-2) or passwords stored in clear text (either hard-coded or

in confi guration fi les).5, 6

Table 6-2: Examples of Default Database Accounts and Passwords

DATABASE LOGIN PASSWORD

Interbase SYSDBA masterkey

Microsoft SQL Server sa

Oracle system/manager sys/change_on_install

MySQL root

The following fragment of a PA confi guration fi le containing the SQL server

database connection string is an example of the database password stored in

clear text:

Server=localhost;Database=Payments;User Id=sa;Password=ld50fAnkesOTSUMW;

At fi rst glance, the value of Password may look like it is encrypted, but this is

just a password in clear text.

Flat data fi les can be used by custom in-house implementations of database

management systems. The data in such fi les can be stored in binary format

when information is encoded using all possible byte values (0–255) rather than

just the ASCII codes (32–126) typically used in text fi les. Flat data fi les often

have .dat fi le extensions.

152 Part II ■ Attacks on Point-of-Sale Systems

c06.indd 01:34:27:PM 12/31/2013 Page 152

POS and payment applications normally use text fi le format for logs so they

could be easily read by developers and technical support personnel. They typi-

cally have .log or .txt fi le extensions.

Hashed PAN

The standard use of hash functions is producing a short digest of a message or

fi le. The hash function is also called one-way encryption because it is mathemati-

cally impossible to reconstruct the original message from its digest, or more

precisely, we “know of no easy way to reverse them.”7 This property of hashing

is utilized by payment systems for “encryption” of credit card account numbers

without the need to secure the encryption keys (simply because there is no key

in most hash implementations). Table 6-3 shows different types of hash func-

tions utilized for PAN encryption. The SHA-256 algorithm is considered safe

today, while MD5 is obsolete.

Table 6-3: Examples of PAN Hash Functions

HASH

FUNCTION SIZE EXAMPLE

PAN in clear

text

16 4005554444444403

MD5 32 73bd8d04cc59610c368e4af76e62b3f1

SHA-1 40 f9b5eededb928241974368cbd97c055141813970

SHA-256 64 f85d4630aabe6d0d037ccb0ec0d95429aef6927b1e45a26da62cb-

d0bc344f6b4

Brute Forcing and Rainbow Tables

The problem with hashing of credit card numbers is the fact that those num-

bers are “predictable” in that they consist of digits only and have a fi xed length

(15–19 digits, but usually 16) predetermined by card brand, with well-known

6-digit prefi xes, and the last digit reserved for the Mod 10 checksum which can

be validated. More than that, the fi rst six and last four digits are often exposed

in clear text, which is allowed by PCI and other standards, so in reality it’s only

six digits (16 - 6 - 4) that need to be guessed (Table 6-4). These factors provide an

ability to conduct a relatively simple brute-force attack on credit card numbers.8

 Chapter 6 ■ Breaking into PCI-protected Areas 153

c06.indd 01:34:27:PM 12/31/2013 Page 153

Table 6-4: Examples of PAN Masking According to PCI Rules

CARD TYPE MASKED PAN NUMBER OF DIGITS TO GUESS

Visa 400555******4403 6

MasterCard 557552******7645 6

Amex 379640*****1007 5

A brute-force attack in the case of PAN means going through all possible com-

binations (1016) of account number digits (or only 106 in case the fi rst six and last

four digits are known), performing a hash function, and comparing the results

with the “encrypted” (hashed) number obtained from the payment application

log fi les or database. Rainbow tables can be used to simplify the process.

Rainbow tables are pre-compiled hash results that can be compared dynami-

cally with the hashed PAN without the need to go through all the combinations

and conduct hash functions for each permutation. It is possible to reduce the size

of a rainbow table (and thus the lookup time) by excluding prefi xes that are not

used by major payment card brands (such as 0, 7, 8, and 9) and account numbers

with invalid Mod 10 check digits. Table 6-5 shows a fragment of a rainbow table

calculated for SHA-1 functions of major credit card account numbers. Note that

the combinations with invalid Mod 10 are omitted.

Table 6-5: Example of PAN Rainbow Table Fragment

PAN SHA1

.

4005554444444395 e690e41f949423016e9346df2b4e7d6eb205c3b6

4005554444444403 f9b5eededb928241974368cbd97c055141813970

4005554444444411 96e8bddce2202451c828d57be33c94ae747f3594

.

Insecure Storage of Encryption Keys

Strong requirements for data-at-rest protection are the most powerful side of

the PCI standards, and they are implemented by many software vendors and

merchants, mostly through use of symmetric encryption algorithms. More details

about symmetric and asymmetric encryption can be found in Chapter 7, but for

now just note that there is an important characteristic of symmetric encryption

algorithms: the same cryptographic key can be used for both encryption and

154 Part II ■ Attacks on Point-of-Sale Systems

c06.indd 01:34:27:PM 12/31/2013 Page 154

decryption. With respect to payment applications, this means that if the POS

was able to encrypt the data (for example, before dumping it into the tempo-

rary storage or log fi le), there is almost always the possibility of decrypting the

data on the same machine, even if the application is not programmed to do so.

This is because the encryption key (which is also decryption key!) is present

somewhere at that computer.

There are fewer options to hide the keys, which can be stored either in hard-

ware or software. A hardware option is out of scope because it is too expensive

(at least in most merchants’ opinions) to use cryptographic hardware modules

on each POS machine. The software options for key storage usually are:

 ■ Hard drive (data fi le)

 ■ Registry (on Windows-based machines, of course)

 ■ Hard-coded (in the application binary fi le)

 ■ Any combination of these options

Given the fact that many software vendors today use strong encryption algo-

rithms, fi nding the cryptographic keys and using them to decrypt the sensitive

data is the easiest and most likely scenario for attack on data at rest compared

to others, such as cryptanalysis.

But why don’t developers use asymmetric algorithms where the encryp-

tion and decryption keys are different and encryption keys cannot be used to

decrypt the data? Simply because the payment application usually also needs

access to the stored information, like in case of temporary S&F or TOR records,

which means it must be able to decrypt the data after reading it from storage.

DEK and KEK

In simple cryptographic implementations, the data is encrypted using an encryp-

tion key which is stored in clear text in a fi le, a Registry, or hard-coded in the

application code. In more sophisticated applications, the data is encrypted by

Data Encryption Key (DEK) which is protected by Key Encryption Key (KEK). In

this case, the DEK is still stored in one of the “secret” places listed above but it

is encrypted using KEK (Figure 6-1). The problem with this approach, which is

obviously more secure than encryption with just a single key, is that the KEK

still needs to be hidden somewhere, and the choices are really the same as for

the DEK: hard-coded, fi le, or Registry (usually, KEK is hard-coded because it

is rarely changed). So the attacker’s task—fi nding the key and decrypting the

ciphertext—in general remains the same, it simply requires a bit more time and

effort to fi nd the KEK fi rst, then fi nd the encrypted DEK, decrypt it using the

KEK, and fi nally decrypt the ciphertext using decrypted DEK.

 Chapter 6 ■ Breaking into PCI-protected Areas 155

c06.indd 01:34:27:PM 12/31/2013 Page 155

Figure 6-1: Example of encrypted AES 256 DEK “hidden” in Windows Registry

Key Rotation

Key rotation is a security mechanism that was invented to resolve at least two

issues:

 1. Prevent cryptanalysis. When an attacker has access to a large amount of

ciphertext (the output of data encryption) which was created using the

same encryption key, it is possible in some cases to guess what the key is.

When an encryption key is changed (rotated) often, such a task becomes

very diffi cult or even impossible to perform.

 2. Minimize the amount of data that can be leaked when a single encryption

key is obtained by an attacker. If the keys are rotated often, an attacker

must fi nd a way to retrieve the keys on a constant basis in order to steal

any signifi cant number of credit card records.

The problem with key rotation is that it is not a simple task to implement,

especially to implement it correctly. PCI standards do not contain explicit tech-

nological requirements or recommendations for software vendors regarding

implementation of automatic key rotation features. The only requirement for

key rotation is providing some minimal basic functionality, therefore, many

application vendors just provide the merchants with manual instructions on

how to change the keys.9

Naturally, such merchants never do key rotation because it is infeasible to

perform those manual procedures on hundreds or thousands of their POS

machines without signifi cant interruption to the business.

In any case, key rotation is a great deterrent control; however, it does not

provide ultimate data protection because the symmetric encryption key, even

156 Part II ■ Attacks on Point-of-Sale Systems

c06.indd 01:34:27:PM 12/31/2013 Page 156

if it is rotated often, still must be present somewhere in the machine and can

be retrieved by an attacker.

Default Keys

The problem with using default encryption keys is somewhat related to the issue

with key rotation. Many merchants receive payment software from a payment

application vendor and install it “as is” using out-of-the-box features and con-

fi gurations. If the application vendor does not bother to design the automatic

key generation and rotation mechanism, it is possible that all their customers’

POS machines use the same default encryption keys.

Getting to the Keys

In order to fi nd the keys, an attacker fi rst needs to know where and how they

are stored. This information can be obtained either with help of insiders or by

reverse engineering.

Insiders are people who work or used to work for the payment software vendor,

integrator, or merchant. They are familiar with the application design and have

access to the code and/or documentation. Those current or former employees

can abuse their authority and knowledge in order to meet their fi nancial goals,

or just for some kind of revenge. Using their knowledge of the system, they may

craft malware to retrieve the keys themselves or sell this information to hackers.

Reverse engineering, or disassembling, is a process of “decoding the code.”

Most programming languages used to write the payment application code are

either compilers or interpreters. In any case, they create some kind of binary fi le

as the last step of the code-building process. If a compiler creates the machine

executable code (examples are C, C++, or Delphi), it is more diffi cult to disas-

semble such code to its original representation, which is called source code. With

modern languages that create intermediate code (such as Java or C#), it is much

easier to understand the original source unless the binary code is obfuscated. In

any case, whatever time it takes, reversing the code in order to locate the keys

is a feasible task.

C R O S S  R E F E R E N C E See Chapter 9 for more details on code obfuscation.

And fi nally, we should not forget about the fact that the application has to

decrypt the DEK before it can use it for data encryption or decryption. Most

payment applications use software encryption which means that all the cryp-

tographic operations are performed in the application memory, so unencrypted

DEK must be present in memory and can be captured by the malicious memory
scanning software installed on a POS machine.

 Chapter 6 ■ Breaking into PCI-protected Areas 157

c06.indd 01:34:27:PM 12/31/2013 Page 157

Once the application logic is studied, it is only a matter of time and the

programmer’s skills to create malware that would be able to retrieve the keys,

decrypt the cardholder data stored by payment application, collect it, and send

it to the attacker via the Internet, wireless, or even a Bluetooth connection.

DiskScraper Utility

Although encrypting PAN and track data storage is one of the strongest and

most famous PCI requirements, it is possible that some records are still sitting

out there because somebody forgot to delete them or simply because there is a

bug in the POS software. There are several tools—both commercial and open

source—available to scan the hard drives for sensitive data. If you run such a

tool, you may be surprised that account numbers or even track data that should

have been deleted from the PCI DSS compliant machines running PA-DSS

validated applications are still there. DiskScraper is a sample .NET utility that

scans the fi les which may contain sensitive data (such as .log, .txt, and .dat), and

fi nds the PAN, Track 1, and Track 2 of the payment cards (Figure 6-2). It uses

the same search technology—regular expressions—that is also implemented

by the MemoryScraper and NetScraper tools that are described in the previous

chapter. Run the executable (NetScraper.exe, which along with the source code,

is available for download from www.wiley.com/go/hackingpos) on the computer

with your favorite POS software. The results of the search will be displayed in

the log fi le (Figure 6-3). And once again, if you are not a programmer and not

interested in the code details, skip to the next sections.

Figure 6-2: DiskScraper utility

158 Part II ■ Attacks on Point-of-Sale Systems

c06.indd 01:34:27:PM 12/31/2013 Page 158

Figure 6-3: DiskScraper search results

Recursive search

When DiskScraper is set up to search all the fi les on either a single drive or all

the drives, it is using recursion which is a simple and elegant method of scan-

ning a tree (a folder tree in our case).

The recursive function starts from the root folder and calls itself until it reaches

the “bottom” of the folder tree branch:

bool RecursiveScan(DirectoryInfo Directory, bool CountOnly)
{
 …
 IEnumerable<DirectoryInfo> dirs = Directory.EnumerateDirectories();
 foreach (DirectoryInfo dir in dirs)
 {
 if (!RecursiveScan(dir, CountOnly))
 return false;
 }
 …
 return true;
}

Then, it scans all the fi les in that folder and “automatically” moves to the

next branch:

IEnumerable<FileInfo> files = Directory.EnumerateFiles();
foreach (FileInfo file in files)
 if (!ProcessFile(file, CountOnly))
 return false;

Eventually, it passes all the folder branches and scans all the fi les.

 Chapter 6 ■ Breaking into PCI-protected Areas 159

c06.indd 01:34:27:PM 12/31/2013 Page 159

Text vs. Binary Files

There are two major types of fi les with different structures: text and binary. Text

fi les consist of lines of ASCII or Unicode characters. The text lines are separated

by carriage return (0x0D) and new line (0x0A) ASCII characters. The binary fi les

are arrays of bytes which may have any value. Depending on the fi le types, there

are different ways to open the fi le and iterate through its content.

The text fi les can be read using .NET StreamReader (TextFileSearch class),

StreamReader sr = new StreamReader(fName);

and then simply scanned line by line:

while (sr.Peek() >= 0)
{
 input = sr.ReadLine();
 LineNumber++;
 searchLine.Search(input, LineNumber.ToString(), fName, ref res);
}

The binary fi les should be opened by .NET FileStream and BinaryReader

(BinaryFileSearch class):

using (FileStream fs = new FileStream(
 fName, FileMode.Open, FileAccess.Read, FileShare.ReadWrite))
{
 using (BinaryReader br = new BinaryReader(fs, new ASCIIEncoding()))
 {
 ...
 }
}

They should be read in chunks since they can be too large to load as a single

block. The chunk size is set to 4,096 (4 KB) by default but it can be any size

depending on desirable performance:

chunk = br.ReadBytes(CHUNK_SIZE);
while (chunk.Length > 0)
{
 string ASCIItext = Encoding.ASCII.GetString(chunk);
 string Unicodetext = Encoding.Unicode.GetString(chunk);
 searchLine.Search(ASCIItext, position.ToString(), fName, ref res);
 searchLine.Search(Unicodetext, position.ToString(), fName, ref res);
 chunk = br.ReadBytes(CHUNK_SIZE);
 position += CHUNK_SIZE;
}

DiskScraper uses the same code (located in HackingPOS.Scrapers.Common) as

MemoryScraper and NetScraper for fi nding the card account numbers and tracks.

160 Part II ■ Attacks on Point-of-Sale Systems

c06.indd 01:34:27:PM 12/31/2013 Page 160

Data in Transit: What is Covered by PCI?

In the requirements related to communication protection, PCI standards distin-

guish between different types of networks: “open, public” and any other network.

“Encrypt transmission of cardholder data across open, public networks.”10

The problem with such a distinction is that non-”open, public” networks, which

include in-store LAN, corporate WAN, and frame relay between merchant and

processor, play signifi cant roles in the functionality of payment applications.

Moreover, payment applications mostly use those types of networks for sensi-

tive data transmission (Table 6-6).

Table 6-6: Network Protection Requirements

NETWORK

TYPE

ENCRYPTION

REQUIRED BY

PCI?

TYPICALLY USED FOR SENSITIVE DATA

TRANSMISSION

Internet Yes Between POS and payment gateway/processor

Wireless Yes Between POS and store;

Server between POS and payment gateway/

processor

LAN No Between POS and store server;

Between POS and payment gateway/processor;

Between modules of payment application

WAN No Between POS and payment gateway/processor;

Between store server and corporate

headquarters

With that said, even a simple analysis of PCI DSS requirements makes most

“PCI compliant” payment applications vulnerable for basic network-sniffi ng

attacks, which are described in Chapter 5. However, even PCI-protected “open,

public” networks are still vulnerable to more sophisticated attacks.

SSL Vulnerabilities

Secure Socket Layer (SSL) is a very popular and established protocol used for pro-

tecting data in transit, and payment applications are no exception. However, SSL

 Chapter 6 ■ Breaking into PCI-protected Areas 161

c06.indd 01:34:27:PM 12/31/2013 Page 161

is not unbreakable and it may have fl aws, especially when it is not properly

confi gured.11

C R O S S  R E F E R E N C E More details about SSL implementation can be found in

Chapter 8.

Outdated Versions of SSL/TLS

SSL went through several modifi cations since it was fi rst invented by Netscape

in 1995.12 The last version of SSL was 3.0 and since then it has been continued

under the name TLS (Transport Layer Security) protocol. If a payment applica-

tion does not use the latest and greatest version of TLS (1.2 at the time of this

publication), it is most probably vulnerable to attacks because each version of

SSL and TLS included security patches.13

Weak Cipher Suits

One of the features of SSL is the ability to negotiate the type and level of encryp-

tion between client and server. On the one hand this feature is benefi cial because

it allows different types of clients and servers to communicate with each other.

On the other hand, this feature may allow an attacker to downgrade the level of

encryption and tamper with a communication that is supposed to be secure.14

Man-in-the-Middle

Man-in-the-Middle (MITM) is one of the most famous type of attacks. It allows

an attacker to seamlessly tap on-network traffi c between unsuspecting clients

and servers and steal sensitive payment card data. The client confi guration can

be manipulated so it establishes communication with the bogus server through

a different host address and a server certifi cate that is valid for that address. If

the client does not validate the host URL and the issuer of the server certifi cate,
then it assumes it is talking to the legitimate server.

Another possible scenario of a MITM attack is inserting a bogus proxy (an

intermediary that transmits requests and responses between clients and serv-

ers) which intercepts the network traffi c between the legitimate client and the

server using a fake server certifi cate as shown on Figure 6-4. The bogus proxy

establishes communication with the legitimate server and pretends to be a

legitimate client. This can be made possible by several conditions, including:

162 Part II ■ Attacks on Point-of-Sale Systems

c06.indd 01:34:27:PM 12/31/2013 Page 162

 1. An attacker manages to access the public or proprietary Certifi cate Authority

(CA), which issued an original server certifi cate, and issue a fake certifi cate

on behalf of the legitimate issuer.15 Some merchants and processors may

use “homemade” certifi cates issued on-premises by a proprietary CA that

lacks proper security controls.

 2. An attacker “plants” its server certifi cate into the client’s certifi cate reposi-

tory as a legitimate certifi cate. The client assumes that the server certifi cate

is valid and enables communication with the bogus proxy.16

SSL Encrypted
Traffic

SSL Encrypted
Traffic

Retail Store

POS

MITM Bogus Proxy Payment Gateway

Eavesdropped
sensitive
cardholder data
in clear text

Figure 6-4: Man-in-the-Middle Attack

Summary

PCI Security Standards protect only limited, relatively small areas of payment

applications and are mostly focused on data at rest, which includes temporary

storage of S&F and TOR data on hard drives, log fi les, and more. Even though

all the sensitive data stored on hard drives must be encrypted according to PCI

requirements, payment applications use software encryption with weak key

management implementations which are often vulnerable to simple attacks.

Encryption keys are “hidden” inside the application code (hard-coded), Windows

Registry, or data fi les, and can be easily located and used to decrypt the sensi-

tive cardholder information.

PCI also protects very limited amounts of sensitive data in transit, which

is transmitted only through “open, public networks” such as wireless LAN

and Internet. PCI compliant payment applications are not required to encrypt

data traffi c on store LAN, corporate WAN, or frame relay links to payment

processors. Even though the traffi c is encrypted on wireless networks and the

 Chapter 6 ■ Breaking into PCI-protected Areas 163

c06.indd 01:34:27:PM 12/31/2013 Page 163

Internet, vulnerabilities of security protocols such as SSL can be exploited in order

to tap on-network communications and steal sensitive cardholder information.

Notes

 1. Jonathan Swift, “A Critical Essay upon the Faculties of the Mind,” The
Works of the Rev. Jonathan Swift, D.D. Dean of St. Patrick’s, Dublin with
Notes, Historical and Critical, Vol. 2, Arranged by Thomas Sheridan, A.M.,

(London, 1808), p. 460.

 2. PCI DSS Requirements and Security Assessment Procedures Version 2.0, PCI

SSC, (October 2010), Req. 3.2, 3.2.1, p. 29, https://www.pcisecuritystandards

.org/documents/pci_dss_v2.pdf

 3. PCI PA-DSS Requirements and Security Assessment Procedures Version

2.0, PCI SSC, (October 2010), Req. 1.1, 1.1.1, pp. 17-18, https://www.

pcisecuritystandards.org/documents/pa-dss_v2.pdf

 4. Bruce Schneier, Applied Cryptography, Second Edition: Protocols, Algorithms,
and Source Code in C, (Hoboken, NJ: Wiley, 1996), p. 13.

 5. Default Passwords, CIRT.net, http://www.cirt.net/passwords

 6. Default Password Database, Virus.org, http://www.virus.org/default

_passwds

 7. Bruce Schneier, Applied Cryptography, Second Edition: Protocols, Algorithms,
and Source Code in C, (Hoboken, NJ: Wiley 1996), p. 35.

 8. “Hashing Credit Card Numbers: Unsafe Application Practices” (2007),

http://www.integrigy.com/files/Integrigy_Hashing_Credit_Card_

Numbers_Unsafe_Practices.pdf

 9. “PCI PA-DSS Requirements and Security Assessment Procedures Version 2.0, PCI

SSC” (October 2010). Req. 2.3, pp. 24–26, https://www.pcisecuritystandards

.org/documents/pa-dss_v2.pdf

 10. “PCI DSS Requirements and Security Assessment Procedures Version 2.0,

PCI SSC” (October 2010), Req. 4, p.35, https://www.pcisecuritystandards

.org/documents/pci_dss_v2.pdf

 11. David Wagner and Bruce Schneier, “Analysis of the SSL 3.0 protocol,”

https://www.schneier.com/paper-ssl.pdf

164 Part II ■ Attacks on Point-of-Sale Systems

c06.indd 01:34:27:PM 12/31/2013 Page 164

 12. “The SSL Protocol, Netscape” (1996), http://web.archive.org/web

/19970614020952/http://home.netscape.com/newsref/std/SSL.html

 13. TLS/SSL hardening and compatibility Report 2011, G-Sec, http://www

.g-sec.lu/sslharden/SSL_comp_report2011.pdf

 14. WeakCipherSuites: Testing for weak cipher suites, Sslyze, (March 2012),

https://code.google.com/p/sslyze/wiki/WeakCipherSuites

 15. “Comodo Fraud Incident, Comodo” (March 2011), http://www.comodo

.com/Comodo-Fraud-Incident-2011-03-23.html

 16. Steven J. Vaughan-Nichols, “How the NSA, and your boss, can inter-

cept and break SSL,” ZDNet, (June 2003), http://www.zdnet.com

/how-the-nsa-and-your-boss-can-intercept-and-break

-ssl-7000016573/

c07.indd 01:36:50:PM 12/31/2013 Page 165

 Par t

III
Defense

A general is a man who takes chances. Mostly he takes fi fty-fi fty chances; if he happens to win

three times in succession he is considered a great general.

—Enrico Fermi

In This Part

Chapter 7: Cryptography in Payment Applications

Chapter 8: Protecting Cardholder Data

Chapter 9: Securing Application Code

c07.indd 01:36:50:PM 12/31/2013 Page 166

167

c07.indd 01:36:50:PM 12/31/2013 Page 167

Wherever there is information that needs to be protected, there lurks a need for

cryptography. Not just a pure cryptography but rather its proper application. In

the case of POS applications, there is the presence of sensitive cardholder data

that must be hidden from prying eyes during the entire payment-processing

cycle. There are remarkable books already written about cryptography.1 The

goal of this chapter is not another explanation of underlying math or algorithm

implementations, but cryptography applied to the payment application security

through specifi c methods and implementations. In order to understand what

protection mechanisms are available, whether they are appropriate in particular

situations, and how to implement them correctly, we still need a bit of theory.

The Tip of the Iceberg

Modern payment applications already use cryptography in many cases; how-

ever, they are not always used in the most secure way. Many developers are

already familiar with the principle of using well known encryption algorithm

implementations rather than trying to create new, unproven, “in-house” code.

C H A P T E R

7

Cryptography in Payment

Applications
All problems are fi nally scientifi c problems.

—George Bernard Shaw

168 Part III ■ Defense

c07.indd 01:36:50:PM 12/31/2013 Page 168

The problem is that cryptography is not limited to just an algorithm implementa-

tion library, which is only the tip of the iceberg. There is the whole issue of key

management, which surrounds any type of encryption and requires appropriate

attention when designing the payment application. Adding symmetric keys or

public-private-key certifi cates into the code and forgetting about them isn’t the

best approach. You must answer several questions, such as: How do you protect

those keys? How do you rotate them? How do you generate and deploy a new key

(and destroy the old one) if the existing key has been compromised or expired?

While assessing the level of payment application protection, auditors or curious

users often ask: “What type of encryption does it use?” Here is an example of

a common answer to such a question: “AES”—or perhaps “AES 256” to provide

more confi dence. Both answers defi nitely carry some information about the

encryption being used, but they still leave many questions, such as: What is the

implementation of the algorithm? What is the key management scheme? How is

the key generated and protected? How is the key rotated and destroyed? Who

has access to the keys or key components? Do you trust those people, applica-

tions, and organizations? Obviously there are a lot of questions that must be

answered in order to understand the complete real picture.

Symmetric, Asymmetric, or One-way?

The name of the algorithm is usually the fi rst (and in many cases, the only)

characteristic of the entire encryption system that is being advertised by the

payment application developers. Although the name does not tell much about

the details of implementation and key management, at least it identifi es the basic

behavior of the system along with some potential weaknesses.

There are three major groups of cryptographic functions: symmetric, asymmetric,
and one-way encryption (see Table 7-1). Each group is based on different math

concepts and is intended for use in different tasks. Another important difference

that should be taken into account when selecting the encryption type is the rela-

tionship between encryption and decryption keys. In a nutshell, the symmetric

key is the same for both encryption and decryption, asymmetric algorithms use

different encryption and decryption keys, and a one-way cryptographic hash

function has no keys at all (although there are some exceptions). Such diversity

in key management mainly dictates the areas of practical application.

 Chapter 7 ■ Cryptography in Payment Applications 169

c07.indd 01:36:50:PM 12/31/2013 Page 169

Table 7-1: Summary of Diff erences between Symmetric, Asymmetric, and One-way Encryption

SYMMETRIC ASYMMETRIC

ONEWAY

HASH

Keys The same key for both

encryption and decryption

Two diff erent

keys: one for

encryption and

another one

decryption

No keys

Decryption The ciphertext can be

decrypted using the same

key that was used for

encryption

A diff erent key is

required in order

to decrypt the

ciphertext

It is impossible to

reverse (decrypt)

the one-way

hashed data

Performance High Low High

Data Encryption

Use Case

❖ Temporary data storage

(S&F)

❖ Settlement records

❖ Long-term transaction

records

❖ Communication -payload

encryption

❖ Software P2PE

❖ Software P2PE ❖ Password

encryption

❖ Tokenization

Used as

Part of the

Cryptosystem

❖ Hardware P2PE

❖ SSL

❖ Digital data

signing

❖ Code signing

❖ Client

authentication

❖ SSL

❖ Digital data

signing

❖ Code signing

❖ SSL

Examples of

Algorithms

AES, TDES RSA SHA

Acceptable Key/

Digest Length

(bits)

AES: 128

TDES: 112 (double-length

key)

RSA: 1024 SHA: 160

Recommended

Key/Digest

Length (bits)

AES: 256

TDES: 168 (triple-length key)

RSA: 2048 SHA: 256

170 Part III ■ Defense

c07.indd 01:36:50:PM 12/31/2013 Page 170

As shown in Table 7-1, symmetric encryption is the most useful type of cryp-

tographic algorithm for data encryption in payment applications. However,

all types of encryption are usually involved to some degree in POS software.

Does Size Matter?

As mentioned in the beginning of this chapter, the standard answer to the ques-

tion about encryption is the name of the encryption algorithm, like “AES.” If you

are lucky, you can get more information in the form of a 3–4 digit suffi x, like

“AES-256.” Those numbers are the length of the key, in bits. For some algorithms

there are “fi xed” key lengths linked to their names. For example, Triple DES

usually means the key length of 112 bits. “Usually” because there are different

fl avors of Triple DES: 2TDEA and 3TDEA. 2TDEA stands for “Triple DES with

double-length key” which means that the key size is 112 bits (the original DES

key length is 56 so double-length is 2 × 56 = 112). 3TDEA stands for “Triple DES

with triple-length key” which means that the key size is 3 × 56 = 168 bit. The

general rule for all the encryption algorithms is “the bigger the better.” This is

because the simplest way to attack the encryption is a brute-force attack, which

goes through all possible combinations of the bits in the key until the right key

is found. With data processing capabilities of modern computers, it is possible

to brute-force several dozen bits. For example, DES with a 56-bit key (256 pos-

sible combinations) can be cracked in less than a day.2 However, adding more

bits to the key will exponentially increase the time required for cracking (see

Figure 7-1). That’s why 2TDEA with a 112-bit key (2112) is still secure (but not for

a very long time as according to Moor’s law, computing power doubles every

two years3).

Asymmetric algorithms have different scales of security related to the key

size compared to symmetric encryption. For example, a 1,024-bit RSA key is

equivalent to an 80-bit symmetric key.4

One-way hash functions, in most cases, do not have the key, so their strength

is determined by the length of the digest they produce. For example, SHA-256,

which is considered best practice today, would produce a 256-bit result.

Key Entropy

In simple words without math, entropy means the predictability of the key value.

When generating new keys or key components, it is important to use functions

that produce random results. Most cryptographic libraries provide random gen-

erators that take some natural events, such as user input and system clock, as

initial entropy. For example, .NET System.Security.Cryptography contains the

 Chapter 7 ■ Cryptography in Payment Applications 171

c07.indd 01:36:50:PM 12/31/2013 Page 171

RandomNumberGenerator class, which can be used to generate random numbers

for key components, keys, or initialization vectors (the next section, “Symmetric

Encryption,” contains more details on this).

0 1 2 3 4 5

Key Length, Bits

Ke
y

Se
cu

rit
y

6 7 8 9

Figure 7-1: Exponential increase of encryption algorithm security by adding extra key bits

Key Stretching

The key stretching technique allows you to increase the size and entropy—and

as a result—the security of the encryption key that can be derived from regular

user input such as password or passphrase.5 The problem with user-defi ned

passwords or passphrases is that they can be guessed relatively easily using

a dictionary and/or brute-force attack. In order to solve this problem, the key

stretching algorithms perform multiple passes of transformations (such as hash

functions) with the input data, which eventually creates an encryption key

with suitable size and level of security. The Rfc2898DeriveBytes class in .NET

System.Security.Cryptography is one example of implementing key stretching

according to the rules defi ned in the PKCS #5 standard.6 Rfc2898DeriveBytes is

used for key generation in the EncryptionDemo application, which is described

in the following sections.

172 Part III ■ Defense

c07.indd 01:36:50:PM 12/31/2013 Page 172

Symmetric Encryption

It was named “symmetric” because it uses the same key for encryption and

decryption (Figure 7-2).

Plaintext
“371111111111114”

Ciphertext
“9UI7Q+eMwibrUIU”

Ciphertext
“9UI7Q+eMwibrUIU”

Encryption

Decryption

Symmetric key
“Lo4wCEqR3xZJLav”

Plaintext
“371111111111114”

Figure 7-2: Symmetric encryption

This feature is good and bad at the same time. On the one hand, it simplifi es

the key management—two sides (for example, POS application and payment

gateway server) share the same key, so one side can encrypt the message and

another side can decrypt it, both using the same key. On the other hand, if one

side is compromised, the attacker has the key, which can be used to decrypt

the data stored on both sides. Therefore, there are specifi c cases where it is safe

to use symmetric encryption:

 1. Both encryption and decryption sides are located on the same machine.

In this case, it does not make sense to use asymmetric encryption (the

next section explains the details of this) because the decryption key will

be accessible anyway if the application is compromised. That’s one of the

reasons why most payment applications use symmetric algorithms for

temporary local data storage.

 2. The key is stored in hardware and cannot be retrieved even if the hosting

computer is compromised. This is the case for P2PE (see Chapter 8 for

more information about P2PE).

 3. The keys are often changed (“rotated”). If a new data encryption key is

generated for each communication session (like in SSL) or each transac-

tion (like in DUKPT), then even if a single key is compromised it does not

compromise the previous or further sessions/transactions, and does not

provide the ability to access a large amount of data.

Another important benefi t of symmetric encryption is high performance.

Symmetric algorithms use simpler math compared to asymmetric ones, there-

fore, their implementation code requires less CPU cycles and works much faster.

 Chapter 7 ■ Cryptography in Payment Applications 173

c07.indd 01:36:50:PM 12/31/2013 Page 173

Strong Algorithms

There are many symmetric encryption algorithms that are commonly used

both as standalone implementation for data protection, and as an integral part

of cryptographic solutions such as digital signatures or SSL. AES (Advanced

Encryption Standard) and TDES (Triple Data Encryption Standard) are widely

used in payment applications. Triple-DES, along with the DUKPT key manage-

ment scheme, have a long and well proven track record of being a part of debit

PIN encryption technology, while AES is recommended by the NSA (National

Security Agency) for encryption of classifi ed information.7

EncryptionDemo

The EncryptionDemo application (shown in Figure 7-3) demonstrates all three types

of encryption—symmetric, asymmetric, and one-way, which are implemented

in separate assembly— HackingPOS.Cryptography.Encryption.dll—and can

be reused by other applications. These binary fi les can be downloaded from the

Wiley website at www.wiley.com/go/hackingpos and tested without the need

to compile the source code (which is also available for download).

Figure 7-3: EncryptionDemo application: Symmetric encryption

174 Part III ■ Defense

c07.indd 01:36:50:PM 12/31/2013 Page 174

Implementing Symmetric Encryption

Many years ago programmers had to write cryptographic code whenever they

needed to encrypt data in their applications. Implementing encryption in modern

development environments is a relatively trivial task because there are crypto-

graphic libraries supporting most common algorithms and basic key manage-

ment functions. However, encryption implementation suitable for payment

application is not coming “out of the box” and there are some manipulations

with the code that are still required in order to get the robust solution.

Generating the Key

In an EncryptionDemo application, the symmetric key is not stored anywhere

but is reconstructed dynamically in memory each time it is needed for encryp-

tion or decryption. Three key components are used as an input of deterministic
generator (Rfc2898DeriveBytes class):

 1. First, the generateKey method creates the value of the Rfc2898DeriveBytes

salt parameter from KeyComponent1:

Random random = new Random(keyComponent1.GetHashCode());
byte[] salt = new byte[16];
random.NextBytes(salt);

 2. Then, it creates the value of the Rfc2898DeriveBytes password parameter

from KeyComponent2 and hard-coded KeyComponent3:

SHA256 sha256 = SHA256.Create();
byte[] password = sha256.ComputeHash(
 Encoding.ASCII.GetBytes(keyComponent2 + keyComponent3));

 3. Finally, the instance of the Rfc2898DeriveBytes class “generates” the key:

Rfc2898DeriveBytes keyGenerator = new Rfc2898DeriveBytes(
 password, salt, ITERATIONS);
return keyGenerator.GetBytes(KEY_SIZE);

These three key components can be used to spread out information about

the key among different media; for example, component 1 can be hard-coded

in the application, component 2 can be written to a fi le on the hard drive, and

component 3 can be stored in the Registry. The attacker will have to have access

permissions to all three areas—the application code, the fi le system, and the

Registry—in order to re-create the key.

Another method often used in encryption systems is that the application

prompts the user to enter the password and use it as one of the key components.

This approach has limited application because the user can forget the password,

 Chapter 7 ■ Cryptography in Payment Applications 175

c07.indd 01:36:50:PM 12/31/2013 Page 175

needs to enter the password for each session, or simply may be unavailable in

the case of an unattended standalone service application.

Blocks, Padding, and Initialization Vectors

The block ciphers are used when the length of the plaintext (the data in clear text

to be encrypted) is greater than the key size. The plaintext is then divided into

blocks and a cryptographic operation is performed on each block until the entire

data stream is encrypted (or decrypted). There are several blocking modes that

are different in the way the previous block is connected to the next one. The

CBC (Cipher Block Chaining) mode connects the block with the previous one

by performing the XOR (exclusive OR) operation between the current plaintext

block and the previous ciphertext block:

provider.Mode = CipherMode.CBC;

The padding is required when the size of the plaintext is different from the

block size (for example, when encrypting the last block of the data stream). PKCS
#7 padding strings consist of a sequence of bytes, each of which is equal to the

total number of padding bytes added:8

provider.Padding = PaddingMode.PKCS7;

Initialization Vector (IV) is required for block ciphers in order to provide an

input for the fi rst block of plaintext. The IV should be randomly generated:

byte[] IV_seed = new byte[IV_SEED_SIZE];
RandomNumberGenerator IVGenerator = RandomNumberGenerator.Create();
IVGenerator.GetNonZeroBytes(IV_seed);

The IV seed is added to the output ciphertext stream:

result = new byte[IV_SEED_SIZE + ciphertext.Length];
Buffer.BlockCopy(IV_seed, 0, result, 0, IV_SEED_SIZE);
Buffer.BlockCopy(
 ciphertext, 0, result, IV_SEED_SIZE, ciphertext.Length);

It can now be read by the decryption function in order to initialize the fi rst

block during decryption operation:

byte[] IV_seed = new byte[IV_SEED_SIZE];
Buffer.BlockCopy(Ciphertext, 0, IV_seed, 0, IV_SEED_SIZE);

Encryption and Decryption

Several streaming classes are involved in the encryption process:

using (ICryptoTransform encryptor = provider.CreateEncryptor(
 provider.Key, provider.IV))

176 Part III ■ Defense

c07.indd 01:36:50:PM 12/31/2013 Page 176

 using (MemoryStream memStream = new MemoryStream())
 using (CryptoStream encryptStream = new CryptoStream(
 memStream, encryptor, CryptoStreamMode.Write))
 {
 using (StreamWriter streamWriter = new StreamWriter(
 encryptStream))
 streamWriter.Write(Plaintext);
 byte[] ciphertext = memStream.ToArray();
 }

Since this is a symmetric cipher, the code of decryption is similar to one for

encryption, they just work in opposite directions:

using (ICryptoTransform decryptor = provider.CreateDecryptor(
 provider.Key, provider.IV))
 using (MemoryStream memStream = new MemoryStream(
 actual_ciphertext, 0, actual_ciphertext_length))
 using (CryptoStream decryptStream = new CryptoStream(
 memStream, decryptor, CryptoStreamMode.Read))
 using (StreamReader streamReader = new StreamReader(
 decryptStream))
 result = streamReader.ReadToEnd();

Asymmetric Encryption

Asymmetric encryption, which is also called public-key encryption, is named so

because it uses different keys for encryption and decryption (Figure 7-4).

Plaintext
“371111111111114”

Ciphertext
9UI7Q+eMwibrUIU...

Encryption

Public key
Lo4wCEqR3xZJLav...

Decryption

Private key
qC3p4A2aqK+jYbY...

Ciphertext
9UI7Q+eMwibrUIU...

Plaintext
“371111111111114”

Figure 7-4: Asymmetric (public-key) encryption

The same key cannot be used for both encryption and decryption operations.

Asymmetric encryption is one of the greatest inventions in cryptography because

 Chapter 7 ■ Cryptography in Payment Applications 177

c07.indd 01:36:50:PM 12/31/2013 Page 177

for the fi rst time it allows you to encrypt information without fear of disclosure

even if the encryption side (encryption key) is compromised. Furthermore, the

encryption key can be exposed to everyone (that’s why it is called public key) so

anyone can send the encrypted data to the sender who owns the decryption

key (private key). These features of asymmetric encryption are used in Public
Key Infrastructure (PKI) which is, along with SSL protocol, essential for Internet

security. In digital signature implementations, the asymmetric algorithm works

in the opposite direction—the sender encrypts the data using her private key

(the digest of the message), while the recipients validate the signature using the

public key of the sender.

Implementing Public-key Encryption

In some relatively rare cases, instead of implicit usage—such as client and server

certifi cates, SSL, or digital signatures—payment application developers may

need to implement the public-key encryption directly; for example, as a data

encryption mechanism for P2PE solution. The EncryptionDemo application has

a tab for asymmetric encryption which demonstrates the work with the RSA

algorithm and asymmetric keys stored as certifi cates (Figure 7-5).

Figure 7-5: EncryptionDemo: Asymmetric (Public-key) encryption

178 Part III ■ Defense

c07.indd 01:36:50:PM 12/31/2013 Page 178

Generating the Keys

Usually, the payment application does not generate the asymmetric keys, but

rather receives them in the form of key container, or digital certifi cate. An X.509 cer-
tifi cate is one of the industry standards for a digital certifi cate format.9 Certifi cates

may contain only public keys, or both public and private keys, depending on

the function defi ned for a particular certifi cate and application. For example, if

a POS application implements P2PE encryption, it will have a certifi cate with a

public key only, while the private key will be located only on the P2PE server side.

Self-signed Certifi cate

MakeCert.exe is a certifi cate creation tool included in the Microsoft .NET

Framework SDK (versions 1.1 and later) and in the Microsoft Windows SDK.10

MakeCert can be used to generate a basic self-signed certifi cate (.cer fi le) which

is suffi cient for a basic demo application. The private key is created in a sepa-

rate .pvk fi le:

makecert.exe EncryptionDemoCert.cer
-r -a sha256 -len 2048 -n "CN= EncryptionDemo
-b 01/01/2013 -e 01/01/2023 -sv EncryptionDemo.pvk -sky exchange

Table 7-2 contains the list of MakeCert parameters and values which were used

to generate the self-signed certifi cate and private key for the EncryptionDemo

application. MakeCert also prompts for the password in order to generate and

protect the secret private key, which it stores in the .pvk fi le. As a result of this

command execution, EncryptionDemo.cer and EncryptionDemo.pvk fi les are

created.

Table 7-2: MakeCert Parameters for Generating the Self-signed Certifi cate and Private Key

PARAMETER VALUE DESCRIPTION

N/A EncryptionDemo.cer Location and name of the certifi cate (public-

key) fi le that is being generated

-r N/A Create a self-signed certifi cate

-a sha256 Use SHA-256 as signature hash algorithm

-len 2048 Create 2,048-bit RSA key (the default length is

1,024 bits)

-n “CN=

EncryptionDemo”

Certifi cate name

Continues

 Chapter 7 ■ Cryptography in Payment Applications 179

c07.indd 01:36:50:PM 12/31/2013 Page 179

PARAMETER VALUE DESCRIPTION

-b 01/01/2013 Validity starting date

-e 01/01/2023 Validity expiration date

-sv EncryptionDemo.pvk Location and name of the private-key fi le that

is being generated

-sky exchange Set key type for encryption/decryption

PFX Certifi cate File

After certifi cate and private-key fi les are created, the Pvk2Pfx.exe tool11 is used

to combine the public and the private keys in a single universal key container—

the PFX (Personal Information Exchange) certifi cate fi le—which can be provided as

input for both encryption and decryption procedures:

pvk2pfx -pvk EncryptionDemo.pvk -spc EncryptionDemo.cer
-pfx EncryptionDemo.pfx -pi HackingPOS

As a result of this command, an EncryptionDemo.pfx fi le is created. Table

7-3 contains the list of Pvk2pfx parameters and values that were used to create

the single-fi le certifi cate in PFX format.

Table 7-3: Pvk2pfx Parameters for Creating Single-fi le Certifi cate in PFX Format

PARAMETER VALUE DESCRIPTION

-pvk EncryptionDemo. pvk Location and name of the input private-key

fi le

-spc EncryptionDemo.cer Location and name of the input certifi cate

(public-key) fi le

-pfx EncryptionDemo.pfx Location and name of the output PFX certifi -

cate fi le

-pi HackingPOS Password for private key (prompted during

previous MakeCert session)

The Pvk2pfx tool is part of the Windows SDK and is located in the bin\x86

folder (Win32) or bin\x64 folder (Win64).

In order to just run the EncryptionDemo application and test asymmetric encryp-

tion, it is not necessary to generate a new certifi cate because the EncryptionDemo

application comes with pre-generated test certifi cate fi les (EncryptionDemo.cer

Table 7-2 (continued)

180 Part III ■ Defense

c07.indd 01:36:50:PM 12/31/2013 Page 180

and EncryptionDemo.pfx), which can be downloaded along with all the binary

fi les from the Wiley website.

When the client and server are remote, MakeCert and Pvk2pfx tools can be

used to create various certifi cates for client and server authentication.12 More

sophisticated scenarios of SSL encryption, client authentication, and digital

signing are described in Chapters 8 and 9.

Encryption

After the keys are generated and packed into the certifi cate fi les using appropriate

formats, the encryption and decryption code itself (AsymmetricEncryption class)

is not too complicated. As discussed before, the main advantage of asymmetric

encryption is having different keys for encryption and decryption. In order to

encrypt, only the public key component is required. The X509Certificate2

class is used to load and parse the public key from the EncryptionDemo.cer

certifi cate fi le:

X509Certificate2 certificate = new X509Certificate2(CERName);

The instance of the RSACryptoServiceProvider class encrypts the plaintext

when it is initialized with the public key loaded from the certifi cate:

using (RSACryptoServiceProvider RSA = (RSACryptoServiceProvider)
 certificate.PublicKey.Key)
{
 encryptedData = RSA.Encrypt(PlainText, false);
 return encryptedData;
}

Decryption

In order to decrypt the ciphertext that was encrypted with the public key, the

instance of the X509Certificate2 class loads and parses the PFX certifi cate fi le.

The second argument that should be provided when constructing the instance of

X509Certificate2 class is the password for the private key, which was prompted

when generating the PVK fi le by the MakeCert command:

X509Certificate2 certificate = new X509Certificate2(PFXName, Password);

The instance of RSACryptoServiceProvider class decrypts the ciphertext

when it is initialized with the private key:

using (RSACryptoServiceProvider RSA = (RSACryptoServiceProvider)
 certificate.PrivateKey)
{
 plaintext = RSA.Decrypt(Ciphertext, false);
 return plaintext;
}

 Chapter 7 ■ Cryptography in Payment Applications 181

c07.indd 01:36:50:PM 12/31/2013 Page 181

One-way Encryption

One-way encryption, which is also called hash function, according to its name

works in only one way: it can encrypt the message without providing the abil-

ity to decrypt it (Figure 7-6).

Plaintext
“371111111111114”

Ciphertext (digest)
9UI7Q+eMwibrUIU...

Encryption

Figure 7-6: One-way encryption (hash function)

Hash function guarantees that it creates a unique result (digest) for each unique

data input. (In practice, however, there is a very small probability of collision,

which is when two different data inputs produce the same hash.) One of the

important features of hash function is the fact that no key is required for encryp-

tion. This feature has both advantages and disadvantages. On the one hand,

it is very convenient to implement encryption that does not require any key

management. On the other hand, hash function, when used without any addi-

tional security measures, can be easily broken by using brute-force attacks or

rainbow tables (see Chapter 6 for more details). Thus, hash functions are secure

only if they are implemented with extra protection mechanisms such as salt.
There are two major areas of direct hash function applicability in payment

systems: Tokenization and password encryption. In addition, hashing is an

essential component of digital signatures and public key infrastructure.

Implementing One-way Encryption

The EncryptionDemo application has another tab for one-way encryption, which

shows how to work with the SHA-256 hash algorithm (Figure 7-7).

Hashing implementation can be extremely simple and done by a couple

of lines of code when using a cryptographic library (.NET System.Security

.Cryptography):

SHA256 sha256 = SHA256.Create();
byte[] hash_result = sha256.ComputeHash(pan_bytes);

However, as discussed in Chapter 6, using just a straightforward hash function

can be dangerous due to exposure to rainbow table and brute-forcing attacks.

Thus, salt should be added in order to prevent, or at least to reduce the possi-

bility of such attacks. The EncryptionDemo has an example of salt constructed

from three parts:

 1. Constant component—hard-coded in the application

182 Part III ■ Defense

c07.indd 01:36:50:PM 12/31/2013 Page 182

 2. User-defi ned component—can vary per customer and can be stored in

an application confi guration fi le

 3. Variable component:

 ■ For tokens—can be taken from the user input that is not included in

the data being hashed; for example, expiration date and CVV (which

is present on both Track 1 and Track 2 and not supposed to be stored

after the transaction is done)

 ■ For passwords—a unique value randomly generated for each func-

tion call

Figure 7-7: EncryptionDemo: One-way Encryption (Hash)

Salting Tokens

Hash functions are often used to create a token—a unique ID that represents

the payment card throughout the merchant’s payment and enterprise systems,

without exposure of actual sensitive cardholder information. Such a token

is usually created by applying one of the hash algorithms to the PAN value,

 Chapter 7 ■ Cryptography in Payment Applications 183

c07.indd 01:36:50:PM 12/31/2013 Page 183

because PAN is present in both Track 1 and Track 2 and can always uniquely

identify the card.

The Random class is used in order to stretch the VariableSaltComponent, which

can be too small to be a good input for the saltGenerator, via its hash code:

Random random = new Random(VariableSaltComponent.GetHashCode());
byte[] variable_salt_bytes = new byte[SALT_SIZE];
random.NextBytes(variable_salt_bytes);

The hash method dynamically constructs the salt from three compo-

nents: CONSTANT_SALT_COMPONENT, user_defined_salt_component, and

VariableSaltComponent, which are mixed together using the Rfc2898DeriveBytes

class:

Rfc2898DeriveBytes saltGenerator = new Rfc2898DeriveBytes(
 Encoding.ASCII.GetBytes(
 CONSTANT_SALT_COMPONENT + user_defined_salt_component),
 variable_salt_component, ITERATIONS);
salt_bytes = saltGenerator.GetBytes(SALT_SIZE);

Once the salt is constructed from the three components, it is combined with

the input plaintext in a single buffer to form the input for the fi nal hash func-

tion (Figure 7-8):

byte[] plaintext_bytes = new byte[SALT_SIZE + pan_bytes.Length];
Buffer.BlockCopy(salt_bytes, 0, plaintext_bytes, 0, SALT_SIZE);
Buffer.BlockCopy(
 pan_bytes, 0, plaintext_bytes, SALT_SIZE, pan_bytes.Length);
SHA256 sha256 = SHA256.Create();
return sha256.ComputeHash(hash_input);

Plaintext (PAN)
“371111111111114”

Variable Salt
Component
“1312123”

Hard-coded Salt
Component

RJ2+Q6kS/spwYKIU...

User-defined Salt
Component

DOTOifiQ0dWJOKw...

Salt
Generator

Hash
Function

Salt
9UI7Q+eMwibrUIU...

Token
J+W3OYibSaijvuch...

Figure 7-8: Generating a token

184 Part III ■ Defense

c07.indd 01:36:50:PM 12/31/2013 Page 184

Salting Passwords

In some hash applications, such as password encryption and validation, it is

necessary to add a randomly generated salt component in order to get a differ-

ent ciphertext (encrypted password) for the same input (password in clear text)

for each new hash function call. It is done this way in order to prevent the pos-

sibility of password disclosure, even if an attacker has access to the password

fi le. The encryptPassword method uses the same hash logic as the previously

described CreateToken, the only difference is that instead of a variable com-

ponent stretched by the Random class, it generates the random salt component

using RandomNumberGenerator:

dynamic_password_salt_component = new byte[16];
RandomNumberGenerator generator = RandomNumberGenerator.Create();
generator.GetNonZeroBytes(dynamic_password_salt_component);

Without a random salt component, two identical passwords will produce the

same hash output, so the attacker may enter the same password as a legitimate

user and determine the user’s password value by looking at the password fi le.

The random salt component also must be added to the result of hashing in order

to validate the password by hashing the user input and comparing the result with

the original password hash stored in the password fi le (as shown in Figure 7-9):

byte[] encrypted_password =
 new byte[SALT_COMPONENT_SIZE + hash_result.Length];
Buffer.BlockCopy(
 random_password_salt_component, 0,
 encrypted_password, 0, SALT_COMPONENT_SIZE);
Buffer.BlockCopy(
 hash_result, 0, encrypted_password,
 SALT_COMPONENT_SIZE, hash_result.Length);

The constant and user-defi ned salt components can be hard-coded or stored

separately from the code; the idea behind this is to make it impossible to retrieve

the entire salt value from the password record. Thus, if an attacker has access to

the password database but no access to the application code and confi guration,

she won’t be able to re-create the salt value from just one random salt component.

Validating Passwords

Password validation is based on the assumption that the encrypted password

record is linked to a particular user account and, therefore, there is no need to

 Chapter 7 ■ Cryptography in Payment Applications 185

c07.indd 01:36:50:PM 12/31/2013 Page 185

perform the search using the hashed data. Thus, the encrypted password can

be randomly salted and the random salt component can be added to the output

along with the ciphertext. The ValidatePassword method retrieves the random

salt component from the original record:

byte[] original_random_salt_component = new byte[SALT_COMPONENT_SIZE];
Buffer.BlockCopy(
 original_password_hash, 0,
 original_random_salt_component, 0, SALT_COMPONENT_SIZE);

Salt
9UI7Q+eMwibrUIU...

Salt
Generator

Random Salt
Component

2YFyLqxo8FcO5iD...

Hard-coded Salt
Component

RJ2+Q6kS/spwYKIU...

User-defined Salt
Component

DOTOifiQ0dWJOKw...

Hash
Function

Encrypted Password
J+W3OYibSaijvuch...

Plaintext (Password)
“Hacking POS”

Figure 7-9: Password encryption

Then it creates the hash for the password being validated (exactly the same

way it was created for the original password):

string encrypted_password_to_validate = encryptPassword(
 PasswordToValidate, original_random_salt_component);

The last step is just comparing the two encrypted passwords:

return encrypted_password_to_validate.Equals(OriginalPasswordHash);

If the two strings are identical, the validation is passed which means the user

has entered the correct password (Figure 7-10).

186 Part III ■ Defense

c07.indd 01:36:50:PM 12/31/2013 Page 186

Figure 7-10: EncryptionDemo: Password validation

Digital Signatures

Digital Signature is one of most remarkable applications of cryptography. It

provides the ability to authenticate the author of digital documents, messages,

and data records as well as software code, which is an important feature when

working with payment applications and fi nancial transactions. Public-key and

one-way cryptography are used in order to create the signature which consists of

the message digest encrypted with the private key of the signer. Thus, in order to

validate the digital signature, the recipients of the message or document use the

public key to decrypt the digest and compare it with their own hashing result.

Attached vs. Detached Signatures

There are two types of digital signatures: attached and detached. The former

is part of the data that is being signed—for example, the Authenticode signature

 Chapter 7 ■ Cryptography in Payment Applications 187

c07.indd 01:36:50:PM 12/31/2013 Page 187

embedded into the binary fi le. The latter is created as a separate entity—for

example, as the .p7s fi le containing the e-mail digital signature according to

S/MIME (Secure/Multipurpose Internet Mail Extensions) standard.

A detached signature can be used for signing any fi le type because it does

not modify the content of the fi le that’s being signed. An attached signature can

be used only with specifi c fi le types and custom message formats.

The format defi ned in the PKCS #7 standard, which is based on the more com-

mon X.509 certifi cate standard, can be used when implementing the detached

signature container.13 The .p7s fi le type can be used to store the content of a

detached digital signature.14 Table 7-4 shows various use cases for attached and

detached signatures.

Table 7-4: Examples of Well-known Attached and Detached Signature Implementations

OBJECT TO SIGN ATTACHED SIGNATURES DETACHED SIGNATURES

Code fi les Authenticode15

.NET Strong-name Signing16

Data fi les XML Signature17

Messages E-mail Signing: S/MIME18

Code and Confi guration Signing

This is one of most important digital signature use cases for payment applica-

tions. Code signing provides protection from application code tampering, while

signed confi guration allows mitigating the threat of unauthorized confi gura-

tion changes. The details of code and confi guration signing implementation

are described in Chapter 9.

Data File and Message Signing

Speaking of signing the data, especially sensitive cardholder data, it is important

to understand that a digital signature does not protect confi dentiality. Therefore,

in addition to signing, other security measures (encryption) are required to

avoid information disclosure. However, a digital signature can be used to pro-

tect information that is not sensitive to disclosure threat from modifi cation by

unauthorized personnel or malware. For example, POS transaction fi les (the

information about complete customer transactions circulating between the

POS, store server, and corporate headquarters) would be a good candidate for

digital signing.

188 Part III ■ Defense

c07.indd 01:36:50:PM 12/31/2013 Page 188

Cryptographic Hardware

Any cryptographic functions can be implemented in software. In practice,

however, many cryptographic functions are delegated to dedicated hardware

modules and appliances. There are two functions of cryptographic hardware

that are very important for payment applications:

 1. Performing CPU-intensive cryptographic operations (encryption, decryp-

tion, key management) and, therefore, removing the load from the hosting

computers running POS front-end or back-end applications.

 2. Creating a barrier between unsafe computers and networks exposed to

hackers and the secure zone located inside the hardware which is isolated

from hazardous environments by physical and logical controls.

TRSM and HSM are examples of cryptographic hardware mostly used in

payment application solutions:

 ■ TRSM (Tamper-Resistant Security Module) is a hardware module that is

installed in payment terminals in order to store and generate the encryption

keys, and perform encryption. TRSM is designed to recognize a physi-

cal intrusion and destroy the keys if someone attempts to retrieve them.

 ■ HSM (Hardware Security Module) is a cryptographic hardware appliance or

extension card used mostly in back-end systems for secure key management

and decryption. HSM provides the ability to manage the keys according

to the requirements of X9.24-1, TR-39, and PCI HW-P2PE standards (with

multiple key components and custodians). Special HSM are also used as

key injection machines for injecting the PIN and P2PE keys into payment

terminals and standalone secure card readers.

Cryptographic Standards

PCI is not the only player in payment card security regulations, even though

it is probably the most famous one these days. There are other standards that

came from adjacent and more generic areas, such as fi nancial and banking

industries, application security, and cryptography. Several years ago, FIPS

140-2 and TR-39 had been known mostly to security experts dealing with ATM

machines and PIN transactions. As the payment industry invests more and

more into its security, professional-level cryptography comes to retail card

payment processing as well. Today, payment applications call the encryption

libraries, which had been known only to professional cryptographers just several

years ago. Hardware point-to-point encryption solutions utilize highly-secure

 Chapter 7 ■ Cryptography in Payment Applications 189

c07.indd 01:36:50:PM 12/31/2013 Page 189

cryptographic hardware for encryption of sensitive data at the merchant store

and decryption at the payment processor’s data centers.

NIST and FIPS

The National Institute of Standards and Technology (NIST) plays a leading role in

development of cryptographic standards as well as validation and certifi ca-

tion of cryptographic implementations. NIST has developed a series of Federal
Information Processing Standards (FIPS) defi ning requirements for cryptographic

algorithms and systems.

One of the famous NIST products is FIPS 197, which is well known to a wide

audience as AES (Advanced Encryption Standard).19 Another one is FIPS 180-
4, also known as SHA (Secure Hash Algorithm).20 They are both widely used

in application security (payment applications are not an exception) for data

protection.

FIPS are mandatory for government organizations but are also widely used

by the commercial sector as de facto information security standards. There are

different types of FIPS: cryptographic algorithms (such as FIPS 197 for AES) and

validation programs (such as FIPS 140-2 for cryptographic modules validation).

Retired Algorithms: DES vs. Triple DES

DES used to be a standard encryption algorithm defi ned in FIPS 46-3. Its imple-

mentation was an encryption algorithm used along with the DUKPT key man-

agement for debit PIN protection. DES was cracked for the fi rst time in 1997 and

was eventually replaced by AES.

FIPS 46-3, Data Encryption Standard (DES), was withdrawn May 19, 2005 because
the cryptographic algorithm no longer provided the security that is needed to pro-
tect Federal government information. DES is no longer an approved algorithm.21

However, the fi nancial industry could not break from DES completely and still

uses its reaffi rmed version Triple DES (TDEA), which is basically a DES applied

three times to each data block and is allowed until 2030.22, 23 Triple DES is more

secure than DES because it uses a triple-length 168-bit key (3 × 56-bit DES keys).

In practice, however, double-length (two-key) 112-bit keys (where K1 and K3 key

components are the same) are still often used. After December 31, 2015, two-key

Triple DES will not be used for encryption.24

Table 7-5 shows NIST-approved encryption algorithms, both current and

deprecated. Note that allowance of the algorithms depends on their key (or

digest in case of hash) length. As a general rule of thumb, the more bits in the

190 Part III ■ Defense

c07.indd 01:36:50:PM 12/31/2013 Page 190

key or digest, the stronger the algorithm. However, AES with a 128-bit key is

more secure than Triple DES with a 168-bit key.

Table 7-5: NIST-approved Encryption Algorithms

ALGORITHM STANDARD

KEY/DIGEST

LENGTH, BITS USE

DES FIPS 46-3 56 Disallowed

Single-length Triple-DES N/A 56 Disallowed

Double-length Triple-DES

(2TDEA)

NIST SP 800-67 112 Disallowed

after 2015

Triple-length Triple-DES

(3TDEA)

NIST SP 800-67 168 Disallowed

after 2030

AES 128 FIPS 197 128 Acceptable

AES 192 FIPS 197 192 Acceptable

AES 256 FIPS 197 256 Acceptable

SHA-1 (non-digital signa-

tures applications)

FIPS 180-4 160 Acceptable

SHA-1 in digital signatures FIPS 180-4 160 Disallowed

after 2013

SHA-224 FIPS 180-4 224 Acceptable

SHA-256 FIPS 180-4 256 Acceptable

SHA-384 FIPS 180-4 384 Acceptable

SHA-512 FIPS 180-4 512 Acceptable

FIPS 140-2

FIPS 140-2 is a validation program for cryptographic modules. There are four

levels of security defi ned in FIPS 140-2. The program is open for both software

and hardware implementations; however, software modules cannot achieve

higher levels (3 and 4) due to strict physical security requirements. HSM appli-

ances are usually validated to Level 2 or 3. The PCI HW-P2PE standard requires

that HSM used for decryption and key management be approved to Level 3 or

higher. The validation results are published online.25

 Chapter 7 ■ Cryptography in Payment Applications 191

c07.indd 01:36:50:PM 12/31/2013 Page 191

ANSI

There are two ANSI (American National Standards Institute) standards that are

related to P2PE: X9.24-1 and TR-39.

X9.24-1: DUKPT

X9.24-1 defi nes DUKPT, which is a common technology for symmetric key

management in debit PIN encryption and P2PE solutions.

TR-39: Key Injection

TR-39 (also known as TG-3) is a security standard that regulates the key injec-

tion facilities, which are an important part of debit PIN and P2PE solutions.26

TR-39 is maintained by the ANSI X9F6 Working Group and is required by debit

processing networks (such as STAR, NYCE, PULSE, etc.) in order to be allowed

to perform the key injections. The TR-39 certifi cation is conducted by certifi ed

TG-2 auditors (CTGA) and expires every 2 years.

PKCS

Public-Key Cryptography Standards (PKCS) were created by RSA Security, Inc. The

most famous is PKCS #1, which defi nes the RSA algorithm. PKCS #7 is important

for digital-signing implementations.27 PKCS #12 defi nes the container format

commonly used to store multiple private-key and public-key certifi cates (.P12

or .PFX fi les).

Summary

Cryptography is an essential part of modern POS and payment applications.

There are three main groups of cryptographic algorithms: symmetric, asym-

metric (public-key), and one-way hash. Symmetric algorithms use the same key

for encryption and decryption. Asymmetric algorithms have two keys, public

and private, and the same key cannot be used for both encryption and decryp-

tion. One-way hash functions create a digital digest of the input plaintext and

in most cases do not require keys. Both public-key and hash algorithms are

used in digital signing and digital certifi cates. There are several cryptographic

192 Part III ■ Defense

c07.indd 01:36:50:PM 12/31/2013 Page 192

standards that provide implementation requirements for encryption algorithms

and cryptographic hardware.

Notes

 1. Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code

in C, Second Edition, (Wiley, 1996).

 2. SciEngines, “Break DES in less than a single day,” http://www.scien-

gines.com/company/news-a-events/74-des-in-1-day.html?eab1dd0c

e8f296f6302f76f8761818c0=0b59c5b91984fe01986ef3bbc6de9871

 3. Intel, Moore’s Law Timeline, http://download.intel.com/pressroom/

kits/events/moores_law_40th/MLTimeline.pdf

 4. EMC2, “What Key Size Should Be Used?” http://www.emc.com/emc-plus/

rsa-labs/standards-initiatives/key-size.htm

 5. John Kelsey, Bruce Schneier, Chris Hall, David Wagner, “Secure Applications

of Low-Entropy Keys” (2000), https://www.schneier.com/paper-low-

entropy.pdf

 6. IETF, “PKCS #5: Password-Based Cryptography Specification Version

2.0,” http://tools.ietf.org/html/rfc2898

 7. NSA, “Suite B Cryptography / Cryptographic Interoperability,” http://

www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml

 8. MSDN, “PaddingMode Enumeration,” http://msdn.microsoft.com/

en-us/library/system.security.cryptography.paddingmode(v=vs.110).

aspx

 9. IETF, “Internet X.509 Public Key Infrastructure: Certification Path Building,”

http://tools.ietf.org/html/rfc4158

 10. MSDN, “MakeCert. Exe (Certificate Creation Tool),” http://msdn.micro-

soft.com/en-us/library/bfsktky3.aspx

 11. MSDN, “Pvk2Pfx,” http://msdn.microsoft.com/en-us/library/win-

dows/hardware/ff550672(v=vs.85).aspx

 12. Slava Gomzin, “Securing .NET Web Services with SSL: How to Protect

‘Data in Transit’ between Client and Remote Server,” http://www.gomzin.

com/securing-net-web-services-with-ssl.html

 13. IETF, “Public-Key Infrastructure (X.509),” http://datatracker.ietf.

org/wg/pkix/charter/

 14. IETF, “RFC 5751 - Secure/Multipurpose Internet Mail Extensions

(S/MIME) Version 3.2 Message Specification,” http://tools.ietf.org/

pdf/rfc5751.pdf

 Chapter 7 ■ Cryptography in Payment Applications 193

c07.indd 01:36:50:PM 12/31/2013 Page 193

 15. Microsoft TechNet, “Authenticode,” http://technet.microsoft.com/

en-us/library/cc750035.aspx

 16. MSDN, “Strong-Name Signing for Managed Applications,” http://msdn.

microsoft.com/en-us/library/h4fa028b(v=vs.90).aspx

 17. W3C, XML Signature Syntax and Processing (Second Edition), http://www.

w3.org/TR/xmldsig-core/

 18. Microsoft TechNet, “Understanding S/MIME,” http://technet.micro-

soft.com/en-us/library/aa995740(v=exchg.65).aspx

 19. NIST, “Advanced Encryption Standard (AES),” FIPS Publication 197, (June

2008), http://csrc.nist.gov/publications/fips/fips197/fips-197.

pdf

 20. FIPS, “Secure Hash Standard (SHS),” FIPS Publication 180-4, (March 2012),

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

 21. NIST, “Retired Validation Testing, Data Encryption Standard (DES),”

http://csrc.nist.gov/groups/STM/cavp/

 22. NIST, “Recommendation for the Triple Data Encryption Algorithm (TDEA)

Block Cipher,” Special Publication 800-67, (Revised January 2012), http://

csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.

pdf

 23. NIST, “Recommendation for Key Management – Part 1: General (

Revision 3),” Special Publication 800-57, (July 2012), http://csrc.nist.

gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

 24. NIST, “Transitions: Recommendation for Transitioning the Use of

Cryptographic Algorithms and Key Lengths,” Special Publication 800-131A,

(January 2011), http://csrc.nist.gov/publications/nistpubs/800-

131A/sp800-131A.pdf

 25. NIST, “FIPS 140-1 and FIPS 140-2 Vendor List,” http://csrc.nist.gov/

groups/STM/cmvp/documents/140-1/1401vend.htm

 26. ANSI, “TG-3 Retail Financial Services Compliance Guideline - Part 1:

PIN Security and Key Management,” http://webstore.ansi.org/

RecordDetail.aspx?sku=ANSI%2fX9+TR-39-2009

 27. “PKCS #7: Cryptographic Message Syntax Standard, An RSA Laboratories

Technical Note,” http://www.emc.com/emc-plus/rsa-labs/standards-

initiatives/pkcs-7-cryptographic-message-syntax-standar.htm

195

c08.indd 06:12:43:PM 01/15/2014 Page 195

PCI standards require only disk storage encryption, and in some cases commu-

nication encryption. Since the core technology around payment card processing

has fundamental security fl aws, the payment application should encrypt the

sensitive cardholder data wherever possible: in memory, at rest, and in transit.

In addition, it’s a good idea to implement the defense in depth principle — put in

extra layers of protection wherever possible. For example, when sending data via

a network, a payment application can encrypt the sensitive data elements using

symmetric algorithms, and also encrypt the entire communication session by a

transport security mechanism such as SSL, HTTPS, or IPSec. In theory, physical

and logical security controls can form another layer of protection. However,

they are not effective in the hazardous working environment of POS which is

directly exposed to the public.

Data in Memory

The answer to questions about memory protection is simple: the sensitive card-

holder data can’t be completely safe if it is not encrypted before it is placed in

memory. There are no existing reliable security mechanisms that would prevent

memory scraping. If an attacker gains access to the POS hosting computer, the

chances that the data will be leaked are very high because most of the operations

C H A P T E R

8

Protecting Cardholder Data
It is easier to produce ten volumes of philosophical writing

than to put one principle into practice.

—Leo Tolstoy

196 Part III ■ Defense

c08.indd 06:12:43:PM 01/15/2014 Page 196

(including encryption, decryption, and cryptographic key management) with

sensitive data are performed in memory.1

Minimizing Data Exposure

There are some preventive measures that can be implemented to minimize data

exposure or, more precisely, to reduce the duration of data in clear text in memory,

so that less sensitive and sophisticated memory scrapers do not have enough

time to catch the tracks. In order to do that, the payment application needs to

store the sensitive data in memory encrypted most of the time, and decrypt it

only for a short period of time when it is needed for processing in clear text.

Secure Strings

The .NET SecureString class can be used as a secure storage container that auto-

matically encrypts its content.2 Note that SecureString still provides very limited

protection. Until many classes natively support SecureString, it must still be

converted to regular string in order to perform any work on its content.

Cleaning Up

It is important that the data in clear text is cleaned up after it is used. For example,

the memory buffers (byte arrays) containing sensitive data should not be left for

garbage collection (which may happen after an indefi nite time), but zeroed

using special methods before the reference to the buffer is lost. Therefore, using

buffers is preferable to strings, especially in managed runtime environments

such as .NET Framework or Java Virtual Machine where a programmer has no

direct control of strings.

Encrypting Data End to End

There is no doubt that the only reliable way to protect data in memory is not to

have it in memory in clear text. End-to-end, or point-to-point, encryption (P2PE)

technologies provide the ability to encrypt the data before it even reaches the

memory of the hosting machine (inside the payment terminal or standalone MSR

device), and decrypt it only after it has left the POS (in the payment gateway’s

data center). Even software P2PE, where data is encrypted in the application

running on the POI device, while still vulnerable provides a much higher level of

confi dentiality than not having P2PE at all and exposing data to the POS RAM.

Moreover, P2PE doesn’t just protect memory, but also ensures that sensitive data

is unreachable in transit and at rest.

 Chapter 8 ■ Protecting Cardholder Data 197

c08.indd 06:12:43:PM 01/15/2014 Page 197

Data in Transit

Sensitive data that is being transmitted over the network can be protected in

two ways:

 1. Payload encryption: selected sensitive fi elds are encrypted using sym-

metric or asymmetric methods.

 2. Transport encryption: the entire communication is encrypted using secure

protocols such as SSL, HTTPS, or IPSec.

C R O S S  R E F E R E N C E See Chapter 7, “Cryptography in Payment Applications”

for more information on symmetric and asymmetric encryption methods.

Both methods can be combined in order to provide layered protection that

makes a hacker’s job more diffi cult: if one layer is broken, there is still another

layer to work on.

Implementing SSL

Netscape developed The Secure Sockets Layer Protocol (SSL) in 1994 as a response

to the growing concern over security on the Internet.3 SSL is a secure protocol

that prevents eavesdropping, tampering, or message forgery over the network.

The use of SSL for confi dentiality as well as for authentication has been phe-

nomenally successful.4 Recent versions of SSL are called Transport Layer Security

(TLS), but the two abbreviations are still interchangeable in many cases. There

are many books describing interesting low-level details of SSL.5

Server Certifi cate

SSL is one example of a payment application using encryption algorithms

indirectly, as part of a larger encryption system. An SSL client (which can be

an Internet browser or POS application) uses a server certifi cate to authenticate

the server and make sure it communicates with a legitimate entity. The server

certifi cate, which is downloaded by the client during the SSL handshake process6,

contains the public part of the asymmetric key pair, while the private key is

stored at the server (see Figure 8-1). SSL uses public-key encryption algorithms

for key exchange. Once the key exchange process is done, the data transmitted

between client and server is encrypted using symmetric algorithms, because

they have better performance than asymmetric algorithms.

198 Part III ■ Defense

c08.indd 06:12:43:PM 01/15/2014 Page 198

Client Computer

SSLDemoClient

User Certificate Store

Public Key CA Root

Certificate

(SSLDemoRoot.cer)

Server

Certificate

SSLDemoServer.pfx

Private Key

Public Key

SSLDemoServer

Server Host

Figure 8-1: Server certificate validation

In order to establish an SSL connection, the server application needs to provide

the SSL server certifi cate with a public key to the client during the handshake.

The server certifi cate has two roles:

 1. Server authentication: the client ensures that the server it is communicat-

ing with is a legitimate application.

 2. Communication encryption: the certifi cate’s public key is used in the initial

SSL handshake in order to exchange symmetric keys for data encryption.

SSLDemo Application

SSLDemo demonstrates a secure communication between the Windows

Communication Foundation (WCF) client (SSLDemoClient.exe shown

in Figure 8-2) and the WCF self-hosted server (SSLDemoServer.exe shown in

Figure 8-3) applications.

Figure 8-2: SSLDemoClient application

 Chapter 8 ■ Protecting Cardholder Data 199

c08.indd 06:12:43:PM 01/15/2014 Page 199

Figure 8-3: SSLDemoServer is waiting for client calls at port 5555

Certifi cate Authority

Using a self-signed certifi cate (similar to the one used in the asymmetric encryp-

tion demo in Chapter 7) as the server SSL certifi cate is possible, but not enough to

ensure the complete security of the communication. With a self-signed certifi cate,

the client has no ability to verify the authenticity of the server, so confi dentiality

of the data being encrypted can be compromised by using a fake certifi cate in

a man-in-the-middle (MITM) attack. Therefore, there should be a way to validate

the authenticity of the server certifi cate. Such a way is provided by a certifi cate
authority (CA) which issues and signs server certifi cates to ensure their authen-

ticity. In order to be able to validate the server certifi cate, the client has to have

access to the certifi cate authority’s root certifi cate which contains the CA’s public

key. The CA root certifi cate’s public key is used to verify the digital signature

of the server certifi cate created by the CA using its root private key. There are

different ways to obtain a server certifi cate signed by the CA:

 ■ Public CA such as VeriSign7

 ■ Proprietary CA service such as Microsoft Certifi cate Services8

 ■ Proprietary CA created manually using free tools such as MakeCert or

OpenSSL9

The third option is the best candidate for testing and experiments with SSL

and digital certifi cates.

Creating Certifi cate Authority

Creating a proprietary CA for testing purposes is much easier than you might

imagine. You only need to generate a couple of fi les: a self-signed root certifi cate

with a CA public key and private key, both located in a dedicated folder (for

more convenience and security). The MakeCert tool10 can be used to generate

a root certifi cate and private key for a local CA with the parameters described

in Table 8-1:

makecert -r -a sha256 -len 2048
-n "CN=SSLDemoRoot,O=HackingPOS,S=Texas,C=US"
-cy authority -sv SSLDemoRoot.pvk
-b 01/01/2013 -e 01/01/2023 SSLDemoRoot.cer

200 Part III ■ Defense

c08.indd 06:12:43:PM 01/15/2014 Page 200

Table 8-1: MakeCert Parameters for Generating the Self-signed Root Certifi cate and Private Key

for Certifi cate Authority

PARAMETER VALUE DESCRIPTION

N/A SSLDemo.cer Location and name of the CA root certifi cate fi le

(with public key) that is being generated

-r N/A Create a self-signed certifi cate (root certifi cate is

self-signed)

-a sha256 Use SHA-256 as signature hash algorithm

-len 2048 Create 2,048-bit RSA key (the default length is

1,024-bit)

-n “CN= SSLDemoRoot” CA name

-b 01/01/2013 CA validity starting date

-e 01/01/2023 CA validity expiration date

-sv SSLDemoRoot.pvk Location and name of the CA root private-key fi le

that is being generated

-cy authority Create CA root certifi cate

MakeCert will prompt for a private key password three times. Just enter the

same password each time and commit it to memory because it will be used later

to issue server certifi cates.

Installing CA Root Certifi cate

When SSL implementation, such as .NET crypto library, verifi es the server cer-

tifi cate, it needs a public key from a CA in order to verify the certifi cate’s digital

signature. Without access to the public key packed in the CA root certifi cate,

the client validation logic won’t be able to trace the certifi cate up the chain to

its root, and it will throw the exception shown in Figure 8-4.

Figure 8-4: Exception is thrown by SSLDemoClient when CA root certificate is not found

In order to tell the system that the certifi cate belongs to a trusted root CA,

install it by clicking the SSLDemoRoot.cer fi le, and then on the Install Certifi cate…

button in the Certifi cate dialog (Figure 8-5).

 Chapter 8 ■ Protecting Cardholder Data 201

c08.indd 06:12:43:PM 01/15/2014 Page 201

Figure 8-5: Root certificate installation dialog

Then, click the Next button. In the Certifi cate Import Wizard dialog, select

“Place all certifi cates in the following store” and press the Browse… button

(Figure 8-6). In the Select Certifi cate Store dialog, select Trusted Root Certifi cation

Authorities and then click OK, Next, and, Finish.

Figure 8-6: Certificate Import Wizard and Select Certificate Store dialogs

202 Part III ■ Defense

c08.indd 06:12:43:PM 01/15/2014 Page 202

Issuing SSL Server Certifi cate

A server certifi cate can be issued using the same MakeCert tool with the param-

eters described in Table 8.2.

makecert -a sha256 -len 2048 -n "CN=localhost"
-ic SSLDemoRoot.cer -iv SSLDemoRoot.pvk -sv SSLDemoServer.pvk
-sky exchange SSLDemoServer.cer

Table 8-2: MakeCert Parameters for Issuing the SSL Server Certifi cate

PARAMETER VALUE DESCRIPTION

N/A SSLDemoServer.cer The name and location of the server cer-

tifi cate fi le (with public key) that is being

generated

-a sha256 Use SHA-256 as signature hash algorithm

-len 2048 Create 2,048-bit RSA key (the default length

is 1,024-bit)

-n “CN= localhost” Host name; The sample certifi cate is issued

for local IP address (127.0.0.1); In a produc-

tion environment, the network host (domain)

name should be used instead

-b 01/01/2013 Server certifi cate validity starting date

-e 01/01/2023 Server certifi cate validity expiration date

-sv SSLDemoServer.pvk Location and name of the server certifi cate’s

private-key fi le that is being generated

-ic SSLDemoRoot.cer The name of the issuing CA root certifi cate

fi le (with public key)

-iv SSLDemoRoot.pvk The name of the issuing CA root private key

fi le

-sky exchange Set key type for key exchange

.NET will be confused if only the .cer fi le (which does not contain the pri-

vate key) is provided as an input for the X509Certificate2 class constructor.

Therefore, the additional command Pvk2pfx with the parameters described in

Table 8-3 are required in order to compile the public and private keys into a

single PFX fi le:

pvk2pfx -pvk SSLDemoServer.pvk -spc SSLDemoServer.cer
-pfx SSLDemoServer.pfx -pi 1

 Chapter 8 ■ Protecting Cardholder Data 203

c08.indd 06:12:43:PM 01/15/2014 Page 203

Table 8-3: Pvk2pfx Parameters for Creating Single-fi le SSL Server Certifi cates in PFX Format

PARAMETER VALUE DESCRIPTION

-pvk SSLDemoServer. pvk Location and name of the input SSL server certifi -

cate’s private-key fi le

-spc SSLDemoServer.cer Location and name of the input SSL server certifi -

cate’s public-key fi le

-pfx SSLDemoServer.pfx Location and name of the output PFX SSL server

certifi cate fi le

-pi 1 Password for private key (prompted during the

MakeCert command)

SSLDemoServer Code

In order to enable SSL encryption, two changes should be made in the server

application:

 1. The following parameters should be added in the server confi guration

initialization code:

binding.Security.Mode = SecurityMode.Transport;
binding.Security.Transport.ProtectionLevel =
 System.Net.Security.ProtectionLevel.EncryptAndSign;
binding.Security.Transport.ClientCredentialType =
 TcpClientCredentialType.None;

 2. The following code, which loads the server SSL certifi cate and its corre-

sponding private key from the PFX fi le, should be added in the ServiceHost

initialization section before host.Open():

var certificate = new X509Certificate2("SSLDemoServer.pfx", "1");
host.Credentials.ServiceCertificate.Certificate = certificate;

SSLDemoClient Code

In order to enable SSL, the same change is required in the client application

confi guration code:

binding.Security.Mode = SecurityMode.Transport;
binding.Security.Transport.ProtectionLevel =
 System.Net.Security.ProtectionLevel.EncryptAndSign;
binding.Security.Transport.ClientCredentialType =
 TcpClientCredentialType.None;

204 Part III ■ Defense

c08.indd 06:12:43:PM 01/15/2014 Page 204

Certifi cate Revocation List

In theory, no additional changes are required in the client application besides

the previous binding confi guration. However, there is one line of code needed

in a test application to avoid failure to check the Certifi cate Revocation List (CRL):

channelFactory.Credentials.ServiceCertificate.Authentication.
 RevocationMode = X509RevocationMode.NoCheck;

CRL is a tool used by the CA to revoke certifi cates — for example, in case

the CA was compromised and fraudulent certifi cates were issued.11 In our

root CA we did not generate the CRL in order to simplify the testing process.

In real life, however, the CRL is another important validation point, so that

line of code should be commented out (or the value of the RevocationMode

parameter set to X509RevocationMode.Online) before switching to production

certifi cates.

Custom Server Certifi cate Validation

Standard certifi cate validations might not be enough if more scrupulous verifi cation

is desired. In this case, custom validation can be performed. Validating extra param-

eters of the server certifi cate, such as thumbprint, may prevent more refi ned MITM

attacks. In order to perform a custom validation, the CertificateValidationMode

property should be set to X509CertificateValidationMode.Custom, and custom

validation procedure should be defi ned:

channelFactory.Credentials.ServiceCertificate.Authentication.
 CertificateValidationMode = X509CertificateValidationMode.Custom;
channelFactory.Credentials.ServiceCertificate.Authentication.
 CustomCertificateValidator = new CustomServerCertificateValidator();

The custom validation code that checks the thumbprint of the server certifi -

cate is simple:

if (certificate.Thumbprint !=
 "904CE1DE2A2858E6938081CEB7063F08C8F61D9F")
{
 throw new ApplicationException("certificate is invalid");
}

Note that checking the thumbprint is a practical solution only if the server

certifi cate is issued for a long period of time. If server certifi cates are intended

to be rotated quite often, the value of the thumbprint should be either confi gu-

rable, or the client software version should be easily upgradable to a version

containing a new thumbprint value. In both cases, the thumbprint value —

either hard-coded or stored in confi guration fi le — should be protected from

tampering by a digital signature.

 Chapter 8 ■ Protecting Cardholder Data 205

c08.indd 06:12:43:PM 01/15/2014 Page 205

C R O S S  R E F E R E N C E See Chapter 9 “Securing Application Code” for informa-

tion about implementation of code and confi guration signing.

Client Authentication

In the SSL scheme reviewed in previous sections, we used a server certifi cate

for server authentication, which provides the client with the ability to ensure

that it talks to a legitimate entity (as was shown in Figure 8-1). A similar tech-

nique can be used in the opposite direction — in order to authenticate clients

so the server application ensures it talks to legitimate clients (see Figure 8-7).

This feature is necessary, for example, to prevent a situation where a bogus POS

terminal conducts fraudulent transactions with the remote payment gateway.

User Certificate Store

Public Key

Client Computer

SSLDemoClient

Private Key

Public Key

SSLDemoServer

Server Host

Client

Certificate

SSLDemoClient.pfx

CA Root

Certificate

(SSLDemoRoot.cer)

Figure 8-7: Client certificate validation

Creating a Client Certifi cate

A client certifi cate can be generated using the same MakeCert and Pvk2pfx

tools with the parameters similar to the server certifi cate:

makecert -a sha256 -len 2048 -n "CN=SSLDemoClient"
-b 01/01/2013 -e 01/01/2023 -ic SSLDemoRoot.cer
-iv SSLDemoRoot.pvk -sky exchange
-sv SSLDemoClient.pvk SSLDemoClient.cer

pvk2pfx -pvk SSLDemoClient.pvk -spc SSLDemoClient.cer
-pfx SSLDemoClient.pfx -pi 1

In practice, when there are hundreds or thousands of clients spread over the

network, the process of creating client certifi cates should be automated — for

example, by using the autoenrollment functionality provided by a proprietary CA.12

206 Part III ■ Defense

c08.indd 06:12:43:PM 01/15/2014 Page 206

Confi guring the Client for Client Authentication

Two changes should be made in order to confi gure the client for authentication

with a certifi cate:

 1. The value of the ClientCredentialType property should be set to

Certificate:

binding.Security.Transport.ClientCredentialType =
 TcpClientCredentialType.Certificate;

 2. The client certifi cate should be loaded from the PFX fi le:

var certificate = new X509Certificate2("SSLDemoClient.pfx", "1");
channelFactory.Credentials.ClientCertificate.Certificate = certificate;

Confi guring the Server for Client Authentication

Two changes should also be made to the server code in order to set up the client

authentication with a client certifi cate:

 1. The value of the ClientCredentialType property should be also set to

Certificate:

binding.Security.Transport.ClientCredentialType =
 TcpClientCredentialType.Certificate;

 2. The validation mode should be set to ChainTrust, and TrustedStoreLocation

should be pointed to CurrentUser store:

host.Credentials.ClientCertificate.Authentication.
 CertificateValidationMode =
 X509CertificateValidationMode.ChainTrust;
host.Credentials.ClientCertificate.Authentication.
 TrustedStoreLocation = StoreLocation.CurrentUser;

Note that in order to validate the chain of trust of the client certifi cates, the

CA root certifi cate (SSLDemoRoot.cer) should be installed in the user certifi cate

store the same way it was done for the client. The CRL check should also be

disabled while working with test certifi cates:

host.Credentials.ClientCertificate.Authentication.RevocationMode =
 X509RevocationMode.NoCheck;

Using Encrypted Tunnels

Encrypted tunnels are an alternative to secure communication protocols such

as SSL and HTTPS. The advantage of encrypted tunnels — provided by Virtual

Private Network (VPN) protocols or tunneling protocols such IPSec — is that they

do not require any changes in application code and confi guration on either the

 Chapter 8 ■ Protecting Cardholder Data 207

c08.indd 06:12:43:PM 01/15/2014 Page 207

client side or server side. This feature can be useful when working with legacy

software, which was created without security in mind and does not support

encryption out of the box. The disadvantage of tunneling protocols is that they

require special setup or even software installed on client systems, which is often

beyond the control of the payment application provider.

IPSec

IPSec (Internet Protocol security) is the best alternative to SSL when working

with multiple clients because usually it does not require any additional software

to be installed on the client or server system, and doesn’t require any changes

in the client or server application that is being protected. Windows OS comes

with IPSec out of the box and can be confi gured using network confi guration

and certifi cates issued by a proprietary CA.13

Data at Rest

The best approach to the data at rest protection problem is avoiding the stor-

age of sensitive data at all, which is easy to say but diffi cult to do. In practice,

there are many cases when a payment application must temporarily store the

data — such as S&F, TOR, settlement batch records, and more. The second best

approach is using point-to-point encryption. If P2PE is also impossible for some

reason, then regular (usually symmetric) encryption can be used.

C R O S S  R E F E R E N C E See Chapter 7 for more information on symmetric

encryption.

Secure Key Management

Any software implementation of encryption is vulnerable, by defi nition, because

there is no physical barrier between the cryptographic module and the attacker.

There are, however, a few useful tricks that can make a hacker’s life a little bit

more complicated.

Multiple Key Components

Constructing the encryption key in runtime from multiple key components, rather

than having a whole key available in memory all the time, provides some level

of protection. This is because it makes it more diffi cult to retrieve the key and

decrypt the sensitive data (see Figure 8-8). Chapter 7 has an example of the code

that constructs the symmetric key from three key components.

208 Part III ■ Defense

c08.indd 06:12:43:PM 01/15/2014 Page 208

Hard-coded
KEK Component 1

RJ2+Q6kS/spwYKIU...

Constructing
KEK

Decrypting
DEK

Encrypting
Data

KEK in clear text
9UI7Q+eMwibrUIU...

DEK in clear text
J+W3OYibSaijvuch...

Ciphertext
(Encrypted data)

5KvWMIWXnErUvI...

KEK Component 2
in app config

D0T0ifiQ0dWJOKw..

KEK Component 3
in the Registry

2YFyLqxo8FcO5iD...

Encrypted DEK
in temp file

7VrcHwJxpSwqdXJ...

Plaintext
(Data to encrypt)

“371111111111114”

Figure 8-8: Secure Key Management

Spreading the Key Components Between Diff erent Media

The key components can be stored in different places, such as an application

code, a confi guration fi le, and the Registry. So in order to reconstruct the key,

the hacker needs to get simultaneous access to all those places (also shown in

Figure 8-8).

KEK and DEK

Another best practice illustrated in Figure 8-8 is implementing two (or even

more) encryption keys: key encryption key (KEK) and data encryption key (DEK).

The KEK is constructed in runtime from multiple components, as previously

described. Its only purpose is to protect the DEK which encrypts the sensitive

data itself. The idea behind the KEK is to complicate the task of key retrieval

by adding more steps. Another benefi t of having KEK is that it allows the DEK

to be dynamically generated for each data encryption session (for example, for

each POS transaction similar to DUKPT, which is described in next section).

 Chapter 8 ■ Protecting Cardholder Data 209

c08.indd 06:12:43:PM 01/15/2014 Page 209

Key Rotation

Key rotation is a process of changing (generating a new key and discarding the

old one) the encryption/decryption key without disrupting the encryption/

decryption functionality. Frequent key rotation helps to avoid full information

disclosure if the single key is compromised. Even if attackers managed to retrieve

the value of the single DEK, they cannot use it to pump out the sensitive data

for the rest of their lives if proper key rotation is in place.

Point-to-point Encryption

Point-to-point encryption, which allows simultaneous protection of data in

memory, in transit, and at rest, is very strong and a popular trend. This technol-

ogy is already implemented or in the process of development by many payment

software vendors, payment gateways, and merchants.

What Point-to-point Really Means

The idea of P2PE in general is simple: the sensitive data is encrypted at one end

of the communication and decrypted at the other end. However, when P2PE

technology is applied to the brick-and-mortar merchant environment, there are

several important conditions that should be taken into account:

 ■ The data should be encrypted as close as possible to the entry point. In

a case of hardware P2PE, the magnetic tracks are encrypted inside the

tamper-resistant security module (TRSM) of the MSR device.

 ■ The encryption end can be located in a hazardous environment, such as

a retail store. The decryption end must therefore be located in a highly

secure (both logically and physically) environment such as a hardware
security module (HSM) installed in the data center.

 ■ Cryptographic keys should be managed using special secure procedures

and equipment that will prevent them from disclosure.

Levels of P2PE

P2PE solutions come in different fl avors that are dictated by underlying technol-

ogy (see Table 8-4). First of all, all P2PE solutions can be divided into two main

groups: Hardware P2PE (HW-P2PE) and Software P2PE (SW-P2PE). The difference

is that the former uses hardware for cryptographic operations, while the lat-

ter performs encryption (and sometimes decryption) in software. HW-P2PE is

much more secure because cryptographic hardware (such as TRSM and HSM)

is much more protected (both logically and physically) from intrusions than is

210 Part III ■ Defense

c08.indd 06:12:43:PM 01/15/2014 Page 210

software. However, SW-P2PE is also a viable option — at least, it is better than

not having P2PE at all.

Table 8-4: Diff erent Types of P2PE Technologies

P2PE TYPE ENCRYPTION END DECRYPTION END PCI STANDARD

Hardware P2PE

(HW-P2PE,

Hardware/

Hardware P2PE)

Encryption and key

management is done

in hardware (TRSM)

Decryption and key

management is done

in hardware (HSM)

PCI Hardware/

Hardware P2PE14

(initially released in

September 2011)

Hardware/Hybrid

P2PE

Encryption and key

management is done

in hardware (TRSM)

Decryption and

key management is

done in software

PCI Hardware/Hybrid

P2PE15 (released in

December 2012)

Software P2PE

(SW-P2PE,

Software/

Software P2PE)

Encryption and key

management is

done in software

Decryption is done

in software; Key

management is done

in hardware (HSM)

N/A (expected in

2014)

There are also mixed P2PE solutions which have elements of both hardware

and software implementations. PCI distinguishes them by the technology

used at the client side (encryption) and at the server side (decryption) — for

example, Software/Hardware. The designation before the slash indicates the

encryption technology, while the name after the slash indicates the decryp-

tion implementation. So in the Software/Hardware example, the encryption

is done in software but decryption and key management at the server side is

implemented using HSM.

Another type of P2PE is Hybrid P2PE where both software and hardware

are used at the same time. Hybrid means that the encryption or decryption

operations are performed in software, but the keys are managed in hardware.

For example, Hardware/Hybrid P2PE means that the encryption (and key

management) at the POS side is implemented inside TRSM, while decryp-

tion at the data center level is done in software with the key management

performed by HSM.

Hardware P2PE

The high-level architecture of typical Hardware/Hardware P2PE solutions is

illustrated in Figure 8-9.

The magnetic tracks are encrypted in the MSR’s TRSM as soon as the payment

card is swiped. No sensitive authentication data in clear text is ever available in

the memory, storage, or network transmission at the POS or store environment.

The tracks are decrypted in the HSM located in the payment gateway’s data

 Chapter 8 ■ Protecting Cardholder Data 211

c08.indd 06:12:43:PM 01/15/2014 Page 211

center, so the server application could process the transaction and route it for

authorization to the appropriate payment processor.

Retail Store Payment Gateway Data
Center

POS Machine

App Memory

POS App Payment
Client App

Internet

Data Storage

POI Device
w/TRSM HSM

BDKTerminal Key (IPEK)

Processors
and

Acquirers

P2PE
Server

Application

Figure 8-9: Typical Hardware/Hardware P2PE solution architecture

PCI Hardware/Hardware P2PE certifi cation requirements are very extensive

and include the following mandatory prerequisites:

 ■ PCI PTS SRED certifi ed encryption devices

 ■ FIPS 140-2 Level 3 certifi ed decryption devices

 ■ PCI HW-P2PE certifi ed key injection environment

 ■ PCI DSS certifi ed decryption environment

 ■ TR-39 compatible key management procedures

DUKPT Key Management

Derived Unique Key Per Transaction (DUKPT) is a symmetric key management

scheme which dynamically generates new encryption keys for each new encryp-

tion session (transaction). In conjunction with the Triple DES encryption algorithm,

DUKPT is used in debit PIN encryption, and is defi ned in ANSI standard X9.24-1.

DUKPT was invented in the 1980s and has been used for debit PIN encryption

since the 1990s. Nowadays, this successful technology is being widely adopted

by P2PE solution providers.

212 Part III ■ Defense

c08.indd 06:12:43:PM 01/15/2014 Page 212

“The specifi ed key management technique provides a unique key per transaction
with no information about any previous key retained in the PIN Entry Device. It
also provides for a derived key system in which the Acquirer’s security module can
determine any key used at any time in any PIN Entry Device based on information
included in the transaction.”16

The advantage of DUKPT is that it defi nes the hierarchy of keys so that disclo-

sure of a single key does not compromise other keys. This means that disclosure

of a single session key does not compromise other transactions, and disclosure

of a single terminal’s key does not compromise other devices. Another remark-

able feature of DUKPT is that only one master key is needed in order to decrypt

the data coming from multiple terminals.

BDK

The base derivation key (BDK) is the master key — the highest key in the DUKPT

hierarchy (Table 8-5), which must be highly secure. If BDK is disclosed, the entire

key hierarchy (which can be an entire retail chain or a large payment network

segment) will be compromised. The protection of BDK is done by using the

split knowledge principle: the key is constructed from several key components

inside the HSM and never exposed in clear text outside the hardware. The

key components (usually three or more) are stored on smart cards or on paper

in tamper-evident envelopes and owned by different people known as key
custodians. All key custodians must be present in order to re-create the entire

BDK — for example, to set up a new HSM device. When the BDK needs to be

shared with a third-party organization (for example, a key injection facility),

the key components are sent in separate tamper-evident envelopes by each key

custodian using different shipment carriers on different dates.

Table 8-5: DUKPT Keys

KEY ENCRYPTION DEVICE

DECRYPTION

ENVIRONMENT

KEY INJECTION

FACILITY

BDK N/A Stored in Decryption

HSM.

Stored in Key

Injection Machine.

Initial Key

(IPEK)

Injected during key injec-

tion. Then, discarded after

fi rst series of Future Keys

is generated during key

injection.

Reconstructed by

encrypting the Initial

KSN with BDK. Then

used to derive the ses-

sion key.

Generated at the

time of key injec-

tion by encrypting

the Initial KSN with

BDK.

Future

(Session)

Key

Used for data encryption

and generation of new

Future Keys. New key is used

for each new encryption ses-

sion. Discarded after encryp-

tion session.

There are 21 Future Keys of

34 hexadecimal digits each.

Derived from Initial

Key and Transaction

Counter using special

algorithm.

N/A

 Chapter 8 ■ Protecting Cardholder Data 213

c08.indd 06:12:43:PM 01/15/2014 Page 213

Initial Key and KSN

According to the DUKPT scheme, each PIN encryption device (PED) or secure card
reader (SCR) is injected with a unique initial key (Table 8-5). The initial key, which

is also called the initial PIN encryption key (IPEK) in PIN encryption implemen-

tations, is derived from the BDK during the key injection process at a special

key injection facility (KIF). Each new PED or SCR is assigned with the initial key
serial number (Initial KSN) which is also injected into the terminal along with

the initial key. The initial KSN consists of a BDK ID and a TRSM ID (Table 8-6).

The BDK ID allows the decryption part to select an appropriate BDK to decrypt

the data. The TRSM ID is the unique device identifi er within the scope of the

given BDK. The key injection machine, which is an HSM that is specialized for

key injection, creates the initial key by encrypting the initial KSN with BDK

and injects it into the memory located in TRSM along with the initial KSN. The

initial key is not stored in the terminal but used for generation of the series of

future keys at the time of injection. The DUKPT-enabled encryption device also

has an encryption counter which is initiated to 0 during the key injection process.

Table 8-6: DUKPT Data Elements

DATA ELEMENT CONTENT DESCRIPTION

BDK ID Key Identifi er Identifi es the BDK associated with the encryp-

tion device. Injected to the encryption device

as part of the Initial KSN during key injection.

TRSM ID Device Identifi er Identifi es the encryption device in a scope of

given BDK. Injected to the encryption device as

part of the Initial KSN during key injection.

Encryption

Counter

Transaction Counter Set to 0 during key injection.

Incremented after each encryption session.

Initial KSN BDK ID + TRSM ID When encrypted by BDK during key injection

produces the Initial Key (IPEK).

KSN Initial KSN +

Encryption Counter

Used by decryption end to re-create the ses-

sion key.

Encrypted PIN

Block

KSN + ciphertext Sent from encryption device to decryption

end.

Future (Session) Key

The future key has two functions:

 1. It is used as a one-time session key for data encryption.

 2. It is used for nonreversible generation of the next future key by encrypt-

ing the value of the encryption counter which is incremented after each

encryption session.

214 Part III ■ Defense

c08.indd 06:12:43:PM 01/15/2014 Page 214

The future (session) key is discarded as soon as it is used for encryption and

generation of the next future keys. Thus, no information about previous keys

is ever stored in the TRSM. The size of the encryption counter (21 bits) allows

1 million transactions to be performed without the need for another initial key

injection.

Decryption

For each transaction, the PED or SCR send to the decryption part the specially

formatted data block, which is called encrypted PIN block in PIN encryption

implementations. The encrypted PIN block consists of KSN (20 bytes) and

ciphertext. The KSN consists of the initial KSN (BDK ID plus TRSM ID) and

the encryption counter value. The software or the HSM at the decryption back

end uses the KSN elements to select the appropriate BDK and re-create the

appropriate session key using special a algorithm defi ned in the standard.17

EMV

EMV (also known as Chip & Pin) stands for Europay, MasterCard and Visa and

is a global standard for Integrated Circuit Cards (ICC) also known as “Chip and

PIN.” EMV cards can be accepted at POS terminals and ATM machines that

are equipped with special Integrated Circuit Card Reader (ICCR) device. The

EMV cards are regulated by the EMV Integrated Circuit Card Specifi cations18

which are managed by EMVCo LLC.19, a global company owned by American

Express, JCB, MasterCard, and Visa. The EMVCo standard consists of a set of

four “Books” which are based on a series of ISO/IEC 7816 standards (from 7816-1

to 7816-16) for contact cards. For example, the ISO/IEC 7816-4 standard defi nes

the “Organization, security and commands for interchange.”20 According to

EMVCo, their specifi cations “contain a selection of options taken from the ISO

7816 standards that are relevant for the fi nancial sector.”21

The EMV Integrated Circuit Card Specifi cations for Payment Systems are:

 ■ Book 1 — Application Independent ICC to Terminal Interface Requirements

 ■ Book 2 — Security and Key Management

 ■ Book 3 — Application Specifi cation

 ■ Book 4 — Cardholder, Attendant, and Acquirer Interface Requirements

EMV is still uncommon in the United States and many other countries, and

we are still years away from its global implementation. This technology is

mostly focused on cardholder authentication and fraud protection. The PCI DSS

standard requires the same rules be applied to merchants using EMV because

sensitive cardholder information can still be obtained through the payment

 Chapter 8 ■ Protecting Cardholder Data 215

c08.indd 06:12:43:PM 01/15/2014 Page 215

application. Many Chip and PIN card issuers still retain the magnetic stripe so

their cards will be accepted in U.S. stores not equipped by EMV readers. Such

“dual” cards allow the hackers to manipulate the service codes or kill the chip in

order to force the payment system to switch into fallback processing of ordinary

magnetic swipes, which disables new security features.

Mobile and Contactless Payments

NFC-based payment solutions use existing contactless payment terminals to

enter the card data into the POS. They store the card data in the mobile device,

which can be compromised. In addition, the contactless MSD (Magnetic Stripe

Data) readers aren’t more secure than regular MSR. Once the data is transmitted

via NFC from the card chip (or mobile device NFC transmitter) to the payment

terminal, it is handled internally by POS and the payment application in exactly

the same way as the data read by regular MSR.

Non-NFC solutions can resolve these issues listed. Such solutions use the

POS to link a mobile device to the payment transaction. All the sensitive data

is exchanged between the POS and mobile payment server so no sensitive data

is ever present at the store level. The traditional format of the credit cards can

be preserved so no technological revolution (such as EMV) is even necessary at

the card level — the card data is stored securely in the data centers which have

all the necessary prerequisites to be adequately protected. I proposed such a

solution back in 2009.22 It uses a barcode with a one-time randomly generated

token displayed on the mobile device screen to link the cell phone and POS in

order to start the payment session. Once the transaction is fi nalized, the logical

link between the POS and mobile phone is destroyed and cannot be reused. The

connection between the POS and the customer is kept at the data center level.

Summary

PCI DSS and PA-DSS require only data at rest and some limited data in transit

encryption. In order to provide complete protection to sensitive cardholder

information, the data should be encrypted everywhere: in memory, in tran-

sit, and at rest. SSL is a reliable solution for data in-transit protection. Point-

to-point encryption is the best choice when shopping for a comprehensive

solution. There are different fl avors of P2PE: hardware, software, hybrid, and

their combinations. Hardware/Hardware P2PE is the most secure and com-

plicated option from both implementation and certifi cation viewpoints. EMV

and mobile payment technologies provide additional protection to sensitive

cardholder data.

216 Part III ■ Defense

c08.indd 06:12:43:PM 01/15/2014 Page 216

Notes

 1. NetworkWorld, “Memory scraping malware goes after encrypted pri-

vate information,” http://www.networkworld.com/news/2011/022211-

pervasive-memory-malware.html

 2. MSDN, “SecureString Class,” http://msdn.microsoft.com/en-us/library/

system.security.securestring(v=vs.110).aspx

 3. IBM, “History of SSL,” http://publib.boulder.ibm.com/infocenter/

iseries/v5r3/index.jsp?topic=/rzain/rzainhistory.htm

 4. Mark O’Neil, Web Services Security, (New York: McGraw-Hill/Osborne,

2003), pp. 37, 43.

 5. Joshua Davies, Implementing SSL / TLS Using Cryptography and PKI,
(Hoboken, NJ: Wiley, 2011)

 6. SSLShopper, “SSL Details,” http://www.sslshopper.com/ssl-details

.html

 7. Symantec/Verisign, “SSL Certificates,” http://www.symantec.com/

verisign/ssl-certificates

 8. Microsoft, “Setting Up a Certification Authority,” http://technet.micro-

soft.com/en-us/library/cc770827.aspx

 9. OpenSSL, http://www.openssl.org/

 10. MSDN, “MakeCert.exe (Certificate Creation Tool),” http://msdn.micro-

soft.com/en-us/library/bfsktky3.aspx

 11. Mike Wood, “Fraudulent certificates issued by Comodo, is it time to

rethink who we trust?” (March 24, 2011), http://nakedsecurity.sophos.

com/2011/03/24/fraudulent-certificates-issued-by-comodo-is-it-

time-to-rethink-who-we-trust/

 12. TechNet, “Auto-Enrollment—Avoid the challenges of making end users

manage their certificates” (TechNet, 2010), http://blogs.technet.com/b/

meamcs/archive/2010/12/01/auto-enrollment-avoid-the-challenges-

of-making-end-users-manage-their-certificates.aspx

 13. Slava Gomzin, “Securing Communication of Legacy Applications with

IPSec: Step-by-Step Guide to Protecting “Data in Transit” without Changes

in Your Existing Software,” http://www.gomzin.com/securing-communi-

cation-of-legacy-applications-with-ipsec.html

 14. “Payment Card Industry (PCI) Point-to-Point Encryption Solution

Requirements and Testing Procedures: Encryption, Decryption, and Key

Management within Secure Cryptographic Devices (Hardware/Hardware),

 Chapter 8 ■ Protecting Cardholder Data 217

c08.indd 06:12:43:PM 01/15/2014 Page 217

Version 1.1.1” (July 2013), https://www.pcisecuritystandards.org/

documents/P2PE_v1-1.pdf

 15. “Payment Card Industry (PCI) Point-to-Point Encryption Solution

Requirements and Testing Procedures: Encryption and Key Management

within Secure Cryptographic Devices, and Decryption of Account Data

in Software (Hardware/Hybrid)” Version 1.1.1, (July 2013), https://www

.pcisecuritystandards.org/documents/P2PE_Hybrid_v1.1.1.pdf

 16. ANSI, “Retail Financial Services Symmetric Key Management Part 1:

Using Symmetric Techniques, Accredited Standards Committee X9,

Inc” (October 13, 2009), http://webstore.ansi.org/RecordDetail

.aspx?sku=ANSI+X9.24-1%3A2009

 17. Ibid.

 18. EMVCo, LLC., “EMV Integrated Circuit Card Specifications for Payment

Systems Version 4.3” (November 2011), http://www.emvco.com/speci-

fications.aspx?id=223

 19. EMVCo, LLC., http://www.emvco.com/

 20. ISO/IEC, “INTERNATIONAL STANDARD ISO/IEC 7816-4, Identification

cards—Integrated circuit cards—Part 4: Organization, security and com-

mands for interchange,” (2005).

 21. EMVCo, LLC., “General FAQ,” http://www.emvco.com/faq.aspx?id=37#1

 22. Slava Gomzin, “Mobile Checkout: Secure Mobile Payments Solution

Proposal” (April 2009), http://www.gomzin.com/mobile-checkout.html

c08.indd 06:12:43:PM 01/15/2014 Page 218

219

c09.indd 11:33:42:AM 01/06/2014 Page 219

While designing secure POS and payment applications, developers fi rst think

about sensitive data protection. However, they often forget about the fact that

the data protection mechanisms by themselves should be protected as well.

Insecure application code and confi guration open the back doors for hackers.

Code Signing

Code signing is the mechanism that protects software applications from tamper-

ing during all stages of the application life cycle, including initial deployment,

runtime, and updates. Digital signatures are calculated by the software vendor

for each binary fi le in the application package as the fi nal part of the build and

release process. The signature can then be verifi ed by end users to ensure that

the code was not modifi ed since it was built by the vendor. In addition, code

signing allows recognition of counterfeited binaries that pretend to be legitimate

parts of the application, since such fi les wouldn’t have a digital signature at all

or their signature would be fake.

Code signing has been used with software distributed through the Internet

for a long time. However, the importance of digital signing is often underes-

timated for “regular” desktop and server software, such as POS and payment

applications. Many security breaches could be prevented if merchants had the

C H A P T E R

9

Securing Application Code
Any suffi ciently advanced technology is undistinguishable from magic.

—Arthur C. Clarke

220 Part III ■ Defense

c09.indd 11:33:42:AM 01/06/2014 Page 220

ability to verify the authenticity of all the code fi les that are present on their

POS and store server machines.

Authenticode

Microsoft Authenticode technology allows for the signing of binary fi les using

attached digital signatures.1 The signature is contained inside the signed fi le

which simplifi es all operations involving both the fi le and its signature. SignTool2

provides the ability to sign the application fi les as well as verify digital signatures.

Unlike strong name signing3, which is only intended for signing .NET assemblies,

Authenticode can be used for protection of any executable and Dynamic Link

Library (.dll) fi les.

Code Signing Certifi cates

For a real production environment, it is recommended to purchase the code sign-
ing certifi cate from one of public certifi cation authorities.4, 5 The point is that root

certifi cates of well-known CA are pre-installed in most operating systems and

browsers, so the code singing certifi cate issued by public CA will be trusted

at virtually any client machine “out of the box,” without a need to pre-install

proprietary root CA certifi cates on target systems.

For development and testing purposes, the MakeCert tool, already discussed

in Chapters 7 and 8, can be used to issue the code signing certifi cate, which

looks the same (at least from the viewpoint of the application being tested) as

the one issued by the public CA. In order to sign the code signing certifi cate,

you can also reuse the test root CA that was created to issue SSL certifi cates:

makecert -a sha256 -len 4096 -n "CN=CodeSignDemo"
-b 01/01/2013 -e 01/01/2023 -ic SSLDemoRoot.cer -iv SSLDemoRoot.pvk
-sky signature -sv CodeSignDemo.pvk CodeSignDemo.cer

pvk2pfx -pvk CodeSignDemo.pvk -spc CodeSignDemo.cer
-pfx CodeSignDemo.pfx -pi 1

C R O S S  R E F E R E N C E See the “Creating Certifi cate Authority” section of

Chapter 8 for more details on the test root CA.

Don’t forget to install the root CA certifi cate to the Trusted Root Certifi cation

Authorities store by clicking the SSLDemoRoot.cer fi le as described in Chapter

8 (the trusted root CA certifi cate should be available during both signing and

validation operations). However, there is an alternative path that can be taken

for generating both root CA and code signing private keys and certifi cates: using

an open source cryptographic toolkit and SDK called OpenSSL.6

 Chapter 9 ■ Securing Application Code 221

c09.indd 11:33:42:AM 01/06/2014 Page 221

Creating the Root CA Using OpenSSL

First, download and install OpenSSL.7 During the installation, use the default

target folder C:\OpenSSL-Win32 and check the option to install OpenSSL bina-

ries into the [OpenSSL]\bin directory. After the installation, use the Windows

command prompt (Start->Run…->cmd) to set the OpenSSL confi guration path:

set OPENSSL_CONF=c:\OpenSSL-Win32\bin\openssl.cfg

Now generate the root CA private key using OpenSSL (see Figure 9-1). First,

create the root directory for the CA C:\ROOT_CA and run the OpenSSL command

from the command prompt. The OpenSSL genrsa command will generate the

RSA 4,096-bit key and encrypt it by Triple DES:

openssl genrsa -des3 -out C:\ROOT_CA\root_ca.key 4096

Figure 9-1: Generating test root CA private key using OpenSSL

In order to create the public key CA certifi cate, run the OpenSSL req com-

mand (Figure 9-2) with the arguments described in Table 9-1:

openssl req -new -x509 -days 3650 -key C:\ROOT_CA\root_ca.key
-out C:\ROOT_CA\root_ca.crt

Figure 9-2: Generating the root CA public key certificate using OpenSSL

222 Part III ■ Defense

c09.indd 11:33:42:AM 01/06/2014 Page 222

Table 9-1: OpenSSL Parameters for Generating the Root CA Certifi cate

PARAMETER VALUE DESCRIPTION

req N/A Create certifi cate signing request

-new N/A Create new request

-X509 N/A Create the certifi cate instead of certifi cate

request (see more details about certifi cate

request in section “Creating Production-grade

Code Signing Certifi cate”

-days 3650 Set expiration date in 10 years

-key C:\ROOT_CA\root_ca.key Location and name of the CA root private key

-out C:\ROOT_CA\root_ca.crt Location and name of the CA root public-key

certifi cate that is being created

The last step is installing the root CA certificate into the Trusted Root

Certifi cation Authorities store by clicking the root_ca.crt fi le and following

the same instructions presented in Chapter 8 for SSLDemoRoot.cer fi le.

Certifi cate Formats

As you may have noticed, MakeCert and OpenSSL commands operate with different

public key certifi cate and private key fi le extensions: .cer and .pvk for MakeCert,

and .crt and .key for OpenSSL. Although both tools use the same basic internal

certifi cate format (X.5098), by default they recognize two different forms of data

representation: binary and Base-64 encoded. These formats are often referred as

DER (Distinguished Encoding Rules) and PEM (Privacy-enhanced Electronic Mail)

accordingly. The binary DER format is a little more compact because it uses all

the possible byte values (Figure 9-3), while Base-64 encoded PEM uses 64 print-

able ASCII characters which makes it convenient for string and XML data type

operations and transmissions (Figure 9-4). Base-64 certifi cate data starts with ----

-BEGIN CERTIFICATE----- and ends with -----END CERTIFICATE----- delimiters.

The same difference exists between the two private key containers: .pvk has

binary format, while .key is a Base-64 encoded fi le.

Figure 9-3: Binary encoded DER (.cer) certificate format

 Chapter 9 ■ Securing Application Code 223

c09.indd 11:33:42:AM 01/06/2014 Page 223

Figure 9-4: Base-64 encoded PEM (.crt) certificate format

Creating a Production-grade Code Signing Certifi cate

As demonstrated in Chapters 7 and 8, the code signing certifi cate for develop-

ment and testing could also be created by MakeCert. Here we will use OpenSSL,

however, and not without reason. OpenSSL is able to create a certifi cate signing
request which can be sent to a public CA for issuing a code signing certifi cate

that can be used in the production code signing process.

Creation of a code signing certifi cate using OpenSSL includes the following

steps.

Step 1: Generating the Code Signing Private Key

This command will generate a 2,048-bit (as recommended by NIST9) RSA private

key and encrypt it using the Triple DES algorithm with the pass phrase which

it prompts the user to enter (Figure 9-5):

openssl genrsa -des3 -out C:\CODE_SIGN\CodeSignDemo.key 2048

Figure 9-5: Generating RSA private key using OpenSSL

224 Part III ■ Defense

c09.indd 11:33:42:AM 01/06/2014 Page 224

Step 2: Creating the Certifi cate Signing Request

The OpenSSL req command with the arguments described in Table 9-2 will

create the certifi cate signing request (see Figure 9-6):

openssl req -new -key C:\CODE_SIGN\CodeSignDemo.key
-out c:\CODE_SIGN\CodeSignDemo.csr

Figure 9-6: Creating Certificate Signing Request using OpenSSL

Table 9-2: OpenSSL Parameters for Generating the Certifi cate Signing Request Command

PARAMETER VALUE DESCRIPTION

req N/A Create certifi cate signing request

-new N/A Create new request

-days 3650 Set expiration date in 10 years

-key C:\CODE_SIGN\CodeSignDemo.key Location and name of the code sign-

ing private key

-out C:\CODE_SIGN\CodeSignDemo.csr Location and name of the certifi cate

signing request that is being created.

Note that the fi le extension is .csr.

At this point, the CodeSignDemo.csr can be sent to the public CA for signing

in order to issue a production-grade code signing certifi cate.

N O T E If you are planning to use HSM for certifi cate storage and code signing,

which is strongly recommended since it provides the highest level of security for the

entire code signing process, the fi rst two steps would be performed by the HSM which

would securely generate and store the private key using hardware protection, as well

as generate the certifi cate signing request.

 Chapter 9 ■ Securing Application Code 225

c09.indd 11:33:42:AM 01/06/2014 Page 225

Step 3: Signing the Code Signing Certifi cate by Root CA

The next step is to create the code signing certifi cate from the certifi cate signing

request and sign it by the Root CA. In a production environment, this step will

most probably be performed by the public CA. For development and testing

purposes, the OpenSSL x509 command (Table 9-3) can take the certifi cate sign-

ing request and sign the certifi cate with the test Root CA (Figure 9-7):

openssl x509 -req -days 3650 -in c:\CODE_SIGN\CodeSignDemo.csr
-CA C:\ROOT_CA\root_ca.crt -CAkey C:\ROOT_CA\root_ca.key
-set_serial 01 -out C:\CODE_SIGN\CodeSignDemo.crt

Figure 9-7: Signing the Code Signing Certificate by Root CA using OpenSSL

Table 9-3: OpenSSL Parameters for Signing the Code Signing Certifi cate by Root CA

PARAMETER VALUE DESCRIPTION

x509 N/A X509 can perform diff erent operations

with certifi cates depending on follow-

ing arguments

-req N/A Input is a certifi cate signing request

-days 3650 Set expiration date in 10 years

-in C:\CODE_SIGN\CodeSignDemo.

csr

The input fi le (certifi cate signing

request)

-CA C:\ROOT_CA\root_ca.crt Root CA public-key certifi cate fi le

-CAkey C:\ROOT_CA\root_ca.key Root CA private-key fi le

-set_serial 01 Set serial number of the certifi cate

-out C:\CODE_SIGN\CodeSignDemo.crt Location and name of the output cer-

tifi cate fi le

Step 4: Compiling the PFX File

SignTool, which is going to be used for the signing, does not accept the signing

certifi cate in the form of two separate fi les (public key certifi cate and private

226 Part III ■ Defense

c09.indd 11:33:42:AM 01/06/2014 Page 226

key), but rather requires a single PFX fi le be provided. So the last step is the

PFX compilation which can also be done using the OpenSSL pkcs12 command

(Figure 9-8):

openssl pkcs12 -export -out c:\CODE_SIGN\CodeSignDemo.pfx
-inkey c:\CODE_SIGN\CodeSignDemo.key -in c:\CODE_SIGN\CodeSignDemo.crt
-certfile C:\ROOT_CA\root_ca.crt

Figure 9-8: Creating PFX file using OpenSSL

Timestamp

Timestamp is required in order to prolong the validity of the signed software

beyond the end of life of the code signing certifi cate (which is usually limited

to 1–5 years).

The digital signature verifi cation process consists of the following steps:

 1. Validating the signature itself by calculating the hash of the fi le and com-

paring the result with the hash that was calculated during the signing

process and encrypted with the signing certifi cate’s private key.

 2. Validating all the parameters of the signing certifi cate (which is usually

packed along with the signature), including its expiration date.

 3. Validating the chain of trust (all the certifi cates in the chain up to the root

CA certifi cate).

The problem with digital signatures is that they may become invalid once

the code signing certifi cate is expired. The timestamping takes care of the situ-

ation when the second validation step fails due to certifi cate expiration, but

you still want to use the software if the results of all other checks are positive.

The timestamp fi xes the problem by demonstrating to the validation system

that the fi le was signed at the time when the signing certifi cate was still valid

(before it expired).

The timestamp is signed and verifi ed in a way similar to how the code sig-

nature itself is done. Timestamping can be done by a proprietary or public

timestamping service. There are free public timestamping services available for

both testing and production code signing (Table 9-4). The /t parameter with the

 Chapter 9 ■ Securing Application Code 227

c09.indd 11:33:42:AM 01/06/2014 Page 227

timestamping service URL should be added to the SignCode certifi cate issuing

command in order to add the timestamp, for example:

/t "http://timestamp.verisign.com/scripts/timstamp.dll"

Table 9-4: Examples of Free Online Timestamping Services

PROVIDER URL

Verisign http://timestamp.verisign.com/scripts/timstamp.dll

Comodo http://timestamp.comodoca.com/authenticode

Digicert http://timestamp.digicert.com

Implementing Code Signing

The code signing process itself is very simple and can be done from a command

line or application using command shell. The SignTool is included in Windows

SDK which is available for download from the MSDN website.10 The 32-bit

version (which is recommended) of SignTool will be installed at <SDK install

location>\Windows Kits\8.0\bin\x86.

The following command will sign the EncryptionDemo.exe fi le using the

code signing certifi cate previously created (Figure 9-9):

signtool sign /f CodeSignDemo.pfx /p HackingPOS /v
/t "http://timestamp.verisign.com/scripts/timstamp.dll"
/d "Hacking POS" /a EncryptionDemo.exe

Figure 9-9: Signing the executable file using SignTool

Once the executable is signed, right-clicking the fi le will open the fi le proper-

ties screen where the new Digital Signatures tab now shows the digital signature

and timestamp (Figure 9-10).

228 Part III ■ Defense

c09.indd 11:33:42:AM 01/06/2014 Page 228

Figure 9-10: File properties dialog showing the digital signature and the timestamp

The signature can be validated using the same SignTool with the following

parameters (Figure 9-11):

signtool verify /pa EncryptionDemo.exe

Figure 9-11: Verifying the code signature using SignTool

The SigningDemo application (Figure 9-12) simply calls the SignTool com-

mand using the .NET Process class:

ProcessStartInfo processStartInfo =
 new processStartInfo(textBoxSignToolLocation.Text, parameters);
Process process = new Process();
process.StartInfo = processStartInfo;
process.Start();

 Chapter 9 ■ Securing Application Code 229

c09.indd 11:33:42:AM 01/06/2014 Page 229

outputReader = process.StandardOutput;
errorReader = process.StandardError;
process.WaitForExit();

Figure 9-12: SigningDemo: Authenticode code signing

Signing Confi guration and Data Files

Code signing is certainly the most important part of the code protection strategy.

However, you should not forget the fact that software application behavior can

be modifi ed not only by alternating the code, but also through the confi guration

changes. For example, changing the database connection string may switch the

payment application to a dummy database server, while a modifi ed value of the

IP address parameter may forward transactions to a bogus server installed for

MITM attack. In order to avoid such situations, application confi guration and

data fi les can also be signed so their signatures can be verifi ed by the applica-

tion during the startup or even on every data read.

Attached or Detached?

The basic principles of data fi les and message signing stay the same as they are

for the code signing: generating the digital signature after the data is written,

and signature validation before the data is read. However, the technology behind

230 Part III ■ Defense

c09.indd 11:33:42:AM 01/06/2014 Page 230

the data signing is slightly different from Authenticode which was previously

described in connection to the code signing.

Chapter 7 briefl y reviewed two major groups of data signatures:

 ■ An attached, or enveloped, signature is located in the same container as the

content that is being signed. So in the case of fi le signing, the attached

signature is located in the same fi le as the fi le content. Authenticode is an

example of attached signature.

 ■ A detached signature is separated from the object that is being signed. So

in the case of fi le signing, the detached signature is located in a separate

signature fi le.

These differences defi ne the areas of application. If it is undesirable to modify

the fi le or the message that is being signed, a detached signature is used. A

detached signature provides the ability to sign virtually any digital object without

affecting its existing format and the functionality around it, which is especially

important when designing security enhancements for existing systems. Usually,

this is the case for application confi guration fi les and other application data fi les

so they remain readable by older versions of the application that do not support

the signature verifi cation.

Data Signing Certifi cate

Once again, there are several options for signing certifi cate creation and deploy-

ment, depending on the use case and the target environment:

 ■ Reuse the SSLDemoRoot test CA which was created for SSL testing in

Chapter 8. The root CA certifi cate (SSLDemoRoot.cer fi le) should be installed

to Trusted Root Certifi cation Authorities store so it is available for both

signing and validation of the digital signatures. The MakeCert and Pvk2pfx

command arguments for signing certifi cate generation are similar to SSL

client certifi cates. The only difference is that the purpose of the certifi cate

(-sky parameter) should be set to signature:

makecert -a sha256 -len 2048 -n "CN=SigningDemo" -b 01/01/2013
-e 01/01/2023 -ic SSLDemoRoot.cer -iv SSLDemoRoot.pvk
-sky signature -sv SigningDemo.pvk SigningDemo.cer

pvk2pfx -pvk SigningDemo.pvk -spc SigningDemo.cer
-pfx SigningDemo.pfx -pi 1

This option can be used for development and testing only, and it’s the

one used by the SigningDemo application for confi guration fi le signing.

 ■ Reuse the root CA and the signing certifi cate that were previously created

with OpenSSL for the code signing. This option is mostly for development

and testing, but in theory it can be used for production.

 Chapter 9 ■ Securing Application Code 231

c09.indd 11:33:42:AM 01/06/2014 Page 231

 ■ Create a certifi cate request and sign it by public CA as previously described

for code signing. This option is suitable for production.

 ■ Issue the signing certifi cate using a proprietary CA, which can be confi gured

to use signing certifi cates using certifi cate templates11 (Figure 9-13), which in

turn defi ne all the required characteristics of the signing certifi cate so the

CA can automatically issue multiple certifi cates with the same parameters

using the certifi cate autoenrollment12 mechanism. This option is suitable for

production inside isolated LAN or corporate WAN.

Figure 9-13: Example of Certificate Template Setup Dialog

Certifi cate Store

In all demo applications in this book, all the certifi cates except the root CA cer-

tifi cate are located in fi les because it is convenient for education, development,

and testing, and in some cases even for production. Another option is install-

ing the signing certifi cate into the certifi cate store. In this case, the private key

is secured by the certifi cate store. It is still not ideal protection, but it is a little

better than a certifi cate fi le which can be easily stolen. If you make the private

key non-exportable, then theoretically the certifi cate (its private key part) cannot

be copied to another computer. In order to install the certifi cate in the store, just

click the PFX fi le and follow the Certifi cate Import Wizard instructions. Make sure

the “Mark this key as exportable” option is unchecked (Figure 9-14).

232 Part III ■ Defense

c09.indd 11:33:42:AM 01/06/2014 Page 232

Figure 9-14: Importing signing certificate to certificate store

Implementing Detached Signature

The Data File Signing tab of the SigningDemo application demonstrates the imple-

mentation of a detached signature (Figure 9-15). SigningDemo.config (it can be

any fi le) is signed using the certifi cate and private key from the SigningDemo.pfx

fi le. The result of the signing is a detached digital signature stored in a separate

SigningDemo.config.p7s fi le. The original fi le is not modifi ed during the signing

operation. However, if you change the content of the SigningDemo.config fi le

and try to validate the signature, the following error message will be displayed:

Signature Validation Failed:
The hash value is not correct.

Signing Code

First, the Sign method of DetachedSignature class loads the data from the

SigningDemo.config fi le and the singing certifi cate and private key from the

SigningDemo.pfx:

byte[] fileContent = getFileContent(FileName);
string signatureFileName = FileName + ".p7s";
X509Certificate2 signerCertificate =
 new X509Certificate2(Certificate, Password);

 Chapter 9 ■ Securing Application Code 233

c09.indd 11:33:42:AM 01/06/2014 Page 233

Figure 9-15: SigningDemo: Signing configuration file using detached signature

Then, the instances of the CmsSigner and SignedCms classes (System.Security

.Cryptography.Pkcs namespace) are used to calculate the digital signature:

Oid signatureFileContentType = new Oid(PKCS7_CONTENT_TYPE_SIGNED_DATA);
var contentInfo =
 new ContentInfo(signatureFileContentType, fileContent);
var signedCms = new SignedCms(contentInfo, true);
var cmsSigner = new CmsSigner(signerCertificate);
signedCms.ComputeSignature(cmsSigner);

The resulting signature buffer is written into the SigningDemo.config

.p7s fi le:

byte[] signature = signedCms.Encode();
using (var binaryWriter =
 new BinaryWriter(File.Open(FileName, FileMode.Create)))
{
 binaryWriter.Write(signature);
 binaryWriter.Close();
}

234 Part III ■ Defense

c09.indd 11:33:42:AM 01/06/2014 Page 234

Validation Code

The signature verifi cation is just the opposite of the signing process. First, it

loads the signature data from the signature fi le, and the signed data from the

original .config fi le:

byte[] fileContent = getFileContent(FileName);
byte[] signatureFileContent = getFileContent(FileName + ".p7s");

The standard getFileContent method in the BaseSignature class just reads

the entire binary content of any fi le:

using (var filestream =
 new FileStream(filename, FileMode.Open, FileAccess.Read))
{
 try
 {
 using (var binaryreader = new BinaryReader(filestream))
 {
 try
 {
 long count = new FileInfo(filename).Length;
 fileContent = binaryreader.ReadBytes((int)count);
 }
 finally
 {
 binaryreader.Close();
 }
 }
 }
 finally
 {
 filestream.Close();
 }
}

Then, using the same SignedCms class it checks the signature,

signedCms.CheckSignature(true);

and validates the signing certifi cate and its chain (only root CA certifi cate

in our case):

var signingCertificate = signedCms.Certificates[0];
var chain = new X509Chain
{
 ChainPolicy =
 {
 RevocationFlag = X509RevocationFlag.EntireChain,
 RevocationMode = X509RevocationMode.NoCheck,

 Chapter 9 ■ Securing Application Code 235

c09.indd 11:33:42:AM 01/06/2014 Page 235

 UrlRetrievalTimeout = new TimeSpan(0, 0, 5),
 VerificationFlags = X509VerificationFlags.NoFlag
 }
};
chain.Build(signingCertificate);
foreach (X509ChainStatus status in chain.ChainStatus)
{
 throw new ApplicationException("Certificate validation error: " +
 status.Status.ToString());
}

Attached Signatures

Detached signatures are universal because they do not modify the original fi le or

message, and therefore can be applied virtually to any object. However, there are

cases when attached signature is more suitable — for code signing, for example.

Imagine that all the binary fi les are signed with detached signatures. Then you

would have up to twice the number of application fi les on every computer. Data

fi les, including confi guration, can also be signed using attached signatures. The

only limitation is that the resulting fi le can be read only by specialized code

which knows to distinguish the data from its signature. Attached signatures

can also be used for data in transit signing since the data in message can be

handled the same way as the data in fi le.

Signing XML Files

The standard for XML attached signature is XMLDSIG13 which defi nes the way

XML documents can be signed. .NET has an implementation of XML signing14,

15 which is based on XMLDSIG and can be used, for example, to sign the .NET

app.config fi le. However, this implementation is limited to XML fi les only.

The following method is suitable for signing the data content using attached

signature and saving the result (the data and the signature) in a single fi le.

Implementing Attached Signature

There is no separate section about signing certifi cate for attached signature

because the certifi cate generation process that was discussed previously for code

signing and detached signatures is the same for attached signatures. You just

reuse the same data signing certifi cate (SigningDemo.pfx). The SigningDemo

application has a third tab which demonstrates the attached signature created

for the custom confi guration data entered in the Input Data text box (Figure

9-16). The result (the content, its signature, and the signing certifi cate combined

together) is stored in the Database.cfg fi le (Figure 9-17).

236 Part III ■ Defense

c09.indd 11:33:42:AM 01/06/2014 Page 236

Figure 9-16: SigningDemo: Signing configuration file using attached signature

Figure 9-17: Database.cfg file: The output of the attached signature demo

Signing and Validation Code

The signing code (AttachedSignature class) is similar to detached signature

implementation. The major difference is that it stores both the signed data and

the signature in the same output fi le:

var contentInfo = new ContentInfo(
new Oid(PKCS7_CONTENT_TYPE_ENVELOPED_DATA), messageBuffer);
var signedCms = new SignedCms(contentInfo, false);
var cmsSigner = new CmsSigner(signerCertificate);
signedCms.ComputeSignature(cmsSigner);
byte[] messageAndSignature = signedCms.Encode();
writeToFile(OutputFile, messageAndSignature);

 Chapter 9 ■ Securing Application Code 237

c09.indd 11:33:42:AM 01/06/2014 Page 237

The validation code, accordingly, fi rst reads the data buffer from the fi le and

extracts the signature portion of it:

 byte[] fileContent = getFileContent(FileName);
 SignedCms signedCms = new SignedCms();
 signedCms.Decode(fileContent);

Then it verifi es the signature and the signing certifi cate,

signedCms.CheckSignature(true);
var signingCertificate = signedCms.Certificates[0];
validateCertificate(signingCertificate);

and fi nally, extracts the data:

byte[] resultBuffer = signedCms.ContentInfo.Content;
string result = Encoding.Unicode.GetString(resultBuffer);

Code Obfuscation

Simply put, code obfuscation is protection against reverse engineering. A brief expla-

nation of reverse engineering will help to understand what code obfuscation is

and why it is needed in the fi rst place.

Reverse Engineering

Reverse engineering is a process of decompiling, or disassembling the compiled

application binary fi les in order to re-create the original source code. Reverse

engineering is used to understand the logic and details of implementation of

the software application when there is no access to its source code. It can be

done, for example, in order to study a competitor’s product, understand and

disable the application access controls, or learn about the application’s encryp-

tion algorithms and hard-coded parameter values. Even though it is impossible

in most cases to re-create the exact source code from the compiled binaries, in

some language environments, such as .NET and Java, the result of decompiling

can be very close to the original.

Let’s conduct a small experiment with the encryption demo code from Chapter

7 to see how reverse engineering works. This is the fragment of the original

.NET C# source code which creates the PAN token using salted hash func-

tion (the full demo source code can be downloaded from the Wiley website at

www.wiley.com/go/hackingpos):

The Original Source Code

namespace HackingPOS.Cryptography.Encryption
{
 public class Hashing

238 Part III ■ Defense

c09.indd 11:33:42:AM 01/06/2014 Page 238

 {
 private const string CONSTANT_SALT_COMPONENT =
 "PE67nf0hnHkd8Dx8lSroA4PH7J1Z7HAUNe9g6a+8ml8";
 private string user_defined_salt_component;
 private const int ITERATIONS = 1024;
 private const int SALT_COMPONENT_SIZE = 32;

 public Hashing(string user_defined_salt_component)
 {
 this.user_defined_salt_component =
 user_defined_salt_component;
 }

 public string CreateToken(
 string PAN, string VariableSaltComponent)
 {
 Random random =
 new Random(VariableSaltComponent.GetHashCode());
 byte[] variable_salt_bytes = new byte[SALT_COMPONENT_SIZE];
 random.NextBytes(variable_salt_bytes);
 byte[] hash_result = hash(PAN, variable_salt_bytes);
 return Convert.ToBase64String(hash_result);
 }

 private byte[] hash(
 string plaintext, byte[] variable_salt_component)
 {
 Rfc2898DeriveBytes saltGenerator = new Rfc2898DeriveBytes(
 Encoding.ASCII.GetBytes(CONSTANT_SALT_COMPONENT +
 user_defined_salt_component),
 variable_salt_component,
 ITERATIONS);
 byte[] salt_bytes =
 saltGenerator.GetBytes(SALT_COMPONENT_SIZE);
 byte[] plaintext_bytes = Encoding.ASCII.GetBytes(plaintext);
 byte[] hash_input = new byte[SALT_COMPONENT_SIZE +
 plaintext_bytes.Length];
 Buffer.BlockCopy(
 salt_bytes, 0, hash_input, 0, SALT_COMPONENT_SIZE);
 Buffer.BlockCopy(
 plaintext_bytes, 0, hash_input, SALT_COMPONENT_SIZE,
 plaintext_bytes.Length);

 SHA256 sha256 = SHA256.Create();
 return sha256.ComputeHash(hash_input);
 }
 }
}

As a result of this source code compilation and build process, the .NET compiler

creates an assembly (binary fi le) called HackingPOS.Cryptography.Encryption

 Chapter 9 ■ Securing Application Code 239

c09.indd 11:33:42:AM 01/06/2014 Page 239

.dll which contains Common Intermediate Language (CIL) code. Unlike regular

executable or .dll fi les, which contain direct CPU instructions, CIL code requires

a virtual machine (such as .NET Framework for Windows systems or Mono16 for

Linux, Android, or iOS) in order to be executed. The existence of the intermedi-

ate code explains the fact that the content of the .NET assembly fi le is partially

readable. Even opening this assembly in simple text editor may give you a clue

about what’s going on in that code since some names of variables, classes, and

methods are stored unmodifi ed from the original source, although most parts

of it still look like gibberish (Figure 9-18).

Figure 9-18: .NET assembly in text editor

However, when opened by the special tool decompiler17, the assembly will look

very close to the original source code:

Decompiled Code

namespace HackingPOS.Cryptography.Encryption
{
 public class Hashing
 {
 private const string CONSTANT_SALT_COMPONENT =
 "PE67nf0hnHkd8Dx8lSroA4PH7J1Z7HAUNe9g6a+8ml8";
 private const int ITERATIONS = 1024;
 private const int SALT_COMPONENT_SIZE = 32;
 private string user_defined_salt_component;

 public Hashing(string user_defined_salt_component)
 {
 this.user_defined_salt_component =
 user_defined_salt_component;
 }

 public string CreateToken(
 string PAN, string VariableSaltComponent)
 {
 Random random =
 new Random(VariableSaltComponent.GetHashCode());

240 Part III ■ Defense

c09.indd 11:33:42:AM 01/06/2014 Page 240

 byte[] numArray = new byte[32];
 random.NextBytes(numArray);
 return Convert.ToBase64String(this.hash(PAN, numArray));
 }

 private byte[] hash(
 string plaintext, byte[] variable_salt_component)
 {
 Rfc2898DeriveBytes rfc2898DeriveByte =
 new Rfc2898DeriveBytes(
 Encoding.ASCII.GetBytes(string.Concat(
 "PE67nf0hnHkd8Dx8lSroA4PH7J1Z7HAUNe9g6a+8ml8",
 this.user_defined_salt_component)),
 variable_salt_component, 1024);
 byte[] bytes = rfc2898DeriveByte.GetBytes(32);
 byte[] numArray = Encoding.ASCII.GetBytes(plaintext);
 byte[] numArray1 = new byte[32 + (int)numArray.Length];
 Buffer.BlockCopy(bytes, 0, numArray1, 0, 32);
 Buffer.BlockCopy(
 numArray, 0, numArray1, 32, (int)numArray.Length);
 return SHA256.Create().ComputeHash(numArray1);
 }
 }
}

In this reversed code, the logic of the PAN token generation and the

hard-coded internal salt component value are clearly readable, which makes the

tokens created by this code less secure. Another important point is that with

the variety of available tools, decompiling can be done by anyone, even by a

person with limited technical knowledge.

Obfuscating the Code

Code obfuscation is a technique — or more precisely, a set of various techniques

(the more the better) — that allows preventing, or at least disturbing and slowing

down, the reverse engineering. Code obfuscation not only hides the hard-coded

sensitive data such as encryption key components and seed values from easy

access, but also protects the intellectual property of the software manufacturer.

In information security terms, code signing protects the integrity and the authen-

ticity of the application code, while code obfuscation protects its confi dentiality.

Nevertheless, it is important to understand that the security of software (and

as in many other situations, payment application is no exception) should not

solely rely on code obfuscation. Security through obscurity can deter an attacker

and make an attack more diffi cult, but it still cannot provide a proper level of

protection on its own. Obfuscation should be regarded as an extra barrier in an

overall multilayer defense-in-depth strategy.

 Chapter 9 ■ Securing Application Code 241

c09.indd 11:33:42:AM 01/06/2014 Page 241

There are several obfuscation tools to choose from. My personal preference

is smartassembly18, but I still recommend trying several tools and making sure

they really meet your expectations. Some vendors claim to provide the highest

level of protection available, but in reality they do not all fulfi ll their promises.

Obfuscation is usually one of the last steps of the code-building process, since

it must happen before the code signing because the digital signature must be

calculated on the fi nal, obfuscated version of the assembly. If you take one of

the obfuscation tools and process the code from the previous example, some

elements of the CIL will still be readable in the text editor, but they will no

longer reveal the same level of detail (Figure 9-19).

Figure 9-19: Obfuscated .NET assembly in text editor

The decompiler will be completely confused and the reversed code may look

like this:

Decompiled Code after Obfuscation

namespace HackingPOS.Cryptography.Encryption
{
 public class Hashing
 {
 internal string ;

 public Hashing(string user_defined_salt_component)
 {
 this. = user_defined_salt_component;
 }
 public string CreateToken(
 string PAN, string VariableSaltComponent)
 {
 Random random = new Random(.~(VariableSaltComponent));
 byte[] numArray = new byte[32];
 .~ (random, numArray);
 byte[] numArray1 = .(PAN, numArray, this);
 return .(numArray1);
 }
 }
}

242 Part III ■ Defense

c09.indd 11:33:42:AM 01/06/2014 Page 242

Perhaps one may still realize the intention of the CreateToken method, and

even understand the basic logic behind it. However, both the CONSTANT_SALT_

COMPONENT variable name and value plus any reference to the internal hash

method are completely gone, so the very fact of internal hard-coded salt com-

ponent existence is fully hidden!

As with most other security controls, code obfuscation is not a panacea, and

most likely a team of professionals will be able to crack your code. However,

the obfuscation can still deter an average hacker, which might be worth some

moderate efforts required to implement the obfuscation project.

Secure Coding Guidelines

A book about payment application security would not be complete if it did not

mention the secure coding standards. On the one hand, it seems that PA-DSS

took over standardization of payment application security development. On

the other hand, this standard requires software vendors to “develop all pay-

ment applications (internal and external, and including web administrative

access to product) based on secure coding guidelines,”19 providing just generic

recommendations and references. Let’s review the available secure coding

guidelines to see if they are compatible with the realm of payment application

development.

OWASP Top 10

From all known secure coding prescriptions, the OWASP (Open Web Application

Security Project) Top 10 Most Critical Web Application Security Risks20 is perhaps

the most famous due to the high popularity of web programming. OWASP Top

10 is a list of the 10 most painful web application vulnerabilities, accompanied

by recommendations on how to mitigate them. Once every few years, OWASP

reevaluates all known application vulnerabilities and sorts them in descend-

ing order by their severity. Basically, the same web application weaknesses

are shifted up and down every year depending on trends. At this point we

could end the OWASP review because at fi rst glance web security threats are

not directly relevant for most point-of-sale and payment applications running

primarily on desktops and servers. However, this is not exactly true because

web and desktop programming become closer as time passes. Web apps interact

with desktops, and desktop software modules communicate with each other

through web interfaces, such as Web Services, whether it is on an intranet or

the Internet. In addition, put aside all the special web illnesses, such as SQL
injection and XSS (cross-site scripting), and you will see that there is information

deserving attention (Table 9-5).

 Chapter 9 ■ Securing Application Code 243

c09.indd 11:33:42:AM 01/06/2014 Page 243

Table 9-5: OWASP Top 10 Most Critical Web Application Security Risks

RANK RISK COMMENT

DIRECTLY

APPLICABLE

TO POS/PA

1 Injection OWASP is mostly focused on SQL Injections,

which is applicable to WEB applications only,

because it is still the biggest web security

threat. However, code injection fl aws in gen-

eral can be dangerous to desktop payment

applications as well.

Selectively

2 Broken

Authentication

and Session

Management

Relevant to remote modules of distributed

payment applications.

Yes

3 Cross-site

Scripting (XSS)

Web only. No

4 Insecure

Direct Object

References

Web only. No

5 Security

Misconfi guration

This is about confi guration and updates

which are relevant to any application.

Yes

6 Sensitive Data

Exposure

This is the main subject of PCI DSS and

PA-DSS.

Yes

7 Missing Function

Level Access

Control

Important for any type of application. Yes

8 Cross-site

Request Forgery

(CSRF)

Web only. No

9 Using

Components

with Known

Vulnerabilities

Important for any type of application.

10 Unvalidated

Redirects and

Forwards

Web only. No

CWE/SANS Top 25

CWE (Common Weakness Enumeration)/SANS (SysAdmin, Audit, Networking,

and Security) Top 25 Most Dangerous Software Errors is less famous compared

to OWASP Top 10, and so it compensates by adding 15 extra vulnerabilities.21

Unlike OWASP, the CWE/SANS list is not exclusively focused on web application

sins, so it contains vulnerabilities that are in many situations relevant to POS

244 Part III ■ Defense

c09.indd 11:33:42:AM 01/06/2014 Page 244

software. There is helpful information that developers of payment applications

can learn after weeding out most of the web-related issues. In order to do that,

let’s fi rst remove all the strictly native web vulnerabilities from the list (Table 9-6):

Table 9-6: SANS Top 25 Software Errors Relevant to Web Applications Only

RANK ERROR

1 Improper Neutralization of Special Elements used in an SQL Command (‘SQL

Injection’)

4 Improper Neutralization of Input During Web Page Generation (‘Cross-site

Scripting’)

9 Unrestricted Upload of File with Dangerous Type

12 Cross-Site Request Forgery (CSRF)

22 URL Redirection to Untrusted Site (‘Open Redirect’)

Assuming in the 21st century only brave and rich people still develop busi-

ness applications using unmanaged code, even more illnesses can be removed

from the fi nal list (Table 9-7):

Table 9-7: SANS Top 25 Software Errors Relevant to Unmanaged Code Only

RANK ERROR

3 Buff er Copy without Checking Size of Input (“Classic Buff er Overfl ow”)

16 Inclusion of Functionality from Untrusted Control Sphere

18 Use of Potentially Dangerous Function

20 Incorrect Calculation of Buff er Size

23 Uncontrolled Format String

The next group that can be eliminated is the errors that could theoretically

be found in payment application, but in practice would be diffi cult to use as

attack vectors (Table 9-8):

Table 9-8: CWE/SANS Top 25 Software Errors Not Applicable to Payment Applications

RANK ERROR

2 Improper Neutralization of Special Elements used in an OS Command (“OS

Command Injection”)

13 Improper Limitation of a Pathname to a Restricted Directory (“Path Traversal”)

15 Incorrect Authorization

 Chapter 9 ■ Securing Application Code 245

c09.indd 11:33:42:AM 01/06/2014 Page 245

Now we are left with 12 issues that are directly relevant to payment applica-

tion security, and I dare to sort them according to the level of potential risk.

Table 9-9 contains the resulting list, which can be correlated with the real-world

payment application threats discussed in previous chapters.

Table 9-9: Top 12 Payment Application Security Errors Derived from CWE/SANS Top 25

RANK ORIGINAL RANK ERROR

1 8 Missing Encryption of Sensitive Data

2 25 Use of a One-way Hash without a Salt

3 19 Use of a Broken or Risky Cryptographic Algorithm

4 7 Use of Hard-coded Credentials

5 14 Download of Code Without Integrity Check

6 11 Execution with Unnecessary Privileges

7 5 Missing Authentication for Critical Function

8 6 Missing Authorization

9 10 Reliance on Untrusted Inputs in a Security Decision

10 17 Incorrect Permission Assignment for Critical Resource

11 21 Improper Restriction of Excessive Authentication Attempts

12 24 Integer Overfl ow or Wraparound

Language-specifi c Guidelines

The OWASP Top 10 and CWE/SANS Top 25 lists contain generic descriptions of

vulnerabilities and their mitigations, with sketchy code examples. Developers

create applications using specifi c programming languages, so they look for

more concrete instructions on how to prevent those vulnerabilities in particular

development environments. Table 9-10 summarizes the available information

about language-specifi c secure coding guidelines.

Table 9-10: Language-specifi c Secure Coding Guidelines and Standards

LANGUAGE GUIDELINES OR STANDARD PROVIDER

C CERT C Coding Standard22 CERT

C++ The CERT C++ Secure Coding Standard23 CERT

C# Secure Coding Guidelines24 Microsoft

Java Secure Coding Guidelines for the Java Programming

Language25

Oracle

Java The CERT Oracle Secure Coding Standard for Java26 CERT

246 Part III ■ Defense

c09.indd 11:33:42:AM 01/06/2014 Page 246

Summary

In addition to protection of explicit sensitive cardholder data, payment application

code and confi guration should be secured as well. Digital signatures confi rm

the integrity and authenticity of the application code, confi guration, or data,

while obfuscation protects the confi dentiality of the source code.

There are two major types of digital signatures: attached (enveloped) and

detached. Authenticode is a code signing technology that transparently implants

an attached digital signature into any type of binary application fi le, such as

.exe and .dll, so the end user can verify the authenticity and integrity of the

software they run. Detached digital signatures are used to sign confi guration

and data fi les without modifying their internal structure.

Code obfuscation protects against disclosure of intellectual property and

implementation details of cryptographic algorithms. However, the security of

a payment application should not rely solely on obfuscation, which should be

implemented only as part of an in-depth defense strategy.

The OWASP Top 10 and SWE/SANS Top 25 are lists of the most common soft-

ware vulnerabilities. Language-specifi c secure coding guidelines and standards

provide developers with more detailed instructions on how to write secure code

within a particular development environment.

Notes

 1. MSDN, “Authenticode,” http://msdn.microsoft.com/en-us/library

/ms537359.aspx

 2. MSDN, “SignTool,” http://msdn.microsoft.com/en-us/library/windows

/desktop/aa387764.aspx

 3. MSDN, “Creating and Using Strong-Named Assemblies,” http://msdn

.microsoft.com/en-us/library/xwb8f617.aspx

 4. Symantec (VeriSign), “Symantec Code Signing Certificates,” http://www

.symantec.com/code-signing

 5. Comodo, “Code Signing Certificates,” http://www.comodo.com/business-

security/code-signing-certificates/code-signing.php

 6. OpenSSL, http://www.openssl.org/

 7. Shining Light Productions, “Download Win32 OpenSSL for Windows,”

http://slproweb.com/products/Win32OpenSSL.html

 8. IETF, “RFC 4158, Internet X.509 Public Key Infrastructure: Certification

Path Building,” http://tools.ietf.org/html/rfc4158

 Chapter 9 ■ Securing Application Code 247

c09.indd 11:33:42:AM 01/06/2014 Page 247

 9. NIST, “Recommendation for Key Management – Part 1: General (Revision

3),” Special Publication 800-57, (July 2012), http://csrc.nist.gov

/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

 10. MSDN, “Downloads for developing desktop apps,” http://msdn

.microsoft.com/en-us/windows/desktop/aa904949

 11. Microsoft TechNet, “Certificate Templates Overview,” http://technet

.microsoft.com/en-us/library/cc730826.aspx

 12. Microsoft TechNet, “Set Up Automatic Certificate Enrollment,” http:

//technet.microsoft.com/en-us/library/cc770546.aspx

 13. W3C, “XML Signature Syntax and Processing (Second Edition),” http://www

.w3.org/TR/xmldsig-core/

 14. MSDN, “How to: Sign XML Documents with Digital Signatures,” http:

//msdn.microsoft.com/en-us/library/ms229745.aspx

 15. MSDN, “How to: Verify the Digital Signatures of XML Documents,” http:

//msdn.microsoft.com/en-us/library/ms229950.aspx

 16. Mono, http://www.mono-project.com/

 17. Telerik, “The Free .NET Decompiler for Everyone,” http://www.telerik

.com/products/decompiler.aspx

 18. Red Gate, “SmartAssembly 6, Robust .NET obfuscator,” http://www.red-gate

.com/products/dotnet-development/smartassembly/

 19. PCI SSC, “PCI PA-DSS Requirements and Security Assessment Procedures

Version 2.0” (October 2010), https://www.pcisecuritystandards.org

/documents/pa-dss_v2.pdf

 20. OWASP, “OWASP Top 10” (2013), https://www.owasp.org/index.php

/Top_10_2013-Top_10

 21. CWE/SANS, “2011 CWE/SANS Top 25 Most Dangerous Software Errors”,

http://cwe.mitre.org/top25/

 22. CERT, “CERT C Coding Standard,” https://www.securecoding.cert.org

/confluence/display/seccode/CERT+C+Coding+Standard

 23. CERT, “The CERT C++ Secure Coding Standard,” https://www.securecoding

.cert.org/confluence/pages/viewpage.action?pageId=637

 24. MSDN, “Secure Coding Guidelines,” http://msdn.microsoft.com/en-us

/library/8a3x2b7f.aspx

 25. Oracle, “Secure Coding Guidelines for the Java Programming

Language, Version 4.0,” http://www.oracle.com/technetwork/java

/seccodeguide-139067.html

 26. CERT, “The CERT Oracle Secure Coding Standard for Java,” https://

www.securecoding.cert.org/confluence/display/java/The+CERT

+Oracle+Secure+Coding+Standard+for+Java

c09.indd 11:33:42:AM 01/06/2014 Page 248

249

both01.indd 04:2:16:PM 12/19/2013 Page 249

This is the end of the book, but not the end of the story. For many payment

security technologies, our time is just a beginning. So what’s next? You now

know that current POS systems are extremely vulnerable. You know how such

vulnerabilities can be exploited, and how to prevent many such exploitations.

You know that current security standards fail to help prevent exploitations.

This is demonstrated by the fact that, despite huge investments in security, the

number of data breaches is not declining but growing. Is there any way to stop it?

Everything made by men can be broken by men. That’s probably true, but at least

we can try to build secure systems. Here is my opinion on what should be done.

Merchants’ customer-facing environments, such as retail stores, should

be freed of any obligation to implement PCI DSS controls and pass PCI DSS

audits. Payment application providers should be exempted from PA-DSS vali-

dations. Instead, both merchants and software vendors should be required to

implement P2PE solutions. Not just any P2PE, but Hardware P2PE. In lieu of

wasting money on badly confi gured fi rewalls and useless log reviews, merchants

should be investing in real, robust security technologies. Without hardware

encryption, sensitive cardholder data should never touch the merchants’ ter-

ritory. In conjunction with EMV, tokenization, mobile payments, and other

emerging technologies, P2PE is capable of providing adequate protection to

cardholder data in customer-facing environments, without the need for PCI

DSS and PA-DSS.

Conclusion
If he wrote it he could get rid of it. He had gotten rid of many things by writing them.

 — Ernest Hemingway

250 Conclusion

both01.indd 04:2:16:PM 12/19/2013 Page 250

However, this does not mean that PCI DSS should be completely eliminated.

The scope of its applicability should be limited to ensure the security of environ-

ments where it is still effective: data centers of payment gateways, processors,

e-commerce, and acquirers. I know this is not a simple change, but it seems to

be the only realistic way to deter the bad guys.

At the same time, it’s quite obvious that existing payment technology—plastic

cards with exposed account numbers, magnetic stripes, and even chips—while

being extremely successful commercially, totally fail from a security point of

view and must be replaced by some sort of digital equivalent. A change similar

to what’s happened in the music industry with tapes and then compact disks

will eventually happen with plastic payment cards. There is no unifi ed opinion

on what such a technology will look like, but this is indeed something that will

emerge very soon, and bring new security challenges with it.

251

bapp01.indd 04:1:49:PM 12/19/2013 Page 251

Security Questionnaire and Vulnerability Rank

The POS Vulnerability Rank Calculator is based on a security questionnaire

that is intended to provide a brief risk assessment of the POS system and/or

its associated payment application and hardware. The goal is to introduce a

universal tool for initial evaluation of the POS/Payment application security

posture which can then be followed by a more detailed risk assessment process.

The result of the assessment is a numerical score (“vulnerability rank”) ranging

from 0 to 20, where 0 indicates ideal POS security, and 20 indicates a payment

system without any security. Keep in mind that fewer than 10 years ago, almost

any POS system would have received a rank of 20, while today some sophisti-

cated products score closer to 0.

When merchants are in the process of selecting a new POS payment software

and hardware, they can use the calculator to quickly review several products

and determine the POS Vulnerability Rank of each solution. The results can

then be used to further evaluate each product. In addition, vulnerability ranks

calculated for specifi c implementations can be published by merchants, software

vendors, or security assessors so that consumers (cardholders) are also able to

compare different systems and become aware of the risks of swiping their cards

at particular business locations.

A P P E N D I X

A

POS Vulnerability Rank Calculator
From a drop of water a logician could predict an Atlantic or a Niagara.

 — Arthur Conan Doyle

252 Appendix A ■ POS Vulnerability Rank Calculator

bapp01.indd 04:1:49:PM 12/19/2013 Page 252

The Scoring System

The calculation formula of the vulnerability rank is simple: each “Yes” answer gets

1 point, and the rank is the sum of all the points. Note that such a scoring system is

not perfect because, in reality, not all the questions and their answers have the same

weight, even though each positive answer adds 1 point to the score. For example,

the presence of sensitive card data in memory in clear text (Questions 1–3) is more

dangerous for sensitive card data than the lack of authentication (Questions 19

and 20). However, each question refl ects a different kind of security threat to

sensitive card data confi dentiality or transaction integrity, so each one is counted

as 1 point.

The suggested scoring system is not based on any standard simply because

there are no existing standards for payment application risk assessment. The

rank calculator can be easily customized if necessary by adjusting the weight

of the answers for particular groups of questions.

Instructions

The calculator can be applied using the following steps:

 1. Go through the security questionnaire and provide the appropriate answers

for your system (1 point for “Yes,” 0 points for either “No” or “N/A”). Note

that, depending on the architecture and features of the particular payment

system being evaluated, some questions might be not applicable. In such

cases, the value of the answer would be the same as for a negative answer: 0.

 2. Calculate the rank by adding up the values of all answered questions. Each

“Yes” answer adds 1 point to the total score, while any “No” or “N/A”

answer does not change the score.

 3. Go to the Decoding the Results section at the end of the questionnaire

to evaluate the overall level of security of the POS system and payment

application based on the vulnerability rank. In general, the lower the rank

value, the better the POS system security.

POS Security Questionnaire

The following table lists the questions used in the evaluation.

 Appendix A ■ POS Vulnerability Rank Calculator 253

bapp01.indd 04:1:49:PM 12/19/2013 Page 253

NO. QUESTION

ANSWER

YES = 1, NO = 0, N/A = 0

1 Does the POI/MSR device perform any operations

(including but not limited to encryption) with

unencrypted sensitive card data in memory (out-

side of TRSM)?

2 Does the software on the POS machine perform

any operations (including but not limited to

encryption) with unencrypted sensitive card data

in memory (outside of TRSM)?

3 Does the store server perform any operations

(including but not limited to encryption) with

unencrypted sensitive card data in memory (out-

side of TRSM)?

4 Does the POI/MSR device transmit unencrypted

sensitive card data to the POS machine or store

server?

5 Does the POS machine transmit unencrypted sen-

sitive card data to the store server?

6 Does the POI/MSR, POS machine, or store server

send unencrypted sensitive card data to the pay-

ment gateway/processor?

7 Does the POI/MSR store unencrypted sensitive

card data on permanent storage (outside of

TRSM)?

8 Does the software on the POS machine store

unencrypted sensitive card data on a hard drive

(outside of TRSM)?

9 Does the store server store unencrypted sensitive

card data on a hard drive (outside of TRSM)?

10 Does the POI/MSR expose unencrypted DEK or

KEK (or any components of DEK or KEK), which can

be used for sensitive card data encryption and/

or decryption, to memory or permanent storage

(outside of TRSM)?

11 Does the software on the POS machine expose

unencrypted DEK or KEK (or any components of

DEK or KEK), which can be used for sensitive card

data encryption and/or decryption, to memory or

permanent storage of the POS machine (outside

of TRSM)?

Continues

254 Appendix A ■ POS Vulnerability Rank Calculator

bapp01.indd 04:1:49:PM 12/19/2013 Page 254

NO. QUESTION

ANSWER

YES = 1, NO = 0, N/A = 0

12 Does the store server expose unencrypted DEK or

KEK (or any components of DEK or KEK), which can

be used for sensitive card data encryption and/

or decryption, to memory or permanent storage

(outside of TRSM)?

13 Does any component of the POS system store,

process, or transmit any tokens created using a

hash function of sensitive card data?

14 Does any component of the POS system store, pro-

cess, or transmit any tokens created using a hash

function of sensitive card data without dynamic

(diff erent for each token) salt?

15 Does any component of the POS system store, pro-

cess, or transmit the token mapping (token vault)?

16 Does the POI/MSR device allow updating or load-

ing of the software/fi rmware or confi guration

without validation of the software/hardware ven-

dor’s digital signatures?

17 Does the POS machine allow updating or loading

of software or confi guration without validation of

the software/hardware vendor’s digital signatures?

18 Does the store server allow updating or loading of

software or confi guration without validation of the

software/hardware vendor’s digital signatures?

19 Do the POS/payment software and/or POI/MSR

allow transaction processing without strong

cryptographic authentication (for example, using

server certifi cates) of the payment gateway/

processor?

20 Does the payment gateway/processor allow trans-

action processing without cryptographic authen-

tication (for example, using client certifi cates) of

the client POS/payment software and/or POI/MSR

device?

Total Score (Vulnerability Rank):

(continued)

 Appendix A ■ POS Vulnerability Rank Calculator 255

bapp01.indd 04:1:49:PM 12/19/2013 Page 255

Decoding the Results

Evaluate the results of the assessment using the following information.

VULNERABILITY

RANK MEANING

0 Congratulations! This is a perfect payment system!

1 The system is highly secure.

2 The system is secure, but there are issues that must be addressed.

3–4 The system has vulnerabilities that must be fi xed as soon as possible

to reduce the risk of security breach.

5–9 The system is insecure and has a very high risk of security breach.

10–20 The system is vulnerable and can be breached at any moment. In

fact, if this is a production environment, it is very possible that the

system is already broken but the security breach is not recognized.

257

bapp02.indd 04:2:2:PM 12/19/2013 Page 257

AES (Advanced Encryption Standard) — Symmetric encryption algorithm

created by NIST based on the Rijndael encryption algorithm.

Attack Vector — Method of an attack on a computer system with a detailed

description of how security controls have been broken.

AOC (Attestation of Compliance) — An application form submitted

by a merchant or service provider to PCI SSC for PCI DSS assessment

registration.

AOV (Attestation of Validation) — An application form submitted by a

payment application vendor to PCI SSC for PA-DSS revalidation registration.

API (Application Programming Interface) — A set of functions exposed

by an application in order to communicate with other applications. For

example, payment application API exposed to POS application, or pay-

ment gateway API exposed to payment applications.

ATM Card (Automated Teller Machine Card) — The bank card intended

for cash withdrawal that usually cannot be accepted for payment by mer-

chants, unlike a debit card (see debit card).

Authorization — The fi rst stage of a payment transaction when the pay-

ment processor checks that the account associated with the card has enough

credit (for credit cards) or funds (for debit and gift cards) for the transaction.

 A P P E N D I X

B

Glossary of Terms and

Abbreviations

258 Appendix B ■ Glossary of Terms and Abbreviations

bapp02.indd 04:2:2:PM 12/19/2013 Page 258

Batch — A group of payment transactions that were processed by a pay-

ment application during a specifi c period of time (usually one business

day) and are awaiting settlement.

BDK (Base Derivation Key) — In a DUKPT key management scheme, the

base key used for generating the keys that are injected into the POI devices.

BIN (Bank Identifi cation Number) — See ISO Prefi x.

BOS (Back Offi ce Server) — A computer, or group of computers, located

at the “back” of the store (in small stores, often physically located in the

“back offi ce” of store manager), and often used as a store server.

Carders — People involved in a carding process.

Carding — Process of selling and buying stolen payment card data.

Card-not-present Transaction (or Card-absent Transaction) — Payment

transaction processed either online or by phone, when a payment system

does not physically read the magnetic stripe of the card.

Card-present Transaction — Payment transaction processed in a brick-

and-mortar store when the POS system actually reads the magnetic stripe

of the card, or the card data is entered manually and verifi ed by cashier.

Chargeback — Rejected payment transaction.

CHD (Cardholder Data) — See Sensitive Data.

Completion — The second stage of payment transaction processing (after

authorization) when the exact amount of the transaction is recorded (autho-

rization amount can be more than actual transaction amount).

CVV (Card Verifi cation Value) (also called CAV, CSC, CVC) — 3- or

4-digit code located at magnetic Tracks 1 and 2 of a payment card.

CVV2 (Card Verifi cation Value 2) (also called CID, CAV2, CVC2) — 3-digit

code located on the back or front of a plastic payment card.

Debit Card — Card used as both an ATM (bank) card for cash withdrawal

and as a payment card accepted by merchants. Transactions with a debit

card usually require two-factor authentication with a PIN number.

DEK (Data Encryption Key) — A cryptographic key used for data encryp-

tion (see also KEK).

DES (Data Encryption Standard) — Deprecated symmetric encryption

algorithm (see also Triple DES).

DUKPT (Derived Unique Key Per Transaction) — Encryption and key

management mechanism used for debit PIN protection and P2PE.

Encoding — The process of writing card data information into magnetic

tracks of a plastic payment card.

 Appendix B ■ Glossary of Terms and Abbreviations 259

bapp02.indd 04:2:2:PM 12/19/2013 Page 259

Embossing — The process of stamping the PAN digits and other card-

holder information onto a plastic card.

EPS (Electronic Payments Server) (also called Electronic Payments Service,
Electronic Payments System) — A software and/or hardware application

dedicated to processing electronic payments.

Failover — The ability of a payment application to switch to a different

communication type or authorization host if the main connection or host

is offl ine.

Fallback — Can mean Offl ine Fallback Processing (see S&F) or Failover.

FIPS (Federal Information Processing Standards) — A set of standards

defi ning requirements for cryptographic algorithms and systems.

Host — Authorization server at the payment processor’s data center.

Host to Host Protocol — Transaction protocol for data exchange between

payment gateways, processors, and acquirers.

HSM (Hardware Security Module) — A device designed to process cryp-

tographic operations (encryption, decryption, cryptographic key manage-

ment) in a secure environment protected by physical security controls.

ICCR (Integrated Circuit Card Reader) — EMV (Chip & PIN) card reader

device.

IIN (Issuer Identifi cation Number) — See ISO Prefi x.

ISO Prefi x (also called IIN, BIN) — The fi rst 6 digits of PAN that identify

the card issuer.

KEK (Key Encryption Key) — A cryptographic key used for encrypting

the DEK.

KIF (Key Injection Facility) — A place where POI containing pinpad and/

or MSR devices are being injected with debit PIN or P2PE encryption keys.

KSN (Key Serial Number) — In a DUKPT key management scheme, the

data that is being sent by the encrypting end (POI device) to the decrypting

end in order to identify the BDK and session key used for data encryption.

MITM (Man-in-the-Middle) — An attack on a communication system

(such as SSL-protected TCP/IP traffi c) when an attacker is wedged between

the client and the server.

MSR (Magnetic Stripe Reader) — A device (usually mounted on a POS

or POI) that reads the magnetic stripe of a card when the card is swiped

by the customer at the store.

NIST (National Institute of Standards and Technology) — Organization

that creates and maintains various standards, including FIPS.

260 Appendix B ■ Glossary of Terms and Abbreviations

bapp02.indd 04:2:2:PM 12/19/2013 Page 260

P2PE (Point-to-Point Encryption) (Synonym: End-to-End
En cryption) — Technology that keeps sensitive cardholder data encrypted

throughout the entire process of payment from its entry at the POI/MSR

device to the data center of the payment gateway or processor.

PA (Payment Application) — Software application created for electronic

payment processing. PA implements all functions associated with accep-

tance, processing, storage, and transmission of sensitive card data.

PA-DSS (Payment Application Data Security Standard) — Security

standard for payment software providers.

PAN (Primary Account Number) — Identifi es the cardholder; usually

16 digits long.

PA-QSA (Payment Application Qualifi ed Security Assessor) — A company

or individual who is authorized by PCI SSC to perform PA-DSS validation.

PA-QSA (P2PE) (Payment Application Qualifi ed Security Assessor,
Point-to-Point Encryption) — A company or individual who is authorized

by PCI SSC to perform P2PE application validation.

Payment Gateway — Company-service provider that accepts transac-

tion requests from multiple stores and routes them to different Payment

Processors depending on merchant confi guration.

Payment Processor (also called Authorizer) — Company that processes

electronic payments for merchants. Payment Processor accepts authoriza-

tion, completion, and settlement messages from stores and routes them

to appropriate acquirers for approval and settlement.

Payment Switch (also called Switch) — Server or group of servers at the

merchant’s or Payment Gateway’s data center which consolidate transac-

tion messages from multiple stores and route them to appropriate Payment

Processors based on merchant confi guration.

PCI SSC (Payment Card Industry Security Standards Council) —

Organization that creates and maintains PCI security standards, approves

PCI DSS, PA-DSS, PTS, and P2PE assessments, and certifi es the QSA. PCI

SSC also maintains the list of validated payment applications, certifi ed

POI devices, and validated P2PE applications and solutions.

PCI DSS (Payment Card Industry Data Security Standard) — Security

standard for merchants and service providers.

PED (PIN Entry Device) — See POI.

PIN (Personal Identifi cation Number) — Numeric code (typically 4 digits)

used as a second authentication factor (“something you know”) in two-

factor authentication of the cardholder.

 Appendix B ■ Glossary of Terms and Abbreviations 261

bapp02.indd 04:2:2:PM 12/19/2013 Page 261

POI (Point of Interaction) (also called PED, PIN pad, pinpad, payment
terminal) — A device that combines several functions and subsystems,

such as MSR, PIN Entry Keyboard, Customer Display, TRSM, and others.

POS (Point of Sale) (also called register, lane, point of service) — Software

application and/or hardware device that processes and records transac-

tions (including payments) between the merchant and its customers.

Post Void — Cancellation of payment that was processed after POS trans-

action is fi nalized.

PreAuth — The process of obtaining authorization so it can be stored and

used later for transaction completion.

PTS (PIN Transaction Security) — Security standard and certifi cation for

POI and HSM device manufacturers.

QSA (P2PE) (Qualifi ed Security Assessor, Point-to-Point Encryption) — A

company or individual who is authorized by PCI SSC to perform P2PE

assessments.

QSA (Qualifi ed Security Assessor) — A company or individual autho-

rized by PCI SSC to perform PCI DSS assessments.

RAM (Random Access Memory) — A device for temporary data storage

(until the power to the machine is turned off).

Reconciliation — Part of the settlement process when two parts of the

payment processing (for example, POS and payment processor) compare

the number and amount of processed transactions.

Redemption — Payment with gift card.

Refund (also called return) — Crediting cardholder account, usually when

previously purchased items are returned to the merchant.

Response Timeout — The maximum time allowed for a response to be

returned by the server to the client (for example, payment gateway to

POS). If the response timeout interval is exceeded, the payment applica-

tion goes to error handling, fallback, or failover mode.

Return — See Refund.

ROC (Report on Compliance) — A document created by a PCI QSA as

the result of a PCI DSS assessment.

ROV (Report of Validation) — A document created by a PA QSA as the

result of a PA-DSS validation process.

RSA (Rivest, Shamir, Adleman) — Asymmetric encryption algorithm

created in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman.

262 Appendix B ■ Glossary of Terms and Abbreviations

bapp02.indd 04:2:2:PM 12/19/2013 Page 262

S&F (Store and Forward) (also called SAF, Fallback, Stand-in) — Mechanism

that allows the store payment system to authorize and complete payment

transactions with no communication with the payment processor (if the

authorization network or host is down).

SCD (Secure Cryptographic Device) — PCI term for TRSM and HSM.

SCR (Secure Card Reader) — PCI term for secure (PTS-certifi ed) MSR or

ICCR. MSR must be PTS with SRED certifi ed.

Sensitive Authentication Data — See Sensitive Data.

Sensitive Card Data, Sensitive Cardholder Data — See Sensitive Data.

Sensitive Data (also called Cardholder Data, Sensitive Authentication
Data) — Information that identifi es the cardholder and (if compromised)

can be used to process fraudulent payment transactions. Sensitive Data

includes Track 1, Track 2, PAN, Expiration Date, Service Code, PIN, and

more. In general, the difference between Sensitive Authentication Data

and Cardholder Data is that the former can be used “as is” in order to

manufacture a duplicate of the original payment card, while the latter

can be used as an input component for constructing the former. Sensitive

Authentication Data includes Track 1 and 2, while Cardholder Data contains

the PAN. Although it is much easier to counterfeit cards with Sensitive

Authentication Data than Cardholder Data, both are a target for hackers.

In most places throughout this book, Sensitive Authentication Data and

Cardholder Data are not differentiated, so for the sake of simplicity they

are combined in a single term: Sensitive Data.

Settlement — A process in which a payment transaction is reconciled

between the issuer, acquirer, processor, and merchant.

SHA (Secure Hash Algorithm) — One-way encryption algorithm.

Split Dial — Ability of a payment application to route transactions to

different payment processors based on BIN range, transaction type, or

other parameters.

SRED (Secure Reading and Exchange of Data) — One of the modules of

PCI PTS certifi cation. An SRED-certifi ed POI device is required for PCI

HW P2PE certifi cation.

Stand-in — See S&F.

Store Server — A computer or group of computers that serve as a central

location for various store-level applications, including back offi ce server

and POS server.

Switch — See Payment Switch.

 Appendix B ■ Glossary of Terms and Abbreviations 263

bapp02.indd 04:2:2:PM 12/19/2013 Page 263

Tender — Payment method such as cash, credit, or check. POS transac-

tion may contain more than one tender if a customer chooses to pay, for

instance, by both cash and credit card.

Tipping — The process of painting the embossed numbers (see Embossing)

and letters using gold or silver foil.

Token — Unique ID that identifi es the PAN without compromising the

actual cardholder data.

Tokenization — Technology that protects cardholder data by using a

token instead of PAN. The token can be either a cryptographic function

of the cardholder data (for example, hash) or a randomly generated value

mapped using token vault.

TOR (Timeout Reversal) — A cancellation of the previous attempt to send

a message in case of no response (response timeout) from the authoriza-

tion host.

Track 1, Track 2 — Information about card issuer and cardholder encoded

on the magnetic stripe of payment cards.

Triple DEA (Triple Data Encryption Algorithm) — See Triple DES.

Triple DES (also called Triple DEA, 3DES, TDES, TDEA) — Symmetric

block cipher used as a standard algorithm for debit PIN encryption.

TRSM (Tamper-Resistant Security Module) — Cryptographic device

(typically located inside POI) which physically protects the encryption

keys and destroys them when an attempt is made to open its tamper-

resistant case.

Two-Factor Authentication (also called multi-factor authentica-
tion) — Requires more than one factor to be used to authenticate the user.

The two authentication factors must be from different types. There are

three common types: “something you have,” “something you know,” and

“something you are.” Examples of two-factor authentication in payments

are debit with PIN, chip & pin, and ATM cards where one authentication

factor (“something you have”) is the card itself and the second authentica-

tion factor (“something you know”) is the PIN number.

Void — Cancellation of a payment tender during the same POS transaction.

Zero Day Attack — The sort of attack that exploits zero-day software

vulnerability which was not discovered and/or publicly disclosed yet,

and as a result was never fi xed and patched by the software vendor.

265

bindex.indd 11:59:26:AM 01/08/2014 Page 265

Index

A

accounts, merchant, 7, 8, 10

acquirers (acquiring banks), 7

authorization processing, 15

settlement processing, 15

AES (Advanced Encryption Standard),

155, 168, 169, 170, 173, 189, 190

American Express. See also payment

cards

BIN range, 104

card brand, 4, 8

card verifi cation values

on magnetic stripes, 108

on plastic, 108

EMVCo standard, 214

false positive PAN of test cards, 133

masked PAN, 153

PAN, 101

PAN Range Routing, 29

regular expressions, 111

ANSI standards, 191

antivirus software

New York Times virus attack, 72

PA-DSS requirements, 65

PCI DSS requirements, 69, 71–72, 76, 79

smartphones, 143

application code (vulnerability area),

219–247

code obfuscation, 240–242

data at rest, 156

defi ned, 237

code signing, 219–229

defi ned, 187

implementing, 227–229

code signing certifi cates

described, 220

production-grade, 223–226

comparison of vulnerabilities, 20–22

disassembling, 141

integrity, 240, 246

overview, 140–141

PCI DSS requirements, 148

secure coding standards, 242–245

summary, 246

application confi guration

(vulnerability area)

compared, 20–22

PCI DSS requirements, 148

bindex.indd 11:59:26:AM 01/08/2014 Page 266

266 Index ■ A–C

PCI-protected area, 148, 149

signing, 187, 205, 229–230

summary, 246

tampering, 141

application security, PCI P2PE

standard domain, 82

artwork, payment cards, 94

ASCII, 130–131

assessment process, PCI DSS, 67–68

asymmetric encryption (public key

encryption)

comparison of cryptographic groups,

168–170

decryption, 180

described, 176–180

diagram, 176

implementing, 177

size, 170–171

ATM cards. See debit cards

attached signatures

Authenticode signature, 186–187, 220,

229, 230, 246

described, 186–187

implementing, 235–237

strong-name signing, 187, 220

XML signing, 187, 235

AttachedSignature, 236

attack vectors. See also payment cards;

penetrating security free zones;

vulnerability areas

data at rest, 148–159, 162

data in transit, 160–163

described, 19–20

future POS systems, 142–143

payment cards, 93–124

POS hardware, 141–142

skimming

defi ned, 142

Integrated Payment Terminals, gas

station pumps, 47

MSR devices, 118

spoofi ng client credentials, 141

vulnerability areas vs., 20

attestation of validation, 61

auditors. See security auditors

authentication

client, data in transit, 205–206

PA-DSS requirements, 64

two-factor, 4, 65, 73, 79

Authenticode signature, 186–187, 220,

229, 230, 246

authorization, 12–13, 15. See also offl ine

authorization

B

back-of-house servers, 126

balance inquiry, 18, 19

BankInfoSecurity, 114

base-64 encoded PEM format, 222–223

batch processing module

described, 31

payment transaction fl ow, 32–34

BDK, 212

BDK ID, 213, 214

BIN ranges, 103–105

binary encoded DER format, 222

binary fi les, DiskScraper utility, 159

block ciphers, 175

Bluetooth, 48, 135, 157

brand logo, payment cards, 94

breaking into PCI-protected areas. See
PCI-protected areas

brute-force attacks, 104, 152–153, 170,

171, 181

C

CA. See certifi cate authority

card brands (card networks), 8

card payment processing

integrity, 143–144

key players, 6–12

card verifi cation values (CVV)

described, 107–110

different names, 97

on magnetic stripes, 108–109

non-profi t organizations, 115

 Index ■ C–C 267

bindex.indd 11:59:26:AM 01/08/2014 Page 267

PA-DSS requirements, 63

payment cards feature, 94

on plastic, 108, 109–110

carders, 114–115

cardholder data. See data

cardholder signature, 96

cardholders. See also payment cards;

protection

authorization processing, 15

role in payment-processing cycle, 7

settlement processing, 15

carding

defi ned, 114

security breach phase, 112

cash cards. See debit cards

cashers, 115–116

certifi cate authority (CA)

described, 199–201

root, 221–222

Certifi cate Import Wizard dialog, 201,

231

Certifi cate Revocation List (CRL), 204,

206

certifi cate signing request, 223, 224

certifi cate store, 198, 201, 205, 231–232

certifi cate templates, 231

certifi cates, 191, 199

client, 205

defi ned, 178

PFX certifi cate fi le, 179–180, 225–226

root, 199–201

self-signed, 178–179

server, 197–198, 202–203

X.509, 178, 187, 222

X509Certificate2, 180, 202, 203

chargebacks, 31, 42

check digit, PAN, 105–106

Chip and Pin. See EMV

CIL. See Common Intermediate

Language

Cipher Block Chaining, 175

ciphertext, 150, 154, 155, 169, 172, 175,

176, 180, 181, 208, 213, 214

client authentication, 205–206

client certifi cate, 205

client credentials, spoofi ng, 141

code obfuscation, 240–242

data at rest, 156

defi ned, 237

code signing, 219–229. See also data

signatures

defi ned, 187

implementing, 227–229

code signing certifi cates

described, 220

production-grade, 223–226

color, payment cards, 94

Common Intermediate Language

(CIL), 239, 241

communication, PA

interfaces/protocols summary, 38–39

local, 36

overview, 34, 51

physical connections, 34–35

communication protocols, 35–36

communication security, 38

communication vulnerability points,

139–140

completions, 16, 19

compliance

PCI, 57, 58

PTS

PCI, 58

pinpads, 11–12

confi guration signing. See application

confi guration

consumers. See cardholders

contactless models, 48–49, 50, 215

counterfeit payment cards

described, 116–121

embossers, 116, 117

encoders, 116, 118–120

payment cards

physical structure limitations,

94–96

security limitations, 97–98

bindex.indd 11:59:26:AM 01/08/2014 Page 268

268 Index ■ C–D

printers, 116, 117, 120–121

summary, 121

tippers, 116, 118

CreateToken, 184

credit cards, 3, 4, 93. See also payment

cards

CRL. See Certifi cate

Revocation List

cryptanalysis, 150, 154, 155

cryptographic hardware, 188. See also
HSM; TRSM

cryptography, 167–193. See also
encryption

cryptographic key operations, PCI

P2PE standard domain, 82

introduction, 167

.NET System.Security.

Cryptography, 32, 170–171, 181,

233

standards, 188–191

summary, 191–192

tip of iceberg, 167–168

custom server certifi cate validation,

204

customer service phone numbers,

payment cards, 96

CVV. See card verifi cation values

CWE/SANS Top 25, 243–245

D

Dark Market: Cyberthieves, Cybercops
and You (Glenny), 114

data (cardholder data)

access restriction, PCI DSS

requirements, 72–74

server storage, PA-DSS requirements,

65

data at rest

attacks, 148–159, 162

brute-force attacks, 152–153

data storage, 31–32

described, 20, 21, 31

DiskScraper utility, 157–159

key rotation, 155–156

keys

DEK, 154–155, 208

insecure storage, 153–157

KEK, 154–155, 208

log fi les, 150–152

multiple key components, 207–208

PCI DSS requirements, 148

protection, 207–209

rainbow tables, 152–153

secure key management, 207

summary, 162

temporary storage, 21, 148, 149–150,

162

data breaches (security breaches)

defi ned, 112

Heartland Payment Systems, 71

numbers, 2005-2012, 56–57

phases, 112–113

Privacy Rights Clearinghouse, 56,

113

TJX, 113–114

data encoding, 130–131

data encryption key. See DEK

Data Encryption Standard.

See DES

data in memory

described, 20, 21

minimize data exposure, 196

PCI DSS requirements, 148

protection, 195–196

data in transit

attacks, 160–163

client authentication, 205–206

described, 20, 21

encrypted tunnels, 206–207

protection, 197–207

SSL implementation, 197–206

summary, 162–163

 Index ■ D–D 269

bindex.indd 11:59:26:AM 01/08/2014 Page 269

data signatures, 229–237. See also
signatures

message signing, 187

types, 230

data signing certifi cate, 230–231

data storage, PA, 31–32

database management systems, 151

debit (ATM, cash) cards, 3–4, 93–94.

See also payment cards

debit PIN encryption technology, 32,

80, 172, 173, 189. See also DUKPT

decompiler tool, 239

decompiling, 237. See also reverse

engineering

decryption

asymmetric encryption, 180

PCI P2PE standards, 82

symmetric encryption, 175–176

default keys, 156

defense. See application code;

cryptography; protection

defense-in-depth principle, 195, 240

DEK (data encryption key), 154–155,

208

deployment models, PA

gas station payment systems, 46–47

hybrid POS/Store deployment

model, 46, 47

POS EPS deployment model, 44–45

store EPS deployment model, 43–44

types, 51

vulnerability score

calculating, 41–42

factors, 42

hybrid POS/Store deployment

model, 47

POS EPS deployment model, 45

store EPS deployment model, 44

DER format, 222

Derived Unique Key Per Transaction.

See DUKPT

DES (Data Encryption Standard)

described, 189–190

TRIPLE DES, 170, 189–190

deserialization, 36

detached signatures

code signing, 229–230

described, 186–187

implementing, 232–235

deterministic generator, 174

developers

mobile payment guidelines, PCI SSC,

86

payment applications

PCI DSS, 77

dial-up fallback, 17, 29, 34. See also
offl ine authorization

dial-up modems, 34–35

digital certifi cates. See certifi cates

digital signatures. See signatures

Diners Club

BIN range, 104

regular expressions, 111

disassembling, 141, 156. See also
reverse engineering

disclosure phase, security breaches,

113

Discover

BIN range, 105

card verifi cation values

on magnetic stripes, 108

on plastic, 108

regular expressions, 111

DiskScraper utility, 157–159

Dispenser Payment Terminals,

46–47

documentation

PA-DSS requirements, 66

PCI DSS requirements, 75

domains, P2PE, 81–82

double standard, PCI DSS, 68

dual purpose debit cards, 93–94

bindex.indd 11:59:26:AM 01/08/2014 Page 270

270 Index ■ D–F

DUKPT (Derived Unique Key Per

Transaction)

debit PIN encryption technology, 32,

80, 172, 173, 189

described, 211–214

PTS, 80

X9.24-1 standard, 191

dumps, 114

E

Electronic Payment System. See EPS

embossed data, payment cards, 94

embossers, 116, 117

EMV (Europay, MasterCard

and Visa)

Chip and PIN, 214, 215

defi ned, 143, 214

described, 214–215

Integrated Circuit Card

Specifi cations, 214

PCI DSS Applicability in an EMV

Environment, 85–86

EMVCo standard, 214

encoders, 116, 118–120

encrypted PIN block, 213, 214

encrypted tunnels, 206–207

encryption. See also asymmetric

encryption; keys; one-way

encryption; P2PE; symmetric

encryption

AES, 155, 168, 169, 170, 173,

189, 190

device management, PCI P2PE

standard domain, 81–82

environment, PCI P2PE standard

domain, 82

encryption counter, 213, 214

EncryptionDemo application, 171, 173,

174, 177–182, 186

EncryptionDemo.exe fi le, 227, 228

encryptPassword, 184

end-to-end encryption, 129, 196. See
also P2PE

entry methods, payment cards, 5–6.

See also magnetic stripe reader

devices; POI devices

EPS (Electronic Payment System),

39–40

Europay, MasterCard and Visa. See
EMV

expiration date, magnetic stripe,

102–103

exposed PA API, 140–141

external interfaces. See interfaces

F

fake voice authorization, 143

fallacy, tokenization, 83–84

Federal Information Processing

Standards. See FIPS

fi le integrity monitoring,

59, 74

FIPS (Federal Information Processing

Standards), 189–190

FIPS 140-2, 82, 188, 189, 190, 211

FIPS 197, 189, 190

fi rewall confi gurations

Hardware P2PE, 249

PA-DSS requirements, 65

PCI DSS requirements, 70, 72,

75, 76

fl at data fi les, 151

fl eet (proprietary) cards, 4, 5

Force Post, 143

forcing offl ine authorization, 109, 144.

See also offl ine authorization

forecourt controller, 46

forensics investigations, 64,

73, 126

frame relay systems, 35, 160, 162

fueling pump, 46

future keys, 213–214

 Index ■ G–I 271

bindex.indd 11:59:26:AM 01/08/2014 Page 271

G

gateways. See payment gateways

generateKey method, 174. See also key

generation

generating tokens, 183

gift cards, 4, 5, 93

Glenny, Misha, 114

Globally Unique Identifi er, 83

Google Wallet, 48

H

hackers

intelligence, 111

motivations, 112

HackingPOS.Cryptography.

Encryption.dll, 173, 237,

238–239

HackingPOS.Scrapers.Common, 139,

159

handshake, SSL, 197–198

hardware

authorization processing, 15

manufacturers’ role in payment-

processing cycle, 11–12

settlement processing, 15

Hardware P2PE, 142, 210–211

hardware security modules. See HSM

Hardware/Hybrid P2PE, 81, 210

hash functions. See one-way

encryption

Heartland Payment Systems, 71

holograms, 96

holographic magnetic stripe, 96

HSM (hardware security modules).

See also POI devices; PTS

defi ned, 188

PTS, 57, 80

HTTPS, 206

hybrid POS/Store

deployment model, 46, 47

sniffi ng attacks, 135

I

IDs, PCI DSS requirements, 73

IIN Prefi x, 103–105

information gathering phase, data

breaches, 112

information security for personnel,

PCI DSS requirements, 75

initial KSN, 212–214

initial meeting, PA-DSS validation

process, 60

Initialization Vector (IV), 175–176

inkjet printers, 117, 120–121

insiders, 156

installing CA root certifi cate,

200–201

Integrated Circuit Card Specifi cations,

EMV, 214

integrated payment terminals,

Dispenser Payment Terminals,

46–47

integrity

application code, 240, 246

card payment systems, 143–144

fi le integrity monitoring, 59, 74

interfaces

internal, 36, 38

payment processor links,

27–28

payment transaction fl ow,

32–34

POI devices, 26

POS API, 27

summary, 38–39

types, 25, 50

internal interfaces, 36, 38

ipconfi g, Windows, 137

iPhone, non-NFC mobile payment, 49.

See also mobile payments

IPSec, 207

Island Payment Terminals, 46–47

ISO Prefi x, 103–105

bindex.indd 11:59:26:AM 01/08/2014 Page 272

272 Index ■ I–M

issuers (issuing banks)

authorization processing, 15

role in payment-processing cycle, 7–8

settlement processing, 15

issuing SSL server certifi cates, 202–203

IV. See Initialization Vector

J

JCB

BIN range, 104

card verifi cation values

on magnetic stripes, 108

on plastic, 108

regular expressions, 111

K

KEK (key encryption key), 154–155,

208

key containers, 178, 179, 222

key entropy, 170–171

key exchange, 197, 202

key generation

asymmetric encryption, 178

symmetric encryption, 174–175

key injection facility. See KIF

key injection machines, 188, 212, 213

key loggers, 73

key players, card payment processing,

6–12

key rotation, 155–156, 209

key stretching, 171

KeyComponent, 174

keys

data at rest, 207–208

DEK, 154–155

future (session), 213–214

insecure storage, 153–157

KEK, 154–155

management, 168

PKCS, 171, 175, 187, 191

private, 177–180

keystroke loggers, 5, 73

KIF (key injection facility), 82, 213

KSN, 212–214

L

language-specifi c secure coding

guidelines, 245

leased line systems, 35, 38

local in-memory communication, 36

local networks, sniffi ng, 135

logs

data at rest, 150–152

PA-DSS requirements, 64

M

magnetic stripe reader (MSR) devices.

See also POI devices

defi ned, 5

encoders, 116, 118–120

keystroke loggers, 5

POI devices, 6

PTS compliance, 11–12

swipe entry, 5

magnetic stripes, 98–110. See also PAN

card verifi cation values

described, 107–110

different names, 97

on magnetic stripes, 108–109

non-profi t organizations, 115

PA-DSS requirements, 63

payment cards feature, 94

on plastic, 108, 109–110

expiration date, 102–103

holographic, 96

PA-DSS requirements, 63

magnetic tracks

card verifi cation values, 108–109

expiration date location, 102–103

ISO Prefi x location, 103–104

PAN check digit, 105

PAN location, 102

bindex.indd 11:59:26:AM 01/08/2014 Page 273

 Index ■ M–N 273

service code location, 106–107

Track 1, 98–100

Track 2, 100–101

Track 3, 98, 119

MakeCert tool

CA creation, 198–199

code signing certifi cates, 220

issuing server certifi cate, 202–203

self-signed certifi cates, 178–179

malicious code injection, POI devices,

142

malware

defi ned, 113

preparation, data breaches, 112

virus protection

New York Times virus attack, 72

PA-DSS requirements, 65

PCI DSS requirements, 69, 71–72,

76, 79

smartphones, 143

mandatory security, payment cards,

97

man-in-the-middle attacks, 161–162

manual entry, 6. See also POI devices

masked PAN, 153

MasterCard. See also EMV

BIN range, 105

card brand, 8

card verifi cation values

on magnetic stripes, 108

on plastic, 108

false positive PAN of test cards, 133

masked PAN, 153

regular expressions, 111

MD5, 152

memory buffers, 131, 196

memory scraping, 27, 36, 126

MemoryScanner, 129, 131

MemoryScraper utility, 127–134, 136,

139, 144, 157, 159

merchants

authorization processing, 15

merchant accounts, 7, 8, 10

P2PE benefi ts, 83

PA-DSS understanding, 66–67

PCI DSS, merchant size, 75–77

responsibility, 6

role in payment-processing cycle, 7

settlement processing, 15

small, PCI DSS and, 75–77

message processing rules, 36

message protocols, 36–38

message serialization, 36

message signing. See data signatures

metallic tipping, 96

MII numbers, 104–105

minimize data exposure, data in

memory, 196

mobile payments

attacks, 142–143

described, 48–51

NFC-based, 48–49

non-NFC, 49–50

PCI SSC guidelines for developers,

86

protection, 215

monetization. See also cashers

online monetization strategy, 115

real-world action monetization

strategy, 115

security breach phase, 113

Mono, 239

MSR. See magnetic stripe reader

devices

multiple key components, 207–208

N

National Institute of Standards and

Technology. See NIST

Near Field Communication. See NFC

.NET Framework, 178, 196, 239

bindex.indd 11:59:26:AM 01/08/2014 Page 274

274 Index ■ N–P

.NET System.Security.

Cryptography, 32, 170–171,

181, 233

Netscraper utility, 136–139, 144, 157,

159

network implementation, PA-DSS

requirements, 65

network sniffi ng. See sniffi ng

New York Times, virus attack, 72

NFC (Near Field Communication), 48

NFC-based mobile payment solutions,

48–49

NIST (National Institute of Standards

and Technology), 189–190

non-NFC mobile payment solutions,

49–50

non-profi t organizations, CVV

validation, 115

O

obscurity, security through, 38

offl ine authorization (Store and

Forward, fallback processing),

17–18, 19

described, 17–18

dial-up fallback, 17, 29, 34

forcing, 109, 144

Store and Forward module, 29–30

temporary storage, data at rest,

149–150

one-way encryption (hash functions)

comparison of cryptographic groups,

168–170

described, 152–153, 181–186

diagram, 181

implementing, 181–182

ISO Prefi x, 104

passwords validation, 184–186

salting passwords, 184

salting tokens, 182–183

size, 170–171

online monetization strategy, 115

online timestamping services, 226–227

on-site assessment, PA-DSS validation

process, 60

OpenSSL, 199, 221–222, 225–226. See
also SSL

OWASP Top 10, 242–243

P

P2PE (point-to-point encryption),

209–214

ANSI standards, 191

applicability, 58

compliance with PCI, 58

conclusion, 249–250

cryptographic key operations, PCI

P2PE standard domain, 82

defi nition, PCI SSC, 81

domains, 81–82

end-to-end encryption, 129, 196

Hardware P2PE, 142, 210–211

Hardware/Hybrid P2PE, 81, 210

levels, 209–210

merchant benefi ts, 83

protection, 209–214

requirements, 82–83

Software, 209–210

types, 210, 215

PA (payment applications)

API, exposed, 140–141

architecture, 25–53

data storage, 31–32

developers, PCI DSS and, 77

mobile payments, 48–51

NFC-based, 48–49

non-NFC, 49–50

POS-PA communication

vulnerability points, 140

testing, PA-DSS requirements, 65

vendors

role in payment-processing cycle, 11

 Index ■ P–P 275

bindex.indd 11:59:26:AM 01/08/2014 Page 275

PA deployment models

gas station payment systems, 46–47

hybrid POS/Store deployment

model, 46, 47

POS EPS deployment model, 44–45

store EPS deployment model, 43–44

types, 51

vulnerability score

calculating, 41–42

factors, 42

hybrid POS/Store deployment

model, 47

POS EPS deployment model, 45

store EPS deployment model, 44

packet analyzer, 135. See also sniffi ng

padding, 175

PA-DSS (Payment Application Data

Security Standard), 59–67

applicability, 58

compliance with PCI, 58

fi rewalls, 65

merchants understanding, 66–67

payment software vendors, 11

PCI-DSS vs., 59, 77

purpose, 59–60

requirements

comparison with PCI DSS

requirements, 77–80

described, 61–66

sniffi ng attacks, 135

validation process, 60–61

virus protection, 65

vulnerability areas and

responsibility for mitigation, 59

WinHex tool, 126–127

PAN (Primary Account Number). See
also magnetic stripe

American Express

false positive PAN of test cards, 133

PAN, 101

PAN Range Routing, 29

ASCII encoding, 131

check digit verifi cation, 105–106

described, 101–102

hash functions, 152–153

ISO Prefi x, 103–105

masking, 153

rainbow tables, 153

regex searches, 131–134

Unicode encoding, 131

PANandTracksSearch, 139

passwords

database management systems, 151

PCI DSS requirements, 69, 70–71, 73,

76

salting, 184

validation, hash functions, 184–186

Payment Application Data Security

Standard. See PA-DSS

payment application memory, 125–134

payment applications. See PA

payment brands (payment networks)

authorization processing, 15

settlement processing, 15

payment card industry. See PCI

standards

payment cards. See also magnetic

stripes

artwork, 94

attacks, 93–124

brand logo, 94

color, 94

counterfeit

card physical structure limitations,

94–96

card security limitations, 97–98

described, 116–121

embossers, 116, 117

encoders, 116, 118–120

printers, 116, 117, 120–121

summary, 121

tippers, 116, 118

276 Index ■ P–P

bindex.indd 11:59:26:AM 01/08/2014 Page 276

customer service phone numbers, 96

differences, 93–94

embossed data, 94

entry methods, 5–6

holograms, 96

holographic magnetic stripe, 96

metallic tipping, 96

physical structure, 94–96

security features, 97–98

security limitations, 97–98

types, 3–5

ultraviolet marks, 94–96

payment gateways (payment switches)

authorization processing, 15

described, 40–41

role in payment-processing cycle,

9–10

settlement processing, 15

payment processor links

described, 27–28

payment transaction fl ow, 32–34

protocols interaction, 36–38

summary, 39

payment processors

authorization processing, 15

role in payment-processing cycle, 8–9

settlement processing, 15

payment switches. See payment

gateways

payment transaction fl ow, 32–34

payment transaction types, 16–19

payment-processing cycle

key players, 6–12

stages, 12–15

PCI Council. See PCI SSC

PCI DSS (PCI Data Security Standard)

applicability, 58

assessment process, 67–68

compliance with PCI, 58

conclusion, 249–250

double standard, 68

fi rewalls, 70, 72, 75, 76

introduction to world, 56

PA developers, 77

PA-DSS vs., 59, 77

passwords, 69, 70–71, 73, 76

requirements

application code and confi guration,

148

comparison with PA-DSS

requirements, 77–80

data at rest, 148

data in memory, 148

data in transit, 148

described, 68–75

small merchants, 75–77

sniffi ng attacks, 135

Tokenization Guidelines, 84

virus protection, 69, 71–72, 76, 79

vulnerability areas and

responsibility for mitigation, 59

WinHex tool, 126–127

PCI DSS Applicability in an EMV

Environment, 85–86

PCI Implementation Guide, 60–61

PCI SSC (PCI Security Standards

Council)

defi ned, 8

EMV guidance, 85–86

List of Validated Payment

Applications, 61

mobile payments guidelines for

developers, 86

P2PE

certifi cation, 82

defi nition, 81

PCI DSS certifi ed organizations list,

68

Report of Validation, 61

tokenization guidelines, 83–84

 Index ■ P–P 277

bindex.indd 11:59:26:AM 01/08/2014 Page 277

PCI standards (payment card

industry), 55–89. See also P2PE;

PA-DSS; PCI DSS; PTS

applicability, 58

compliance

list of issues, 58

security vs. compliance, 57

defi ned, 56–57

introduction, 55–56

lack, 55

PCI-protected areas, 147–164

data at rest, 148–159

data in transit, 160–163

summary of areas, 147–148

PED (PIN Entry Devices), 80,

213–214

PEM format, 222–223

penetrating security free zones,

125–146. See also application code

memory scraping, 27, 36, 126

MemoryScraper utility, 127–134, 136,

139, 144, 157, 159

Netscraper utility, 136–139, 144, 157,

159

payment application memory,

125–134

sniffi ng, 134–140

swap fi le, 134

WinHex tool, 126–127

penetration testing, 60, 74

personnel information security, PCI

DSS requirements, 75

PFX certifi cate fi le, 179–180, 225–226

pin block data

PA-DSS requirements, 63

PIN Entry Devices. See PED

pinpads. See also POI devices

defi ned, 6

PTS compliance, 11–12

TRSM capabilities, 6

PKCS (Public-Key Cryptography

Standards), 171, 175, 187, 191

PKI. See Public Key Infrastructure

plaintext, 175

plastic, card verifi cation values on,

108, 109–110

POI (point of interaction) devices

defi ned, 6

interface, 26

interfaces/protocols summary, 38–39

malicious code injection, 142

manual entry, 6

payment transaction fl ow, 32–34

POS-POI devices communication

vulnerability points, 140

skimming, 142

point of interaction. See POI devices

point-of-sale. See POS

point-to-point encryption. See P2PE

POS (point-of-sale) systems

API

described, 27

payment transaction fl ow, 32–34

summary, 38–39

attacks

future technologies, 142–143

hardware, 141–142

out of scope, 40

PA-POS communication

vulnerability points, 140

POI-POS communication

vulnerability points, 140

POS Vulnerability Rank Calculator,

251–255

PreAuth, 16, 19

“Preventing Memory-Parsing

Malware Attacks on Grocery

Merchants,” 125–126

Primary Account Number. See PAN

printers, 116, 120–121

bindex.indd 11:59:26:AM 01/08/2014 Page 278

278 Index ■ P–R

Privacy Rights Clearinghouse, 56, 113

private keys, asymmetric encryption,

177–180

processing modules

batch, 31

payment transaction fl ow, 32–34

router module, 28–29

Store and Forward module, 29–30

types, 28, 51

ProcessMemoryLoader, 129

processMemSize, 130

processors. See payment processors

production-grade code signing

certifi cate, 223–226

proprietary cards. See fl eet cards

proprietary message protocols,

36–38

protection (cardholder data), 195–217.

See also application code; EMV;

PCI-protected areas

data at rest, 207–209

data in memory, 195–196

data in transit, 197–207

P2PE, 209–214

PA-DSS requirements, 63–64

summary, 215

protocols

communication, 35–36

internal, 38

message, 36–38

summary, 38–39

PTS (PIN Transaction Security)

applicability, 58

compliance

PCI, 58

pinpads, 11–12

described, 80

MSR devices, 11–12

public key, 177

public key encryption. See asymmetric

encryption

Public Key Infrastructure (PKI), 177

public networks, PA-DSS

requirements, 66

Public-Key Cryptography Standards.

See PKCS

purchases. See sales

Pvk2pfx tool, 179–180, 202–203, 205,

230

Q

QSAs (Qualifi ed Security Assessors),

60–61, 68, 82, 126

R

rainbow tables, 152–153

RAM scraping. See memory scraping

RandomNumberGenerator, 171,

175, 184

reactive security controls, 64

ReadProcessMemory, 129

real-world action monetization

strategy, 115

recharge, 18, 19

recursive search, DiskScraper

utility, 158

regular expressions (regex)

MemoryScraper, 130, 131–134

Track 1, Track 2, PAN components,

110–111

remote access, PA-DSS requirements,

65–66

Report of Validation, PA-DSS

validation process, 61

requirements

P2PE, 82–83

PA-DSS, 61–66

PCI DSS, 68–75

retrieving sensitive data, security

breach phase, 112

returns, 16–17, 19

reversals. See TOR

bindex.indd 11:59:26:AM 01/08/2014 Page 279

 Index ■ R–S 279

reverse engineering

defi ned, 156, 237

described, 237–240

disassembling, 141, 156

review paperwork, PA-DSS validation

process, 60–61

Rfc2898DeriveBytes, 171, 174, 183,

238, 240

root CA, 221–222

root certifi cate, 199–201

router module

described, 28–29

payment transaction fl ow, 32–34

RSA algorithm, 169, 177, 191

RSACryptoServiceProvider, 180

S

sales (purchases), 16, 19

salting passwords, 184

salting tokens, 182–183

scope

defi ned, 40

out of scope POS, 40

PCI DSS assessment, 67–68

secure card reader (SCR), 213–214

secure coding standards, 242–245

secure key management, 207

Secure Sockets Layer. See SSL

secure strings, 196

SecureString, 196

security. See also protection

communication, 38

PA vulnerability score

calculating, 41–42

factors, 42

hybrid POS/Store deployment

model, 47

POS EPS deployment model, 45

store EPS deployment model, 44

reactive security controls, 64

security through obscurity, 38

security auditors

PCI DSS, 75, 77

QSAs (Qualifi ed Security Assessors),

60–61, 68, 82, 126

security breaches. See data breaches

security free zones. See penetrating

security free zones

security questionnaire. See POS

Vulnerability Rank Calculator

Select Certifi cate Store dialog,

201

self-signed certifi cates,

178–179

serial connections, 35, 70

server certifi cate, 197–198, 202–203

service codes, 106–107

session keys, 213–214

settlement, 13–15

SHA, 152, 153, 170, 190, 200, 202

signatures

attached, 186–187, 229–230

Authenticode signature, 186–187,

220, 229, 230, 246

described, 186–187

implementing, 235–237

strong-name signing,

187, 220

XML signing, 187, 235

data signatures, 229–237

message signing, 187

types, 230

described, 186–187

detached signatures

code signing, 229–230

described, 186–187

implementing, 232–235

strong-name signing, 187, 220

SigningDemo application,

228–229

SignTool, 220, 225, 227, 228

size, encryption, 170–171

bindex.indd 11:59:26:AM 01/08/2014 Page 280

280 Index ■ S–T

skimming

defi ned, 142

Integrated Payment Terminals, gas

station pumps, 47

MSR devices, 118

small merchants, PCI DSS and,

75–77

smartphones, 142–143. See also mobile

payments

S/MIME standard, 187

sniffi ng, 134–140

social engineering, 73, 113, 115, 142

Software P2PE, 209–210

spoofi ng attacks, 141

SSL (Secure Sockets Layer)

encrypted tunnels, 206–207

handshake process, 197–198

implementing, 197–206

key exchange, 197, 202

OpenSSL, 199, 221–222,

225–226

server certifi cate, 197–198,

202–203

TLS, 66, 79, 161, 197

vulnerabilities, 160–161

SSLDemo application, 198–199

SSLDemoClient, 198, 205

SSLDemoRoot.cer, 198, 200, 202, 205,

206, 220, 222, 230

SSLDemoRoot.pvk, 200, 202

SSLDemoServer, 198–199,

203, 205

Starbucks’ Mobile App, 49–50

stolen payment cards incident, 114

Store and Forward. See offl ine

authorization

strings, secure, 196

strong symmetric encryption, 173

strong-name signing, 187, 220

swap fi le, 134

swipe entry, 5. See also magnetic stripe

reader devices

switches. See payment gateways

symmetric encryption

benefi ts, 172

comparison of cryptographic groups,

168–170

decryption, 175–176

described, 172–176

diagram, 172

implementing, 174

key generation, 174–175

size, 170–171

strong algorithms, 173

symmetric key management. See
DUKPT

System.Security.Cryptography, 32,

170–171, 181, 233

T

Tamper-Resistant Security Module.

See TRSM

“Targeted Hospitality Sector

Vulnerabilities,” 125–126

TDEA. See Triple DES

temporary storage, 21, 148, 149–150,

162. See also offl ine authorization;

TOR

testing

payment applications, PA-DSS

requirements, 65

penetration, 60, 74

security systems, PCI DSS

requirements, 74–75

text fi les, DiskScraper utility,

159

TG-3. See TR-39

thermal PVC printers, 116, 120

3TDEA, 170

timeout reversals. See TOR

timestamping, 226–227

tippers, 116, 118

TJX security breach, 113–114

TLS (Transport Layer Security), 66, 79,

161, 197. See also SSL

tokenization, 83–84

bindex.indd 11:59:26:AM 01/08/2014 Page 281

 Index ■ T–V 281

tokens

defi ned, 182

generation, 183

salting, 182–183

TOR (timeout reversals)

data at rest, temporary storage,

149–150

defi ned, 18, 19

described, 30–31

TR-39 (TG-3), 188, 191, 211

tracks. See magnetic tracks

Transport Layer Security. See TLS

Triple DES (TDEA), 170, 189–190

Trojans, 73

TRSM (Tamper-Resistant Security

Module)

defi ned, 188

DUKPT, 213

P2PE, 209, 210, 211

pinpads, 6

POS Vulnerability Rank Calculator,

253–254

Trusted Root Certifi cation Authorities,

201, 220, 222, 230

tunnels, encrypted, 206–207

2TDEA, 170

two-factor authentication, 4, 65,

73, 79

U

ultraviolet marks, 94–96

Unicode, 130–131

unique IDs, PCI DSS requirements,

73

V

ValidatePassword, 185

validation

custom server certifi cate validation,

204

PA-DSS, 60–61

passwords, hash functions, 184–186

PCI DSS assessment process, 67–68

verifi cation. See also card verifi cation

values

PAN check digit, 105–106

VeriSign, 199, 227

virus protection

New York Times virus attack, 72

PA-DSS requirements, 65

PCI DSS requirements, 69, 71–72, 76,

79

smartphones, 143

Visa. See also EMV; payment cards

BIN range, 104

card brand, 8

card verifi cation values

on magnetic stripes, 108

on plastic, 108

false positive PAN of test cards, 133

masked PAN, 153

regular expressions, 110

stolen cards incident, 114

“Targeted Hospitality Sector

Vulnerabilities,”

125–126

VisaNet, 8

voice authorization, fake, 143

voids, 16–17, 19

vulnerability areas

attack vectors vs., 20

described, 20–22

PA-DSS, responsibility for

mitigation, 59

PCI DSS, responsibility for

mitigation, 59

tokenization guidelines, 83–84

Vulnerability Rank Calculator, POS,

251–255

vulnerability score

calculating, 41–42

factors, 42

hybrid POS/Store deployment

model, 47

POS EPS deployment model, 45

store EPS deployment model, 44

282 Index ■ W–Z

bindex.indd 11:59:26:AM 01/08/2014 Page 282

W

wardriving, 113–114

WCF. See Windows Communication

Foundation

WiFi, 48

Windows API functions, 129

Windows Communication Foundation

(WCF), 198

Windows ipconfi g, 137

Windows page fi le, 134

WinHex, 126–127

wireless transmissions

PA-DSS requirements, 64–65

wardriving, 113–114

Wireshark, 135–136

wiretapping, 38, 134, 135, 139, 140

worms, 72

X

X9.24-1 standard, 191

X.509 certifi cate, 178, 187, 222

X509Certificate2, 180, 202, 203

XML signing, 187, 235

XMLDSIG, 235

XOR, 175

Z

 zero-day software, 72

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Part I Anatomy of Payment Application Vulnerabilities��
	Chapter 1 Processing Payment Transactions��
	Payment Cards������������
	Card Entry Methods�����������������
	MSR��
	Pinpad�����

	Key Players����������
	Consumer (Cardholder)��������������������
	ß¼`oChÞraé_UÏﬁv³˜Þ˛Õ±eÒùVvÝÔ
(î]
	~†zı9Łñﬁ×/!Wh’Ú—Ó¦�Åš9—(�a@ç³2J±
	Issuer�����
	Card Brands����������

	}Uú›i÷vû-{ÜÅ¶�‰X2ﬁÎ’ëÔ˜q�€4m1�ü‚2òÎéë±˜��Ó4m1�ü‚
	Payment Processor����������������
	Payment Gateway��������������

	Even More Players����������������
	Y�⁄z&Vﬁÿ/
)5ož¦¥ËÛ¨ÏádłŠœáèR`@Å×�¶˘uºYµ˘…ÅðjGÙ��^›�)±ƒåNåï˛Ö{_‚Ã^ú�)±ƒåNåï˛Ö{_‚Ã^ú�)±ƒåNåï˛Ö{_‚Ã
	Hardware Manufacturers���������������������

	Payment Stages�������������
	Authorization������������
	Settlement���������

	ë5¥Æ4zOÏuU{ØÊéÊ‡Oóï‹_-µ�§Çò�ßzSÓÁèÎ˙Ÿ>ˇš¼ZÒšßê�±ÁœÎrŸQˇó¼)Òšßê�±ÁœÎrŸQˇó¼)Òšßê�±
	Sale vs. PreAuth/Completion��������������������������
	Void and Return��������������
	Fallback Processing������������������
	Timeout Reversals����������������
	Special Transaction Types������������������������

	k¿.ú@~®ł`dnKÎu{>ÿ)+¼"Ł¦¥`Ú{:��zý©¼5)íâŽ‹[Ž�ü8.âl+Ñ¨²ªû]‰ž?…˝>bb\É™PÖëo�îGÐÏÕáŠå"÷~˝=7Oﬁô�î×LÐ�Ò´^˘n?‰P¨âbÙ˘FSy¶O^kn?‰P¨âbÙ˘FSy¶O^kn?‰P¨âbÙ˘FSy¶O^kn?‰P¨âbÙ˘FSy¶O^kn?‰P¨âbÙ˘FSy¶O^kn?‰P¨âbÙ˘FSy¶O
	Summary������

	Chapter 2 Payment Application Architecture���
	´“è~ª¬��õ�⁄Ë~��1®–§_³¨Æ˚Î³¨¾zªÊ'ñÑÛ4Å4Ù#µ
DRqﬂ(CÍ«ŠZˇˆøZA�ës`Ÿ"�ˆPQ„þñùìo|pÐ½éÙÿˆ<Qãþ™ù⁄o�pÐ½éÙÿˆ<Qãþ™ù⁄o�pÐ½éÙÿˆ<Qãþ™ù⁄o�pÐ½éÙÿˆ<Qãþ™ù⁄o�pÐ½éÙÿ
	Interfaces���������
	Processing Modules�����������������
	ðÊ�²âñ5ˆcOà•ç¾ïNk€¬£èQõ7�8Ï´e˘ú°kÏ¬Ñè0õP�]Ï´e˘ú°
	î	«2"⁄î�ô¸ïÎúGb�/ˇHòÃ÷-€�eÓ¢ﬂÄŽÆq5Ž^Uï,ýłÕžZ©ËÅIáK·�
)3�Ù�òÜ¬²Ł�áe™:ñžèú›ÅÄ-ã˚A]á�™:ñžèú›ÅÄ-ã˚A]á�™:ñžèú›ÅÄ-ã˚A]á�™:ñžèú›ÅÄ-ã˚A]

	Communication Between Modules����������������������������
	i
ï³˚é¡ª(˙�ïïOzÞˇˆÃRh„™HÑﬂáïnlp6‘�Ç9A&EM˜Íi�ì¡nM‘xÇPAIE#˜¾i�ì¡nM‘xÇPAIE#˜¾i�ì¡nM
	Communication Protocols����������������������
	Local Communication������������������
	Message Protocols����������������
	Internal Protocols�����������������
	Communication Summary��������������������

	Deployment of Payment Applications���������������������������������
	The Concept of EPS�����������������
	Payment Switch�������������
	Comparing Deployment Models��������������������������
	Store EPS Deployment Model�������������������������
	Ö>†%b�þôÑ=vłŁÛ8ù+ª�Î‡ç3û�M��z0ãEŁTŒÿÄ…ﬁ]Æè;ñ‹4µmZ�˛râäª�˝x&"Š/ﬂøZ�˛râäª�˝x&"Š/ﬂøZ�˛râäª�˝x&"Š/ﬂø
	Hybrid POS/Store Deployment Model��������������������������������
	Gas Station Payment Systems��������������������������
	Mobile Payments��������������

	Summary������

	Chapter 3 PCI������������
	¼W-V>ÞW ⁄¯~Ôé>õ�Ðš=vl–l=e@ÓG˛/ŽÌÐ½=&lÆlte�ÓG˛/ŽÌ
	PCI Standards������������
	PA-DSS vs. PCI DSS�����������������
	PA-DSS�����
	PCI DSS������
	Comparing PA-DSS and PCI DSS Requirements��
	PTS��
	ä�Iáł3ŸÜËáÝ]ê˚šK

	PCI Guidelines�������������
	Fallacy of Tokenization����������������������
	Ü†86YÂêl‡Di8W6Íw{):‡˚ˇÛpb�e"—n£É{M:ã˚wÛ�b`e"—n£É
	Mobile Payments Guidelines for Developers��

	Summary������

	Part II Attacks on Point-of-Sale Systems���
	Chapter 4 Turning 40 Digits into Gold������������������������������������
	Magic Plastic������������
	<³%ãw�a½{
†é¡=�êÈ
−�ÞñnÌÍƒ;�??'’¡�?U
û0�†�þ*P˜»JÚ?#ÀX,�Tªù´Ýˇô�é���3í"×åñ5¹Ã\[���ñÎ|l
�S`·�Èê‹�u�ñÎ|l
�S`·�Èê‹�u�ñÎ|l
�S`·�Èê‹�u�ñÎ|l
�S`·�Èê‹�u�ñÎ|l
�S`·�Èê‹
	Why Security Features Fail�������������������������

	Inside the Magnetic Stripe�������������������������
	Track 1������
	Track 2������
	PAN��
	Expiration Date��������������
	ISO Prefix and BIN Ranges������������������������
	PAN Check Digit��������������
	Ýhł)	\÷Ł?QàDÕŸr−â>�ÌzA¬¹
9Vú¯˚ÎGâ˚�‘z.¬Ý
\Vú¯˚ÎG
	‚d7T””;vô˛MñT"@ÑÌzóòŒ˛H…4kﬁ[Éßv&NfÅﬂÒMﬁÛû¦⁄Q6¬–YÛáãÀ(ˆúŠÍ“ˆ¼o~©nÛ™ãÀ(ˆúŠÍ“ˆ¼o~©nÛ™ãÀ(ˆúŠÍ“ˆ¼o~©n

	Regular Expressions������������������
	Getting the Dumps: Hackers�������������������������
	Security Breach��������������
	æ<,z�4Ó	àæ=trłcZ˝¤¢ÏW›sû�æ²m¸˜%Ä��Â\$V'·€€6Fb-Ê‹º�ł A	Nå˜�‡C®êa�º`łEAhNƒ˜x‡C®êa�º`łEAhNƒ˜x‡C®êa�º`łEAhNƒ˜x‡C®êa�

	Converting the Bits into Cash: Carders�������������������������������������
	˛9®¹�ªWDª=›™�fîO×C6ô�céîÆNW”0´Âð§�«®™Ù�ØM˙L+Ÿ˙/	⁄#Wçbkjó=�ÏﬂK†™Ł˝opÔç%ŸÏ0ï/§ ä}£˝˝pÔç%ŸÏ0ï/§ ä}£˝˝pÔç%ŸÏ0ï/§ ä}£˝˝pÔç%ŸÏ0ï/§ ä}£
	Producing Counterfeit Cards��������������������������
	Ý˝ïÀnP¥ø^oô	5!WøEçUë�›‚@dI�D$«"�
	¢U‘"‹€ào4Ÿ��Ùô'êGí)6G¹D‰gÖÓ‡ÖöO�

	Summary������

	Chapter 5 Penetrating Security Free Zones��
	Payment Application Memory�������������������������
	Y¤c�ˆƒBFˇı50>@wGúi˝ñQ)\¶{±¡vJ»æ÷ú�˝†Q@\Ø{Ö¡vJ»æ÷
	WinHex�����
	MemoryScraper Utility��������������������
	Windows Page File����������������

	˛ﬂÝÓ�(4à�ëbÚo�¬„�îšb_Ñ�/I�ŠÔì‘|ë
	Traffic on Local Networks������������������������
	/�Ñsw�ˇT©Êû›�zVÝ'qã�ŸZH@ìæœæ�±7vë2Ãﬁ�büd§D(Œ”¤nÀëAÃﬁ�büd§D(Œ”¤nÀ
	NetScraper Utility�����������������
	More Communication Vulnerability Points��������������������������������������

	ÈýµáUî·ÉJ�êŁ−
}ä9⁄_àaMæoÜnÔ{Áu=´)&LaÞc5"öè	ÿë�0	˝,˛�h$¯ÂPãÂ4þO)[7“\>uñ¬¹å�[�È�Äª7þ\>uñ¬¹å�[�È�Äª7þ\>uñ¬¹å�[�È�Äª7þ\>uñ¬¹å�[�È�Äª
	Tampering With the Application�����������������������������
	Tampering With the Hardware��������������������������
	Targeting New Technologies�������������������������
	Attacks on Integrity and Availability������������������������������������

	Summary������

	Chapter 6 Breaking into PCI-protected Areas��
	PCI Areas of Interest��������������������
	Data at Rest: The Mantra of PCI������������������������������
	Temporary Storage����������������
	Hıä€¤⁄úbÍVqÊ»ºõªÒ÷Zf9øJp¨¯Ł–Ls³%®�¬ïbÎC"ÿžRààÕłß®Þ¬ïbÎC"ÿžRààÕłß
	Hashed PAN���������
	Insecure Storage of Encryption Keys����������������������������������
	DiskScraper Utility������������������

	Óù�ã`zÊL�D/<f�JéÛÛM¦�½òH×�S�œè‹(º�M.�ìIBÖ�—�Éúñ�P†"�©à–SÑ©js{-/ˇ0¹Dyâ�$\™_qû„)�uı5à±˙�‡-¿Ú¯!w”¥’ı
à±˙�‡-¿Ú¯!w”¥’ı
à±˙�‡-¿Ú¯!w”¥’ı
à±˙�‡-¿Ú¯!w”¥’ı
à±˙�‡-¿Ú¯!w”¥’
	SSL Vulnerabilities������������������
	Man-in-the-Middle����������������

	Summary������

	Part III Defense�����������������������
	Chapter 7 Cryptography in Payment Applications���
	The Tip of the Iceberg���������������������
	Symmetric, Asymmetric, or One-way?���������������������������������
	Does Size Matter?����������������
	Key Entropy����������
	Key Stretching�������������

	�ø?¡±>˛ÞXok‹��%cý��+œÓý�‰"´('Þ¥JóÅ¶æ¬“3„&�W–˙j.Þóµ¶™¬ä3ã&mW–˙j.Þóµ¶™¬ä3ã&mW–˙j.Þ
	Strong Algorithms����������������
	EncryptionDemo�������������
	Implementing Symmetric Encryption��������������������������������
	Generating the Key�����������������
	Blocks, Padding, and Initialization Vectors��
	Encryption and Decryption������������������������

	Asymmetric Encryption��������������������
	Implementing Public-key Encryption���������������������������������
	Generating the Keys������������������
	Self-signed Certificate����������������������
	"»�‚ƒŸ+äj¿	ž„„Ê�Ê-D†^¤çïù…Ô¯JÁÔSÂº�w���K�-bóËD÷˛Âı�1�b�'�HbóËD÷˛Âı�1�b�'�HbóËD÷˛
	Encryption���������
	Decryption���������

	One-way Encryption�����������������
	Implementing One-way Encryption������������������������������
	Salting Tokens�������������
	Salting Passwords����������������
	Iè|_Ol±ž`Ž¯í¯´¯Ñ€Z‡T{m6Qh�:DfmÞ˙œ„x¼‰t
6á�4¬tïßýœûxÓ‰�
Ráf4¬tïßýœûxÓ‰�
Ráf4¬tïßý

	Digital Signatures�����������������
	Žô§¤6S…²ž.bÂ!ˇÎˇ›±�0^rÎvëŁº§wR�ƒXoY�Ï–²³äÆx#2Æ¥Žñtœ-@XgõË~Æ:�ÛÝ<Wš²�
«Æ>*þ¢ß§�æÔWî²�
«Æ>*þ¢ß§�æÔWî²�
«Æ>*þ¢ß§�æÔWî²�
«Æ>*þ¢ß§�æÔ
	Code and Configuration Signing�����������������������������
	Data File and Message Signing����������������������������

	Cryptographic Hardware���������������������
	Cryptographic Standards����������������������
	NIST and FIPS������������
	~`©�~½º˙w†…”;Ês⁄
	ZðxjœÕ�	Wú¤‘˚Z©’

	Summary������

	"äRšÅñG†eKgZ�r(¥jèSšłd�¿Ø"t4r¿y#ÂÙý,Âﬁø¤�¤Ù
qŁ&38ÄÎ_\l˚Ã�Äð!MI&
`ª�ÙíÝ_œ:ÁwJÊÂE�`−�ší¼_è:€wJÊÂE�`−�ší¼_è:€wJÊÂE�`−�ší¼_è:€wJÊÂE�`−�ší¼_è:€wJÊÂE�
	Data in Memory�������������
	¬•éâK3
Æs�BÁÍ°I
ñþïá��ÿn‘@¦J3aD›¸àÌ
6p–�Þzu��jÝ�j³·�XÖ•Ðô†h©‡k�ÏjÖ·�XÖ•Ðô†h©‡k�ÏjÖ·�XÖ•Ðô†h©‡k�Ï
	Encrypting Data End to End�������������������������

	Data in Transit��������������
	�¶Þ�ˆ‰ û§ÖMÏŠ`˘›ú��I&º¢ž�AŠak$7ùÑ%�<æ»÷]Ç‚ãJÄW×¤Ñi�<æ»÷]Ç‚ãJÄW×¤
	Using Encrypted Tunnels����������������������

	kF¥�¢ð�¸⁄²uçö¼§�›#�=voŸ¯uÆ�XŽV˘z›��ov
ŸÜu²�XŽV˘z
	Secure Key Management��������������������
	Multiple Key Components����������������������
	KEK and DEK����������
	Rƒä$â[oN4R˛›œºO.¸�•§-®8�U[
3MÄçi¸þ•Ó-Ç8lU5
3MÄçi

	Point-to-point Encryption������������������������
	−o;y\cÕ)<0�{“ÐØÐ½	&õO®_:_¨íP]$Só‡c~rŠ �›§�ÌN�]Üü®�7&Q3�‡
BAm~âY�¼|ì˚kÂfı™�ýPº‹�ò¼�ì˚kÂfı™�ýPº‹�ò¼�ì˚kÂfı™�ýPº‹�ò¼�ì˚kÂfı™�ýPº‹�ò
	Levels of P2PE�������������
	Hardware P2PE������������
	¢™‰¦•¤Ž@��&B”p9�í¤˝˚]zOòuÓK ›ˇ*!ç�p·úÞÄ˙çMº•x
YÖçjpÚú»Äuç9º•x
YÖçjpÚú»Äuç9º•x
YÖ

	EMV��
	Mobile and Contactless Payments������������������������������
	Summary������

	Chapter 9 Securing Application Code����������������������������������
	B•˜QIÑ9n-Îô}¯�[Ids>ı³�LVíÑe�†—…²d�>ô³{L8í¶e�†—…²
	^
û'òÛx�ÃªZ÷í�öð
Ýéï.…Ë�f�˚?¶b1÷
´é„.ìËrfu˚?¶b1÷
	Code Signing Certificates������������������������
	Creating the Root CA Using OpenSSL���������������������������������
	Certificate Formats������������������
	OÑÄˇ}ûçNë:ÿ!Í¸š¼��ÏÌy„�ººÈ6‰~Ł8¾†ÄX���ì‡ÃÅtk£Õ+�»Šd�X�wﬁ®øł⁄2EœÂ(®/łÉ0„=—⁄ÿÃe~ÑZª	kË"�boJnÃìr˚¹ÇžôÒ\˝x˘!+d{ˇRš¿ÕžšÒ?˝ˇ˘U+�{ˇRš¿ÕžšÒ?˝ˇ˘U+�{ˇRš¿ÕžšÒ?˝ˇ˘U+�{ˇRš¿ÕžšÒ?˝ˇ˘U+�{ˇRš¿ÕžšÒ?˝ˇ˘U+�{ˇRš¿ÕžšÒ?˝ˇ˘U+�{ˇRš¿Õ
	Timestamp��������
	Implementing Code Signing������������������������

	‘�‡˝r‰Œ‰äMìdÆ•AÅƒ)n6øÅŁ=n^•˛!Ûuò›!‰S3¦c�-„�›ƒ�{�»ùa¥™ù¤ﬂHÃ{ÑÛ§™ÿJ¶�þÜ·Â¡aíX=r\œRJð�ŠÜÛÂÄažX=r\œRJð�ŠÜÛÂÄažX=r\œRJð�ŠÜÛÂÄažX=r\œRJð�ŠÜÛÂÄažX=r\œR
	Attached or Detached?��������������������
	¼�˙®Û8né…i,¸�z�8n+¥ìÑ~ˆÁ¢�%Ñ�Ž¡(iJ–ł‹�6⁄´n„±q3ƒŽñ'c=PÍ⁄Ä=N¹¼a.óKñBc=PÍ⁄Ä=N¹¼a.óKñBc=PÍ⁄Ä=N¹¼a.óK
	Certificate Store����������������
	Implementing Detached Signature������������������������������
	Attached Signatures������������������
	Signing XML Files����������������
	Implementing Attached Signature������������������������������

	Ó—:z„'Ñb¸Rﬂ„€N	NˆÆ-w#Õ’�f(ÂyÏ¥¾,ZÙ¢F²}¯�Ë]=fŽˇ—HZ·¢F²}¯�Ë]=fŽˇ—H
	Reverse Engineering������������������
	¢F..zðıLaò�à�€�“ýT®�Uù
²ä£h&F`pÌÁxïžâ]rx1r˝Å¦�s½ÁXïÝâ2r˝1�˝Å¦�s½ÁXïÝâ2r˝1�˝Å¦�s½

	Êi†Éý4½é•¸}5’e«›‰@‚	ÁÛKþŁFœ˘¥Lø�ìƒ×d»3S‘R�4� '�>J5Tﬁ³:¾rCêœÜD+OöJFTﬁ³:¾rCêœÜD+OöJFTﬁ³:¾rCêœÜD+Oö
	v7u˚�”þ�Ï‡ûÚ*!ıíYŁ{�õ¥^½*¼Ñ;½8ïPYú{tõ–^„*„Ñ;½8ïP
	CWE/SANS Top 25��������������
	
ÂhžÌg˚ﬂ�i˝ëÃo⁄6¼€¨Õj‘@7yE�óˇÖæ¯0�†ÿ3¼�	<l.{z�
’ìaÒï˚4Ò⁄˛ýLØ\˜�}ì
Òƒ˚ZÒâ˛”LØ\˜�}ì
Òƒ˚ZÒâ˛”LØ\˜�}ì
Òƒ˚ZÒâ˛”LØ\˜�}

	Summary������

	Conclusion�����������������
	Appendix A POS Vulnerability Rank Calculator���
	Security Questionnaire and Vulnerability Rank��
	The Scoring System�����������������
	�[�¶ÝÑÎ±Ł�bkÝ±•'íÕÜ7ƒõ;F´‚Wt0]ó=í¡Ü^ƒı;(´âWt0]ó=
	POS Security Questionnaire�������������������������
	/"ì.qãÈ�!PŁb
˘�›.œˆoöû"=æJ¨yo˜>\�ÉöÑ—½E€å×�C2ÂÙÁ�ºö¤—ÑEÔå¤�C2ÂÙÁ�ºö¤—ÑEÔå¤�C2ÂÙÁ

	Appendix B Glossary of Terms and Abbreviations���
	Index

