“A remarkable collection of characters...courageously exploring mindspace,
an innerworld where nobody had ever been before.” —The New York Times

MARSH
MILHON HARRIS
JOBS STEPHENSON
STALLMAN MOORE

FRENCH

hackers

heroes of the computer revolution

GATES SCHWADER DRAPER
CARLSTON ESPINOSA DAVIS
DREERUSTRSECAH ERERSSSEESNSS T E I N
JEWELL ERREE D K1 N
RIOIBEIRSIES SUNDERLAND
SUSSMAN SIRsESRIGIES]
I QEMIMEBENREVETSK MEEN S K Y
DOMPIER MERTON
SULLIVAN WIGGINTON
SAUNDERS SOLOMON SAMSON
GREENBLATT PITTMAN BOX
GARRIOTT WOODS
SEFISVEESR WARREN
KNIGHT KOTOK
OSBORNE steven levy
NELSON
WILLIAMS WILLIAMS RUS:S EL L
WOZNIAK A BEREENCHE T
BOX GOSPER
NELSON DUCHAINEAU
NOFTSKER
MELEN SOKOL
MCCARTHY

ENTE PAKSRISIN

O'REILLY


http://www.allitebooks.org

Computers General/Computer Programming/Hacking

hackers

heroes of the computer revolution

This 25th anniversary edition of Steven Levy’s classic book traces the exploits
of the computer revolution’s original hackers —those brilliant and eccentric
nerds from the late 1950s through the early '80s who took risks, bent the
rules, and pushed the world in a radical new direction. With updated material
from noteworthy.hackers such as Bill Gates, Mark Zuckerberg, Richard
Stallman, and Steve Wozniak, Hackers is a fascinating story that begins

in early computer research labs and leads to the first home computers.

Levy profiles the imaginative brainiacs who found clever and unorthodox
solutions to computer engineering problems. They had a shared sense of
values, known as “the Hacker Ethic,” that still thrives today. Hackers captures a
seminal period in recent history when underground activities blazed a trail for
today’s digital world, from MIT students finagling access to clunky computer-
card machines to the DIY culture that spawned the Altair and the Apple Il.

“If you want to change the world in some big way, that’'s where
you should start—biological malecules. Those are all pretty
deep problems that need the same type of crazy fanaticism
of youthful genius and naivete that drove the PC industry,
and can have the same impact on the human condition.”

—Bill Gates, Bill and Melinda Gates Foundation

Steven Levy is a senior writer for Wired, and formerly the chief technology
writer and senior editor for Newsweek. Levy has written six books, including
Crypto (Penguin), and has had articles published in Harper’s, Macworld, the
New York Times Magazine, the New Yorker, Premiere, and Rolling Stone.

lie Oz Safari’ OREILLY

ISBN: 978-1-449-38839-3

Books Online
52199 Free online edition

TATORITIOC arvi ——e

81449"38839 purchase of this book.

Details on last page.

oreilly.com



http://www.allitebooks.org

Hackers

vww allitebooks.con]



http://www.allitebooks.org

vww.allitebooks.cond



http://www.allitebooks.org

Hackers

Steven Levy

O’REILLY"

Beijing ¢« Cambridge * Farnham ¢ Kéln ¢ Sebastopol ¢ Taipei * Tokyo

vww allitebooks.con]



http://www.allitebooks.org

Hackers
by Steven Levy

Copyright © 2010 Steven Levy. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,

Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or

corporate@oreilly.com.

Editor: Mike Hendrickson
Production Editor:

Rachel Monaghan
Production Services:

Octal Publishing, Inc.

Indexer: John Bickelhaupt
Cover Designers:

Monica Kamsvaag and

Edie Freedman
Interior Designer: Ron Bilodeau

Copyeditor: Amy Thomson

Printing History:

May 2010: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Hackers and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

ISBN: 978-1-449-38839-3
[SB]

vww.allitebooks.cond



http://safari.oreilly.com
http://www.allitebooks.org

Contents

CAMBRIDGE: The Fifties and Sixties

Preface ........... ... . ix
Who's Who: The Wizards and Their Machines ........... xi
Part One. TRUE HACKERS
CAMBRIDGE: The Fifties and Sixties

Chapter 1

The Tech Model RailroadClub ........................... 3
Chapter 2

TheHackerEthic ....... ... ... ... .. .. . . . . . . . ... ......... 27
Chapter 3

Spacewar ............... 39
Chapter 4

Greenblattand Gosper ................................. 61
Chapter 5

The Midnight Computer Wiring Society . ................ 83
Chapter 6

Winnersand Losers .................. ... ... .. ... ... 101
Chapter 7

Life ... 123

vww allitebooks.con]



http://www.allitebooks.org

vi Contents

Part Two. HARDWARE HACKERS

NORTHERN CALIFORNIA: The Seventies

Chapter 8

Revoltin2100 ........ ... ... ... ..................... 151
Chapter 9

EveryManaGod ..................................... 179
Chapter 10

The Homebrew ComputerClub .................... ... 201
Chapter 11

TinyBASIC ... ... . ... 227
Chapter 12

WOz ... 249
Chapter 13

Secrets ... 275

Part Three. GAME HACKERS

THE SIERRAS: The Eighties

Chapter 14
The Wizardand thePrincess .......................... 289
Chapter 15
TheBrotherhood ..................................... 313
Chapter 16
The Third Generation ................................. 325
Chapter 17
SummerCamp ... 345
Chapter 18
Frogger ................ . ... ... 365

vww allitebooks.con]



http://www.allitebooks.org

Contents vii

Chapter 19
Applefest . ... ... ... ... .. 389
Chapter 20
Wizardvs.Wizards ................................... 413

Part Four. THE LAST OF THE TRUE HACKERS

CAMBRIDGE: 1983
The Lastofthe TrueHackers . ......................... 437
Afterword: Ten YearsAfter . ........................... 455
Afterword: 2010 . ... ... 463
Notes . ... . 479
Acknowledgments ................ ... ... . ... ..., 485
Index . ... 489

vww allitebooks.con]



http://www.allitebooks.org

vww.allitebooks.cond



http://www.allitebooks.org

Preface

I was first drawn to writing about hackers—those computer pro-
grammers and designers who regard computing as the most
important thing in the world—because they were such fascinating
people. Though some in the field used the term “hacker” as a
form of derision, implying that hackers were either nerdy social
outcasts or “unprofessional” programmers who wrote dirty,
“nonstandard” computer code, I found them quite different.
Beneath their often unimposing exteriors, they were adventurers,
visionaries, risk-takers, artists . .. and the ones who most clearly
saw why the computer was a truly revolutionary tool. Among
themselves, they knew how far one could go by immersion into
the deep concentration of the hacking mind-set: one could go infi-
nitely far. I came to understand why true hackers consider the
term an appellation of honor rather than a pejorative.

As T talked to these digital explorers, ranging from those who
tamed multimillion-dollar machines in the 1950s to contempo-
rary young wizards who mastered computers in their suburban
bedrooms, I found a common element, a common philosophy that
seemed tied to the elegantly flowing logic of the computer itself. It
was a philosophy of sharing, openness, decentralization, and get-
ting your hands on machines at any cost to improve the machines
and to improve the world. This Hacker Ethic is their gift to us:
something with value even to those of us with no interest at all in
computers.



It is an ethic seldom codified but embodied instead in the behavior
of hackers themselves. I would like to introduce you to these
people who not only saw, but lived the magic in the computer and
worked to liberate the magic so it could benefit us all. These
people include the true hackers of the MIT artificial intelligence
lab in the fifties and sixties; the populist, less sequestered hard-
ware hackers in California in the seventies; and the young game
hackers who made their mark in the personal computer of the
eighties.

This is in no way a formal history of the computer era, or of the
particular arenas I focus upon. Indeed, many of the people you
will meet here are not the most famous names (certainly not the
most wealthy) in the annals of computing. Instead, these are the
backroom geniuses who understood the machine at its most pro-
found levels and presented us with a new kind of lifestyle and a
new kind of hero.

Hackers like Richard Greenblatt, Bill Gosper, Lee Felsenstein, and
John Harris are the spirit and soul of computing itself. T believe
their story—their vision, their intimacy with the machine itself,
their experiences inside their peculiar world, and their sometimes
dramatic, sometimes absurd “interfaces” with the outside world—
is the real story of the computer revolution.



Who’s Who: The Wizards
and Their Machines

Bob Albrecht Founder of People’s Computer Company who took
visceral pleasure in exposing youngsters to computers.

Altair 8800 The pioneering microcomputer that galvanized hard-
ware hackers. Building this kit made you learn hacking. Then you
tried to figure out what to do with it.

Apple II Steve Wozniak’s friendly, flaky, good-looking computer,
wildly successful and the spark and soul of a thriving industry.

Atari 800 This home computer gave great graphics to game
hackers like John Harris, though the company that made it was
loath to tell you how it worked.

Bob and Carolyn Box World-record-holding gold prospectors
turned software stars, working for Sierra On-Line.

Doug Carlston Corporate lawyer who chucked it all to form the
Broderbund software company.

Bob Davis Left a job in a liquor store to become the bestselling
author of the Sierra On-Line computer game Ulysses and the
Golden Fleece. Success was his downfall.

Peter Deutsch Bad in sports, brilliant at math, Peter was still in
short pants when he stumbled on the TX-0 at MIT—and hacked it
along with the masters.



xii Who's Who: The Wizards and Their Machines

Steve Dompier Homebrew member who first made Altair sing,
and later wrote the Target game on the Sol, which entranced Tom
Snyder.

John Draper The notorious “Captain Crunch” who fearlessly
explored phone systems, was jailed, and later hacked microcom-
puters. Cigarettes made him violent.

Mark Duchaineau The young Dungeonmaster who copy-protected
On-Line’s disks at his whim.

Chris Espinosa Fourteen-year-old follower of Steve Wozniak and
early Apple employee.

Lee Felsenstein Former “military editor” of the Berkeley Barb and
hero of an imaginary science-fiction novel, he designed computers
with a “junkyard” approach and was a central figure in Bay Area
hardware hacking in the seventies.

Ed Fredkin Gentle founder of Information International, he
thought himself the world’s greatest programmer until he met
Stew Nelson. Father figure to hackers.

Gordon French Silver-haired hardware hacker whose garage held
not cars but his homebrewed Chicken Hawk computer, then held
the first Homebrew Computer Club meeting.

Richard Garriott Astronaut’s son who, as Lord British, created the
Ultima world on computer disks.

Bill Gates Cocky wizard and Harvard dropout who wrote Altair
BASIC, and complained when hackers copied it.

Bill Gosper Horowitz of computer keyboards, master math and
LIFE hacker at MIT Al lab, guru of the Hacker Ethic, and stu-
dent of Chinese restaurant menus.

Richard Greenblatt Single-minded, unkempt, prolific, and canon-
ical MIT hacker who went into night phase so often that he
zorched his academic career. The hacker’s hacker.

John Harris The young Atari 800 game hacker who became Sierra
On-Line’s star programmer, but yearned for female companionship.

IBM PC IBM’s entry into the personal computer market, which
amazingly included a bit of the Hacker Ethic and took over.



Who's Who: The Wizards and Their Machines xiii

IBM 704 IBM was The Enemy and this was its machine, the
Hulking Giant computer in MIT’s Building 26. Later modified into
the IBM 709, then the IBM 7090. Batch-processed and intolerable.

Jerry Jewell Vietnam vet turned programmer who founded Sirius
Software.

Steven Jobs Visionary, beaded, nonhacking youngster who took
Wozniak’s Apple II, made lots of deals, and formed a company
that would make a billion dollars.

Tom Knight At sixteen, an MIT hacker who would name the
Incompatible Time-sharing System. Later, a Greenblatt nemesis
over the LISP machine schism.

Alan Kotok The chubby MIT student from Jersey who worked
under the rail layout at TMRC, learned the phone system at
Western Electric, and became a legendary TX-0 and PDP-1 hacker.

Efrem Lipkin Hacker-activist from New York who loved
machines but hated their uses. Cofounded Community Memory;
friend of Felsenstein.

LISP Machine The ultimate hacker computer, invented mostly by
Greenblatt and subject of a bitter dispute at MIT.

“Uncle” John McCarthy Absentminded but brilliant MIT (later
Stanford) professor who helped pioneer computer chess, artificial
intelligence, LISP.

Bob Marsh Berkeley-ite and Homebrewer who shared garage with
Felsenstein and founded Processor Technology, which made the
Sol computer.

Roger Melen Homebrewer who cofounded Cromemco company
to make circuit boards for Altair. His “Dazzler” played LIFE pro-
gram on his kitchen table.

Louis Merton Pseudonym for the Al chess hacker whose tendency
to go catatonic brought the hacker community together.

Jude Milhon Met Lee Felsenstein through a classified ad in the
Berkeley Barb and became more than a friend—a member of the
Community Memory collective.

Marvin Minsky Playful and brilliant MIT professor who headed
Al lab and allowed the hackers to run free.



Xiv Who's Who: The Wizards and Their Machines

Fred Moore Vagabond pacifist who hated money, loved tech-
nology, and cofounded Homebrew Club.

Stewart Nelson Buck-toothed, diminutive, but fiery Al lab hacker
who connected the PDP-1 computer to hack the phone system.
Later cofounded Systems Concepts company.

Ted Nelson Self-described “innovator” and noted curmudgeon
who self-published the influential Computer Lib book.

Russell Noftsker Harried administrator of MIT Al lab in late six-
ties; later president of Symbolics company.

Adam Osborne Bangkok-born publisher-turned-computer-
manufacturer who considered himself a philosopher. Founded
Osborne Computer Company to make “adequate” machines.

PDP-1 Digital Equipment’s first minicomputer and in 1961 an
interactive godsend to the MIT hackers and a slap in the face to
IBM fascism.

PDP-6 Designed in part by Kotok, this mainframe computer was
the cornerstone of the Al lab, with its gorgeous instruction set and
sixteen sexy registers.

Tom Pittman The religious Homebrew hacker who lost his wife
but kept the faith with his Tiny BASIC.

Ed Roberts Enigmatic founder of MITS company who shook the
world with his Altair computer. He wanted to help people build
mental pyramids.

Steve (Slug) Russell McCarthy’s “coolie” who hacked the
Spacewar program, first videogame, on the PDP-1. Never made a
dime from it.

Peter Samson MIT hacker (one of the first), who loved systems,
trains, TX-0, music, parliamentary procedure, pranks, and
hacking.

Bob Saunders Jolly, balding TMRC hacker who married early,
hacked til late at night eating “lemon gunkies,” and mastered the
“CBS strategy” on Spacewar.

Warren Schwader Big blond hacker from rural Wisconsin who
went from the assembly line to software stardom, but couldn’t
reconcile the shift with his devotion to Jehovah’s Witnesses.



Who's Who: The Wizards and Their Machines XV

David Silver Left school at fourteen to be mascot of Al lab; maker
of illicit keys and builder of a tiny robot that did the impossible.

Dan Sokol Long-haired prankster who reveled in revealing techno-
logical secrets at Homebrew Club. Helped “liberate” Altair BASIC
program on paper tape.

Sol Computer Lee Felsenstein’s terminal-and-computer, built in
two frantic months, almost the computer that turned things
around. Almost wasn’t enough.

Les Solomon Editor of Popular Electronics, the puller of strings
who set the computer revolution into motion.

Marty Spergel The Junk Man, the Homebrew member who sup-
plied circuits and cables and could make you a deal for anything.

Richard Stallman The Last of the Hackers, he vowed to defend the
principles of hackerism to the bitter end. Remained at MIT until
there was no one to eat Chinese food with.

Jeff Stephenson Thirty-year-old martial arts veteran and hacker
who was astounded that joining Sierra On-Line meant enrolling in
Summer Camp.

Jay Sullivan Maddeningly calm wizard-level programmer at Infor-
matics who impressed Ken Williams by knowing the meaning of
the word “any.”

Dick Sunderland Chalk-complexioned MBA who believed that
firm managerial bureaucracy was a worthy goal, but as president
of Sierra On-Line found that hackers didn’t think that way.

Gerry Sussman Young MIT hacker branded “loser” because he
smoked a pipe and “munged” his programs; later became
“winner” by algorithmic magic.

Margot Tommervik With her husband Al, long-haired Margot
parlayed her gameshow winnings into a magazine that deified the
Apple Computer.

Tom Swift Terminal Lee Felsenstein’s legendary, never-to-be-built
computer terminal, which would give the user ultimate leave to
get his hands on the world.

TX-0 Filled a small room, but in the late fifties, this $3 million
machine was world’s first personal computer—for the community
of MIT hackers that formed around it.



Xvi Who's Who: The Wizards and Their Machines

Jim Warren Portly purveyor of “techno-gossip” at Homebrew, he
was first editor of hippie-styled Dr. Dobbs Journal, later started
the lucrative Computer Faire.

Randy Wigginton Fifteen-year-old member of Steve Wozniak’s
kiddie corps, he helped Woz trundle the Apple II to Homebrew.
Still in high school when he became Apple’s first software
employee.

Ken Williams Arrogant and brilliant young programmer who saw
the writing on the CRT and started Sierra On-Line to make a killing
and improve society by selling games for the Apple computer.

Roberta Williams Ken Williams’ timid wife who rediscovered her
own creativity by writing Mystery House, the first of her many
bestselling computer games.

Stephen “Woz” Wozniak Openhearted, technologically daring
hardware hacker from San Jose suburbs, Woz built the Apple
Computer for the pleasure of himself and friends.



PART ONE

TRUE HACKERS

Cambridge:
The Fifties and Sixties



vww.allitebooks.cond



http://www.allitebooks.org

CHAPTER 1

The Tech Model
Railroad Club

Just why Peter Samson was wandering around in Building 26 in
the middle of the night is a matter that he would find difficult to
explain. Some things are not spoken. If you were like the people
whom Peter Samson was coming to know and befriend in this, his
freshman year at the Massachusetts Institute of Technology in the
winter of 1958-59, no explanation would be required. Wan-
dering around the labyrinth of laboratories and storerooms,
searching for the secrets of telephone switching in machine rooms,
tracing paths of wires or relays in subterranean steam tunnels—
for some, it was common behavior, and there was no need to jus-
tify the impulse, when confronted with a closed door with an
unbearably intriguing noise behind it, to open the door uninvited.
And then, if there was no one to physically bar access to whatever
was making that intriguing noise, to touch the machine, start
flicking switches and noting responses, and eventually to loosen a
screw, unhook a template, jiggle some diodes, and tweak a few
connections. Peter Samson and his friends had grown up with a
specific relationship to the world, wherein things had meaning
only if you found out how they worked. And how would you go
about that if not by getting your hands on them?

It was in the basement of Building 26 that Samson and his friends
discovered the EAM room. Building 26 was a long glass-and-steel
structure, one of MIT’s newer buildings, contrasting with the vener-
able pillared structures that fronted the Institute on Massachusetts



4 Chapter 1

Avenue. In the basement of this building void of personality, the
EAM room. Electronic Accounting Machinery. A room that
housed machines that ran like computers.

Not many people in 1959 had even seen a computer, let alone
touched one. Samson, a wiry, curly-haired redhead with a way of
extending his vowels so that it would seem he was racing through
lists of possible meanings of statements in mid-word, had viewed
computers on his visits to MIT from his hometown of Lowell,
Massachusetts, less than thirty miles from campus. This made him
a “Cambridge urchin,” one of dozens of science-crazy high
schoolers in the region who were drawn, as if by gravitational
pull, to the Cambridge campus. He had even tried to rig up his
own computer with discarded parts of old pinball machines: they
were the best source of logic elements he could find.

Logic elements: the term seems to encapsulate what drew Peter
Samson, son of a mill machinery repairman, to electronics. The
subject made sense. When you grow up with an insatiable curi-
osity as to how things work, the delight you find upon discov-
ering something as elegant as circuit logic, where all connections
have to complete their loops, is profoundly thrilling. Peter
Samson, who early on appreciated the mathematical simplicity of
these things, could recall seeing a television show on Boston’s
public TV channel, WGBH, which gave a rudimentary introduc-
tion to programming a computer in its own language. It fired his
imagination; to Peter Samson, a computer was surely like
Aladdin’s lamp—rub it, and it would do your bidding. So he tried
to learn more about the field, built machines of his own, entered
science project competitions and contests, and went to the place
that people of his ilk aspired to: MIT. The repository of the very
brightest of those weird high school kids with owl-like glasses and
underdeveloped pectorals who dazzled math teachers and flunked
PE, who dreamed not of scoring on prom night, but of getting to
the finals of the General Electric Science Fair competition. MIT,
where he would wander the hallways at two o’clock in the
morning, looking for something interesting, and where he would
indeed discover something that would help draw him deeply into a
new form of creative process and a new lifestyle, and would put
him into the forefront of a society envisioned only by a few science-
fiction writers of mild disrepute. He would discover a computer
that he could play with.



The Tech Model Railroad Club 5

The EAM room that Samson had chanced upon was loaded with
large keypunch machines the size of squat file cabinets. No one
was protecting them: the room was staffed only by day, when a
select group who had attained official clearance were privileged
enough to submit long manila cards to operators who would then
use these machines to punch holes in them according to what data
the privileged ones wanted entered on the cards. A hole in the card
would represent some instruction to the computer, telling it to put
a piece of data somewhere, or perform a function on a piece of
data, or move a piece of data from one place to another. An entire
stack of these cards made one computer program, a program
being a series of instructions which yielded some expected result,
just as the instructions in a recipe, when precisely followed, lead
to a cake. Those cards would be taken to yet another operator
upstairs who would feed the cards into a “reader” that would
note where the holes were and dispatch this information to the
IBM 704 computer on the first floor of Building 26: the Hulking
Giant.

The IBM 704 cost several million dollars, took up an entire room,
needed constant attention from a cadre of professional machine
operators, and required special air conditioning so that the
glowing vacuum tubes inside it would not heat up to data-
destroying temperatures. When the air conditioning broke down—
a fairly common occurrence—a loud gong would sound, and three
engineers would spring from a nearby office to frantically take
covers off the machine so its innards wouldn’t melt. All these
people in charge of punching cards, feeding them into readers, and
pressing buttons and switches on the machine were what was
commonly called a Priesthood, and those privileged enough to
submit data to those most holy priests were the official acolytes. It
was an almost ritualistic exchange.

Acolyte: Ob machine, would you accept my offer of information
so you may run my program and perhaps give me a computation?

Priest (on behalf of the machine): We will try. We promise
nothing.

As a general rule, even these most privileged of acolytes were not
allowed direct access to the machine itself, and they would not be
able to see for hours, sometimes for days, the results of the
machine’s ingestion of their “batch” of cards.



6 Chapter 1

This was something Samson knew, and of course it frustrated the
hell out of Samson, who wanted to get at the damn machine. For
this was what life was all about.

What Samson did not know, and was delighted to discover, was
that the EAM room also had a particular keypunch machine
called the 407. Not only could it punch cards, but it could also
read cards, sort them, and print them on listings. No one seemed
to be guarding these machines, which were computers, sort of. Of
course, using them would be no picnic: one needed to actually
wire up what was called a plug board, a two-inch-by-two-inch
plastic square with a mass of holes in it. If you put hundreds of
wires through the holes in a certain order, you would get some-
thing that looked like a rat’s nest but would fit into this electro-
mechanical machine and alter its personality. It could do what you
wanted it to do.

So, without any authorization whatsoever, that is what Peter
Samson set out to do, along with a few friends of his from an MIT
organization with a special interest in model railroading. It was a
casual, unthinking step into a science-fiction future, but that was
typical of the way that an odd subculture was pulling itself up by
its bootstraps and growing to underground prominence—to
become a culture that would be the impolite, unsanctioned soul of
computerdom. It was among the first computer hacker escapades
of the Tech Model Railroad Club, or TMRC.

Peter Samson had been a member of the Tech Model Railroad
Club since his first week at MIT in the fall of 1958. The first event
that entering MIT freshmen attended was a traditional welcoming
lecture, the same one that had been given for as long as anyone at
MIT could remember. Look at the person to your left . . . look at
the person to your right . .. one of you three will not graduate
from the Institute. The intended effect of the speech was to create
that horrid feeling in the back of the collective freshman throat that
signaled unprecedented dread. All their lives, these freshmen
had been almost exempt from academic pressure. The exemption had
been earned by virtue of brilliance. Now each of them had a



The Tech Model Railroad Club 7

person to the right and a person to the left who was just as smart.
Maybe even smarter.

But to certain students this was no challenge at all. To these
youngsters, classmates were perceived in a sort of friendly haze:
maybe they would be of assistance in the consuming quest to find
out how things worked and then to master them. There were
enough obstacles to learning already—why bother with stupid
things like brown-nosing teachers and striving for grades? To stu-
dents like Peter Samson, the quest meant more than the degree.

Sometime after the lecture came Freshman Midway. All the
campus organizations—special-interest groups, fraternities, and
such—put up booths in a large gymnasium to try to recruit new
members. The group that snagged Peter was the Tech Model Rail-
road Club. Its members, bright-eyed and crew-cut upperclassmen
who spoke with the spasmodic cadences of people who want
words out of the way in a hurry, boasted a spectacular display of
HO gauge trains they had in a permanent clubroom in Building
20. Peter Samson had long been fascinated by trains, especially
subways. So he went along on the walking tour to the building, a
shingle-clad temporary structure built during World War II. The
hallways were cavernous, and even though the clubroom was on
the second floor, it had the dank, dimly lit feel of a basement.

The clubroom was dominated by the huge train layout. It just
about filled the room, and if you stood in the little control area
called “the notch” you could see a little town, a little industrial
area, a tiny working trolley line, a papier-maché mountain, and of
course a lot of trains and tracks. The trains were meticulously
crafted to resemble their full-scale counterparts, and they chugged
along the twists and turns of the track with picture-book perfection.

And then Peter Samson looked underneath the chest-high boards
that held the layout. It took his breath away. Underneath this
layout was a more massive matrix of wires and relays and
crossbar switches than Peter Samson had ever dreamed existed.
There were neat regimental lines of switches, achingly regular
rows of dull bronze relays, and a long, rambling tangle of red,
blue, and yellow wires—twisting and twirling like a rainbow-
colored explosion of Einstein’s hair. It was an incredibly compli-
cated system, and Peter Samson vowed to find out how it worked.



8 Chapter 1

The Tech Model Railroad Club awarded its members a key to the
clubroom after they logged forty hours of work on the layout.
Freshman Midway had been on a Friday. By Monday, Peter
Samson had his key.

There were two factions of TMRC. Some members loved the idea
of spending their time building and painting replicas of certain
trains with historical and emotional value, or creating realistic
scenery for the layout. This was the knife-and-paintbrush contin-
gent, and it subscribed to railroad magazines and booked the club
for trips on aging train lines. The other faction centered on the
Signals and Power Subcommittee of the club, and it cared far
more about what went on under the layout. This was The System,
which worked something like a collaboration between Rube Gold-
berg and Wernher von Braun, and it was constantly being
improved, revamped, perfected, and sometimes “gronked”—in
club jargon, screwed up. S&P people were obsessed with the way
The System worked, its increasing complexities, how any change
you made would affect other parts, and how you could put those
relationships between the parts to optimal use.

Many of the parts for The System had been donated by the
Western Electric College Gift Plan, directly from the phone com-
pany. The club’s faculty advisor was also in charge of the campus
phone system, and had seen to it that sophisticated phone equip-
ment was available for the model railroaders. Using that equip-
ment as a starting point, the railroaders had devised a scheme that
enabled several people to control trains at once, even if the trains
were at different parts of the same track. Using dials appropriated
from telephones, the TMRC “engineers” could specify which
block of track they wanted control of, and run a train from there.
This was done by using several types of phone company relays,
including crossbar executors and step switches that let you actu-
ally hear the power being transferred from one block to another
by an otherworldly chunka-chunka-chunka sound.

It was the S&P group that devised this fiendishly ingenious
scheme, and it was the S&P group that harbored the kind of rest-
less curiosity that led them to root around campus buildings in



The Tech Model Railroad Club 9

search of ways to get their hands on computers. They were life-
long disciples of a Hands-On Imperative. Head of S&P was an
upperclassman named Bob Saunders, with ruddy, bulbous fea-
tures, an infectious laugh, and a talent for switch gear. As a child
in Chicago, he had built a high-frequency transformer for a high
school project; it was his six-foot-high version of a Tesla coil,
something devised by an engineer in the 1800s that was supposed
to send out furious waves of electrical power. Saunders said his
coil project managed to blow out television reception for blocks
around. Another person who gravitated to S&P was Alan Kotok,
a plump, chinless, thick-spectacled New Jerseyite in Samson’s
class. Kotok’s family could recall him, at age three, prying a plug
out of a wall with a screwdriver and causing a hissing shower of
sparks to erupt. When he was six, he was building and wiring
lamps. In high school he had once gone on a tour of the Mobil
Research Lab in nearby Haddonfield and saw his first computer—
the exhilaration of that experience helped him decide to enter
MIT. In his freshman year, he earned a reputation as one of
TMRC’s most capable S&P people.

The S&P people were the ones who spent Saturdays going to Eli
Heffron’s junkyard in Somerville scrounging for parts, who would
spend hours on their backs resting on little rolling chairs they
called “bunkies” to get underneath tight spots in the switching
system, who would work through the night making the wholly
unauthorized connection between the TMRC phone and the East
Campus. Technology was their playground.

The core members hung out at the club for hours, constantly
improving The System, arguing about what could be done next,
and developing a jargon of their own that seemed incomprehen-
sible to outsiders who might chance on these teen-aged fanatics,
with their checked short-sleeve shirts, pencils in their pockets,
chino pants, and, always, a bottle of Coca-Cola by their side.
(TMRC purchased its own Coke machine for the then forbidding
sum of $165; at a tariff of five cents a bottle, the outlay was
replaced in three months; to facilitate sales, Saunders built a
change machine for Coke buyers that was still in use a decade
later.) When a piece of equipment wasn’t working, it was
“losing”; when a piece of equipment was ruined, it was “munged”
(mashed until no good); the two desks in the corner of the room
were not called the office, but the “orifice”; one who insisted on



10 Chapter 1

studying for courses was a “tool”; garbage was called “cruft”; and
a project undertaken or a product built not solely to fulfill some
constructive goal, but with some wild pleasure taken in mere
involvement, was called a “hack.”

This latter term may have been suggested by ancient MIT lingo—the
word “hack” had long been used to describe the elaborate college
pranks that MIT students would regularly devise, such as covering
the dome that overlooked the campus with reflecting foil. But as
the TMRC people used the word, there was serious respect
implied. While someone might call a clever connection between
relays a “mere hack,” it would be understood that, to qualify as a
hack, the feat must be imbued with innovation, style, and tech-
nical virtuosity. Even though one might self-deprecatingly say he
was “hacking away at The System” (much as an axe-wielder
hacks at logs), the artistry with which one hacked was recognized
to be considerable.

The most productive people working on S&P called themselves
“hackers” with great pride. Within the confines of the clubroom
in Building 20, and of the “Tool Room” (where some study and
many techno bull sessions took place), they had unilaterally
endowed themselves with the heroic attributes of Icelandic legend.
This is how Peter Samson saw himself and his friends in a Sandburg-
esque poem in the club newsletter:

Switch Thrower for the World,

Fuze Tester, Maker of Routes,

Player with the Railroads and the System’s Advance Chopper;
Grungy, hairy, sprawling,

Machine of the Point-Function Line-o-lite:

They tell me you are wicked and 1 believe them; for 1 have
seen your painted light bulbs under the lucite luring the system
coolies . . .

Under the tower, dust all over the place, hacking with bifur-
cated springs

Hacking even as an ignorant freshman acts who has never lost
occupancy and has dropped out



The Tech Model Railroad Club 11

Hacking the M-Boards, for under its locks are the switches, and
under its control the advance around the layout,

Hacking!

Hacking the grungy, hairy, sprawling hacks of youth; uncabled,
frying diodes, proud to be Switchthrower, Fuze-tester, Maker of
Routes, Player with Railroads, and Advance Chopper to the
System.

Whenever they could, Samson and the others would slip off to the
EAM room with their plug boards, trying to use the machine to
keep track of the switches underneath the layout. Just as impor-
tant, they were seeing what the electromechanical counter could
do, taking it to its limit.

That spring of 1959, a new course was offered at MIT. It was the
first course in programming a computer that freshmen could take.
The teacher was a distant man with a wild shock of hair and an
equally unruly beard—John McCarthy. A master mathematician,
McCarthy was a classically absent-minded professor; stories
abounded about his habit of suddenly answering a question hours,
sometimes even days after it was first posed to him. He would
approach you in the hallway and with no salutation would begin
speaking in his robotically precise diction, as if the pause in con-
versation had been only a fraction of a second, and not a week.
Most likely, his belated response would be brilliant.

McCarthy was one of a very few people working in an entirely
new form of scientific inquiry with computers. The volatile and
controversial nature of his field of study was obvious from the
very arrogance of the name that McCarthy had bestowed upon it:
Artificial Intelligence. This man actually thought that computers
could be smart. Even at such a science-intensive place as MIT,
most people considered the thought ridiculous: they considered
computers to be useful, if somewhat absurdly expensive, tools for
number-crunching huge calculations and for devising missile
defense systems (as MIT’s largest computer, the Whirlwind, had
done for the early-warning SAGE system), but scoffed at the
thought that computers themselves could actually be a scientific
field of study. Computer Science did not officially exist at MIT in
the late fifties, and McCarthy and his fellow computer specialists
worked in the Electrical Engineering Department, which offered



12 Chapter 1

the course, No. 641, that Kotok, Samson, and a few other TRMC
members took that spring.

McCarthy had started a mammoth program on the IBM 704—the
Hulking Giant—that would give it the extraordinary ability to
play chess. To critics of the budding field of Artificial Intelligence,
this was just one example of the boneheaded optimism of people
like John McCarthy. But McCarthy had a certain vision of what
computers could do, and playing chess was only the beginning.

All fascinating stuff, but not the vision that was driving Kotok and
Samson and the others. They wanted to learn how to work the
damn machines, and while this new programming language called
LISP that McCarthy was talking about in 641 was interesting, it
was not nearly as interesting as the act of programming, or that
fantastic moment when you got your printout back from the
Priesthood—word from the source itselfl—and could then spend
hours poring over the results of the program, what had gone
wrong with it, how it could be improved. The TMRC hackers
were devising ways to get into closer contact with the IBM 704,
which soon was upgraded to a newer model called the 709. By
hanging out at the Computation Center in the wee hours of the
morning, and by getting to know the Priesthood, and by bowing
and scraping the requisite number of times, people like Kotok
were eventually allowed to push a few buttons on the machine
and watch the lights as it worked.

There were secrets to those IBM machines that had been painstak-
ingly learned by some of the older people at MIT with access to
the 704 and friends among the Priesthood. Amazingly, a few of
these programmers, grad students working with McCarthy, had
even written a program that utilized one of the rows of tiny lights:
the lights would be lit in such an order that it looked like a little
ball was being passed from right to left: if an operator hit a switch
at just the right time, the motion of the lights could be reversed—
computer Ping-Pong! This obviously was the kind of thing that
you’d show off to impress your peers, who would then take a look
at the actual program you had written to see how it was done.

To top the program, someone else might try to do the same thing
with fewer instructions—a worthy endeavor, since there was so
little room in the small “memory” of the computers of those days
that not many instructions could fit into them. John McCarthy

vww allitebooks.con]



http://www.allitebooks.org

The Tech Model Railroad Club 13

had once noticed that his graduate students who loitered around
the 704 would work over their computer programs to get the most
out of the fewest instructions, and get the program compressed so
that fewer cards would need to be fed to the machine. Shaving off
an instruction or two was almost an obsession with them.
McCarthy compared these students to ski bums. They got the
same kind of primal thrill from “maximizing code” as fanatic
skiers got from swooshing frantically down a hill. So the practice
of taking a computer program and trying to cut off instructions
without affecting the outcome came to be called “program bum-
ming,” and you would often hear people mumbling things like,
“Maybe I can bum a few instructions out and get the octal correc-
tion card loader down to three cards instead of four.”

In 1959, McCarthy was turning his interest from chess to a new
way of talking to the computer, the whole new “language” called
LISP. Alan Kotok and his friends were more than eager to take
over the chess project. Working on the batch-processed IBM, they
embarked on the gargantuan project of teaching the 704, and later
the 709, and even after that its replacement the 7090, how to play
the game of kings. Eventually Kotok’s group became the largest
users of computer time in the entire MIT Computation Center.

Still, working with the IBM machine was frustrating. There was
nothing worse than the long wait between the time you handed in
your cards and the time your results were handed back to you. If
you had misplaced as much as one letter in one instruction, the pro-
gram would crash, and you would have to start the whole process
over again. It went hand in hand with the stifling proliferation of
goddamn rules that permeated the atmosphere of the Computation
Center. Most of the rules were designed to keep crazy young com-
puter fans like Samson and Kotok and Saunders physically distant
from the machine itself. The most rigid rule of all was that no one
should be able to actually touch or tamper with the machine itself.
This, of course, was what those S&P people were dying to do
more than anything else in the world, and the restrictions drove
them mad.

One priest—a low-level sub-priest, really—on the late-night shift
was particularly nasty in enforcing this rule, so Samson devised a
suitable revenge. While poking around at Eli’s electronic junk
shop one day, he chanced upon an electrical board precisely like



14 Chapter 1

the kind of board holding the clunky vacuum tubes that resided
inside the IBM. One night, sometime before 4 A.M., this
particular sub-priest stepped out for a minute; when he returned,
Samson told him that the machine wasn’t working, but they’d
found the trouble—and held up the totally smashed module from
the old 704 he’d gotten at Eli’s.

The sub-priest could hardly get the words out. “W-where did you
get that?”

Samson, who had wide green eyes that could easily look mani-
acal, slowly pointed to an open place on the machine rack where,
of course, no board had ever been, but the space still looked sadly
bare.

The sub-priest gasped. He made faces that indicated his bowels
were about to give out. He whimpered exhortations to the deity.
Visions, no doubt, of a million-dollar deduction from his pay-
check began flashing before him. Only after his supervisor, a high
priest with some understanding of the mentality of these young
wiseguys from the Model Railroad Club, came and explained the
situation did he calm down.

He was not the last administrator to feel the wrath of a hacker
thwarted in the quest for access.

One day a former TMRC member who was now on the MIT fac-
ulty paid a visit to the clubroom. His name was Jack Dennis.
When he had been an undergraduate in the early 1950s, he had
worked furiously underneath the layout. Dennis lately had been
working a computer that MIT had just received from Lincoln Lab,
a military development laboratory affiliated with the Institute. The
computer was called the TX-0, and it was one of the first transistor-
run computers in the world. Lincoln Lab had used it specifically to
test a giant computer called the TX-2, which had a memory so
complex that only with this specially built little brother could its
ills be capably diagnosed. Now that its original job was over, the
three-million-dollar TX-0 had been shipped over to the Institute
on “long-term loan,” and apparently no one at Lincoln Lab had



The Tech Model Railroad Club 15

marked a calendar with a return date. Dennis asked the S&P
people at TMRC whether they would like to see it.

Hey you nuns! Would you like to meet the Pope?

The TX-0 was in Building 26, in the second-floor Research Labo-
ratory of Electronics (RLE), directly above the first-floor Compu-
tation Center, which housed the hulking IBM 704. The RLE lab
resembled the control room of an antique spaceship. The TX-0, or
Tixo, as it was sometimes called, was for its time a midget
machine, since it was one of the first computers to use finger-size
transistors instead of hand-size vacuum tubes. Still, it took up
much of the room, along with its fifteen tons of supporting air-
conditioning equipment. The TX-0 workings were mounted on
several tall, thin chassis, like rugged metal bookshelves, with tan-
gled wires and neat little rows of tiny, bottle-like containers in
which the transistors were inserted. Another rack had a solid
metal front speckled with grim-looking gauges. Facing the racks
was an L-shaped console, the control panel of this H.G. Wells
spaceship, with a blue countertop for your elbows and papers. On
the short arm of the L stood a Flexowriter, which resembled a
typewriter converted for tank warfare, its bottom anchored in a
military gray housing. Above the top were the control panels, box-
like protrusions painted an institutional yellow. On the sides of
the boxes that faced the user were a few gauges, several lines of
quarter-inch blinking lights, a matrix of steel toggle switches the
size of large grains of rice, and, best of all, an actual cathode ray
tube display, round and smoke-gray.

The TMRC people were awed. This machine did not use cards.
The user would first punch in a program onto a long, thin paper
tape with a Flexowriter (there were a few extra Flexowriters in an
adjoining room), then sit at the console, feed in the program by
running the tape through a reader, and be able to sit there while
the program ran. If something went wrong with the program, you
knew immediately, and you could diagnose the problem by using
some of the switches or checking out which of the lights were
blinking or lit. The computer even had an audio output: while the
program ran, a speaker underneath the console would make a sort
of music, like a poorly tuned electric organ whose notes would
vibrate with a fuzzy, ethereal din. The chords on this “organ”
would change, depending on what data the machine was reading



16 Chapter 1

at any given microsecond; after you were familiar with the tones,
you could actually hear which part of your program the computer
was working on. You would have to discern this, though, over the
clacking of the Flexowriter, which could make you think you were
in the middle of a machine-gun battle.

Even more amazing was that, because of these “interactive” capa-
bilities, and also because users seemed to be allowed blocks of
time to use the TX-0 all by themselves, you could even modify a
program while sitting at the computer. A miracle!

There was no way in hell that Kotok, Saunders, Samson, and the
others were going to be kept away from that machine. Fortu-
nately, there didn’t seem to be the kind of bureaucracy sur-
rounding the TX-0 that there was around the IBM 704. No cadre
of officious priests. The technician in charge was a canny, white-
haired Scotsman named John McKenzie. While he made sure that
graduate students and those working on funded projects—
Officially Sanctioned Users—maintained access to the machine,
McKenzie tolerated the crew of TMRC madmen who began to
hang out in the RLE lab, where the TX-0 stood.

Samson, Kotok, Saunders, and a freshman named Bob Wagner
soon figured out that the best time of all to hang out in Building
26 was at night, when no person in his right mind would have
signed up for an hour-long session on the piece of paper posted
every Friday beside the air conditioner in the RLE lab. The TX-0
as a rule was kept running twenty-four hours a day—computers
back then were too expensive for their time to be wasted by
leaving them idle through the night, and besides, it was a hairy
procedure to get the thing up and running once it was turned off.
So the TMRC hackers, who soon were referring to themselves as
TX-0 hackers, changed their lifestyles to accommodate the com-
puter. They laid claim to what blocks of time they could, and
would “vulture time” with nocturnal visits to the lab on the off
chance that someone who was scheduled for a 3 A.M. session
might not show up.

“Oh!” Samson would say delightedly, a minute or so after
someone failed to show up at the time designated in the logbook.
“Make sure it doesn’t go to waste!”



The Tech Model Railroad Club 17

It never seemed to, because the hackers were there almost all the
time. If they weren’t in the RLE lab waiting for an opening to
occur, they were in the classroom next to the TMRC clubroom,
the Tool Room, playing a Hangman-style word game that Samson
had devised called Come Next Door, waiting for a call from
someone who was near the TX-0, monitoring it to see if someone
had not shown up for a session. The hackers recruited a network
of informers to give advance notice of potential openings at the
computer—if a research project was not ready with its program in
time, or a professor was sick, the word would be passed to TMRC
and the hackers would appear at the TX-0, breathless and ready
to jam into the space behind the console.

Though Jack Dennis was theoretically in charge of the operation,
Dennis was teaching courses at the time and preferred to spend
the rest of his time actually writing code for the machine. Dennis
played the role of benevolent godfather to the hackers: he would
give them a brief hands-on introduction to the machine, point
them in certain directions, and be amused at their wild program-
ming ventures. He had little taste for administration, though, and
was just as happy to let John McKenzie run things. McKenzie rec-
ognized early on that the interactive nature of the TX-0 was
inspiring a new form of computer programming, and the hackers
were its pioneers. So he did not lay down too many edicts.

The atmosphere was loose enough in 1959 to accommodate the
strays—science-mad people whose curiosity burned like a hunger,
who like Peter Samson would be exploring the uncharted maze of
laboratories at MIT. The noise of the air conditioning, the audio
output, and the drill-hammer Flexowriter would lure these wan-
derers, who would poke their heads into the lab like kittens
peering into baskets of yarn.

One of those wanderers was an outsider named Peter Deutsch.
Even before discovering the TX-0, Deutsch had developed a fasci-
nation for computers. It began one day when he picked up a
manual that someone had discarded—a manual for an obscure
form of computer language for doing calculations. Something
about the orderliness of the computer instructions appealed to
him: he would later describe the feeling as the same kind of eerily
transcendent recognition that an artist experiences when he dis-
covers the medium that is absolutely right for him. This is where I



18 Chapter 1

belong. Deutsch tried writing a small program, and, signing up for
time under the name of one of the priests, ran it on a computer.
Within weeks, he had attained a striking proficiency in program-
ming. He was only twelve years old.

He was a shy kid, strong in math and unsure of most everything
else. He was uncomfortably overweight, deficient in sports, but an
intellectual star performer. His father was a professor at MIT, and
Peter used that as his entree to explore the labs.

It was inevitable that he would be drawn to the TX-0. He first
wandered into the small “Kluge Room” (a “kluge” is a piece of
inelegantly constructed equipment that seems to defy logic by
working properly), where three offline Flexowriters were avail-
able for punching programs onto paper tape that would later be
fed into the TX-0. Someone was busy punching in a tape. Peter
watched for a while, then began bombarding the poor soul with
questions about that weird-looking little computer in the next
room. Then Peter went up to the TX-0 itself and examined it
closely, noting how it differed from other computers: it was
smaller and had a CRT display and other neat toys. He decided
right then to act as if he had a perfect right to be there. He got
hold of a manual and soon was startling people by spouting actual
make-sense computer talk, and eventually was allowed to sign up
for night and weekend sessions, and to write his own programs.

McKenzie worried that someone might accuse him of running some
sort of summer camp, with this short-pants little kid, barely tall
enough to stick his head over the TX-0 console, staring at the code
that an Officially Sanctioned User, perhaps some self-important
graduate student, would be hammering into the Flexowriter, and
saying in his squeaky, preadolescent voice something like, “Your
problem is that this credit is wrong over here ... you need this
other instruction over there,” and the self-important grad student
would go crazy—who is this little wormé—and start screaming at
him to go out and play somewhere. Invariably, though, Peter
Deutsch’s comments would turn out to be correct. Deutsch would
also brazenly announce that he was going to write better programs
than the ones currently available, and he would go and do it.

Samson, Kotok, and the other hackers accepted Peter Deutsch:
by virtue of his computer knowledge he was worthy of equal
treatment. Deutsch was not such a favorite with the Officially



The Tech Model Railroad Club 19

Sanctioned Users, especially when he sat behind them ready to
spring into action when they made a mistake on the Flexowriter.

These Officially Sanctioned Users appeared at the TX-0 with the
regularity of commuters. The programs they ran were statistical
analyses, cross correlations, simulations of an interior of the
nucleus of a cell. Applications. That was fine for Users, but it was
sort of a waste in the minds of the hackers. What hackers had in
mind was getting behind the console of the TX-0 much in the
same way as getting in behind the throttle of a plane. Or, as Peter
Samson, a classical music fan, put it, computing with the TX-0
was like playing a musical instrument: an absurdly expensive
musical instrument upon which you could improvise, compose,
and, like the beatniks in Harvard Square a mile away, wail like a
banshee with total creative abandon.

One thing that enabled them to do this was the programming
system devised by Jack Dennis and another professor, Tom
Stockman. When the TX-0 arrived at MIT, it had been stripped
down since its days at Lincoln Lab: the memory had been reduced
considerably, to 4,096 “words” of eighteen bits each. (A “bit” is a
binary digit, either a 1 or 0. These binary numbers are the only
things computers understand. A series of binary numbers is called
a “word.”) And the TX-0 had almost no software. So Jack
Dennis, even before he introduced the TMRC people to the TX-0,
had been writing “systems programs”—the software to help users
utilize the machine.

The first thing Dennis worked on was an assembler. This was
something that translated assembly language—which used three-
letter symbolic abbreviations that represented instructions to the
machine—into machine language, which consisted of the binary
numbers 0 and 1. The TX-0 had a rather limited assembly lan-
guage: since its design allowed only 2 bits of each 18-bit word to
be used for instructions to the computer, only four instructions
could be used (each possible 2-bit variation—00, 01, 10, and 11—
represented an instruction). Everything the computer did could be
broken down to the execution of one of those four instructions: it
took one instruction to add two numbers, but a series of perhaps
twenty instructions to multiply two numbers. Staring at a long list
of computer commands written as binary numbers—for example,
10011001100001—could make you into a babbling mental case



20 Chapter 1

in a matter of minutes. But the same command in assembly lan-
guage might look like this: ADD Y. After loading the computer
with the assembler that Dennis wrote, you could write programs
in this simpler symbolic form, and wait smugly while the com-
puter did the translation into binary for you. Then you’d feed that
binary “object” code back into the computer. The value of this
was incalculable: it enabled programmers to write in something
that looked like code, rather than an endless, dizzying series of 1s
and Os.

The other program that Dennis worked on with Stockman was
something even newer—a debugger. The TX-0 came with a
debugging program called UT-3, which enabled you to talk to the
computer while it was running by typing commands directly into
the Flexowriter. But it had terrible problems—for one thing, it
only accepted typed-in code that used the octal numeric system.
“Qctal” is a base-8 number system (as opposed to binary, which is
base 2, and Arabic—ours—which is base 10), and it is a difficult
system to use. So Dennis and Stockman decided to write some-
thing better than UT-3 that would enable users to use the sym-
bolic, easier-to-work-with assembly language. This came to be
called FLIT, and it allowed users to actually find program bugs
during a session, fix them, and keep the program running. (Dennis
would explain that “FLIT” stood for Flexowriter Interrogation
Tape, but clearly the name’s real origin was the insect spray with
that brand name.) FLIT was a quantum leap forward, since it lib-
erated programmers to actually do original composing on the
machine—just like musicians composing on their musical instru-
ments. With the use of the debugger, which took up one third of
the 4,096 words of the TX-0 memory, hackers were free to create
a new, more daring style of programming.

And what did these hacker programs do? Well, sometimes, it
didn’t matter much at all what they did. Peter Samson hacked the
night away on a program that would instantly convert Arabic
numbers to Roman numerals, and Jack Dennis, after admiring the
skill with which Samson had accomplished this feat, said, “My
God, why would anyone want to do such a thing?” But Dennis
knew why. There was ample justification in the feeling of power
and accomplishment Samson got when he fed in the paper tape,
monitored the lights and switches, and saw what were once plain



The Tech Model Railroad Club 21

old blackboard Arabic numbers coming back as the numerals the
Romans had hacked with.

In fact, it was Jack Dennis who suggested to Samson that there
were considerable uses for the capability of the TX-0 to send noise
to the audio speaker. While there were no built-in controls for
pitch, amplitude, or tone character, there was a way to control the
speaker—sounds would be emitted depending on the state of the
14th bit in the 18-bit words the TX-0 had in its accumulator in a
given microsecond. The sound was on or off depending on
whether bit 14 was a 1 or 0. So Samson set about writing pro-
grams that varied the binary numbers in that slot in different ways
to produce different pitches.

At that time, only a few people in the country had been experi-
menting with using a computer to output any kind of music, and
the methods they had been using required massive computations
before the machine would so much as utter a note. Samson, who
reacted with impatience to those who warned he was attempting
the impossible, wanted a computer playing music right away. So
he learned to control that one bit in the accumulator so adeptly
that he could command it with the authority of Charlie Parker on
the saxophone. In a later version of this music compiler, Samson
rigged it so that if you made an error in your programming
syntax, the Flexowriter would switch to a red ribbon and print,
“To err is human to forgive divine.”

When outsiders heard the melodies of Johann Sebastian Bach in a
single-voice, monophonic square wave, no harmony, they were
universally unfazed. Big deal! Three million dollars for this giant
hunk of machinery, and why shouldn’t it do at least as much as a
five-dollar toy piano? It was no use to explain to these outsiders
that Peter Samson had virtually bypassed the process by which
music had been made for eons. Music had always been made by
directly creating vibrations that were sound. What happened in
Samson’s program was that a load of numbers, bits of informa-
tion fed into a computer, comprised a code in which the music
resided. You could spend hours staring at the code, and not be
able to divine where the music was. It only became music while
millions of blindingly brief exchanges of data were taking place in
the accumulator sitting in one of the metal, wire, and silicon racks
that comprised the TX-0. Samson had asked the computer, which



22 Chapter 1

had no apparent knowledge of how to use a voice, to lift itself in
song, and the TX-0 had complied.

So it was that a computer program was not only metaphorically a
musical composition—it was literally a musical composition! It
looked like—and was—the same kind of program that yielded
complex arithmetical computations and statistical analyses. These
digits that Samson had jammed into the computer were a uni-
versal language that could produce anything—a Bach fugue or an
antiaircraft system.

Samson did not say any of this to the outsiders who were unim-
pressed by his feat. Nor did the hackers themselves discuss this—it
is not even clear that they analyzed the phenomenon in such cosmic
terms. Peter Samson did it, and his colleagues appreciated it,
because it was obviously a neat hack. That was justification
enough.

To hackers like Bob Saunders—balding, plump, and merry dis-
ciple of the TX-0, president of TMRC’s S&P group, student of
systems—it was a perfect existence. Saunders had grown up in the
suburbs of Chicago, and for as long as he could remember, the
workings of electricity and telephone circuitry had fascinated him.
Before beginning MIT, Saunders had landed a dream summer job,
working for the phone company installing central office equip-
ment. He would spend eight blissful hours with soldering iron and
pliers in hand, working in the bowels of various systems, an idyll
broken by lunch hours spent in deep study of phone company
manuals. It was the phone company equipment underneath the
TMRC layout that had convinced Saunders to become active in
the Model Railroad Club.

Saunders, being an upperclassman, had come to the TX-0 later in
his college career than Kotok and Samson: he had used the
breathing space to actually lay the foundation for a social life,
which included courtship of and eventual marriage to Marge
French, who had done some nonhacking computer work for a
research project. Still, the TX-0 was the center of his college
career, and he shared the common hacker experience of seeing his

vww allitebooks.con]



http://www.allitebooks.org

The Tech Model Railroad Club 23

grades suffer from missed classes. It didn’t bother him much,
because he knew that his real education was occurring in Room
240 of Building 26, behind the Tixo console. Years later he would
describe himself and the others as “an elite group. Other people
were off studying, spending their days up on four-floor buildings
making obnoxious vapors or off in the physics lab throwing parti-
cles at things or whatever it is they do. And we were simply not
paying attention to what other folks were doing because we had
no interest in it. They were studying what they were studying and
we were studying what we were studying. And the fact that much
of it was not on the officially approved curriculum was by and
large immaterial.”

The hackers came out at night. It was the only way to take full
advantage of the crucial “off-hours” of the TX-0. During the day,
Saunders would usually manage to make an appearance in a class
or two. Then some time spent performing “basic maintenance”
things like eating and going to the bathroom. He might see Marge
for a while. But eventually he would filter over to Building 26. He
would go over some of the programs of the night before, printed
on the nine-and-a-half-inch-wide paper that the Flexowriter used.
He would annotate and modify the listing to update the code to
whatever he considered the next stage of operation. Maybe then
he would move over to the Model Railroad Club, and he’d swap
his program with someone, checking simultaneously for good
ideas and potential bugs. Then back to Building 26, to the Kluge
Room next to the TX-0, to find an offline Flexowriter on which to
update his code. All the while, he’d be checking to see if someone
had canceled a one-hour session on the machine; his own session
was scheduled at something like two or three in the morning. He’d
wait in the Kluge Room, or play some bridge back at the Rail-
road Club, until the time came.

Sitting at the console, facing the metal racks that held the com-
puter’s transistors, each transistor representing a location that
either held or did not hold a bit of memory, Saunders would set
up the Flexowriter, which would greet him with the word
“WALRUS.” This was something Samson had hacked, in honor of
Lewis Carroll’s poem with the line “The time has come, the
Walrus said . . .” Saunders might chuckle at that as he went into
the drawer for the paper tape that held the assembler program and
fed that into the tape reader. Now the computer would be ready



24 Chapter 1

to assemble his program, so he’d take the Flexowriter tape he’d
been working on and send that into the computer. He’d watch
the lights go on as the computer switched his code from “source”
(the symbolic assembly language) to “object” code (binary),
which the computer would punch out into another paper tape.
Since that tape was in the object code that the TX-0 understood,
he’d feed it in, hoping that the program would run magnificently.

There would most probably be a few fellow hackers kibitzing
behind him, laughing and joking and drinking Cokes and eating
some junk food they’d extracted from the machine downstairs.
Saunders preferred the lemon jelly wedges that the others called
“lemon gunkies.” But at four in the morning, anything tasted
good. They would all watch as the program began to run, the
lights going on, the whine from the speaker humming in high or
low register depending on what was in Bit 14 in the accumulator,
and the first thing he’d see on the CRT display after the program
had been assembled and run was that the program had crashed.
So he’d reach into the drawer for the tape with the FLIT debugger
and feed that into the computer. The computer would then be a
debugging machine, and he’d send the program back in. Now he
could start trying to find out where things had gone wrong, and
maybe if he was lucky he’d find out and change things by putting
in some commands by flicking some of the switches on the console
in precise order, or hammering in some code on the Flexowriter.
Once things got running—and it was always incredibly satisfying
when something worked, when he’d made that roomful of transis-
tors and wires and metal and electricity all meld together to create
a precise output that he’d devised—he’d try to add the next
advance to it. When the hour was over—someone already itching
to get on the machine after him—Saunders would be ready to
spend the next few hours figuring out what the heck had made the
program go belly-up.

The peak hour itself was tremendously intense, but during the
hours before, and even during the hours afterward, a hacker
attained a state of pure concentration. When you programmed a
computer, you had to be aware of where all the thousands of bits
of information were going from one instruction to the next, and
be able to predict—and exploit—the effect of all that movement.



The Tech Model Railroad Club 25

When you had all that information glued to your cerebral being, it
was almost as if your own mind had merged into the environment
or the computer. Sometimes it took hours to build up to the point
where your thoughts could contain that total picture, and when
you did get to that point, it was such a shame to waste it that you
tried to sustain it by marathon bursts, alternately working on the
computer or poring over the code that you wrote on one of the
offline Flexowriters in the Kluge Room. You would sustain that
concentration by “wrapping around” to the next day.

Inevitably, that frame of mind spilled over to what random shards
of existence the hackers had outside of computing. The knife-and-
paintbrush contingent at TMRC was not pleased at all by the
infiltration of Tixo-mania into the club: they saw it as a sort of
Trojan horse for a switch in the club focus, from railroading to
computing. And if you attended one of the club meetings held
every Tuesday at 5:15 P.M., you could see the concern: the
hackers would exploit every possible thread of parliamentary pro-
cedure to create a meeting as convoluted as the programs they
were hacking on the TX-0. Motions were made to make motions
to make motions, and objections ruled out of order as if they were
so many computer errors. A note in the minutes of the meeting on
November 24, 1959, suggests that “we frown on certain members
who would do the club a lot more good by doing more S&P-ing
and less reading Robert’s Rules of Order.” Samson was one of the
worst offenders, and at one point an exasperated TMRC member
made a motion “to purchase a cork for Samson’s oral diarrhea.”

Hacking parliamentary procedure was one thing, but the logical
mind-frame required for programming spilled over into more
commonplace activities. You could ask a hacker a question and
sense his mental accumulator processing bits until he came up with
a precise answer to the question you asked. Marge Saunders would
drive to the Safeway every Saturday morning in the Volkswagen
and upon her return ask her husband, “Would you like to help me
bring in the groceries?” Bob Saunders would reply, “No.”
Stunned, Marge would drag in the groceries herself. After the
same thing occurred a few times, she exploded, hurling curses at
him and demanding to know why he said no to her question.



26 Chapter 1

“That’s a stupid question to ask,” he said. “Of course I won’t like
to help you bring in the groceries. If you ask me if T’ll help you
bring them in, that’s another matter.”

It was as if Marge had submitted a program into the TX-0, and
the program, as programs do when the syntax is improper, had
crashed. It was not until she debugged her question that Bob
Saunders would allow it to run successfully on his own mental
computer.



CHAPTER 2

The Hacker Ethic

Something new was coalescing around the TX-0: a new way of life
with a philosophy, an ethic, and a dream.

There was no one moment when it started to dawn on the TX-0
hackers that by devoting their technical abilities to computing
with a devotion rarely seen outside of monasteries, they were the
vanguard of a daring symbiosis between man and machine. With a
fervor like that of young hot-rodders fixated on souping up
engines, they came to take their almost unique surroundings for
granted. Even as the elements of a culture were forming, as leg-
ends began to accrue, as their mastery of programming started to
surpass any previous recorded levels of skill, the dozen or so
hackers were reluctant to acknowledge that their tiny society, on
intimate terms with the TX-0, had been slowly and implicitly
piecing together a body of concepts, beliefs, and mores.

The precepts of this revolutionary Hacker Ethic were not so much
debated and discussed as silently agreed upon. No manifestos
were issued. No missionaries tried to gather converts. The com-
puter did the converting, and those who seemed to follow the
Hacker Ethic most faithfully were people like Samson, Saunders,
and Kotok, whose lives before MIT seemed to be mere preludes to
that moment when they fulfilled themselves behind the console of
the TX-0. Later there would come hackers who took the implicit
Ethic even more seriously than the TX-0 hackers did, hackers like
the legendary Greenblatt or Gosper, though it would be some



28 Chapter 2

years yet before the tenets of hackerism would be explicitly
delineated.

Still, even in the days of the TX-0, the planks of the platform were
in place. The Hacker Ethic:

Access to computers—and anything that might teach you some-
thing about the way the world works—should be unlimited and
total. Always yield to the Hands-On Imperative!

Hackers believe that essential lessons can be learned about the
systems—about the world—from taking things apart, seeing how
they work, and using this knowledge to create new and even more
interesting things. They resent any person, physical barrier, or law
that tries to keep them from doing this.

This is especially true when a hacker wants to fix something that
(from his point of view) is broken or needs improvement. Imper-
fect systems infuriate hackers, whose primal instinct is to debug
them. This is one reason why hackers generally hate driving cars—
the system of randomly programmed red lights and oddly laid out
one-way streets cause delays that are so goddamned wunnecessary
that the impulse is to rearrange signs, open up traffic-light control
boxes . . . redesign the entire system.

In a perfect hacker world, anyone pissed off enough to open up a
control box near a traffic light and take it apart to make it work
better should be perfectly welcome to make the attempt. Rules
that prevent you from taking matters like that into your own
hands are too ridiculous to even consider abiding by. This atti-
tude helped the Model Railroad Club start, on an extremely
informal basis, something called the Midnight Requisitioning
Committee. When TMRC needed a set of diodes or some extra
relays to build some new feature into The System, a few S&P
people would wait until dark and find their way into the places
where those things were kept. None of the hackers, who were as a
rule scrupulously honest in other matters, seemed to equate this
with “stealing.” A willful blindness.

All information should be free.

If you don’t have access to the information you need to improve
things, how can you fix them? A free exchange of information,
particularly when the information was in the form of a computer



The Hacker Ethic 29

program, allowed for greater overall creativity. When you were
working on a machine like the TX-0, which came with almost no
software, everyone would furiously write systems programs to
make programming easier—Tools to Make Tools, kept in the
drawer by the console for easy access by anyone using the machine.
This prevented the dreaded, time-wasting ritual of reinventing the
wheel: instead of everybody writing his own version of the same
program, the best version would be available to everyone, and
everyone would be free to delve into the code and improve on #hat.
A world studded with feature-full programs, bummed to the min-
imum, debugged to perfection.

The belief, sometimes taken unconditionally, that information
should be free was a direct tribute to the way a splendid com-
puter, or computer program, works—the binary bits moving in
the most straightforward, logical path necessary to do their com-
plex job. What was a computer but something that benefited from
a free flow of information? If, say, the accumulator found itself
unable to get information from the input/output (I/O) devices like
the tape reader or the switches, the whole system would collapse.
In the hacker viewpoint, any system could benefit from that easy
flow of information.

Mistrust Authority—Promote Decentralization.

The best way to promote this free exchange of information is to
have an open system, something that presents no boundaries
between a hacker and a piece of information or an item of equip-
ment that he needs in his quest for knowledge, improvement, and
time online. The last thing you need is a bureaucracy. Bureaucra-
cies, whether corporate, government, or university, are flawed
systems, dangerous in that they cannot accommodate the explor-
atory impulse of true hackers. Bureaucrats hide behind arbitrary
rules (as opposed to the logical algorithms by which machines and
computer programs operate): they invoke those rules to consoli-
date power, and perceive the constructive impulse of hackers as a
threat.

The epitome of the bureaucratic world was to be found at a very
large company called International Business Machines—IBM. The
reason its computers were batch-processed Hulking Giants was
only partially because of vacuum tube technology. The real reason



30 Chapter 2

was that IBM was a clumsy, hulking company that did not under-
stand the hacking impulse. If IBM had its way (so the TMRC
hackers thought), the world would be batch processed, laid out on
those annoying little punch cards, and only the most privileged of
priests would be permitted to actually interact with the computer.

All you had to do was look at someone in the IBM world and note
the button-down white shirt, the neatly pinned black tie, the hair
carefully held in place, and the tray of punch cards in hand. You
could wander into the Computation Center, where the 704, the
709, and later the 7090 were stored—the best IBM had to offer—
and see the stifling orderliness, down to the roped-off areas
beyond which unauthorized people could not venture. And you
could compare that to the extremely informal atmosphere around
the TX-0, where grungy clothes were the norm and almost anyone
could wander in.

Now, IBM had done and would continue to do many things to
advance computing. By its sheer size and mighty influence, it had
made computers a permanent part of life in America. To many
people, the words “IBM” and “computer” were virtually synony-
mous. IBM’s machines were reliable workhorses, worthy of the
trust that businessmen and scientists invested in them. This was
due in part to IBM’s conservative approach: it would not make
the most technologically advanced machines, but would rely on
proven concepts and careful, aggressive marketing. As IBM’s dom-
inance of the computer field was established, the company became
an empire unto itself, secretive and smug.

What really drove the hackers crazy was the attitude of the IBM
priests and sub-priests, who seemed to think that IBM had the
only “real” computers, and the rest were all trash. You couldn’t
talk to those people—they were beyond convincing. They were
batch-processed people, and it showed not only in their prefer-
ence of machines, but in their ideas about the way a computation
center, and a world, should be run. Those people could never
understand the obvious superiority of a decentralized system, with
no one giving orders—a system where people could follow their
interests, and if along the way they discovered a flaw in the
system, they could embark on ambitious surgery. No need to get a
requisition form. Just a need to get something done.



The Hacker Ethic 31

This antibureaucratic bent coincided neatly with the personalities
of many of the hackers, who since childhood had grown accus-
tomed to building science projects while the rest of their class-
mates were banging their heads together and learning social skills
on the field of sport. These young adults who were once outcasts
found the computer a fantastic equalizer, experiencing a feeling,
according to Peter Samson, “like you opened the door and walked
through this grand new universe . ..” Once they passed through
that door and sat behind the console of a million-dollar com-
puter, hackers had power. So it was natural to distrust any force
that might try to limit the extent of that power.

Hackers should be judged by their hacking, not bogus criteria
such as degrees, age, race, or position.

The ready acceptance of twelve-year-old Peter Deutsch in the TX-0
community (though not by nonhacker graduate students) was a
good example. Likewise, people who trotted in with seemingly
impressive credentials were not taken seriously until they proved
themselves at the console of a computer. This meritocratic trait
was not necessarily rooted in the inherent goodness of hacker
hearts—it was mainly that hackers cared less about someone’s
superficial characteristics than they did about his potential to
advance the general state of hacking, to create new programs
to admire, to talk about that new feature in the system.

You can create art and beauty on a computer.

Samson’s music program was an example. But to hackers, the art
of the program did not reside in the pleasing sounds emanating
from the online speaker. The code of the program held a beauty of
its own. (Samson, though, was particularly obscure in refusing to
add comments to his source code explaining what he was doing at
a given time. One well-distributed program Samson wrote went
on for hundreds of assembly-language instructions, with only one
comment beside an instruction that contained the number 1750.
The comment was RIPJSB, and people racked their brains about
its meaning until someone figured out that 1750 was the year
Bach died, and that Samson had written an abbreviation for Rest
In Peace Johann Sebastian Bach.)



32 Chapter 2

A certain esthetic of programming style had emerged. Because of
the limited memory space of the TX-0 (a handicap that extended
to all computers of that era), hackers came to deeply appreciate
innovative techniques that allowed programs to do complicated
tasks with very few instructions. The shorter a program was, the
more space you had left for other programs, and the faster a pro-
gram ran. Sometimes when you didn’t need much speed or space,
and you weren’t thinking about art and beauty, you’d hack
together an ugly program, attacking the problem with “brute
force” methods. “Well, we can do this by adding twenty num-
bers,” Samson might say to himself, “and it’s quicker to write
instructions to do that than to think out a loop in the beginning
and the end to do the same job in seven or eight instructions.” But
the latter program might be admired by fellow hackers, and some
programs were bummed to the fewest lines so artfully that the
author’s peers would look at it and almost melt with awe.

Sometimes program bumming became competitive, a macho con-
test to prove oneself so much in command of the system that one
could recognize elegant shortcuts to shave off an instruction or
two, or, better yet, rethink the whole problem and devise a new
algorithm that would save a whole block of instructions. (An algo-
rithm is a specific procedure which one can apply to solve a com-
plex computer problem; it is sort of a mathematical skeleton key.)
This could most emphatically be done by approaching the
problem from an offbeat angle that no one had ever thought of
before, but that in retrospect made total sense. There was defi-
nitely an artistic impulse residing in those who could utilize this
genius-from-Mars technique—a black-magic, visionary quality
that enabled them to discard the stale outlook of the best minds
on earth and come up with a totally unexpected new algorithm.

This happened with the decimal print routine program. This was a
subroutine—a program within a program that you could some-
times integrate into many different programs—to translate binary
numbers that the computer gave you into regular decimal num-
bers. In Saunders’ words, this problem became the “pawn’s ass of
programming—if you could write a decimal print routine which
worked, you knew enough about the computer to call yourself a
programmer of sorts.” And if you wrote a great decimal print rou-
tine, you might be able to call yourself a hacker. More than a

vww allitebooks.con]



http://www.allitebooks.org

The Hacker Ethic 33

competition, the ultimate bumming of the decimal print routine
became a sort of hacker Holy Grail.

Various versions of decimal print routines had been around for
some months. If you were being deliberately stupid about it, or if
you were a genuine moron—an out-and-out “loser”—it might
take you a hundred instructions to get the computer to convert
machine language to decimal. But any hacker worth his salt could
do it in less, and finally, by taking the best of the programs, bum-
ming an instruction here and there, the routine was diminished to
about fifty instructions.

After that, things got serious. People would work for hours,
seeking a way to do the same thing in fewer lines of code. It
became more than a competition; it was a quest. For all the effort
expended, no one seemed to be able to crack the fifty-line barrier.
The question arose whether it was even possible to do it in less.
Was there a point beyond which a program could not be
bummed?

Among the people puzzling with this dilemma was a fellow named
Jensen, a tall, silent hacker from Maine who would sit quietly in
the Kluge Room and scribble on printouts with the calm
demeanor of a backwoodsman whittling. Jensen was always
looking for ways to compress his programs in time and space—his
code was a completely bizarre sequence of intermingled Boolean
and arithmetic functions, often causing several different compu-
tations to occur in different sections of the same eighteen-bit
“word.” Amazing things, magical stunts.

Before Jensen, there had been general agreement that the only log-
ical algorithm for a decimal print routine would have the machine
repeatedly subtracting, using a table of the powers of ten to keep
the numbers in proper digital columns. Jensen somehow figured
that a powers-of-ten table wasn’t necessary; he came up with an
algorithm that was capable of converting the digits in a reverse
order, but, by some digital sleight of hand, print them out in the
proper order. There was a complex mathematical justification to it
that was clear to the other hackers only when they saw Jensen’s
program posted on a bulletin board, his way of telling them that he
had taken the decimal print routine to its limit. Forty-six instruc-
tions. People would stare at the code and their jaws would drop.

Download from Wow! eBook <www.wowebook.com>



34 Chapter 2

Marge Saunders remembers the hackers being unusually quiet for
days afterward.

“We knew that was the end of it,” Bob Saunders later said. “That
was Nirvana.”

Computers can change your life for the better.

This belief was subtly manifest. Rarely would a hacker try to
impose a view of the myriad advantages of the computer way of
knowledge to an outsider. Yet, this premise dominated the
everyday behavior of the TX-0 hackers, as well as the generations
of hackers that came after them.

Surely the computer had changed their lives, enriched their lives,
given their lives focus, made their lives adventurous. It had made
them masters of a certain slice of fate. Peter Samson later said,
“We did it twenty-five to thirty percent for the sake of doing it
because it was something we could do and do well, and sixty per-
cent for the sake of having something which was in its metaphor-
ical way alive, our offspring, which would do things on its own
when we were finished. That’s the great thing about program-
ming, the magical appeal it has... Once you fix a behavioral
problem [a computer or program] has, it’s fixed forever, and it is
exactly an image of what you meant.”

Like Aladdin’s lamp, you could get it to do your bidding.

Surely everyone could benefit from experiencing this power. Surely
everyone could benefit from a world based on the Hacker Ethic.
This was the implicit belief of the hackers, and the hackers irrever-
ently extended the conventional point of view of what computers
could and should do—leading the world to a new way of looking
and interacting with computers.

This was not easily done. Even at such an advanced institution as
MIT, some professors considered a manic affinity for computers
as frivolous, even demented. TMRC hacker Bob Wagner once had
to explain to an engineering professor what a computer was.
Wagner experienced this clash of computer versus anticomputer
even more vividly when he took a Numerical Analysis class in
which the professor required each student to do homework using
rattling, clunky electromechanical calculators. Kotok was in the
same class, and both of them were appalled at the prospect of



The Hacker Ethic 35

working with those low-tech machines. “Why should we,” they
asked, “when we’ve got this computer?”

So Wagner began working on a computer program that would
emulate the behavior of a calculator. The idea was outrageous. To
some, it was a misappropriation of valuable machine time.
According to the standard thinking on computers, their time was
so precious that one should only attempt things that took max-
imum advantage of the computer, things that otherwise would
take roomfuls of mathematicians days of mindless calculating.
Hackers felt otherwise: anything that seemed interesting or fun
was fodder for computing—and using interactive computers, with
no one looking over your shoulder and demanding clearance for
your specific project, you could act on that belief. After two or
three months of tangling with intricacies of floating-point arith-
metic (necessary to allow the program to know where to place the
decimal point) on a machine that had no simple method to per-
form elementary multiplication, Wagner had written three thou-
sand lines of code that did the job. He had made a ridiculously
expensive computer perform the function of a calculator that was
one thousandth the price. To honor this irony, he called the pro-
gram “Expensive Desk Calculator,” and proudly did the home-
work for his class on it.

His grade—zero. “You used a computer!” the professor told him.
“This can’t be right.”

Wagner didn’t even bother to explain. How could he convey to his
teacher that the computer was making realities out of what were
once incredible possibilities? Or that another hacker had even
written a program called “Expensive Typewriter” that converted
the TX-0 to something you could write text on, could process
your writing in strings of characters and print it out on the Flexo-
writer—could you imagine a professor accepting a classwork
report written by the computer? How could that professor—how
could, in fact, anyone who hadn’t been immersed in this
uncharted man-machine universe—understand how Wagner and
his fellow hackers were routinely using the computer to simulate,
according to Wagner, “strange situations which one could scarcely
envision otherwise”? The professor would learn in time, as would
everyone, that the world opened up by the computer was a limit-
less one.



36 Chapter 2

If anyone needed further proof, you could cite the project that
Kotok was working on in the Computation Center, the chess pro-
gram that bearded Al professor “Uncle” John McCarthy, as he
was becoming known to his hacker students, had begun on the
IBM 704. Even though Kotok and the several other hackers
helping him on the program had only contempt for the IBM
batch-processing mentality that pervaded the machine and the
people around it, they had managed to scrounge some late-night
time to use it interactively, and had been engaging in an informal
battle with the systems programmers on the 704 to see which
group would be known as the biggest consumer of computer time.
The lead would bounce back and forth, and the white-shirt-and-
black-tie 704 people were impressed enough to actually let Kotok
and his group touch the buttons and switches on the 704: rare
sensual contact with a vaunted IBM beast.

Kotok’s role in bringing the chess program to life was indicative of
what was to become the hacker role in Artificial Intelligence: a
Heavy Head like McCarthy or his colleague Marvin Minsky
would begin a project or wonder aloud whether something might
be possible, and the hackers, if it interested them, would set about
doing it.

The chess program had been started using FORTRAN, one of the
early computer languages. Computer languages look more like
English than assembly language, are easier to write with, and do
more things with fewer instructions; however, each time an
instruction is given in a computer language like FORTRAN, the
computer must first translate that command into its own binary
language. A program called a “compiler” does this, and the com-
piler takes up time to do its job, as well as occupying valuable
space within the computer. In effect, using a computer language
puts you an extra step away from direct contact with the com-
puter, and hackers generally preferred assembly or, as they called

it, “machine” language to less elegant, “higher-level” languages
like FORTRAN.

Kotok, though, recognized that because of the huge amounts of
numbers that would have to be crunched in a chess program, part
of the program would have to be done in FORTRAN, and part in
assembly. They hacked it part by part, with “move generators,”
basic data structures, and all kinds of innovative algorithms for



The Hacker Ethic 37

strategy. After feeding the machine the rules for moving each
piece, they gave it some parameters by which to evaluate its posi-
tion, consider various moves, and make the move that would
advance it to the most advantageous situation. Kotok kept at it for
years, the program growing as MIT kept upgrading its IBM com-
puters, and one memorable night a few hackers gathered to see the
program make some of its first moves in a real game. Its opener
was quite respectable, but after eight or so exchanges there was
real trouble, with the computer about to be checkmated. Every-
body wondered how the computer would react. It took a while
(everyone knew that during those pauses the computer was actu-
ally “thinking,” if your idea of thinking included mechanically
considering various moves, evaluating them, rejecting most, and
using a predefined set of parameters to ultimately make a choice).
Finally, the computer moved a pawn two squares forward, ille-
gally jumping over another piece. A bug! But a clever one—it got
the computer out of check. Maybe the program was figuring out
some new algorithm with which to conquer chess.

At other universities, professors were making public proclama-
tions that computers would never be able to beat a human being
in chess. Hackers knew better. They would be the ones who
would guide computers to greater heights than anyone expected.
And the hackers, by fruitful, meaningful association with the com-
puter, would be foremost among the beneficiaries.

But they would not be the only beneficiaries. Everyone could gain
something by the use of thinking computers in an intellectually
automated world. And wouldn’t everyone benefit even more by
approaching the world with the same inquisitive intensity, skepti-
cism toward bureaucracy, openness to creativity, unselfishness in
sharing accomplishments, urge to make improvements, and desire
to build as those who followed the Hacker Ethic? By accepting
others on the same unprejudiced basis by which computers
accepted anyone who entered code into a Flexowriter? Wouldn’t
we benefit if we learned from computers the means of creating a
perfect system, and set about emulating that perfection in a
human system? If everyone could interact with computers with the
same innocent, productive, creative impulse that hackers did, the
Hacker Ethic might spread through society like a benevolent
ripple, and computers would indeed change the world for the
better.



38 Chapter 2

In the monastic confines of the Massachusetts Institute of Tech-
nology, people had the freedom to live out this dream—the hacker
dream. No one dared suggest that the dream might spread.
Instead, people set about building, right there at MIT, a hacker
Xanadu, the likes of which might never be duplicated.



CHAPTER 3

Spacewar

In the summer of 1961, Alan Kotok and the other TMRC hackers
learned that a new company was soon to deliver to MIT, abso-
lutely free, the next step in computing, a machine that took the
interactive principles of the TX-0 several steps further. A machine
that might be even better for hackers than the TX-0 was.

The PDP-1. It would change computing forever. It would make
the still hazy hacker dream come a little closer to reality.

Alan Kotok had distinguished himself as a true wizard on the TX-0,
so much so that he, along with Saunders, Samson, Wagner, and a
few others, had been hired by Jack Dennis to be the Systems Pro-
gramming Group of the TX-0. The pay would be a munificent $1.60
an hour. For a few of the hackers, the job was one more excuse
not to go to classes—some hackers, like Samson, would never
graduate, and be too busy hacking to really regret the loss. Kotok,
though, was able not only to manage his classes, but to establish
himself as a “canonical” hacker. Around the TX-0 and TMRC, he
was acquiring legendary status. One hacker who was just arriving
at MIT that year remembers Kotok giving newcomers a demon-
stration of how the TX-0 worked: “I got the impression he was
hyperthyroid or something,” recalled Bill Gosper, who would
become a canonical hacker himself, “because he spoke very slowly
and he was chubby and his eyes were half-closed. That was com-
pletely and utterly the wrong impression. [Around the TX-0] Kotok
had infinite moral authority. He had written the chess program.



40 Chapter 3

He understood hardware.” (This last was not an inconsiderable
compliment—“understanding hardware” was akin to fathoming
the Tao of physical nature.)

The summer that the word came out about the PDP-1, Kotok was
working for Western Electric, kind of a dream job, since of all
possible systems the phone system was admired most of all. The
Model Railroad Club would often go on tours of phone company
exchanges, much in the way that people with an interest in
painting might tour a museum. Kotok found it interesting that at
the phone company, which had gotten so big in its decades of
development, only a few of the engineers had a broad knowledge
of the interrelations within that system. Nevertheless, the engi-
neers could readily provide detail on specific functions of the
system, like crossbar switching and step-relays; Kotok and the others
would hound these experts for information, and the flattered engi-
neers, probably having no idea that these ultra-polite college kids
would actually use the information, would readily comply.

Kotok made it a point to attend those tours, to read all the tech-
nical material he could get his hands on, and to see what he
could get by dialing different numbers on the complex and little-
understood MIT phone system. It was basic exploration, just like
exploring the digital back alleys of the TX-0. During that pre-
vious winter of 1960-61, the TMRC hackers had engaged in an
elaborate “telephone network fingerprinting,” charting all the
places you could reach by MIT’s system of tie lines. Though not
connected to general telephone lines, the system could take you to
Lincoln Lab, and from there to defense contractors all over the
country. It was a matter of mapping and testing. You would start
with one access code, add different digits to it, see who might
answer, ask whoever answered where they were, then add digits to
that number to piggyback to the next place. Sometimes you could
even reach outside lines in the suburbs, courtesy of the unsus-
pecting phone company. And, as Kotok would later admit, “If
there was some design flaw in the phone system such that one
could get calls that weren’t intended to get through, I wasn’t
above doing that, but that was their problem, not mine.”

Still, the motive was exploration, not fraud, and it was considered
bad form to profit illegally from these weird connections. Some-
times outsiders could not comprehend this. Samson’s roommates



Spacewar 41

in the Burton Hall dorm, for instance, were nonhackers who
thought it was all right to exploit system bugs without the holy
justification of system exploration. After they pressured Samson
for days, he finally gave in and handed them a 20-digit number
that he said would access an exotic location. “You can dial this
from the hall phone,” he told them, “but I don’t want to be
around.” As they anxiously began dialing, Samson went to a
downstairs phone, which rang just as he reached it. “This is the
Pentagon,” he boomed in his most official voice. “What is your
security clearance, please?” From the phone upstairs, Samson
heard terrified gasps, and the click of a phone being hung up.

Network fingerprinting was obviously a pursuit limited to
hackers, whose desire to know the system overruled any fear of
getting nailed.

But as much as phone company esoterica fascinated Kotok, the
prospect of the PDP-1 took precedence. Perhaps he sensed that
nothing, even phone hacking, would be the same afterward. The
people who designed and marketed this new machine were not
your ordinary computer company button-downs. The company
was a brand-new firm called Digital Equipment Corporation
(DEC), and some of the TX-0 users knew that DEC’s first prod-
ucts were special interfaces made specifically for that TX-0. It was
exciting enough that some of DEC’s founders had a view of com-
puting that differed from the gray-flannel, batch-processed IBM
mentality; it was positively breathtaking that the DEC people
seemed to have looked at the freewheeling, interactive, improvisa-
tional, hands-on-uber-alles style of the TX-0 community, and
designed a computer that would reinforce that kind of behavior.
The PDP-1 (the initials were short for Programmed Data Pro-
cessor, a term considered less threatening than “computer,” which
had all kinds of hulking-giant connotations) would become
known as the first minicomputer, designed not for huge number-
crunching tasks, but for scientific inquiry, mathematical
formulation . . . and hacking. It would be so compact that the
whole setup was no larger than three refrigerators—it wouldn’t
require as much air conditioning, and you could even turn it on
without a whole crew of sub-priests being needed to sequence sev-
eral power supplies in the right order or start the time-base gener-
ator, among other exacting tasks. The retail price of the computer
was an astoundingly low $120,000—cheap enough so people



42 Chapter 3

might stop complaining about how precious every second of com-
puter time was. But the machine, which was the second PDP-1
manufactured (the first one was sold to the nearby scientific firm
of Bolt Beranek and Newman, or BBN), cost MIT nothing: it was
donated by DEC to the RLE lab.

So it was clear that hackers would have even more time on it than
they did on the TX-0.

The PDP-1 would be delivered with a simple collection of systems
software, which the hackers considered completely inadequate.
The TX-0 hackers had become accustomed to the most advanced
interactive software anywhere, a dazzling set of systems pro-
grams, written by hackers themselves and implicitly tailored to
their relentless demands for control of the machine. Young Peter
Deutsch, the twelve-year-old who had discovered the TX-0, had
made good on his promise to write a spiffier assembler, and Bob
Saunders had worked up a smaller, faster version of the FLIT
debugger called Micro-FLIT. These programs had benefited from
an expanded instruction set. One day, after considerable planning
and designing by Saunders and Jack Dennis, the TX-0 had been
turned off, and a covey of engineers exposed its innards and began
hardwiring new instructions into the machine. This formidable
task expanded the assembly language by several instructions.
When the pliers and screwdrivers were put away and the com-
puter carefully turned on, everyone madly set about revamping
programs and bumming old programs using the new instructions.

The PDP-1 instruction set, Kotok learned, was not too different
from that of the expanded TX-0, so Kotok naturally began
writing systems software for the PDP-1 that very summer, using
all the spare time he could manage. Figuring that everyone would
jump in and begin writing as soon as the machine got there, he
worked on a translation of the Micro-FLIT debugger so that
writing the software for the “One” would be easier. Samson
promptly named Kotok’s debugger “DDT,” and the name would
stick, though the program itself would be modified countless times
by hackers who wanted to add features or bum instructions out of it.

Kotok was not the only one preparing for the arrival of the PDP-1.
Like a motley collection of expectant parents, other hackers were
busily weaving software booties and blankets for the new baby

vww allitebooks.con]



http://www.allitebooks.org

Spacewar 43

coming into the family, so this heralded heir to the computing
throne would be welcome as soon as it was delivered in late
September.

The hackers helped bring the PDP-1 into its new home, the Kluge
Room next door to the TX-0. It was a beauty: sitting behind a
console half as long as the Tixo’s, you’d look at one compact
panel of toggle switches and lights; next to that was the display
screen, encased in a bright blue, six-sided, quasideco housing;
behind it were the tall cabinets, the size of a refrigerator and three
times as deep, with the wires, boards, switches, and transistors—
entry to that, of course, was forbidden. There was a Flexowriter
connected for online input (people complained about the noise so
much that the Flexowriter was eventually replaced by a modified
IBM typewriter, which didn’t work nearly so well) and a high-
speed paper-tape reader, also for input. All in all, a downright
heavenly toy.

Jack Dennis liked some of the software written by BBN for the
prototype PDP-1, particularly the assembler. Kotok, though, felt
like retching when he saw that assembler run—the mode of opera-
tion didn’t seem to fit the on-the-fly style he liked—so he and a
few others told Dennis that they wanted to write their own.
“That’s a bad idea,” said Dennis, who wanted an assembler up
and running right away, and figured that it would take weeks for
the hackers to do it.

Kotok and the others were adamant. This was a program that
they’d be living with. It had to be just perfect. (Of course no pro-
gram ever is, but that never stopped a hacker.)

“Pll tell you what,” said Kotok, this twenty-year-old Buddha-
shaped wizard, to the skeptical yet sympathetic Jack Dennis, “If
we write this program over the weekend and have it working,
would you pay us for the time?”

The pay scale at that time was such that the total would be some-
thing under five hundred dollars. “That sounds like a fair deal,”
said Dennis,

Kotok, Samson, Saunders, Wagner, and a couple of others began
on a Friday night late in September. They figured they would
work from the TX-0 assembler that Dennis had written the orig-
inal of and that twelve-year-old Peter Deutsch, among others, had



44 Chapter 3

revamped. They wouldn’t change inputs or outputs, and they
wouldn’t redesign algorithms; each hacker would take a section of
the TX-0 program and convert it to PDP-1 code. And they
wouldn’t sleep. Six hackers worked around two hundred fifty
man-hours that weekend, writing code, debugging, and washing
down take-out Chinese food with massive quantities of Coca-Cola
shipped over from the TMRC clubroom. It was a programming
orgy, and when Jack Dennis came in that Monday, he was aston-
ished to find an assembler loaded into the PDP-1, which, as a
demonstration, was assembling its own code into binary.

By sheer dint of hacking, the TX-0—no, the PDP-1—hackers had
turned out a program in a weekend that it would have taken the
computer industry weeks, maybe even months to pull off. It was a
project that would probably not be undertaken by the computer
industry without a long and tedious process of requisitions,
studies, meetings, and executive vacillating, most likely with con-
siderable compromise along the way. It might never have been
done at all. The project was a triumph for the Hacker Ethic.

The hackers were given even more access to this new machine
than they had managed to get on the TX-0, and almost all of them
switched their operations to the Kluge Room. A few stubbornly
stuck to the Tixo, and to the PDP-1 hackers, this was grounds for
some mild ridicule. To rub it in, the PDP-1 hackers developed a
little demonstration based on the mnemonics of the instruction set
of this bold new machine, which included such exotic instructions
as DAC (Deposit Accumulator), LIO (Load Input-Output), DPY
(Deplay), and JMP. The PDP-1 group would stand in a line and
shout in unison:

LAC,
DAC,
DIPPY DAP,
LIO,

DIO

JUMP!

When they chanted that last word—*Jump!”—they would all
jump to the right. What was lacking in choreography was more



Spacewar 45

than compensated for by enthusiasm: they were supercharged by
the beauty of the machine, by the beauty of computers.

The same kind of enthusiasm was obvious in the even more spon-
taneous programming occurring on the PDP-1, ranging from
serious systems programs, to programs to control a primitive
robot arm, to whimsical hacks. One of the latter took advantage
of a hacked-up connection between the PDP-1 and the TX-0—a
wire through which information could pass, one bit at a time,
between the two machines. According to Samson, the hackers
called in the venerable AI pioneer John McCarthy to sit by the
PDP-1. “Professor McCarthy, look at our new chess program!”
And then they called another professor to sit by the TX-0. “Here’s
the chess program! Type in your move!” After McCarthy typed
his first move, and it appeared on the Flexowriter on the TX-0,
the hackers told the other professor that he had just witnessed the
TX-0’s opening move. “Now make yours!” After a few moves,
McCarthy noticed that the computer was outputting the moves
one letter at a time, sometimes with a suspicious pause between
them. So McCarthy followed the wire to his flesh-and-blood
opponent. The hackers rocked with mirth. But it would not be
long before they would come up with programs for computers—
no joke—to actually play tournament chess.

The PDP-1 beckoned the hackers to program without limit.
Samson was casually hacking things like the Mayan calendar
(which worked on a base-20 number system) and working over-
time on a version of his TX-0 music program that took advantage
of the PDP-1’s extended audio capabilities to create music in three
voices—three-part Bach fugues, melodies interacting . . . computer
music erupting from the old Kluge Room! The people at DEC had
heard about Samson’s program and asked him to complete it on
the PDP-1, so Samson eventually worked it so that someone could
type a musical score into the machine by a simple translation of
notes into letters and digits, and the computer would respond with
a three-voice organ sonata. Another group coded up Gilbert and
Sullivan operettas.

Samson proudly presented the music compiler to DEC to dis-
tribute to anyone who wanted it. He was proud that other people
would be using his program. The team that worked on the new
assembler felt likewise. For instance, they were pleased to have



46 Chapter 3

paper tape bearing the program in the drawer so anyone using the
machine could access it, try to improve it, bum a few instructions
from it, or add a feature to it. They felt honored when DEC asked
for the program so it could offer it to other PDP-1 owners. The
question of royalties never came up. To Samson and the others,
using the computer was such a joy that they would have paid to
do it. The fact that they were getting paid the princely sum of $1.60
an hour to work on the computer was a bonus. As for royalties,
wasn’t software more like a gift to the world, something that was
reward in itself? The idea was to make a computer more usable, to
make it more exciting to users, to make computers so interesting
that people would be tempted to play with them, explore them,
and eventually hack on them. When you wrote a fine program you
were building a community, not churning out a product.

Anyway, people shouldn’t have to pay for software—information

should be free!

The TMRC hackers were not the only ones who had been devising
plans for the new PDP-1. During that summer of 1961, a plan for
the most elaborate hack yet—a virtual showcase of what could
come out of a rigorous application of the Hacker Ethic—was
being devised. The scene of these discussions was a tenement
building on Higham Street in Cambridge, and the original perpe-
trators were three itinerant programmers in their mid-twenties
who’d been hanging around various computation centers for
years. Two of the three lived in the tenement, so in honor of the
pompous proclamations emanating from nearby Harvard Univer-
sity the trio mockingly referred to the building as the Higham
Institute.

One of the Fellows of this bogus institution was Steve Russell,
nicknamed, for unknown reasons, Slug. He had that breathless
chipmunk speech pattern so common among hackers, along with
thick glasses, modest height, and a fanatic taste for computers,
bad movies, and pulp science fiction. All three interests were
shared by the resident attendees at those bull sessions on Higham
Street.



Spacewar 47

Russell had long been a “coolie” (to use a TMRC term) of Uncle
John McCarthy. McCarthy had been trying to design and imple-
ment a higher-level language that might be sufficient for artificial
intelligence work. He thought he had found it in LISP. The lan-
guage was named for its method of List Processing; by simple yet
powerful commands, LISP could do many things with few lines of
code; it could also perform powerful recursions—references to
things within itself—which would allow programs written in that
language to actually “learn” from what happened as the program
ran. The problem with LISP at that time was that it took up an
awful amount of space on a computer, ran very slowly, and gener-
ated voluminous amounts of extra code as the programs ran, so
much so that it needed its own “garbage collection” program to
periodically clean out the computer memory.

Russell was helping Uncle John write a LISP interpreter for the
Hulking Giant IBM 704. It was, in his words, “a horrible engineering
job,” mostly due to the batch-processing tedium of the 704.

Compared to that machine, the PDP-1 looked like the Promised
Land to Slug Russell. More accessible than the TX-0, and no
batch processing! Although it didn’t seem big enough to do LISP,
it had other marvelous capabilities, some of which were objects of
discussion of the Higham Institute. What particularly intrigued
Russell and his friends was the prospect of making up some kind
of elaborate “display hack” on the PDP-1, using the CRT screen.
After considerable midnight discourse, the three-man Higham
Institute put itself on record as insisting that the most effective
demonstration of the computer’s magic would be a visually
striking game.

There had been several attempts to do this kind of thing on the
TX-0. One of them was a hack called Mouse in the Maze—
the user first constructed a maze with the light pen, and a blip on the
screen representing a mouse would tentatively poke its way
through the maze in search of another set of blips in the shape of
cheese wedges. There was also a “VIP version” of the game, in
which the mouse would seek martini glasses. After it got to the
glass, it would seek another, until it ran out of energy, too drunk
to continue. When you flicked the switches to run the mouse
through the maze a second time, though, the mouse would



48 Chapter 3

“remember” the path to the glasses, and like an experienced barfly
would unhesitatingly scurry toward the booze. That was as far as
display hacks would go on the TX-0.

But already on the PDP-1, which had a screen that was easier to
program than the TX-0’s, there had been some significant display
hacks. The most admired effort was created by one of the twin
gurus of artificial intelligence at MIT, Marvin Minsky (the other
one was, of course, McCarthy). Minsky was more outgoing than
his fellow Al guru, and more willing to get into the hacker mode
of activity. He was a man with very big ideas about the future of
computing—he really believed that one day machines would be
able to think, and he would often create a big stir by publicly
calling human brains “meat machines,” implying that machines
not made of meat would do as well some day. An elfish man with
twinkling eyes behind thick glasses, a starkly bald head, and an
omnipresent turtleneck sweater, Minsky would say this with his
usual dry style, geared simultaneously to maximize provocation
and to leave just a hint that it was all some cosmic goof—of
course machines can’t think, heb-hebh. Marvin was the real thing;
the PDP-1 hackers would often sit in on his course, Intro to Al
6.544, because not only was Minsky a good theoretician, but he
knew his stuff. By the early 1960s, Minsky was beginning to orga-
nize what would come to be the world’s first laboratory in artifi-
cial intelligence; and he knew that to do what he wanted, he
would need programming geniuses as his foot soldiers—so he
encouraged hackerism in any way he could.

One of Minsky’s contributions to the growing canon of interesting
hacks was a display program on the PDP-1 called the Circle Algo-
rithm. It was discovered by mistake, actually—while trying to bum
an instruction out of a short program to make straight lines into
curves or spirals, Minsky inadvertently mistook a “Y” character for
a “Y prime,” and instead of the display squiggling into inchoate spi-
rals as expected, it drew a circle: an incredible discovery, which was
later found to have profound mathematical implications. Hacking
further, Minsky used the Circle Algorithm as a stepping-off point
for a more elaborate display in which three particles influenced
each other and made fascinating, swirling patterns on the screen,
self-generating roses with varying numbers of leaves. “The forces



Spacewar 49

particles exerted on others were totally outlandish,” Bob Wagner
later recalled. “You were simulating a violation of natural law!”
Minsky called the hack a “Tri-Pos: Three-Position Display” pro-
gram, but the hackers affectionately renamed it the Minskytron.

Slug Russell was inspired by this. At the Higham Institute sessions
some months back, he and his friends had discussed the criteria
for the ultimate display hack. Since they had been fans of trashy
science fiction, particularly the space opera novels of E.E. “Doc”
Smith, they somehow decided that the PDP-1 would be a perfect
machine to make a combination grade-B movie and $120,000 toy.
A game in which two people could face each other in an outer-
space showdown. A Higham Institute Study Group on Space War-
fare was duly organized, and its conclusion strongly implied that
Slug Russell should be the author of this historic hack.

But months later, Russell hadn’t even started. He would watch the
Minskytron make patterns, he’d flip switches to see new patterns
develop, and every so often he’d flip more switches when the pro-
gram got wedged into inactivity. He was fascinated, but thought
the hack too abstract and mathematical. “This demo is a crock,”
he finally decided—only thirty-two or so instructions, and it didn’t
really do anything.

Slug Russell knew that his war-in-outer-space game would do
something. In its own kitschy, sci-fi terms, it would be absorbing
in a way no previous hack had ever been. The thing that got Slug
into computers in the first place was the feeling of power you got
from running the damn things. You can tell the computer what to
do, and it fights with you, but it finally does what you tell it to. Of
course it will reflect your own stupidity, and often what you tell it
to do will result in something distasteful. But eventually, after tor-
tures and tribulations, it will do exactly what you want. The
feeling you get then is unlike any other feeling in the world. It can
make you a junkie. It made Slug Russell a junkie, and he could see
that it had done the same thing to the hackers who haunted the
Kluge Room until dawn. It was that feeling that did it, and Slug
Russell guessed the feeling was power.

Slug got sort of a similar, though less intense, feeling from Doc
Smith’s novels. He let his imagination construct the thrill of
roaring across space in a white rocket ship ... and wondered if



50 Chapter 3

that same excitement could be captured while sitting behind the
console of the PDP-1. That would be the Spacewar he dreamed
about. Once again he vowed to do it.

Later.

Slug was not as driven as some of the other hackers. Sometimes he
needed a push. After he made the mistake of opening up his big
mouth about this program he was going to write, the PDP-1
hackers, always eager to see another hack added to the growing
pile of paper tapes in the drawer, urged him to do it. After mum-
bling excuses for a while, he said he would, but he’d first have to
figure out how to write the elaborate sine-cosine routines neces-
sary to plot the ships’ motion.

Kotok knew that hurdle could be easily solved. Kotok at that
point had been getting fairly cozy with the people at DEC, several
miles away at Maynard. DEC was informal, as computer manu-
facturers went, and did not regard MIT hackers as the grungy,
frivolous computer-joyriders that IBM might have taken them for.
For instance, one day when a piece of equipment was broken,
Kotok called up Maynard and told DEC about it; they said,
“Come up and get a replacement.” By the time Kotok got up
there, it was well after 5 P.M. and the place was closed. But the
night watchman let him go in, find the desk of the engineer he’d
been talking to, and root through the desk until he found the part.
Informal, the way hackers like it. So it was no problem for Kotok
to go up to Maynard one day, where he was positive someone
would have a routine for sine and cosine that would run on the
PDP-1. Sure enough, someone had it, and since information was
free, Kotok took it back to Building 26.

“Here you are, Russell,” Kotok said, paper tapes in hand. “Now
what’s your excuse?”

At that point, Russell had no excuse. So he spent his off-hours
writing this fantasy PDP-1 game, the likes of which no one had
seen before. Soon he was spending his “on” hours working on
the game. He began in early December, and when Christmas
came, he was still hacking. When the calendar wrapped around
to 1962, he was still hacking. By that time, Russell could pro-
duce a dot on the screen that you could manipulate: by flicking



Spacewar 51

some of the tiny toggle switches on the control panel, you could
make the dots accelerate and change direction.

He then set about making the shapes of the two rocket ships: both
were classic cartoon rockets, pointed at the top and blessed with a
set of fins at the bottom. To distinguish them from each other, he
made one chubby and cigar-shaped, with a bulge in the middle,
while the second he shaped like a thin tube. Russell used the sine
and cosine routines to figure out how to move those shapes in dif-
ferent directions. Then he wrote a subroutine to shoot a “tor-
pedo” (a dot) from the rocket nose with a switch on the computer.
The computer would scan the position of the torpedo and the
enemy ship; if both occupied the same area, the program would
call up a subroutine that replaced the unhappy ship with a
random splatter of dots representing an explosion. (That process
was called “collision detection.”)

All of this was actually a significant conceptual step toward more
sophisticated “real-time” programming, where what happens on a
computer matches the frame of reference in which human beings
are actually working. In another sense, Russell was emulating the
online, interactive debugging style that the hackers were champi-
oning—the freedom to see what instruction your program stopped
dead on, and to use switches or the Flexowriter to jimmy in a dif-
ferent instruction, all while the program was running along with
the DDT debugger. The game Spacewar, a computer program
itself, helped show how all games—and maybe everything else—
worked like computer programs. When you went a bit astray, you
modified your parameters and fixed it. You put in new instruc-
tions. The same principle applied to target shooting, chess strategy,
and MIT course work. Computer programming was not merely a
technical pursuit, but an approach to the problems of living.

In the later stages of programming, Saunders helped Slug Russell
out, and they hacked a few intense six-to-eight-hour sessions.
Sometime in February, Russell unveiled the basic game. There
were the two ships, each with thirty-one torpedoes. There were a
few random dots on the screen representing stars in this celestial
battlefield. You could maneuver the ships by flicking four switches
on the console of the PDP-1, representing clockwise turn, counter-
clockwise turn, accelerate, and fire torpedo.



52 Chapter 3

Slug Russell knew that by showing a rough version of the game,
and dropping a paper tape with the program into the box with the
PDP-1 system programs, he was welcoming unsolicited improve-
ments. Spacewar was no ordinary computer simulation—you
could actually be a rocket-ship pilot. It was Doc Smith come to
life. But the same power that Russell had drawn on to make his
program—the power that the PDP-1 lent a programmer to create
his own little universe—was also available to other hackers, who
naturally felt free to improve Slug Russell’s universe. They did so
instantly.

The nature of the improvements might be summed up by the gen-
eral hacker reaction to the original routine Slug Russell used for
his torpedoes. Knowing that military weapons in real life aren’t
always perfect, Russell figured that he’d make the torpedoes real-
istic. Instead of having them go in a straight line until they ran out
of steam and exploded, he put in some random variations in the
direction and velocity. Instead of appreciating this verisimilitude,
the hackers denounced it. They loved smooth-running systems and
reliable tools, so the fact that they would be stuck with something
that didn’t work right drove them crazy. Russell later figured out
that “weapons or tools that aren’t very trustworthy are held in
very low esteem—people really like to be able to trust their tools
and weapons. That was very clear in that case.”

But of course that could be easily fixed. The advantage that a
world created by a computer program had over the real world was
that you could fix a dire problem like faulty torpedoes just by
changing a few instructions. That was why so many people found
it easy to lose themselves in hackerism in the first place! So the
torpedoes were fixed, and people spent hours in outer-space
dueling. And even more hours trying to make the Spacewar world
a better one.

Peter Samson, for instance, loved the idea of Spacewar, but could
not abide the randomly generated dots that passed themselves off
as the sky. Real space had stars in specific places. “We’ll have the
real thing,” Samson vowed. He obtained a thick atlas of the uni-
verse, and set about entering data into a routine he wrote that
would generate the actual constellations visible to someone
standing on the equator on a clear night. All stars down to the fifth
magnitude were represented; Samson duplicated their relative

vww allitebooks.con]



http://www.allitebooks.org

Spacewar 53

brightness by controlling how often the computer lit the dot on
the screen which represented the star. He also rigged the program
so that, as the game progressed, the sky would majestically
scroll—at any one time the screen exposed forty-five percent of
the sky. Besides adding verisimilitude, this “Expensive Plane-
tarium” program also gave rocket fighters a mappable back-
ground from which to gauge position. The game could truly be
called, as Samson said, Shootout-at-El-Cassiopeia.

Another programmer, named Dan Edwards, was dissatisfied with
the unanchored movement of the two dueling ships. It made the
game merely a test of motor skills. He figured that adding a
gravity factor would give the game a strategic component. So he
programmed a central star—a sun—in the middle of the screen;
you could use the sun’s gravitational pull to give you speed as you
circled it, but if you weren’t careful and got too close, you’d be
drawn into the sun, which was certain death.

Before all the strategic implications of this variation could be
employed, Shag Garetz, one of the Higham Institute trio, contrib-
uted a wild-card type of feature. He had read in Doc Smith’s
novels how space hot-rodders could suck themselves out of one
galaxy and into another by virtue of a “hyper-spatial tube,” which
would throw you into “that highly enigmatic Nth space.” So he
added a “hyperspace” capability to the game, allowing a player to
avoid a dire situation by pushing a panic button that would zip
him to this hyperspace. You were allowed to go into hyperspace
three times in the course of a game; the drawback was that you
never knew where you might come out. Sometimes you’d reappear
right next to the sun, just in time to see your ship hopelessly
pulled to an untimely demise on the sun’s surface. In tribute to
Marvin Minsky’s original hack, Garetz programmed the hyper-
space feature so that a ship entering hyperspace would leave a
“warp-induced photonic stress emission signature”—a leftover
smear of light in a shape that often formed in the aftermath of a
Minskytron display.

The variations were endless. By switching a few parameters you
could turn the game into “hydraulic spacewar,” in which torpe-
does flow out in ejaculatory streams instead of one by one. Or, as
the night grew later and people became locked into interstellar
mode, someone might shout, “Let’s turn on the Winds of Space!”



54 Chapter 3

and someone would hack up a warping factor, which would force
players to make adjustments every time they moved. Though any
improvement a hacker wished to make would be welcome, it was
extremely bad form to make some weird change in the game
unannounced. The effective social pressures that enforced the
Hacker Ethic—which urged hands-on for improvement, not
damage—prevented any instance of that kind of mischief.
Anyway, the hackers were already engaged in a mind-boggling
tweak of the system—they were using an expensive computer to
play the world’s most glorified game!

Spacewar was played a hell of a lot. For some, it was addictive.
Though no one could officially sign up the PDP-1 for a Spacewar
session, the machine’s every free moment that spring seemed to
have some version of the game running. Bottles of Coke in hand
(and sometimes with money on the line), the hackers would run
marathon tournaments. Russell eventually wrote a subroutine that
would keep score, displaying in octal (everyone could sight-read
that base-eight number system by then) the total of games won.
For a while, the main drawback seemed to be that working the
switches on the console of the PDP-1 was uncomfortable—every-
body was getting sore elbows from keeping their arms at that par-
ticular angle. So one day Kotok and Saunders went over to the
TMRC clubroom and found parts for what would become the
first computer joysticks. Constructed totally with parts lying
around the clubroom and thrown together in an hour of inspired
construction, the control boxes were made of wood, with Maso-
nite tops. They had switches for rotation and thrust, as well as a
button for hyperspace. All controls were, of course, silent, so that
you could surreptitiously circle around your opponent or duck
into Nth space, should you care to.

While some hackers lost interest in Spacewar once the fury of the
programming phase had died down, others developed a killer
instinct for devising strategies to mow down opponents. Most
games were won and lost in the first few seconds. Wagner became
adept at the “lie in wait” strategy, in which you stayed silent while
gravity whipped you around the sun, then straightened out and
began blasting torps at your opponent. Then there was a variation
called the “CBS Opening,” where you angled to shoot and then
whipped around the star: the strategy got its name because when
both Spacewar gladiators tried it, they would leave a pattern on



Spacewar 55

the screen that bore a remarkable resemblance to the CBS eye.
Saunders, who took his Spacewar seriously, used a modified CBS
strategy to maintain dominance through the tournaments—there
was a time when he couldn’t be beaten. However, after twenty
minutes of protecting your place in the king-of-the-hill-structured
contest, even a master Spacewarrior would get a bit blurry-eyed
and slower on the draw, and most everybody got a chance to play
Spacewar more than was probably sensible. Peter Samson, second
only to Saunders in Spacewarring, realized this one night when he
went home to Lowell. As he stepped out of the train, he stared
upward into the crisp, clear sky. A meteor flew overhead. Where’s
the spaceship? Samson thought as he instantly swiveled back and
grabbed the air for a control box that wasn’t there.

In May 1962, at the annual MIT Open House, the hackers fed
the paper tape with twenty-seven pages worth of PDP-1
assembly-language code into the machine, set up an extra display
screen—actually a giant oscilloscope—and ran Spacewar all day to
a public that drifted in and could not believe what they saw. The
sight of it—a science-fiction game written by students and con-
trolled by a computer—was so much on the verge of fantasy that
no one dared predict that an entire genre of entertainment would
eventually be spawned from it.

It wasn’t until years later, when Slug Russell was at Stanford Uni-
versity, that he realized that the game was anything but a hacker
aberration. After working late one night, Russell and some friends
went to a local bar that had some pinball machines. They played
until closing time; then, instead of going home, Russell and his
coworkers went back to their computer, and the first thing his
friends did was run Spacewar. Suddenly it struck Russell: “These
people just stopped playing a pinball machine and went to play
Spacewar—by gosh, it is a pinball machine.” The most advanced,
imaginative, expensive pinball machine the world had seen.

Like the hackers’ assemblers and the music program, Spacewar
was not sold. Like any other program, it was placed in the drawer
for anyone to access, look at, and rewrite as they saw fit. The
group effort that stage by stage had improved the program could
have stood for an argument for the Hacker Ethic: an urge to get
inside the workings of the thing and make it better had led to
measurable improvement. And of course it was all a huge amount



56 Chapter 3

of fun. It was no wonder that other PDP-1 owners began to hear
about it, and the paper tapes holding Spacewar were freely distrib-
uted. At one point the thought crossed Slug Russell’s mind that
maybe someone should be making money from this, but by then
there were already dozens of copies circulating. DEC was
delighted to get a copy, and the engineers there used it as a final
diagnostic program on PDP-1s before they rolled them out the
door. Then, without wiping the computer memory clean, they’d
shut the machine off. The DEC sales force knew this, and often,
when machines were delivered to new customers, the salesman
would turn on the power, check to make sure no smoke was
pouring out the back, and hit the “VY” location where Spacewar
resided. And if the machine had been carefully packed and
shipped, the heavy star would be in the center, and the cigar-
shaped rocket and the tube-shaped rocket would be ready for
cosmic battle. A maiden flight for a magic machine.

Spacewar, as it turned out, was the lasting legacy of the pioneers
of MIT hacking. In the next couple of years many of the TX-0 and
PDP-1 joyriders departed the Institute. Saunders would take a job
in industry at Santa Monica (where he would later write a
Spacewar for the PDP-7 he used at work). Bob Wagner went off
to the Rand Corporation. Peter Deutsch went to Berkeley, to
begin his freshman year of college. Kotok took a part-time job
that developed into an important designing position at DEC
(though he managed to hang around TMRC and the PDP-1 for
years afterward). In a development that was to have considerable
impact on spreading MIT-style hackerism outside of Cambridge,
John McCarthy left the Institute to begin a new artificial intelli-
gence lab on the West Coast, at Stanford University. Slug Russell,
ever McCarthy’s LISP-writing coolie, tagged along.

But new faces and some heightened activity in the field of com-
puting were to insure that the hacker culture at MIT would not
only continue, but thrive and develop more than ever. The new
faces belonged to breathtakingly daring hackers destined for
word-of-mouth, living-legend fame. But the developments that
would allow these people to take their place in living the hacker



Spacewar 57

dream were already under way, initiated by people whose names
would become known by more conventional means: scholarly
papers, academic awards, and, in some cases, notoriety in the sci-
entific community.

These people were the planners. Among them were scientists who
occasionally engaged in hacking—Jack Dennis, McCarthy,
Minsky—but who were ultimately more absorbed by the goals of
computing than addicted to the computing process. They saw
computers as a means to a better life for the human race, but did
not necessarily think that working on a computer would be the
key element in making that life better.

Some of the planners envisioned a day when artificially intelligent
computers would relieve man’s mental burdens, much as indus-
trial machinery had already partially lifted his physical yoke.
McCarthy and Minsky were the vanguard of this school of
thought, and both had participated in a 1956 Dartmouth confer-
ence that established a foundation for research in this field.
McCarthy’s work in the higher-level language LISP was directed
toward this end, and was sufficiently intriguing to rouse hackers
like Slug Russell, Peter Deutsch, Peter Samson, and others into
working with LISP. Minsky seemed interested in artificial intelli-
gence with a more theoretical basis: a gleeful, bald-headed Johnny
Appleseed in the field, he would spread his seeds, each one a
thought capable of blooming into a veritable apple tree of useful
Al techniques and projects.

The planners were also extremely concerned about getting the
power of computers into the hands of more researchers, scientists,
statisticians, and students. Some planners worked on making com-
puters easier to use; John Kemeny of Dartmouth showed how this
could be done by writing an easier-to-use computer language
called BASIC. Programs written in BASIC ran much slower than
assembly language and took up more memory space, but did not
require the almost monastic commitment that machine language
demanded. MIT planners concentrated on extending actual com-
puter access to more people. There were all sorts of justifications
for this, not the least being the projected scale of economy—one
that was glaringly preferable to the then current system, in which
even seconds of computer time were valuable commodities
(though you would not know it around the Spacewar-playing



58 Chapter 3

PDP-1. If more people used computers, more expert programmers
and theoreticians would emerge, and the science of computing—
yes, these aggressive planners were calling it a science—could only
benefit by that new talent. But there was something else involved
in this. It was something any hacker could understand—the belief
that computing, in and of itself, was positive. John McCarthy
illustrated that belief when he said that the natural state of man
was to be online to a computer all the time. “What the user wants
is a computer that he can have continuously at his beck and call
for long periods of time.”

The man of the future. Hands on a keyboard, eyes on a CRT, in
touch with the body of information and thought that the world
had been storing since history began. It would all be accessible to
Computational Man.

None of this would occur with the batch-processed IBM 704. Nor
would it occur with the TX-0 and PDP-1, with their weekly log
sheets completely filled in within hours of being posted on the
wall. No, in order to do this, you’d have to have several people
use the computer at once. (The thought of each person having his
or her own computer was something only a hacker would think
worthwhile.) This multiuser concept was called time sharing, and
in 1960 the heaviest of the MIT planners began the Long-Range
Computer Study Group. Among the members were people who
had watched the rise of the MIT hacker with amusement and
assent, people like Jack Dennis, Marvin Minsky, and Uncle John
McCarthy. They knew how important it was for people to actu-
ally get their hands on those things. To them, it was not a ques-
tion of whether to time-share or not, it was a question of how to
do it.

Computer manufacturers, particularly IBM, were not enthusi-
astic. It was clear that MIT would have to go about it pretty much
on its own. (The research firm of Bolt Beranek and Newman was
also working on time sharing.) Eventually two projects began at
MIT: one was Jack Dennis’ largely solo effort to write a time-
sharing system for the PDP-1. The other was undertaken by a pro-
fessor named F.J. Corbatd, who would seek some help from the
reluctant goliath, IBM, to write a system for the 7090.

The Department of Defense, especially through its Advanced
Research Projects Agency (ARPA), had been supporting computers



Spacewar 59

since the war, mindful of their eventual applications toward mili-
tary use. So by the early sixties, MIT had obtained a long-range
grant for its time-sharing project, which would be named Project
MAC (the initials stood for two things: Multiple Access Com-
puting, and Machine Aided Cognition). Uncle Sam would cough
up three million dollars a year. Dennis would be in charge.
Marvin Minsky would also be a large presence, particularly in
using the one-third share of the money that would go not for time-
sharing development, but for the still ephemeral field of artificial
intelligence. Minsky was delighted, since the million dollars was
ten times his previous budget for Al, and he realized that a good
part of the remaining two thirds would see its way into Al activi-
ties as well. It was a chance to set up an ideal facility, where
people could plan for the realization of the hacker dream with
sophisticated machines, shielded from the bureaucratic lunacy of
the outside world. Meanwhile, the hacker dream would be lived
day-by-day by devoted students of the machine.

The planners knew that they’d need special people to staff this lab.
Marvin Minsky and Jack Dennis knew that the enthusiasm of bril-
liant hackers was essential to bring about their Big Ideas. As
Minsky later said of his lab: “In this environment there were sev-
eral things going on. There were the most abstract theories of arti-
ficial intelligence that people were working on and some of [the
hackers] were concerned with those, most weren’t. But there was
the question of how do you make the programs that do these
things and how do you get them to work.”

Minsky was quite happy to resolve that question by leaving it to
the hackers, the people to whom “computers were the most inter-
esting thing in the world.” The kind of people who, for a lark,
would hack up something even wilder than Spacewar and then,
instead of playing it all night (as sometimes was happening in the
Kluge Room), would hack some more. Instead of space simula-
tions, the hackers who did the scut work at Project MAC would
be tackling larger systems—robotic arms, vision projects, mathe-
matical conundrums, and labyrinthine time-sharing systems that
boggled the imagination. Fortunately, the classes that entered MIT
in the early sixties were to provide some of the most devoted and
brilliant hackers who ever sat at a console. And none of them so
fully fit the title “hacker” as Richard Greenblatt.






CHAPTER 4

Greenblatt and Gosper

Ricky Greenblatt was a hacker waiting to happen. Years later,
when he was known throughout the nation’s computer centers as
the archetypal hacker, when the tales of his single-minded concen-
tration were almost as prolific as the millions of lines of assembly-
language code he’d hacked, someone would ask him how it all
started. He’d twist back in his chair, looking not as rumpled as he
did back as an undergraduate, when he was cherub-faced and
dark-haired and painfully awkward of speech; the question, he fig-
ured, came down to whether hackers were born or made, and out
came one of the notorious non sequiturs which came to be known
as Blatt-isms: “If hackers are born, then they’re going to get made,
and if they’re made into it, they were born.”

But Greenblatt would admit that he was a born hacker.

Not that his first encounter with the PDP-1 had changed his life.
He was interested, all right. It had been freshman rush week at
MIT, and Ricky Greenblatt had some time on his hands before
tackling his courses, ready for academic glory. He visited the
places that interested him most: the campus radio station WTBS
(MIT’s was perhaps the only college radio station in the country
with a surfeit of student audio engineers and a shortage of disc
jockeys), the Tech Model Railroad Club, and the Kluge Room in
Building 26, which held the PDP-1.

Some hackers were playing Spacewar.



62 Chapter 4

It was the general rule to play the game with all the room lights
turned off, so the people crowded around the console would have
their faces eerily illuminated by this display of spaceships and
heavy stars. Rapt faces lit by the glow of the computer. Ricky
Greenblatt was impressed. He watched the cosmic clashes for a
while, then went next door to look over the TX-0, with its racks
of tubes and transistors, its fancy power supplies, its lights and
switches. His high school math club back in Columbia, Missouri,
had visited the state university’s batch-processed computer, and
he’d seen a giant card-sorting machine at a local insurance com-
pany. But nothing like this. Still, despite being impressed with the
radio station, the Model Railroad Club, and especially the com-
puters, he set about making dean’s list.

This scholastic virtue could not last. Greenblatt, even more than
your normal MIT student, was a willing conscript of the Hands-
On Imperative. His life had been changed irrevocably the day in
1954 that his father, visiting the son he hadn’t lived with since an
early divorce, took him to the Memorial Student Union at the Uni-
versity of Missouri, not far from Ricky’s house in Columbia.
Ricky Greenblatt took to the place immediately. It wasn’t merely
because of the comfortable lounge, the television set, the soft-
drink bar . .. It was because of the students, who were more of an
intellectual match for nine-year-old Ricky Greenblatt than were
his classmates. He would go there to play chess, and he usually
had no problem beating the college students. He was a very good
chess player.

One of his chess victims was a UM engineering student on the GI
bill. His name was Lester, and Lester’s gift to this nine-year-old
prodigy was a hands-on introduction to the world of electronics.
A world where there were no ambiguities. Logic prevailed. You
had a degree of control over things. You could build things
according to your own plan. To a nine-year-old whose intelli-
gence might have made him uncomfortable with his chronological
peers, a child affected by a marital split which was typical of a
world of human relations beyond his control, electronics was the
perfect escape.

Lester and Ricky worked on ham radio projects. They tore apart
old television sets. Before finishing college, Lester introduced
Ricky to a Mr. Houghton, who ran a local radio shop, and that



Greenblatt and Gosper 63

became a second home to the youngster through high school.
With a high school friend, Greenblatt built a gamut of hairy
projects. Amplifiers, modulators, all sorts of evil looking vacuum
tube contraptions. An oscilloscope. Ham radios. A television
camera. A television camera! It seemed like a good idea, so they

built it. And of course when it came time to choose a college,
Richard Greenblatt picked MIT. He entered in the fall of 1962.

The course work was rigid during his first term, but Greenblatt
was handling it without much problem. He had developed a rela-
tionship with a few campus computers. He had gotten lucky,
landing the elective course called EE 641—Introduction to Com-
puter Programming—and he would often go down to the punch-
card machines at EAM to make programs for the Hulking Giant
7090. Also, his roommate, Mike Beeler, had been taking a course
in something called Nomography. The students taking the class
had hands-on access to an IBM 1620—set in yet another enclave
of those misguided priests whose minds had been clouded with the
ignorant fog that came from the IBM sales force. Greenblatt
would often accompany Beeler to the 1620, where you would
punch up your card deck, and stand in line. When your turn came,
you’d dump your cards in the reader and get an instant printout
from a plotter-printer. “It was sort of a fun, evening thing to do,”
Beeler would later recall. “We’d do it the way others might watch
a sports game, or go out and have a beer.” It was limited but grat-
ifying. It made Greenblatt want more.

Around Christmas time, he finally felt comfortable enough to
hang out at the Model Railroad Club. There, around such people
as Peter Samson, it was natural to fall into hacker mode. (Com-
puters had various states called “modes,” and hackers often used
that phrase to describe conditions in real life.) Samson had been
working on a big timetable program for the TMRC operating ses-
sions on the giant layout; because of the number crunching
required, Samson had done it in FORTRAN on the 7090. Greenblatt
decided to write the first FORTRAN for the PDP-1. Just why he
decided to do this is something he could never explain, and
chances are no one asked. It was common, if you wanted to do a
task on a machine and the machine didn’t have the software to do
it, to write the proper software so you could do it. This was an
impulse that Greenblatt would later elevate to an art form.



64 Chapter 4

He did it, too. Wrote a program that would enable you to write in
FORTRAN, taking what you wrote and compiling the code into
machine language, as well as transforming the computer’s
machine language responses back into FORTRAN. Greenblatt did
his FORTRAN compiler largely in his room, since he had trouble
getting enough access to the PDP-1 to work online. Besides that,
he got involved in working on a new system of relays underneath
the layout at TMRC. It seems that the plaster in the room (which
was always pretty grungy anyway, because custodial people were
officially barred entry) kept falling, and some of it would get on
the contacts of the system that Jack Dennis had masterminded in
the mid-fifties. Also, there was something new called a wire-spring
relay which looked better than the old kind. So Greenblatt spent a
good deal of time that spring doing that. Along with PDP-1
hacking.

It is funny how things happen. You begin working conscien-
tiously as a student, you make the dean’s list, and then you dis-
cover something that puts classes into their proper perspective:
they are totally irrelevant to the matter at hand. The matter at
hand was hacking, and it seemed obvious—at least, so obvious
that no one around TMRC or the PDP-1 seemed to think it even a
useful topic of discourse—that hacking was a pursuit so satisfying
that you could make a life of it. While a computer is very com-
plex, it is not nearly as complex as the various comings and goings
and interrelationships of the human zoo; but, unlike formal or
informal study of the social sciences, hacking gave you not only an
understanding of the system, but an addictive control as well,
along with the illusion that total control was just a few features
away. Naturally, you go about building those aspects of the
system that seem most necessary to work within the system in the
proper way. Just as naturally, working in this improved system
lets you know of more things that need to be done. Then someone
like Marvin Minsky might happen along and say, “Here is a robot
arm. I am leaving this robot arm by the machine.” Immediately,
nothing in the world is as essential as making the proper interface
between the machine and the robot arm, and putting the robot
arm under your control, and figuring a way to create a system
where the robot arm knows what the hell it is doing. Then you
can see your offspring come to life. How can something as con-
trived as an engineering class compare to that? Chances are that



Greenblatt and Gosper 65

your engineering professor has never done anything half as inter-
esting as the problems you are solving every day on the PDP-1.
Who’s right?

By Greenblatt’s sophomore year, the computer scene around the
PDP-1 was changing considerably. Though a few more of the orig-
inal TX-0 hackers had departed, there was new talent arriving,
and the new, ambitious setup, funded by the benevolent Depart-
ment of Defense, nicely accommodated their hacking. A second
PDP-1 had arrived; its home was the new, nine-story rectangular
building on Main Street—a building of mind-numbing dullness,
with no protuberances, and sill-less windows that looked painted
onto its off-white surface. The building was called Tech Square,
and among the MIT and corporate clients moving in was Project
MAC. The ninth floor of this building, where the computers were,
would be home to a generation of hackers, and none would spend
as much time there as Greenblatt.

Greenblatt was getting paid (sub-minimum wages) for hacking
as a student employee, as were several hackers who worked on
the system or were starting to develop some of the large pro-
grams that would do artificial intelligence. They started to
notice that this awkwardly polite sophomore was a potential
PDP-1 superstar.

He was turning out an incredible amount of code, hacking as
much as he could, or sitting with a stack of printouts, marking
them up. He’d shuttle between the PDP-1 and TMRC, with his
head fantastically wired with the structures of the program he was
working on, or the system of relays he’d hacked under the TMRC
layout. To hold that concentration for a long period of time, he
lived, as did several of his peers, the thirty-hour day. It was condu-
cive to intense hacking, since you had an extended block of
waking hours to get going on a program, and, once you were
really rolling, little annoyances like sleep need not bother you. The
idea was to burn away for thirty hours, reach total exhaustion,
then go home and collapse for twelve hours. An alternative would
be to collapse right there in the lab. A minor drawback of this sort
of schedule was that it put you at odds with the routines which
everyone else in the world used to do things like keep appoint-
ments, eat, and go to classes. Hackers could accommodate this—
one would commonly ask questions like, “What phase is Greenblatt



66 Chapter 4

in?” and someone who had seen him recently would say, “I think
he’s in a night phase now, and should be in around nine or so.”
Professors did not adjust to those phases so easily, and Greenblatt
“zorched” his classes.

He was placed on academic probation, and his mother came to
Massachusetts to confer with the dean. There was some
explaining to do. “His mom was concerned,” his roommate Beeler
would later say. “Her idea was that he was here to get a degree.
But the things he was doing on the computer were completely
state-of-the-art—no one was doing them yet. He saw additional
things to be done. It was very difficult to get excited about classes.”
To Greenblatt, it wasn’t really important that he was in danger of
flunking out of college. Hacking was paramount: it was what he
did best and what made him happiest.

His worst moment came when he was so “out of phase” that he
slept past a final exam. It only hastened his exit from the student
body of MIT. Flunking out probably wouldn’t have made any dif-
ference at all in his life had it not been for a rule that you couldn’t
be a student employee when you were an exiled student. So
Greenblatt went looking for work, fully intending to get a day-
time programming job that would allow him to spend his nights at
the place he wanted to spend his time—the ninth floor at Tech
Square. Hacking. And that is exactly what he did.

There was an equally impressive hacker who had mastered the
PDP-1 in a different manner. More verbal than Greenblatt, he was
better able to articulate his vision of how the computer had
changed his life, and how it might change all our lives. This stu-
dent was named Bill Gosper. He had begun MIT a year before
Greenblatt, but had been somewhat slower at becoming a habitué
of the PDP-1. Gosper was thin, with bird-like features covered by
thick spectacles and an unruly head of kinky brown hair. But even
a brief meeting with Gosper was enough to convince you that here
was someone whose brilliance put things like physical appearance
into their properly trivial perspective. He was a math genius. It
was actually the idea of hacking the world of mathematics, rather
than hacking systems, that attracted Gosper to the computer, and



Greenblatt and Gosper 67

he was to serve as a long-time foil to Greenblatt and the other
systems-oriented people in the society of brilliant foot soldiers
now forming around brand-new Project MAC.

Gosper was from Pennsauken, New Jersey, across the river from
Philadelphia, and his pre-MIT experience with computers, like
Greenblatt’s, was limited to watching Hulking Giants operate
from behind a pane of glass. He could vividly recall seeing the
Univac at Philadelphia’s Franklin Institute churn out pictures of
Benjamin Franklin on its line printer. Gosper had no idea what
was going on, but it looked like great fun.

He tasted that fun himself for the first time in his second MIT
semester. He’d taken a course from Uncle John McCarthy—open
only to freshmen who’d gotten disgustingly high grade point aver-
ages the previous term. The course began with FORTRAN, went
on to IBM machine language, and wound up on the PDP-1. The
problems were nontrivial, things like tracing rays through optical
systems with the 709, or working routines with a new floating-
point interpreter for the PDP-1.

The challenge of programming appealed to Gosper. Especially on
the PDP-1, which, after the torture of IBM batch processing could
work on you like an intoxicating elixir. Or having sex for the first
time. Years later, Gosper still spoke with excitement of “the rush
of having this live keyboard under you and having this machine
respond in milliseconds to what you were doing . . .”

Still, Gosper was timid about continuing on the PDP-1 after the
course was over. He was involved with the math department,
where people kept telling him that he would be wise to stay away
from computers—they would turn him into a clerk. The unoffi-
cial slogan of the math department, Gosper found, was “There’s
no such thing as Computer Science—it’s witchcraft!” Well then,
Gosper would be a witch! He signed up for Minsky’s course in
artificial intelligence. The work was again on the PDP-1, and this
time Gosper got drawn into hacking itself. Somewhere in that
term, he wrote a program to plot functions on the screen, his first
real project, and one of the subroutines contained a program bum
so elegant that he dared show it to Alan Kotok. Kotok by then
had attained, thought Gosper, “godlike status,” not only from his
exploits on the PDP-1 and TMRC, but from the well-known fact
that his work at DEC included a prime role in the design of a new



68 Chapter 4

computer, a much-enhanced version of the PDP-1. Gosper was
rapturous when Kotok not only looked over his hack, but thought
it clever enough to show to someone else. Kotok actually thought
I'd done something neat! Gosper hunkered down for more
hacking.

His big project in that course was an attempt to “solve” the game
Peg Solitaire (or HI-Q), where you have a board in the shape of a
plus sign with thirty-three holes in it. Every hole but one is filled
by a peg: you jump pegs over each other, removing the ones you
jump over. The idea is to finish with one peg in the center. When
Gosper and two classmates proposed to Minsky that they solve
the problem on the PDP-1, Minsky doubted they could do it, but
welcomed the try. Gosper and his friends not only solved it—“We
demolished it,” he’d later say. They hacked a program that would
enable the PDP-1 to solve the game in an hour and a half.

Gosper admired the way the computer solved HI-Q because its
approach was “counterintuitive.” He had a profound respect for
programs which used techniques that on the surface seemed
improbable, but in fact took advantage of the situation’s deep
mathematical truth. The counterintuitive solution sprang from
understanding the magical connections between things in the vast
mandala of numerical relationships on which hacking ultimately
was based. Discovering those relationships—making new mathe-
matics on the computer—was to be Gosper’s quest; and as he
began hanging out more around the PDP-1 and TMRC, he made
himself indispensable as the chief “math hacker”—not so much
interested in systems programs, but able to come up with astound-
ingly clear (nonintuitive!) algorithms which might help a systems
hacker knock a few instructions off a subroutine, or crack a
mental logjam on getting a program running.

Gosper and Greenblatt represented two kinds of hacking around
TMRC and the PDP-1: Greenblatt focused on pragmatic systems
building, and Gosper on mathematical exploration. Each respected
the other’s forte, and both would participate in projects, often col-
laborative ones, that exploited their best abilities. More than that,
both were major contributors to the still nascent culture that was



Greenblatt and Gosper 69

beginning to flower in its fullest form on the ninth floor of Tech
Square. For various reasons, it would be in this technological hot-
house that the culture would grow most lushly, taking the Hacker
Ethic to its extreme.

The action would shift among several scenes. The Kluge Room,
with the PDP-1 now operating with the time-sharing system,
which Jack Dennis had worked for a year to write, was still an
option for some late-night hacking, and especially Spacewarring.
But more and more, the true hackers would prefer the Project
MAC computer. It stood among other machines on the harshly lit,
sterilely furnished ninth floor of Tech Square, where one could
escape from the hum of the air conditioners running the various
computers only by ducking into one of several tiny offices.
Finally, there was TMRC, with its never-empty Coke machine
and Saunders’ change box and the Tool Room next door, where
people would sit at all hours of the night and argue what to an
outsider would be bafflingly arcane points.

These arguments were the lifeblood of the hacker community.
Sometimes people would literally scream at each other, insisting
on a certain kind of coding scheme for an assembler, or a specific
type of interface, or a particular feature in a computer language.
These differences would have hackers banging on the blackboard
or throwing chalk across the room. It wasn’t so much a battle of
egos as it was an attempt to figure out what “The Right Thing”
was. The term had special meaning to the hackers. The Right
Thing implied that to any problem, whether a programming
dilemma, a hardware interface mismatch, or a question of soft-
ware architecture, a solution existed that was just. .. it. The per-
fect algorithm. You’d have hacked right into the sweet spot, and
anyone with half a brain would see that the straight line between
two points had been drawn, and there was no sense trying to top
it. “The Right Thing,” Gosper would later explain, “very specifi-
cally meant the unique, correct, elegant solution . . . the thing that
satisfied all the constraints at the same time, which everyone
seemed to believe existed for most problems.”

Gosper and Greenblatt both had strong opinions, but usually
Greenblatt would tire of corrosive human interfacing, and wander
away to actually implement something. Elegant or not. In his
thinking, things had to be done. And if no one else would be



70 Chapter 4

hacking them, he would. He would sit down with paper and
pencil, or maybe at the console of the PDP-1, and scream out his
code. Greenblatt’s programs were robust, meaning that their foun-
dation was firm, with built-in error checks to prevent the whole
thing from bombing as a result of a single mistake. By the time
Greenblatt was through with a program, it was thoroughly
debugged. Gosper thought that Greenblatt loved finding and
fixing bugs more than anybody he’d ever met, and suspected he
sometimes wrote buggy code just so he could fix it.

Gosper had a more public style of hacking. He liked to work with
an audience, and often novice hackers would pull up a chair
behind him at the console to watch him write his clever hacks,
which were often loaded with terse little mathematical points of
interest. He was at his best at display hacks, where an unusual
algorithm would evoke a steadily unpredictable series of CRT
pyrotechnics. Gosper would act as tour guide as he progressed,
sometimes emphasizing that even typing mistakes could present an
interesting numerical phenomenon. He maintained a continual
fascination with the way a computer could spit back something
unexpected, and he would treat the utterances of the machine with
infinite respect. Sometimes the most seemingly random event
could lure him off into a fascinating tangent on the implications of
this quadratic surd or that transcendental function. Certain sub-
routine wizardry in a Gosper program would occasionally evolve
into a scholarly memo, like the one that begins:

On the theory that continued fractions are underused, probably
because of their unfamiliarity, I offer the following propaganda
session on the relative merits of continued fractions versus other
numerical representations.

The arguments in the Tool Room were no mere college bull ses-
sions. Kotok would often be there, and it was at those sessions
that significant decisions were made concerning the computer he
was designing for DEC, the PDP-6. Even in its design stage, this
PDP-6 was considered the absolute Right Thing around TMRC.
Kotok would sometimes drive Gosper back to South Jersey for
holiday breaks, talking as he drove about how this new computer
would have sixteen independent registers. (A register, or accumu-
lator, is a place within a computer where actual computation
occurs. Sixteen of them would give a machine a heretofore



Greenblatt and Gosper 71

unheard-of versatility.) Gosper would gasp. That’ll be, he thought,
the greatest computer in the history of the world!

When DEC actually built the PDP-6 and gave the first prototype
to Project MAC, everyone could see that while the computer had
all the necessary sops for commercial users, it was at heart a
hacker’s machine. Both Kotok and his boss, Gordon Bell, recalling
their TX-0 days, used the PDP-6 to demolish the limitations that
had bothered them on that machine. Also, Kotok had listened
closely to the suggestions of TMRC people, notably Peter Samson,
who took credit for the sixteen registers. The instruction set had
everything you needed, and the overall architecture was symmetri-
cally sound. The sixteen registers could be accessed three different
ways each, and you could do it in combinations, to get a lot done
by using a single instruction. The PDP-6 also used a “stack,”
which allowed you to mix and match your subroutines, pro-
grams, and activities with ease. To hackers, the introduction of the
PDP-6 and its achingly beautiful instruction set meant they had a
powerful new vocabulary with which to express sentiments that
previously could be conveyed only in the most awkward terms.

Minsky set the hackers to work writing new systems software for
the PDP-6, a beautiful sea-blue machine with three large cabinets,
a more streamlined control panel than the One, rows of shiny can-
tilevered switches, and a winking matrix of lights. Soon they were
into the psychology of this new machine as deeply as they had
been on the PDP-1. But you could go further on the Six. One day
in the Tool Room at TMRC the hackers were playing around with
different ways to do decimal print routines, little programs to get
the computer to print out in Arabic numbers. Someone got the
idea of trying some of the flashy new instructions on the PDP-6,
the ones that utilized the stack. Hardly anyone had integrated
these new instructions into his code; but as the program got put
on the blackboard using one instruction called Push-J, to
everyone’s amazement the entire decimal print routine, which nor-
mally would be a page worth of code, came out only six instruc-
tions long. After that, everyone around TMRC agreed that Push-]J
had certainly been The Right Thing to put into the PDP-6\.

The Tool Room discussions and arguments would often be car-
ried over to dinner, and the cuisine of choice was almost always
Chinese food. It was cheap, plentiful, and—best of all—available



72 Chapter 4

late at night. (A poor second choice was the nearby greasy spoon
on Cambridge’s Main Street, a maroon-paneled former railroad
car named the F&T Diner, but called by hackers “The Red Death.”)
On most Saturday evenings, or spontaneously on weeknights
after 10 P.M., a group of hackers would head out, sometimes in
Greenblatt’s blue 1954 Chevy convertible, to Boston’s Chinatown.

Chinese food was a system, too, and the hacker curiosity was
applied to that system as assiduously as to a new LISP compiler.
Samson had been an aficionado from his first experience on a
TMRC outing to Joy Fong’s on Central Square, and by the early
sixties he had actually learned enough Chinese characters to read
menus and order obscure dishes. Gosper took to the cuisine with
even greater vigor; he would prowl Chinatown looking for restau-
rants open after midnight, and one night he found a tiny little
cellar place run by a small family. It was fairly dull food, but he
noticed some Chinese people eating fantastic-looking dishes. So he
figured he’d take Samson back there.

They went back loaded with Chinese dictionaries, and demanded
a Chinese menu. The chef, a Mr. Wong, reluctantly complied, and
Gosper, Samson, and the others pored over the menu as if it were
an instruction set for a new machine. Samson supplied the transla-
tions, which were positively revelatory. What was called “Beef
with Tomato” on the English menu had a literal meaning of Bar-
barian Eggplant Cowpork. “Wonton” had a Chinese equivalent of
Cloud Gulp. There were unbelievable things to discover in this
system! So after deciding the most interesting things to order
(“Hibiscus Wing? Better order that, find out what that’s about”),
they called over Mr. Wong, and he jabbered frantically in Chinese
disapproval of their selections. It turned out he was reluctant to
serve them the food Chinese-style, thinking that Americans
couldn’t take it. Mr. Wong had mistaken them for typically timid
Americans—but these were explorers! They had been inside the
machine, and lived to tell the tale (they would tell it in assembly
language). Mr. Wong gave in. Out came the best Chinese meal
that any of the hackers had eaten to date.

So expert were the TMRC people at hacking Chinese food that
they could eventually go the restauranteurs one better. On a
hacker excursion one April Fools’ Day, Gosper had a craving for a
little-known dish called Bitter Melon. It was a wart-dotted form of



Greenblatt and Gosper 73

green pepper, with an intense quinine taste that evoked nausea in
all but those who’d painfully acquired the taste. For reasons best
known to himself, Gosper decided to have it with sweet-and-sour
sauce, and he wrote down the order in Chinese. The owner’s
daughter came out giggling. “I’'m afraid you made a mistake—my
father says that this says ‘Sweet-and-Sour Bitter Melon.”” Gosper
took this as a challenge. Besides, he was offended that the
daughter couldn’t even read Chinese—that went against the logic
of an efficient Chinese Restaurant System, a logic Gosper had
come to respect. So, even though he knew his order was a prepos-
terous request, he acted indignant, telling the daughter, “Of
course it says Sweet-and-Sour Bitter Melon—we Americans
always order Sweet-and-Sour Bitter Melon the first of April.”
Finally, the owner himself came out. “You can’t eat!” he shouted.
“No taste! No taste!” The hackers stuck to the request, and the
owner slunk back to the kitchen.

Sweet-and-Sour Bitter Melon turned out to be every bit as hid-
eous as the owner promised. The sauce at that place was wickedly
potent, so much so that if you inhaled while you put some in your
mouth you’d choke. Combined with the ordinarily vile bitter
melon, it created a chemical that seemed to squeak on your teeth,
and no amount of tea or Coca-Cola could dilute that taste. To
almost any other group of people, the experience would have been
a nightmare. But to the hackers it was all part of the system. It
made no human sense, but had its logic. It was The Right Thing;
therefore every year on April Fools’ Day they returned to the res-
taurant and insisted that their appetizer be Sweet-and-Sour Bitter
Melon.

It was during those meals that the hackers were most social. Chi-
nese restaurants offered hackers a fascinating culinary system and
a physically predictable environment. To make it even more com-
fortable, Gosper, one of several hackers who despised smoke in
the air and disdained those who smoked, brought along a tiny,
battery-powered fan. The fan was something kluged up by a
teenage hacker who hung around the AI lab—it looked like a mean
little bomb, and had been built using a cooling fan from a junked
computer. Gosper would put it on the table to gently blow smoke
back into offenders’ faces. On one occasion at the Lucky Garden
in Cambridge, a brutish jock at a nearby table became outraged
when the little fan redirected the smoke from his date’s cigarette



74 Chapter 4

back to their table. He looked at these grungy MIT types with
their little fan and demanded the hackers turn the thing off. “OK,
if she stops smoking,” they said, and at that point the jock
charged the table, knocking dishes around, spilling tea all over,
and even sticking his chopsticks into the blades of the fan. The
hackers, who considered physical combat one of the more idiotic
human interfaces, watched in astonishment. The incident ended as
soon as the jock noticed a policeman sitting across the restaurant.

That was an exception to what were usually convivial gatherings.
The talk revolved around various hacking issues. Often, people
would have their printouts with them and during lulls in conversa-
tion would bury their noses in the reams of assembly code. On
occasion, the hackers would even discuss some events in the “real
world,” but the Hacker Ethic would be identifiable in the terms of
the discussion. It would come down to some flaw in a system. Or
an interesting event would be considered in light of a hacker’s nat-
ural curiosity about the way things work.

A common subject was the hideous reign of IBM, the disgustingly
naked emperor of the computer kingdom. Greenblatt might go on
a “flame”—an extended and agitated riff—about the zillions of
dollars being wasted on IBM computers. Greenblatt would go
home on vacation and see that the science department at the Uni-
versity of Missouri, which allegedly didn’t have any money, was
spending four million dollars a year on the care and feeding of an
IBM Hulking Giant that wasn’t nearly as nifty as the PDP-6. And
speaking of grossly overrated stuff, what about that IBM time-
sharing system at MIT, with that IBM 7094 right there on the
ninth floor? Talk about waste!

This could go on for a whole meal. It is telling, though, to note the
things that the hackers did not talk about. They did not spend
much time discussing the social and political implications of com-
puters in society (except maybe to mention how utterly wrong and
naive the popular conception of computers was). They did not
talk sports. They generally kept their own emotional and personal
lives—as far as they had any—to themselves. And for a group of
healthy college-age males, there was remarkably little discussion
of a topic, which commonly obsesses groups of that composition:
females.



Greenblatt and Gosper 75

Though some hackers led somewhat active social lives, the key fig-
ures in TMRC-PDP hacking had locked themselves into what
would be called “bachelor mode.” It was easy to fall into—for one
thing, many of the hackers were loners to begin with, socially
uncomfortable. It was the predictability and controllability of a
computer system—as opposed to the hopelessly random problems
in a human relationship—which made hacking particularly attrac-
tive. But an even weightier factor was the hackers’ impression that
computing was much more important than getting involved in a
romantic relationship. It was a question of priorities.

Hacking had replaced sex in their lives.

“The people were just so interested in computers and that kind of
stuff that they just really didn’t have time [for women],” Kotok
would later reflect. “And as they got older, everyone sort of had
the view that one day some woman would come along and sort of
plunk you over the head and say, you!” That was more or less
what happened to Kotok, though not until his late thirties. Mean-
while, hackers acted as if sex didn’t exist. They wouldn’t notice
some gorgeous woman at the table next to them in the Chinese
restaurant, because “the concept of gorgeous woman wasn’t in
the vocabulary,” hacker David Silver later explained. When a
woman did come into the life of a serious hacker, there might be
some discussion—“What’s happened to so-and-so...the guy’s
just completely falling apart . ..” But generally that kind of thing
was not so much disdained as it was shrugged off. You couldn’t
dwell on those who might have fallen by the wayside, because you
were involved in the most important thing in the world—hacking.
Not only an obsession and a lusty pleasure, hacking was a mis-
sion. You would hack, and you would live by the Hacker Ethic,
and you knew that horribly inefficient and wasteful things like
women burned too many cycles, occupied too much memory
space. “Women, even today, are considered grossly unpredict-
able,” one PDP-6 hacker noted, almost two decades later. “How
can a hacker tolerate such an imperfect being?”

Maybe it would have been different if there had been more
women around TMRC and the ninth floor—the few that did hang
around paired off with hackers. (“They found us,” one hacker
would later note.) There were not too many of these women, since
outsiders, male or female, were often put off by the group: the



76 Chapter 4

hackers talked strangely, they had bizarre hours, they ate weird
food, and they spent all their time thinking about computers.

And they formed an exclusively male culture. The sad fact was
that there never was a star-quality female hacker. No one knows
why. There were women programmers and some of them were
good, but none seemed to take hacking as a holy calling the way
Greenblatt, Gosper, and the others did. Even the substantial cul-
tural bias against women getting into serious computing does not
explain the utter lack of female hackers. “Cultural things are
strong, but not that strong,” Gosper would later conclude, attrib-
uting the phenomenon to genetic, or “hardware,” differences.

In any case, only rarely were women in attendance at the Chinese
restaurant excursions or the sessions at the Tool Room next door
to TMRC. So naturally, one did not have to look one’s best.
Greenblatt, perhaps, took this to an extreme. He worked on sev-
eral mammoth projects in the mid-sixties, and would often get so
wrapped up in them that his personal habits became a matter of
some concern to his fellow hackers.

After he dropped out of school, Greenblatt had taken a job at a
firm called Charles Adams Associates, which was in the process of
buying and setting up a PDP-1. Greenblatt would work at their
offices near Boston’s “Technology Highway” outside the city
during the day and drive thirty miles back to MIT after work for
some all-night hacking. Originally he moved from the dorms to
the Cambridge YMCA, but they booted him out because he
wouldn’t keep his room clean. After his stint at Adams, he got
rehired at the AI Lab, and though he had a stable living situa-
tion—as a boarder in a Belmont house owned by a retired dentist
and his wife—he would often sleep on a cot on the ninth floor.
Cleanliness was apparently a low priority, since tales abounded of
his noticeable grunginess. (Later Greenblatt would insist that he
was no worse than some of the others.) Some hackers recall that
one of the things Greenblatt’s hacking precluded was regular
bathing, and the result was a powerful odor. The joke around the
Al lab was that there was a new scientific olfactory measure called
a