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“It’s a dangerous business, Frodo, going out your door. You step onto the road, and 
if you don’t keep your feet, there’s no knowing where you might be swept of to.”

Bilbo Baggins, The Fellowship of the Ring

Introduction



INTRODUCTIONxvi

In recent years, cybersecurity has taken center stage in the personal and professional lives of the majority of 

the global population. Data breaches are a daily occurrence, and intelligent adversaries target consumers, 

corporations, and governments with practically no fear of being detected or facing consequences for their 

actions. This is all occurring while the systems, networks, and applications that comprise the backbones 

of commerce and critical infrastructure are growing ever more complex, interconnected, and unwieldy.

Defenses built solely on the elements of faith-based security—unaided intuition and “best” practices—

are no longer sufficient to protect us. The era of the security shaman is rapidly fading, and it’s time to 

adopt the proven tools and techniques being used in other disciplines to take an evolutionary step into 

Data-Driven Security.

Overview of the Book and Technologies
Data-Driven Security: Analysis, Visualization and Dashboards has been designed to take you on a journey 

into the world of security data science. The start of the journey looks a bit like the word cloud shown in 

Figure 1, which was created from the text in the chapters of this book. You have a great deal of information 

available to you, and may be able to pick out a signal or two within the somewhat hazy noise on your own. 

However, it’s like looking for a needle in a haystack without a magnet.

Figre 1

You’ll have much more success identifying what matters (see Figure 2) if you apply the right tools in 

the most appropriate way possible.



xviiHow This Book Is Organized

This book focuses on Python and R as the foundational data analysis tools, but also introduces the 

design and creation of modern static and interactive visualizations with HTML5, CSS, and JavaScript. It also 

provides background on and security use cases for modern NoSQL databases.

How This Book Is Organized
Rather than have you gorge at an all-you-can-eat buffet, the chapters are more like tapas—each with 

their own distinct flavor profiles and textures. Like the word tapas itself suggests, each chapter covers a 

different foundational topic within security data science and provides plenty of pointers for further study.

Chapter 1 lays the foundation for the journey and provides examples of how other disciplines have 

evolved into data-driven practices. It also provides an overview of the skills a security data scientist needs.

Chapters 2, 3, and 4 dive right into the tools, technologies, and basic techniques that should be 

part of every security data scientists’ toolbox. You’ll work with AlienVault’s IP Reputation database (one of 

the most thorough sources of malicious nodes publicly available) and take a macro look at the ZeuS and 

ZeroAccess botnets. We introduce the analytical side of Python in Chapters 2 and 3. Then we thrust you 

into the world of statistical analysis software with a major focus on the R language in the remainder of the 

book. Unlike traditional introductory texts in R (or statistics in general), we use security data throughout the 

book to help make the concepts as real and practical as possible for the information security professional. 

Chapter 5 introduces some techniques for creating maps and introduces some core statistical concepts, 

along with a lesson or two about extraterrestrial visitors. 

Figre 2
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Chapter 6 delves into the biological and cognitive science foundations of visual communication (data 

visualization) and even shows you how to animate your security data. 

This lays a foundation for learning how to analyze and visualize security breaches in Chapter 7, where 

you’ll also have an opportunity to work with real incident data.

Chapter 8 covers modern database concepts with new tricks for traditional database deployments and 

new tools with a range of NoSQL solutions discussed. You’ll also get tips on how to answer the question, 

“Have we seen this IP address on our network?” 

Chapter 9 introduces you to the exciting and relatively new world of machine learning. You’ll learn 

about the core concepts and explore a handful of machine-learning techniques and develop a new 

appreciation for how algorithms can pick up patterns that your intuition might never recognize.

Chapters 10 and 11 give you practical advice and techniques for building effective visualizations 

that will both communicate and (hopefully) impress your consumers. You’ll use everything from Microsoft 

Excel to state of the art tools and libraries, and be able to translate what you’ve learned outside of security. 

Visualization concepts are made even more tangible through “makeovers” of security dashboards that 

many of you may be familiar with. 

Finally, we show you how to apply what you’ve learned at both a personal and organizational level in 

Chapter 12.

Who Should Read This Book 
We wrote this book because we both thoroughly enjoy working with data and wholeheartedly believe that 

we can make significant progress in improving cybersecurity if we take the time to understand how to ask 

the right questions, perform accurate and reproducible analyses on data, and communicate the results in 

the most compelling ways possible.

Readers will get the most out of this book if they come to it with some security domain experience 

and the ability to do basic coding or scripting. If you are already familiar with Python, you can skip the 

introduction to it in Chapter 2 and can skim through much of Chapter 3. We level the field a bit by introducing 

and focusing on R, but you would do well to make your way through all the examples and listings that use R 

throughout the book, as it is an excellent language for modern data science. If you are new to programming, 

Chapters 2, 3, and 4 will provide enough of an immersive experience to help you see if it’s right for you.

We place emphasis on statistical and machine learning across many chapters and do not recommend 

skipping any of that content. However, you can hold off on Chapter 9 (which discusses machine learning) 

until the very end, as it will not detract significantly from the flow of the book.

If you know databases well, you need only review the use cases in Chapter 8 to ensure you’re thinking 

about all the ways you can use modern and specialized databases in security use cases.

Unlike many books that discuss dashboards, the only requirements for Chapter 10 are Microsoft Excel 

or OpenOffice Calc, as we made no assumptions about the types of tools and restrictions you have to work 

with in your organization. You can also save Chapter 11 for future reading if you have no desire to build 

interactive visualizations.

In short, though we are writing to Information Technology and Information Security professionals, 

students, consultants, and anyone looking for more about the how-to of analyzing data and making it 

understandable for protecting networks will find what they need in this book.

www.allitebooks.com
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Tools You Will Need
Everything you need to follow along with the exercises is freely available: 

 ● The R project (http://www.r-project.org)—Most of the examples are written in R, and 

with the wide range of community developed packages like ggplot2 (http://ggplot2.org)

almost anything is possible.

 ● RStudio (http://www.rstudio.com/)—It will be much easier to get to know R and run the 

examples if you use the RStudio IDE.

 ● Python (http://www.python.org)—A few of the examples leverage Python and with add-on 

packages like pandas (http://pandas.pydata.org) makes this a very powerful platform.

 ● Sublime Text (http://www.sublimetext.com/)—This, or another robust text editor, will 

come in very handy especially when working with HTML/CSS/JavaScript examples.

 ● D3.js (http://d3js.org/)—Grabbing a copy of D3 and giving the basics a quick read through 

ahead of Chapter 11 will help you work through the examples in that chapter a bit faster.

 ● Git (http://git-scm.com/)—You’ll be asked to use git to download data at various points in the 

book, so installing it now will save you some time later.

 ● MongoDB (http://www.mongodb.org/)—MongoDB is used in Chapter 8, so getting it set up 

early will make those examples less cumbersome.

 ● Redis (http://redis.io/)—This, too, is used in some examples in Chapter 8.

 ● Tableau Public (http://www.tableausoftware.com/)—If you intend to work with the sur-

vey data in Chapter 11, having a copy of Tableau Public will be useful.

Additionally, all of the code, examples, and data used in this book are available through the companion 

website for this book (www.wiley.com/go/datadrivensecurity). 

We recommend using Linux or Mac OS, but all of the examples should work fine on modern flavors of 

Microsoft Windows as well.

What’s on the Website
As mentioned earlier, you’ll want to check out the companion website www.wiley.com/go/
datadrivensecurity for the book, which has the full source code for all code listings, the data files 

used in the examples, and any supporting documents (such as Microsoft Excel files).

The Journey Begins!
You have everything you need to start down the path to Data-Driven Security. We hope your journey will 

be filled with new insights and discoveries and are confident you’ll be able to improve your security posture 

if you successfully apply the principles you’re about to learn.
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“It ain’t so much the things we don’t know that get us into trouble. It’s the things 
we know that just ain’t so.”

Josh Billings, Humorist

The Journey to Data-Driven 
Security
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This book isn’t really about data analysis and visualization. 

Yes, almost every section is focused on those topics, but being able to perform good data analysis and 

produce informative visualizations is just a means to an end. You never (okay, rarely) analyze data for the 

sheer joy of analyzing data. You analyze data and create visualizations to gain new perspectives, to find 

relationships you didn’t know existed, or to simply discover new information. In short, you do data analysis 

and visualizations to learn, and that is what this book is about. You want to learn how your information 

systems are functioning, or more importantly how they are failing and what you can do to fix them.

The cyber world is just too large, has too many components, and has grown far too complex to simply 

rely on intuition. Only by augmenting and supporting your natural intuition with the science of data analysis 

will you be able to maintain and protect an ever-growing and increasingly complex infrastructure. We are 

not advocating replacing people with algorithms; we are advocating arming people with algorithms so 

that they can learn more and do a better job. The data contains information, and you can learn better with 

the information in the data than without it. 

This book focuses on using real data—the types of data you have probably come across in your work. 

But rather than focus on huge discoveries in the data, this book focuses more on the process and less on 

the result. As a result of that decision, the use cases are intended to be exemplary and introductory rather 

than knock-your-socks-off cool. The goal here is to teach you new ways of looking at and learning from data. 

Therefore, the analysis is intended to be new ground in terms of technique, not necessarily in conclusion. 

A Brief History of Learning from Data
One of the best ways of appreciating the power of statistical data analysis and visualization is to look back 

in history to a time when these methods were first put to use. The following cases provide a vivid picture 

of “before” versus “after,” demonstrating the dramatic benefits of the then-new methods.

Nineteenth Century Data Analysis
Prior to the twentieth century, the use of data and statistics was still relatively undeveloped. Although great 

strides were made in the eighteenth century, much of the scientific research of the day used basic descrip-

tive statistics as evidence for the validity of the hypothesis. The inability to draw clear conclusions from 

noisy data (and almost all real data is more or less noisy) made much of the scientific debates more about 

opinions of the data than the data itself. One such fierce debate1 in the nineteenth century was between 

two medical professionals in which they debated (both with data) the cause of cholera, a bacterial infection 

that was often fatal.

The cholera outbreak in London in 1849 was especially brutal, claiming more than 14,000 lives in a single 

year. The cause of the illness was unknown at that time and two competing theories from two research-

ers emerged. Dr. William Farr, a well-respected and established epidemiologist, argued that cholera was 

caused by air pollution created by decomposing and unsanitary matter (officially called the miasma theory). 

Dr. John Snow, also a successful epidemiologist who was not as widely known as Farr, put forth the theory 

that cholera was spread by consuming water that was contaminated by a “special animal poison” (this was 

prior to the discovery of bacteria and germs). The two debated for years.

Farr published the “Report on the Mortality of Cholera in England 1848–49” in 1852, in which he included 

a table of data with eight possible explanatory variables collected from the 38 registration districts of London. 

1 And worthy of a bona fide Hollywood plot as well. See http://snowthemovie.com/
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In the paper, Farr presented some relatively simple (by today’s standards) statistics and established a rela-

tionship between the average elevation of the district and cholera deaths (lower areas had more deaths). 

Although there was also a relationship between cholera deaths and the source of drinking water (another 

one of the eight variables he gathered), he concluded that it was not nearly as significant as the elevation. 

Farr’s theory had data and logic and was accepted by his peers. It was adopted as fact of the day.

Dr. John Snow was passionate and vocal about his disbelief in Farr’s theory and relentless in proving his 

own. It’s said he even collected data by going door to door during the cholera outbreak in the Soho district 

of 1854. It was from that outbreak and his collected data that he made his now famous map in Figure 1-1. 

The hand-drawn map of the Soho district included little tick marks at the addresses where cholera deaths 

were reported. Overlaying the location of water pumps where residents got their drinking water showed a 

rather obvious clustering around the water pump on Broad Street. With his map and his passionate pleas, 

the city did allow the pump handle to be removed and the epidemic in that region subsided. However, 

this wasn’t enough to convince his critics. The cause of cholera was heavily debated even beyond John 

Snow’s death in 1858. 

The cholera debate included data and visualization techniques (long before computers), yet neither had 

been able to convince the opposition. The debate between Snow and Farr was re-examined in 2003 when 

statisticians in the UK evaluated the data Farr published in 1852 with modern methods. They found that 

the data Farr pointed to as proof of an airborne cause actually supported Snow’s position. They concluded 

that if modern statistical methods were available to Farr, the data he collected would have changed his 

conclusion. The good news of course, is that these statistical methods are available today to you.

Twentieth Century Data Analysis
A few years before Farr and Snow debated cholera, an agricultural research station north of London at 

Rothamsted began conducting experiments on the effects of fertilizer on crop yield. They spent decades 

conducting experiments and collecting data on various aspects such as crop yield, soil measurements, and 

weather variables. Following a modern-day logging approach, they gathered the data and diligently stored 

it, but they were unable to extract the full value from it. In 1919 they hired a brilliant young statistician 

named Ronald Aylmer Fisher to pore through more than 70 years of data and help them understand it. 

Fisher quickly ran into a challenge with the data being confounded, and he found it difficult to isolate the 

effect of the fertilizer from other effects, such as weather or soil quality. This challenge would lead Fisher 

toward discoveries that would forever change not just the world of statistics, but almost every scientific 

field in the twentieth century. 

What Fisher discovered (among many revolutionary contributions to statistics) is that if an experiment 

was designed correctly, the influence of various effects could not just be separated, but also could be 

measured and their influence calculated. With a properly designed experiment, he was able to isolate the 

effects of weather, soil quality, and other factors so he could compare the effects of various fertilizer mix-

tures. And this work was not limited to agriculture; the same techniques Fisher developed at Rothamsted 

are still used widely today in everything from medical trials to archaeology dig sites. Fisher’s work, and the 

work of his peers, helped revolutionize science in the twentieth century. No longer could scientists simply 

collect and present their data as evidence of their claim as they had in the eighteenth century. They now 

had the tools to design robust experiments and the techniques to model how the variables affected their 

experiment and observations. 
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At this point, the world of science included statistical models. Much of the statistical and science edu-

cation focused on developing and testing these models and the assumptions behind them. Nearly every 

statistical problem started with the question—“What’s the model?”—and ended with the model populated 

to allow description and even prediction using the model. This represented a huge leap forward and enabled 

research never before possible. If it weren’t for computers, the world would probably still consider these 

techniques to be modern. But computers are ubiquitous and they have enabled a whole new approach to 

data analysis that was both impossible and unfathomable prior to their development. 

Twenty-First Century Data Analysis
It’s difficult to pull out any single person or event that captures where data analysis is today like Farr and 

Fisher captured the previous stages of data analysis. The first glimpse at what was on the horizon came 

FIGURE 1-1 Hand-drawn map of the areas affected by cholera
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from John Tukey, who wrote in 1962 that data analysis should be thought of as different from statistics 

(although analysis leveraged statistics). He stated that data analysis must draw from science more than 

mathematics (can you see the term “data science” in there?). Tukey was not only an accomplished statistician, 

having contributed numerous procedures and techniques to the field, but he was also an early proponent 

of visualization techniques for the purpose of describing and exploring the data. You will come back to 

some of Tukey’s work later in this chapter.

Let’s jump ahead to a paper written in 2001 by Leo Breiman, a statistician who focused on machine 

learning algorithms (which are discussed in Chapter 9). In the paper he describes a new culture of data 

analysis that does not focus on defining a data model of nature but instead derives an algorithmic model 

from nature. This new culture has evolved within computer science and engineering largely outside (or 

perhaps alongside) traditional statistics. New approaches are born from the practical problems created 

by the information age, which created large quantities of complex and noisy data. The revolutionary idea 

that Breiman outlined in this paper is that models should be judged on their predictive accuracy instead 

of validating the model with traditional statistical tests (which are not without value by the way). 

At face value you may think of testing “predictive accuracy” by gathering data today and determining 

how it predicts the world of tomorrow, but that’s not what the idea is about. The idea is about splitting 

the data of today into two data sets, using the first data set to generate (or “train”) an algorithm and then 

validating (or “test”) its predictive accuracy on the second data set. To increase the power of this approach, 

you can iterate through this process multiple times, splitting the data into various training and test sets, 

generating and validating as you go. This approach is not well suited to small data sets, but works remark-

ably well with modern data sets. 

There are several main differences between data analysis in the modern information age and the agri-

cultural fields of Rothamsted. First, there is a large difference in the available sample size. “Classic” statistical 

techniques were largely limited by what the computers of the day could handle (“computers” were the 

people hired to “compute” all day long). With generally smaller samples, generating a training and test 

was impractical. However, modern environments are recording hundreds of variables generated across 

thousands of systems. Large sample sizes are the norm, not the exception.

Second, for many environments and industries, a properly designed experiment is unlikely if not com-

pletely impossible. You cannot divide your networks into control and test groups, nor would you want to 

test the efficacy of a web application firewall by only protecting a portion of a critical application. One effect 

of these environmental limits is a much higher noise-to-signal ratio in the data. The techniques of machine 

learning (and the related field of data mining) have evolved with the challenges of modern data in mind.

Finally, knowledge of statistics is just one skill of many that contributes to successful data analysis in 

the twenty-first century. With that in mind, the next section spends some time looking at the various skills 

and attributes that support a good data analysis.

Gathering Data Analysis Skills
We know there is a natural allure to data science and everyone wants to achieve that sexy mystique 

surrounding security data analysis. Although we have focused on this concept of data analysis so far, it 

takes more than just analytic skills to create the mystique that everyone is seeking. You need to combine 

statistics and data analysis with visualization techniques, and then leverage the computing power and mix 

with a healthy dose of domain (information security) knowledge. All of this begins not with products or 

tools but with your own skills and abilities. 
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Before getting to the skills, there are a couple underlying personality traits we see in data analysts 

that we want to discuss: curiosity and communication. Working with data can at times be a bit like an 

archeological dig—spending hour after hour with small tools in the hope of uncovering even the tiniest 

of insights. So it is with data analysis—pearls of wisdom are nestled deep within data just waiting to be 

discovered and presented to an eagerly awaiting audience. It is only with that sense of wonder and curiosity 

that the hours spent cleaning and preparing data are not just tolerable, but somehow exciting and worth 

every moment. Because there is that moment, when you’re able to turn a light on in an otherwise dark 

room, when you can describe some phenomenon or explain some pattern, when it all becomes worth it. 

That’s what you’re after. You are uncovering those tiny moments of enlightenment hidden in plain sight 

if you know where to look.

Once you turn that light on, you have to bring others into the room for the discovery; otherwise, you 

will have constructed a house that nobody lives in. It’s not enough to point at your work and say, “see!” You 

have to step back and think of the best way to communicate your discovery. The complexity present in the 

systems and the analysis makes it difficult to convey the results in a way that everyone will understand what 

you have discovered. Often times it takes a combination of words, numbers, and pictures to communicate 

the data’s insights. Even then, some people will take away nothing, and others will take away too much. 

But there is still a need to condense this complexity into a paragraph, table, or graphic.

Although we could spend an entire book creating an exhaustive list of skills needed to be a good secu-

rity data scientist, this chapter covers the following skills/domains that a data scientist will benefit from 

knowing within information security:

 ● Domain expertise—Setting and maintaining a purpose to the analysis

 ● Data management—Being able to prepare, store, and maintain data

 ● Programming—The glue that connects data to analysis

 ● Statistics—To learn from the data

 ● Visualization—Communicating the results effectively 

It might be easy to label any one of these skills as the most important, but in reality, the whole is greater 

than the sum of its parts. Each of these contributes a significant and important piece to the workings of 

security data science.

Domain Expertise
The fact that a data scientist needs domain expertise should go without saying and it may seem obvious, 

but data analysis is only meaningful when performed with a higher purpose in mind. It’s your experience 

with information security that will guide the direction of the analysis, provide context to the data, and help 

apply meaning to the results. In other words, domain expertise is beneficial in the beginning, middle, and 

end of all your data analysis efforts. 

And Why Expertise Shouldn’t Get in the Way

We are probably preaching to the choir here. If you are reading this book, it is probably safe to assume that 

you have domain expertise and see value in moving toward a data-driven approach in information security. 

Therefore, rather than spend the effort discussing the benefits of domain expertise in data analysis, this 
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section covers some objections you might encounter as other domain experts (or skeptical leadership) are 

brought into the data analysis effort.

People are smarter than models. There are those who hold the opinion that people will always 

outperform algorithms (or statistics, or models) and there is some truth to this. Teaching a machine, for 

example, to catch a fly ball is remarkably challenging. As Kahneman and Klein point out in their 2009 paper 

titled Conditions for Intuitive Expertise: a Failure to Disagree, however, determining when people will 

outperform algorithms is heavily dependent on the environment of the task. If the environment is complex 

and feedback is delayed or ambiguous, algorithms will generally and relatively consistently outperform 

human judgment. So, the question then becomes, how complex is the security of the information systems 

and how clear is the feedback? When you make a change or add a security control, how much feedback do 

you receive on how well it is actually protecting the information asset?

The result is that information security occurs in a very complex environment, but that doesn’t mean you 

put all your eggs in the algorithm basket. What it does mean is that you should have some healthy skepti-

cism about any approach that relies purely on human judgment, and you should seek ways to augment 

and support that expertise. That’s not to compare algorithms to human judgment. It’s not wise to set up 

an either-or choice. You do, however, want to compare human judgment combined with algorithms and 

data analysis against human judgment alone. You do not want to remove the human element, but you 

should be skeptical of unsupported opinion. In a complex environment, it is the combination of human 

intuition and data analysis that will produce the best results and create the best opportunity for learning 

and securing the infrastructure.

It’s just lying with statistics. This expresses a general distrust in statistics and data analysis, which 

are often abused and misused (and in some cases flat out made up) for the sake of serving some ulte-

rior motive. In a way, this distrust is grounded in a collective knowledge of just how easy it is to social-

engineer people. However, you are in a different situation since your motive is to learn from the data. You are 

sitting on mounds of data that hold information and patterns just waiting to be discovered. Not leveraging 

data analysis because statistics are misused is like not driving a car because they are sometimes used as 

get-away vehicles. You need to be comfortable with adding statistics to your information security toolkit.

This is not to say that data analysis is infallible. There may be times when the analysis provides the wrong 

answer, perhaps through poor data collection, under-trained analysts, a mistake in the process, or simply 

using Excel (couldn’t resist). But what you should see is simply fewer mistakes when you apply the rigor 

of data analysis combined with your expertise. Again, the key is combining data analysis and expertise. 

This ain’t rocket science. This statement has two insinuations. First, it says that whatever the problem 

is you’re trying to solve, you should be able to solve it with common sense. But this concern goes back to 

the first point, which is thinking that people outperform algorithms consistently and a group of people 

around a conference table looking at a complex environment can solve the (complex) problem without 

the need for data analysis. But as we discussed, you should pull a chair up to the conference table for the 

data analysis because you are generally better off with it than without it. 

The second implication of the statement is that data analysis is too complicated and will cost too much (in 

time, money, or resources). This view is simply misinformed and the objection is more likely to be a concern 

about an uncomfortable change in practices than a concern about time spent with data analysis. Many of 

the tools are open source (if the organization is averse to open source, there are plenty of commercial solu-

tions out there as well) and the only real commitment is in the time to learn some of the basic techniques 

and methods in this book. The actual analysis itself can be fairly quick, and with the right combination of 

tools and experience, it can be done in real time.
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We don’t have the data. An alternate form of this objection is saying that we don’t have actuarial-

quality data (which is more prevalent when you start talking about risk analysis). Data detractors argue that 

anything less than perfect data is worthless and prevents you from creating well-designed experiments. 

This statement is untrue and quite harmful. If you were to wait around for perfect data, you would always 

be waiting and many learning opportunities would be missed. More importantly and to the heart of this 

objection, you don’t need perfect data. You just need methods to learn from the messy data you do have. 

As Douglas Hubbard wrote in 2010 in his book How to Measure Anything, “The fact is that we often have 

more data than we think, we need less data than we think, and getting more data through observation is 

simpler than we think.” So, generally speaking, data for security analysis absolutely exists; often times it 

is just waiting to be collected. You can, with a few alterations, collect and accurately analyze even sketchy 

data. Modern data analysis methods have evolved to work with the noisy, incomplete, and imperfect data 

you have.

But we will fall of the edge of the world. There is one last point to consider and it’s not so much an 

objection to data analysis, but an obstacle in data analysis. When you are seen as a domain expert, you 

are expected to provide answers with confidence. The conflict arises when confidence is confused with 

certainty. Data analysis requires just enough self-awareness and humility to create space for doubt in the 

things you think you know. Even though you may confidently state that passwords should be so many 

characters long with a certain amount of complexity, the reality is you just don’t know where the balance 

is between usability and security. Confidence needs to be balanced with humility and the ability to update 

your beliefs based on new evidence. This obstacle in data analysis is not just limited to the primary analyst. 

Other domain experts involved in the analysis will have to come face to face with their own humility. Not 

everyone will want to hear that his or her world isn’t flat.

Programming Skills
As much as we’d like to portray data science as a glamorous pursuit of truth and knowledge, as we’ve said, 

it can get a little messy. Okay, that’s an understatement. Working with data is a great deal more uncertain 

and unkempt than people think and, unfortunately, the mess usually appears early on when you’re attempt-

ing to collect and prepare the data. This is something that many classes in statistics never prepare their 

students for. Professors hand out rather nice and neat data sets ready to be imported into the analysis tool 

du jour. Once you leave the comfort of the classroom, you quickly realize that the world is a disorganized 

and chaotic place and data (and its subsequent analyses) are a reflection of that fact.

This is a cold, hard lesson in data science: Data comes to you in a wide range of formats, states, and 

quality. It may be embedded in unstructured or semi-structured log files. It may need to be scraped from 

a website. Or, in extreme cases, data may come in an overly complex and thoroughly frustrating format 

known as XML. Somehow, you must find a way to collect, coax, combine, and massage what you’re given 

into a format that supports further analysis. Although this could be done with a lot of patience, a text editor, 

and judicious use of summer interns, the ability to whip together a script to do the work will provide more 

functionality, flexibility, and efficiency in the long run. Learning even basic programming skills opens up 

a whole range of possibilities when you’re working with data. It frees you to accept multiple forms of data 

and manipulate it into whatever formats work best with the analysis software you have. Although there 

is certainly a large collection of handy data conversion tools available, they cannot anticipate or handle 

everything you will come across. To be truly effective while working with data, you need to adapt to the 

data in your world, not vice versa.
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Any modern language will support basic data manipulation tasks, but scripting languages such as 

Python and R appear to be used slightly more often in data analysis than their compiled counterparts (Java 

and C). However, the programming language is somewhat irrelevant. The end results (and a happy analyst) 

are more important than picking any “best” language. Whatever gets the job done with the least amount 

of effort is the best language to use. We generally flip between Python (pandas) and R for cleaning and 

converting data (or perhaps some Perl if we’re feeling nostalgic) and then R or pandas for the analysis and 

visualization. Learning web-centric languages like HTML, CSS, and JavaScript will help create interactive 

visualizations for the web, as you’ll see in Chapter 11, but web languages are not typically involved in the 

preparation and analysis of data.

There is a tool worth mentioning in this section—the “gateway tool” between a text editor and program-

ming—known as the spreadsheet (such as Microsoft Excel or OpenOffice Calc). Spreadsheets allow non-

programmers to do some amazing things and get some quick and accessible results. Although spreadsheets 

have their own sets of challenges and drawbacks, they also have some benefits. If the data is not too large 

or complex and the task is not deciding the future of the world economy (see the following sidebar), Excel 

may be the best tool for the job. We strongly suggest seeing Excel as a temporary solution. It does well at 

quick one-shot tasks. But if you have a repeating analytic task or model that is used repeatedly, it’s best to 

move to some type of structured programming language.

As a cleaning tool, spreadsheets seem like a very good solution at first (especially for those who have 

developed some skill with them). But spreadsheets are event-driven, meaning they work through clicking, 

typing, and dragging. If you want to apply a conversion to a row of data, you have to click to select the row 

and apply a conversion. This works for small data sets or quick tasks, but trust us, you will (more often than 

AES-256-Bit Keys Are Twice as Good as AES-128, Right?

One natural assumption about AES-256-bit keys is that because they are twice as long as AES-128-

bit keys, they are twice as secure. We’ve been around information security people when they force 

a project to use 256-bit keys because they are “twice as good.” Well, let’s look into the math. First, 

you are talking about bits here, and although 256 bits is twice as many bits as 128, 256-bit keys 

actually have 2128 times more keys. Break out your slide rules and work through an exercise to try 

to answer a simple question: If you had access to the world’s fastest super-computer, how many 

128-bit keys could you crack?

The world’s fastest super computer (at the time of this writing) is the Tianhe-2 in China, which does 

around 34 petaflops (34 x 1015 floating point operations) per second. If you assume it takes one 

operation to generate a key and one operation to test it (this is an absurd and conservative assump-

tion), you can test an amazing 17 x 1015 keys per second. But a 128-bit key has 3.4 x 1038 possibilities, 

which means after a full year of cracking 128-bit keys, you will have exhausted 1.6 x 10-13 percent 

of the key space. Even if you run the super-computer for 1,000 years, you will only have searched 

0.0000000000016 percent of all the possible keys (and spent a fortune on electricity). 

To put this simply, the probability of brute-force cracking a 128-bit key is already so ininitesi-

mally small that you could easily round of that probability to zero. But let’s be professional 

here and say, “Moving from a 128-bit key to a 256 is moving the probability from really-super-duper-

infinitesimally-small to really-super-duper-infinitesimally-small x 2128.”
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you think) have to go back to the source data and re-clean it. Another day of log files needs to be processed, 

or you realize you should have pulled another relationship from the source data, or (gasp) you identify an 

error in the cleaning process. Something, somewhere, and probably more than once, will cause you to go 

back to the source and repeat the data cleaning and conversion. Leveraging a spreadsheet means a lot 

more clicking. Writing a script, on the other hand, enables an easy, flexible, and consistent execution of 

the cleaning process each time it runs. 

After the data is ready for analysis, you can continue to benefit from understanding how to program. 

Many of the languages mentioned here have robust data analysis features built into (or onto) them. For 

example, statisticians developed the R language specifically for the purpose of performing data analysis. 

Python—with the addition of packages like NumPy, SciPy, and pandas—offers a rich and comparable data 

analysis environment. But, preparing and analyzing the data is not enough. You also need to communicate 

your results, and one of the most effective methods for that is data visualization (covered in several chapters 

of this book). Again, Excel can produce graphics. With judicial modification of the default settings, you can 

get good visualization with Excel. However, in our opinion, flexibility and detail in data visualization are 

best achieved through programming. Both Python and R have some feature-rich packages for generating 

and exporting data visualization. In many cases, however, you can combine all these steps and functions 

in the same script. You can write one script to grab the source data, manipulate/clean it, run the analysis 

on it, and then visualize the results. 

Data Management
If there is one skill you can hold off on learning, it’s data management, but you can put it off only for a 

while. Within information security (as well as most other disciplines), your data can quickly multiply. If you 

The Limits of Spreadsheets

On January 16th, 2013, J.P. Morgan issued a report to shareholders titled “Report of JPMorgan Chase 

& Co. Management Task Force Regarding 2012 CIO Losses” (full citation in Appendix B) in which they 

investigate the loss of $6 billion in trades. They perform a detailed examination of the breakdown and 

describe the spreadsheet as a contributory factor. “During the review process, additional operational 

issues became apparent. For example, the model operated through a series of Excel spreadsheets, 

which had to be completed manually, by a process of copying and pasting data from one spread-

sheet to another.” They uncovered a huge challenge with spreadsheets, which is the consistency 

and integrity of the computations made in the data. “Data were uploaded manually without suf-

ficient quality control. Spreadsheet-based calculations were conducted with insufficient controls 

and frequent formula and code changes were made.” They continue on and label the Excel-based 

model as “error prone” and “not easily scalable.” As with any complex system, catastrophe requires 

multiple failures.2 We cannot point to their use of an “error-prone” spreadsheet as the primary cause, 

but certainly it appears to have contributed in the loss of $6 billion.

2 See Richard Cook’s “How Complex Systems Fail” for a brief and wonderful discussion of this topic: 

http://www.ctlab.org/documents/How%20Complex%20Systems%20Fail.pdf
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don’t learn to manage it, the strain of ever-expanding data will take its toll on efficiency and effectiveness. 

As mentioned, you can leverage spreadsheets for the simple analyses. You will quickly outgrow that stage 

and should be resolved to expanding your repertoire to programming languages and simple formats like 

comma-separated value (CSV) files. At this point, you may see some benefits by moving your data into a 

database, but it still may not be necessary. 

As the data repository grows, you reach a tipping point, either through the complexity of the data or 

the volume of data. Moving to a more robust data management solution becomes inevitable. There is a 

misconception that the large relational databases of yesteryear are reserved for the biggest projects, and 

that is not a helpful mindset. Many of the database systems discussed in Chapter 8 can be installed on a 

desktop and make the analysis more efficient and scalable. Once your data management skills become more 

natural, such skill can benefit even the smallest projects. We’ve installed a local database and imported the 

data even for some smaller one-time projects. 

When discussing data management skills, we naturally focus on databases. You want to have enough 

knowledge to install a relational or NoSQL database to dump the data in and leverage it for analysis. 

However, data management is more than databases. Data management is also about managing the quality 

and integrity of the data. You want to be sure the data you are working with isn’t inadvertently modified 

or corrupted. It doesn’t hurt to have some checks that keep an eye on data quality and integrity, especially 

over long-term data analysis efforts (metrics). It’s like the concept of unit tests in software development 

where the smallest piece of testable code in an application is isolated from the larger body of code and 

checked to determine whether it behaves exactly as expected. You may want to automate some data 

integrity checking after any new import or conversion, especially when the data analysis has sufficient 

efficacy to be performed regularly and used as a metric or control.

Finally, we work in information security, and we’d be negligent if we didn’t talk about the security of 

the data for a bit here. Take a step back for some context first. There seems to be a pattern repeating: Some 

passionate need drives a handful of geniuses to work their tails off to produce an elegant solution, but the 

security of their system is not their primary concern; meeting the functional need is. As an example, when 

the UNIX platform was first developed it was intended to be a shared (but closed) platform for multiple 

users who use the platform for programs they would write. As a result, most of the authentication and 

permissions were constructed to protect the system from unintentional errors in their programs, and not 

from malicious users.3 The point here is that “young” technology typically places an emphasis on functional-

ity over security.

With the fast-paced and passionate push of the current data revolution, we are definitely seeing more 

emphasis on functionality and less on security. New data management platforms such as Hadoop and 

NoSQL environments were designed to solve a data problem and were not designed (initially) with many 

of the security policies or compliance requirements of most enterprise networks (though they are quickly 

learning). The result is a distributed computing platform with some difficult security challenges. The authen-

tication and security features are far better than the early days of UNIX; they typically do not compare to 

the security and features of the more established relational databases. We won’t focus too much on this 

point, but whatever data management platform is chosen, don’t assume the security is built in.

3 For an example of the focus on functionality and preventing error over stopping misuse, early authentication systems 

would store the user passwords in a clear text file. See Morris and Thompson, 1979 (full reference in Appendix B) for a 

discussion.
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Statistics
Perhaps we are a little biased here, but picking up some statistics skills will improve almost every aspect of 

your life. Not only will it change the way to see and learn from the world around you, but it will also make you 

more interesting and probably even a bit more attractive to those around you. Seriously, though, statistics 

(we are discussing it as a single skill here) is a very broad topic and quite a deep well to drink from. We use 

the term to describe the varied collection of techniques and methods that have evolved (and continue to 

evolve) to attempt to learn from data. These skills include the classic statistical approaches as well as newer 

techniques like data mining and machine learning. Luckily, you can learn from the successes and mistakes 

of the generations of rather brilliant people who have worked with data very similar to ours, even if their 

calculations were performed with pencil and paper versus silicon circuits. Regardless of your personal belief 

in the utility of statistics and data analysis, when it comes to information security, there is a vast amount of 

evidence showing its significant influence and benefit to almost every other field of science. 

Aside from the obvious “learning from data” approach, there are a few perhaps more subtle reasons to 

focus on improving your statistics skills:

 ● Even though data never lies, it is far too easy to be tricked by it—As heuristic beings, we 

are capable of pulling out patterns and meaning from the world around us. The ability to see sub-

tle connections and patterns is usually helpful, and people use that skill on a daily basis. However, 

that skill can also mislead you, and you may think you see patterns and connections when none 

exist. A good understanding of statistics can raise awareness of this, and its tactics can help mini-

mize incorrect conclusions. 

 ● Even though we just said that data never lies, the way it’s generated and collected can 

create deceptive conclusions—Consider that asking for the opinions of those around us may 

mistakenly confirm our own opinions, because we naturally surround ourselves with like-minded 

people. Data itself may not be deceptive, but it’s quite easy to think the data means something it 

does not, as in the story of the 1936 election polling (see  the following sidebar). 

Statistics is not just a collection of tools; it is a collection of toolboxes each with their own set of tools. 

You can begin with descriptive statistics, which attempt to simplify the data into numbers that describe 

aspects of the data. For example, you can calculate the center of the data by calculating the mean, mode, 

or median; you can describe how spread out the data is with the standard deviation; you can explain the 

symmetry of the data with skew; and you can describe the width of peak with the kurtosis. However, any 

time you simplify the data, you lose some level of detail and this is where visualization can serve you well. 

With visualizations, you create a single representation, or message, that can contain and communicate every 

data point, without simplification. Think of this type of visualization as being a “descriptive visualization” 

since it is doing nothing more than simply describing the data to its viewers. 

Aside from the challenge of oversimplifying, descriptive statistics is also limited to describing only 

the data that you collect. It is not correct to simply scan a few systems, calculate the mean number of 

vulnerabilities, and announce that the statistic describes all the systems in the environment. Inferential 

statistics helps you go beyond just describing the observations and enables you to make statements about 

a larger population given a smaller representative sample from that population. The key word there is 

“representative.” Statistics teaches you about the “design of experiments” (thanks to Fisher and his peers) 

and this will help you gather data so that you reduce the probability of being misled by it. You want to 

have confidence that the samples you collect are representative of the whole. That lesson has been learned 

many times in the past by a good number of people. 
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You should always approach statistics with a healthy degree of respect and humility. As you slide more 

and more into the depths of applied mathematics, you’ll realize how easy it is to find meaning where none 

exists (technically called a type I error). But what is more important to understand here is that this error 

can occur with or without data. Even before you fill a single cell in an Excel spreadsheet, you can make 

this mistake. The best tools in the toolbox are designed to limit the chance of these types of errors, but 

statistics alone is not enough. You need the combination of experience and data to decrease the chance 

of being misled. Errors can and will occur even with this combination, but you can reduce the frequency of 

these errors by applying the rigor and methods within statistics. Such rigor will place you in a much better 

position to learn from mistakes when they do occur.

Having built up the application of statistics on a pedestal, we should point out that you can learn a lot 

from data without advanced statistical techniques. Recall the “descriptive visualization” mentioned previ-

ously. Take some time to look around at many of visualizations out there; they are generally not built from 

statistical models, but describe some set of data and show the relationships therein. Snow’s map of the 

areas around the water pump on Broad Street in Figure 1-1 did not involve logistic regression or machine 

learning; this map was just a visual description of the relationship between address and deaths. There is no 

doubt that you can improve your ability to secure your information assets with simple statistical methods 

and descriptive visualizations. All it takes is the patience to ask a question, gather the evidence, make sense 

of it, and communicate it to others. 

When Data Deceives

The magazine Literary Digest ran a large public opinion poll in an attempt to predict the 1936 

presidential race. They gathered names from a variety of sources, including the telephone direc-

tory, club memberships, and magazine subscriptions. They ended up with more than 2 million 

responses and predicted a clear winner: Alfred Landon (for those not up on their American history, 

the Democratic candidate, Theodore Roosevelt, won that election, carrying 46 states). The problem 

with the Literary Digest poll began long before a single response was collected or counted. Their 

trouble began with where they went looking for the data. Remember the year was 1936 and the 

great depression in the United States hadn’t let up yet. Yet, they polled people with phones, club 

memberships, and magazine subscriptions. They systematically polled the middle and upper class, 

which generally leaned toward Landon, and arrived at an answer that was mathematically correct 

and yet completely wrong. 

The data did not lie. If they wanted to know which presidential candidate would get the most votes 

among Americans with a phone, club membership, or magazine subscription, the data told an accu-

rate story. However, they weren’t looking for that story. They wanted to know about all registered 

voters in the United States, but through their selection of sources they introduced bias into their 

sample and drew meaning from the data that simply did not exist. 

The fact that they had an unprecedented 2 million responses did not help improve the accuracy of 

their poll. Gathering more data with the same systemic flaw just generates a larger sample with the 

bias. To drive that point home, in the same 1936 election, a young man named George Gallup had 

gathered a relatively small sample of just 50,000 voters but he applied a much more representative 

sampling method and correctly predicted Franklin Roosevelt as the winner of the 1936 elections. 

The Literary Digest closed its doors a few years later, but Gallup, Inc. is now an international orga-

nization, still conducting surveys and gathering data.
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Visualization (a.k.a. Communication)
The final skill is visualization, but really it is about communication. There are multiple ways to classify 

the types of visualizations out there, but for this discussion we want to talk about two general types of 

visualization, which are separated by who you want to read and interpret the visualization. The distinction 

we make here is quite simple: 1) visualizing for ourselves, or 2) everyone else.

For example, Figure 1-2 shows four common plots, which are automatically generated by R’s lm()

function (for linear regression) and they are used to diagnose the fit of a linear regression model (which 

you’ll run in Chapter 5). Let’s face it; these plots are quite ugly and confusing unless you’ve learned how 

to read them. We would not include these in our next presentation to the Board of Directors. This type 

of visualization serves to provide information to the analyst while working with the data, or in this case 

about a data model. 

FIGURE 1-2 Diagnostic plots for regression model of bot infections
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These graphs are generated as a way to understand certain relationships and attributes of the model. 

They communicate from the data to the analyst and are used to visually inspect for anomalies, strength 

of relationships, or other aspects of the data for the purpose of understanding it better. Very little effort is 

spent on making these attractive or presentable since they are part of the analysis, not the result.

The other type of visualization exists to communicate from the analyst to others and serves to explain 

the story (or the lack of a story) the analyst uncovered in the data. These are typically intended to be 

attractive and carry a clear message, as it is a communication tool for non-analysts. Figure 1-3 (which you’ll 

learn to generate in Chapter 5) is derived from the same data as Figure 1-2 but is intended for a completely 

different audience. Therefore, it is cleaner and you can pull a message for each of the 48 continental states 

from this one picture.

Combining the Skills
You need some combination of skills covered in this chapter in order to make the analysis run smoother and 

improve what you can learn from the data. Although we may have portrayed these skills as belonging to a 

single person, that is not required. As the data grow and the demands for analysis become more embed-

ded into the culture, spreading the load among multiple individuals will help lighten the load. Moreover, 

if you are just beginning to build your security data science team, you may be setting yourself up for an 

impossible task if you try to find even one individual with all these skills. Take the time to talk through each 

of these points with candidates to ensure there is at least some element of each of the skills discussed here. 

FIGURE 1-3 Visualization for communicating density of ZeroAccess bot infections
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Centering on a Question
While we consider data analysis to be quite fun, it is never performed for its own sake. Data analysis 

is always performed within a larger context and understanding that context is the key to successful data 

analysis. Losing sight of that context is like running a race without paying attention to where the finish line is. 

You want to have a good concept of what you’re trying to learn from the data. Therefore, every good data 

analysis project begins by setting a goal and creating one or more research questions. Perhaps you have 

come across a visualization or research and thought, “Yeah, but so what?” That reaction is probably caused 

by the lack of a well-prepared research question in the analysis. Remember, the purpose of data analysis 

is to learn from the environment; learning can be done with or without data (with varying degrees of 

success). Creating and following a good research question is a component of good learning, not just of 

good data analysis. Without a well-formed question guiding the analysis, you may waste time and energy 

seeking convenient answers in the data, or worse, you may end up answering a question that nobody

was asking in the irst place.

For example, Figure 1-4 shows the amount and categories of spam blocked at an organization during a 

given month. Thanks to the logs generated by an email filtering system, it is entirely possible to collect and 

show this information. However, the questions this data answers (and whatever subsequent actions it may 

drive) are of little interest to the typical organization. It’s hard to imagine someone looking at this graphic and 

thinking, “Let’s understand why travel spam was up in December.” Outcomes like those shown in Figure 1-4 

are the result of poor question selection or skipping a question altogether—data analysis for the sake 

of analyzing data, which does not help to inform anyone about the environment in any meaningful way.

A good research question around spam might be, “How much time do employees spend on spam that 

is not blocked by the spam filter?” Just counting how much spam is blocked has little value since it will have 

no contextual meaning (nobody can internalize the effective difference between 1,000 and 5,000 spam 

emails). What you want to know is the impact spam has on employee productivity. Although “productivity” 

may be a challenge to measure directly, you can flip that around and just assume it is impossible to be 

productive when employees are reading and deleting spam. Therefore, what you really want to measure 

is the time employees spend dealing with unfiltered spam. 

Now that you’ve framed the question like this, it’s clear that you can’t look to the spam filter logs to 

answer this spam-related question. You really don’t care that thousands of emails were blocked at the 

perimeter or even what proportion of spam is blocked. With a research question in hand, you now know 

to collect a measurement of employee time. Perhaps you can look for logs from the email clients of events 

when users select the “mark as spam” option. Or perhaps, it’s important enough to warrant running a short 

survey in which you select a sample of users and ask them to record the amount of spam and time spent 

going through it for some limited period of time. Either way, the context and purpose of the analysis is 

being set by the research question, not by the availability of data.
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Creating a Good Research Question
Creating a good research question is relatively straightforward but requires a bit of practice, critical think-

ing, and discipline. Most research questions will serve as pivot points for a decision or action (or inaction). 

Knowing the context of the result may also help determine what to collect. Going back to the spam example, 

maybe you learn there is some tolerance for wasted time. If so, maybe you don’t need to how much time is 

wasted, but just whether the time spent dealing with spam is simply above or below that tolerance. Planning 

the analysis with that information could change how data is sought or simplify data storage and analysis. 

You usually begin with some topic already in mind. Perhaps you are measuring the possible benefit from 

a technical change or you are trying to protect a specific asset or data type, or simply trying to increase your 

visibility into a network segment. Even if you just have a general sense of direction, you can begin by coming 

up with a series of questions or things you’d like to know about it. Once you have a good list of questions, 

you can whittle those down to one or just a few related questions. Now the fun really begins—you have 

to make those questions objective.

FIGURE 1-4 Amount of spam by category—the result of a poor research question
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Consider this simple example. The Human Resources department submits a proposal to post a search-

able lunch menu from the company’s cafeteria to the Internet. Although this may raise all sorts of questions 

around controls, processes, and procedures, suppose the core security-oriented decision of the proposal is 

limited to either allowing authentication with the corporate username and password, or investing in a more 

expensive two-factor authentication mechanism. You may brainstorm a question like “How much risk does 

single factor authentication represent?” Or perhaps, “How effective is two-factor authentication?” These 

types of questions are really nice and squishy for the initial phase of forming a research question, but not 

well suited to serious analysis. You would struggle to collect evidence of “risk” or “effectiveness” in these 

questions. So, you must transform them to be more specific and measurable as an approach to inform the 

decisions or actions in context. Perhaps you start by asking how many services require single-factor versus 

dual-factor authentication. You might also like to know how many of those services have been attacked, and 

with what success, and so on. Perhaps you have access to a honey pot and can research and create a profile 

of Internet-based brute force attempts. Perhaps you can look at the corporate instance of Microsoft Outlook 

Web Access and create a profile of authentication-based attacks on that asset. These are all good questions 

that are very answerable with data analysis. They can produce outcomes that can help support a decision.

Exploratory Data Analysis
Now that we’ve explained how a good data analysis should begin, we want to talk about how things will 

generally occur in the real world. It’d be great to start each day with a hot, caffeinated beverage, a clear 

research question, and a bucket of clean data, but in reality you’ll usually have to settle for just the hot, 

caffeinated beverage. Often times, you do start off with data and a vague question like, “Is there anything 

useful in this data?” This brings us back to John Tukey (remember him from earlier in this chapter?). He 

pioneered a process he called exploratory data analysis, or EDA. It’s the process of walking around 

barefoot in the data, perhaps even rolling around a bit in it. You do this to learn about the variables in the 

data, their significance, and their relationships to other variables. Tukey developed a whole range of tech-

niques to increase your visibility into and understanding of the data, including the elegantly simple stem

and leaf plot, the ive-number summary, and the helpful box plot diagram. Each of these techniques 

is explained or used later in this book.

Once you get comfortable with the data, you’ll naturally start to ask some question of it. However, and 

this is important, you always want to circle back and form a proper research question. As Tukey said in his 

1977 book, “Exploratory data analysis can never be the whole story.” He refers to EDA as the foundation 

stone and the first step in data analysis. He also said that, “Exploratory data analysis is an attitude, a state 

of flexibility, a willingness to look for those things that we believe are not there, as well as those we believe 

to be there.” With that in mind, most of the use cases in this book use exploratory analysis. We will take an 

iterative approach, and you’ll learn as you walk around in the data. In the end though, you need to remember 

that data analysis is performed to find an answer to a question that’s worthy of asking.

Summary
The cyber world is just too large, has too many components, and has grown far too complex to simply rely 

on intuition. Generations of people before us have paved the way; and with a mixture of domain expertise, 

programing experience and statistics combined with data management and visualization skills, we can 

improve on our ability to learn from this complex environment through the data it produces.

www.allitebooks.com

http://www.allitebooks.org
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In the next chapter we will walk you through setting up your data analysis environment, and then 

proceed into Chapter 3, where you will be guided through a gentle introduction to data analysis techniques.

Recommended Reading
The following are some recommended readings that can further your understanding on some of the topics 

we touch on in this chapter. For full information on these recommendations and for the sources we cite in 

the chapter, please see Appendix B.

“Conditions for Intuitive Expertise: A Failure to Disagree” by Daniel Kahneman and 

Gary Klein—This dense article covers a lot of ground but gets at the heart of when and why you 

should look for help in complex environments and when your expertise is enough. The references in 

this paper also provide a good jumping point to answer questions about how people learn.

“How Complex Systems Fail” by Richard Cook—If you are wondering whether or not you are 

dealing with complexity, this short and brilliant paper looks at qualities of complex systems and how 

they fail.

Naked Statistics: Stripping the Dread from Data by Charles Wheelan—This is a great introduc-

tory book to statistical concepts and approaches, written in an easy-to-consume style and written so 

that the math is not required (but it is included).
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Before you jump right into the various use cases in the book, it’s important to ensure you at least have a 

basic familiarity with the two most prominent languages featured in nearly all of the scenarios: Python 

(www.python.org/) and R (www.r-project.org/). Although there are an abundance of tools 

available for data analysis, we feel these two provide virtually all the features necessary to help you go 

from data to discovery with the least amount impedance.

A sub-theme throughout the book, and the distilled process at the heart of security data science, is idea,

exploration, trial (and error) and iteration. It is ineffective at best to attempt to shoehorn this process 

into the edit/compile/run workflow found in most traditional languages and development environments. 

The acts of performing data analyses and creating informative visualizations are highly interactive and 

iterative endeavors. Despite all of their positive features, even standalone Python and R do not truly enable 

rich, dynamic interaction with code and data. However, when they are coupled with IPython (http://

ipython.org/) and RStudio (www.rstudio.com/), respectively, they are transformed into power-

ful exploration tools, enabling rapid development and testing of everything from gnarly data munging to 

generating sophisticated visualizations.

This chapter provides pointers to installation resources for each tool, introduces core features of each 

language and development environment, and explains the structure of the examples you will find in the 

remaining chapters of the book. Each chapter will have the following “setup” code (Listing 2-0) at the begin-

ning to ensure you have the proper environment in place to run the code examples. There are example 

scripts at the end of this chapter that will help you create structured directories if you are typing as you go.

LISTING 2-0
# This is for the R code in the chapter

# set working directory to chapter location

# (change for where you set up files in ch 2)

setwd("~/book/ch02")

# This is for the Python code in the chapter

# loads the necessary Python library for chdir

import os

# set working directory to chapter location

os.chdir(os.path.expanduser("~") + "/book/ch02")

Why Python? Why R? And Why Both?
A discussion of which programming language is better than another for a certain set of tasks often turns 

(quickly) into a religious war of words that rarely wins converts and never becomes fully resolved. As a 

security data scientist, you will find that you do not have the luxury of language bias. There will be times 

when one language shines in one area while a different one shines in another, and you need the skills of a 

diplomat to bring them both together to solve real problems.

We’ve honed in on both R/RStudio and Python/IPython/pandas in this book, as they are the two leading 

data analysis languages/environments with broad similarities but also with unique elements that make 

them work well for some tasks and not others. As you read about the rationale behind each choice and 

as you become proficient in one or both environments, do not lull yourself into a sense of complacency. 

For readers with an existing programming background, getting up to speed with Python should be 

pretty straightforward and you can expect to be fairly proficient within 3–6 months, especially if you convert 
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some of your existing scripts over to it as a learning exercise. Your code may not be “pythonic” (that is, 

utilizing the features, capabilities, and the syntax of the language in the most effective way), but you will 

be able to “get useful stuff done.” For those who are new to statistical languages, becoming proficient in R 

may pose more of a challenge. Statisticians created R, and that lineage becomes fairly obvious as you delve 

into the language. If you can commit to suffering through R syntax and package nuances, plus commit to 

transitioning some of your existing Excel workflows into R, you too should be able to hang with the cool 

kids on the #rstats Twitter stream in 3–6 months.

Why Python?
Guido van Rossum created the Python programming language in December of 1989 to solve a problem. 

He and his colleagues needed a common way to orchestrate system administration tasks that could take 

advantage of specific features in the operating systems they were using at that time. Although there 

were existing interpreted, administrator-friendly tools and languages available, none were designed (from 

Guido van Rossum’s point of view) with either the flexibility or extensibility features baked into the design 

principles of Python.

Python’s flexibility and extensibility (and the fact that it was free as in both “speech” and “beer”) were espe-

cially appealing to the scientific, academic, and industrial communities starting in the early 2000s. Innovators 

in these fields quickly adapted this general-purpose programming language to their own disciplines to solve 

problems easier than—ostensibly—the domain-specific languages available at that time.

You have to search long and hard to find a file-type Python cannot read, a database Python cannot 

access, and an algorithm Python cannot execute. As you familiarize yourself with the language, Python’s 

ability to acquire, clean, and transform source data will quickly amaze you, but those tasks are just the early 

steps in your analysis and visualization process. It wasn’t until 2008 that the pandas (http://pandas

.pydata.org/) module was created by AQR Capital Management to provide “Pythonic” counterparts 

to the analytical foundations of languages like R, SAS, or MATLAB, which is where the “real fun” begins. 

Although Python’s interpreter provides an interactive execution shell, aficionados recognized the need 

to extend this basic functionality and developed an even more dynamic and robust interactive environ-

ment—IPython—to fill the need. When coupled with the pandas module, budding data analysts now have 

a mature and data-centric toolset available to drive their quest for knowledge.

Why R?
Unlike Python, R’s history is inexorably tied to its domain specific predecessors and cousins, as it is 100 

percent focused and built for statistical data analysis and visualization. Although it too can access and 

manipulate various file types and databases (and was also designed for flexibility and extensibility), R’s 

lisp- and S-like syntax plus extreme focus on foundational analytics-oriented data types has kept it, mostly, 

in the hands of the “data crunchers.” 

Note

A hallmark of a good data scientist is adaptability and you should be continually scouring 

the digital landscape for emerging tools that will help you solve problems. We introduce 

you to some of these upstarts in Appendix A.
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Base R makes it remarkably simple to run extensive statistical analyses on your data and then generate 

informative and appealing visualizations with just a few lines of code. More modern R libraries such as 

plyr and ggplot2 extend and enhance these base capabilities and are the foundations of many of 

mind- and eye-catching examples of cutting-edge data analysis and visualization you have no doubt come 

across on the Internet.

Like Python, R also provides an interactive execution shell that has enough basic functionality for general 

needs. Yet, the desire for even more interactivity sparked the development of RStudio, which is a combina-

tion of integrated development environment (IDE), data exploration tool, and iterative experimentation 

environment that exponentially enhances R’s default capabilities.

Why Both?
If all you have is a hammer, everything starts looking like a nail. There are times when the flexibility of a 

general-purpose programming language comes in very handy, which is when you use Python. There are 

other times when three lines of R code will do something that may take 30 or more lines of Python code 

(even with pandas) to accomplish. Since your ultimate goal is to provide insightful and accurate analyses 

as quickly and as visually appealing as possible, knowing which tool to use for which job is a critical insight 

you must develop to be as effective and efficient as possible.

We would be a bit dishonest, though, if we did not concede that there are some things that Python can 

do (easily or at all) that R cannot, and vice-versa. We touch upon some of these in the use cases through-

out the book, but many of the—ah—“learning opportunities” will only come from performing your own 

analyses, getting frustrated (which is the polite way of saying “stuck”), and finding resolution by jumping to 

another tool to “get stuff done.” This situation comes up frequently enough that there is even an rJython

package for R that lets you call Python code from R scripts, and rpy and rpy2 modules for Python that 

let you call R code from Python scripts.

By having both tools in your toolbox, you should be able to tackle most, if not all, of the tasks that come 

your way. If you do find yourself in a situation where you need functionality you don’t have, both R and 

Python have vibrant communities that are eager to provide assistance and even help in the development 

of new functions or modules to fit emerging needs.

Jumpstarting Your Python Analytics 
with Canopy
It is possible to set up an effective and efficient installation of Python, IPython, and pandas from the links 

we’ve provided, especially if you are already familiar or proficient with Python; however, we don’t recom-

mend it. For those new to Python, the base installation leaves you with the core interpreter and extensive set 

of built-in, standard libraries. You can think of it as a having an inexpensive blank canvas and introductory 

set of paints and brushes. You’ll need better materials to create a work of art, and that’s where the enhanced 

statistics, computational and graphing libraries come in. Even the most stalwart Python aficionado can find 

it challenging to manage dependencies and updates for the numerous necessary components. This can 

waste hours of your time. This is especially true if you have to manage analytics processes across multiple 

operating systems and environments.
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To facilitate both ease of installation and maintenance, we highly recommend using the freely avail-

able Enthought Canopy Python data analysis environment (www.enthought.com/products

/canopy/). Canopy works on Linux, Microsoft Windows, and Mac OS X; has a built-in Python integrated 

development environment (IDE); incorporates a meta-package manager that will help you keep current 

with changes in every dependent package and module; and also comes with an IPython console. For those 

working in organizations that shy away from open source solutions, Enthought also offers commercially 

supported options for Canopy.

Given that there is a comprehensive installation, setup, and update guide available (http://docs

.enthought.com/canopy/quick-start.html), we will not go over step-by-step instruc-

tions on how to install Canopy for each platform, but we strongly recommend reviewing the documenta-

tion before attempting any of the Python examples in the book. Once the base installation is complete, 

getting started should be as straightforward as opening up the Canopy application, which will display the 

welcome screen (see Figure 2-1).

One of the first steps you should perform is to instruct Canopy to display all images inline within the 

IPython console. This is an optional step, but it will help keep all output self-contained within the Canopy 

environment. You can change this setting once you have an open Canopy editor session by going into the 

Preferences window, finding the Python tab, and selecting the Inline (SVG) option for the PyLab Backend 

preference (see Figure 2-2).

To validate that your environment is set up properly, run the following code in the IPython console 

area in the editor:

import pandas as pd

import numpy as np

np.random.seed(1492)

test_df = pd.DataFrame({ "var1": np.random.randn(5000) })

test_df.hist()

and verify that it produces the output shown in Figure 2-3. If it does, you have the basic environment 

installed and are ready to start working through the data analysis examples. If the bar chart is not displayed, 

you may need to check your installation steps or verify that you have the proper graphics display options 

mentioned earlier.

Once everything is working properly, you should carve out 10 minutes to read through “Learn Python 

in 10 Minutes” (www.stavros.io/tutorials/python/) by Stavros Korokithakis, if you are not 

familiar with Python, and then spend 10 additional minutes to go through the “10 Minutes to Pandas” 

tutorial (http://pandas.pydata.org/pandas-docs/dev/10min.html) to learn a bit 

more about the pandas data analysis module.

Understanding the Python Data Analysis and Visualization Ecosystem
Although there are scores of libraries available for Python, a few stand out when it comes to crunching 

data. We call these libraries an “ecosystem” because each library is developed and supported by a different 

organization, community, or individual. They coordinate with each other, but the coordination is loose.
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Here are some libraries that you will find yourself using in nearly every project:

 ● NumPy (www.numpy.org/)—A library providing foundational capabilities for creating multi-

dimensional containers of generic data, performing a wide range of operations on data and gen-

erating random numbers. It also implements the capability to “broadcast” operations to Python 

objects, which can make for succinct and highly efficient code.

 ● SciPy library (www.scipy.org/scipylib/index.html)—Built on top of NumPy, this 

library makes quick work of array-oriented operations and provides a facility to expand NumPy’s 

“broadcast” operations to other types of data elements in Python; it also provides additional 

statistical operations.

FIGURE 2-1 Canopy welcome screen
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 ● Matplotlib (http://matplotlib.org/)—The most powerful and commonly used library 

to turn your data into production-quality images in Python.

 ● pandas (http://pandas.pydata.org)—A library providing high-performance, easy-to-

use data structures and data analysis tools; pandas introduces the Data.Frame type into the 

Python namespace, which we discuss in more detail in the “Introducing Data Frames” section later 

in the chapter. Although this may cause some die-hard Python folks to cringe, pandas, in essence, 

makes Python more like R and should make it easier for you to jump between languages.

These modules, combined with IPython, are sometimes referred to the core components of the SciPy 

stack (which is confusing, since it contains the SciPy library). You can read more about the stack at 

www.scipy.org/.

As you make your way through this ecosystem, you will notice the following code pattern emerge:

import numpy as np

import scipy as sp

import matplotlib as mpl

import matplotlib.pyplot as plt

import pandas as pd

FIGURE 2-2 Canopy IDE with preferences open
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The import statement loads the functions and variables of the Python code in those libraries and makes 

their names and overall functionality available in the current Python working session. The as component 

of the statement provides an abbreviated reference for the functions, objects, and variables in the module. 

Since you’ll be using many of the components of each of the modules in the SciPy stack on a regular 

basis, you will save time and typing if you create a text file to use as a basic template and include these 

imports and other (future) much reused code built into it.

You will, of course, use other packages for connecting to databases, reading from files, and performing 

other functions and you can burn countless hours perusing all the nifty modules at the Python Package 

Index (PyPI), https://pypi.python.org/pypi, but the ones associated with the SciPy stack will 

become familiar and regular companions on your data science journey.

FIGURE 2-3 Test IPython console output

www.allitebooks.com

http://www.allitebooks.org
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Canopy’s package manager (http://docs.enthought.com/canopy/quick-start/

package_manager.html) makes it very easy to keep the core Python installation and all associated 

packages updated and current. If you’ve chosen the manual installation route, you should rely on the pack-

age manager of your operating system for the base Python interpreter installation. Updating the individual 

add-on modules can be accomplished with the following short Python script:

import pip from subprocess

import call

for distributions in pip.get_installed_distributions():

   call("pip install --upgrade " + 

   distributions.project_name, shell=True)

Setting Up Your R Environment
To build your R/RStudio environment, you will need to download and install R (http://cran

.rstudio.com/), and then do the same for RStudio (www.rstudio.com/ide/download/). 

A Word about Python Versions

The Python examples in this book were created under Python 2.7. At the time of this writing, Canopy 

also uses Python 2.7. There are currently two major production versions of Python, 2.7.x and 3.3.x. 

Python 3 introduced numerous changes into the default behavior of Python 2.7, and a good number 

of packages have updated to be compatible with the newer version. However, many packages are 

still compatible only with Python 2.7. The stability and ubiquity of Python 2.7 make it a good choice 

to begin exploring Python for data analysis. 

For more information on the changes between Python 2.7 and Python 3.3 refer to “What’s New In 

Python 3.0” (http://docs.python.org/3/whatsnew/3.0.html).

Python “Gotchas”

There are two features of Python that are liable to both frustrate and perhaps become problematic 

for new users. The first “gotcha” is whitespace. Spaces are significant in Python code. There are no 

{} braces or begin/end pairs to signify a block of code. You must use consistent indentation to 

identify groups of statements that will execute together. Inconsistency will result either in error 

messages from the interpreter or cause your code to fail or just not work as expected. Most modern 

text editors or IDE can be configured to take care of this for you.

The second “gotcha” is the lack of a requirement to declare variables before using them. Initializing 

a variable named breaches to some value then inadvertently referring to it later as breached may 

not throw an error in the interpreter, but will most assuredly generate unexpected output.
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Both links provide full installation details for Linux, Windows, and Mac OS X systems, so we won’t delve 

into the minutiae in this section. You do, however, need to make a choice when you install RStudio, as it 

comes in two flavors: Desktop and Server. Both provide the same core features:

 ● Built-in IDE

 ● Data structure and workspace exploration tools

 ● Quick access to the R console

 ● R help viewer

 ● Graphics panel viewer

 ● File system explorer

 ● Package manager

 ● Integration with version control systems

The primary difference is that one runs as a standalone, single-user application (RStudio Desktop) and 

the other (RStudio Server) is installed on a server, accessed via browser, and enables multiple users to take 

advantage of the compute infrastructure. If you are not familiar with R or RStudio, begin by downloading 

and installing RStudio Desktop. (All examples in this book involving RStudio assume you are working in 

the Desktop version.)

Once everything is installed, open RStudio and verify that you see the default workspace, which should 

look similar to Figure 2-4.

If all is working correctly, you should take some time to walk through “A (Very) Short Introduction 

to R” by Paul Torfs and Claudia Brauer (http://cran.r-project.org/doc/contrib/

Torfs%2BBrauer-Short-R-Intro.pdf). It will run through just enough of the basics of the R 

language and RStudio environment to make you dangerous.

Although you can use the built-in package manager with RStudio to install packages, you will eventually 

come to the realization that using the console method is much more convenient. To get familiar with this pro-

cess right away, you should install the ggplot2 package, which is the primary graphics library used in the 

book’s examples. Installation is as straightforward as entering the following into the RStudio console pane:

> install.packages("ggplot2")

Installing package(s) into '/Library/Frameworks/R.framework/

Note

For those of you limited to working with commercially supported tools, Revolution Analytics 

(www.revolutionanalytics.com/support/) provides commercial offerings 

and technical support for R.
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Versions/3.0.0/Resources/library'

(as 'lib' is unspecified)

trying URL 'http://cran.mirrors.hoobly.com/bin/macosx/leopard/

contrib/3.0.0/ggplot2_0.9.3.1.tgz'

Content type 'application/x-gzip' length 2659920 bytes (2.5 Mb)

opened URL

==================================================

downloaded 2.5 Mb

The downloaded binary packages are in

/var/folders/qg/vmtfcv1j7vjfq_p5zw86mk7mxkhymk/T/

/RtmpiZ5FD3/downloaded_packages

FIGURE 2-4 RStudio’s default workspace
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Run the following code to verify that ggplot2 has been installed correctly and to ensure your R/

RStudio environment is functional:

library(ggplot2)

set.seed(1492)

test.df = data.frame(var1=rnorm(5000))

ggplot(data=test.df) + geom_histogram(aes(x=var1))

If there are no errors and you see the bar chart in Figure 2-5, your environment is ready to run through 

the examples in the book. If you do encounter errors, try starting the standalone R (not RStudio) application, 

re-install the ggplot2 package in that R console, and execute the bar chart code in that environment. If 

that works, try uninstalling and re-installing RStudio to fix the errors.

Like Python, R has a vast repository of useful modules that can simplify many tasks. We will introduce 

a few of them in the coming chapters, but you should also peruse the Comprehensive R Archive Network 

(CRAN) (http://cran.r-project.org/web/packages/) to see the breadth and depth covered 

by a host of contributors.

FIGURE 2-5 Test R/RStudio output



Introducing Data Frames 33

Introducing Data Frames
If you are coming from another programming language you should have a basic understanding of general 

data types such as strings, integers, and arrays. R and Python offer the standard set of data types, but both 

have one data type in common—the data frame—which truly gives them power. On the surface, a data 

frame is just a way to hold tabular data (the type of data you see organized in a typical Excel spreadsheet) 

and may feel like a two-dimensional (2D) array. If you dig a bit deeper, though, you will find that these 

data frames are really an all-in-one combination of a database table, matrix, 2D array, and pivot table with 

many additional time-saving features.

Much like a database table, each column in a data frame has a column name and holds elements of 

the same type of data. You can perform operations on whole columns, rows, or subsets of each. Adding, 

merging, flattening, expanding, changing, deleting, and searching for data are all—usually—one-line 

operations in both languages, as are methods to read and write the contents of data frames to and from 

files. In essence, Python and R achieve this expressive power by putting intelligence into the data structure 

and the functions that operate on them. In contrast, other programming languages have less sophisticated 

data structures, meaning you need to write your own code and create your own data structures to achieve 

similar results.

The following code (Listings 2-1 and 2-2) provides a compact overview of data frame operations on 

both R and Python, respectively, but it is still highly recommended that you check out the aforementioned 

introductory resources before moving into Chapter 3. As indicated in the Introduction, you can find all code 

on the book’s companion website at www.wiley.com/go/datadrivensecurity.

LISTING 2-1
# Listing 2-1

# R Data Frame Example

# create a new data frame of hosts & high vuln counts

assets.df <- data.frame(

   name=c("danube","gander","ganges","mekong","orinoco"),

   os=c("W2K8","RHEL5","W2K8","RHEL5","RHEL5"),

   highvulns=c(1,0,2,0,0))

# take a look at the data frame structure & contents

str(assets.df)

## 'data.frame':    5 obs. of  3 variables:

##$ name     : Factor w/ 5 levels "danube","gander",..: 1 2 3 4 5

## $ os       : Factor w/ 2 levels "RHEL5","W2K8": 2 1 2 1 1

A Word about R Versions

The R examples in this book were created under R version 3.0. Some package managers may still have 

R version 2.15 as the default version. It is recommended that you install R from the sources identi-

fied in this chapter to ensure maximum compatibility with the packages we use in later chapters.

(continues)
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LISTING 2-1 (continued)
## $ highvulns: num  1 0 2 0 0

head(assets.df)

##      name    os highvulns

## 1  danube  W2K8         1

## 2  gander RHEL5         0

## 3  ganges  W2K8         2

## 4  mekong RHEL5         0

## 5 orinoco RHEL5         0

# show a "slice" just the operating systems

# by default R creates "factors" for categorical data so

# we use as.character() to expand the factors out

head(assets.df$os)

## [1] W2K8  RHEL5 W2K8  RHEL5 RHEL5

## Levels: RHEL5 W2K8

# add a new column

assets.df$ip <- c("192.168.1.5","10.2.7.5","192.168.1.7",

                      "10.2.7.6", "10.2.7.7")

# extract only nodes with more than one high vulnerability

head(assets.df[assets.df$highvulns>1,])

##     name   os highvulns          ip

## 3 ganges W2K8         2 192.168.1.7

# create a 'zones' column based on prefix IP value

assets.df$zones <- 

      ifelse(grepl("^192",assets.df$ip),"Zone1","Zone2")

# take a final look at the dataframe

head(assets.df)

##      name    os highvulns          ip zones

## 1  danube  W2K8         1 192.168.1.5 Zone1

## 2  gander RHEL5         0    10.2.7.5 Zone2

## 3  ganges  W2K8         2 192.168.1.7 Zone1

## 4  mekong RHEL5         0    10.2.7.6 Zone2

## 5 orinoco RHEL5         0    10.2.7.7 Zone2

LISTING 2-2
# Listing 2-2

# Python (pandas) DataFrame Example

import numpy as np

import pandas as pd

# create a new data frame of hosts & high vuln counts

assets_df = pd.DataFrame( {

    "name" : ["danube","gander","ganges","mekong","orinoco" ],

    "os" : [ "W2K8","RHEL5","W2K8","RHEL5","RHEL5" ],
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LISTING 2-2 (continued)
    "highvulns" : [ 1,0,2,0,0 ]

    } )

# take a look at the data frame structure & contents

print(assets_df.dtypes)

## highvulns     int64

## name         object

## os           object

## dtype: object

assets_df.head()

##    highvulns     name     os

## 0          1   danube   W2K8

## 1          0   gander  RHEL5

## 2          2   ganges   W2K8

## 3          0   mekong  RHEL5

## 4          0  orinoco  RHEL5

# show a "slice" just the operating systems

assets_df.os.head()

## 0     W2K8

## 1    RHEL5

## 2     W2K8

## 3    RHEL5

## 4    RHEL5

## Name: os, dtype: object

# add a new column

assets_df['ip'] = [ "192.168.1.5","10.2.7.5","192.168.1.7",

                     "10.2.7.6", "10.2.7.7" ]

# show only nodes with more than one high vulnerability

assets_df[assets_df.highvulns>1].head()

##    highvulns    name    os           ip

## 2          2  ganges  W2K8  192.168.1.7

# divide nodes into network 'zones' based on IP address

assets_df['zones'] = np.where(

    assets_df.ip.str.startswith("192"), "Zone1", "Zone2")

# get one final view

assets_df.head()

##    highvulns     name     os           ip  zones

## 0          1   danube   W2K8  192.168.1.5  Zone1

## 1          0   gander  RHEL5     10.2.7.5  Zone2

## 2          2   ganges   W2K8  192.168.1.7  Zone1

## 3          0   mekong  RHEL5     10.2.7.6  Zone2

## 4          0  orinoco  RHEL5     10.2.7.7  Zone2



BUILDING YOUR ANALYTICS TOOLBOX36

The data frame is the core data structure you will find yourself using in either language for most 

analytics projects. It lets you focus on what you want to do with the data versus how to do it.  This is one 

of the core differences between domain-specific and general-purpose programming languages. If you 

were still on the fence about switching to R or Python for performing data analysis, hopefully this brief 

introduction to the power of each language has helped convince you of their efficacy.

Organizing Analyses
Finally, as you prepare to jump into data-analysis projects, it’s a good idea to set up an area where you 

organize input data, analysis scripts, output (visualizations, reports, and/or data), and any supporting 

documentation. For the purposes of the examples in this book, we use the following directory structure:

/book/ch02

   |-R

   |-data

   |-docs

   |-output

   |-python

   |-support

   |-tmp

Like most elements of programming, there is no single best way to set up this structure, but you should 

strive to find one that works for you and stick with it. A great way to do that is to take a lesson from modern 

web framework builders and use a simple setup shell script that builds the structure for you. We’ve provided 

example shell scripts in Bourne shell for Mac OS X/Linux and in the Windows CMD shell (Listings 2-3 and 2-4):

LISTING 2-3
# Listing 2-3

# Sample Analysis Preparation Script (Bourne Shell Script)

#!/bin/sh

#

# prep: prep analytics directory structure

#

# usage: prep DIRNAME

#

if [ "$#" == "0" ]; then

    echo "ERROR: Please specify a directory name"

    echo 

    echo "USAGE: prep DIRNAME"

fi

DIR=$1

if [ ! -d "${DIR}" ]; then

(continues)
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LISTING 2-3 (continued)
    mkdir -p ${DIR}/R \

             ${DIR}/data \

             ${DIR}/docs \

             ${DIR}/output \

             ${DIR}/python \

             ${DIR}/support \

             ${DIR}/tmp

    > ${DIR}/readme.md

    ls -lR ${DIR}

else

    echo "Directory "${DIR}" already exists"

fi

LISTING 2-4
REM Listing 2-4

REM Sample Analysis Preparation Script (Windows Shell Script)

SET PDIR=%1

IF EXIST %%PDIR GOTO HAVEPDIR

MKDIR %%PDIR

MKDIR %%PDIR\R

MKDIR %%PDIR\data

MKDIR %%PDIR\docs

MKDIR %%PDIR\output

MKDIR %%PDIR\python

MKDIR %%PDIR\support

MKDIR %%PDIR\tmp

<NUL (SET/P Z=) >%%PDIR\readme.md

DIR %%PDIR

:HAVEPDIR

ECHO "Directory exists"

You now only need to type prep NAME whenver you want to start a new project (so, for this project, 

you type prep ch02). As you develop your own styles and patterns, you can expand this script to include 

the generation of various templates and even initialization of source code repositories. Once the structure 

is in place, it’s time to retrieve, explore, and analyze some data!

Summary
Python and R are key components of a security data scientist’s toolbox. Python’s similarity to existing 

scripting languages; its large and supportive community; its diverse data manipulation capabilities; and 

recent additions of robust statistics, graphics, and computational packages make it an excellent choice for 

many kinds of analytics work. R’s statistical foundations, equally large and supportive contributor base, 

robust library of packages, and growing popularity within the analytics community make it one of the “must 

learn/use” languages for data science tasks. While it’s possible to work with standard/base installations 
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of each language, using specialized development environments will enable you to focus on your analysis 

work instead of system administration tasks.

The “data frame” is an “intelligent data structure” that is behind much of the power of both R and 

Python’s data crunching capabilities. It combines the capabilities of a database, pivot table, matrix, and 

spreadsheet, and we’ll be introducing more features of data frames in the next chapter as we walk you 

through the basic framework of a security data analysis project.

Recommended Reading
The following are some recommended readings that can further your understanding on some of the topics 

we touch on in this chapter. For full information on these recommendations and for the sources we cite in 

the chapter, please see Appendix B.

The R Book by Michael J. Crawley—One of the most comprehensive R texts that provides exam-

ples but also serves as a complete R reference book.

Learning R by Richard Cotton—This provides an excellent conversational introduction to the R 

programming language through numerous step-by-step examples.

Learn Python the Hard Way by Zed A. Shaw—Pressure makes diamonds out of coal, and the 

disciplined nature of the text and exercises requiring actual typing to complete will have you going 

from “0” to “Python” in short order if you can stick with it.

Learning Python by Mark Lutz—If the brutal nature of Learn Python the Hard Way is a bit 

much for you, this text offers a more traditional approach to getting acclimated to the Python 

ecosystem.

www.allitebooks.com

http://www.allitebooks.org
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“From one thing, know ten thousand things.” 

Miyamoto Musashi, The Book of Five Rings

Learning the “Hello World” 
of Security Data Analysis
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If you’ve ever tried to learn a new programming language there’s a good chance you started off with a 

“Hello World” example that quickly introduces basic language structure and code execution. The immediate 

sense of accomplishment as the syntax is verified by the compiler/interpreter and the familiar two-word 

output is displayed becomes a catalyst for the notion that, soon, you shall have the ability to bend this 

new language to your will.

This chapter takes the “Hello World” concept and expands it to a walk-through of a self-contained, 

introductory security data analysis use case that you will be able to follow along with, execute, and take 

concepts from as you start to perform your own analyses. There are parallel examples in Python and R to 

provide a somewhat agnostic view of the similarities, strengths, and differences between both languages 

in a real-life data analysis context. If you’re not familiar with one or both of those languages, you should 

read Chapter 2 and at least skim some of the external resources referenced there.

This is a good place to reinforce the recommendation to use IPython Notebooks or RStudio for your 

analyses and exploration because they provide very robust and forgiving environments, which means you 

will be much more productive compared to the alternative of writing, saving, and executing scripts within 

the bare interpreter shells. Remember, all the source code, sample data, and visualizations are on the book’s 

website (www.wiley.com/go/datadrivensecurity), so there’s no need for transcription. You 

can just cut/paste and focus on the flow and concepts presented in the examples. Listings 3-0 and 3-1 

provide you with the setup code for this chapter.

LISTING 3-0
# This is for the R code in the chapter

# set working directory to chapter location

# (change for where you set up files in ch 2)

setwd("~/book/ch03")

# make sure the packages for this chapter

# are installed, install if necessary

pkg <- c("ggplot2", "scales", "maptools",

         "sp", "maps", "grid", "car" )

new.pkg <- pkg[!(pkg %in% installed.packages())]

if (length(new.pkg)) {

  install.packages(new.pkg)

}

LISTING 3-1
# This is for the Python code in the chapter

# loads the necessary Python library for chdir

import os

# set working directory to chapter location

# (change for where you set up files in ch 2)

os.chdir(os.path.expanduser("~") + "/book/ch03")

Solving a Problem
Chapter 1 emphasized the criticality of developing a solid research question before going off and “playing 

with data.” For this “Hello World” example, you are working on a problem given to you by the manager 
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of the Security Operations Center (SOC). It seems the SOC analysts are becoming inundated with “trivial” 

alerts ever since a new data set of indicators was introduced into the Security Information and Event 

Management (SIEM) system. They have asked for your help in reducing the number of “trivial” alerts with-

out sacrificing visibility.

This is a good problem to tackle through data analysis, and we should be able to form a solid, practical 

question to ask after we perform some exploratory data analysis and hopefully arrive at an answer that 

helps out the SOC.

Getting Data
We are entering the age of data in information security. The challenge is no longer where to get data 

from, but what to do with it. And, the kind of information in each data set will drive the type of research 

you perform.

For this example, the SOC chose to integrate AlienVault’s IP Reputation database (http://labs

.alienvault.com/labs/index.php/projects/open-source-ip-reputation

-portal/download-ip-reputation-database/) into the SIEM. AlienVault itself develops 

OSSIM—an open source security information manager—and a proprietary unified security manage-

ment (USM) product, both of which make use of this freely available data set that contains information on 

various types of “badness” across the Internet. AlienVault provides this data in numerous formats free of 

charge. The version you work with is the OSSIM Format (http://reputation.alienvault.com/

reputation.data) since it provides the richest information of all the available formats.

When performing an exploratory analysis or getting a first look at a data set, you might find it helpful to 

perform an initial download via browser (or use wget/curl if you are handy on the command line). The 

AlienVault database hovers near 16MB, so it may take a minute or two to download on slower connections. 

When you download the AlienVault IP Reputation database and examine the first few data elements, you 

can get an idea of the contents and format, which will come in handy when you start to read in and work 

with the data. In the following code, you use some simple Linux/UNIX commands to inspect the download:

$ head -10 reputation.data # look at the first few lines in the file

222.76.212.189#4#2#Scanning Host#CN#Xiamen#24.479799270,118.08190155#11

222.76.212.185#4#2#Scanning Host#CN#Xiamen#24.479799270,118.08190155#11

222.76.212.186#4#2#Scanning Host#CN#Xiamen#24.479799270,118.08190155#11

5.34.246.67#6#3#Spamming#US##38.0,-97.0#12

Note

AlienVault updates their IP reputation data set hourly and produces a companion “revision” 

file (http://reputation.alienvault.com/reputation.rev), enabling 

you to ensure you are working with the latest data set or keep a history of data sets. If you 

plan on performing a long term analysis of this data set—often referred to as a longitu-

dinal study—it’s a good idea to script some code to perform this check to see if it’s time 

to download a new one, even in scheduled jobs.
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178.94.97.176#4#5#Scanning Host#UA#Merefa#49.823001861,36.0507011414#11

66.2.49.232#4#2#Scanning Host#US#Union City#37.59629821,-122.0656966#11

222.76.212.173#4#2#Scanning Host#CN#Xiamen#24.479799270,118.08190155#11

222.76.212.172#4#2#Scanning Host#CN#Xiamen#24.479799270,118.08190155#11

222.76.212.171#4#2#Scanning Host#CN#Xiamen#24.479799270,118.08190155#11

174.142.46.19#6#3#Spamming###24.4797992706,118.08190155#12

$ wc –l reputation.data # see how many total records there are

  258626 reputation.data

For most projects, it’s better to get into the habit of retrieving the data source directly from your analysis 

scripts. If you still prefer to download files manually you should provide some type of comment in your 

programs that provides details about where the source data comes from and when you retrieved the data 

for your current analysis. These comments make it easier to repeat the analyses at a later date, and trust 

us, you’ll revisit your code and analyses more often than you think. 

The following examples (Listings 3-2 and 3-3) show how to perform the data retrieval in both R and 

Python. If you are following along with RStudio or IPython, all the code examples assume a working direc-

tory of the top level of the project structure (such as executing in the book/ch03 directory that was 

suggested in Chapter 2, which you either manually created or created using the prep script we provided). 

Code blocks are, for the most part, self-contained, but each block expects this first snippet and the snippet 

in the next section on “Reading in Data” to have been executed in the running RStudio or IPython session.

LISTING 3-2
# URL for the AlienVault IP Reputation Database (OSSIM format)

# storing the URL in a variable makes it easier to modify later

# if it changes. NOTE: we are using a specific version of the data

# in these examples, so we are pulling it from an alternate 

# book-specific location.

avURL <- 

  "http://datadrivensecurity.info/book/ch03/data/reputation.data"

# use relative path for the downloaded data

avRep <- "data/reputation.data"

# using an if{}-wrapped test with download.file() vs read.xxx()

# directly avoids having to re-download a 16MB file every time 

# we run the script

if (file.access(avRep)) {

  download.file(avURL, avRep) 

}

## trying URL 'http://datadrivensecurity…/ch03/data/reputation.data'

## Content type 'application/octet-stream' length 17668227 bytes

## opened URL

## ==================================================

## downloaded 16.8 Mb
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LISTING 3-3
# URL for the AlienVault IP Reputation Database (OSSIM format)

# storing the URL in a variable makes it easier to modify later

# if it changes. NOTE: we are using a specific version of the data

# in these examples, so we are pulling it from an alternate 

# book-specific location.

import urllib

import os.path

avURL = "http://datadrivensecurity.info/book/ch03/data/reputation.data"

# relative path for the downloaded data

avRep = "data/reputation.data"

# using an if-wrapped test with urllib.urlretrieve() vs direct read

# via panads avoids having to re-download a 16MB file every time we

# run the script

if not os.path.isfile(avRep):

    urllib.urlretrieve(avURL, filename=avRep)

The R and Python code looks very similar and follow the same basic structure: using variables whenever 

possible for URL and filenames plus testing for the existence of the data file before downloading it again. 

These are good habits to get into and we’ll be underscoring other suggested good practices throughout 

the rest of the book.

With the IP reputation data in hand, it’s now time to read in the data so you can begin to work with it.

Reading In Data
R and Python (especially with pandas) abstract quite a bit of complexity when it comes to reading and 

parsing data into structures for processing. R’s read.table(),read.csv(), and read.delim()

functions and pandas’ read_csv() function cover nearly all your delimited file-reading needs and 

provide robust configuration options for even the most gnarly input file. Both tools, as you learn in later 

chapters, also provide ways to retrieve data from SQL and NoSQL databases, HDFS “big data” setups, and 

even handle unstructured data quite well.

The Revolution Will Be Properly Delimited!

Base R and Python’s pandas package both excel at reading in delimited files. Although they are 

also both agnostic when it comes to what that delimiter is, there is a general acceptance in the data 

science community that it should be either a comma-separated value (CSV) or a tab-separated value 

(TSV), and the majority of the sample data sets available to practice with come in one of those two 

flavors. The CSV format is thoroughly defined in RFC 4180 (http://www.rfc-editor.org/
rfc/rfc4180.txt) and has the following high-level attributes:

 ● There should only be one record per line.

 ● Data files can include an optional header line.

(continues)
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From a cursory examination of the downloaded file, you can see the AlienVault data has a fairly straight-

forward record format with eight primary fields using a # as the field separator/delimiter.

222.76.212.189#4#2#Scanning Host#CN#Xiamen#24.479799270,118.08190155#11

Notice also that the reputation data file lacks the optional header, so the example code segment assigns 

more meaningful column names manually. This is a completely optional step, but it helps avoid confusion 

as you expand your analyses and, as you see in later chapters, helps build consistency across data frames 

if you bring in additional data sets. 

The consistency in the record format makes the consumption of the data equally as straightforward in 

each language. In each language/environment, we follow a typical pattern of:

 ● Reading in data

 ● Assigning meaningful column names (if necessary)

 ● Using built-in functions to get an overview of the structure of the data

 ● Taking a look at the first few rows of data, typically with the head() function

that we’ll cover in more detail in Chapter 4.

 ● Header and data rows have fields separated by commas (or tabs).

 ● Each line should have the same number of fields.

 ● Spaces in fields should be treated as significant.

Though RFC 4180 explicitly specifies the comma as the separator, the same rules apply when using 

tabs (there is no corresponding RFC for tab-separated files).

Many tools in the security domain can import and export CSV-formatted files. If you intend to do 

any work in environments like Hadoop, you have to become familiar with CSV/TSV.

Another established format is JSON (JavaScript Object Notation), which has grown to become the 

preferred way to transport data between servers and browsers. As you’ll see in Chapter 8, it is also 

the foundational data format behind many NoSQL database environments/tools. The JSON format 

is defined in RFC 4627 (http://www.rfc-editor.org/rfc/rfc4627.txt) and has 

two primary structures:

 ● A collection of name/value pairs (a “dictionary”)

 ● An ordered list of values (an “array”)

JSON enables richer and more complex data representation than CSV/TSV and is rapidly supersed-

ing another popular, structured format—the Extensible Markup Language (XML)—as the preferred 

data exchange representation. This is because it’s syntactically less verbose, much easier to parse, 

and (usually) more readable. XML has and will continue to excel at document representation, but 

you should strongly consider using JSON for your structured data-processing needs.

(continued)
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The code that follows (Listings 3-4 and 3-5) builds on the code from the previous section. It won’t work 

correctly otherwise. This is the pattern we will follow in the book, so you should load and run the code in 

each chapter sequentially.

LISTING 3-4
# read in the IP reputation db into a data frame

# this data file has no header, so set header=FALSE

av <- read.csv(avRep,sep="#", header=FALSE)

# assign more readable column names since we didn't pick

# any up from the header

colnames(av) <- c("IP", "Reliability", "Risk", "Type",

                  "Country", "Locale", "Coords", "x")

str(av) # get an overview of the data frame

## 'data.frame': 258626 obs. of  8 variables:

## $ IP : Factor w/ 258626 levels "1.0.232.167",..: 154069 154065

##    154066 171110 64223 197880 154052 154051 154050 56741 ...

## $ Reliability: int 4 4 4 6 4 4 4 4 4 6 ...

## $ Risk : int 2 2 2 3 5 2 2 2 2 3 ...

## $ Type : Factor w/ 34 levels "APT;Malware Domain",..: 25 25 25 31 25

##    25 25 25 25 31 ...

## $ Country : Factor w/ 153 levels "","A1","A2","AE",..: 34 34 34 143

##    141 143 34 34 34 1 ...

## $ Locale : Factor w/ 2573 levels "","Aachen","Aarhus",..: 2506 2506

##    2506 1 1374 2342 2506 2506 2506 1 ...

## $ Coords : Factor w/ 3140 levels "-0.139500007033,98.1859970093",..:

##    489 489 489 1426 2676 1384 489 489 489 489 ...

## $ x : Factor w/ 34 levels "11","11;12","11;2",..: 1 1 1 7 1 1 1 1 1

##    7 ...

head(av) # take a quick look at the first few rows of data

##               IP Reliability Risk          Type Country     Locale

## 1 222.76.212.189           4    2 Scanning Host      CN     Xiamen

## 2 222.76.212.185           4    2 Scanning Host      CN     Xiamen

## 3 222.76.212.186           4    2 Scanning Host      CN     Xiamen

## 4    5.34.246.67           6    3      Spamming      US

## 5  178.94.97.176           4    5 Scanning Host      UA     Merefa

## 6    66.2.49.232           4    2 Scanning Host      US Union City

##                         Coords  x

## 1   24.4797992706,118.08190155 11

## 2   24.4797992706,118.08190155 11

## 3   24.4797992706,118.08190155 11

## 4                   38.0,-97.0 12

## 5  49.8230018616,36.0507011414 11

## 6 37.5962982178,-122.065696716 11
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LISTING 3-5
# first time using the pandas library so we need to import it

import pandas as pd

# read in the data into a pandas data frame

av = pd.read_csv(avRep,sep="#")

# make smarter column names

av.columns = ["IP","Reliability","Risk","Type","Country",

              "Locale","Coords","x"]

print(av) # take a quick look at the data structure

## <class 'pandas.core.frame.DataFrame'>

## Int64Index: 258626 entries, 0 to 258625

## Data columns (total 8 columns):

## IP             258626  non-null values

## Reliability    258626  non-null values

## Risk           258626  non-null values

## Type           258626  non-null values

## Country        248571  non-null values

## Locale         184556  non-null values

## Coords         258626  non-null values

## x              258626  non-null values

## dtypes: int64(2), object(6)

# take a look at the first 10 rows

av.head().to_csv(sys.stdout)

## ,IP,Reliability,Risk,Type,Country,Locale,Coords,x

## 0,222.76.212.189,4,2,Scanning Host,CN,Xiamen,"24.4797992706,

## 118.08190155",11

## 1,222.76.212.185,4,2,Scanning Host,CN,Xiamen,"24.4797992706,

## 118.08190155",11

## 2,222.76.212.186,4,2,Scanning Host,CN,Xiamen,"24.4797992706,

## 118.08190155",11

## 3,5.34.246.67,6,3,Spamming,US,,"38.0,-97.0",12

## 4,178.94.97.176,4,5,Scanning Host,UA,Merefa,"49.8230018616,

## 36.0507011414",11

Within Canopy, IPython has a set of functions to output data to a more viewer-friendly HTML format (see 

Listing 3-6) that can be used to make the head() output in Listing 3-5 much easier to read (see Figure 3-1).

LISTING 3-6
# require object: av (3-5)

# See corresponding output in Figure 3-1

# import the capability to display Python objects as formatted HTML

from IPython.display import HTML 

# display the first 10 lines of the dataframe as formatted HTML

HTML(av.head(10).to_html())
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Exploring Data
Now that you have a general idea of the variables and how they look, it’s time to bring your security domain 

expertise into the mix to explore and discover what is interesting about the data. This will enable you to 

form good questions to ask and answer. Despite having almost 260,000 records, you have many tools at 

your disposal to help get a feel for what it contains.

Before going any deeper into the data, however, there are some tidbits of information you know about 

the data, so we will summarize them here:

 ● Reliability,Risk, and x are integers.

 ● IP,Type,Country,Locale, and Coords are character strings.

 ● The IP address is stored in the dotted-quad notation, not in hostnames or decimal format. 

 ● Each record is associated with a unique IP address, so there are 258,626 IP addresses (in this 

download).

 ● Each IP address has been geo-located into the latitude and longitude pair in the Coords field, but 

they are in a single field separated by a comma. You will have to parse that further if you want to 

use that field.

When you have quantitative variables (which is a fancy way to say “numbers representing a quantity”), 

a good first exploratory step is to look at the basic descriptive statistics on the variables. These are com-

prised of the following:

 ● Minimum and maximum values; taking the difference of these will give you the 

range (range = max - min)

 ● Median (the value at the middle of the data set)

 ● First and third quartiles (the 25th and 75th percentiles, or you could think of it as the median value of 

the first and last halves of the data, respectively)

 ● Mean (sum of all values divided by the number of count)

FIGURE 3-1 IPython HTML head() output
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You may see the min, max, median, and quartiles referred to as the ive number summary of a data 

set (as developed by Tukey), and both languages have built-in functions to calculate them—summary()

in R and describe() in Python— along with the mean. Take a look at the summary on the two primary 

numeric columns: Reliability and Risk (Listings 3-7 and 3-8).

LISTING 3-7
# require object: av (3-4)

summary(av$Reliability)

## Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

## 1.000   2.000   2.000   2.798   4.000  10.000 

summary(av$Risk)

## Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

## 1.000   2.000   2.000   2.221   2.000   7.000 

LISTING 3-8
# require object: av (3-5)

av['Reliability'].describe()

## count    258626.000000

## mean          2.798040

## std           1.130419

## min           1.000000

## 25%           2.000000

## 50%           2.000000

## 75%           4.000000

## max          10.000000

## Length: 8, dtype: float64

av['Risk'].describe()

## count    258626.000000

## mean          2.221362

## std           0.531571

## min           1.000000

## 25%           2.000000

## 50%           2.000000

## 75%           2.000000

## max           7.000000

## Length: 8, dtype: float64

As you look at these results, note that the Reliability  column spreads across the docu-

mented potential range of [1…10] (Slide 10 of http://www.slideshare.net/alienvault/

building-an-ip-reputation-engine-tracking-the-miscreants), but the Risk

column—which AlienVault says has a documented potential range of [1…10]—only has a spread of [1…7]. 

You can also see that both Risk and Reliability appear to center on a value of 2.

You can now dig a bit deeper and use the fact that the Reliability,Risk,Type, and Country

fields can be used together to define data set categories. Even though we just treated Reliability

www.allitebooks.com

http://www.allitebooks.org
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and Risk as numbers, they actually are ordinal, meaning each entry is assigned an integer, and a value 

of 4 is not necessarily twice the Reliability or Risk of 2. It only means that Reliability or Risk that is scored 

4 is higher than that scored 2. In other words, the number has more meaning as a label than a measure-

ment. Categorical data may also be referred to as nominal values, factors, or in some cases, qualitative

variables.

Within R, the difference between the two is automatically handled by the summary() function (Listing 

3-9), and it displays the count for each category. This doesn’t work on the quantitative variables though. In 

order to get a count of those, you can use the table() function if there are not too many unique values 

in the variable. Within Python, you can create a short function that leverages pandas to convert a data 

frame column (which is just an array) into a very appropriately named Categorical object (Listing 

3-10), which you can tweak a bit to give you similar helpful output.

LISTING 3-9
# require object: av (3-4)

table(av$Reliability)

## 1         2      3      4      5      6      7      8      9 

## 5612 149117  10892  87040      7   4758    297     21    686 

##  10 

Isn’t “Data” Just “Data”?

You may be used to treating data holistically, thinking that the contents of a log file or database 

extract is just, well, data. If you’re used to working with data in spreadsheet form (like Microsoft 

Excel), you aren’t really encouraged to think of it any other way. Individual data elements can, how-

ever, be broken down into two broad categories: quantitative and qualitative. Quantitative data 

elements represent actual quantities whereas qualitative (or categorical) data elements are more 

descriptive in nature.

TCP or UDP port numbers may be numeric, but they don’t actually represent a quantity; they are 

just parts of a category, in this case numerically named entities. Port “22” is not truly greater or less 

port “7070.” Conversely, “number of bytes transferred” or “number of infected hosts” represents 

actual quantities that can be compared numerically.

Categorical data is easily manipulated in R as factors and in Python as a pandas Categorical
class. In fact, both R and Python have extensive functions that allow you to group, split, extract, 

and perform analysis on and with factors. You can see in Listing 3-4 that R made a correct educated 

guess that IP,Type,Country, and Locale were all categorical in nature as it scanned through 

the AlienVault IP reputation data file. Country names and malware types are easily identified as just 

classifications (nominal data in statistics terms). You can also see that R did not properly recognize 

that Reliability and Risk were both qualitative in nature. Even though there is a meaning-

ful sequence to them—risk level “5” is greater than “1”—the numeric, ordinal arrangement is not 

expressing quantity (that is, you should not try to calculate the mean of the Risk values or subtract 

one Risk value from another).

(continues)
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LISTING 3-9 (continued)
## 196 

table(av$Risk)

## 1       2      3      4      5      6      7 

## 39 213852  33719   9588   1328     90     10

# summary sorts by the counts by default

# maxsum sets how many factors to display

summary(av$Type, maxsum=10)

##                Scanning Host               Malware Domain 

##                       234180                         9274 

##                   Malware IP               Malicious Host 

##                         6470                         3770 

##                     Spamming                          C&C 

##                         3487                          610 

## Scanning Host;Malicious Host    Malware Domain;Malware IP 

##                          215                          173 

## Malicious Host;Scanning Host                      (Other) 

##                          163                          284 

summary(av$Country, maxsum=40)

##      CN      US      TR              DE      NL      RU      GB 

##   68583   50387   13958   10055    9953    7931    6346    6293 

##      IN      FR      TW      BR      UA      RO      KR      CA 

##    5480    5449    4399    3811    3443    3274    3101    3051 

##      AR      MX      TH      IT      HK      ES      CL      AE 

##    3046    3039    2572    2448    2361    1929    1896    1827 

##      JP      HU      PL      VE      EG      ID      RS      PK 

##    1811    1636    1610    1589    1452    1378    1323    1309 

##      VN      LV      NO      CZ      BG      SG      IR (Other) 

##    1203    1056     958     928     871     868     866   15136 

LISTING 3-10
# require object: av (3-5)

# factor_col(col)

#

# helper function to mimic R's "summary()" function

# for pandas "columns" (which are really just Python arrays)

def factor_col(col):

    factor = pd.Categorical.from_array(col)

    return pd.value_counts(factor,sort=True).reindex(factor.levels)

rel_ct = pd.value_counts(av['Reliability'])

risk_ct = pd.value_counts(av['Risk'])

type_ct = pd.value_counts(av['Type'])

country_ct = pd.value_counts(av['Country'])

(continues)
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LISTING 3-10 (continued)
print factor_col(av['Reliability'])

## 1       5612

## 2     149117

## 3      10892

## 4      87040

## 5          7

## 6       4758

## 7        297

## 8         21

## 9        686

## 10       196

## Length: 10, dtype: int64

print factor_col(av['Risk'])

## 1        39

## 2    213852

## 3     33719

## 4      9588

## 5      1328

## 6        90

## 7        10

## Length: 7, dtype: int64

print factor_col(av['Type']).head(n=10)

## APT;Malware Domain                  1

## C&C                               610

## C&C;Malware Domain                 31

## C&C;Malware IP                     20

## C&C;Scanning Host                   7

## Malicious Host                   3770

## Malicious Host;Malware Domain       4

## Malicious Host;Malware IP           2

## Malicious Host;Scanning Host      163

## Malware Domain                   9274

## Length: 10, dtype: int64

print factor_col(av['Country']).head(n=10)

## A1     267

## A2       2

## AE    1827

## AL       4

## AM       6

## AN       3

## AO     256

## AR    3046

## AT      51

## AU     155

## Length: 10, dtype: int64



52 LEARNING THE “HELLO WORLD” OF SECURITY DATA ANALYSIS

These numerical tables help you get a general view of the data, but a graph of the distribution of 

the data has the potential to provide a whole new perspective, oftentimes giving insights that numbers 

alone cannot reveal. We start with a simple bar chart to get a very quick visual overview of the Country,

Risk and Reliability factors (see Figures 3-2 through 3-4, respectively). You’ll need to execute each 

R code listing individually (Listings 3-11, 3-12, and 3-13) to see each graph.

LISTING 3-11
# require object: av (3-4)

# We need to load the ggplot2 library to make the graphs

# See corresponding output in Figure 3-2

# NOTE: Graphing the data shows there are a number of entries without

#       a corresponding country code, hence the blank entry 

library(ggplot2)

# Bar graph of counts (sorted) by Country (top 20)

# get the top 20 countries' names

country.top20 <- names(summary(av$Country))[1:20]

# give ggplot a subset of our data (the top 20 countries) 

# map the x value to a sorted count of country

gg <- ggplot(data=subset(av,Country %in% country.top20), 

            aes(x=reorder(Country, Country, length)))

# tell ggplot we want a bar chart

gg <- gg + geom_bar(fill="#000099")

# ensure we have decent labels

gg <- gg + labs(title="Country Counts", x="Country", y="Count")

# rotate the chart to make this one more readable

gg <- gg + coord_flip()

# remove "chart junk"

gg <- gg + theme(panel.grid=element_blank(),

                 panel.background=element_blank())

# display the image

print(gg)

LISTING 3-12
# requires packages: ggplot2

# require object: av (3-4)

# See corresponding output in Figure 3-3

# Bar graph of counts by Risk

gg <- ggplot(data=av, aes(x=Risk))

gg <- gg + geom_bar(fill="#000099")

# force an X scale to be just the limits of the data

# and to be discrete vs continuous

gg <- gg + scale_x_discrete(limits=seq(max(av$Risk)))

gg <- gg + labs(title="'Risk' Counts", x="Risk Score", y="Count")

gg <- gg + theme(panel.grid=element_blank(),

                 panel.background=element_blank())

print(gg)
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LISTING 3-13
# requires packages: ggplot2

# require object: av (3-4)

# See corresponding output in Figure 3-4

# Bar graph of counts by Reliability

gg <- ggplot(data=av, aes(x=Reliability))

gg <- gg + geom_bar(fill="#000099")

gg <- gg + scale_x_discrete(limits=seq(max(av$Reliability)))

gg <- gg + labs(title="'Reliabiity' Counts", x="Reliability Score",

                y="Count")

gg <- gg + theme(panel.grid=element_blank(),

                 panel.background=element_blank())

print(gg)

FIGURE 3-2 Country factor bar chart (R)
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FIGURE 3-3 Risk factor bar chart (R)

FIGURE 3-4 Reliability factor bar chart (R)
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The Python versions of these visualizations are offered in Listings 3-14, 3-15, and 3-16. 

LISTING 3-14
# require object: av (3-5), factor_col (3-10)

# See corresponding output in Figure 3-5

# NOTE: Notice the significant differnce in the Python graph in that the

#       blank/empty country code entries are not in the graph

# need some functions from matplotlib to help reduce 'chart junk'

import matplotlib.pyplot as plt

# sort by country

country_ct = pd.value_counts(av['Country'])

# plot the data

plt.axes(frameon=0) # reduce chart junk

country_ct[:20].plot(kind='bar',

   rot=0, title="Summary By Country", figsize=(8,5)).grid(False)

LISTING 3-15
# require object: av (3-5), factor_col (3-10)

# See corresponding output in Figure 3-6

plt.axes(frameon=0) # reduce chart junk

factor_col(av['Reliability']).plot(kind='bar', rot=0,

           title="Summary By 'Reliability'", figsize=(8,5)).grid(False)

LISTING 3-16
# require object: av (3-5), factor_col (3-10)

# See corresponding output in Figure 3-7

plt.axes(frameon=0) # reduce chart junk

factor_col(av['Risk']).plot(kind='bar', rot=0, 

           title="Summary By 'Risk'", figsize=(8,5)).grid(False)

The Country chart, as shown in Figure 3-5, shows there are definitely some countries that are contrib-

uting more significantly to the number of malicious nodes, and you can go back to numbers for a moment 

to look at the percentages for the top ten in the list (Listings 3-17 and 3-18):

LISTING 3-17
# require object: av (3-4)

country10 <- summary(av$Country, maxsum=10)

# now convert to a percentage by dividing by number of rows 

country.perc10 <- country10/nrow(av)

# and print it

print(country.perc10)

##         CN         US         TR                    DE         NL 

## 0.26518215 0.19482573 0.05396983 0.03887854 0.03848414 0.03066590 

##         RU         GB         IN    (Other) 

## 0.02453736 0.02433243 0.02118890 0.30793501 
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FIGURE 3-5 Country factor bar chart (Python)

FIGURE 3-6 Reliability factor bar chart (Python)
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LISTING 3-18
# require object: av (3-5)

# extract the top 10 most prevalent countries

top10 = pd.value_counts(av['Country'])[0:9] 

# calculate the % for each of the top 10

top10.astype(float) / len(av['Country'])

## CN    0.265182

## US    0.194826

## TR    0.053970

## DE    0.038484

## NL    0.030666

## RU    0.024537

## GB    0.024332

## IN    0.021189

## FR    0.021069

## Length: 9, dtype: float64

These quick calculations show that China and the United States together account for almost 46 percent 

of the malicious nodes in the list, and Russia accounts for just 2.4 percent. One avenue to explore here is to 

see how this compares with various industry reports since you would expect many of these countries to 

be in the top ten. However, the amount that some countries contribute suggest that there might be some 

bias in the data set. You can also see that 3 percent of the nodes cannot be geo-located (in the R output, 

[Other] category). 

FIGURE 3-7 Risk factor bar chart (Python)
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Looking at the Risk variable, you can see that the level of risk of most of the nodes is negligible (that 

is, so low that they can be disregarded). There are other elements that stand out with this data though, 

foremost being that practically no endpoints are in categories 1, 5, 6, or 7, and none in the rest of the defined 

possible range [8–10]. This anomaly is a sign to you that it is worth digging a bit deeper, but the anomaly 

is significant evidence of bias in the data set.

Finally, the Reliability rating of the nodes also appears to be a bit skewed (that is, the distribu-

tion is extended to one side of the mean or central tendency). The values are mostly clustered in levels 2 

and 4, with not many ratings above level 4. The fact that it completely skips a reliability rating of 3 should 

raise some questions in your mind. It could indicate a systemic flaw in the assignment of the rating, or it 

could be that you have at least two distinct data sets. Either way, that large quantity of 2s and 4s and low 

quantity of 3s is a clear sign that you should investigate further, because it’s just a little odd and surprising.  

You now have some leads to pursue and a much better idea of the makeup of the key components of 

the data. This preliminary analysis gives you enough information to formulate a research question.

Homing In on a Question
Consider both the problem and the primary use case for the AlienVault reputation data: importing it into a 

SEIM or Intrusion Detection System/Intrusion Prevention System (IDS/IPS) to alert incident response team 

members or to log/block malicious activity. How can this quick overview of the reputation data influence 

the configuration of the SIEM in this setting to ensure that the least number of “trivial” alerts are generated?

Let’s take a slightly more practical view of those questions by asking, “Which nodes from the Reputation 

database represent a potentially real threat?” 

There is a reason AlienVault included both Risk and Reliability fields, and you should be able 

to use these attributes to classify nodes into two categories: 1) the nodes you really care about, and 2) 

everything else. The definition of “really care about” can be somewhat subjective, but it is unrealistic to 

believe you would want to generate an alert on all detected activity by one of these 258,626 nodes. Some 

form of prioritization triage and prioritization must occur, and it is a far better approach to base the triage 

and prioritization on statistical analysis of data and evidence rather than a “gut call” or solely on “expert 

opinion” alone.

It’s possible to see which nodes should get your attention by comparing the Risk and Reliability

factors. To do this, you use a contingency table, which is a tabular view of the multivariate frequency 

distribution of specific variables. In other words, a contingency table helps show relationships between 

two variables. After building a contingency table, you can take both a numeric and graphical look at the 

results to see where the AlienVault nodes “cluster.”

The output from the R code in Listing 3-19 is Figure 3-8, which shows the output of the contingency 

table as a level plot and uses size and color to show quantity, whereas the Python code in Listing 3-20 is 

used to generate a standard heatmap (Figure 3-9) that relies on color alone to show quantity. (A heatmap

Note

Chapter 5 covers the challenges and pitfalls of IP address geolocation, so we’ll refrain from 

exploring that further here.
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is a graphical representation of data where the individual values contained in a matrix are represented as 

colors. See http://en.wikipedia.org/wiki/Heat_map for more information.) With both 

factors combined, it is very apparent that the values in this data set bias are concentrated around [2, 2], 

which might be a sign of bias.

LISTING 3-19
# require object: av (3-4)

# See corresponding output in Figure 3-8

# compute contingency table for Risk/Reliability factors which 

# produces a matrix of counts of rows that have attributes at

# each (x, y) location

rr.tab <- xtabs(~Risk+Reliability, data=av)

ftable(rr.tab) # print table

## virtually identical output to pandas (See Listing 3-20)

# graphical view of levelplot

# need to use levelplot function from lattice package

library(lattice)

# cast the table into a data frame

rr.df = data.frame(table(av$Risk, av$Reliability))

# set the column names since table uses "Var1" and "Var2"

colnames(rr.df) <- c("Risk", "Reliability", "Freq")

# now create a level plot with readable labels

levelplot(Freq~Risk*Reliability, data=rr.df, main="Risk ~ Reliabilty", 

          ylab="Reliability", xlab = "Risk", shrink = c(0.5, 1),

          col.regions = colorRampPalette(c("#F5F5F5", "#01665E"))(20))

LISTING 3-20
# require object: av (3-5)

# See corresponding output in Figure 3-9

# compute contingency table for Risk/Reliability factors which 

# produces a matrix of counts of rows that have attributes at

# each (x, y) location

# need cm for basic colors

# need arange to modify axes display

from matplotlib import cm

from numpy import arange

pd.crosstab(av['Risk'], av['Reliability'])

## Reliability    1       2     3      4   5     6    7   8    9   10

## Risk

## 1               0       0    16      7   0     8    8   0    0   0

## 2             804  149114  3670  57653   4  2084   85  11  345  82

## 3            2225       3  6668  22168   2  2151  156   7  260  79

## 4            2129       0   481   6447   0   404   43   2   58  24

## 5             432       0    55    700   1   103    5   1   20  11

(continues)
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LISTING 3-20 (continued)

## 6              19       0     2     60   0     8    0   0    1   0

## 7               3       0     0      5   0     0    0   0    2   0

# graphical view of contingency table (swapping risk/reliability)

xtab = pd.crosstab(av['Reliability'], av['Risk'])

plt.pcolor(xtab,cmap=cm.Greens)

plt.yticks(arange(0.5,len(xtab.index), 1),xtab.index)

plt.xticks(arange(0.5,len(xtab.columns), 1),xtab.columns)

plt.colorbar()

FIGURE 3-8 Risk/reliability contingency table level plot (R)
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As a fun aside, you can determine whether the patterns you’re seeing are occurring by chance, or 

whether there is some underlying meaning to them. Although you could do some fancy-pants statistics 

here and maybe apply Fisher’s exact test, you don’t need to get crazy. What if you assumed that every 

value of Risk and Reliability had an equal chance of occurring? What would the level plot look 

like? You should expect some amount of natural variation—both in the systems and the data collection 

process—so some combinations would naturally occur more often than others. But how different would 

it look from the current data? 

You can use the sample() function to generate random samples from a Uniform distribution [1, 7] 

and [1, 10] and then build a contingency table from those random samples.  Running this multiple times 

should produce a different set of random tables each time. Each run is called a realization of the random 

processes.

FIGURE 3-9 Risk/reliability contingency table heatmap (Python)
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The R code in Listing 3-21 produces the levelplot in Figure 3-10 and shows two things. First, you can 

make some pretty and colorful random boxes with a few lines of code. Second, there is definitely some-

thing pulling nodes into the lower Risk and Reliability categories (that is, toward zero for each). 

It could be because the world just has low risk and reliability or the sampling method or scoring system 

is introducing the skew. 

FIGURE 3-10 “Unbiased” risk/reliability contingency table (R)
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LISTING 3-21
# require object: av (3-4), lattice (3-19)

# See corresponding output in Figure 3-10

# generate random samples for risk & reliability and re-run xtab

# starting PRNG from reproducable point

set.seed(1492) # as it leads to discovery

# generate 260,000 random samples

rel=sample(1:7, 260000, replace=T)

rsk=sample(1:10, 260000, replace=T)

# cast table into data frame

tmp.df = data.frame(table(factor(rsk), factor(rel)))

colnames(tmp.df) <- c("Risk", "Reliability", "Freq")

levelplot(Freq~Reliability*Risk, data=tmp.df, main="Risk ~ Reliabilty", 

          ylab="Reliability", xlab = "Risk", shrink = c(0.5, 1),

          col.regions = colorRampPalette(c("#F5F5F5", "#01665E"))(20))

Now turn your attention to the Type variable to see if you can’t establish a relationship with the 

Risk and Reliability ratings. Looking closely at the Type variable, you notice that some entries 

have more than type assigned to them, and they are separated by a semicolon (there are 215 Scanning

Host;Malicious Host values, for example). Since you want to see how those types compare, those 

with a combination of types shouldn’t be mixed with other types. So, rather than try to parse out the nodes 

with multiple types, you can just reassign all of them into a category of Multiples to show that they 

were assigned more than one type. Then you can create a three-way contingency table and see how that 

looks. Pull in the Type column and see how that impacts the view.

The R code in Listing 3-22 produces the three-way contingency table lattice graph in Figure 3-11, 

enabling you to visually compare the amount of impact Type has on the Risk and Reliability

classifications. The Python code in Listing 3-23 also computes the three-way contingency table, but shows 

an alternate output representation in a simple bar chart (Figure 3-12).

LISTING 3-22
# require object: av (3-4), lattice (3-19)

# See corresponding output in Figure 3-11

# Create a new varible called "simpletype" 

# replacing mutiple categories with label of "Multiples"

av$simpletype <- as.character(av$Type)

# Group all nodes with mutiple categories into a new category

av$simpletype[grep(';', av$simpletype)] <- "Multiples"

# Turn it into a factor again

av$simpletype <- factor(av$simpletype)

rrt.df = data.frame(table(av$Risk, av$Reliability, av$simpletype))

colnames(rrt.df) <- c("Risk", "Reliability", "simpletype", "Freq")

levelplot(Freq ~ Reliability*Risk|simpletype, data =rrt.df, 

          main="Risk ~ Reliabilty | Type", ylab = "Risk",

          xlab = "Reliability", shrink = c(0.5, 1), 

          col.regions = colorRampPalette(c("#F5F5F5","#01665E"))(20))
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LISTING 3-23
# require object: av (3-5)

# See corresponding output in Figure 3-12

# compute contingency table for Risk/Reliability factors which 

# produces a matrix of counts of rows that have attributes at

# create new column as a copy of Type column

av['newtype'] = av['Type']

# replace multi-Type entries with Multiples

FIGURE 3-11 Three-way risk/reliability/type contingency table (R)

(continues)
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LISTING 3-23 (continued)
av[av['newtype'].str.contains(";")] = "Multiples"

# setup new crosstab structures

typ = av['newtype']

rel = av['Reliability']

rsk = av['Risk']

# compute crosstab making it split on the

# new type column

xtab = pd.crosstab(typ, [ rel, rsk ], 

          rownames=['typ'], colnames=['rel', 'rsk'])

# the following print statement will show a huge text

# representation of the contingency table. The output

# is too large for the book, but is worth looking at 

# as you run through the exercise to see how useful 

# visualizations can be over raw text/numeric output

print xtab.to_string() #output not shown

xtab.plot(kind='bar',legend=False,

title="Risk ~ Reliabilty | Type").grid(False)

FIGURE 3-12 Three-way risk/reliability/type contingency table bar chart (Python)
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They say a picture is worth a thousand words, but in this case it’s worth about 234,000 data points 

in the Scanning Hosts category (about 90 percent of the entries are classified as scanning hosts). 

That category is so large and generally low risk that it is overshadowing the rest of the categories. 

Remove it from the Type factors and regenerate the image. This isn’t to say the Scanning Hosts

category isn’t important, but remember you are trying to understand which of these entries you really 

care about. Nodes with low risk and reliability ratings are things you don’t want to be woken up from 

your nap for. You want to peel those away and look at the relationships that exist underneath the scan-

ning hosts. We continue the examples from Listings 3-22 and 3-23 and generate new corresponding 

Figures 3-13 (R lattice) and 3-14 (Python bar chart) in Listings 3-24 and 3-25.

LISTING 3-24
# require object: av (3-4), lattice (3-19)

# See corresponding output in Figure 3-13

# from the existing rrt.df, filter out 'Scanning Host'

rrt.df <- subset(rrt.df, simpletype != "Scanning Host")

levelplot(Freq ~ Reliability*Risk|simpletype, data =rrt.df, 

          main="Risk ~ Reliabilty | Type", ylab = "Risk",

          xlab = "Reliability", shrink = c(0.5, 1), 

          col.regions = colorRampPalette(c("#F5F5F5","#01665E"))(20))

FIGURE 3-13 Three-way risk/reliability/type contingency table without “Scanning Host” (R)
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LISTING 3-25
# require object: av (3-5)

# See corresponding output in Figure 3-14

# filter out all "Scanning Hosts"

rrt_df = av[av['newtype'] != "Scanning Host"]

typ = rrt_df['newtype']

rel = rrt_df['Reliability']

rsk = rrt_df['Risk']

xtab = pd.crosstab(typ, [ rel, rsk ], 

       rownames=['typ'], colnames=['rel', 'rsk'])

xtab.plot(kind='bar',legend=False,

title="Risk ~ Reliabilty | Type").grid(False)

Now you are getting somewhere. In Figure 3-13, you can see the Malware domain type has risk 

ratings limited to 2s and 3s, and the reliability is focused around 2, but spreads the range of values. You 

can also start to see the patterns in the other categories as well even in Figure 3-14, but it’s time to regen-

erate the graphics once more after you remove the Malware domain. Also, it looks like Malware 

distribution does not seem to be contributing any risk, so you can filter that factor out of the remain-

ing types as well (in Listings 3-26 and 3-27) to get the final results in Figure 3-15 (R lattice plot) and Figure 

3-16 (Python bar chart).

FIGURE 3-14 Three-way risk/reliability/type contingency table bar chart without “Scanning Host” (Python)
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LISTING 3-26
# require object: av (3-4), lattice (3-19), rrt.df (3-24)

# See corresponding output in Figure 3-15

rrt.df = subset(rrt.df, 

           !(simpletype %in% c("Malware distribution",

                               "Malware Domain")))

sprintf("Count: %d; Percent: %2.1f%%",

        sum(rrt.df$Freq),

        100*sum(rrt.df$Freq)/nrow(av))

## [1] Count: 15171; Percent: 5.9%

levelplot(Freq ~ Reliability*Risk|simpletype, data =rrt.df, 

          main="Risk ~ Reliabilty | Type", ylab = "Risk",

          xlab = "Reliability", shrink = c(0.5, 1), 

          col.regions = colorRampPalette(c("#F5F5F5","#01665E"))(20)) 

FIGURE 3-15 Three-way risk/reliability/type contingency table—final (R)
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LISTING 3-27
# require object: av (3-5), rrt_df (3-25)

# See corresponding output in Figure 3-16

rrt_df = rrt_df[rrt_df['newtype'] != "Malware distribution" ]

rrt_df = rrt_df[rrt_df['newtype'] != "Malware Domain" ]

typ = rrt_df['newtype']

rel = rrt_df['Reliability']

rsk = rrt_df['Risk']

xtab = pd.crosstab(typ, [ rel, rsk ],

        rownames=['typ'], colnames=['rel', 'rsk'])

print "Count: %d; Percent: %2.1f%%" % (len(rrt_df), (float(len(rrt_df))

   / len(av)) * 100)

## Count: 15171; Percent: 5.9%

xtab.plot(kind='bar',legend=False)

FIGURE 3-16 Three-way-Way risk/reliability/type contingency table—final (Python)
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With this final bit of filtering, you’ve reduced the list to less than 6 percent of the original and have honed 

in fairly well on the nodes representing the ones you really should care about. If you wanted to further 

reduce the scope, you could filter by various combinations of Reliability and/or Risk. Perhaps you 

want to go back to the categories you filtered out and bring a subset of those back in. 

The rather simple parsing and slicing done here doesn’t show which variables are most important; it 

simply helps you understand the relationships and the frequency with which they occur. Just because 90 

percent of the data was Scanning Hosts, perhaps you only want to filter those hosts with a risk of 2 or below. 

This analysis has merely helped you identify a set of nodes on which you can generate higher priority alerts. 

You can still capture the other types into a lower priority or into an informational log.

Since AlienVault updates this list hourly, you can create a script to do this filtering before importing new 

revisions into your security tools. You can then keep track of the percentage of nodes filtered out as a flag 

for the need to potentially readjust the rules. Furthermore, you should strongly consider performing this 

exploratory analysis on a semi-frequent basis. This will help you determine whether you need to re-think 

your perspective on what constitutes non-trivial nodes.

Summary
This chapter introduced the core structure and concepts of data analyses in Python and R. It incorporated 

basic statistics, foundational scripting/analysis patterns, and introductory visualizations to help you ask 

and answer a pertinent question. In addition, each example demonstrated the similarity of Python (with 

pandas) and R coding techniques and generated output. The steps presented are just one direction this 

particular analysis could lead. Every situation is different and will require you to pull in different tools and 

techniques as needed.

Future chapters focus mainly on R code, with some Python sprinkled in on occasion. If you are familiar 

with Python/pandas, the previous examples should help you translate between the two languages. If you 

are new to both R and Python, the standardization of future examples in one language should help you 

follow along with less confusion and help you learn R a bit better.

Recommended Reading
The following are some recommended readings that can further your understanding on some of the topics 

we touch on in this chapter. For full information on these recommendations and for the sources we cite in 

the chapter, please see Appendix B.

Statistics and Data with R: An Applied Approach Through Examples by Yosef Cohen and 

Jeremiah Y. Cohen

Python for Data Analysis by Wes McKinney
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What constitutes “security data” is often in the eye of the beholder. Malware analysts gravitate toward 

process, memory and system binary dumps. Vulnerability researchers dissect new patch releases, and 

network security professionals tap wired and wireless networks to see what secrets can be sifted from the 

packets as they make their way from node to node.

This chapter focuses on exploring IP addresses by starting with further analyses on the AlienVault IP 

Reputation database first seen in Chapter 3. You’ll examine aspects of the ZeuS botnet (a fairly nasty bit of 

malware) from an IP address perspective and then perform some basic analyses on real firewall data. To 

fully understand the examples in this chapter, you should be familiar with the description of the AlienVault 

data set and have at least followed along with all previous, preliminary analyses. The other major goal of 

the chapter is to help you get more proficient in R by walking you through a diversity of examples that 

bring into play many core programming idioms of the language.

IP addresses—along with domain names and routing concepts—are the building blocks of the Internet. 

They are defined in RFC 791, the “Internet Protocol / DARPA Internet Program / Protocol Specification” 

(http://tools.ietf.org/html/rfc791), which has an elegant and succinct way of describ-

ing them:

A name indicates what we seek. An address indicates where it is. A route indicates 

how to get there.

Global entities slice and dice IP address space for public and private use; devices, systems, and applica-

tions log IP addresses for reference; network management systems test, group, display, and report on IP 

addresses; and security tools often make critical decisions based on IP addresses. But, what—exactly—is

an IP address? What can you learn from them and what part do they play in the quest for finding and 

mitigating malicious activity?

If you plan on typing the code from the chapter versus executing each snippet from the ch04.R

source file, you will need to download the data files in the ch04/data directory from the repository 

on the book’s website (www.wiley.com/go/datadrivensecurity) for many of the listings to 

work correctly. You will also need to run the code in Listing 4-0 to set up your R environment for the code 

examples in this chapter. 

LISTING 4-0
# Listing 4-0

# This code sets up the R environemnt for the chapter

# set working directory to chapter location

Note

We make no attempt to incorporate consideration of or conduct analyses on Internet 

Protocol (IP) version 6 (IPv6) addresses. Likewise, all the examples in this chapter are based 

on IPv4. Given the slow adoption and migration to IPv6, the plethora of malicious activity 

still found on IPv4 networks, and the fact that it’s fairly straightforward to extrapolate IPv4 

concepts to IPv6, this should not be a practical limitation.

(continues)
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LISTING 4-0 (continued)
# (change for where you set up files in ch 2)

setwd("~/book/ch04")

# make sure the packages for this chapter

# are installed, install if necessary

pkg <- c("bitops","ggplot2", "maps", "maptools",

         "sp", "maps", "grid", "car" )

new.pkg <- pkg[!(pkg %in% installed.packages())]

if (length(new.pkg)) {

  install.packages(new.pkg)

}

Dissecting the IP Address
Some information security practitioners may think of IP addresses as simply the strings used with a ping,

nessus, nmap, or other commands. But to perform security-oriented analyses of your system and net-

work data, you must fully understand as much as you can about security domain data elements, just as 

those who perform data analyses in financial, agricultural, or bio-medial disciplines must understand the 

underpinnings of the data elements in those fields. IP addresses are, perhaps, the most fundamental of 

security domain data elements. In this section you’ll dig a bit deeper into them so you can fully integrate 

them into your own analytics endeavors.

Representing IP Addresses
IPv4 addresses comprise four bytes, which are known as octets, and you’ll usually come across them 

in a form called dotted-decimal notation (such as 192.168.1.1). Practically everyone reading this book 

understands this representation, if only by sight. This method of representation was briefly introduced 

in the IETF RFC 1123 in 1989 when they denoted it as #.#.#.#, but it was more clearly defined in the 

IETF’s uniform resource identifier (URI) generic syntax draft (RFC 3986, http://tools.ietf.org

/html/rfc3986) in 2005. 

Since you know an 8-bit byte can range in value from 0 to 255, you also know the dotted-decimal range 

is 0.0.0.0 through 255.255.255.255, which is 32 bits. If you count the possible address space, you 

have a total of 4,294,967,296 possible addresses (the maximum value of a 32-bit integer). This brings up 

another point of storing and handling IP addresses: Any IP address can be converted to/from a 32-bit

integer value. This is important because the integer representation saves both space and time and you 

can calculate some things a bit easier with that representation than with the dotted-decimal form. If you 

are writing or using a tool that perceives an IP address only as a character string or as a set of character 

Note

When you come across other security domain elements, you’ll want to do plenty of similar 

digging to ensure you have all the information you need to process them or create complete 

regular expressions to locate them in unstructured data.
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strings, you are potentially wasting space by trading a 4-byte, 32-bit representation for a 15-byte, 120-bit 

representation (worst case). Furthermore, you are also choosing to use less efficient string comparison code 

versus integer arithmetic and comparison plus bitwise operations to accomplish the same tasks. Although 

this may have little to no impact in some scenarios, the repercussions grow significant when you’re deal-

ing with large volumes of IP addresses (and become worse in the IPv6 world) and repeated operations.

Converting IPv4 Addresses to/from 32-Bit Integers

To take advantage of integer operations for IPv4 addresses, you need to have some method of 

converting them to and from dotted-decimal notation. IEEE Standard 1003.1 defines the common 

low-level (for example, C) method of performing this conversion via the inet_addr() and inet_
ntoa() functions (http://pubs.opengroup.org/onlinepubs/009695399/
functions/inet_addr.html). However, these functions are not exposed to R. Although 

it would be possible to write a C library and corresponding R glue module, it’s easier to write the 

functions in pure R with some help from the bitops package. In Listing 4-1 you will find R functions 

that convert IPv4 address strings to/from 32-bit integer format.

LISTING 4-1
# Listing 4-1

# requires packages: bitops

library(bitops) # load the bitops functions

# Define functions for converting IP addresses to/from integers

# take an IP address string in dotted octets (e.g. 

#"192.168.0.1")

# take an IP address string in dotted octets (e.g. 

#"192.168.0.1")

# and convert it to a 32-bit long integer (e.g. 3232235521)

ip2long <- function(ip) {

  # convert string into vector of characters

  ips <- unlist(strsplit(ip, '.', fixed=TRUE))

  # set up a function to bit-shift, then "OR" the octets

  octet <- function(x,y) bitOr(bitShiftL(x, 8), y)

  # Reduce applys a function cumulatively left to right

  Reduce(octet, as.integer(ips))

}

# take an 32-bit integer IP address (e.g. 3232235521)

# and convert it to a (e.g. "192.168.0.1").

long2ip <- function(longip) {

  # set up reversing bit manipulation

  octet <- function(nbits) bitAnd(bitShiftR(longip, nbits), 

0xFF)

(continues)
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Segmenting and Grouping IP Addresses
There are a few different reasons you’d want to divide and group IP addresses. Internally, you might sepa-

rate hosts by functionality or sensitivity, which means the routing tables would be overwhelmed if they 

needed to track each individual IP address. Due to the way TCP/IP was designed and how IPv4 networks are 

implemented, there are numerous ways to segment or group them so that it’s easier to manage individual 

networks (subnets) and interoperate in the global Internet. The original specification identified top-level 

classes (A through E), which were nothing more than a list of corresponding bitmasks for consuming 

consecutive octets. This limited the usable range of addresses in each class and put some structure around 

the suggested use of each class.

A more generalized, classless method of segmentation was established in RFC 4632 (http://

tools.ietf.org/html/rfc4632). Rather than segment on whole octets, you can now specify 

address ranges in the CIDR (Classless Inter-Domain Routing) prefix format by appending the number of 

bits in the mask to a specified IP address. So, 172.16.0.0 (which has a mask of 255.255.0.0) now 

becomes 172.16.0.0/16. These CIDR blocks themselves can be used to look for “bad neighborhoods” 

(that is, identifying network packets coming from or going to groups of malicious nodes).

It’s important to understand these points because you’ll want to leverage the groupings to dig into the 

data and relationships to pull out meaning. Once you understand the CIDR prefix format, you can see how 

those prefixes are grouped and defined as an autonomous system (AS) that are all assigned a numerical 

identifier known as the autonomous system number (ASN). ASNs have many uses (and associated data); 

for example, they are used by the border gateway protocol (BGP) for efficient routing of packets across 

the Internet. Because of the relationship between ASN and BGP, it’s also possible to know the adjacent 

“neighbors” of each ASN.  If one ASN “neighborhood” is rife with malicious nodes, it might be a leading 

indicator that ASNs around it are also harboring malicious traffic. You’ll use this relationship later in the 

chapter to get an ASN view of malicious activity.

There are many more details regarding autonomous systems that you should investigate even if you only 

occasionally work with IP addresses in your analyses. To get a feel for the global make-up of autonomous 

  # Map applys a function to each element of the argument

  # paste converts arguments to character and concatenates them

  paste(Map(octet, c(24,16,8,0)), sep="", collapse=".")

}

You can test the functionality by reviewing the output from the following test code:

long2ip(ip2long("192.168.0.0"))

## [1] "192.168.0.0"

long2ip(ip2long("192.168.100.6"))

## [1] "192.168.100.6"

Note: Python coders can use the preexisting ipaddr package (https://code.google
.com/p/ipaddr-py/), which has been incorporated into the Python 3 code base as the 

ipaddress module.

(continued)
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systems, you can explore public ASN information at the CIDR Report (http://www.cidr-report

.org/as2.0/). But keep reading, as you’ll be looking at malicious traffic through an ASN lens later in 

the chapter.

Your organization most likely uses CIDRs and ASNs internally as well, but these are not the only logical 

grouping mechanisms of sets of IP addresses. For example, you might have “workstations” as a high-level 

grouping that covers all the user-endpoint DHCP-assigned address space or “printers” to logically associate 

all statically assigned single- or multi-function output devices. Servers can be grouped according to func-

tion or operating system type (or both). The concept of “internal” and “external” groupings for nodes may 

apply even if you use publicly routable addresses across your entire network. When looking for malicious 

activity, do not discount the power of these logical groupings, since you may be able to tie characteristics 

of them (data!) to various indicators you may be looking for. For example, it’s reasonable to expect the 

typical end-user workstation to make attempts to access nodes on the Internet. However, the same is 

Testing IPv4 Address Membership in a CIDR Block

When you’re performing ASN- and CIDR-based analyses, one task that comes up regularly is the 

need to determine whether an address falls within a given CIDR range. To do this in R, you just 

expand on the previously defined IPv4 address operations, convert both the IP address in question 

and the network block address to integers, and then perform the necessary bitwise operations to 

see if they do, indeed, line up. Listing 4-2 defines a new R function for testing membership of an 

IPv4 address in a specified CIDR block.

LISTING 4-2
# Listing 4-2

# requires packages: bitops

# requires all objects from 4-1

# Define function to test for IP CIDR membership

# take an IP address (string) and a CIDR (string) and

# return whether the given IP address is in the CIDR range

ip.is.in.cidr <- function(ip, cidr) {

  long.ip <- ip2long(ip)

  cidr.parts <- unlist(strsplit(cidr, "/"))

  cidr.range <- ip2long(cidr.parts[1])

  cidr.mask <- bitShiftL(bitFlip(0), 

(32-as.integer(cidr.parts[2])))

  return(bitAnd(long.ip, cidr.mask) == bitAnd(cidr.range, 

cidr.mask))

}

ip.is.in.cidr("10.0.1.15","10.0.1.3/24")

## TRUE

ip.is.in.cidr("10.0.1.15","10.0.2.255/24")

## FALSE



Dissecting the IP Address 77

probably not true for printers. Therefore, one of the keys to learning about malicious activity is this type 

of metadata and relationships.

Locating IP Addresses
Going down in detail, IP addresses map to individual devices that (usually) have unique media access control 

(MAC) addresses. It’s a fairly straightforward process to identify the switch and port of a node on your local 

network. With the proper metadata, you can create logical groupings based on this physical information 

and tie additional attributes to it, such as where the node lives—organizationally-geographically speaking. 

By tying this information to an IP address, you won’t have to wait until a barrage of help desk calls come 

in to discover that there is something amiss in a particular department. 

On a broader scale, there are also ways to tie an IP address that lives on the Internet to a geographical 

location, with varying degrees of accuracy. One of the most popular ways to do so is with the Maxmind GeoIP 

database and APIs (http://dev.maxmind.com/geoip/), which are also used by the freegeoip 

project (http://freegeoip.net/). The Maxmind data has varying degrees of precision depending 

on whether you use the free databases or their commercial offerings. For country-level identification, using 

the freely available databases should provide sufficient precision for most organizations. The freegeoip 

project provides an online query interface to the free Maxmind data set, but it also provides all the code 

for the service that you can then clone and set up internally to avoid working directly with Maxmind’s low-

level APIs and avoid rate-limiting and other restrictions from the free service. Chapter 5 goes into more 

detail on working with geolocated data.

Once you know where a malicious node physically is, it’s a fairly straightforward process to visualize it 

on a map. The AlienVault data provides over 250,000 pre-geolocated addresses, but you’ll need to extract 

the pairs from the coords field first. You’ll find example code for performing this extraction in Listing 4-3. 

Note that if you have a slightly slower machine, it may take 30–60 seconds to read and parse the data. 

LISTING 4-3
# Listing 4-3

# R code to extract longitude/latitude pairs from AlienVault data

# read in the AlienVault reputation data (see Chapter 3)

avRep <- "data/reputation.data"

av.df <- read.csv(avRep, sep="#", header=FALSE)

colnames(av.df) <- c("IP", "Reliability", "Risk", "Type",

                  "Country", "Locale", "Coords", "x")

# create a vector of lat/long data by splitting on ","

av.coords.vec <- unlist(strsplit(as.character(av.df$Coords), ","))

# convert the vector in a 2-column matrix

av.coords.mat <- matrix(av.coords.vec, ncol=2, byrow=TRUE)

# project into a data frame

av.coords.df <- as.data.frame(av.coords.mat)

# name the columns 

colnames(av.coords.df) <- c("lat","long")

# convert the characters to numeric values

av.coords.df$long <- as.double(as.character(av.coords.df$long))

av.coords.df$lat <- as.double(as.character(av.coords.df$lat))
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With the latitude and longitude coordinates in hand, you could avoid R or Python code altogether and 

use Google Maps to visualize the locations—if you felt like grabbing a caffeinated beverage while it uploads 

to Google Fusion Tables (http://tables.googlelabs.com/) and renders. Even though Google 

has considerably sped up their online mapping API, the resultant—albeit, handsome—map would end 

up being partially obscured with map markers. For example, mapping the AlienVault data set with Google 

Maps (see Figure 4-1) produces a result that makes it seem like malicious hosts have consumed Japan. 

Rather than rely solely on Google, you can use the mapping functions in R (see Listing 4-4) to accomplish 

a similar task (see Figure 4-2) with far greater precision. 

LISTING 4-4
# Listing 4-4

# requires packages: ggplot2, maps, RColorBrewer

# requires object: av.coords.df (4-3)

# generates Figure 4-2

# R code to extract longitude/latitude pairs from AlienVault data

# need plotting and mapping functions

library(ggplot2)

Note

There are more examples of geographical mapping and analysis in Chapter 5.

FIGURE 4-1 Google Fusion Table + Google Maps chart of AlienVault malicious nodes
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library(maps)

library(RColorBrewer)

library(scales)

# extract a color pallete from the RColorBrewer package

set2 <- brewer.pal(8,"Set2")

# extract the polygon information for the world map, minus Antarctica

world <- map_data('world')

world <- subset(world, region != "Antarctica")

# plot the map with the points marking lat/lon of the geocoded entries

# Chapter 5 examples explain mapping in greater detail

gg <- ggplot()

gg <- gg + geom_polygon(data=world, aes(long, lat, group=group), 

                        fill="white")

gg <- gg + geom_point(data=av.coords.df, aes(x=long, y=lat),

                      color=set2[2], size=1, alpha=0.1)

gg <- gg + labs(x="", y="")

gg <- gg + theme(panel.background=element_rect(fill=alpha(set2[3],0.2), 

                                              colour='white')))

gg

The ability to associate an IP address with a physical location and display it on a map has inherent util-

ity (which will become even more apparent in Chapter 5). It’s one thing to read the destinations of your 

Internet users and quite another to “see” them on a map, especially when you’re trying to communicate 

the groupings versus just analyze them. Yet, you do not necessarily need to generate a pretty picture to 

looking at malicious activities geographically.

FIGURE 4-2 R ggplot/maps package dot-plot map of AlienVault malicious nodes
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Augmenting IP Address Data
In an analyst’s dream world, every data set you are asked to crunch through would be error-free and have 

all the attributes necessary for thorough and robust analyses. Sadly, information security is no different 

from other disciplines when it comes to imperfect data sets and highly distributed referential data or just 

a plethora of potential metadata sources. This less than perfect data can pose challenges to effective data 

analyses, but it is usually possible to find and use the data you need.

Even though you have geographic information in the AlienVault data set, the Internet has, as indicated, 

physical and logical groupings. It might be interesting to see how this data looks through a different lens. 

For this example, the data set (see Listing 4-3) is augmented with additional data from the IANA IPv4 

Address Space Registry (https://www.iana.org/assignments/ipv4-address-space/

ipv4-address-space.xml). This data represents a very high-level grouping of IPv4 address space 

registry allocations, and it should be emphasized that most of the registrants are not responsible for the 

malicious activity of individual nodes. So, although you cannot use this information to cast blame, it will 

give you one view of where malicious nodes are clustered, setting up possible, additional investigations.

The data frame foundational data structure in R and pandas makes it very straightforward to reference 

and incorporate new data into your analyses, and your own projects will follow something close to this 

basic data-analysis workflow pattern:

1. Downloading (if necessary) new data

2. Parsing/munging and converting the new data into a data frame

3. Validating the contents and structure of the new data

4. Extracting or computing relevant information from the new data source

5. Creating one or more new columns in the existing data frame

6. Running new analyses

For the example Listing 4-5, you’ll process the IANA data to see which registry allocations have the 

most malicious nodes. Note that the sapply() function call may take some time to execute depending 

on the speed of your machine.

Note

On their web page under the heading “Alternative Formats,” the IANA provides a handy link 

to the CSV version of the IPv4 address space allocations as well as a link to the traditional 

annotated text file. If you run the example code, you may see some strange behavior at 

times due to the CSV file being incomplete. It seems there is an automated process that 

converts a source of the IP table into the various formats and stops processing when the 

first octet hits three digits. You can either practice your data-munging skills and convert 

the fixed-width version in the text file to CSV or use the version of the CSV that’s on the 

companion website if you encounter any issues.



Augmenting IP Address Data 81

LISTING 4-5
# Listing 4-5

# requires object: av.df (4-3)

# R code to incporporate IANA IPv4 allocations

# retrieve IANA prefix list

ianaURL <- "http://www.iana.org/assignments/ipv4-address-space/ipv4-

address-space.csv"

ianaData <- "data/ipv4-address-space.csv"

if (file.access(ianaData)) {

  download.file(ianaURL, ianaData) 

}

# read in the IANA table

iana <- read.csv(ianaData)

# clean up the iana prefix since it uses the old/BSD-

# number formatting (i.e. allows leading zeroes and

# we do not need to know the CIDR component.

iana$Prefix <- sub("^(00|0)", "", iana$Prefix, perl=TRUE)

iana$Prefix <- sub("/8$", "", iana$Prefix, perl=TRUE)

# define function to strip 'n' characters from a string

# (character vector) and return the shortened string.

# note that this function is 'vectorized' (you can pass it a single

# string or a vector of them)

rstrip <- function(x, n){

  substr(x, 1, nchar(x)-n)

}

# extract just the prefix from the AlienVault list

av.IP.prefix <- rstrip(str_extract(as.character(av.df$IP),

                                  "^([0-9]+)\\."), 1)

# there are faster ways than 'sapply()' but we wanted you to 

# see the general "apply" pattern in action as you will use it

# quite a bit throughout your work in R

av.df$Designation <- sapply(av.IP.prefix, function(ip) {

  iana[iana$Prefix == ip, ]$Designation

})

##       Administered by AFRINIC         Administered by APNIC 

##                           322                          2615 

##          Administered by ARIN      Administered by RIPE NCC 

##                         17974                          5893 

##                       AFRINIC                         APNIC 

##                          1896                         93776 

##                          ARIN        AT&T Bell Laboratories 

##                         42358                            24 

## Digital Equipment Corporation       Hewlett-Packard Company 

(continues)
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LISTING 4-5 (continued)

##                             1                             3 

##                        LACNIC  Level 3 Communications, Inc. 

##                         18914                            31 

##                  PSINet, Inc.                      RIPE NCC 

##                            30                         74789 

You can do a quick check against the main IANA allocation table to see if this matches overall 

block assignments. The code in Listing 4-6 makes a data frame from the table() summary of the 

iana$Designation column and merges that data with the AlienVault data.

LISTING 4-6
# Listing 4-6

# requires packages: ggplot2, maps, RColorBrewer

# requires object: av.coords.df (4-3), iana (4-5)

# Code to extract IANA block assignments & compare w/AlienVault groups

# create a new data frame from the iana designation factors

iana.df <- data.frame(table(iana$Designation))

colnames(iana.df) <- c("Registry", "IANA.Block.Count")

# make a data frame of the counts of the av iana

# designation factor

tmp.df <- data.frame(table(factor(av.df$Designation)))

colnames(tmp.df) <- c("Registry", "AlienVault.IANA.Count")

# merge (join) the data frames on the "reg" column

combined.df <- merge(iana.df, tmp.df)

print(combined.df[with(combined.df, order(-IANA.Block.Count)),],

      row.names=FALSE)

##                       Registry IANA.Block.Count AlienVault.IANA.Count

##                          APNIC               45                  93776

##       Administered by ARIN        44               17974

##                           ARIN               36                  42358

##                   RIPE NCC        35               74789

##                     LACNIC                      9               18914

##          Administered by APNIC                6                   2615

##       Administered by RIPE NCC                4                   5893

##                        AFRINIC                4                   1896

##        Administered by AFRINIC                2                    322

##   Level 3 Communications, Inc.                2                     31

##         AT&T Bell Laboratories                1                     24

##  Digital Equipment Corporation                1                      1

##        Hewlett-Packard Company                1                      3

##                   PSINet, Inc.                1                     30

Then you plot the data (see Listing 4-7) to generate the chart in Figure 4-3.



Augmenting IP Address Data 83

LISTING 4-7
# Listing 4-7

# requires packages: reshape, grid, gridExtra, ggplot2, RColorBrewer

# requires object: combined.df (4-6), set2 (4-4)

# generates Figure 4-3

# plot charts from IANA data

# flatten the data frame by making one entry per "count" type

# versus having the counts in individual columns

# need the 'melt()' function from the reshape package

# to transform the data frame shape

library(reshape)

library(grid)

library(gridExtra)

# normalize the IANA and AV values to % so bar chart scales

# match and make it easier to compare

combined.df$IANA.pct <- 100 * (combined.df$IANA.Block.Count / 

                                 sum(combined.df$IANA.Block.Count))

combined.df$AV.pct <- 100 * (combined.df$AlienVault.IANA.Count / 

                               sum(combined.df$AlienVault.IANA.Count))

combined.df$IANA.vs.AV.pct <- combined.df$IANA.pct - combined.df$AV.pct

melted.df <- melt(combined.df)

# plot the new melted data frame values

gg1 <- ggplot(data=melted.df[melted.df$variable=="IANA.pct",], 

              aes(x=reorder(Registry, -value), y=value))

# set min/max for axis so scale is same for both charts

gg1 <- gg1 + ylim(0,40)

gg1 <- gg1 +  geom_bar(stat="identity", fill=set2[3]) # using bars

# make a better label for the y axis

gg1 <- gg1 + labs(x="Registry", y="%", title="IANA %") 

# make bar chart horizontal

gg1 <- gg1 + coord_flip()

# rotate the x-axis labels and remove the legend

gg1 <- gg1 + theme(axis.text.x = element_text(angle = 90, hjust = 1), 

                   panel.background = element_blank(),

                   legend.position = "none")

gg2 <- ggplot(data=melted.df[melted.df$variable=="AV.pct",], 

              aes(x=reorder(Registry,-value), y=value))

gg2 <- gg2 + ylim(0,40)

gg2 <- gg2 + geom_bar(stat="identity", fill=set2[4]) # using bars

gg2 <- gg2 + labs(x="Registry", y="%", title="AlienVault IANA %") 

gg2 <- gg2 + coord_flip()

gg2 <- gg2 + theme(axis.text.x = element_text(angle = 90, hjust = 1), 

                   panel.background = element_blank(),

                   legend.position = "none")

(continues)
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LISTING 4-7 (continued)

# grid.arrange makes it possible to do very precise placement of 

# multiple ggplot objects

grid.arrange(gg1, gg2, ncol=1, nrow=2)

There is some variation, but overall the larger blocks contribute the majority of malicious hosts. We’ve 

highlighted RIPE NCC, Administered by ARIN, and LACNIC in the text/console output in 

Listing 4-6 since RIPE NCC has a significantly larger number of malicious hosts than its allocation block 

count might imply (nearly double that of its very close neighbor ARIN). LACNIC and Administered

FIGURE 4-3 R bar charts comparing IANA block allocations
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by ARIN both have a similar number of malicious hosts yet have different allocation block counts. Even 

with these discrepancies, can you make a more confident statement regarding the comparison between 

the number of malicious hosts in the /8s managed by a registrar and the number of /8s managed by a 

registrar? You can if you do one more visualization (see Listing 4-8), displaying the number of AlienVault 

malicious nodes per IANA block, sorted by IANA block (lowest to highest), as seen in Figure 4-4.

LISTING 4-8
# Listing 4-8

# requires packages: ggplot2

# requires object: combined.df (4-7), set2 (4-4)

gg <- ggplot(data=combined.df, 

             aes(x=reorder(Registry, -IANA.Block.Count), y=AV.pct ))

gg <- gg + geom_bar(stat="identity", fill=set2[2])

gg <- gg + labs(x="Registry", y="Count",

                title="AlienVault/IANA sorted by IANA (low-to-high") 

gg <- gg + coord_flip()

gg <- gg + theme(axis.text.x = element_text(angle = 90, hjust = 1), 

                 panel.background = element_blank(),

                 legend.position = "none")

gg

The AlienVault population does gravitate toward the IANA blocks with the most allocations, but we can do 

better by introducing some basic statistics into the mix in the next section.

FIGURE 4-4 Plotting AlienVault population per IANA block sorted by IANA block size
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Association/Correlation, Causation, and Security Operations Center 
Analysts Gone Rogue
Since this chapter contains the first examples where you group data elements (variables) and compare them 

to other variables, this is a good place to mention the concept of association or, as you’ll see it referred 

to more often, correlation. Correlation is simply a measurement of the linear relationship between two 

or more variables. 

 ● A positive correlation is a relationship between two or more variables whereby their values increase 

or decrease together. 

 ● Similarly, a negative correlation is a negative relationship, whereby when one variable increases, the 

other will decrease, and vice versa. 

If there is no consistent linear pattern in the change between variables, they are said to be uncorrelated. 

When you calculate the correlation value (stats nerds call it the r value or correlation coefficient), you get a 

value between 1 (perfect positive correlation) and -1 (perfect negative correlation). As r gets closer to zero, 

the linear correlation decreases. At zero, you say there is no correlation between the two values. 

It’s important to remember that a simple correlation like this is a linear comparison. By contrast, look 

at the scatterplot in Figure 4-5 that has the parabola (upside down U shape). Obviously there is a pattern 

and some type of relationship, but it’s not a linear correlation, so the calculated r value is very close to zero. 

Like most elements of statistics (or any complex discipline), there are many methods available to perform 

various tasks. This is also true when calculating correlation between two variables. Chapter 5 looks at a 

topic called linear regression, which provides more detailed insight into correlation. Linear regression is 

also the basis for one type of predictive modeling. For the purposes of this chapter, you’ll use a basic form 

of correlation. The code to generate the scatterplots in Figure 4-5 is in the ch04/R/ch04.R file on the 

book's web site.

Correlation Caveats

Believe it or not, there are parallels between statistics and information security. Statisticians use 

strange symbols and tools to perform their dark art much like malware researchers and network 

security specialists stare at rows of hexadecimal, octal, and binary data to derive meaning. Security 

researchers also understand which tool to use for the job at hand (you wouldn’t use NetFlow data 

to try to understand detailed payload information in a communication session between two nodes). 

The same holds true for data scientists. There are, unfortunately, further considerations to take into 

account when working with even basic correlation techniques.

This chapter describes the Pearson correlation method, which is widely used given that 

it can work with data on an interval or ratio scale, with no restrictions placed on both vari-

ables being the same type. If you have ordinal or ranked data, you should use two other 

algorithms—Spearman or Kendall’s Tau—instead. We aren’t delving into the correlation algo-

rithm subtleties in this book, but you should have a solid understanding of the uses and lim-

its of each before applying correlation in your own analyses. You can find out more details 

about these correlation coefficients at http://www.statisticssolutions.com/
academic-solutions/resources/directory-of-statistical-analyses/
correlation-pearson-kendall-spearman/.

Finally, correlation is a descriptive statistical measure versus an inferential one, meaning that you 

can only describe the population you are studying and cannot use the outcome to generalize a 

statement about a larger group or make predictions based on the outcome.
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It’s also important to remember that correlation is just showing some existence of a relationship between 

variables, with no implication of causation. For example, imagine that a hypothetical analyst looked at the 

relationship between security incidents and the number of security operations staff, and reported, “There 

is a strong positive correlation between the number of SOC analysts in an organization and the number 

of incidents reported.” This could be misunderstood to imply that SOC analysts cause security incidents. 

In reality, the patterns of data have similar trends with nothing else implied. Perhaps organizations with 

more incidents hire more SOC analysts, or after hiring more analysts, organizations discover more incidents. 

Perhaps the two are both a product of something else completely, such as larger organizations are targeted 

more and have both more incidents and analysts. When you calculate relationships like correlation, you have 

to be careful to keep it in context. People (and especially those looking for a headline) put a lot of faith in 

mathematically derived answers and in “having a number.” That overconfidence may cause an analyst to 

take the results out of context and into some really weird places, such as “Researchers suggest we fire SOC 

analysts to reduce breaches!” You have to be careful of how you position your work and be sure to present 

the results with an appropriate communication of confidence in the techniques.

For the IANA data, it makes sense that there would be more malicious nodes in larger groups of assigned 

network blocks. This is an expert opinion that’s based on a cursory observation of data and an intuitive 

feel for the “right” answer. To make a more statistically backed statement, use the code in Listing 4-9 to 

FIGURE 4-5 Scatterplots showing correlations
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generate the plot in Figure 4-6 of the relationship between the two variables IANA.Block.Count and 

AlienVault.IANA.Count.

LISTING 4-9
# Listing 4-9

# requires packages: ggplot2

# requires object: combined.df (4-7), set2 (4-4)

# generates figure 4-6

gg <- ggplot(data=combined.df)

gg <- gg + geom_point(aes(x=IANA.Block.Count, 

                          y=AlienVault.IANA.Count),

                      color=set2[1], size=4)

gg <- gg + labs(x="IANA Block Count", y="AlienVault IANA Count",

                title="IANA ~ AlienVault")

gg <- gg + theme(axis.text.x = element_text(angle = 90, hjust = 1), 

                 panel.background = element_blank(),

                 legend.position = "none")

gg

The scatterplot in Figure 4-6 appears to show a positive correlation, but to be sure, you should move 

from eyeballs to keyboards to run a statistical comparison. There are a number of methods available to 

perform basic pairwise correlation. R provides access to three fundamental algorithms via the built-in 

cor() function:

cor(combined.df$IANA.Block.Count,

    combined.df$AlienVault.IANA.Count, method="spearman")

## [1] 0.9488598

The value returned by cor() is known as the correlation coeicient and, as pointed out earlier, if it 

falls close to +1, this indicates there is a strong positive linear relationship between the two variables. As 

previously noted, R’s built-in cor() function offers three methods of correlation: 

 ● pearson (which is the default if no parameter is specified) refers to the Pearson product moment 

correlation function and was designed to be most effective when run on continuous data sets 

with a normal distribution (see later in this chapter) that is free of outliers;

 ● spearman refers to the Spearman rank-order correlation coefficient and—as the name implies

—works on rank-ordered data, in other words, if you have two columns in an R data frame that 

have either pre-ranked data (for example, ordered “top 10” elements) or can be put into rank 

order (especially to avoid the outlier problems that reduce the efficacy of the Pearson algorithm). 

Algorithmically, the Spearman calculation is actually the Pearson correlation coefficient calculated 

from ranked variables;

 ● kendall refers to Kendall’s tau scorrelation coefficient and was specifically designed to work on 

ranked, ordinal variables. It represents the difference between the probabilities of the outcome 

variable increasing and decreasing with respect to an input variable.
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For this example, we applied the Spearman correlation, as it produces a rank correlation coefficient and 

is generally more suited to variables that do not have a normal distribution (you can execute the hist()

function on each list to see how far removed each data set is from the normal distribution) and are better 

compared by rank. For readers who are unfamiliar with what a normal distribution is, a simplified explana-

tion is that a data set is normally distributed if:

 ● It has an equal mean and median.

 ● 68 percent of the values lie within one standard deviation of the mean.

 ● 95 percent of the values lie within two standard deviations of the mean.

 ● 99.7 percent (or more) lie within three standard deviations of the mean.

You now have some statistical backing to help validate the visual pattern and logical (common sense) 

view that larger blocks of networks will contain more malicious hosts. You could run a similar analysis of 

your own internal data and, say, determine if there’s a relationship between the number of employees in 

a department and the number of viruses detected. 

FIGURE 4-6 Scatterplot of malicious node counts to number of /8 blocks managed by a registrar
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Mapping Outside the Continents
Calculating and graphing information about malicious nodes is highly useful and vital to the operation of 

most, if not all, security technologies deployed in today’s organizations. However, as a security data scientist, 

it’s a good idea to get into the habit of visualizing data to pick up structures or patterns you might not see 

otherwise. The classic example of this is Anscombe’s quartet, illustrated in Figure 4-7.

Here (Listing 4-10) are the (x,y) pairs that make up the plots in Figure 4-7:

LISTING 4-10
# Listing 4-10

# anscombe is a data set that comes with R

# Use the column indexing feature of the 

# data frame to show them as pairs

anscombe[,c(1,5,2,6,3,7,4,8)]

##    x1   y1  x2   y2  x3    y3  x4    y4

## 1   10  8.04  10 9.14   10   7.46   8   6.58

## 2    8  6.95   8 8.14    8   6.77   8   5.76

## 3   13  7.58  13 8.74   13  12.74   8   7.71

## 4    9  8.81   9 8.77    9   7.11   8   8.84

## 5   11  8.33  11 9.26   11   7.81   8   8.47

## 6   14  9.96  14 8.10   14   8.84   8   7.04

## 7    6  7.24   6 6.13    6   6.08   8   5.25

## 8    4  4.26   4 3.10    4   5.39  19  12.50

## 9   12 10.84  12 9.13   12   8.15   8   5.56

## 10   7  4.82   7 7.26    7   6.42   8   7.91

## 11   5  5.68   5 4.74    5   5.73   8   6.89

# calculate mean and standard deviation for each column

sapply(anscombe,mean)

## x1       x2       x3       x4       y1       y2       y3 

## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 

## y4 

## 7.500909

sapply(anscombe,sd)

## x1       x2       x3       x4       y1       y2       y3 

## 3.316625 3.316625 3.316625 3.316625 2.031568 2.031657 2.030424 

## y4 

## 2.030579

sapply(anscombe,var)

##      x1        x2        x3        x4        y1        y2 

Note

Chapter 5 goes into more detailed methods for determining relationships between 

variables.
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## 11.000000 11.000000 11.000000 11.000000  4.127269  4.127629 

##       y3        y4 

## 4.122620  4.123249 

for (i in 1:4) cat(cor(anscombe[,i], anscombe[,i+4]), "\n")

## 0.8164205 

## 0.8162365 

## 0.8162867 

## 0.8165214 

All four data sets have the same statistical description (mean, standard deviation, variance, correlation), 

and they even fit the same linear regression—the blue diagonal line—in the charts in Figure 4-7. Yet, when 

visualized, patterns emerge. Panel 1 in Figure 4-7 shows a basic linear relationship of a data set that is dis-

tributed fairly normally. Panel 2 is definitely not exhibiting a linear relationship, but there is clearly some

relationship between them. Panel 3 has a mostly linear relationship but with an obvious outlier. Finally, 

Panel 4 shows the power outliers hold, as the extreme point in the upper right is strong enough to have 

the data still show a strong correlation despite the lack of a linear relationship. Visualizations like this are 

often key to gaining a much better understanding of the data.

FIGURE 4-7 Anscombe’s quartet
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As you learned earlier in the chapter, maps can also be powerful tools for communicating information 

visually. However, there are other logical and physical visual representations of IP addresses available, 

especially when you want to see the interconnectedness of nodes. One very versatile representation is 

the graph structure since it provides statistical data and has a myriad of options for visual presentation. 

Do not confuse the term “graph structure” here with producing a graphic or chart. A graph structure is 

nothing more than a collection of nodes (vertices) and links between nodes (edges). Nodes and edges have 

inherent attributes, such as a name/label, but also have attributes that are calculated, such as the number 

of links going into and coming from the node (the degree). In a traditional graph structure, the direction 

of an edge (in or out) can be specified as well. In fact, as you’ll see in Chapter 8, graphs are becoming so 

generally useful that there are extremely popular, custom databases that make it very straightforward to 

store, modify, and analyze large graph structures.

Visualizing the ZeuS Botnet
In this section, you combine the metadata you can pull from IP addresses and apply the graph structure to 

that data to visualize relationships in IP addresses that have been affiliated with malicious behavior. You’ll 

mostly be focusing on building and visualizing graph structures and touching on graph-based analytics for 

the remainder of this chapter. Previous examples have worked with the AlienVault IP Reputation database, 

but it’s time to switch things up a bit and look at one particularly pervasive bit of maliciousness on the 

Internet: the ZeuS botnet. Most security professionals have heard of ZeuS before, but just in case, here’s 

the description from the abuse.ch ZeuS tracker site (https://zeustracker.abuse.ch/):

ZeuS (also known as Zbot/WSNPoem) is a crimeware kit that steals credentials from 

various online services like social networks, online banking accounts, FTP accounts, 

email accounts, and other (phishing).

Despite some prominent attempts at taking down this botnet, it continues to hum along siphoning 

credentials. The abuse.ch site provides a handy blocklist (https://zeustracker.abuse.ch/

blocklist.php?download=badips) of IP addresses that organizations can use to both identify 

ZeuS infected nodes and prevent infected systems from communicating with ZeuS command and control 

(C&C) servers, which orchestrate all operations within the botnet. To work with the blocklist, you need to use 

the code in Listing 4-11 to get the data file into R (a task you’re hopefully getting very familiar with by now).

LISTING 4-11
# Listing 4-11

# Retrieve and read ZeuS blocklist data into R

zeusURL <- "https://zeustracker.abuse.ch/blocklist.php?\

download=ipblocklist"

zeusData <- "data/zeus.csv"

if (file.access(zeusData)) {

  # need to change download method for universal "https" compatibility

  download.file(zeusURL, zeusData, method="curl") 

}

# read in the ZeuS table; skip junk; no header; assign colnames

zeus <- read.table(zeusData, skip=5, header=FALSE, col.names=c("IP"))
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We’ve switched to read.table() (read.csv() is a variant of that function) in Listing 4-11 

since there’s only one column. This particular data file has no header but it does have five lines at the 

beginning of the file that are comments and of no use to you programmatically. We also use some short-

hand by avoiding a separate call to colnames() and embedding the column names right in the read

.table() function call.

Let’s start by determining which countries host ZeuS bots. You could use a geolocation service to get this 

data, but we’ll take a different approach here since you will also require some additional information for the 

next part of your analysis. The Team Cymru firm provides a number of IP-based lookup services (http://

www.team-cymru.org/Services/ip-to-asn.html), including an IP to ASN mapping service 

that supports bulk queries over port 43 and returns quite a bit of handy information:

 ● AS number

 ● BGP prefix

 ● Country code

 ● Registry

 ● When it was allocated

 ● AS organization name

The Team Cymru site clearly states that the country code data is only as accurate as the regional registry 

databases, but we’ve run some comparisons against geolocation databases and for the purposes of the 

examples in this chapter the data is accurate enough. To use this data, you need some helper functions 

that can be found in the ch04.R file in ch04/R directory provided on the book’s website (www.wiley

.com/go/datadrivensecurity):

 ● trim(c)—Takes a character string and returns the same string with leading and trailing spaces 

removed

 ● BulkOrigin(ips)—Takes a list of IPv4 addresses and returns a detailed list of ASN origins

 ● BulkPeer(ips)—Takes a list of IPv4 addresses and returns a detailed list of ASN peers

To build the graph structure, you’ll perform the following steps:

1. Look up the ASN data.

2. Turn the IP addresses into graph vertices.

3. Turn the AS origin countries into graph vertices.

4. Create edges from each IP address to its corresponding AS origin country.

Surprisingly, it’s simple R code, as shown in Listing 4-12.

LISTING 4-12
# Listing 4-12

# Building ZeuS blocklist in a graph structure by country

# requires packages: igraph, plyr, RColorBrewer, colorspace

# requires object: set2 (4-4)

(continues)
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LISTING 4-12 (continued)
library(igraph)

library(plyr)

library(colorspace)

# load the zeus botnet data used to perform the

# remainder of the analyses in the chapter

zeus <- read.table("data/zeus-book.csv", skip=5, header=FALSE, 

                   col.names=c("IP"))

ips <- as.character(zeus$IP) 

# get BGP origin data & peer data; 

origin <- BulkOrigin(ips)

g <- graph.empty() # start graphing

# Make IP vertices; IP endpoints are red

g <- g + vertices(ips, size=4, color=set2[4], group=1)

# Make BGP vertices

g <- g + vertices(origin$CC, size=4, color=set2[2], group=2)

# for each IP address, get the origin AS CC and return 

# them as a pair to create the IP->CC edge list

ip.cc.edges <- lapply(ips, function(x) {

  iCC <- origin[origin$IP==x, ]$CC

  lapply(iCC, function(y){

    c(x, y)

  })

})

g <- g + edges(unlist(ip.cc.edges)) # build CC->IP edges

# simplify the graph by combining commmon edges

g <- simplify(g, edge.attr.comb=list(weight="sum"))

# delete any standalone vertices (lone wolf ASNs). In "graph" terms

# delete any vertex with a degree of 0

g <- delete.vertices(g, which(degree(g) < 1))

E(g)$arrow.size <- 0 # we hate arrows

# blank out all the IP addresses to focus on ASNs 

V(g)[grep("\\.", V(g)$name)]$name <- ""

Now that you have a graph structure, it’s equally as straightforward to make the graph visualization 

in Figure 4-8 just by passing the graph structure to the plot() function with some layout and label 

parameters as seen in Listing 4-13.

LISTING 4-13
# Listing 4-13

# Visualizing the ZeuS blocklist country cluster graph

# requires packages: igraph, plyr

# requires all objects from Listing 4-11

# this is a great layout for moderately sized networks. you can

# tweak the "n=10000" if this runs too slowly for you. The more

# iterations, the cleaner the graph will look
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L <- layout.fruchterman.reingold(g, niter=10000, area=30*vcount(g)^2)

# plot the graph

par(bg = 'white', mfrow=c(1,1))

plot(g, margin=0, layout=L, vertex.label.dist=0.5, 

     vertex.label.cex=0.75, 

     vertex.label.color="black",

     vertex.label.family="sans", 

     vertex.label.font=2,

     main="ZeuS botnet nodes clustered by country")

If your country code memory is a bit rusty, you can use the R code in Listing 4-14 to provide a 

lookup table.

LISTING 4-14
# Listing 4-14

# require package: igraph (4-11)

# requires object: V() (4-11), g (4-11)

# read in country code to name translation table

zeus.cc <- grep("[A-Z]", V(g)$name, value=TRUE)

zeus.cc <- zeus.cc[order(zeus.cc)]

# read in the country codes data frame

cc.df <- read.csv("data/countrycode_data.csv")

# display cc & name for just the ones from our data set

print(head(cc.df[cc.df$iso2c %in% zeus.cc, c(7,1)], n=10),

      row.names=FALSE)

## iso2c   country.name

##    AR      ARGENTINA

##    AU      AUSTRALIA

##    AT        AUSTRIA

##    AZ     AZERBAIJAN

##    BG       BULGARIA

##    CA         CANADA

##    CL          CHILE

##    CN          CHINA

##    CZ CZECH REPUBLIC

##    DE        GERMANY

As stated earlier, simple bar charts and tables make it easier to understand quantities, but the graph 

tends to add a visual impact that traditional presentation techniques lack. Therefore, depending on the 

consumers, it may be useful/helpful to put them both together when presenting your output.

From your previous work with ASNs, you know that IPs live in both physical and logical space. Now 

that you have a graph view of the physical world, you can use the code in Listing 4-15 to create the graph 

network in Figure 4-9 and take look at the ZeuS IP addresses in relation to their ASNs of origin and include 

ASN peers to truly start to see it as a network.
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LISTING 4-15
# Listing 4-15

# requires objects: BulkOrigin() & BulkPeer() from book's web site

# require package: igraph (4-11)

# create connected network of ZeuS IPs, ASNs, and ASN peers

# generates Figure 4-9

g <- graph.empty()

g <- g + vertices(ips, size=3, color=set2[4], group=1)

origin <- BulkOrigin(ips)

peers <- BulkPeer(ips)

# add ASN origin & peer vertices

g <- g + vertices(unique(c(peers$Peer.AS, origin$AS)),

                  size=3, color=set2[2], group=2)

# build IP->BGP edge list

ip.edges <- lapply(ips, function(x) {

  iAS <- origin[origin$IP==x, ]$AS

  lapply(iAS,function(y){

    c(x, y)

  })

})

bgp.edges <- lapply(

  grep("NA",unique(origin$BGP.Prefix),value=TRUE,invert=TRUE),

  function(x) {

    startAS <- unique(origin[origin$BGP.Prefix==x,]$AS)

    lapply(startAS,function(z) {

      pAS <- peers[peers$BGP.Prefix==x,]$Peer.AS

      lapply(pAS,function(y) {

        c(z,y)

      })

    })

  })

g <- g + edges(unlist(ip.edges))

g <- g + edges(unlist(bgp.edges))

g <- delete.vertices(g, which(degree(g) < 1))

g <- simplify(g, edge.attr.comb=list(weight="sum"))

E(g)$arrow.size <- 0

V(g)[grep("\\.", V(g)$name)]$name = ""

L <- layout.fruchterman.reingold(g, niter=10000, area=30*vcount(g)^2)

par(bg = 'white')

plot(g, margin=0, layout=L, vertex.label.dist=0.5, 

     vertex.label=NA,

     main="ZeuS botnet ASN+Peer Network")

By expanding the network with the ASN peers, you can see a cluster of interconnected ASNs that might 

be worth exploring further, but you’ll need to reference the resources in the “Recommended Reading” 

section to take that next step.
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With basic graph network concepts well in hand, you can turn your attention to a more practical appli-

cation of these functions—visualizing malicious activity on your network using actual data from a real 

environment and attempting to visualize the answer to the question, “What potentially malicious nodes 

are attempting to come into/get out of my network?”

FIGURE 4-8 ZeuS nodes clustered by origin country
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Visualizing Your Firewall Data
Examining generic data about malicious nodes has some merit, but it’s more helpful to apply these analysis 

and visualization techniques to your own organization. To that end, this last example provides a way to 

use both the AlienVault IP Reputation database and the graphing techniques presented in this chapter to 

examine what’s happening on a perimeter firewall. Rather than generate some artificial data, we obtained 24 

hours’ worth of Internet-bound IP addresses from volunteers, which can be found in the file dest.ips in 

the ch04/data directory on the book’s website (www.wiley.com/go/datadrivensecurity).

FIGURE 4-9 ZeuS nodes graph with ASNs and peers



Mapping Outside the Continents 99

This example has also created two new functions, which can be found on the website in the ch04.R

file in the ch04/R directory:

 ● graph.cc(ips,av.df)—Takes in a list of IPv4 addresses and an AlienVault data frame and 

returns a complete graph network structure of nodes clustered by country code. It also (option-

ally) plots the graph with a summary of malicious traffic types.

 ● graph.asn(ips,av.df)—Takes in a list of IPv4 addresses and an AlienVault data frame and 

returns a complete graph network structure of nodes clustered by ASN. It also (optionally) plots 

the graph with a summary of malicious traffic types.

You can start by loading the destination IP addresses and filtering out everything that isn’t in the 

AlienVault database. You then assess the result and try to get a feel for what type of malicious activity to 

hone in on. Even with the potential bias in the data (as described in Chapter 3), a higher reliability rating 

should still mean there is a better chance the node is actually “bad.” Therefore, you can focus on entries 

with reliability greater than 6, which will give you 127 nodes to send to graph.cc() to process and 

plot. See Listing 4-16.

LISTING 4-16
# Listing 4-16

# requires objects: BulkOrigin() & BulkPeer(), graph.cc(), graph.asn()

#   from book's web site & set2 (4-4)

# working with Real Data

# create connected network of ZeuS IPs, ASNs, and ASN peers

# generates Figure 4-10

# require package: igraph, RColorBrewer

avRep <- "data/reputation.data"

av.df <- read.csv(avRep, sep="#", header=FALSE)

colnames(av.df) <- c("IP", "Reliability", "Risk", "Type",

                     "Country", "Locale", "Coords", "x")

# read in list of destination IP addresses siphoned from firewall logs

dest.ips <- read.csv("data/dest.ips", col.names= c("IP"))

# take a look at the reliability of the IP address entries

# (you could also plot a histogram)

table(av.df[av.df$IP %in% dest.ips$IP, ]$Reliability)

##  1   2   3   4   5   6   7   8   9  10 

## 16 828 831 170   1 266  92   2  23  24 

# extract only the "bad" ones, designated by presence in alienvault

# database with a reliability greater than 6 since there seems to 

# be a trailing off at that point

ips <- as.character(av.df[(av.df$IP %in% dest.ips$IP) & 

                            (av.df$Reliability > 6), ]$IP)

# graph it

g.cc <- graph.cc(ips, av.df)
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The bar chart on the right serves as a legend for the colors of the graph nodes and also provides a 

summary of the totals of each classification type. In Figure 4-10, you can see there is some potential C&C 

traffic and that the United States has the highest number of possible malicious destinations. With graph

.cc()’s ASN cousin and the slicing and dicing example in Listing 4-16, you should have enough tools to 

generate your own views in order to look at different aspects of the malicious traffic.

Summary
The goal of this chapter was to show you the importance of fully understanding the data elements you 

want to analyze and visualize, as well as the need to start with a question and iterate through computations 

and visualizations to work toward an answer. There are plenty of other similar data sets available on the 

Internet to substitute for the ones provided in most of the examples. Hunting those down (or just using 

your own firewall data in the last example), working through the sample analyses, and formulating your 

own questions will help to ingrain the pattern of the data analysis workflow in your mind. 

There are many ways to look at IP-based malicious activity and this chapter was by no means com-

prehensive. Furthermore, R was not entirely necessary for anything but the visualizations and statistical 

analyses. Much of the sorting, slicing, and dicing could have been performed in a database and—as you’ll 

see in Chapter 8—that is definitely the place to start when working with larger data sets.

The next chapter expands on these analyses and should give you a new “out of this world” perspective 

on botnet data.

FIGURE 4-10 Graph of malicious destination traffic by country
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Recommended Reading
The following are some recommended readings that can further your understanding on some of the topics 

we touch on in this chapter. For full information on these recommendations and for the sources we cite in 

the chapter, please see Appendix B.

Mining Graph Data by Diane J. Cook and Lawrence B. Holder

Graphical Models with R by Søren Højsgaard, David Edwards, and Stefen Lauritzen
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Ken Jennings, author and Jeopardy! champ

From Maps to Regression

“Even before you understand them, your brain is drawn to maps.”
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You have been learning some basics about security data and how to pull meaning from IP addresses. As 

briefly discussed in Chapter 4, IP addresses can be associated with geographic data if you look them up 

using a geolocation service. But what is the value in doing that? How much can you learn by associating a 

longitude and latitude with your data? The answer to that is dependent on what the IP represents and how 

deep you are willing to go. In order to describe the value of mapping the virtual world into the physical, 

this chapter begins with a list of over 800,000 latitude/longitude pairs shared by our friends at Symantec. 

The location data is from client IP addresses infected with the ZeroAccess rootkit, collected over a 24-hour 

period during the month of July in 2013. 

Now that you know these are locations of hosts with ZeroAccess, you could ask a series of questions:

 ● How is ZeroAccess distributed across geographic areas and is there any significance to this 

distribution? 

 ● What types of clients are more likely to be infected with ZeroAccess? Do things like education and 

income affect the rate of infection?

 ● Are ZeroAccess infections the result of alien visitors?

Obviously, this chapter hones in on that last question. It is the most important and worthy of some 

serious research (anyone have some spare grant money?). But seriously, our purpose is to explore the 

benefits (and pitfalls!) you’ll get from tying secondary data points, like alien visitors, to the primary data. 

Oftentimes, more can be learned through the combination and merging of related data, than just the 

original data in isolation. Therefore, as you bring the lessons from this chapter back to your own work, 

realize that insight may not just be in the primary data you collect, but in how it relates to other data you 

can collect from your environment. For example, we could ask the following questions that will combine 

two or more sources of data:

 ● Is there a relation between phishing victims and their HR data (education, pay grade, etc.)?

 ● Is there a relation between netflow (network) patterns and the software and services running on 

hosts?

 ● Is there a relationship between surfing habits and productivity or performance review scores of 

employees?

This is where you are heading in this chapter. You’ll begin with one single data point (location data 

for systems infected with ZeroAccess) and explore the relationships within the data. Then you’ll combine 

the location data with other geographic observations and apply a statistical technique known as linear

regression to test the relationships of the various data points and look for significant (and perhaps even 

spurious) relationships. Prepare for the examples in this chapter by setting the directory to the working 

directory for this chapter and make sure the R libraries are installed (Listing 5-0).

LISTING 5-0
# set working directory to chapter location

# (change for where you set up files in ch 2)

setwd("~/book/ch05")

(continues)
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LISTING 5-0 (continued)
# make sure the packages for this chapter

# are installed, install if necessary

pkg <- c("ggplot2", "scales", "maptools",

         "sp", "maps", "grid", "car" )

new.pkg <- pkg[!(pkg %in% installed.packages())]

if (length(new.pkg)) {

  install.packages(new.pkg)

}

Simplifying Maps
It’s easy to get all wrapped up thinking that visualizing spatial data (maps) is special, complicated, or will 

somehow take a lot more effort. But with the right tools (and there are plenty available), working with 

spatial data can not only be relatively simple, but also quite fun. In order to take some of the mystique out 

of maps, we want to start by loading the latitude and longitude points from Symantec and treating them 

as x,y coordinates to create a simple scatterplot (Listing 5-1).

LISTING 5-1
# Load ggplot2 to create graphics

library(ggplot2)

# read the CSV with headers

za <- read.csv("data/zeroaccess.csv", header=T)

# create a ggplot instance with zeroaccess data

gg <- ggplot(data=za, aes(x=long, y=lat)) 

# add the points, set transparency to 1/40th 

gg <- gg + geom_point(size=1, color="#000099", alpha=1/40) 

# add axes labels

gg <- gg + xlab("Longitude") + ylab("Latitude")

# simplify the theme for aesthetics

gg <- gg + theme_bw() 

# this may take a while, over 800,000 points plotted

print(gg)

Figure 5-1 looks remarkably like a world map without placing borders or loading any map specific tasks. 

This works with this data because there are over 800,000 coordinate pairs and one point is covering more 

than a large city. We made the points a little less overwhelming by setting the alpha (transparency of the 

color) to be 1/40 of a full color. With the alpha at 1/40, it will take 40 points on top of one another to create a 

non-transparent color. With 20 points, for example, on top of one another, you see 50 percent transparency.

From this basic scatterplot, you can see the density in the Eastern half and West coast of the United 

States and most of Europe is covered. You see some concentration in Brazil, and India is outlined quite well. 

One interesting thing to note here is that China has almost no density and Japan is clearly visible. But at 

this point, you can only make guesses as to what’s going on with what looks like a significant difference 

in Asian countries. 
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There is something unique about maps, because you need to “project” the three-dimensional spherical 

world onto a two-dimensional flat canvas. When you do that, aspects of the map are distorted—shapes 

will be distorted, land areas will shrink or be over-represented, or distances will be skewed. But for most 

applications within information security, you are simply trying to represent some attribute of, or differ-

ence between, geographic areas. So the choice of map projections is more about personal preference and 

aesthetics rather than communicating a specific geographic message. Figure 5-2 shows a few different 

map projections.

FIGURE 51 Basic scatterplot using latitude and longitude

FIGURE 5-2 Map projections
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If you take another look at Figure 5-1, it’s a little hard to know where all those points land unless you were 

among the few who didn’t fall asleep during world geography in high school. Let’s recreate that image, build 

a map with a specific projection of the landmasses, and then add the points on top of it. Luckily, within R, 

most of the basic map data is already available with a few packages installed. The ggplot2 package has a 

function called map_data() that wraps the maps package to return a ggplot2-compatible data frame. 

Calling map_data() with one character string of “world” will load just over 25 thousand rows of 

map data into a data frame, which means, as you’ve seen in Chapter 3, you can explore any and all of this 

data with commands like str(), head(), and summary(). You can plot the countries by tracing a 

path along the latitude and longitude pairs in the map data, which has the effect of drawing the country 

borders. Paths are grouped by the column labeled group (in this data, groups are the country), and the 

data frame must be sorted in order (an important detail, as you’ll see later). To create the final map (see 

Listing 5-2), you call coord_map() to create the map projections (you will use the Mercator projection 

for this example), and you’ll use a simple black and white theme on it with the theme_bw() function. 

Once you have the countries traced, you then add the points from the ZeroAccess data on the map as if 

you are creating a scatterplot like you did before (see Figure 5-3).

LISTING 5-2
# requires package : ggplot2

# requires object: za (5-1)

# the "maps" and "mapproj" packages are used by ggplot2

# load map data of the world

world <- map_data("world")

# nothing personal penguins, but strip out Antarctica

world <- subset(world, world$region!="Antarctica")

# load world data into ggplot object

gg <- ggplot(data=world, aes(x=long, y=lat))

# trace along the lat/long coords by group (countries)

gg <- gg + geom_path(aes(group=group), colour="gray70")

# now project using the mercator projection

# try different projections with ?mapproject

gg <- gg + coord_map("mercator", xlim=c(-200, 200))

# load up the ZeroAccess points, overiding the default data set

gg <- gg + geom_point(data=za, aes(long, lat), 

                      colour="#000099", alpha=1/40, size=1)

# remove text, axes ticks, grid lines and do gray border on white

gg <- gg + theme(text=element_blank(), 

                 axis.ticks=element_blank(),

                 panel.grid=element_blank(),

                 panel.background=element_rect(color="gray50",

                                               fill="white"))

print(gg)
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Now, that’s a real map; but, what can you learn from it? The answer is not much. This map commu-

nicates very little beside the fact that the ZeroAccess botnet is an international traveler, and that should 

surprise nobody. It’s time to probe a bit deeper and see whether you can use maps to help you visualize 

the data a bit better.

How Many ZeroAccess Infections per Country?
It’s very difficult to look at Figure 5-3 and determine which countries have the most infections. You can’t 

expect anyone to look at a map like this and extract the proportion of bot infections in countries. It looks 

like the United States and Europe are blanketed in bots; so, let’s try a different type of map. You need 

to count how many infections you have in each country and then you can visualize the results with a 

choropleth. A choropleth is a map in which the country is shaded or filled with color that is then associated 

with the data. For your first choropleth, you will have to figure out which country the latitude/longitude 

points are in and then you will use a single continuous color scale to represent that quantity (see Listing 

5-3). To convert latitude and longitude to a country, you will adapt a function from Ryan Weald and call the 

function latlong2map(). That function will accept a data frame of longitude and latitude pairs along 

with the name of a map to translate onto. 

LISTING 5-3
# require packages: maps, maptools

# packages are not required to create function

FIGURE 53 Worldwide ZeroAccess infections

(continues)
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LISTING 5-3 (continued)
# but it cannot be executed without these loaded

library(maps)

library(maptools)

# slightly modified verison of Ryan Weald's (@rweald) function

# https://gist.github.com/rweald/4720788

latlong2map <- function(pointsDF, mapping) {

  # load up the map data

  local.map <- map(mapping, fill=TRUE, col="transparent", plot=FALSE)

  # pull out the IDs from the name

  IDs <- sapply(strsplit(local.map$names, ":"), function(x) x[1])

  # Prepare SpatialPolygons object 

  maps_sp <- map2SpatialPolygons(local.map, IDs=IDs,

             proj4string=CRS("+proj=longlat +datum=wgs84"))

  # Convert pointsDF to a SpatialPoints object

  pointsSP <- SpatialPoints(pointsDF,

              proj4string=CRS("+proj=longlat +datum=wgs84"))

  # Use 'over' to get _indices_ of the Polygons object containing each 

point

  indices <- over(pointsSP, maps_sp)

  # Return the names of the Polygons object containing each point

  mapNames <- sapply(maps_sp@polygons, function(x) x@ID)

  # now return a vector of names that match the points

  mapNames[indices]

}

The function returns a vector of names (country names in this case), and you can count how many times 

the country appears with the table() command. Next in Listing 5-4, you’ll want to merge() the count 

of countries with the map data and reorder it for the plotting. By merging the data directly into the map 

data, you can associate the shading of the country with an attribute in the data, specifically the count of 

infections in that country. You will use the scale_fill_gradient2() function within ggplot2

to get the color gradient associated with the quantity of infections. See the result in Figure 5-4.

LISTING 5-4
# requires packages: ggplot2, maps and maptools

# requires objects: za (5-1), world (5-2), latlong2map (5-3)

# convert ZeroAccess long/lat into country names from world map

zworld <- latlong2map(data.frame(x=za$long, y=za$lat), "world")

# count up points in the country and conver to data frame

wct <- data.frame(table(zworld))

# label the country as "region" to match map data 

colnames(wct) <- c("region", "count")

# merge will match on "region" in each and add "count" to "world" 

za.choro <- merge(world, wct)

(continues)
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LISTING 5-4 (continued)
# now we sort the map data to original sequence

# otherwise the map is disasterous

za.choro <- za.choro[with(za.choro, order(group, order)), ]

# and plot

gg <- ggplot(za.choro, aes(x=long, y=lat, group=group, fill=count))

gg <- gg + geom_path(colour="#666666") + geom_polygon()

gg <- gg + coord_map("mercator", xlim=c(-200, 200), ylim=c(-60,200))

gg <- gg + scale_fill_gradient2(low="#FFFFFF", high="#4086AA", 

                                midpoint=median(za.choro$count),

                                name="Infections")

# remove text, axes ticks, grid lines and do gray border on white

gg <- gg + theme(axis.title=element_blank(), 

                 axis.text=element_blank(),

                 axis.ticks=element_blank(),

                 panel.grid=element_blank(),

                 panel.background=element_rect(color="gray50",

                                               fill="white"))

print(gg)

Voila! You have a rather good-looking (some might say, “spiffy”) map and it looks like the United States 

has cornered the market on ZeroAccess infections. There would be no way you could learn that from the 

points in Figure 5-3. However, it’s very difficult to tell the specific quantity by color density (Chapter 6 

discusses visualization techniques in more detail); all you can tell from this type of map is that the United 

States has more infections. To learn just how much more, you can look into the wct variable and then 

calculate the proportion of infections in the United States (Listing 5-5).

FIGURE 54 Choropleth of ZeroAccess infections
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LISTING 5-5
# requires object: wct (5-4)

head(wct)

##        region count

## 1 Afghanistan    53

## 2     Albania  1166

## 3     Algeria  3014

## 4     Andorra     4

## 5      Angola   160

## 6   Argentina  6016

# for each wct$count, divide by sum, gives us proportion of the whole

perc <- wct$count/sum(wct$count)

# covert to a readable format, round it and create percent

wct$perc <- round(perc, 4)*100

# now order the highest percentages on top

wct <- wct[with(wct, order(perc, decreasing=T)), ]

# look at the top few entries.

head(wct)

##      region  count  perc

## 148     USA 261627 35.23

## 24   Canada  35607  4.79

## 74    Japan  33590  4.52

## 145      UK  31813  4.28

## 50  Germany  27336  3.68

## 71    Italy  25717  3.46

You could have just created this table in the beginning to answer the question, “How is ZeroAccess 

distributed across geographic areas?” The map visually highlights the gap between the United States and 

the rest of the world. Also keep in mind that these are just total counts and not normalized for population 

or anything. So at this point, the 35 percent represents a proportion solely within the ZeroAccess data, and 

you should not infer more without further analysis. 

Changing the Scope of Your Data
You can’t lose sight of the goal here, which is to find a way to correlate Zero Access infections with other data 

points like alien visits. To get closer to answering this, you can simplify the data set to the U.S. infections. 

We chose to do this not just because working with over 800,000 data points can be a bit slow on some 

systems, but also because it will be much easier to focus in on the United States because of our knowledge 

of the geography and accessibility of data (especially around alien visitors).

However, as you change the scope within the data like this, you need to consider how this may change 

the question you’re able to answer. You can no longer generalize about every infection everywhere because 

you cannot readily transfer what you learn from infections in the United States to other countries and/or 

cultures. Another way to state this is that you cannot be sure that the factors that contribute to infections 

in the United States will match the factors elsewhere. Those considerations go beyond and outside the data 
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you are looking at now, so be sure to avoid making any broad assumptions as you continue your analysis 

and present your results. 

If you attempt to plot a U.S. map and then project all the points on it, the auto-scaling feature in ggplot

will create a rather funny picture. It will show all of the world points in the data set, but will trace out only 

the U.S. map. You need to reduce the data size and remove data that are not in the United States. You can 

reuse the latlong2map() function, this time mapping the points to the United States by specifying 

“state” as the second argument. From an R-perspective, this means anything that does not get mapped to 

a U.S. state will be retuned as the NA value, which can then be filtered out of the data.  

Once all that processing is done, you can make a nice map of the continental United States show-

ing all the ZeroAccess infections in the country (Figure 5-5). Notice that for this plot and the last few 

you have been removing all the extra chartjunk (a term coined by Edward Tufte) on the map. This is 

done with the theme() function at the end and removing graphical features by assigning them to 

element_blank(). See Listing 5-6. 

LISTING 5-6
# requires package: ggplot2, maps, maptools

# requires objects: za (5-1), latlong2map (5-3)

zstate <- latlong2map(data.frame(x=za$long, y=za$lat), "state")

# select rows from za where the zstate is not NA

za.state <- za[which(!is.na(zstate)), ]

# load map data of the U.S.

state <- map_data("state")

gg <- ggplot(data=state, aes(x=long, y=lat))

gg <- gg + geom_path(aes(group=group), colour="gray80")

gg <- gg + coord_map("mercator")

gg <- gg + geom_point(data=za.state, aes(long, lat), 

                      colour="#000099", alpha=1/40, size=1)

# stripping off the "chart junk"

gg <- gg + theme(axis.title=element_blank(), 

                 axis.text=element_blank(),

                 axis.ticks=element_blank(),

                 panel.grid=element_blank(),

                 panel.background=element_blank())

print(gg)

Consider Figure 5-5 for a moment. Does it look…strange? This is where you really have to be careful 

because after working with spatial data, we can tell you this looks like a re�ection of population density

and not infections. Therefore, after reviewing Figure 5-5, you might find yourself asking a slightly differ-

ent question: Could ZeroAccess infections just be a re�ection of the population? You could stop and 

apply a statistical technique called regression analysis (you will later), but for now stick with pictures and 

create another choropleth. This time you’ll break up the data and perform counts based on the U.S. states.
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The Potwin Effect
As you dig deeper than just country, you have to account for something we call the “Potwin Effect” after 

the town by that name in Kansas with a population of 449. The population is important because if you 

examine the data, you’ll see that there are 12,643 reported ZeroAccess infections in the town of Potwin, 

Kansas. We first stumbled across this “anomaly” in a different (and more subtle) analysis and spent days 

trying to understand why Potwin was so odd. We realized that these couldn’t be valid entries after we had 

some crazy ideas about Potwin trying to justify the data. Finally, we remembered that there were several 

data points that were strangely rounded off to integers and they were all 38,-97.

Then, it dawned on us. IP geolocation services should always know what country an IP address is in 

because the IANA records are clear about that. But if the geolocation service cannot get any more granular 

than identifying the country, they return a rounded-off integer location near the geographic center of the 

country. In the United States, the geographic center is just outside of Potwin, Kansas. For this purpose, they 

are “unknown U.S. locations” and not really in Kansas, so you are going to remove these data points from 

the next bit of code to avoid unfairly assigning infections to Kansas.

In this map, you want to again use color to show quantity. Rather than just using a single hue (a fancy 

term for color), you’ll use a diverging color scheme (two opposite colors) and assign the mid-point of the 

range to the mean count per state (see Listing 5-7). This will allow you to show states with above average 

infection counts with one hue and the below average states with another. As a side note, let’s also change 

the projection from the Mercator projection to the Polyconic. That projection looks odd at the world level 

FIGURE 55 ZeroAccess infections in the United States
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(as you can see in Figure 5-2), but it puts a nice slope and curve in a U.S. map. It’s good (and dare we say 

fun!) to play around with different projections.

LISTING 5-7
# requires package: ggplot2, maps, maptools

# requires objects: za (5-1), latlong2map (5-3)

# create a choropleth of the U.S. states

# because all of these vectors are from the same source (za), 

# we can cross the indexes of the vectors

zstate <- latlong2map(data.frame(x=za$long, y=za$lat), "state")

# pull out those that are not NA, and take care of Potwin effect

state.index <- which(!is.na(zstate) & za$lat!=38 & za$long!=-97)

# now create a count of states and filter on those indexes

sct <- data.frame(table(zstate[state.index]))

colnames(sct) <- c("region", "count")

# merge with state map data

za.sct <- merge(state, sct)

# Now plot a choropleth using a diverging color

colors <- c("#A6611A", "#DFC27D", "#F5F5F5", "#80CDC1", "#018571")

gg <- ggplot(za.sct, aes(x=long, y=lat, group=group, fill=count))

gg <- gg + geom_polygon(colour="black")

gg <- gg + coord_map("polyconic")

gg <- gg + scale_fill_gradient2(low=colors[5], mid=colors[3], 

                                high=colors[1], 

                                midpoint=mean(za.sct$count),

                                name="Infections")

gg <- gg + theme(axis.title=element_blank(), 

                 axis.text=element_blank(),

                 axis.ticks=element_blank(),

                 panel.grid=element_blank(),

                 panel.background=element_blank())

print(gg)

Figure 5-6 shows another handsome but relatively useless map. You can easily see that California, 

Texas, Florida, and New York are above average, but it’s also good to have the wherewithal to realize that 

the four most populated states are California, Texas, New York, and Florida, in that order.

In other words, you are just seeing a reflection of population in this map, so you have to normalize

this data to the population. In order to normalize you can take multiple approaches. The simplest ways to 

normalize involve answering one of these questions:

 ● How many people per one infection?

 ● What proportion of the people are infected?

 ● How many infections per 1,000 people?
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The differences between these questions are subtle, and in this case you will do the first method because 

you will get whole numbers, and it will be a little easier to conceptualize for your reader. In order to deter-

mine the number of people per infection, you divide the population in a state by the number of infec-

tions in that state (Listing 5-8). In this case, we have already scraped population data from http://www

.internetworldstats.com/stats26.htm and made it available in an easy format on the book’s 

website (state-internets.csv in the Chapter 5 download materials at www.wiley.com/go/

datadrivensecurity). 

LISTING 5-8
# requires package: ggplot2, maps, maptools

# requires objects: sct (5-7), colors (5-7), latlong2map (5-3)

# read in state population and internet users

# data scraped from http://www.internetworldstats.com/stats26.htm

users <- read.csv("data/state-internets.csv", header=T)

# all the state names are lower case in map data, so convert

users$state <- tolower(users$state)

# now merge with the sct data from previous example

# merge by sct$region and users$state

za.users <- merge(sct, users, by.x="region", by.y="state")

# calculate people to infection

# change this to internet users if you would like to try that

za.users$pop2inf <- round(za.users$population/za.users$count, 0)

FIGURE 56 Choropleth of U.S. states with ZeroAccess

(continues)
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LISTING 5-8 (continued)
# and create a simple data frame and merge 

za.norm <- data.frame(region=za.users$region,

                      count=za.users$pop2inf)

za.norm.map <- merge(state, za.norm)

# now create the choropleth

gg <- ggplot(za.norm.map, aes(x=long, y=lat, group=group, fill=count))

gg <- gg + geom_polygon(colour="black")

gg <- gg + coord_map("polyconic")

gg <- gg + scale_fill_gradient2(low=colors[5], mid=colors[3], 

                                high=colors[1], 

                                midpoint=mean(za.norm.map$count),

                                name="People per\nInfection")

gg <- gg + theme(axis.title=element_blank(), 

                 axis.text=element_blank(),

                 axis.ticks=element_blank(),

                 panel.grid=element_blank(),

                 panel.background=element_blank())

print(gg)

Remember California, Texas, Florida, and New York having the highest infection counts? Using the 

za.norm data generated in Listing 5-8, you can view the exact counts. When you normalize to population, 

California and New York drop to below average with one infection per 1,440 and 1,287 people on average, 

respectively (see Figure 5-7). Wyoming now sticks out as the most infected state since one in 724 people 

in Wyoming appear to have ZeroAccess infections. 

FIGURE 57 Normalized ZeroAccess infections: Number of people in the state per one infection
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Is This Weird?
Let’s stop for a moment and look at the current results. You have a range of normalized values from 1 in 

724 people with an infection in Wyoming to 1 in 1,550 people in Washington state. Does this mean that 

the citizens in Wyoming are much more careless than those in Washington? Perhaps more Washingtonians 

run Linux? Or—and this is an important concept—is the range of observations simply from natural

variation in the measuring accuracy and the world? Is Wyoming the most infected state because some-

one had to be in last place and in this data it just so happened to be Wyoming?  You need to understand if the 

extreme values are outliers or if they are within expectations. There are two key methods to test for outliers: 

 ● Using a boxplot (the “IQR” method)

 ● Calculating a z-score

Using a Boxplot to Find Outliers

The boxplot was developed by John Tukey (you met him briefly in Chapter 1) and was designed to show a 

distribution of values visually.  It does this by plotting a box from the 25th percentile to the 75th percentile 

in the distribution. This distance is called the inter-quartile range (IQR). Then lines are extended from the 

box for a distance one and half times the length of the IQR. Anything beyond the length of these lines is a 

good candidate to be labeled as an outlier, and is represented by point. The further these points are, the 

more likely they an outlier. In order to create a boxplot, you will use the default R graphics boxplot()

function. You’ll save the results returned into a variable called popbox (see Listing 5-9) for exploring in 

Listing 5-10. While there are multiple ways to create a boxplot, the default function just accepts in a vector 

of values for the distribution, and then it works its magic (see Figure 5-8).

LISTING 5-9
# requires objects: za.norm (5-8)

# create a box plot of the count

popbox <- boxplot(za.norm$count)

Looks like you may have a few outliers, which are represented by individual points. There are clearly 

three points above the plot and two points below. Although you could sort the data in za.norm and 

look for the top three and bottom two, you saved the output from boxplot(), which has various data 

points about the boxplot, into the popbox variable, so you can look up the values in the popbox$out 

(the outliers) vector in the original data (Listing 5-10).

Note

In the state-internets.csv data, we also included the count of Internet users if 

you want to try to create a choropleth normalized on estimated Internet users per state 

(it is a prettier picture). 
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LISTING 5-10
# requires objects: za.norm (5-8), popbox (5-9)

# the values that are considered outliers

print(popbox$out)

## [1]  777 1536 1525 1550  724

# pull the rows from za.norm that have those values

za.norm[za.norm$count %in% popbox$out, ]

FIGURE 58 Distribution of normalized state infections

(continues)
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LISTING 5-10 (continued)
##                  region count

## 8  district of columbia   777

## 43                 utah  1536

## 44              vermont  1525

## 46           washington  1550

## 49              wyoming   724

According to the method employed by Tukey in the boxplot, you could consider these five states as 

being odd (outliers). 

Calculating a Z-Score to Find Outliers

There’s another measure of determining oddballs; you can calculate what’s known as a z-score. It will help 

you get a feel for just how much of an outlier a point is by showing how many standard deviations from 

the mean it is. A z-score is most often used to compare distributions from completely different scales, a 

method sometimes labeled “standardizing” the data. In order to do this calculation, you need to know the 

standard deviation and mean of the distribution. Then, for each value in the distribution, you calculate how 

many standard deviations from the mean the observation is. That is, you subtract the mean from each value 

and divide by the standard deviation. (See Listing 5-11.) 

If your eyes started to glaze over from the z-score description, don’t worry—every time we calculate 

one, we have to look up how it’s done. You’ll want to compare what you see in the distribution to some-

thing known as the “empirical rule” of a standard normal distribution. In a normal distribution (the familiar 

bell curve, which is also known as the Gaussian distribution), you expect that roughly 68 percent of the 

distribution will fall within one standard deviation (above or below) of the mean, and 95 percent of the data 

will fall within two standard deviations, and then 99.7 percent should be within three standard deviations.

One point to note—this method doesn’t work well if the data is skewed, so you should probably check a 

quick histogram (pass za.norm$count into the hist() function) to be sure it’s not obviously skewed.

When using this approach, anything outside of three standard deviations is typically labeled as an 

outlier, and you might even consider anything more than two standard deviations as a possible outlier.

LISTING 5-11
# requires objects: za.norm (5-8)

# get the standard deviation

za.sd <- sd(za.norm$count)

# get the mean

za.mean <- mean(za.norm$count)

# now calculate the z-score and round to 1 decimal

za.norm$z <- round((za.norm$count-za.mean)/za.sd, 1)

# we can inspect the "z" variable for the specific z-scores

# pull out values where absolute value of z-score is > 2

za.norm[which(abs(za.norm$z)>2), ]

##                  region count    z

## 8  district of columbia   777 -2.4

## 43                 utah  1536  2.2

(continues)
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LISTING 5-11 (continued)
## 44              vermont  1525  2.1

## 46           washington  1550  2.2

## 49              wyoming   724 -2.7

It appears those same five entries fall within three standard deviations. This knowledge calls into ques-

tion the use of population in the normalization process (perhaps “Internet users” would be a better mea-

sure—hint, hint). 

Rather than focus on solving things at the state level, you could bring this data down to the county level 

within the states. Doing so will supply more data points and allow a finer separation of the population, 

which will open up more possibility. 

Counting in Counties
It is difficult to generalize at the state level because, well, it is a very generalized population. You would 

be obscuring a wide range of diversity among people behind a single label. You would be hard-pressed 

Note

Overall, it’d be okay to consider these values within expectations given they are within three 

standard deviations, but if you had time, it would be a good practice to look into these more 

and be sure the measurements are valid. The takeaway is that you must answer the ques-

tion, “Is this weird?” with either a squishy “probably not” or a non-committal “not so sure.”

What’s the P-Value?

Trying to identify weird versus normal is a core concept within statistics, and, depending on the 

circumstances, there is usually more than one way to identify it. At the heart of “statistically signifi-

cant” is knowing whether something is weird or just the result of natural variations. One very com-

mon and widespread approach is the p-value. Don’t mistake its widespread use with a widespread 

understanding or even consistent use. The p-value has a very specific (and difficult to remember) 

meaning. In order to define and calculate a p-value, you begin with a statement (technically called 

a null hypothesis) and calculate the probability of the data being generated by chance if the state-

ment is true—this is the p-value. Now the subtlety of the p-value is often lost, and people jump to 

convenient (and wrong) assumptions, like it’s the probability of the statement being true (it’s not).

To complicate this concept even more, somehow it became generally accepted that a p-value of 

0.05 (1/20th) or less was “statistically significant,” creating what is essentially an arbitrary cut-off 

point. You will be revisiting the value of p-values when you read about regression analysis later in 

this chapter. Just tuck the term “p-value” away in your memory bank as a measure of significance 

or, in this case, of “weirdness.”
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to calculate the influence of something like income or—more importantly—alien visits on ZeroAccess 

infections at the state level. You can get more granular by repeating latlong2map() again, but at 

the county level.

There are a few additional items to consider as you get into a more detailed breakdown of geolocation 

of IP addresses. Most of the popular IP geolocation services publish estimations of their accuracy beyond 

country. For example, the service used on this data claims that just over four out of five entries are accu-

rate to about 25 miles and about one out of seven are resolved to an incorrect city. Does that mean you 

should be very wary of this data? In order to answer that question, you need to understand a statistical 

concept—natural variations will cancel out more often than stack up, especially as you get more data (and 

over 3,000 U.S. counties do represent more data). 

Does Variation Stack or Cancel?

Within statistics, natural variations generally cancel each other out, but this is counterintuitive to 

fields in engineering (like computer science) where people are taught that if they add components 

that all have a slight variation, the effect will compound itself and they should expect a wide range 

of results. What’s the difference? Which viewpoint is right? 

This is kind of a tricky concept, so consider an example. Say you are manufacturing a physical part and 

you want it to be 100 millimeters (mm) long. Natural variation in the quality of materials and manufac-

turing process produces parts that range equally between 98 and 102 millimeters. Engineers are taught 

that if they stack up 100 of those parts, they can expect something equally likely between plus or minus 

two times the number of parts (100). Meaning, it is possible that all 100 parts will be 98 millimeters, or it’s 

possible that all the parts will be 102 millimeters, so they can expect a wide range in the output. 

The more they stack, the wider the range of output. 

In statistics, if you can assume that each part has an equal chance of being any length within the 

range (and you’ll want to validate that assumption in the real world), the differences in lengths will 

begin to cancel each other out. Thanks to a basic understanding of programming, you can model 

this and see how variation occurs across multiple parts.

The example generates 100 parts and uniformly “manufactures” them between 98 and 102 mil-

limeters. It then averages the length (it could also be the sum or some other measurement, but the 

mean works here). The engineering brains out there will guess that this will appear between 98 

and 102, but let’s see (Listing 5-12).

LISTING 5-12
#setting seed for reproducibility

set.seed(1492)

# run 100 times, getting random values between 98 and 102

mean(runif(100, min=98, max=102))

## [1] 100.0141

After one run, you get 100.0141. Let’s manufacture 10,000 sets of 100 stacked parts and see how 

many get to the edge of the range (Listing 5-13). Surely if it’s possible, you should see at least a few 

sets in 10,000 push toward the edge, right?

(continues)
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Moving Down to Counties
To transition the data down to the county level, you’ll begin by calling the same latlong2map()

function on the same ZeroAccess data, but ask it to translate to the county names (Listing 5-14). Keep in 

mind, there are over 3,000 counties in the United States and over 800,000 latitude/longitude pairs to go 

through, so depending on the system, this could take a few seconds or so to run. Like last time, you want 

to ignore anything that doesn’t resolve in the United States (is set to NA in the data) and account for the 

Potwin Effect (anything below country should account for it). But rather than count things with table()

and toss them into a data frame, you have to do some transformation on the returned names. The county 

names come back from latlong2map() as a single text string in the “state, county” format. You can 

LISTING 5-13
#setting seed for reproducibility

set.seed(1492)

# iterate seq(10000) times, generate a set of 100 parts and calc mean

parts <- sapply(seq(10000), function(x) mean(runif(100, min=98, max=102)))

# result is a vector of 10,000 sets

# show the min and max of these parts

range(parts)

## [1]  99.57977 100.47559

What is up with this? Even with 10,000 iterations of 100 random parts, none of them get close to the 

ranges of 98 or 102. You can visualize all of the parts in a quick histogram by running hist(parts).

You see a nice symmetric distribution centering around 100. Even though the parts could all be 98 or 

102, the variation will cancel out, especially as the sets increase (rather than 100 in a set, try 1,000 or 

10,000 in the runif function). As you add more parts within the range, the results are more likely 

to cluster even closer around the mean. 

There are a couple of takeaways from this tangent. First, it’s really fun to geek out a bit and generate 

data to answer questions with “what if” scenarios. Second, you shouldn’t toss out less-than-per-

fect data. If the variations are caused by natural or random variations, you can assume the variation 

has more of a cancelling effect than a stacking effect. Now, this doesn’t mean you should ignore 

variations like this, but instead it means that the variation will have less of an impact on throwing 

the analysis off than you think. You should still account for this variation in your work.

Relating this back to the analyses, you have all sorts of items in the spatial data that may be throwing 

off the calculations. All of the geolocation lookups have a 25-mile radius of accuracy (so, some points 

that are supposed to be, say, in Southern Maine, end up in New Hampshire). Several of the data points 

will be farther off than that. But these might cancel out if the variation is random (meaning points in 

New Hampshire could also just as easily end up in Maine). This doesn’t mean the data is worthless. 

Until you can learn some more advanced techniques, you can just take the error introduced as a 

grain a salt. In other words, you can use this data to estimate how much of an effect alien visits have, 

but you wouldn’t want to balance the fate of a company on this analysis—at least not without a lot 

more rigor and investigation of the data. 

(continued)
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use the strsplit() function to split the county names. It returns a list object, so you convert it to a 

vector with the unlist() function. The result will be one long vector with the values alternating state 

and county, which is okay because you’ll transform this into a matrix with two columns (state and county) 

with the ncol=2 argument and tell it to go row by row (rather than column by column). The result is then 

converted into a data frame, along with the count of infections in each county. And now you’re beginning 

to see how fun this data-munging thing can be, right?

LISTING 5-14
# requires package: maps, maptools

# requires objects: za (5-1), latlong2map (5-3)

## now mapping lat/long down to county

county <- latlong2map(data.frame(x=za$long, y=za$lat), "county")

za.county <- county[which(!is.na(county) & za$lat!=38 & za$long!=-97)]

# count the occurances

county.count <- table(za.county)

# need to convert "county, state" into a data frame

# so we split it out by comma

temp.list <- strsplit(names(county.count), ",")

# convert the list into a vector

temp.list <- unlist(temp.list)

# force the vector into a 2 column matrix, filling row by row

temp.matrix <- matrix(temp.list, ncol=2, byrow=T)

# and now create the data frame with the count of county infections

za.county <- data.frame(temp.matrix, as.vector(county.count))

# finally assign names to the fields

# names match the field names in the county map_data 

colnames(za.county) <- c("region", "subregion", "infections")

head(za.county)

##    region subregion infections

## 1 alabama   autauga         44

## 2 alabama   baldwin        184

## 3 alabama   barbour         13

## 4 alabama      bibb         13

## 5 alabama    blount         26

## 6 alabama   bullock         11

You now have a data frame with three columns—the state, county, and count of infections—and you 

need to label the columns accordingly. There is a lingering “so what?” you need to answer before proceeding. 

Aside from the initial “wow” factor of generating a cool-looking map, there is not much to learn from a raw 

count being displayed on a map. You may see some hot spots and you may be able to compare different 

areas on the map, but you can’t really learn much from this amount of detailed data on a map. Moving 

forward, you’ll switch from creating maps with this data to performing some real analysis to see whether 

you can find an explanation for the infections. 
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You’ll need to pull in other data here (also split out by the county), just as you did at the state level with 

population. Then you may be able to understand a bit more about these malware infections. Perhaps 

there is some foreign (some would say alien) data that would either help explain variations in the malware 

infections or help support the techniques we want to cover. 

We scoured the Internet, pulled together a collection of rather interesting data points, and did the 

data-munging to produce the data you’ll use here. For the purposes of creating a tutorial, we’ve extracted 

a few statistics by county from various places and made it available on the book’s website (county-data

.csv on www.wiley.com/go/datadrivensecurity as part of Chapter 5’s download materials).

 ● region and subregion are the state and county, respectively.

 ● pop is the estimated county population.

 ● income is the median income for the county.

 ● ufo2010 is the number of UFO sightings in the county during 2010 (as recorded on the national 

UFO reporting center: nuforc.org).

 ● ipaddr is the number of IP addresses that translate to the county (pulled from the open 

freegeoip.net package).

As luck would have it (for you), the data is in a perfect state so it can be read in and simply merged with 

the ZeroAccess county data you just created. There is one special note with the merge() function: By 

default, it will drop any rows that are not in both data sets. In this case, you have 160 counties not repre-

sented in the ZeroAccess data. This could be for a variety of reasons; perhaps the IP geolocation services 

are especially inaccurate in those counties or they are just sparsely populated counties and not having 

infections isn’t weird.

Feel free to dig into the values, but sure enough, 90 percent of the uninfected counties have a population 

of less than 10,000. By specifying all.x=T in the merge() command, you are telling it not to drop any 

rows from the x data, which is the first argument passed into the merge() function, or county.data in the 

command (see Listing 5-15). To help illustrate we are including the argument labels when we call merge().

LISTING 5-15
# requires objects: za.county (5-14)

# read up census data per county

county.data <- read.csv("data/county-data.csv", header=T)

# notice the all.x option here

za.county <- merge(x=county.data, y=za.county, all.x=T)

# replace all NA's with 0

za.county$infections[is.na(za.county$infections)] <- 0

summary(za.county)

##      subregion         region          pop              income

## washington:  32   texas   : 254   Min.   :     71   Min.   : 19344

## jefferson :  26   georgia : 159   1st Qu.:  11215   1st Qu.: 37793

## franklin  :  25   kentucky: 120   Median :  26047   Median : 43332

## jackson   :  24   missouri: 115   Mean   : 101009   Mean   : 45075

## lincoln   :  24   kansas  : 105   3rd Qu.:  67921   3rd Qu.: 50010

## madison   :  20   illinois: 102   Max.   :9962789   Max.   :120096

(continues)
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LISTING 5-15 (continued)
## (Other)   :2921   (Other) :2217

##     ipaddr             ufo2010          infections

## Min.   :        0   Min.   :  0.000   Min.   :   0.00

## 1st Qu.:     5367   1st Qu.:  0.000   1st Qu.:   6.00

## Median :    15289   Median :  2.000   Median :  17.00

## Mean   :   387973   Mean   :  7.943   Mean   :  83.33

## 3rd Qu.:    62594   3rd Qu.:  6.000   3rd Qu.:  55.25

## Max.   :223441040   Max.   :815.000   Max.   :7692.00

Running summary(za.county) on the data, you can get a good feel for what things look like in 

there (and you learn that people who name counties have an affinity for the founding fathers). 

Now that you’ve looked at the data, can you pick out the relationship with UFO visits? Not yet? How 

can you begin to pick apart the relationships in this data? Thanks to the work of statisticians, you have a 

technique known as linear regression that is extremely powerful and yet extremely dangerous. 

Introducing Linear Regression
This section discusses a collection of techniques loosely called linear regression, but it’s important to know 

that college courses focus on nothing but linear regression for a semester and still don’t cover all aspects of 

it. Books such as Applied Linear Statistical Models by John Neter, William Wasserman, and Michael 

H. Kutner are over 1,300 pages and packed with statistical notation (it’s a page-turner!). This is all to say 

that regression analysis is an incredibly rich and deep topic and we will barely scratch the surface here. 

What we hope to do here is clear up some of the mystery around regression analysis and put the technique 

in context, while at the same time introduce enough warnings and common pitfalls so that you don’t end 

up shooting yourself in the foot with this powerful and flexible technique.

Regression analysis is a workhorse, and it is behind many of the scientific findings you hear about. 

Works that say, “Scientists find a link between something and something else” are almost always based 

on regression analysis. Researchers use regression analysis for two general purposes. 

 ● First, it can be used to estimate how different observable inputs contribute to an 

observable output. In this case, you want to estimate how alien visits to U.S. counties (observ-

able inputs) contribute to the rate of ZeroAccess infections in that county (observable output). 

With regression analysis, not only can you estimate the significance (or lack thereof) of each vari-

able, you can also estimate how strong that contribution is. Don’t worry if it is a bit confusing now; 

we will cover this more as you get into the data. Regression analysis is a powerful tool to describe 

relationships between observations.

Note

This section applies some techniques that you should not take lightly. This section focuses 

more on walking through the concepts and techniques rather than attempting to perform 

insightful research. Using statistical methods without fully understanding them is akin to 

an unlicensed teenager taking a car out for a spin.
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 ● The second purpose for regression analysis is prediction. The output of regression analysis 

is a formula. Given specific inputs, you can make an estimate, or predict what the output will be. 

A classic example with this is the relationship between height and weight. It’s relatively intuitive 

that taller people weigh more, but if you add other variables such as male and female, age, and so 

on, you can determine an expected value, and establish an expected range of a person’s weight. 

This is the method doctors use to tell patients they are above or below their expected weight, 

height, and so on. Regression analysis is a powerful tool for estimating and comparing observed 

outputs. 

To demonstrate these two purposes, you’ll create fictitious (and rather simple) data. You’ll start with 

a single input variable and generate random data points from a normal distribution (any distribution will 

work, the normal is just pretty). You’ll use the rnorm() command and create 200 points with a mean of 

10 and a standard deviation of 1 (the default). See Listing 5-16.

LISTING 5-16
# for reproducability

set.seed(1)

# generate 200 random numbers around 10

input <- rnorm(200, mean=10)

summary(input)

##  Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

## 7.785   9.386   9.951  10.040  10.610  12.400 

If you look at the summary in Listing 5-16, you see the result is data that ranges from 7.2 to 12.9. You 

now need to generate the output data. You want to create a linear relationship between the input and the 

output, so you’ll pass the mean in as double the input variables. By using rnorm() you are introducing 

more random variations so you don’t have perfectly linear relationship, but by centering the randomness 

(mean) on the input variable you are creating enough of a linear relationship to model. You then create a 

data frame out of the input and output for easy handling and plotting. 

With the input and output created, you can pass all of this into ggplot (Listing 5-17) and create a 

scatterplot to visualize the relationship. Let’s add something special by including the geom_smooth()

function and telling it to use a linear model, "lm". This will overlay a single straight line that best describes 

the relationship between the input and output data (see Figure 5-9). 

LISTING 5-17
# generate output around a mean of 2 x input

output <- rnorm(200, mean=input*2)

# put into data frame to plot it

our.data <- data.frame(input, output)

gg <- ggplot(our.data, aes(input, output))

gg <- gg + geom_point()

gg <- gg + geom_smooth(method = "lm", se=F, color="red")

gg <- gg + theme_bw()

print(gg)
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You can see from Figure 5-9 that the data isn’t exactly nice and neat (this is rnorm() introducing some 

random variation), but there is a definite trend. As the input variable increases, the output variable also 

increases, and the data flows from the lower left to the upper right. It sure looks like there is a relationship 

from this data (of course), but it’s difficult to describe it beyond simple descriptions . . . enter regression 

analysis. 

In order to run a linear regression on the data, you call one very simple command (Listing 5-18):

LISTING 5-18
# requires objects: input (5-16), output (5-17)

model <- lm(output ~ input)

Congratulations! You have just run your first linear regression. Take a look at the output with the 

summary() function, and we’ll walk through it.

summary(model)

## Call:

## lm(formula = output ~ input)

##

FIGURE 59 Sample data with regression line

(continues)
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LISTING 5-18 (continued)
## Residuals:

##      Min       1Q   Median       3Q      Max 

## -2.93275 -0.54273 -0.02523  0.66833  2.58615 

##

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)

## (Intercept)  0.27224    0.77896   0.349    0.727

## input        1.97692    0.07729  25.577   <2e-16 ***

##   ---

##   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.013 on 198 degrees of freedom

## Multiple R-squared:  0.7677,  Adjusted R-squared:  0.7665 

## F-statistic: 654.2 on 1 and 198 DF,  p-value: < 2.2e-16

There are many, many things to look at here. It starts with the function you used (“Call”) and a summary 

of the residuals. The residuals are the difference between what the model predicts and what you observed 

in the output. The line is specifically calculated so the mean of the residuals is zero (making it the “best fit” 

for the data). Oftentimes, we’ll skip over this residuals section, as there are better methods for interpreting 

the residuals.

The next section talks about the coefficients. In this model there are two—the intercept, which is always 

present, and the input variable. If you had more observed inputs, they would be listed here, one per line. 

The first column is the estimated value for the coefficient. For most linear models, the intercept has little 

to no meaning. The intercept coefficient signifies that if the input is at zero, you could estimate the output 

to be around 0.27 (which doesn’t make sense if you were talking about a person’s height for example). We 

didn’t set this when we created this data (which made it zero), so 0.27 is pretty close.

Looking at the coefficients, you can construct the model:

output = 0.27224 + 1.97692 × input

You would use this model to estimate new output values given an observed input (or just use the 

predict.lm() command passing in your model and new input variables to predict with). But remember 

that you generated the data by multiplying the input by 2? The linear model here thinks you multiplied 

by 1.97692, which is pretty close. This coefficient for the input variable (or variables) is where you can 

begin to see the power of regression analysis when used for inference about the input variables. You can 

interpret it like this: 

If all the other input variables are held constant, a one-unit change in this input variable is associated 

with an average change of 1.97 in the output.

Since you have only one input variable, you have nothing else to hold constant. Even if you have dozens 

of variables, you can isolate the effect of the individual variables with regression analysis. In the next sec-

tion you’ll go back to the ZeroAccess infection data and use this approach to make inferences about the 

effects of alien visits on infections.
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The next column in the coefficients represents the standard error. You can use this along with the 

estimated coefficient to generate a confidence interval for the coefficient. Or you can do this by passing 

the output of the lm() command to the confint() function (Listing 5-19) and the confidence interval 

is calculated for you:

LISTING 5-19
# requires objects: model (5-18)

confint(model)

##                 2.5 %   97.5 %

## (Intercept) -1.263895 1.808368

## input        1.824502 2.129343

The output tells you that, with 95 percent confidence, the input coefficient is between 1.82 and 2.13 

(the value of 2 is well within that range).

The next two columns are measurements of how much the variable contributes to the model. The 

last column is called the p-value, which was introduced earlier in this chapter. As a simplification, smaller 

p-values contribute more significantly to the overall model and larger p-values mean the relationship 

between this input variable and the output is more likely to be chance. When you have a high p-value, you 

might want to look for other explanatory variables and remove any variables with a high p-value.

Most people settle on 0.05 as the threshold for significance. This means that if the p-value is less than 

0.05 (and your p-value is well beneath it), the variable is significant and should stay in the model. When you 

have a p-value that is above 0.05, you should consider tossing it to the curb. Although, it’s slowly becom-

ing a common practice to evaluate p-values using at least three different thresholds of significance: 0.1, 

0.05, and 0.01, which allows some flexibility to enter into the model and reduces an arbitrary cutoff point 

that was traditional in academic publications. You can see in the output of the model in Listing 5-18 that 

it denotes which level of significance our p-value is rated at (0.001 in this case).

There are two other points to consider with linear regression output. Look at the Adjusted R-squared

value in the second-to-last line in Listing 5-18. The adjusted R2 (or technically the adjusted coeicient of

determination) signifies the amount of variation explained by the model. Values ranges from 0, meaning 

the model is no better than using the output mean, to 1, meaning the model describes the output perfectly. 

In this model it was calculated as 0.76, which means the linear model can reasonably explain 76 percent 

of the variation in the output data. There is no magic number you want the R2 to be because it’s relative. If 

you are starting from a place where you are simply guessing at the output (that is, you can’t explain any of 

the variation in the output), then an R2 of 0.05 is a little helpful. But if you have an existing model at 0.76, 

then 0.05 is a large step backward. 

Note

When people want a quick understanding of a model, they focus on the R2 value.
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The last thing to consider is the p-value on the bottom line in Listing 5-18. This is the p-value of the 

entire model. At this point, you probably have a feel as to whether this is a good model or not, but keep 

an eye on this p-value. In this example, the p-value is tiny, so you should have confidence in this model.

Understanding Common Pitfalls in Regression Analysis
We hesitated even discussing regression analysis in this book. There are so many ways things can go wrong 

and so many ways to screw up, not to mention all the assumptions within the process that must be kept in 

check. However, we did include it and so we must also include some of the common pitfalls.

You Cannot Extrapolate Beyond the Data

Your data represents the entire range of your knowledge. You can verify that there is a linear relationship 

in the data you have, but you cannot extend that belief beyond the input values. As an example, say you’ve 

developed a simple model to estimate the cost of a data breach (output) from a count of records lost (input). 

If you look only at breaches that have lost 1,000 to 100,000 records, you cannot extend this to breaches 

with more than 100,000 or less than 1,000 records lost. You have no confidence that the relationship holds 

beyond the data you have. (Although if you did develop such a blatantly ridiculous model, you’d be sure 

to discuss the small R2 value so people may have a fair shot at dismissing such a simple model.)

Outliers Have a Lot of Inluence

Before regression analysis is performed, it’s worthwhile to validate the data and identify any outliers that 

are the result of mistakes or errors. Outliers will have a large influence in the output of the model and will 

greatly influence the model selection. This doesn’t mean that you remove all of the oddball observations 

(even though this was a common practice many years ago). For every observation that appears to be an 

outlier, it is good practice to verify its validity before continuing. Sometimes outliers are valid, and you must 

include them and account for them in the model. Other times, they may just be a result of mistyping or 

recording something in different units of measurement. Those types of outliers should be fixed or removed.

Hidden Relationships Hide Well

It’s easy to gather a whole bunch of variables and toss them into a linear regression and have many of 

them turn out to be significant. But you have to approach these relationships with some element of com-

mon sense. It’s standard practice to keep the number of variables to a minimum (see the next pitfall). 

But internal relationships in the data can be misleading and you want to be careful of something called 

multicollinearity. If you have two or more input variables that are highly correlated to each other, you may 

be incorrectly assigning meaning where none exits. You will see an example of this when you get back to 

the ZeroAccess data later in this chapter. 

Too Many Variables 

If you gather enough variables and toss them into regression analysis, it is inevitable that something in 

there will be significantly correlated. This actually applies to many concepts beyond regression analysis. 

These misleading findings occur because as more and more variables are added to the model, the likeli-

hood of a spurious relationship (statistically significant correlation caused by pure chance) increases and 
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is exacerbated if the analysis is complex or done without the common sense of domain expertise. It’s 

common and a good practice with linear regression to seek out the smallest set of input variables, and not 

uncommon to exclude variables that only marginally improve the model for the sake of simplicity (even if 

the variable has a tiny p-value). This is also leading to a discussion of overfitting, which is when the model 

works really well on the initial data, but performs quite poorly when applied to real data.  

Visualize and Apply the Snif Test

It’s a good idea to visually inspect the data before jumping into regression analysis. In the example here, 

you created a simple scatterplot and added the regression line. This gets a little more complicated as you 

add multiple variables, but it’s a good habit to get into. But even beyond that, you want to apply a healthy 

dose of logic to the variables and make sure that they have at least some reason to be included. This will 

help reduce the overall number of variables and hopefully help the analyst get to know the data if they 

didn’t before.

Regression on ZeroAccess Infections
If you made it through the previous section, you should have a basic understanding of a regression model 

and some of the ways you can screw up when using it. Now you can start to pull more meaning from the 

spatial data than maps would allow. 

Let’s do a simple regression on the real data and see how well “visits from aliens” describes ZeroAccess 

infections. Although this may be silly to non-believers, we should be open to the possibility as researchers. 

We couldn’t find any hard data related to alien visits, but the good folks at the National UFO Reporting Center 

have collected sightings of the visitors. You will be using that data as a proxy, and it’s in the ufo2010 vari-

able in the prepared data. In order to run the linear regression, you again call the built-in lm() function and 

specify the output variable (infections in the za.county data frame), and then the tilde character, 

followed by, the variable with alien sightings (see Listing 5-20). If you wanted to add more variables you 

could add them—literally—with the plus (+) symbol. If you wrap the whole command in the summary()

call, you get the output immediately. The output is trimmed to the relevant information.

LISTING 5-20
# requires object: za.county (5-14 and 5-15)

summary(lm(infections ~ ufo2010, data=za.county))

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)

## (Intercept) 17.97998    2.63775   6.816 1.12e-11 ***

## ufo2010      8.22677    0.08843  93.029  < 2e-16 ***

## ---

Note

We’ll be discussing challenges with overfitting in Chapter 9 and methods to reduce overfitting.

(continues)
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LISTING 5-20 (continued)
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 140.9 on 3070 degrees of freedom

## Multiple R-squared:  0.7382,  Adjusted R-squared:  0.7381 

## F-statistic:  8654 on 1 and 3070 DF,  p-value: < 2.2e-16

Using your new skills, you can see the p-value of the UFO variable is really tiny at < 2e-16, indicating the 

connection is significant and the R2 value is 0.74. That’s quite impressive. The coefficient on UFO sightings 

(8.31867) tells you that for every UFO sighting, you should expect about eight more ZeroAccess infections. 

This is an incredibly strong model, and there is enough to submit to a hoity-toity peer-reviewed journal 

explaining how you have scientifically proven that UFOs are causing the spread of ZeroAccess malware! 

We can see the headlines already:

Researchers Link ZeroAccess Infections to Alien Visitors

Before you get ahead of yourself, maybe you should looks at some of these other variables. Even though 

we cautioned about adding in too many variables, you’ll need to explore these relationships and various 

models. Chapter 9 will discuss some techniques for variable selection. For now, run another regression with 

all of these variables and see what happens (Listing 5-21).

LISTING 5-21
# requires object: za.county (5-14 and 5-15)

summary(lm(infections ~ pop + income + ipaddr + ufo2010, 

           data=za.county))

## Coefficients:

##               Estimate Std. Error t value Pr(>|t|)

## (Intercept)  1.091e+01  5.543e+00   1.968   0.0492 *

## pop          7.700e-04  9.072e-06  84.876  < 2e-16 ***

## income      -2.353e-04  1.215e-04  -1.937   0.0528 .

## ipaddr       2.281e-06  3.027e-07   7.534 6.41e-14 ***

## ufo2010      5.495e-01  9.943e-02   5.526 3.54e-08 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 74.9 on 3067 degrees of freedom

## Multiple R-squared:  0.9261,  Adjusted R-squared:  0.926 

## F-statistic:  9610 on 4 and 3067 DF,  p-value: < 2.2e-16

Scanning down the p-values, it looks like all of these are quite tiny with the exception of income, 

which looks like it may be suspect, and you could try re-running this with income removed. However, the 

influence of IP address and UFO visits still appear strong. Notice that as you’ve added more variables, the 

influence of UFO visits has dropped (the coefficient is smaller and the p-value increased) and is accounted 

for in other variables.

Although you have all of these variables in this model, you should check for something we discussed 

in the “Understanding Common Pitfalls in Regression Analysis” section earlier in this chapter called 
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multicollinear variables. This is when two or more of the input variables are correlated and that rela-

tionship is masking the [in]significance of a variable. You check for this by looking at something called the 

variance in�ation. R has a nice vif() function in the Companion to Applied Regression (car) package 

(see Listing 5-22). As a general rule, if the square root of the variance inflation is greater than 2 (something 

I have to look up every time I do this), the variables are correlated and you shouldn’t trust that both are 

significantly contributing to the model.

LISTING 5-22
# requires object: za.county (5-14 and 5-15)

library(car) # for the vif() function

model <- lm(infections ~ pop + income + ipaddr + ufo2010, 

            data=za.county) 

sqrt(vif(model))

##      pop   income   ipaddr  ufo2010 

## 2.165458 1.038467 1.046051 2.115512 

You can see that the population and ufo2010 are collinear. Oh no! Is it possible that UFO sightings 

are just a function of population? In order to test that, you normalize the population. To do so, you just 

divide both values by the population, making them infections and sighting per capita, and rerun the single 

regression (Listing 5-23).

LISTING 5-23
# requires object: za.county (5-14 and 5-15)

za.county$za.by.pop <- za.county$infections/za.county$pop

za.county$ufo.by.pop <- za.county$ufo2010/za.county$pop

summary(lm(za.by.pop ~ ufo.by.pop, data=za.county))

## Coefficients:

##              Estimate Std. Error t value Pr(>|t|)

## (Intercept) 7.050e-04  1.213e-05  58.106  < 2e-16 ***

## ufo.by.pop  2.679e-01  6.956e-02   3.852  0.00012 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.0005793 on 3070 degrees of freedom

## Multiple R-squared:  0.004809,  Adjusted R-squared:  0.004485 

## F-statistic: 14.84 on 1 and 3070 DF,  p-value: 0.0001197

Great! The p-value is still under 0.05! But . . . oh . . . wait a second, the R2 value is telling you that this 

model is quite useless, as it describes 0.4 percent of the data (R2 is 0.004). At this point, it might be safe to 

listen to that little voice of logic and conclude that UFO visits and ZeroAccess infections are not related (so 

much for the grant money).

Let’s run one more analysis, but keep in mind that all of this data is available for download from the 

book’s website along with the code in this chapter. There is plenty of room for exploration here.
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What Is Correlated to ZeroAccess Infections?

Say you have a strong suspicion (or you’ve applied some of the variable selection techniques discussed in 

Chapter 9) that the population of a county is the best overall predictor of how many infections occur in 

that county (see Listing 5-24). 

LISTING 5-24
# requires object: za.county (5-14 and 5-15)

summary(lm(infections ~ pop, data=za.county))

## Coefficients:

##              Estimate Std. Error t value Pr(>|t|)

## (Intercept) 4.545e-01  1.435e+00   0.317    0.752

## pop         8.204e-04  4.247e-06 193.199   <2e-16 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 75.92 on 3070 degrees of freedom

## Multiple R-squared:  0.924,  Adjusted R-squared:  0.924 

## F-statistic: 3.733e+04 on 1 and 3070 DF,  p-value: < 2.2e-16 

With an R2 value of 0.94, you’re going to be hard pressed to add more variables in here that mean much. 

Sure enough, when you cycle through the other variables, you’ll find that income and the number of IP 

addresses in that county do not add much to the overall model. What you can draw from the output of the 

regression on population is in the coefficient of 8.313e-04, which is engineering notation for 0.0008313. If 

you invert that number (1/0.0008313), you can determine that for about every 1,200 people a county has, 

you can expect one more infection of ZeroAccess. 

Go back to the maps to see whether you can’t visualize what this looks like at the county level. You 

can generate a choropleth map at the county level for the number of infections and the population. If the 

regression analysis is accurate, you should see a very clear relationship between the two (see Figure 5-10).
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FIGURE 510 Visual relationship between ZeroAccess infections and population
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Summary
You created quite a few maps in this chapter, with points and with choropleths. Although you can pick out 

variations across the map quite rapidly with the visual representation, you shouldn’t rely solely on visualiza-

tions with spatial data. Even though the maps showed variation, the data showed through linear regression 

that population largely explains the variation. That’s something to consider when you’re creating maps 

(or any other visualization for that matter). Be sure to take a step back and ask the ever-popular question of 

“So what?!” If you can’t answer that question, maybe you don’t need the map at all and the analysis needs 

to go in a different direction.

Recommended Reading
The following are some recommended readings that can further your understanding on some of the topics 

we touch on in this chapter. For full information on these recommendations and for the sources we cite in 

the chapter, please see Appendix B.

Data Points: Visualization That Means Something by Nathan Yau—Yau provides several 

beautiful geospatial visualizations and discusses the design principles behind them. There is no 

example code, but plenty of inspiration among the pages, plus he included a map of UFO sightings.

R Graphics Cookbook by Winston Chang—If you will be doing any visualizations with R, you 

should have this book. Winston Chang goes into more depth on map creation than we do here and 

includes hands-on examples and explanations for R.

Naked Statistics: Stripping the Dread from the Data by Charles Wheelan—When it comes 

to introductory material on statistics, nothing beats this book. Wheelan presents the statistical 

concepts without heavy math and builds up to a chapter on linear regression, covering many of the 

assumptions and pitfalls of the technique. 
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“The human visual system is a pattern seeker of enormous power and subtlety. 
The eye and the visual cortex of the brain form a massively parallel processor that 

provides the highest bandwidth channel into human cognitive centers.”

Colin Ware, Information Visualization

Visualizing Security Data
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Chapter 1 briefly mentioned that data analysis is similar to how archeology might be: spending hour after 

hour with small tools in the hope of uncovering even the tiniest of insights in the earth. That analogy can 

be extended into the shared desire to create a narrative. Archeologists attempt to recreate the stories of 

history by digging up parts of a story; it’s the same with data analysts. There are stories buried in the data; 

and it’s up to the data analyst to uncover that narrative, piece it back together, and communicate that story 

to others. When it comes to data, with its unique blend of complexity and subtlety, nothing can tell a good 

story—a data story—like a well-crafted visualization.

A data story is built from several attributes, the two most important of which are truth and relevance.

Although you can have a good story without truth, you cannot have a good data story without truth. You 

cannot affect meaningful and successful change if your stories are built on lies or half-truths. Therefore, 

you need all the skills to uncover the truth within the data, and then you need the visualization skills to 

be sure the story the reader perceives matches the story you uncovered. The visual language should be a 

wrapper around the truth; thus, it needs to be clear and unambiguous. Every point, line, color, and shape 

you place into a visualization should carry some piece of information supporting the truth in the data and 

in the data story.

A good story is good only when it is relevant and actionable to the reader. You wouldn’t want to show 

a board-level executive the Security Incident & Event Management (SIEM) dashboard any more than you’d 

want to force market reports on the SIEM operator. Stories fail to communicate if the readers don’t feel 

they apply to them. Therefore you have to know the audience for your visualizations. Are you trying to 

elicit a budget change or firewall change? As you create your message, a good question to ask yourself is 

“so what?” and if you struggle to answer that question for the reader, rethink the approach. Another good 

mental exercise is to run through a few other possible outcomes of the story. If the result of the visualiza-

tion is the same (from the reader’s perspective), you should be rethinking the visualizations. For example, 

if you’re showing a line graph with an obvious upward slant, imagine if that line went down. Would the 

reader have a different reaction? If it went up much more than it does, so what?

We aren’t suggesting that all data should be visualized. If the story in the data is best summarized with 

a sentence in an email, so be it. If the data can be expressed in a simple lookup table, so be it. The goal here 

is communicating the data. If you can communicate better, more succinctly, or simpler in any other way, 

you should go with that method. We also aren’t suggesting that visualizations be the center of the story. All 

data exists within a context, and all our stories need to have a beginning, middle, and end. Visualizations 

can play an important and supporting role in the entire communication process, but it should not be the 

only means of communication. Your focus is on the successful communication of the narrative and 

the method of communication is just a means to that end.

Why Visualize?
By far, the most efficient path to human understanding is through the visual sense. Like a good hacker, you 

need to learn about the system, understand how it functions (or why it doesn’t function), and then exploit 

this cognitive system to achieve your goal. In this case, the goal is to effectively and efficiently communicate 

the stories you find in the data. There are many advantages to using data visualization as a communication 
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tool compared to other methods. To paraphrase Colin Ware (who we quoted to open this chapter), data 

visualization has the following advantages:

 ● Data visualizations communicate complexity quickly. Descriptive statistics (mean, median, 

variance, and so on) exist to describe and simplify data but tend to remove subtleties that exist. It’s 

possible to communicate millions of data points in seconds while minimizing the loss of detail and 

resolution through visualization. 

 ● Data visualizations enable recognition of latent patterns. Patterns that would never be appar-

ent using statistical methods or scanning the data may be revealed through visualization. When 

data is visually presented, patterns in a single variable or relationships across many variables may 

leap off the screen. 

 ● Data visualizations enable quality control on the data. Mistakes and errors in data collection or 

preparation can often be revealed through visualization. Data visualizations can serve as a good 

and quick sanity check on your work.

 ● Data visualizations can serve as a muse. It’s been said that most breakthroughs in science didn’t 

start with a “Eureka!” but instead with a “Huh, that’s odd.” Laying out the data visually can give you 

a new perspective and help facilitate your thinking and discovery processes.

Unraveling Visual Perception
The human system for processing visual information is incredibly complex and much of our knowledge 

around it is still evolving. There are a few key (and hopefully easy) concepts that you should understand 

since knowing how the brain visually processes information will help you create great visuals. Equally as 

important, knowing this information will also help you avoid creating visuals that aren’t effective or helpful. 

Our eyes convert visual stimulus in the form of light into electrical signals for our brains. This informa-

tion passes through stages of our visual memory, each with a specific set of strengths, limitations, and 

functions. Before we are consciously aware of it, our brains rapidly scan the visual field, which is called 

preattentive processing. Finally, the brain will instruct the eyes to focus elsewhere, and through a series 

of saccadic movements, our eyes will focus on various features to help build the image in our mind. 

The goal is to use three concepts from our visual processing system to create a solid foundation for good 

visuals and dashboards. 

Visual Thinking

This section steps through the various stages of memory within our visual perception: iconic memory, 

working memory, and long-term memory.

 ● Iconic memory is the first stop for the visual information. It is a very brief stop, lasting around 

half a second or until new information comes in. What happens in this tiny window is critical to 

creating good visualizations and dashboards. Using the information stored in iconic memory, 

the brain preprocesses the image prior to giving it any conscious attention. From an evolution-

ary perspective, this is quite helpful; this preattentive processing can help you quickly identify 
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possible threats in your environment. For example, anyone who has been driving when an animal 

dashes in front of the car has probably felt that urgent message from the brain when it recognizes 

a possible threat. We begin to react immediately even before we can process the full extent of the 

threat. Even though you don’t want your visualizations to be treated like a threat, through the use 

of colors, shapes and other cues, you can leverage this visual searching and preattentive process-

ing in order to draw attention and communicate some basic attributes of your data. This will make 

processing much easier when viewers begin to consciously process it, and we will discuss preat-

tentive processing in detail later in this chapter.

 ● Working memory is the next stop and things get a little more complicated here. First the brain 

groups visual aspects into meaningful objects and holds these in working memory. There is a lot 

of flexibility within working memory. We can rapidly replace or drop objects as we take in more 

information, but this flexibility comes at a cost in capacity. We can hold only three to five objects in 

working memory depending on the task and objects. This limit is important when you are design-

ing visualizations and dashboards. If you create a visualization with a legend that has 10 different 

attributes, viewers will have to continually reference the legend in order to understand what 

they’re looking at. Therefore, as you communicate the stories in your data, limit each visual to no 

more than five objects (or four to be safe). 

 ● Long-term memory is not directly involved in the visual processing but instead affects visual commu-

nication through the expectations and norms built up in long-term memory. In order for something 

to move into long-term memory, the viewer needs to visually “rehearse” the information to transi-

tion it from working memory into long-term memory. If the reader has seen visualizations before 

(and chances are very good they have), they have a certain level of expectation for what they are 

looking at. For example, if you create a scatterplot, the reader expects the origin of the graph to be in 

the lower left corner, with positive values of each axis extended up and to the right. If multiple colors 

are used, the reader will expect meaning to the color and will seek it out. It’s very important to know 

what those norms and expectations might be, and if you deviate from them, do so for a very good 

reason and give visual queues to help people understand those deviations.

Tracking Eye Movements

When people focus on something like a dashboard or graphics on a computer screen, they do not simply 

fix their gaze on it and take in the image as a whole. Their eyes actually dash around the screen, focusing 

on very small portions for very short periods of time in order to build the image in their mind. These rapid 

eye movements are called saccades, and overall they are called saccadic movements. They are anything 

but random. The brain has a set of rules (guidelines really) for how the next fixation point is prioritized. As 

an example, when another person greets you, your eyes perform scanning saccades over their entire face, 

bouncing from the distinct features of the face (eyes, nose, and mouth) and establishing the edges. The scan-

ning saccades help you recognize not only the person, but also cues to allow you to judge their emotions.

The same applies to visualizations and dashboards. The eyes will fixate on an obvious feature and bounce 

around and between the points it considers important. Viewers build up the entire picture over a series of 

these movements and over time. Understanding these movements can help you build a visualization flow 

that seems natural (or at least not strained). 

The saccadic motion is largely unconscious and is thought to be a ballistic movement. Once the brain 

initiates a saccadic movement, the muscles take over and handle the rapid acceleration and deceleration 

from beginning to end. This is important for two reasons—once it is initiated it cannot be changed or 
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stopped and during the motion we suppress much of the visual input. We will want to limit the distance 

of these motions by creating compact dashboards and visualizations.

We can pull together a few important learning points from saccadic eye movements. Knowing that the 

eyes will bounce around from feature to feature and understanding the ballistic nature of the movement, 

you should keep several points in mind as you create dashboards and graphics: 

 ● Don’t overload the dashboard with visual features. Keep the number of attention-grabbing 

features under control because if everything is important visually, nothing will be important visu-

ally, and the reader will have to put more effort into understanding the visual.

 ● Make the important messages obvious visual features. Just as we scan the important parts of 

a human face, we look for the similar attention-grabbing features on the screen. Make sure that 

those features are clear and important to the viewer.

 ● Limit time wasted on saccadic movements. Saccadic movements that jump longer distances take 

longer to execute. Do not push the visual features into the corners or toward the edges. Forcing 

the viewer to bounce across large distances will decrease the amount of time they are actually 

seeing the features (and increase the time spent in saccadic movements).

The role of saccadic movements is more significant in the design of dashboards than with static data 

visualizations. A static visualization will typically have one, perhaps two, visual features we want to draw 

attention to, and the eye movements are contained in a relatively compact space. A dashboard may be 

designed to communicate several independent messages simultaneously with varying degrees of urgency. 

Good dashboard design, as you’ll see in Chapter 10, limits the time viewers spend in a saccadic movement 

and exploits eye movements for efficiency.

Preattentive Processing

The best way to describe preattentive processing is through pictures. Take a look at Figure 6-1 and try to 

count how many capital Xs there are in this completely random mix of letters and numbers.

Because all of the letters are the same color and contain the same relative space, nothing about any of 

the characters really stands out. The brain simply sees a collection of shapes. In order to count the Xs, you 

have to scan through each letter across the four rows. While you’re doing that you also have to remember 

how many you’ve found so far. In contrast, look at a completely random mix of letters and numbers with 

the X characters emphasized (see Figure 6-2).

You can immediately see the Xs and count four of them. When you first look at this, your brain sees 

a background of gray symbols with four completely different objects that are similar to each other. Your 

preattentive processing mentally creates two groups: one of all the gray symbols and a second with the 

FIGURE 6-1 Count the number of “X” characters
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dark red Xs. A split-second later, you will consciously recognize the second group as what you’re interested 

in (the Xs). It becomes trivial to visually exclude the gray characters and now you can scan just through this 

group. Counting the Xs becomes a simple and quick task. 

That mental grouping and ease of focus is what you’re after. You want to enable your preattentive 

processing to effortlessly group similar objects and highlight where you want attention to be focused. But 

you have to keep in mind that the preattentive processing is not all that smart. It cannot project meaning, 

interpret the objects, or make meaningful associations (beyond simple visual grouping). 

Through hundreds of studies, researchers have been able to differentiate between visual attributes 

based on those that can be identified preattentively and those that can’t. Some of these studies seem a 

little silly or abstract (for example, how easy is parallel detected?), but by looking at them as a whole, we 

can create some basic visual attribute categories that can be preattentively processed.

These categories are: 

 ● Form (line, shape, and size)

 ● Color (hue and intensity)

 ● Spatial position (two-dimensional, stereoscopic)

 ● Motion (blink, direction)

The list of specifics within those categories can get quite long, but, thankfully, you can experiment with 

your graphics to find what works. If one version doesn’t highlight the data, try something different. If it’s 

easy for you to pick out what’s important, chances are that it’ll be easy for others. Of course, it’s always a 

good idea to run things by others as a sanity check. Figure 6-3 shows some ways to differentiate based on 

preattentive attributes.

Not all preattentive attributes are created equal. Look at Figure 6-3 again. Although they all highlight the 

three data points, some make the three points slightly easier to see than others. In Figure 6-3(e) for exam-

ple, if you used pink and red, it would be slightly more difficult to pick out the subtle difference in colors. 

The amount of “pop” for preattenttive attributes depends on how different the attributes are. The shapes in 

the example in Figure 6-3(a) are more different from each other than the circles and squares in Figure 6-3(b) 

and slightly easier to see. It’s still possible to distinguish the difference in Figure 6-3(b), but it’s just not as obvious.

This concept of preattentive processing should be treated as just that—a concept. The line between 

our preattentive processing and conscious processing is blurry. When looking at a visualization, you can 

slip between the two quickly and quietly. With repeated exposure, you can actually train our preattentive 

processing. Meaning, over time, no matter how poorly designed a dashboard is, analysts will eventually 

pick up skills to quickly identify important features depending on environment and culture. But the point 

remains—if you want to direct the viewer’s focus and attention, you should leverage some basic elements 

like form and color to highlight the point you need to make in the data. 

FIGURE 6-2 Now, count the number of “X” characters
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Finally, one last word of caution about preattentive processing: It’s possible to overload this process 

and negate any benefit. Take a look at Figure 6-4. 

 ● In Figure 6-4(a), we have separated the data into three groups and then coded them by color. It’s easy 

to tell them apart.  Not only are they spatially grouped, but color highlights their differences. 

 ● In Figure 6-4(b), we separated the data into two groups—diferent from the groups in 

Figure 6-4(a)—and then coded them by shape. It’s a little harder to tell them apart, but you can 

still pick out the two groups. 

 ● When we combine the methods in Figure 6-4(c), things get a bit more complicated. To separate them 

based on shape, you have to actively inspect individual elements and separate them consciously.

The lesson here is that you have to be careful to keep the visuals as simple as possible to exploit the 

viewer’s preattentive processing for their benefit.

FIGURE 6-3 Examples of preattentive attributes

Note

This chapter has a lot of visualizations and not a lot of source code. If you are interested in 

how we created the figures in this chapter, the accompanying source code for the chapter 

is on the book’s website (www.wiley.com/go/datadrivensecurity).
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Understanding the Components of Visual 
Communications
The chapter began by looking at how the brain visually processes information, including how you can 

leverage your preattentive processing and saccadic movements to increase the viewer’s visual perception. 

This section focuses on the visual building blocks and material that you have to work with. You need to 

begin with the data and encode the values through various attributes like position, shape, length, and size. 

Perhaps you’ll want to encode changes over time with slopes or angles and separate categories by color 

hue, saturation, or lightness. If you combine elements, you can communicate relationships and groupings. 

Every choice you make in creating a visualization will affect how well others will decode the data. 

Avoiding the Third Dimension
First and foremost, unless you are creating a physical data sculpture, or are working with special software 

that allows you to model in three dimensions, you are dealing in two dimensions. The screens you look at, 

the reports you print, and the slides you project on the wall are all limited to width and height. Of course, 

you can simulate a third dimension of depth, but this is a challenge. Simulating a third dimension will 

always be just that, a simulation.

In order to simulate depth, you need to change the very attributes you are using to convey the mean-

ing of your data. Elements that are closer in the simulation will need to be bigger and those further away 

will be smaller. The effect from the simulated perspective will modify the viewer’s ability to compare and 

consume the data accurately. For this reason, we strongly recommend staying away from plotting in three 

dimensions. Plus, two dimensions offer a tremendous amount of flexibility. Even though readily available 

desktop tools like Excel make 3D charts incredibly easy, you should fight the urge if your goal is to com-

municate your data to others.

Don’t think of working with two dimensions as a limiting factor any more than just 12 notes in a chro-

matic scale is limiting to Western music. Much research has been conducted into communicating in two 

dimensions; we will highlight two seminal papers published in the mid-1980s by two statisticians—William 

S. Cleveland and Robert McGill. They open the first paper, “Graphical Perception: Theory, Experimentation, 

and Application to the Development of Graphical Methods” with, “The subject of graphical methods for data 

analysis and for data presentation needs a scientific foundation.” And, they did just that. They conducted 

FIGURE 6-4 Too many attributes
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experiments where subjects were shown various graphics 

and measured how accurately they were able to visually 

decode the quantitative information in them. In their sec-

ond paper, “Graphical Perception and Graphical Methods 

for Analyzing Scientific Data,” they updated their results 

and offered an ordered list of visual encodings and the 

relative accuracy in their decoding. See Figure 6-5.

These are not mutually exclusive and the distinctions 

between these methods can get a little blurry. For exam-

ple to decode a simple bar chart, you might use position 

on a common scale to determine the quantity, but then 

use length to compare two bars within the same chart. 

In a pie chart, you might primarily use angles, but the 

area of the slice and arc length may also factor into your 

perception. The findings from this research should serve 

as a guideline. If your goal is communicating quantita-

tive data accurately, a bar chart is always better than 

a pie chart and a grouped bar chart is better than a 

stacked bar chart. 

As with all guidelines, you can deviate from this advice. Sometimes your goal is not to convey specific 

quantitative data, and the lack of accuracy in decoding is desired. As an example, look at Figure 6-6. When 

looking at the pie chart on the left, it is relatively difficult to gauge the specific difference between the five 

slices. Looking at just the pie chart, you’d probably conclude that they are all about equal. However, if you 

look at the bar chart on the right, it’s relatively trivial to see the differences because you are using position 

on a common scale. Obviously, if you had confidence in the accuracy of the data, the bar chart on the right 

is far easier to interpret. But what if the data you have is from a small opinion survey? Although you can 

calculate precise values, the differences in the values could easily be explained with sample error. In this 

case, you could justify using a less accurate method to communicate the data. 

FIGURE 6-5 Accuracy of decoding

FIGURE 6-6 Comparing pie and bar charts
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Using Color
If you’ve not been tasked with selecting colors for a project, this brief introduction may make color selec-

tion seem easy. There are a few guidelines about which types of color palettes go with which types of 

variables, and a deep well of knowledge from color research has created a handful of easy rules for palette 

creation. However, it won’t be until you’re trying yet another set of colors in your visualization that you will 

truly appreciate the words of Edward Tufte from his book Envisioning Information: “Avoiding catastrophe 

becomes the first principle in bringing color to information: Above all, do no harm.”

There are many websites and tools that apply color theory to make palette selection relatively painless 

(see Appendix A for a complete list of resources, but ColorBrewer [http://colorbrewer2.org/]

and HCL Picker [http://tristen.ca/hcl-picker/] are our favorites). With some understand-

ing of your data, picking pertinent colors is the easy part. Colors also have to support and hopefully even 

highlight the message and be pleasing to the eye, which has a large element of subjectivity and is unique to 

each and every visual story. This creates the challenge with color: You have to balance function, aesthetics, 

and theory across just a handful of colors. 

Color Is Relative

The first and perhaps most important aspect of color selection is that colors are always interpreted relative 

to the surrounding environment. For example, Figure 6-7 shows two rows of gray boxes on a gradient back-

ground. Even if you know each row has a consistent shade of gray, you will still see different shades on the 

same row as you scan from side to side. And to some, the upper-left box looks to be the same color as 

the lower-right box. That’s because you see the shade in the boxes relative to the surrounding background. 

The boxes appear darker on a white background and lighter on a dark background. You can use this fact 

to your benefit. If you want to emphasize one variable above all else, you can choose a contrasting color 

from the rest. For example, red shapes will stand out among shades of light blue shapes, but will blend in 

with pink and orange shapes. 

Save the Pies for Dessert

If you are new to data visualization, there are essentially two distinct (and sometimes very passionate) 

opinions when it comes to visualizations that use techniques lower on Cleveland’s accuracy list. Pie 

charts are often at the center of debate since they are used (and abused) more often than others. 

The core argument against pie charts is that the data can always be represented better and more 

accurately with other methods. As Stephen Few said in his 2007 paper “Save the Pies for Dessert,” 

“Of all the graphs that play major roles in the lexicon of quantitative communication, the pie chart 

is by far the least effective. Its colorful voice is often heard, but rarely understood. It mumbles when 

it talks.” On the other side is the point we made here—that the goal of communication may not be 

precision. There are other less convincing arguments in the defense of pie charts, but there is one 

piece of common ground: Choose the visualization method deliberately and be sure it communicates 

the message you want to send. 
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Palettes Depend on Data

We briefly discussed data types in a sidebar in Chapter 3 titled, “Isn’t ‘data’ just ‘data’?”  There are only a 

handful of high-level data types that you’ll need to be aware of and most of them fall into either categori-

cal or quantitative values. 

 ● Categorical data are represented as groups with category names, such as operating systems by 

type or lists of programming languages. Categorical data sometimes has a natural order. Rankings 

such as “first,” “second,” “third,” or “high,” “medium,” and “low” are treated like categorical values 

but have an added sense of order.

 ● Quantitative data are numerical values, which are things you count or measure such as bytes, pack-

ets, sessions, number of servers, and so on. 

FIGURE 6-7 Visual signal and noise detection illusion

We Are the 99 Percent 10 Percent

Nearly 10 percent of males and about 1 percent of the females are color blind. This means that at 

some point (probably sooner than you think) your visualizations and dashboards will be viewed by 

someone incapable of seeing the entire spectrum of the rainbow. Having some understanding of 

the types of color blindness can help you choose colors that everyone can see. The largest portion 

of color blind people have either protanomaly (red blindness) or deuteranomaly (green blindness), 

making red and green a poor choice to include in the same graphic. Some color-selection tools (like 

ColorBrewer) factor in color blindness and have an option to select colorblind safe palettes. Whatever 

your color tools are, keep in mind the 10 percent.
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The difference between categorical and quantitative can sometimes be tricky. For example, TCP/UDP 

port numbers appear quantitative since they are sequential numbers going up to 65,535. But you have 

to treat them as categories: You would never add echo and two telnet ports to get DNS because the 

sum would make no sense in terms of port numbers. Another confusing data type is date/time. Most of 

the time you’ll treat it as an ordered categorical variable (such as the year, month, day of week, and so on), 

but other times you’ll store it as a quantity (seconds since the epoch) to enable calculations on time and 

time series data.

You have to be careful when using colors to represent a quantity. Consumers are relatively inaccurate 

when decoding quantity from a color scale. But color can be used in circumstances where rough compari-

sons are enough. For example, back in Figure 5-7 in Chapter 5, you don’t need to see that exactly 1 in 724 

people in Wyoming were infected with ZeroAccess. The color is simply communicating that Wyoming had 

more infections per person than any other state. 

Figure 6-8 shows three types of color palettes—sequential, divergent, and qualitative—from the 

ColorBrewer website. 

 ● You select a palette of sequential colors to represent quantity or perhaps ordered categorical data. 

Sequential color palettes are built using a single hue (blue, for example) and then adjust the light-

ness or saturation of that color to cover the range of the quantitative data. 

 ● Divergent colors are also used on quantitative or ordered data, but help communicate above or 

below some middle value. Typically, the middle value is white and two divergent hues are used on 

either end. Divergent color scales may be used to convey two directions in the data such as above 

or below average (as it was used in Figure 5-7). 

 ● Finally, you have qualitative colors, which are intended to simply be distinct from one another. This 

makes them well suited for visualizing categorical data.

Putting It All Together
We’ve laid some good groundwork here, so it’s time to look at how these things come together to help 

communicate your data. This section spends less time talking about how to create these and more time on 

why we create these as we do. All of the source data and code needed to create these visualizations in this 

chapter are on the book’s website. Creating the basic types of plots is relatively easy using the R language 

and ggplot2. Most of these plots are available as options in more familiar tools such as Excel.

Using Points

The easiest method to communicate and compare two quantitative variables is the basic scatterplot. 

Scatterplots position points along a common scale (both x and y scales) and allow the viewer to very 

FIGURE 6-8 Sample color palettes from ColorBrewer
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accurately determine the value of each variable for each data point and to make comparisons between 

points. It is insanely simple to create scatterplots in R (plot(x, y)). You can do this often just to “see” 

the data you are working with. For example, Figure 6-9 shows 8 hours of firewall traffic. Each dot represents 

total number of packets (x-axis) and total number of bytes transferred (y-axis) processed by the firewall 

over 5 minutes. 

This is a good example of a pattern quickly jumping out of a plot. You can see that the firewall traffic 

for the day ranges from 7 to 19 gigabytes, and packets range from 12 to 27 million. The linear relationship 

is very apparent here: As you see more packets, you see more bytes. Now this isn’t exactly a news flash or 

all that informative, but a simple scatterplot can show patterns when you’re not sure whether they exist. 

Figure 6-10 shows an example of a scatterplot that reveals something you didn’t know. The time of day is 

along the x-axis and the number of sessions is on the y-axis.

The scatterplot in Figure 6-10 has a few extra features. Note the faint lines down from the points; they 

give just a hint of a bar chart and visually tie the points (which are rather bunched up) back to the x-axis. 

To highlight the repeating element of time, the line at the top of the hour is thickened (and falls on the grid 

lines); the points also change to red every 30 minutes. There is a noticeable dip at the top of the hour and 

not much change at the half-hour marks, and it’s important to emphasize those times for easier comparison 

(remember the preattentive processing?). What is the cause of this dip? Perhaps this organization has a 

meeting-heavy culture, and network activity drops as people head to their next meeting? You can’t know 

the cause from this data, but the dip pattern really jumps out with a simple scatterplot.

FIGURE 6-9 Basic scatterplot
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Creating Directions with Lines

You may have heard at some point that “lines are just points in motion,” and that’s true—you generally 

see lines having a sense of direction. In this section, you’ll take the same firewall traffic and separate the 

types of devices on the network: 

 ● Desktops

 ● Servers

 ● Printers

 ● Networking equipment

You’ll see two plots: first, the same type of scatterplot as the time series and then a line plot (see 

Figure 6-11). 

FIGURE 6-10 Dot plot: packets over time

FIGURE 6-11 Line plot: traffic by device
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It’s rather clear what’s going on with the line plot and it’s easy to follow the traffic over time for each 

of the four devices. The scatterplot on the left is a little difficult to follow, although you can see trends and 

differences between the categories. Line plots are quite good at accurately communicating data; they 

compare points on the line along a common scale and use the slope of the line as a sign of change. For 

example, notice the steep slopes in the data series for printers. Most commonly, line plots have an ordered 

variable on the horizontal axis (often “time”) and one or more quantitative variables on the vertical axis. 

(It’s possible to flip the orientation depending on the presentation circumstances.)  In this case, you are 

plotting number of packets (quantitative) on the y-axis against successive five-minute periods (ordered) 

with each line representing a category of device. 

Building Bar Charts

Bar charts are one of the most effective ways to communicate when one variable is quantitative and the 

other variable is categorical. There are a few variations on the basic bar chart. Figure 6-12 shows three differ-

ent ways of displaying vulnerability counts and severity classification per device. On the far left, you have a 

typical bar chart with vertical bars. One simple modification (not shown) would be to flip the orientation so 

that the bars are horizontal. The difference between vertical and horizontal orientation is largely aesthetic 

and depends on where the chart will appear. The vertical bar chart is simple: The length of each bar is pro-

portional to the total number of vulnerabilities for each device type. You can easily see that workstations 

have the most vulnerabilities, and servers are close, with 20 percent less or so. In comparison, it is obvious 

that the number of vulnerabilities in networking devices and printers are quite small.

The other two bar charts have an additional categorical variable for the severity of the vulnerability

—High, Medium, or Low. The stacked and group bar charts use sequential color scheme severity levels. 

With the stacked bar charts, you are still able to compare totals. It’s still clear that workstations have more 

vulnerabilities than all others. But comparing across severity is difficult as you lose the common scale. As 

an example, attempt to visually compare the high vulnerabilities of workstations to servers. Since they 

are not aligned you judge them purely by length on a non-aligned scale and are therefore less accurate.

Now look at the grouped bar chart and it quickly becomes clear that workstations have more high-

severity vulnerabilities than servers. The one drawback to the grouped bar chart is that you lose the overall 

count comparison. When the overall totals are close, it’s more difficult to tell that workstations have more 

vulnerabilities overall from the grouped bar chart. The type of bar chart you choose is largely dependent 

on the message you are trying to send. 

Log Scales for Logs

In Figure 6-11 the y-axis is plotted on a logarithmic scale. Notice how the values on the axis increase 

by powers of ten for a given physical distance on the plot. If this plot was plotted on a linear scale, 

you’d see the workstation traffic at the top and the other three lines would be reduced to almost 

zero. We chose a log scale because we needed to show these data series on the same chart, even 

though they differed by three orders of magnitude. . You have to be careful when you use a log scale. 

Most people in business are used to seeing linear scales, and they are conditioned to do comparisons 

assuming a linear scale. For example, the viewers might come to the conclusion that the networking 

equipment has about half the traffic of the workstations because it’s visually about half the distance 

from the axis. But, in reality, workstations are generating about 10,000 times more traffic than net-

work devices. If the logarithmic scale isn’t clear to the viewers, they could draw incorrect conclusions.
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Leveraging Opacity

Another technique for communicating differences in variable values is the opacity or transparency of colors 

within graphs. If the data is overlapping or dense and you plot it with a solid opaque color, you have no 

way of knowing just how many points are stacked up underneath that. Luckily, you can simply make the 

color semi-transparent. This will allow any points beneath to show through a given point. Within R there 

are two methods for doing this. First within ggplot2 most (perhaps all) of the chart types allow for an 

alpha setting between 0 and 1 (alpha is the term used in color specifications to define opacity). Or you 

can code the alpha right into the color with a 4th byte, meaning a red value of #FF0000 is the same as 

#FF0000FF (with the last FF setting opacity to maximum). If you want to set opacity to 50 percent, 

255/2 = 128 = 0x80, so you can set the color to #FF000080. The red color is now 50 percent opaque. The 

benefit of adjusting the alpha (opacity) is demonstrated in Figure 6-13.

FIGURE 6-12 Bar charts: vulnerability counts

FIGURE 6-13 Bubble chart: opacity shows stacking
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These two charts show the same data: 8 hours of firewall data for networking devices split into 5-minute 

totals. The number of network sessions is plotted along the x-axis and the number of bytes is on the y-axis. 

The size of each point (“bubble”) is proportional to the packet count. One challenge in this visualization is 

that many points overlap. By setting the alpha value to 1/3 in the chart on the right, you can see through 

any bubble to bubbles that lie underneath it. 

It’s handy for you to set the alpha as a fraction (such as 1/3 instead of 0.33) because it makes it obvious 

how many points or bubbles will stack up to equal the maximum color value (solid). This allows you to 

tweak the alpha for how many layers you have. If you have 50 layers (some of the maps in Chapter 5 have 

code that use small alpha values like this), you can set the alpha to 1/50 (as opposed to converting to 0.02 

and typing that in).

Size Encoding

Figure 6-13 is encoding another quantitative variable by mapping the size (area) of the circle (“bubble”) 

to the number of packets in a 5-minute period. Looking back at the accuracy chart in Figure 6-5, you can 

see that area is relatively low on the list. This difficulty is compounded in Figure 6-13 because there is no 

legend for bubble size (an intentional oversight on our part). But for the purposes of this chapter, note the 

relative values here—the relatively large versus relatively small number of packets. In a more formal set-

ting, you’d want to add a description to the title or use some other annotation to indicate the significance 

of the “bubble” size. For the purposes of this exercise, you are simply looking for any obvious patterns and 

this type of graphic shows relative sizes. Bubble charts like this are good for crude estimates, and are thus 

similar in communication capability to pie charts. 

Another visualization method with similar traits is the treemap. A treemap uses area and color to 

encode two quantitative variables (see Figure 6-14). The treemap visualization method relies on area, 

and thus is relatively low in visual accuracy. 

FIGURE 6-14 Treemap: devices and traffic on the network
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Figure 6-14 portrays the number of devices on a network and the traffic volume for each type. It uses 

the size of rectangles to communicate a quantity and the color of the rectangle to communicate a different 

quantitative variable. Often times the rectangles are visually grouped to depict categorical relationships. 

In Figure 6-14, the size of each rectangle is proportional to the quantity of devices on the network by type 

(workstations, servers, and networking devices), and the lightness of color of each rectangle is proportional 

to  the volume of traffic they produce (normalized). 

We should reiterate—a treemap combines two relatively inaccurate methods of encoding quantities. 

This makes treemaps difficult to execute well and often confusing to viewers. The same rule applies to 

treemaps as to pie charts and bubble plots—there are usually better visualization methods to communi-

cate the data. 

Communicating Distributions
Sometimes you’ll just want to show the values within a single variable and how they are distributed. 

Within classical statistics, you have descriptive statistics that attempt to reduce a distribution to a set 

of descriptive values. For example, if you go back to the 8 hours of firewall data shown in Figures 6-9 

and 6-10, you could describe the distribution of total sessions within each 5-minute window like this:

Description Statistic

Min 265,800

Median 356,500

Mean 350,500

Standard Dev. 32,093

Max 410,700

Skew −0.5

Kurtosis −0.457

Most people can’t look at these numbers and understand what the data is telling them. Nor will they 

be able to see any subtle patterns; descriptive statistics are about reducing a distribution of values to a set 

of individual numbers. This is where visualizations can help out considerably.

Histograms and Density Plots

Rather than reduce a distribution to a few descriptive statistics, you can represent every value in the variable. 

Figure 6-15 shows a basic histogram on the left and a density plot on the right, both for the same data set.

A histogram uses a simple process called binning. It works by creating equally spaced “bins” and then 

counting how many of the measurements are in each bin. In this example, we created bins that are 12,000 

sessions wide. You can see that at the peak—around 350,000 sessions—we had about 18 sessions within 
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that bin. Part of the criticism of histograms is that you can affect how histograms appear by adjusting the 

size and position of the bins. But these plots are indispensable when you want to get a feel for a distribution 

and they are quite effective in communicating the basic shape.

The plot on the right in Figure 6-15 is a density plot. It uses the same approach as the histogram, but the 

bins are quite small and a smoothing process is applied over it. By projecting the original histogram behind 

it, you can see how it flattens the peaks and diminishes the valleys. There’s no right or wrong between the 

two—both involve some approximations. When you are exploring your data, it’s quite easy to pass in data 

to hist() and get an immediate (although maybe not pretty) histogram. 

Boxing in Boxplots

Another method, which was developed by John Tukey (remember him from Chapter 1?), is the boxplot, 

which we touched on in Chapter 5 when discussing outliers. This is not something your viewers will intui-

tively understand if they haven’t seen one before, so it may require a little more supporting material than 

other methods need. In the fall of 2012, one of the authors (Jay) set up a simple honey pot to record the 

packets it saw on the Internet. How often is a host scanned when it’s on the Internet? You can get a feel for 

the answer in the boxplot in Figure 6-16.

The boxplot begins with the median (middle) value of the distribution and it places the center bar there. 

Then it computes the 25th and 75th percentiles. This means that 25 percent of the data is below the 25th 

percentile, 25 percent of the data is above the 75th percentile, and 50 percent of the data is between the 

two. These two points form the length of the box and represent the inter-quartile range or IQR.

There are a few different methods used to represent the length of the lines. The most common method 

places the lines one and a half times the IQR away from the box. Other methods place the end of the line 

FIGURE 6-15 Histogram and density plot of the firewall sessions
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at the minimum and maximum of the data. Figure 6-17 attempts to convey a large number of distributions 

within one chart with boxplots. 

What’s interesting about Figure 6-17 is that it was generated with over 100 million values. It not only 

conveys a large quantity of data, but it’s also able to represent a certain amount of confidence in the data. 

In this case, just stating the mean or median would have been a disservice, since some of these have a very 

wide range of possible observations. How well could you have explained these values and the variations 

with anything other than a visualization of the distributions?

Visualizing Time Series
This chapter has glossed over time series data even though you’ve been working with it in most of the 

visualizations. Time series data are data collected over the same and repeated time intervals. For most of 

the firewall figures in this chapter, we parsed the log files and counted up the bytes, sessions, and packets 

within a sequence of 5-minute time windows. This allows aggregation of individual entries into more 

manageable data points. But depending on how you slice up time and aggregate the data, you can get 

and see different types of things. 

Figure 6-18 is looking at 21 days of firewall traffic sliced into 5-minute chunks. This is quite a bit of data 

for a small line graph (over 6,000 data points in a few inches), and when you try to represent that data with 

a line plot, the lines crisscross over one another so much that they look like one thick and jittery line. If 

you try to reduce the mess by simplifying the underlying data with an hourly average (the middle plot in 

31m7s Most systems were
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FIGURE 6-16 Honey pot traffic: boxplot
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Figure 6-18), you lose the extremes and the details, which is not generally good in a field like information 

security where extremes matter. In the bottom plot, we replaced the lines in the first plot with points. This 

removes much of the mess and allows you to see the general trends and the extreme points. 

Time series data can get very dense to visualize when you are talking about data from logs. We even 

made it easier by looking at 5-minute slices instead of 1-minute slices. How you prepare and visualize the 

data is dependent on what you are looking for in the data. If you are looking for specific spikes or gaps 

in traffic, you should avoid using a rolling average. However, if you want to understand general patterns, 

averages are usually good enough.

Experiment on Your Own
We’ve covered quite a few techniques so far in this chapter. Feel free to get creative and try one or more 

techniques on your time series data. What if you tried showing each hour with a boxplot? What if you used 
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larger points and varied color based on size and turned down the alpha? Creating good visualizations is 

generally an iterative process, so take this as a license to experiment!  Remember that you aren’t limited 

to static visualizations. You can create interactive visualizations (as you’ll see Chapter 11) or turn the time 

series into a video fit for YouTube, as you will see in the next section.

Turning Your Data into a Movie Star
This chapter has focused primarily on foundational components of data visualizations. These apply to static 

or interactive graphics, dashboards, and as you’ll now see, to videos as well. One of the more fun “tricks” 

we’ve learned is how to turn data into a video. In order to do this, you combine two techniques: automated 

sequential graphics and stop-motion software.

If you aren’t familiar with stop-motion by name, you’re certainly familiar with it by sight. It’s the 

Claymation technology of setting up a scene, taking a picture, and then changing it slightly, taking another 

FIGURE 6-18 Time series: 21 days of traffic
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picture, and so on. When you string all of those pictures together you get the appearance of motion and 

you have a video. Same concept with data animation, but instead of taking a picture, you want to gener-

ate a graphic and save it as a picture. Then you can use any number of stop-motion software packages 

(mencoder, avconv, FFmpeg, iMovie, and so on) to create a movie from the pictures. If you want to get fancy, 

you can include music or voice-overs so you can explain the data as it’s progressing.

To see how this looks, try Listing 6-1 in an open R session.

LISTING 6-1
# random walk

set.seed(1)

# set up nine directions

dirs <- matrix(c(rep(seq(-1, 1), 3), 

rep(seq(-1, 1), each=3)), ncol=2, byrow=T)

# start in the center

cpos <- matrix(c(0, 0), ncol=2)

# set full screen

par(mar=c(0,0,0,0))

# take 200 steps

for(i in seq(200)) { 

  plot(cpos, type="p", col="gray80", xlim=c(-20, 20), ylim=c(-20,20),

yaxt="n", ann=FALSE, xaxt="n", bty="n")

  cpos <- rbind(cpos, cpos[nrow(cpos), ] + dirs[sample(1:9, 1), ])

  points(cpos[nrow(cpos), 1], cpos[nrow(cpos), 2],

type="p", pch=16, col="red")

  Sys.sleep(0.1)

}

# reset screen back to default

par(mar=c(5.1,4.1,4.1,2.1))

This code will set up a matrix of nine directions. It will loop 200 times, adjusting the point in some ran-

dom direction and drawing the new plot for it. It then will sleep for a tenth of a second so you can view the 

plot. On all but the slowest machines this looks like a random walking point on the screen. If you want a 

challenge, modify this script to write each of the images (hint, take a look at help(png)) and then create 

a video of it. We’ve done this and it’s available at http://datadrivensecurity.info/book/

ch06/movie/chapter6-movie.mov (or as part of the Chapter 6 materials on the book’s website 

at www.wiley.com/go/datadrivensecurity) if you’d like to see this random walk in action!

Summary
Communicating data visually allows you to communicate complex data and relationships quickly, enable 

pattern recognition, spot anomalies, and gain new perspectives. Understanding how the brain processes 

and stores information allows you to create visuals that leverage preattentive cues and minimize saccadic 

movements for efficiency. Through the work of Cleveland and McGill, you’ve learned that some visual meth-

ods are better for communicating quantity (in contrast, some methods “mumble”). You should combine 

these lessons into colors, points, lines, and shapes to communicate the stories you uncover in the data. 
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Recommended Reading
The following are some recommended readings that can further your understanding on some of the topics 

we touch on in this chapter. For full information on these recommendations and for the sources we cite 

in the chapter, please see Appendix B. Resources for visualization are plentiful and we had a hard time 

keeping this list as short as we did.

Data Points: Visualization That Means Something by Nathan Yau—This is Nathan Yau’s second 

book on visualization, and it offers a gentle introduction to the topic of visualization. His first book, 

Visualize This, offers examples and source code if you’d like that more. But both books are good 

places to start exploring visualizations.

Show Me the Numbers: Designing Tables and Graphs to Enlighten by Stephen Few—Stephen 

Few is known for his many technical contributions to the visualization field. His books lean toward 

the technical side, yet carry coherent and valuable lessons for communicating through data 

visualizations. 

Envisioning Information by Edward R. Tufte—Another well-known name in the field, but with a 

much more design-centric approach with a little more emphasis on aesthetics and function. Any one 

of Tufte’s books is worth their price, and if you can catch his touring seminar, his books are usually 

included in the price of the registration.

Information Visualization by Colin Ware—This is a hardcore book on the mechanics and cogni-

tive science behind visualization. If you are really curious how humans interpret data visually, this is 

the book to read.
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“In times like these when unemployment rates are up to 13 percent, 
income has fallen by 5 percent, and suicide rates are climbing, I get so angry 

that the government is wasting money on things like the collection of statistics!”

Hans Rosling, quoting a caller on a radio talk show, The Joy of Stats

Learning from 
Security Breaches
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When organizations experience a security event, their natural reaction is to focus on getting back to normal 

as fast as possible. They see the event as a sign of failure or an embarrassment and everything they do 

centers on minimizing the impact and putting the event behind them. In that environment, they often 

overlook one important task and miss the silver lining.

During such an event, a rich set of a data is generated and just waiting to be collected and analyzed. 

Think of it—If you could somehow gather that data, make sense of it, and perhaps even compare and 

contrast it with other security events, you could learn how to prevent the next attack. Maybe even better, 

you could identify trends and patterns so that you could prevent multiple common attacks with a single 

preventative control. Achieving such a benefit is the goal of this chapter. You’ll learn how to determine 

what data to collect and how to manage it. The chapter also discusses how to analyze and share this data. 

In order to tackle the challenge of learning from breach data, this chapter leverages the Vocabulary 

for Event Recording and Incident Sharing (VERIS) framework. One of the authors of this book (Jay) and 

the RISK team at Verizon have been developing and evolving VERIS in order to produce the Data Breach 

Investigation Report (DBIR). In an effort to promote adoption and use, Verizon has opened VERIS. Details 

about its use and implementation are hosted at http://veriscommunity.net. Because it is open, 

any organization can adopt the framework and start collecting data from their own internal events. When 

it comes to information sharing, the data will be ready to pass around and exchange.

Besides being an open framework, VERIS has another benefit. There is a relatively new project called 

the VERIS Community Database (VCDB) that offers a free and downloadable data set of publicly disclosed 

security events, which are all recorded using the VERIS format. This means you have thousands of VERIS 

records you can download and analyze throughout this chapter. At the time of this writing, the VCDB data 

is being housed at GitHub (https://github.com/vz-risk/VCDB).

Setting Up the Research
First and foremost, you should approach this breach analysis as a research project. If you think of this as 

a “metrics program” or a “security project,” you might fool yourself into thinking this is somehow unique 

to information security, but it isn’t. This is all about data collection and analysis, something that has been 

done countless times before across many disciplines and generations. Approaching this as if it were a 

unique project and trying to reinvent the (data analysis) wheel is not only wasteful of time and resources, 

but you’d be laughed at and ridiculed by all the grown-up data scientists. Let’s avoid all that and call this 

what it is—a research project. 

Most of the work in this book has been of an exploratory nature. You worked with data to see what it 

contained and then formed the questions you wanted to answer with the data and went back into the data. 

Note

The Verizon Data Breach Investigations Report (DBIR) leverages the VERIS framework for 

its data collection and data analysis and may help you get a context for this chapter. The 

most recent report can be found at www.verizonenterprise.com/DBIR/
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This effort is different because you are starting with no data. If you jumped right in and started to collect 

the breach data, you’d waste countless resources, capture data that you’d discover later to be meaningless, 

and end up wishing you had data you didn’t collect. Therefore, it’s better to set a frame for this effort and 

think of a handful of questions you’d like to explore. From that, you can determine which data points you 

want to collect.

VERIS was developed to support the strategic decision process. In other words, where can you focus 

your limited resources to get the biggest benefit for your security spending? Given a list of audit findings 

or remediation projects, how can you prioritize those so you fix the most critical first? Perhaps even more 

importantly, you also want to answer the opposite questions. Can you identify areas and tasks where you 

do not want to spend your time and money? Supporting these questions is the goal of this chapter and 

can be summarized as follows:

The goal in collecting and analyzing breach data is to support the decision-making process

within security leadership.

Notice the word support in there. This research will exist to support a decision process. It is not 

intended to be or replace the decision process. You need to have the wherewithal to recognize that security 

prioritization is a complex issue, and those working in the industry are just beginning to scrape away at it. 

At this point in that scraping, where you have very little data, you should not make the assumption that 

you’ll get the research perfect right out of the gate. You want to focus on how much uncertainty you have 

now and strive to reduce that uncertainty as much as you can through this work. The decisions have been 

made for far too long without data analysis. You need to support that decision process so it uses every bit 

of information you can gather.

Breach Data Reduces Uncertainty

Although it would be great to collect breach data to create a perfect and prescriptive list of priori-

ties, it just won’t happen. The data will simply help you know more than you currently do, but it 

can’t definitively show you the path forward. This raises the question for some whether it’s worth it 

to collect this data. Is it worth spending the time and resources to create information that doesn’t 

tell you exactly what to do?

The answer is an emphatic yes. 

Uncertainty exists in the gap between what you know and what you need to know to make the best 

decision. Although it’s tempting to toss out imperfect information because it contains uncertainty, 

the value of the information should be assessed by comparison. Not between the perfect information 

you’d want and the information you’ll get, but instead between the information you currently have

and the information you will have. This is where you see the value of this type of data analysis. Data 

will help you reduce your uncertainty by reducing the gap between what you know and what you 

need to know. It will help you work from a better place than you were working from before. You will 

be making progress and setting a foundation for reducing even more uncertainty next time. This 

is how scientific knowledge has evolved: a series of small steps, each reducing uncertainty a little 

more. Therefore, the goal is not to aim for perfect information and give up when you miss that. You 

should aim to simply learn more than you know now. That is where you will find value.
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Considerations in a Data Collection 
Framework
Generating data manually from a process has several pitfalls, and if that process isn’t approached carefully, 

it can produce shaky data and probably several big headaches. Since we have an inside view of how VERIS 

has developed (and some of those headaches), we have gathered the following set of guidelines for manual 

data collection. These are not limited to the collection of security event data, though. Any type of manual 

data collection can benefit from these guidelines. 

Aiming for Objective Answers
First and foremost the questions you ask should aim for objective answers. If a question asks for an 

opinion, the answers will have a whole lot of variety and be influenced by strange things like the weather 

or what the analyst had for lunch. In some cases this may be okay, because inconsistent answers might be 

better than no answers at all, and sometimes you do want to solicit the opinion of an expert with some 

restrictions. Most of the time, however, the questions should be focused on asking about facts that are 

observable or deducible from observations.

For example, it’s far better to ask whether malware was involved in the attack and which functions it 

performed instead of asking how advanced the malware was. The investigator during the breach can answer 

yes or no as to whether malware was used. If the investigator has the resources to analyze the malware 

(or the malware is identifiable), there isn’t a lot of guesswork about what it’s capable of. These are things 

you either know or don’t know. 

Limiting Possible Answers 
Next, constrain the possible answers to a short set of options. If the question asks for a sentence or descrip-

tion, it won’t be useful directly in the data analysis without a lot more effort. Most of the time, free text 

fields are helpful to record unique aspects or to set context if you ever want to understand why these data 

points look like they do. With this in mind, manual data collection should make judicious use of Notes 

fields and a field for the overall Summary of the event. But remember, all of the data analysis will use the 

data found in the constrained lists or numbers. Having the data limited to a set of values will make that 

analysis easier in the long run. 

Allowing “Other,” and “Unknown” Options 
Most every constrained list of answers must allow “Unknown” and “Other” answers. Even though a question 

may seem so easy that everyone should know the answer, the world will always create a circumstance to 

prove that assumption wrong. Including an “Unknown” option allows you to differentiate between when 

you really don’t know and when the question isn’t applicable. This is a subtle distinction, but one that can 

really mess up the analysis. There are a few rare questions that don’t need an “Unknown” option, but they 

are rare, and you’ll know them when you see them. 

For example, if you’d like to know if a server is virtualized or not, it may be tempting to create a simple 

checkbox if it was virtualized. But that doesn’t account for the circumstances when the information isn’t 

available (and there will always be a circumstance when it won’t be available). Now you’ve set up the 

response as “yes” and “everything else,” where “everything else” represents both “no” and “I don’t know.” 
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The result is you would not be able to create a percentage of hosts that were virtualized or look at non-

virtualized systems because you can’t tell a “no” answer from an “I don’t know” answer. 

The second field you need to add is “Other” or, depending on the question, “Not Applicable.” Avoid 

trying to capture all the options in an exhaustive list. Exhaustive lists become unmanageable (which slows 

down data entry), and you need to capture only most of the answers. You’ll find that a handful of common 

answers, especially within security events, will be used most of the time. The common answers create 

the trends and statistics, whereas the uncommon answers do little more than create interesting stories. 

Therefore, you want to capture the common things for data analysis and relegate the uncommon to the 

“Other” category and the Notes field. Keep an eye on anything marked “Other,” but if you create a good 

list of options, they should show up few and far between.

Avoiding Conflation and Merging the Minutiae
The last two points may seem subtle, but you want to avoid conflation and merge the minutiae where 

possible. These two concepts are opposites, and you have to find the middle ground between them. 

Conflation occurs when a question (and its answers) combines more than one concept.

For example, the breach types used by DataLossDB (http://datalossdb.org/analysis)

conflate the actor, actions, and assets into the type. Their framework lists a type of “Hack” for a “computer 

based intrusion” (no asset or actor defined), or “snooping,” which is an “employee . . . accessing confidential 

records” (conflating the actor and action). You can specify “stolen media” or “stolen drive” or “stolen tape,” 

which are all unique options that conflate and repeat the action (physical loss) with the asset. 

The assignment of a single conflating “breach type” should not be thought of as wrong or bad, it just 

represents a different goal within the research. Just be aware that conflation of terms like this will create a 

challenge during data analysis. You have the most flexibility and see the most benefit when you can compare 

and contrast across specific categories, but with conflated terms you’ll find it challenging to clearly separate 

the categories. The result is that the data analysis may not be able to do anything more than simply count 

the frequency of the conflated breach types. 

Where conflation combines more than one concept into a single variable, you have to be careful of the 

opposite, whereby you split a single concept into too many details. You want to get just enough detail and 

separation in the list to support your goal.

Note

It’s okay to be lazy when creating lists of selection options by seeking out standards to refer-

ence and leverage. For example, don’t create your own list of industries to gather. Leverage 

the good work of the U.S. Census Bureau and its North American Industry Classification 

System (NAICS). The Census Bureau has already figured out that industries are nested has 

and created a system to capture both the general industry and an organization’s specific 

function within that industry. They assign a six-digit code where each digit adds a level of 

detail about the industry of the organization. Details about the NAICS classification can 

be found at http://www.census.gov/eos/www/naics/.
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An example of collecting too much detail is when you try to collect how incidents are discovered and 

want to classify the discovery method. Although it may be interesting to know if it was an external security 

researcher, and perhaps amusing to know what color hat they wore (white, black, or even grey), creating 

several options based on details wouldn’t help you achieve your goals. You have to split one concept (an 

external security researcher) across multiple selections (such as Researcher-white hat, Researcher-gray hat). 

In this case, maybe you’ll just want to drop the distinction of an external security researcher altogether and 

merge everything into one broad field of “an external unrelated party.”

Having said this, don’t be afraid to go into detail when necessary. As an example, the list of possible 

assets within VERIS is split into several categories and dozens of detailed assets under each category. There 

are times you’ll want to split details and times you can combine them—the trick is getting that balance right.

Luckily, all these issues have been in consideration as VERIS has been evolving. One of the biggest chal-

lenges is saying no to new questions. We’ve found there is always more we’d like to know, but we know that 

each data point we try to collect has a cost. And it’s sometimes proven to be a higher cost than imagined. 

An Introduction to VERIS
When a security event is investigated, a narrative naturally emerges from the process. The investigator 

will typically try to answer the question, “Who did what to what (or whom) with what result?” That ques-

tion presents a good core set of data points to collect. Therefore, as a starting point, you’ll want to focus 

Consider the Cost per Datum

During a manual data-collection effort, it is very tempting to dream up all sorts of questions you’d 

like answered. Creating such a list isn’t bad, and it may even be helpful to lay out all the questions to 

answer. But choose the questions you are going to ask very carefully because every question adds 

exponential cost across the lifetime of the data. Even before the question is answered, you have to 

build a method to collect it, so every question must be built into the data-collection methodology. 

When the analyst is entering an incident, each question will require some thought and perhaps 

even some research before it can be answered, again adding time and effort. That data point may 

require processing and cleanup, and will need to be stored and managed. Anytime you want to 

parse the data (and you’ll want to parse it in many different ways), you might have to consider this 

field, or worse, consider all the interactions of all the fields. Beyond that, there are dozens of other 

subtle interactions with the data that will increase the cost of each data point beyond what you can 

imagine, as the questions and data points are selected.

It’s helpful to pretend you are about to take a long journey to a wise sage who lives on top of a 

mountain. You will have a limited amount of time to ask questions before the sage says something 

mysterious and vanishes. What questions will have the greatest impact? You’ll want to identify a 

handful of questions you really need answered—maybe a handful of questions you’d like to have 

answered, and then you’ll have a mountain of questions you wish you had time to ask, but you’ll just 

have to make do without them. The same is true with manual data collection. If the post-incident 

questionnaire asks too many questions or is too painful, people will lose interest quickly and the 

answers will end up being of poor quality—including the handful of questions you need answered. 

You must choose your questions wisely.
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on those four points—“Who (threat actor) did what (action) to what or whom (asset) with what result 

(attribute)?” 

But that’s not all you may be interested in; you may also want to know how you discovered and 

responded to the incident and if possible the impact you experienced as a result. Finally, you’ll have some 

housekeeping items (an identifier, summary, workflow status, and so on) and if you aggregate breaches or 

share the information, you’ll want to record some victim demographics. Overall, you can break down the 

sections of data you want to gather like those in the VERIS framework, as shown in Table 7-1.

TABLE 7-1 Sections within VERIS

VERIS Section Purpose

Incident Tracking Metadata about the incident for management and tracking purposes

Threat Actor One or more people who cause or contribute to an incident

Threat Actions What the threat actor(s) did or used to cause or contribute to the incident

Information Assets Information assets that were compromised or affected during the incident

Attributes What happened to the asset during the incident

Discovery/Response Timeline, discovery method, and lessons learned

Impact What was the overall effect of the incident to the organization

Victim Demographic information like industry and organizational size 

Indicators Optional indicators of compromise (IP addresses, malware hashes, domains, 

and so on)

Plus Optional section for extending VERIS

Although it’s tempting to dig into the data (and you will), it’s important to understand the significance 

of these fields so you don’t misapply them. Therefore, the following sections go through each part of VERIS 

in more detail and discuss these fields. Keep in mind that these sections are separated so analysts can think 

about the structure. There is nothing in the actual data denoting the incident_id field as helping with 

incident tracking, for example.

Warning

Although we are covering VERIS with some depth, we will not go into every field, and 

we don’t cover every detail about the framework. For example, we won’t call out all the 

places the framework specifies a “Notes” field (which is almost every section), and we don’t 

cover the “Indicators” section in detail. Just keep in mind that the framework is actively 

maintained and evolving. This chapter discusses the 1.2.1 release, so be sure to refer to 

http://veriscommunity.net/ for all the details and current specification of the 

VERIS framework.
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Incident Tracking
Some of the fields within VERIS exist to simply describe or track the incident. These fields help you keep 

records straight by identifying each with a unique identifier and tracking the source of the incident and 

any related incidents. You use the source_id field to compare your unique “source” of incidents to 

something like the VCDB (which has vcdb in that field). If something has a value of factor, that means 

it is a restrictive list (we discussed creating those lists previously), and only those values are expected. See 

Table 7-2 to see the incident tracking fields.

TABLE 7-2 Incident Tracking Fields

Field Value Description

schema_version string VERIS version (currently 1.2.1)

incident_id string Unique identifier (VCDB uses GUID)

source_id string Origin of the data (VCDB data has vcdb)

reference string URL or internal ticketing system ID

security_incident factor Confirmed, Suspected, False Positive, Near Miss

confidence factor High, Medium, Low, None

summary string Free text summary of incident

related_incidents string Free text, other incident_ids

notes string Free text

There are only one or two fields you’ll use during analysis and those are the two factor variables 

(again, this means they are restricted to a list of expected answers). The security incident is required and will 

help you split the analysis on whether the event was a confirmed security incident (an asset has a security 

attribute affected). The confidence rating is a rare subjective field. It enables the analysts to record their 

subjective assessments as to how confident they are in the accuracy of the data they entered. This optional 

field is not heavily used and won’t appear much in the VCDB incidents that you’ll look at.

Threat Actor
Earlier in this chapter you read about the challenge of conflation. This is something you want to be aware of, 

especially in these next three sections (actor, actions, and assets). You read about the framework DataLossDB 

used with a single conflated breach type, and you’ll see the same thing with the framework used by Privacy 

Rights Clearinghouse (http://www.privacyrights.org/data-breach). Their framework also 

uses a singular “breach type” to define each event, and again it simplifies the actors and actions into the one label.

For example, they have an “insider (INSD)” type, which is defined as “someone with legitimate access 

intentionally breaches information—such as an employee or contractor.” There is also the “physical loss 

(PHYS)” type, which is defined as “lost, discarded, or stolen non-electronic records, such as paper documents.” 
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These simplified labels can quickly become confusing during data entry if, for example, an insider steals 

paper documents.

You may see insiders breach systems, drop malware, and social engineer, just as an external actor would 

and you want to separate the insiders from external actors clearly in the data. VERIS tackles that conflation 

by separating the who from what they did and what was affected. Note that the method that the Privacy 

Rights Clearinghouse uses isn’t wrong. It just has a different focus and represents different priorities and 

goals. VERIS has the goal to inform and support security decisions, which benefits from more detail than 

a single “breach type” label. Table 7-3 shows the threat actor fields.

TABLE 7-3 Threat Actor Fields

Actor Field Value Description

external motive factor Helps understand intentions; same enumeration for the 

three actor types 

variety factor Defines resources and capabilities of external actor

country factor ISO-3166-1 two-digit country field

internal motive factor Helps understand intentions

variety factor Defines resources and capabilities of internal actor

partner motive factor Helps understand intentions

industry string U.S. Census NAICS code

country factor ISO-3166-1 two-digit country field 

The threat actor section also introduces the nesting feature of VERIS. At the top level is the actor, so 

there is a section in the data for “actor,” and then there are three classes of actors—external, internal, and 

partner—all of which are optional. Within each of those classes you’ll want to add details about that type 

of actor. Looking down the values in this section, you can see all factors. That means you should be able to 

include any of these or use them as pivot points. In other words, if you want to support a threat-modeling 

exercise that compares different threat communities, you could extract the actions for financially motivated 

actors and compare them to disgruntled employees. See Figure 7-1.

Threat Actions
This section collects variables to describe what the threat actor(s) did or used during the event. Again, there 

are nest variables under the top-level categories:

 ● Malware—Malicious software, script, or code run on an asset that alters its state or function

 ● Hacking—Person (at a keyboard) attempting to access or harm an asset without authorization

 ● Social—Exploiting the human element (phishing, pretexting, and so on)

 ● Misuse—Abusing resources or privileges contrary to intended use
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 ● Physical—Personal actions involving proximity, possession, or force

 ● Error—Anything done (or left undone) incorrectly or inadvertently

 ● Environmental—Natural events and hazards within the immediate environment or infrastructure 

of assets

You have to be careful as you work with these categories. There are many opportunities for misinter-

pretation and misclassification across categories. These categories and the factors in each category are 

explained in detail along with use-case examples at the VERIS website (http://veriscommunity

.net/). Once you spend some time and look at a few examples, these categories become more clear and 

eventually will become intuitive. See Table 7-4 to see the action fields.

TABLE 7-4 Action Fields

Action Field Value Description

malware variety factor Functionality of malware

vector factor How the malware was installed/infected

FIGURE 7-1 Known motives across all actors (Percentage of Events)
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Action Field Value Description

hacking variety factor Type(s) of hacking action

vector factor Path of attack

social variety factor Type(s) of social action

vector factor Path or method of communication

target factor Role of targeted person

misuse variety factor Type(s) of misuse action

vector factor Path or access method for misuse

physical variety factor Type(s) of physical actions

vector factor Method of physical access

location factor Physical location of action

error variety factor Type(s) of error actions

vector factor Cause of error

environmental variety factor Type(s) of environmental actions

Notice how variety and vector are repeated over and over? Every action category has a variety

field with unique enumerations for each category. All but the environmental actions have a vector field, 

again with unique enumerations for each category. Finally, social actions also ask for the target of the social 

action, and physical actions ask for a location of the action. That explains the whole section! Notice how 

every field here is a factor, meaning you can split, pivot, and/or filter based on these fields. See Figure 7-2.

Multiple Events in the Attack Chain

Anyone who has been around information security knows that breaches tend not to be simple and 

single events. Oftentimes, the attacker will perform multiple actions, which complicates the recording 

process. Most of the factors in the VERIS framework support multiple answers. On one hand, this is 

very nice because you don’t have to pick “the one best answer” for a complex security event, but 

on the flip side, this adds complexity for data management and analysis. As you’ll see later in this 

chapter, this isn’t as hard as it first seems. 

(continues)
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As an example, suppose an attacker sends a phishing email to an executive’s assistant and quickly 

follows that up with a phone call pretending to be a business partner who sent the email. These 

are two actions, and you should see both “pretexting” and “phishing” selected in the social
.variety field. If the phishing email contained malware that is installed, you’d also see the malware 

action along the variety and vector of “email,” since it was installed via the phishing attack. When 

you represent this data and count the actions, you’ll have more individual actions than total events. 

This naturally precludes the use of pie charts, which ends up being beneficial for all parties involved.

There is also a common notion within information security of the “attack chain” or “kill chain.” The 

concept is to establish the actions of the attacker in the order they happened. Although VERIS allows 

multiple actions, it does not record the order in which they occurred. This was a conscious trade-off 

of cost versus benefit. Attempting to put the events in order created substantial overhead for the 

analysts and was taking too long to enter. Most of the time the order of events in reports and tickets 

(definitely in media articles) are either vague or missing. As a result, VERIS simply records the pres-

ence of events within an attack to reduce the time and effort spent in data collection.

FIGURE 7-2 Top 10 varieties of threat actions

(continued)
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Information Assets
Assets are the information containers (servers or other devices) that you are trying to protect. Like the other 

sections we’ve covered so far, there are top-level categories, which are as follows:

 ● Server (S)—System providing service(s)

 ● Network (N)—Infrastructure device or appliance

 ● User Device (U)—End-user equipment (laptop or desktop)

 ● Media (M)—Data storage devices or physical documents

 ● People (P)—Since people can be affected

 ● Kiosk/Public Terminal (K)—Public-use devices

Within each category there are several varieties of assets, but the category and variety are stored in 

the same field. For example a mail server is stored as “S - Mail” and a desktop computer is a “U - Desktop.” 

Associated with each asset is an optional amount field, which allows you to record multiple assets with 

the same variety as when they are involved in one event. Table 7-5 shows the asset fields.

TABLE 7-5 Asset Fields

Asset Field Value Description

assets variety factor Specific type of asset; prepended with letter for category

amount integer Count of the above asset

asset accessibility factor How accessible the assets are

ownership factor Who owns the assets?

management factor Who manages the assets?

hosting factor Where (physically) is it hosted?

country factor Location of assets (if different from victim)

cloud factor Type of cloud service, if cloud

There is quite a bit packed into the assets, and these are relatively recent additions to the VERIS frame-

work (version 1.2). There is a lot of focus on mobile devices and employees bringing their own devices 

into the corporate environment. Also, there may be unique exposures from cloud hosted applications and 

assets, so that is captured here as well. Note also that these are all factors, so there are only a handful of 

possible answers. You cannot write in “very” for accessibility of the asset as an example. See Figure 7-3.

Attributes
The attributes of the preceding assets are what you work hard in information security to not have 

affected. Attributes are based on the C.I.A. triad, which stands for confidentiality, integrity, and availability. 



174 LEARNING FROM SECURITY BREACHES

For a while VERIS extended these three with three more attributes to record the Parkerian Hexad (named 

after their originator, security pioneer, and long-time security researcher, Donn Parker). The extra three 

attributes included possession/control, authenticity, and utility. But the added fields just did not yield 

enough benefit for the added cost of separate categories, so they were combined with the three top 

categories. For simplicity, when a VERIS record is stored, the sections are labeled with the three primary 

categories (confidentiality, integrity, and availability). The three main sections of attributes are as follows:

 ● Confidentiality, possession, and control—Data was observed or disclosed to an unauthorized 

actor; owner may no longer have exclusive custody.

 ● Integrity and authenticity—Asset is incomplete or changed from authorized content and func-

tion; conforms to expected state.

 ● Availability and utility—Asset is not accessible, useful, or fit for use. 

These categories can be quite helpful to the security team in determining the areas to focus on. The 

Verizon Data Breach Investigation report has exclusively focused only on breaches where the confiden-

tiality attribute was affected and there was a confirmed data disclosure. See Table 7-6 for a look at the 

attribute fields.

FIGURE 7-3 Asset categories
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TABLE 7-6 Attribute Fields

Attribute Field Value Description

confidentiality data_disclosure factor Status of confidentiality breach 

data_total integer Number of records (see below)

data.variety factor Type of data disclosed

data.amount integer Number of records

state factor State of data when disclosed

integrity variety factor Nature of effect

availability variety factor Nature of effect

duration time range Duration of availability/utility loss

There is a new field type called time range, which is actually two fields, a “unit” of time and a 

“value” for that unit of time. The unit has basic measurements of time: seconds, minutes, hours, days, 

weeks, months, and years. The value represents how many of those, such as 3 weeks or 6 months. VERIS 

tried to support specific date/time fields instead of time ranges but found specific date/time was either 

time consuming or just impossible. However, VERIS analysts found knowing whether a range was days 

versus weeks was obvious even if a specific range was not known. For example, analysts might know that 

the server went offline during the DDoS attack, and that it was down for more than 60 minutes but not a 

full day. Tracking down the specific times may be difficult, but in that case, you would see “hours” in the 

unit, and if the specific number of hours is known, you’d see a value. Otherwise, it’s blank if the precision 

is unknown.

Counting Records

One of the more common pieces of information disclosed in publicly disclosed breaches is the 

number of records affected. Perhaps reporters and the general public demand this, and the victims 

are forced to provide a number, even if it’s all the records in a database. Records can be relatively 

easy to count when the data is obviously separated. Payment (credit) cards, identities, and medical 

records are all quite clear in their separation and lend themselves to being counted. But when you 

get into more complex types like classified information or trade secrets, the capability to count 

records becomes more difficult. Perhaps the number of physical documents could be used, or the 

number of files disclosed, but oftentimes it’s difficult to count them. Overall, analysts struggle to 

record a precise number for the data varieties of classified or internal information and trade secrets. 

You will have to account for that in the analyses and visualizations.
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Discovery/Response
You just saw your first time range in the availability attribute and you’ll see that a lot more in this section for 

the timeline data. Some of these fields are not in a section as you saw in the previous four VERIS sections, 

but the timeline does have its own section. See Table 7-7.

TABLE 7-7 Discovery and Response Fields

Section Field Value Description

discovery_method factor How the event was discovered

control_failure string Free text field to describe what, under the victim’s 

control, failed

corrective_action string Free text field describing what the victim should do

targeted factor Targeted or opportunistic attack

timeline incident_date date Date of incident

compromise time range Time to initial compromise

exfiltration time range Time from initial compromise to data exfiltration

discovery time range Time from initial compromise to discovery

containment time range Time from discovery to containment

Notice the new type of value called date here, which is not a standard date field. Because VERIS has 

to account for unknown values, the date fields are in separate variables. Too often than you’ll like for your 

analyses, the precise date of the incident isn’t known or isn’t reported precisely. The framework assumes 

at least the year is known, but the month, day, and time fields are all optional in that date field. The other 

fields in the timeline are the same time range values you saw in the availability attribute.

Notice also that the control failure and corrective action suggestions are free text. This makes them 

difficult to include in the data analysis without more effort. Finally, the discovery method is one of the rare 

enumerations that cannot have multiple answers. The framework assumes that once the incident was 

discovered it could not be discovered again, so only one method of discovery is allowed.

Impact
The impact section (see Table 7-8) is perhaps one of the most, if not the most, sparsely populated section 

in the incidents. This has nothing to do with the framework, and everything to do with the lack of accurate 

data to collect and record about the impact. The result is that this section has some subjective measure-

ments and estimates.

Notice the repeating rating and monetary estimations. There is a dedicated overall field here for 

those fields, but the loss section is defined in the data as an array. This means that the analyst can add 

multiple loss sections in the data for each variety of loss being recorded. The loss varieties are specific types 

of loss, for example “response and recovery” costs or “legal and regulatory” costs. 
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TABLE 7-8 Impact Fields

Section Field Value Description

currency factor ISO 4217 currencies for monetary estimations

overall rating factor Qualitative rating of overall impact

min_amount number Minimum estimated monetary amount 

amount number Most likely estimated monetary amount 

max_amount number Maximum estimated monetary amount 

loss variety factor Specific category of loss

rating factor Qualitative rating of overall impact

min_amount number Minimum estimated monetary amount 

amount number Most likely estimated monetary amount 

max_amount number Maximum estimated monetary amount 

Victim
The last section to cover is the victim entry. If VERIS is being implemented inside a single organization and 

the victim is always the same, you can skip or hard-code the fields in this section. (This assumes that you 

aren’t tracking incidents at partner organizations, suppliers, or customers.) For cases like the VCDB, which 

is aggregating across many victims, this section is vital. You want to capture data about the victim with the 

intention of contrasting and comparing breach data when you split these fields.

Chapter 5 discussed regression analysis, and you attempted to find independent variables that could 

help describe the outcomes you observed. The data you are collecting about the victim can go a long way 

to describe the types of threat actors and their actions. For example, in the 2013 DBIR, Verizon saw state-

affiliated espionage in at least three out of every four cases within the manufacturing industry, yet none 

in the retail industry. Although industry alone is not a perfect predicting variable, it does help reduce the 

uncertainty, which is what you are after here. Table 7-9 shows the victim fields.

TABLE 7-9 Victim Fields

Victim Field Value Description

victim victim_id string Identifier or name of victim

industry string U.S. Census NAICS code

employee_count factor Label for number of employees

(continues)
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Victim Field Value Description

country factor ISO 3166-1 two-digit country code

state string State, province, or region in country

locations_affected integer Number of locations affected

revenue integer Annual revenue of the victim

secondary victim_id string List of secondary victim_id or name(s)

amount integer And/or count of secondary victims

The most recent change to the VERIS framework (version 1.2.1) changed how this section is stored. In 

version 1.2 and before, the entire victim section could be repeated for each victim involved in the incident. 

For example, if an organization is breached and was processing data on behalf of another organization, 

they would become a victim of the same breach. This was found to be confusing though, and the victim 

was reduced to just supporting one single victim. The fields in the “secondary” section were added in 

1.2.1 to capture what was treated as a multiple victim breach. See Figure 7-4 to see the top five victimized 

industries according to the VCDB data set.

FIGURE 7-4 Top five industries in VCDB data set

TABLE 7-9 Victim Fields (continued)
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Anywhere there is an industry (which is in this victim section and in the threat actor partner section), 

they are listed as a “string” but they should not be free text. Following one of the guidelines to leverage 

other resources wherever possible, VERIS leverages the U.S. Census Bureau’s North American Industry 

Classification System (NAICS) mentioned earlier in this chapter. Doing so adds flexibility and a level of 

detail not possible with other industry classification systems. If analysts tried to create a list of industries, 

they’d probably come up with a dozen or so high-level categories and call it a day. NAICS started there 

(20 top-level categories actually), but then made it extendible and includes more detail for the industry 

specification. Industries within NAICS are represented by two- to six-digit integers, which is why VERIS 

stores them as a string and not a factor. The list is enormous (you can find it at http://www.census

.gov/eos/www/naics/).

As an example, consider the pizza shop down the street. The NAICS code for such a place is 722511, 

which represents “pizza parlors, full service.” Maybe in this case, however, the analyst just knows it’s 

a restaurant, so she records 7225, or maybe she knows the place offers some type of food or beverage 

service, so she enters 722. If she is unsure as to what type of service establishment it is, she might just 

enter 72 for “accommodation and food services.” When you analyze this field, you can drill down or up 

depending on the level of detail you want. 

Indicators
We didn’t want to go into detail about the indicators section, and that’s because VERIS is set up to capture 

indicators from a security incident, which is often just a handful of IP address and malware hashes. If 

you’re looking to capture indicators from multiple sources, we suggest you look at the Structured Threat 

Information Expression (STIX). It is a “collaborative community-driven effort to define and develop a stan-

dardized language to represent structured cyber threat information,” and details about it can be found at 

http://stix.mitre.org/. If you’d like to see the details of the indicators section, they are covered 

on the VERIS community website at http://veriscommunity.net/.

Extending VERIS with Plus
Finally, VERIS has the catch-all section labeled “plus.” Within the VERIS specifications there technically is 

nothing specified in this field, and the data schema simply allows anything to exist in this section. It exists to 

allow individual implementations to record additional fields not in the base VERIS schema. If you look at the 

VCDB repository, for example, each incident has a plus section with the analyst who recorded the incident 

and the time it was created along with a few other fields. Any implementation can apply the guidelines we 

presented earlier in this chapter (or not, at your own peril) and add their own fields here. If you have fields 

that are particularly useful, feel free to suggest the change to the core framework!

Seeing VERIS in Action
It’s always helpful to take some time before jumping into the analysis to look directly at the data. It helps 

set the context and may help shape your approach to the analysis. Since the average incident is about 100 

lines of JSON, we don’t include the whole incident. Please take some time to surf around the VCDB reposi-

tory and look at the data there for full records. As a good example, Listing 7-1 shows the actor and action 

sections from an incident from VCDB.
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LISTING 7-1
"actor": { 

    "external": {

        "country": [ "SY" ],

        "motive": [ "Ideology" ],

        "variety": [ "State-affiliated" ]

    }

},

"action": { 

    "hacking": {

        "variety": [ "Use of stolen creds" ],

        "vector": [ "Web application" ]

    },

    "social": {

        "target": [ "End-user" ],

        "variety": [ "Phishing" ],

        "vector": [ "Email" ]

    }

}

If you have never seen JSON before, this is what it looks like. Rarely if ever would you want to edit the 

JSON by hand. It’s not that JSON is terribly difficult, but it is terribly easy to mistype something. You could 

forget a comma or quote or something would prevent the data from loading properly. If you do attempt 

to create or modify a JSON file by hand, be sure you have a way to check your work, validate the JSON, and 

if possible, validate the values and factors within the data. 

The best part about working with JSON is that it typically imports right into native objects in the 

languages you use. Within Python, an incident in JSON is imported directly into a Python dictionary. The 

Python code to load a JSON object and view the hacking variety is relatively simple (Listing 7-2).

LISTING 7-2
# python to load JSON and read hacking variety:

import os, json

# set working directory to chapter location

# (change for where you set up files in ch 2)

os.chdir("~/book/ch07")

# Open the JSON file and read the raw contents into jsondata

jsondata = open("data/vcdb/F58E9169-AC07-400E-AB0E-DB784C6CAE59.json")

# convert the contents into a python dictionary

incident = json.load(jsondata)

# now access the hacking variety (assuming it exists)

print(incident['action']['hacking']['variety'])

This code would print the Python list object for hacking variety and display [u'SQLi'] (an array of one 

Unicode string showing SQL injection was the only hacking variety used). In production code, you should 

wrap the json.load() command with try-except. If the file has any errors in the JSON syntax, they 
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will be caught that way. Plus the hacking action is optional, and you’d want to test if the hacking key 

existed before you attempt to read it. But this example shows how easy JSON can be to load and work with. 

Within R, JSON files are converted to a native list object. Before you run the R code in this chapter, you’ll 

need to set your working directory and load the libraries used in this chapter (see Listing 7-3).

LISTING 7-3
# set working directory to chapter location

# (change for where you set up files in ch 2)

setwd("~/book/ch07")

# make sure the packages for this chapter

# are installed, install if necessary

pkg <- c("devtools", "ggplot2", "scales", "rjson")

new.pkg <- pkg[!(pkg %in% installed.packages())]

if (length(new.pkg)) {

  install.packages(new.pkg)

}

Now within R, in order to performing the same function we did in the python example in Listing 7-2, 

you need to load the rjson library in order to read in JSON data (Listing 7-4).

LISTING 7-4
library(rjson)

# fromJSON accepts a filename to read from

jsonfile <- "data/vcdb/F58E9169-AC07-400E-AB0E-DB784C6CAE59.json"

incident <- fromJSON(file=jsonfile)

# print the hacking variety

print(incident$action$hacking$variety)

## [1] "SQLi"

The R code returns a one-element vector with the value in the hacking variety. Again, in full-featured 

code, you’d want better error checking than this, but it does show how easy JSON data is to load into native 

objects and work with.

Working with VCDB Data
This section walks through some data from VCDB using R. While the data from the book website (at www

.wiley.com/go/datadrivensecurity) has the VCDB data we use in this chapter, you may want 

to grab the current version of the VCDB data (there will be more incidents when you are reading this). Head 

on over to the VCDB GitHub repository at https://github.com/vz-risk/VCDB and either fork, 

copy, or download the VCSB-master.zip file of the repository (use the Download ZIP button on the 

right side of the window). The incidents themselves are quite small, but you can still learn quite a bit in spite 

of the data not being “big.” Feel free to explore the incidents in the repository and get a feel for the files 

and the data. Keep in mind that all of these incidents are collected from publicly disclosed events, which 

makes many of the incidents rather light on the details. 
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For this analysis you’ll leverage the verisr package, which was developed by our own Jay Jacobs 

and is in his GitHub repository (found at https://github.com/jayjacobs/verisr/tree/

master/R). Note that the verisr package is actively in development, so be sure to refer to the latest 

documentation of the package for the most current description of its functions. By the time you are reading 

this, there may be all sorts of wonderful features in the package that aren’t there at the time of this writing. 

Also, that means that some of the figures and output may be slightly different for you. 

In order to install the verisr package from GitHub, you have to load the devtools package first 

(see Listing 7-5). This is one of many great packages from Hadley Wickham, and it allows you to install R 

packages directly from their GitHub repositories, which is what you’ll do with verisr.

LISTING 7-5
# load up devtools

library(devtools)

# install the verisr package

install_github("verisr", "jayjacobs")

# load the verisr package

library(verisr)

You can now load up the VCDB data with the verisr package, if you downloaded current VCDB data, 

you must first modify the directory shown to be the location where you stored the VCDB JSON files (see 

Listing 7-6).

LISTING 7-6
# requires package : verisr

# set this to where VCDB incidents are stored

jsondir <- 'data/vcdb/'

# create a veris instance with the vcdb data

vcdb <- json2veris(jsondir)

This should load fairly quickly, but on slower machines it may take a moment or two. If you’re on a com-

puter with just a few gig of RAM or if VCDB grows exponentially, you might not be able to load all of them 

into memory. (We’ve loaded over 100,000 incidents into 8G of RAM with verisr, so you shouldn’t hit that 

limit anytime soon.) After you load this data, it’s time to get to know the data a little bit. Let’s begin with 

the summary() command (see Listing 7-7). The verisr package implemented its own summary(),

so the output is very specific to VERIS data. 

LISTING 7-7
# requires package : verisr

# requires object: vcdb (7-6)

summary(vcdb)

## 1643 incidents in this object.

##

## Actor:
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## external internal  partner  unknown

##      955      535      100       85

##

## Action:

##    error  hacking  malware   misuse physical   social

##      398      416       42      216      508       31

##

## Asset:

## Kiosk/Term  Media  Network   Person   Server  Unknown   User Dev

##         17    534        8       33      656       80        429

##

## Attribute:

##  confidentiality     availability  confidentiality     integrity

##                2              614             1604           165

If you’ve grabbed the latest data from VCDB, you’ll undoubtedly see different numbers than these. 

There are two high-level functions from the verisr package that you’ll use to dig into the data. The 

first is a function to create a filter so you focus on certain aspects of the data. The second is a flexible function 

called getenum(), which will get the enumerated data from the data set with a variety of options and 

extensions. Let’s start by looking at the actors. You can replicate the information in the previous summary 

with the following bit of code (Listing 7-8).

LISTING 7-8
# requires package : verisr

# requires object: vcdb (7-6)

actors <- getenum(vcdb, "actor")

# actors is a data frame 

print(actors)

##       enum   x

JSON Notation

It might take a while to get used to the naming structure in JSON and understand how the variables 

are accessed in different settings. If you load VERIS JSON data into a mongo database, you’d use 

JavaScript to query the data and leverage a dot-notation approach to the variables. That dot-notation 

is used in the verisr package since the fields are referenced and retrieved by passing in character 

strings. This means you can access the top-level action data by referencing action. If you want to 

access the social section within the action, you reference action.social, and the variety data 

under that is action.social.variety. Take some time and look at the JSON, and then try 

writing some code in R using verisr. With this hands-on experience, the dot-notation method 

will become second nature.

(continues)
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LISTING 7-8 (continued)
## 1 external 955

## 2 internal 535

## 3  partner 100

## 4  unknown  85

Within this data frame, you can see the raw numbers, but that isn’t very helpful. Some incidents will contain 

multiple actors, so you can’t simply add them and get a total number of incidents. Luckily, the getenum

function can also return the total number of incidents where the field is defined. If you add add.n=TRUE,

you get an additional column of the full sample. If you add add.freq=TRUE, you can get the percentage 

associated with each entry. Let’s look at both of those options in one example (see Listing 7-9).

LISTING 7-9
# requires package : verisr

# requires object: vcdb (7-6)

actors <- getenum(vcdb, "actor", add.n=TRUE, add.freq=TRUE)

print(actors)

##       enum   x    n  freq

## 1 external 955 1643 0.581

## 2 internal 535 1643 0.326

## 3  partner 100 1643 0.061

## 4  unknown  85 1643 0.052

From this you can see that there were 1,643 incidents with something defined in the actor section, and 

external actors were present in 58 percent of them. Since this function returns a data frame, it’s relatively 

straightforward to feed into the ggplot2 library and produce any number of visuals (see the book’s 

website, www.wiley.com/go/datadrivensecurity, for this chapter’s R code to see how to 

create the figures in this chapter). 

The getenum() function is quite versatile. You can pass in any of the variable names within the VERIS 

framework and get an object you can visualize right away. As an example, create a function that accepts a 

VERIS variable name, such as action.hacking.vector, and returns an image object that you can 

print or save or whatever (see Listing 7-10). This could be extendable to include in a report or dashboard. 

LISTING 7-10
# requires package : verisr, ggplot2

# requires object: vcdb (7-6)

library(ggplot2)

# take in the vcdb object and the field to plot

verisplot <- function(vcdb, field) {

  # get the data.frame for the field with frequency

  localdf <- getenum(vcdb, field, add.freq=T)

  # now let's take first 5 fields in the data frame.

  localdf <- localdf[c(1:5), ]

  # add a label to the data.frame

  localdf$lab <- paste(round(localdf$freq*100, 0), "%", sep="")

  # now we can create a ggplot2 instance

(continues)
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LISTING 7-10 (continued)
  gg <- ggplot(localdf, aes(x=enum, y=freq, label=lab))

  gg <- gg + geom_bar(stat="identity", fill="steelblue")

  # add in text, adjusted to the end of the bar

  gg <- gg + geom_text(hjust=-0.1, size=3)

  # flip the axes and add in a title

  gg <- gg + coord_flip() + ggtitle(field)

  # remove axes labels and add bw theme

  gg <- gg + xlab("") + ylab("") + theme_bw()

  # fix the y scale to remove padding and fit our label (add 7%) 

  gg <- gg + scale_y_continuous(expand=c(0,0), 

                                limits=c(0, max(localdf$freq)*1.1))

  # make it slightly prettier than the default

  gg <- gg + theme(panel.grid.major = element_blank(),

                   panel.border = element_blank(),

                   axis.text.x = element_blank(),

                   axis.ticks = element_blank())

}

What’s a little funny about that function is that it will get all of the data ready in the first line of the 

function, trim to the top five entries in the second line, and spend the rest of the function making a pretty 

picture. But once this function is written and loaded, you can create any number of pictures from the data 

with a single line of code.

print(verisplot(vcdb, "action"))

Figure 7-5 shows a few of the possible values passed and printed.

Getting the Most Out of VERIS Data
One of our favorite images from the 2013 Verizon Data Breach Investigation Report was a heat map that 

compared the assets and actions overall and then separated the individual comparisons by the type of threat 

actors. You can create a similar image with the verisr package without too much effort (Listing 7-11).

LISTING 7-11
# requires package : verisr, ggplot2

# requires object: vcdb (7-6)

# get a data.frame comparing the actions to the assets

# this will add zero's in missing squares and include a frequency

a2 <- getenum(vcdb, enum="action", primary="asset.assets", add.freq=T)

# trim unknown asset and environment action for space

a2 <- a2[which(a2$enum!="environmental" & a2$primary!="Unknown"), ]

# so we should create a "slim" version without zeros to color it

slim.a2 <- a2[which(a2$x!=0), ]

# could sort these by converting to factors (we did in Fig 7-6)

# now make a nice plot

gg <- ggplot(a2, aes(x=enum, y=primary, fill=freq))

gg <- gg + geom_tile(fill="white", color="gray80")

(continues)
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LISTING 7-11 (continued)
gg <- gg + geom_tile(data=slim.a2, color="gray80")

gg <- gg + scale_fill_gradient(low = "#F0F6FF", 

                               high = "#4682B4", guide=F)

gg <- gg + xlab("") + ylab("") + theme_bw()

gg <- gg + scale_x_discrete(expand=c(0,0))

gg <- gg + scale_y_discrete(expand=c(0,0))

gg <- gg + theme(axis.ticks = element_blank())

# and view it

print(gg)

FIGURE 7-5 Various top 5 views of VCDB data
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This code looks through all of the incidents and produces the simple colored heatmap shown in 

Figure 7-6. Keep in mind that the specifics vary depending on incidents in the VCDB.

The real benefit of working with VERIS data is the ability to compare across disparate data sets. If 

you were to collect your own internal incidents in the VERIS format, it would be a relatively trivial task to run 

comparisons on very specific slices of data across multiple data sets. Since one of us works for Verizon and 

has access to the DBIR data set, we decided to show this point by example. You should be able to quickly 

see differences across the two data sets. Remember, VCDB is collected from news articles and various public 

sources. Generally speaking, the details are far less prevalent than what you might want.

The Verizon data set is gathered from a variety of primary sources, but primarily from first-hand accounts 

of the forensic investigators that were brought in after the security event. This means this data has bias—it 

is generally limited to breaches that were complex or big enough for a victim to seek external help, either 

from law enforcement (many of the contributing partners are law enforcement) or from an incident response 

consulting company. 

FIGURE 7-6 A2 grid comparing assets and actions
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In this example, you could use the same code that generated Figure 7-6 and compare four differ-

ent fields from the VCDB data and the Verizon DBIR data over the last 3 years. Start with all of the inci-

dents in both data sets in the first row. Then filter out confirmed data loss events (where attributes

.confidentiliaty.data_disclosure= "Yes") in the second row. Then focus on financially 

motivated attackers with confirmed data loss events in the third row. Finally, look only at attackers motivated 

by ideology, curiosity, fun, or pride (which covers attackers labeled as activists), again with confirmed data 

loss. See Figure 7-7.

You can see a rather significant difference that’s worth talking through. Because the VCDB data set 

includes only publicly disclosed events, there are a lot of daily “low hanging fruit” type things that would 

never make it into the DBIR data. Events like lost or stolen laptops, documents tossed in a dumpster without 

being shredded, or envelopes with personal information mailed to the wrong person appear quite often 

in the VCDB data set. That’s why you see physical (theft/loss) and error (disposal error and bad delivery) in 

the row labeled “All Events” for VCDB, and those all but disappear when you filter for confirmed data loss 

in the second row for “Confirmed Data Loss.” Keep in mind a lost or stolen laptop just has the potential 

for data loss. 

FIGURE 7-7 The strength of VERIS: Comparing the same views from two very different sources of data
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Another interesting comparison is the malware category. The public disclosures rarely mention whether 

malware was used, but we know from the DBIR research that malware is often used, either to escalate 

privilege or to capture and exfiltrate data, yet the malware column is almost completely empty in the 

VCDB data. You will probably see the same type of effect for user devices. Even though user devices are 

often leveraged during a breach, a company that is publicly disclosing information will often neglect to 

mention which assets were involved and just say something vague like “the database was compromised.” 

As a result, you’ll see very little recorded events involving user devices. 

We could go on and on about the subtle differences across these columns, but it’s pretty clear that there 

is a lot to be learned by recording and comparing breach data.

Summary
You may never be able to shake the “blame the victim” mentality when it comes to data breaches. This 

means the victims will always try to be discrete and focus only on getting back to normal. You may always 

be fighting for more disclosures and more data when it comes to security breaches. That data is exactly 

what you need though, because these events produce a very rich set of data that has yet to be fully 

explored. 

When you break the event down into its atomic components—“Who did what to what (or whom) 

with what result?”—you can do more research, develop better comparisons, and learn much more than if 

you apply a label or two on the whole chain of events. Identifying and recording the actors, their actions, 

the assets involved, and the attributes affected are a very good start. But remember—every data point 

comes with a cost and you will have to make some tough trade-offs between the time investment and the 

veracity of the results.

Using JSON has some direct advantages. You can quickly load it into a variety of languages and it feeds 

right into databases that can take JSON (like MongoDB). Within R you can use the verisr package to 

read in VERIS data and rapidly analyze fields and create visualizations. But the real strength of leveraging 

a framework like VERIS is when making comparisons. Are your problems unique? Or are others in your 

industry or across all industries seeing the same trends and attacks? Until recently, analysts struggled to 

answer those questions, but as more organizations take a data-driven approach to security, they’ll be ask-

ing and answering those questions soon.

Recommended Reading
The following are some recommended readings that can further your understanding on some of the topics 

we touch on in this chapter. 

Verizon RISK Team. “2013 data breach investigations report.” Available at http://www
.verizonenterprise.com/DBIR—This report is based on data collected using the VERIS 

framework. You might find it handy to look at some of the graphics in the report and then attempt 

to repeat them using the verisr package, discussed in this chapter, and the VCDB data. 
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http://veriscommunity.net—All of the documentation about VERIS and a mailing list is 

hosted at that website. If you are uncertain what a field is, or what one of the options represents, this 

is the place to check first.

https://github.com/vz-risk/VCDB—This is the location for the VCDB data (at the time 

of this writing). Be sure to check back often as new events are added regularly.
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“I call it the law of the instrument, and it may be formulated as follows: 
Give a small boy a hammer, and he will �nd that 

everything he encounters needs pounding.”

Abraham Kaplan, The Conduct of Inquiry: Methodology for Behavioral Science

Breaking Up With Your 
Relational Database
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It’s an all-too-familiar story. You’ve been faithful companions for years. You knew everything about your 

partner and came to depend and rely on it for many of your core needs. But, times have changed. Your 

needs are more nuanced and complex, and you’re starting to have doubts about your relational structure. 

Your thoughts and queries begin to stray; you survey and index the field and find new, vibrant and exotic 

options that you never knew of before. And, then, you realize the hard truth: it’s time to break up with 

your relational database.

Relational databases (RDBMS) have been around since the 1970s when Edgar Codd proposed “a

relational model of data for large shared data banks” as an alternative to the network models—heavily 

inter-linked, on-disk structures—prevalent at that time. 

Despite the hype surrounding newer database technologies, relational databases still have quite a bit to 

offer. However, they should not be the only tool you look to when trying to solve a problem, find “badness,” 

or organize your security data. In this chapter, we’ll explore these newer technologies through security use 

cases, but also show you how to breathe life into your existing RDBMS relationship.

You will need to run the code in Listings 8-0 and 8-1 to set up your R and Python environments (respec-

tively) for the code examples in this chapter (which you can find online at www.wiley.com/go/

datadrivensecurity). 

LISTING 8-0
# This code sets up the R environemnt for the chapter

# set working directory to chapter location

# (change for where you set up files in ch 2)

setwd("~/book/ch08")

# make sure the packages for this chapter

# are installed, install if necessary

pkg <- c("RBerkeley")

new.pkg <- pkg[!(pkg %in% installed.packages())]

if (length(new.pkg)) {

  install.packages(new.pkg)

}

LISTING 8-1
# This code sets up the python environemnt for the chapter

# set working directory to chapter location

# (change for where you set up files in ch 2)

setwd("~/book/ch08")

# make sure the packages for this chapter are installed

Note

Codd proposed this in 1970 in “A Relational Model of Data for Large Shared Data Banks,” 

Communications of the ACM, Vol. 13, No. 6, pp. 377-387. So much for big data being a 

21st-century concept.
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For the Python examples, you will need to ensure the proper libraries are installed. First, if you did 

install Python with Canopy (see Chapter 2), you’ll need to refer to this knowledge base article (https://

support.enthought.com/entries/23389761-Installing-packages-into-

Canopy-User-Python-from-the-OS-command-line) on the Enthought support site that 

will enable you to install Python packages from external sources. You will also need a working Redis server 

before installing the Python redis component. Refer to the Redis quickstart guide (http://redis

.io/topics/quickstart) for information on how to get Redis up and running. The following code 

sets up the necessary environment from a typical Debain-style system shell prompt:

dds$ # install the Berkeley DB library

dds$ sudo apt-get install libdb-dev

dds$ # install Python package for Berkeley DB interface

dds$ # note that you may not need sudo depending on your environment

dds$ sudo pip install bsddb3

dds$ # install Python package for Redis interface

dds$ sudo pip install redis

A Primer on SQL/RDMBS Databases

Due to the regular attention given to InfoSec’s “most wanted”—SQL Injection (SQLi) vulnerabilities—

this chapter assumes the reader has some familiarity with traditional RDBMS systems such as MySQL 

(http://www.mysql.com/downloads/), MariaDB (https://mariadb.org/), Oracle 

(http://www.oracle.com/technetwork/database/enterprise-edition/
downloads/index.html) or PostgreSQL (http://www.postgresql.org/).

If you are coming at this chapter without prior experience in relational databases you will have 

an edge up on many readers who have a predisposition toward them, but some of the topics and 

references could be a bit confusing. This short primer on RDBMS systems should help introduce 

you to the basic concepts.

Most RDBMS systems have the following core attributes:

Data is organized by tables, with attributes (ields) in columns and individual records stored 

in rows. For example, an RDBMS table to hold firewall log entries could have a structure that looks 

like Figure 8-1a with each log entry being a row and the individual data elements broken down into:

 ● A unique identifier for the firewall (fw_id)

 ● A timestamp (ts)

 ● Source IP address (src_ip)

 ● Source port (src_port)

 ● Destination IP address (dst_ip)

 ● Destination port (dst_port)

 ● Accept/Deny (action)

 ● Number of bytes transferred (num_bytes)

The complete structure of a table or set of tables is called a schema.

(continues)
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Data in tables is referenced by rows and ields. Individual fields or combinations of fields called 

keys ensure each record within a table can be uniquely identified and help distinguish the relation-

ships between tables. The firewall (Figure 8-1a) and proxy (Figure 8-1b) tables are “linked” together 

by source IP address (src_ip) and both of them are “linked” to the asset database (Figure 8-1c) by 

their id fields.

Fields can also be part of one or more indexes, which are separate data structures that provide 

optimized ways to organize data in those fields and can dramatically speed up operations that look up 

data (queries).

Data is accessed and manipulated through a structured query language (SQL). SQL was 

designed to be both a human-readable and platform-independent way to perform insert, update

FIGURE 8-1 Graphical representation of example firewall, proxy, and asset database tables

(continued)
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Realizing the Container Has Constraints
Compared to Codd’s era, we are awash in computing resources. Memory, storage, CPU, and network capacity 

are all relatively cheap and the need to accommodate the underlying architecture of physical storage when 

designing, building, and using databases is (for the most part) no longer present. Becoming an amateur 

DBA is now as simple as executing sudo apt-get install mariadb-server on any Debian-ish 

Linux box (with similar, easy installation options for Windows and MacOS). In some ways, this simplicity and 

ubiquity has contributed to the fallacy that traditional SQL/RDBMS databases are destined for extinction 

due to “lack of scalability and functionality.”

The reality is that modern SQL databases are comparable to web servers, proxy servers, firewalls, and 

mail servers in that their out-of-the-box configuration is going to be in jack-of-all-trades mode. The default 

features and capabilities will be enough to get you off and running, and may even perform moderately well 

as your record counts and schema complexities increase. But, when the types or amounts of data begin to 

push the boundaries of the default configuration, you will run into problems. It’s important to understand 

the most common types of constraints you will face as your SQL needs grow and where to turn when you 

begin to encounter them.

and delete actions, plus run queries against the data. For the example database in Figure 8-1, you 

can query the destination information (timestamp and IP) for a source IP address in both the proxy 

and firewall tables with the following SQL statement:

SELECT ts, dst_ip

FROM proxy_log_entry

WHERE src_ip = "10.20.30.40"

UNION

SELECT ts, dst_ip

FROM fw_log_entry

WHERE src_ip = "10.20.30.40";

Application programs should not rely on the physical structure of the data. There are a host 

of options when it comes to deciding how to physically store data in a database and indicating how 

indexes are organized. All of these choices should be fully abstracted from the application or user 

who should be able to execute the same high-level query and have it work regardless of changes 

to physical representation.

The relational structure, mostly uniform query language, and physical abstraction properties were 

major contributors to the popularity of SQL databases, especially since mapping problems like cus-

tomer records and sales orders into fields and rows is fairly straightforward and just “makes sense.” 

Yet, as you’ll see later in the chapter, the relational structure is not well suited for all types of data 

or problems.
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Constrained by Schema
It may not be obvious at first glance, but there are significant differences between the following two, 

simple SQL table structures:

CREATE TABLE fw1 (

  src varchar(15) NOT NULL,

  dst varchar(15) NOT NULL,

  dpt int NOT NULL,

  d int(11) NOT NULL)

CREATE TABLE fw2 (

  src int(10) unsigned NOT NULL,

  dst int(10) unsigned NOT NULL,

  dpt smallint(5) unsigned NOT NULL,

  d date NOT NULL)

For those who may be new to SQL, the statement in in the first code block creates a database table with 

IP address src and dst fields stored as a string of characters (“0” … “9”), while the statement in the second 

block creates a table with those fields stored as an unsigned integer with a display width of 10 characters.

When you are creating a table to store “network” information, it’s tempting to use character storage for 

IP addresses since that’s how humans interact with them. It’s also tempting to just handle a UNIX timestamp 

(as seen in the ts field in Figure 8-1) as a big integer value since, well, that’s what it is. Also, destination 

TCP/UDP ports (dpt) technically are integers. There are, however, potentially significant issues at play 

with these choices.

If the src and dst fields are indexed you may not notice any issues at first if all you’re doing is issuing 

queries for individual IP addresses, like this:

SELECT * FROM fw1 WHERE src = "10.35.14.16"

The index will speedily find the rows containing the value for src and the database engine will return the 

results as quickly as it can transfer data from disk to your query client. If you do not have an index on those 

fields, then the same query will have to perform a full table sequential scan, which could be a fairly long 

operation when you have millions of rows. 

If you needed to find all matching rows for portions of a subnet, you may be faced with creating complex 

regular expressions (regex) or carving up the IP space into multiple slices to get the benefit of intelligent 

query prefix optimization for SQL’s LIKE operator. Or you might have to split out the subnet into individual 

IP addresses to ensure you gain the benefit of full speed queries. Non-optimized wildcard searches—

especially ones without a common prefix—will result in a full table scan, performing regex string com-

parisons for every field value.

By switching to the numeric representation of IP addresses (shown in the preceding code for table 

fw2 and discussed in Chapter 4), you can gain disk space, memory size, and query time efficiency since 

many index types are optimized for numeric range selections. Converting to/from integers is usually as 

simple as using built-in INET_ATON or INET_NTOA functions. Similarly, moving from a straight integer 

timestamp to a date field brings with it more straightforward query composition and increased query 

execution speed. Finally, switching dpt from an integer to a smallint will save you two bytes per 

record which can be important if you plan on using in-memory tables or start racking up billions of records.
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If you regularly work with specialized field types (for example, IP addresses and geolocation data), you 

could even consider using different database platforms—such as PostgreSQL—that have direct support 

for a diverse array of custom fields.

RDBMS schemas also tend to be somewhat fixed structures. Although it’s possible to add or remove 

columns to/from existing tables, there are real penalties for doing so, both at creation time and beyond. You 

will immediately incur a space penalty as the new field is added to each row with that operation (whether 

necessary or not) also occupying a decent amount of time on large, established table structures. Some 

RDBMS systems can compensate for these issues, but you may need to leave your “amateur DBA” status 

at the door as you start to become a professional database administrator in order to solve these issues.

You’ve Got Some EXPLAINin’ To Do!

To become a true database wizard requires delving into the dark arts of the subject matter. SQL 

queries are a bit like magic spells in that the wrong inflection can drastically change the results (usu-

ally for the worse). You can get an idea of how to tweak your schemas and optimize your queries 

with the EXPLAIN statement, available in most RDBMS systems. 

EXPLAIN will, well, explain what the query engine will do with the SQL you’ve given it without 

executing it. For example, if you were to load the AlienVault database mentioned in Chapter 4 into 

a simple SQL database, it might look like this:

MariaDB> DESCRIBE avrep;

+--------+---------------------+------+-----+---------+-------+

| Field  | Type                | Null | Key | Default | Extra |

+--------+---------------------+------+-----+---------+-------+

| ipn    | int(10)             | YES  | MUL | NULL    |       |

| bad    | tinyint(3) unsigned | YES  |     | NULL    |       |

| con    | tinyint(3) unsigned | YES  |     | NULL    |       |

| type   | varchar(50)         | YES  |     | NULL    |       |

| cc     | varchar(2)          | YES  |     | NULL    |       |

| city   | varchar(30)         | YES  |     | NULL    |       |

| latlon | varchar(30)         | YES  |     | NULL    |       |

+--------+---------------------+------+-----+---------+-------+

To get a count of all IP addresses coming from China (CN), you might issue the following query:

MariaDB> SELECT COUNT(ipn) FROM avrep WHERE cc="CN";

You can see how optimal that query is (or isn’t) by prefixing it with EXPLAIN (we’ve added the 

EXTENDED and \G to make the output clearer for the book’s printed format):

EXPLAIN EXTENDED

-> SELECT COUNT(ipn) FROM avrep WHERE cc="CN"\G

*************************** 1. row ***************************

           id: 1

  select_type: SIMPLE

        table: avrep

         type: ref

(continues)
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Constrained by Storage
When this book hits the shelves in 2014, consumers will have access to 5TB hard drives. With that type 

of capacity being a general user commodity it’s difficult to contemplate how a database could be con-

strained by storage given that enterprise-class disks have even more options through larger and faster 

disks and disk arrays. Open source SQL databases such as MySQL or MariaDB can have individual tables 

possible_keys: NULL

          key: NULL

      key_len: NULL

          ref: NULL

         rows: 265597

        Extra: Using where

For this query, no keys are being used, so this will require a table scan. You can optimize it by adding 

an index on the cc field:

CREATE INDEX cc_idx ON avrep (cc);

and rerun EXPLAIN:

EXPLAIN EXTENDED

-> SELECT COUNT(ipn) FROM avrep WHERE cc="CN"\G

*************************** 1. row ***************************

           id: 1

  select_type: SIMPLE

        table: avrep

         type: ref

possible_keys: cc_idx

          key: cc_idx

      key_len: 5

          ref: const

         rows: 132798

     filtered: 100.00

        Extra: Using where

to see if there are any changes. In this case, the EXPLAIN output shows that the SQL query engine 

identified the index for the cc field and that using it will reduce the number of rows scanned.

It’s a good idea to use EXPLAIN on more complex queries, especially ones that may be run often. 

You may be able to identify bottlenecks that you are attributing to “those darn old school SQL 

databases” when it’s really your schema or SQL composition that needs work.

(continued)



Realizing the Container Has Constraints 199

as large as 256TB, which will fit comfortably on, say, a BTRFS (https://btrfs.wiki.kernel

.org/index.php/Main_Page) file system capable of holding 16EiB of data. What, then, are these 

storage “constraints”?

 ● Speed—If your analytics needs are modest, it’s tempting to stick with consumer-grade equipment 

for both cost and ease of deployment. However, that 5400RPM USB 2.0 disk may be the bottleneck 

for even modestly sized projects, given the way consumer drives are designed (since they aren’t 

designed to serve database workloads). You could use consumer disks in a consumer storage 

array, but this would only temporarily mask the problem. If your analytics workflow performance 

declines significantly when you increase the size of data sets, consider investing in faster disks 

with increased cache. Plus, if the impacts are severe enough, it may be time to switch to true 

commodity server hardware with faster enterprise-class storage—or even solid-state disks 

(SSD)—and a proper industrial-class storage array.

 ● Caching—Databases use both disk and RAM in concert when performing most of their operations. 

Delving into RAM and cache discussions can stir up as much debate in the DBA community as 

sparking a similar conversation about desktop signature antivirus in the defender community. 

Increasing the amount of RAM will help your database perform faster, especially when you need 

to issue the same query more than once (think a nested SELECT query used in multiple, but 

diverse main SELECT statements). RAM and disk caching will also help when inserting data into a 

database since write-caching can be employed to mask I/O bottlenecks.

 ● Capability—Just because you can store a huge quantity of data in a single table doesn’t mean you 

should. For example, storing 3 years of enterprise firewall log data in a single RDBMS table is pos-

sible, but it’s truly a bad idea because of all the performance problems this causes. By optimizing 

the underlying storage configuration and using table partitioning techniques available in most 

modern RDBMS systems, you can turn what may have been a marathon of a query into a sprint 

and probably still keep everything on one system.

Constrained by RAM
Lack of sufficient active RAM or using a traditional RDBMS with a configuration that cannot take advantage 

of large amounts of RAM is the harbinger of doom for any project that needs to scale. As indicated in the 

previous section, databases use RAM to (among other things) cache portions of tables that are on disk and 

also to cache query results. More advanced SQL databases can also use RAM for in-memory tables. If you 

know you’re going to have regular use of referential data (for example, asset metadata, non-frequently 

changing IP lists), loading that information into an in-memory SQL table can reap huge rewards as you 

perform JOINs, UNIONs, and sub-SELECTs. It’s usually as simple as identifying the query—which can be 

the full set of rows and fields from an existing table—you want to populate in an in-memory configuration. 

For example, if you wanted to store all the IP addresses contained in the AlienVault table in an in-memory 

table (to guarantee it stays there versus rely on the cache keeping it there) you could do the following:

CREATE TABLE avrep_mem ENGINE=MEMORY

    -> SELECT ipn AS ip

    -> FROM avrep;

It’s also best to avoid consumer-grade RAM and opt for high quality ECC (error-correcting code) memory 

to avoid the perils of data corruption.
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Constrained by Data
There are definitely examples of “security data” that fit well into the relational model including firewall 

logs, web server logs, anti-malware logs and asset information. Each of those example sources easily maps 

into interconnected rows and columns. But, what about the JSON structure of an incident recorded in 

VERIS format, as seen in Chapter 7? Although it’s possible to develop a relational structure for this data, 

it’s hardly an optimal solution.

To optimize database table structures and query efficiency, Codd came up with the notion of 

normalization, which is just a way of describing a method to organize fields and tables so as to eliminate 

as many redundancies as is feasible and make it easier to modify or extend the database schema with 

as little impact as possible. “Over-normalizing” a database can make working with the underlying data 

awkward and complex. “Under-normalizing” a database can increase the complexity of the application 

code or database stored procedures and will—most likely—needlessly expand the size of your data store.

Normalizing tabular data that is designed to fit into tables is generally a straightforward task. Mapping 

and normalizing hierarchical data (like the JSON VERIS data) means converting the hierarchies into graph 

adjacency lists, materialized paths, or nested sets that definitely increase query complexity. You could 

always go halfway and limit the nesting by storing large chunks of the JSON tree as BLOBs (binary large 

objects) in special fields, but that also makes queries complex and slow, since you’ll likely be performing 

full text searches of those fields.

RDBMS systems are great for a wide variety of problem sets and data types, but they should not be the 

only tool in your toolbox since there are so many custom options available, as you’ll see in the next section.

Exploring Alternative Data Stores
There are many longstanding and new database storage and database management systems that have 

shunned the conventions and conformity of straight-laced SQL. These technologies are usually grouped 

Who/What Is This ‘Maria’?

Many readers may have used or come into contact with the MySQL RDBMS. For many years, it was 

a foundational element of the initial “LAMP” (Linux/Apache/MySQL/PHP) stack of components you 

would use to build websites. After Oracle acquired MySQL, there was a community-developed fork 

of the code created under the name “MariaDB.” MariaDB is a drop-in replacement for MySQL. You 

can uninstall MySQL (preserving data, of course) and install MariaDB and everything will “just work.”

MariaDB versioning and features have been on par with counterpart MySQL releases, but significant 

divergence is occurring with newer iterations, including support for cutting-edge storage engines, 

dynamic columns, and interfacing with NoSQL environments (Cassandra).

Choosing MariaDB over MySQL, PostgreSQL, or traditional commercial RDBMS offerings is a decision 

you and your security and analytics team members must make yourselves and may be highly depen-

dent on corporate requirements, if you’re constrained by them. Even if you “can’t” use MariaDB, it’s 

definitely a project that should be on your watch list.
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under the term NoSQL (Not only SQL), which makes it easier to classify them, but also adds confusion since 

the features and functionality each provides can be radically different. By “not being SQL” they all offer 

alternate ways of designing solutions and storing information that can be of huge benefit when incorpo-

rating data analysis into your security strategy. This section takes a look at some of the more prominent 

ones and sneaks in a security use case or two along the way to give you an idea of when you might want 

to pick one over the other.

BerkeleyDB
Perl wonks will no doubt be familiar with Berkeley DB (BDB) (http://www.oracle.com/

technetwork/products/berkeleydb/overview/index.html), and you can find support 

for it in R (RBerkeley), Python (pybsddb), and most other scripting/programming languages. BDB is 

a local (that is, embedded) key/value store that does what the description suggests: It lets you identify 

a key and store arbitrary data associated with it, and then perform highly efficient lookups with the key.

By its own definition, it’s not a relational database, an object-oriented database, a network database, or a 

database server. Unlike keys and fields in RDBMS systems, BDB is completely value-agnostic. 

If you’ve ever worked with the default configuration of SpamAssassin (http://spamassassin

.apache.org/) or postfix (http://www.postfix.org/) or dealt with open source LDAP servers 

such as OpenLDAP (http://www.openldap.org/), you’ve encountered BDB. 

Key/value stores perform well in situations where data writes are infrequent but reads are potentially 

plentiful, for example, caches. Consider, once again, the IPv4 address space. If you needed to cache only 

certain attributes of an IP address (for example, geolocation data or reputation data) and needed only local 

resources, choosing BDB as your platform has some serious merit. It doesn’t have the overhead that comes 

with traditional RDBMS databases (though modern versions of BDB “speak” SQL) and can be optimized for 

the key and value data structures. Plus, the keys and values can also be language-independent (that is, you 

can populate BDB stores with R and read them with Python, or vice versa). Listing 8-2 shows a very basic 

example of storing IP geolocation data with R:

LISTING 8-2
# requires packages: RBerkeley

# R code to interface with BDB

library(RBerkeley)

# create and open BDB database

dbh <- db_create()

db <- db_open(dbh, txnid = NULL, file = "av.db", 

              type = "BTREE", 

              flags = mkFlags(DB_CREATE, DB_EXCL))

# store geolocation data

db_put(dbh, key = charToRaw("24.62.253.107"), 
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LISTING 8-2 (continued)
            data = charToRaw("43.2555,-70.8829"))

# read it back to show it works

coords <- rawToChar(db_get(dbh,

                    key = charToRaw("24.62.253.107")))

db_close(dbh) # close BDB db

print(coords)

## [1] "43.2555,-70.8829"

Listing 8-3 shows a similar example of reading the same data back with Python:

LISTING 8-3
# Requires: bsddb3 and Berkeley DB library

# Python code to interface with BDB

from bsddb3 import db

import struct

import socket

# initialize and open BDB database

av_db = db.DB()

av_db.open('av.db',None,db.DB_BTREE, db.DB_DIRTY_READ)

# get first key/value pair

cursor = av_db.cursor()

av_rec = cursor.first()

# print it out to show it worked

print av_rec

## ('24.62.253.107', '43.2555,-70.8829')

av_db.close() # close BDB file

It would be very straightforward to expand this example to store the entire AlienVault database, indexed 

by IP address and with the other associated fields stored in the value component.

Berkeley DB also has solid thread support and scales as large as 256TB. If your workloads can deal with 

disk-seek times, you do not want the hassle of maintaining a server process or multi-node infrastructure for 

Note

Note that R will return a warning message about the database handle being unusable after 

the db_close() function call. This is just an informative message and can be ignored.
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your caches, and if there’s a chance you need multi-platform and multi-programming language support, 

it’s definitely a good choice.

Redis
Redis is an open source, BSD licensed, advanced key-value store (http://redis.io/). It’s tempting 

to think of Redis as just a server version of a key/value store since that’s what it looks like on the surface. Its 

most basic commands are GET and SET, and its basic data type is a binary safe string (so you can store 

virtually any type of data in the key or value components). What Redis really is, however, is more of an 

in-memory data structure server that is also persisted on disk (that also has many other useful features). 

The in-RAM requirement should not be glossed over lightly since every data structure and element must fit 

into RAM for Redis to work. This constraint should help prevent you from trying to shoehorn large relational 

or hierarchical structures into Redis, since that’s definitely not what it’s designed for.

Redis operates as a data structure server by providing a framework of operations for four fundamental 

data storage types: lists, hashes, sets, and sorted sets.

 ● Lists store single binary safe strings that are pushed on to the front (LPUSH) or back (RPUSH) of 

the list. Lists make superb message queue structures and excel at keeping the “last n” number of 

items available.

 ● Hashes expand the key/value NoSQL model by providing a way to identify and manipulate fields 

within the value component in a very space-efficient manner. You could replicate the geolocation 

Berkeley DB geolocation example quite easily with Redis hashes, straight from the Redis com-

mand line interface:

redis> HMSET ip:24.62.253.107 lon 43.2555 lat -70.8829 zip 03878

redis> HMGET ip:24.62.253.107 lon lat

1) "43.2555"

2) "-70.8829"

The main differences here are that you can query this database server from any client on the net-

work versus be constrained by just local file access and that everything is in memory, so lookups 

will be almost instantaneous.

BDB Alternatives

Oracle is now the proprietor of Berkeley DB. Although it’s still provided under a GNU AGPL v3 license, 

Oracle also offers a commercial version with fairly steep licensing options. If you are concerned 

that this may become fully commercial in the future, there are alternatives that provide the same 

feature set, including:

 ● Kyoto Cabinet (http://fallabs.com/kyotocabinet/)

 ● MapDB (http://www.mapdb.org/faq-general.html)
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 ● Sets store non-repeating collections of binary safe strings. This makes them ideal for associating 

elements together for quick membership determination. For example, creating a “workstations” 

set and populating the members with IP addresses makes it trivial to determine whether an IP 

address you’ve seen in a packet is coming from a workstation node:

redis> SADD workstations "10.23.34.45"

redis> SADD workstations "10.32.43.54"

redis> SADD workstations "10.45.34.32"

redis> SADD workstations "10.34.23.45"

redis> SISMEMBER workstations "10.10.10.10"

(integer) 0 // not in set

redis> SISMEMBER workstations "10.23.34.45"

(integer) 1 // in set

 ● Sorted sets provide a means to associate a ranked value with a member of a set. You could create risk 

or reliability sets for each of the malicious host types in the AlienVault database, using the values 

from those fields. You could also keep a running count of times you’ve seen those known-bad hosts 

attempt to access your resources (or when your resources have attempted to access those bad ones).

There is robust Redis support in Python (redis-py) and R (rredis), and the API is very straight-

forward to work with. Say you want a centralized and efficient way to know whether you’ve seen an IP 

address in an indicator of compromise (IoC) that you’ve received from some external source. Rather than 

rely on a query to return from your clunky centralized log management system, set up a workload that 

takes IP addresses from the log streams and stores them in a centralized Redis simple key/value or hash data 

structure with as much metadata as you need. Listing 8-4 provides a Python example of how to “watch” a 

log file (in this case, a web server log) and store the data in Redis.

Advanced Redis Features

Redis supports partitioning which lets you use memory on other systems to hold portions of Redis 

data structures. This is similar to the way you can partition tables in MariaDB, MySQL, and Oracle 

and helps you get around single-system RAM constraints.

Redis also has a built-in publish-subscribe service. With it, you can create a number of clients that 

subscribe to a channel that is publishing log entries or just new, individual IP addresses that make 

their way on to your internal “suspicious” list. When any new value is pushed, each client will get the 

message and can take some type of action, like running a set of analytics routines or parsing and 

storing the information into multiple SQL and NoSQL data stores for later processing.

Note

Listings 8-4 (ch08/python/watcher.py) and 8-5 (ch08/python/lastseen
.py) will work better as standalone shell scripts (each in their own file, as directed in the 

comments for each listing) versus within the Canopy environment. You will also need to 

have a web server running. To fully mimic the examples, you can install nginx (the one 

used in the 8-4 example) via sudo apt-get install nginx at a shell prompt and 

start it with sudo /etc/init.d/nginx start to generate output for the logs.
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LISTING 8-4
# Web server log watcher/Redis importer

# Save this as "watcher.py"

# Start it in one shell window prompt with

#    python watcher.py

# Requires: Python redis package

import time

import re

import redis

import pickle

# setup regex to parse web log entries

logparts = r'(\S+) (\S+) (\S+) \[(.*?)\] \

   "(\S+) (\S+) (\S+)" (\S+) (\S+)'

logpart = re.compile(logparts)

# map field names to extracted regex values

def field_map(dictseq,name,func):

   for d in dictseq:

      d[name] = func(d[name])

      yield d

# extract data from weblog

def web_log(lines):

   groups = (logpart.match(line) for line in lines)

   tuples = (g.groups() for g in groups if g)

   colnames = ('host','referrer','user',

               'datetime','method', 'request',

               'proto','status','bytes')

   log = (dict(zip(colnames,t)) for t in tuples)

   log = field_map(log,"bytes",

             lambda s: int(s) if s != '-' else 0)

   log = field_map(log,"status",int)

   return log

# "tail" for python

def follow(thefile):

   thefile.seek(0,2)

   while True:

      line = thefile.readline()

      if not line:

         time.sleep(0.1)

         continue

      yield line

# setup log watching

# change this to an active, accessible web server log

(continues)
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LISTING 8-4 (continued)
logfile = open("/var/log/nginx/access.log")

loglines = follow(logfile)

log = web_log(loglines)

# setup Redis connection

# for large environments, you will substitute

# localhost with a dedicated server host name

red = redis.StrictRedis(host='localhost',

                        port=6379, db=0)

# for each entry, store pythonic-data structure in

# associated with a key (could also use Redis hash

# for more language-independence)

for line in log:

   l = line['host']

   a = red.get("ip:%s" % l)

   if (a == None):

      a = {}

      a['ls'] = time.time()

      a['ct'] = 1

      red.set("ip:%s" % l,pickle.dumps(a))

   else:

      a = pickle.loads(a)

      a['ls'] = time.time()

      a['ct'] += 1

      red.set("ip:%s" % l,pickle.dumps(a))

Listing 8-5 shows the query component:

LISTING 8-5
# Listing 8-5

# Redis log watcher python query script

# Save this as "lastseen.py"

# Start it in one shell window prompt with

#    python query.py

# Requires: Python redis package

from datetime import datetime

import redis

import pickle

import sys

# setup Redis connection

red = redis.StrictRedis(host='localhost', port=6379, db=0)

# get IP address from the command line & query Redis

ipaddr = sys.argv[1]
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ioc = red.get("ip:%s" % ipaddr)

# if found

if (ioc != None):

      b = pickle.loads(ioc)

      print("IP [%s] was last seen on [%s].\nTotal times seen ")

      print("since we started counting: [%d]." %

            (ipaddr, datetime.fromtimestamp(b['ls']),b['ct']))

else:

   print("%s has not been seen, yet." % ipaddr)

Now, it’s quick work from the command line to know whether you’ve seen an IP address (substitute 

24.62.253.107 with a known address to get a “found” result in your setup):

dds$ python lastseen.py 24.62.253.107

IP [24.62.253.107] was last seen on [2013-10-13 18:57:59.875430].

Total times seen since we started counting: [80787].

If you’re thinking, “I could just use grep,” remember that this is a constantly streaming, online activity 

from potentially hundreds or thousands of sources spanning weeks or months. If you architect it properly, 

Redis will always beat grep.

Hive
It’s virtually impossible to write a book about data analysis without mentioning Hadoop (http://wiki

.apache.org/hadoop), and if you’re already investigating or using Hadoop, then you may have 

come across Hive (http://wiki.apache.org/hadoop/Hive/LanguageManual). Hive sits 

on top of the Hadoop Distributed file System http://hadoop.apache.org/docs/current/

hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html) that partitions data across—

potentially—thousands of nodes. Hadoop MapReduce jobs execute across these nodes using this data. 

The map component takes a set of data elements, breaks them into key/value pairs, and performs a com-

parison and/or computation on them. The reduce component takes these results and combines them to 

come up with a final result set (which may involve another comparison and/or computation).

MapReduce Redux

MapReduce is a Google creation (http://static.googleusercontent.com/
external_content/untrusted_dlcp/research.google.com/en/us/
archive/mapreduce-osdi04.pdf) and was designed to enable efficient computations 

across huge (for example, multi-thousand node) clusters. It does this by splitting the data across 

the entire cluster then instructing worker nodes to perform some operation on that local data set 

(the map). Those intermediary results are then collected and summarized by other worker nodes 

into a final operation (the reduce). Figure 8-2 illustrates the process.

(continues)



208 BREAKING UP WITH YOUR RELATIONAL DATABASE

Hive provides a SQL-like interface to this HDFS data. Rather than becoming an expert Java coder to 

compose and execute MapReduce jobs, Hive abstracts this complexity and converts SQL into MapReduce 

jobs for you. This is a very important point to remember: In the Hadoop ecosystem, everything boils 

down to a MapReduce job across very large amounts of data. The complexities of setting up a Hadoop 

environment and keeping it running are mixed into the cost/benefit analysis when choosing this as part 

of your analytics platform.

While Hive provides the comfort of SQL, some key features of SQL do not come along for the ride. 

For example, the Hive query language (HiveQL) provides only limited support for SQL JOINs. If your 

needs go beyond combining tables on equality conditions, you cannot use Hive due to the limitations 

of the Hadoop MapReduce paradigm. You also need to use caution when ordering result sets with SQL’s 

FIGURE 8-2 Illustration of MapReduce

(continued)
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ORDER BY, since Hive currently only uses a single reduce engine to perform that sorting task, creating 

potential bottlenecks. There are many other subtleties to Hive and HiveQL as well. While you may not 

need to become a Java expert, you will have to thoroughly understand how HiveQL queries translate to 

MapReduce jobs and learn how to optimize queries to take advantage of this platform.

If you have the time, space, personnel, budget, and use cases to set up Hadoop/HDFS/Hive, it may be 

well worth the investment. Imagine being able to keep a full year’s online archive of every log file from every 

system, network device, firewall, and mail server in a massively efficient data warehouse and perform basic 

inquiries across all of those components. That’s where the real power of Hive+Hadoop lies.

Analyzing “At-Scale” NetFlow Data with Hadoop

If you ever enter a conversation about data and Hadoop, the concepts of volume, velocity, and 

variety will inevitably come up. 

 ● Volume refers to how much data you have. 

 ● Velocity refers to how fast that data is coming in or being analyzed. 

 ● Variety speaks to the diversity of data types being ingested and processed. 

Most security data falls somewhere on the lower end or middle section of each of those spectrums. 

However, even in a medium-sized network, NetFlow data can easily peg all the way to the upper 

bounds on the velocity and volume scales.

If you aren’t familiar with NetFlow, here’s the definition straight from RFC 3954 (http://www
.ietf.org/rfc/rfc3954.txt):

A �ow is deined as a unidirectional sequence of packets with some common 

properties that pass through a network device. These collected �ows are exported 

to an external device, the NetFlow collector. Network �ows are highly granular; 

for example, �ow records include details such as IP addresses, packet and byte 

counts, timestamps, Type of Service (ToS), application ports, input and output 

interfaces, etc.

NetFlow data is extremely useful for security analytics, but can be challenging to work with. For 

example, if you have a 10 Gbps link that is only 50 percent utilized, you can expect to churn out 2.3TB

of NetFlow data per hour. This is definitely a job for Hadoop since the input stream gathering and 

storage functions can be distributed across a large cluster (since it would overwhelm a single host) 

and converted on the fly to work with Hadoop native file formats. Then, you can begin to design 

MapReduce jobs such as performing anomaly detection or analyzing DDoS captures for patterns.

Tools such as PacketPig (http://hortonworks.com/blog/big-data-security-
part-one-introducing-packetpig/) can help reduce some of the tedium involved in 

getting NetFlow data into an environment where analysis can be performed, but it cannot abstract 

the complexity of such an environment. You will need to thoroughly understand numerous NoSQL 

technologies if you wish to head down the path of analyzing NetFlow data at-scale.
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MongoDB
MongoDB (http://www.mongodb.org/) could be called the “MySQL of NoSQL” databases as it has 

a large and active community, is easy to deploy in development, and scales fairly well in production. At 

its core, Mongo provides a way to do extremely quick prototyping given the schema-less nature of the 

platform. Unlike traditional SQL databases, where you need to define the fields you will be using up front, 

Mongo lets you start with a basic pseudo-schema and refine your needs along the way.

For example, it’s very straightforward to start storing IP geolocation info from the AlienVault Reputation 

database for an IP address with the following commands starting at a Linux shell prompt:

dds$ mongo

> db.av.insert ( { ip:"193.147.49.42",

                   geo:"40.4085,-3.6921" })

> db.av.find({ ip:"193.147.49.42" })

{ "_id" : ObjectId("525bfbe02074bfa7aaad8316"),

  "ip" : "193.147.49.42",

  "geo" : "40.4085,-3.6921" }

and then choose to add other information later, like the type of malicious activity the host is engaged in:

> db.av.update ( { ip:"193.147.49.42" },

                 { $set : { maltype:"Scanning Host" } } )

> db.av.find({ ip:"193.147.49.42" })

{ "_id" : ObjectId("525bfbe02074bfa7aaad8316"),

What about HBase, Cassandra, Pig …?

The full Hadoop ecosystem continues to expand at a relentless pace. Advancements within the envi-

ronment itself (for example, Hadoop 2.0) as well as integration with the environment (for example, 

Cassandra, MongoDB) and unique vendor-specific offerings are introducing nascent alternatives 

that have their own strengths, trade-offs, and idiosyncrasies. 

You will need to spend some effort looking at all the options you have available and mapping 

them to your perceived needs. Then choose a direction and stick with it. A Hadoop analytics envi-

ronment—much like Rome—cannot be built in a day. Despite the continuing advancements, this 

ecosystem is far from mature, and you will be forging new ground over a long period of time with 

each step you take.

Note

To follow along with these examples, install MongoDB via sudo apt-get 
install mongodb at a shell prompt and then start it with sudo /etc/init.d/
mongodb start.
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  "geo" : "40.4085,-3.6921",

  "ip" : "193.147.49.42",

  "maltype" : "Scanning Host" }

You do pay a price for these incremental field updates given the way Mongo stores the data and man-

ages the on-the-fly schema changes, and you may need to dump and reload the database to regain storage 

and query efficiency if you perform these types of changes in production versus just experiment during 

development.

Mongo breathes JSON and uses binary JSON (BJSON) in API calls. This means you need to be comfortable 

with JavaScript notation and will definitely want to keep the JSONLint (http://jsonlint.com/)

URL handy to assist you when errors crop up in your input data. The use of JSON provides the capability of 

storing deeply nested or hierarchical records and structures, which will require you to re-think any notions 

you may have on normalization. If you’re used to performing RDBMS normalization, then you’ll need to 

take a step back, ignore most of what you’ve been taught or have learned, and embrace the verbosity of 

this side of the NoSQL universe.

For example, malicious nodes in the AlienVault database can have multiple malicious activities associ-

ated with them. In traditional, normalized SQL, you would likely set up a separate table with host key and 

malicious node type field and have a row for each entry:

+-------------+-------------+

|193.147.49.42|Scanning Host|

|193.147.49.42|Spamming     |

+-------------+-------------+

then, perform a JOIN when retrieving results. With Mongo, you would store those components as a JSON 

array within the record:

> db.av.update ( { ip:"193.147.49.42" },

                 { $set : { maltype:[ "Scanning Host","Spamming" ] } } )

It may be difficult to see the value of this additional complexity with such a trivial example, but the power 

this holds starts to become much clearer if you look back at the VERIS JSON data in Chapter 7. Creating a 

normalized table structure to store all the fields in an incident is possible, but not necessary given Mongo’s 

ability to efficiently store, process, and query complex field structures. If you have Mongo installed from 

the previous example, you can install the git tool via sudo apt-get install git, which will 

allow you to follow the steps in Listing 8-6 (found in other/ch08.sh) to download and import the 

complex incident data in the entire VERIS Community Database from their GitHub repository (https://

github.com/vz-risk/) in about 5 minutes, without the need to create a database or table schema 

ahead of time.

LISTING 8-6
# Retrieve VCDB files, import into mongo and perform a query

# Requires mongodb and git

# clone the VCDB github repository

dds$ git clone https://github.com/vz-risk/VCDB.git

# import all the incdients

(continues)
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LISTING 8-6 (continued)
dds$ cd VCDB/incidents

dds$ ls | head -5

0012CC25-9167-40D8-8FE3-3D0DFD8FB6BB.json

002599D4-A872-433B-9980-BD9F257B283F.json

005C42A3-3FE8-47B5-866B-AFBB5E3F5B95.json

0096EF99-D9CB-4869-9F3D-F4E0D84F419B.json

00CC39F6-D2E0-4FF4-9383-AE3E28922015.json

dds$ for f in *.json ; do \

       mongoimport -d veris -c public --jsonArray $f ;

     done

# find all financial firms with security incident in the VCDB

# 52 is NAICS code for financial firms

dds$ echo 'db.public.find({"victim.industry": { $regex : "^52" } }, 

             { "victim.victim_id" : 1, _id : 0 } )' | mongo veris

{ "victim" : [

{  "victim_id" : "Blue Cross & Blue Shield of Rhode Island" } ] }

{ "victim" : [

{  "victim_id" : "Group Health Incorporated" } ] }

{ "victim" : [ 

{ "victim_id" : "Delta Dental of Pennsylvania" },

{ "victim_id" : "ZDI" } ] }

{ "victim" : [

{  "victim_id" : "UK National Health Service" } ] }

{ "victim" : [ 

{ "victim_id" : "Mundo.com" }, 

{ "victim_id" : "Public Defender of Venezula" }, 

{ "victim_id" : "Caroni Seguros SA" } ] }

. . .

 If your record count is large enough to span multiple Mongo nodes, these simple queries will work 

unaltered. Mongo can also perform data aggregation or even run MapReduce jobs across a whole cluster, 

mimicking some of the functionality of both Hadoop and more traditional SQL databases.

Mongo can also be used as a tool in your data acquisition and cleanup processes, where you may have 

traditionally used built-in structures in your programming or scripting languages. For example, log process-

ing is one of the less glamorous activities of security data analysis. They come in all shapes and sizes and 

some, like Cisco’s IronPort email logs, require extra processing to get into a form useful for analytics. Take 

a look at the following sample in Listing 8-7 (found in ch08/other/ironport.log):

LISTING 8-7
# Listing 8-7

# Example of an IronPort log file

Fri Oct 18 11:05:01 2011 Info: Start MID 346564 ICID 1042862

Fri Oct 18 11:05:01 2011 Info: MID 346564 ICID 1042862 From:

 <dave@example.com>
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Fri Oct 18 11:05:01 2011 Info: MID 346564 ICID 1042862 RID 0 To:

 <steve@test.com>

Fri Oct 18 11:05:01 2011 Info: MID 346564 Message-ID 

'<112067.438985349-em02@steel>'

Fri Oct 18 11:05:01 2011 Info: MID 346564 Subject 'TPS Reports Due'

Fri Oct 18 11:05:02 2011 Info: MID 346564 ready 864 bytes from

 <dave@example.com>

Fri Oct 18 11:05:02 2011 Info: MID 346564 matched all recipients for

 per-recipient policy local domains in the outbound table

Fri Oct 18 11:05:03 2011 Info: MID 346564 interim AV verdict using

 Sophos CLEAN

Fri Oct 18 11:05:03 2011 Info: MID 346564 antivirus negative

Fri Oct 18 11:05:03 2011 Info: MID 346564 DLP no violation

Fri Oct 18 11:05:03 2011 Info: MID 346564 queued for delivery

Fri Oct 18 11:05:03 2011 Info: Delivery start DCID 178987 MID 346564

 to RID [0]

Fri Oct 18 11:05:04 2011 Info: Message done DCID 178987 MID 346564

 to RID [0]

Fri Oct 18 11:05:04 2011 Info: MID 346564 RID [0] Response 'ok:

  Message 10569973 accepted'

Fri Oct 18 11:05:04 2011 Info: Message finished MID 346564 done

Because Mongo allows incremental schema build out, you can use that feature to create records for 

each message (MID) as you parse the log file. You can then add fields as you go, ending up with a final, 

complete database and an idea of how a complete per-record schema might look. The Mongo entry for the 

previous record could look like the one found in Listing 8-8 (found in ch08/other/ironport.json).

LISTING 8-8
// Example of an IronPort log file translated to JSON via MongoDB

{

    mid : "346564",

    icid : "1042862",

    from : "dave@example.com",

    to : "steve@test.com",

    messageID : "112067.438985349-em02@steel",

    subj: "TPS Reports Due",

    bytes: "864"

    matchStatus : 1,

    delivered : 1,

    av : { engine : "Sophos", verdict: "CLEAN" },

    dlp : { violation : "none" },

    start : "Fri Oct 18 11:05:01",

    finish : "Fri Oct 18 11:05:01"

}

Once all the records have been created, you can use Mongo and Python or R to perform time series 

analysis, z-scaled anomaly detection, clustering, or a host of other analyses. 
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Special Purpose Databases
It’s far too easy to get snarled on what truly constitutes a “database.” For those still entrenched in the SQL 

world, NoSQL is a serious affront to their sensibilities. For those who’ve adjusted to the NoSQL paradigm, 

tools such as ElasticSearch (http://www.elasticsearch.org/) and Neo4j (http://www

.neo4j.org/) may be equally as world jarring.

Databases will be an essential element in your analytics workflow, which might look like this:

1. Identify the data sources (for example, logs, traditional databases, alerts).

2. Collect, transform (if needed), and store the data.

3. Query the data store.

4. Provide analytics on the results.

If you choose to work with raw SQL or NoSQL databases, then you will need to perform most of the setup 

and cleanup tasks on your own, which requires DBA-like intimacy with the underlying database platforms.

ElasticSearch for Logs

If you’re focused on the goal of analytics more than the journey of how to get your data there, you may be 

interested in tools like ElasticSearch that abstract the complexities of the back end and give you an input, 

query, and analytics interface to work with on the front end.

Why Not Use Mongo for Everything?

It’s possible to fall into the trap of trying to use Mongo for everything, especially since it allows 

you to be a bit lazy up front. Although it’s great for some tasks, the platform still has some rough 

edges at the time this chapter was written. You might want to take into account when deciding on 

Mongo for a project:

 ● Record counting operations are improving but are still slower than other database plat-

forms due to the way Mongo uses the underlying b-tree database file structures.

 ● Field names are not compressed and take up real space per-record. This leads to prac-

tices such as using sip instead of src_ip or sourceIP and u for “username,” 

making queries somewhat unreadable unless you’re extremely familiar with the data.

 ● Maintenance operations are still required and can impair operations. You will need to 

compact the database regularly and this can be a time-consuming, blocking operation 

across a whole cluster. Although this is most likely not a problem for your analytics 

environment, be careful if you’re using Mongo to present an interactive data interface 

to other users.

 ● By default, writes to a Mongo database work a bit like UDP packets in that it’s “send, and 

pray it’s received.” You need to explicitly set options for enabling “write concern” to 

get more TCP-like behavior. This can have a serious impact on performance such as 

the need to guarantee writes of log entries you are aggregating into Mongo.
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ElasticSearch consumes practically anything you give it and provides straightforward ways to ask it 

questions and get data out of it. You just need to feed it semi- or unstructured data and fold in some domain 

intelligence to enable smart indexing. It works its multi-node NoSQL magic in conjunction with a layer of 

full-text searching to give you almost instantaneous query results even for large amounts of data. It’s highly

geared toward log data and supports an aggregation framework similar to that of Mongo.

If you are analyzing a wide variety of logs in your security work, ElasticSearch may be something you 

should consider investigating.

Neo4j for “Connections”

As indicated in several previous chapters, many areas of information security analytics involve looking 

at connections between nodes. You’ve also seen how network graph structures can make working with 

these connections a bit easier. Although it’s possible to model graph structures in SQL databases or Mongo, 

Redis, and so on, it’s easier to use a something like Neo4j that provides direct support for network graph 

models and operations.

If the igraph operations in Chapter 4 intrigued you, then you’ll be even more impressed with the 

feature set in Neo4j because it essentially scales similar computations and analytics across millions or 

billions of nodes. You can import high level vertex + edge connection data into Neo4j from NetFlow sources, 

firewall, proxy, email, and DNS logs, and augment the connection and node information with detail data 

from each of those sources.

You still need to have a graph model in mind when you’re designing for Neo4j and will need to learn a 

new graph-specific query language—Cypher—to get work done. However, many fine-grained tasks will 

require that you either roll up your sleeves and code a bit in Java or Python or use the Neo4j REST interface 

to funnel query output into your analytics platform of choice.

Summary
Becoming truly effective as a security data scientist requires a shift in mindset from any monolithic relational 

database fidelity you may have. Solving real problems requires you to keep your options open, recognizing 

that each database technology has unique benefits for specific tasks.

This chapter has presented a survey of various technologies combined with small examples in many 

different types of SQL and NoSQL database environments. We’ve outlined strengths and weaknesses in 

the choices you have and even provided some counseling on how to enhance interactions with your tra-

ditional SQL stores.

We’ve focused on some core database offerings, but have not provided an exhaustive reference since 

that would be a book on its own. You will need to keep abreast of developments in the database space—

both SQL and NoSQL—to see where you may need to make adjustments in the future. If you are working 

with larger and larger amounts of data, it may be time to wade a bit deeper into the Hadoop ecosystem, 

provided you understand the level of commitment required and the constraints you will be facing.

Finally, you’ve seen that databases can take many forms, that they can be used as a means to an end 

(for example, log parsing) as well as an end in and of themselves.
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Recommended Reading
The following are some recommended readings that can further your understanding on some of the topics 

we touch on in this chapter. For full information on these recommendations and for the sources we cite in 

the chapter, please see Appendix B.

Relational Database Design Clearly Explained, Second Edition, by Jan L. Harrington—One 

of the most complete and accessible resources available; especially helpful to nascent arrivals to the 

world of RDBMS systems.

Professional Hadoop Solutions by Boris Lublinsky, Kevin T. Smith, and Alexey Yakubovich—

An excellent and thorough introduction to the Hadoop ecosystem with modern, real-world examples 

and advice on how to secure your Hadoop analytics environments.

Professional NoSQL by Shashank Tiwari—Far more comprehensive reference on NoSQL database 

technologies that digs a bit deeper into many of the options described in this chapter.



9

“They know enough who know how to learn.”

Henry Adams

Demystifying Machine 
Learning
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There are two types of people in information security—those who are completely intimidated by machine 

learning and those who know machine learning largely solved the spam problem and are completely intimi-

dated by machine learning. It’s easy to be intimidated when machine learning is described as “a type of 

artificial intelligence that provides computers with the ability to learn without being explicitly programmed” 

by TechTarget. (http://whatis.techtarget.com/definition/machine-learning). 

How can a computer do anything without being explicitly programmed? Or better yet, consider this rather 

well known definition from Tom M. Mitchell in his 1997 book titled Machine Learning:

A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P, if its performance at tasks in T, as measured by 

P, improves with experience E.

Are you clear now on what machine learning is? This broad definition doesn’t help much because it only 

describes the abstract results of machine learning, not what it is or how to use it. To help you understand 

machine learning at a practical and concrete level, we start this chapter with a learning task associated with 

realistic data. Prepare for the examples in this chapter by setting the directory to the working directory for 

this chapter and make sure the R libraries are installed (Listing 9-0).

LISTING 9-0
# set working directory to chapter location

# (change for where you set up files in ch 2)

setwd("~/book/ch09")

# make sure the packages for this chapter

# are installed, install if necessary

pkg <- c("ggplot2", "RColorBrewer")

new.pkg <- pkg[!(pkg %in% installed.packages())]

if (length(new.pkg)) {

  install.packages(new.pkg)

}

Detecting Malware
Assume that you have been able to record memory and processor usage on all of your systems. With some 

effort, you have been able to inspect almost 250 of the computers, discovering that some of the systems 

are infected with malware and some are operating normally (without malware). But you have 445 other 

systems that haven’t been inspected, and you want to save time and use the data you have to determine 

if the other 445 systems you have are infected or not. 

Note

Please keep in mind that this is a contrived demonstration of a machine learning approach; 

for a much more complete application of machine learning to detect malware, see 

“Disclosure: Detecting Botnet Command and Control Servers Through Large-Scale NetFlow 

Analysis” from the Proceedings of the 28th Annual Computer Security Applications 

Conference by Leyla Bilge, et al. (Full reference is available in Appendix B.)
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This example will use R to build an algorithm that can be trained to perform the task of classifying 

systems as either infected or not. Start by loading the data on the hosts you know about and inspecting 

it (Listing 9-1).

LISTING 9-1
memproc <- read.csv("data/memproc.csv", header=T)

summary(memproc)

##          host          proc              mem               state

##  crisnd0004:  1   Min.   :-3.1517   Min.   :-3.5939   Infected: 53

##  crisnd0062:  1   1st Qu.:-1.2056   1st Qu.:-1.4202   Normal  :194

##  crisnd0194:  1   Median :-0.4484   Median :-0.6212

##  crisnd0203:  1   Mean   :-0.4287   Mean   :-0.5181

##  crisnd0241:  1   3rd Qu.: 0.3689   3rd Qu.: 0.2413

##  crisnd0269:  1   Max.   : 3.1428   Max.   : 3.2184

##  (Other)   :241

You can see there are 53 hosts identified as “infected” and 194 identified as “normal.” Also notice that 

both the processor data and the memory information have been normalized (see the discussion of z-score 

in Chapter 5). That will keep the numbers on the same scale. Scaling the variables like this is important in 

some machine learning approaches when you’re comparing across variables. In order to explore this data 

a bit more, let’s plot this data (Listing 9-2), comparing the processor data to the memory, and differentiate 

it based on the malware state (see Figure 9-1).

LISTING 9-2
# requires package : ggplot2

# requires object: memproc (9-1)

library(ggplot2)

gg <- ggplot(memproc, aes(proc, mem, color=state))

gg <- gg + scale_color_brewer(palette="Set2")

gg <- gg + geom_point(size=3) + theme_bw()

print(gg)

Notice how the infected systems appear to generally use more processor and memory? Perhaps you 

could develop an algorithm to classify this data just based on the relative location (on the scatterplot in 

Figure 9-1) of the known hosts. But before you get too far, you’ll want to do a little planning. First you’ll 

want to determine which machine learning algorithm you want to apply, and then you should figure out 

Note

The data/memproc.csv file is available as part of the Chapter 9 download materials 

for this book, which you can find at www.wiley.com/go/datadrivensecurity.
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how to test if the algorithm is any good. In a real problem, you would try several different algorithms and 

features; you’ll learn about model and feature selection later in this chapter.

Developing a Machine Learning Algorithm
Does that title give you flashes of fear that we’ll start talking about mathematical formulas and make you 

say things like “sub i of x”? Don’t worry, we will keep this as light as we can, and we will start by demysti-

fying the word algorithm. Anytime you see the word algorithm, try to mentally replace it with “a series 

of instructions” because that’s all an algorithm is. You’ll want to develop a series of instructions for the 

computer on how to inspect and understand the data (so it can learn about it). Then the computer can 

apply that learning to the systems you don’t know about and classify them.

Do you see how you are not explicitly programming? Even though you are absolutely writing a program 

for the computer, you will not be explicitly writing the decision criteria the computer will use and that’s the 

difference. Your series of instructions (the algorithm) will explicitly tell the computer how to inspect the data 

and how it should build its own decision criteria from the data. It will not tell the computer the decision 

criteria directly. Compare that to the traditional approach of programming firewall and intrusion-detection/

prevention systems. With the traditional approach, humans try to think up what’s best and then explicitly 

program the rules the machines should follow. There is a limit to that approach, and unfortunately, our 

FIGURE 9-1 Processor and memory across systems
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security systems reached that limit years ago. In machine learning, you are asking the computer to learn 

from the data and then apply that learning to other data. The computer is far more capable of uncovering 

the differences and subtleties in the data than humans, and that is exactly what machine learning is doing.

Getting back to the data shown in Figure 9-1, you’ll want to create a series of instructions to learn about 

the processor and memory usage on the normal hosts and then compare it to the processor and memory 

usage on the infected hosts. Once the computer has some notion of a difference between the two sets, you 

can give it some instructions on how to apply that information to the data collected from the unknown/

unclassified systems. Remember the goal here is to have the computer guess whether or not a system 

is infected with malware. Consider this short algorithm, which is easy to understand and easy to follow:

1. Define and train an algorithm:

a. Calculate the average (mean) processor and memory usage for known infected systems.

b. Calculate the average (mean) processor and memory usage for known normal systems.

2. Make a prediction using processor and memory usage for an unknown host:

a. If the processor and memory usage are closer to the average infected machine, label it as 

infected.

b. If the processor and memory usage are closer to the average normal machine, label it as 

normal.

Congratulations! You have written your first machine learning algorithm and now the computers are 

one step closer to world domination with this extra bit of artificial intelligence! Notice the choice of word-

ing in the first step, you’ll want to train the algorithm. That’s the term used to describe when the machine 

is learning from the data; it’s being trained by the data just as an apprentice is trained by its master.  The 

data used to train the algorithm is referred to as the training data. In this simple example, the “training” 

simply involved calculating the mean usage for infected and non-infected using the training data. This is 

a single-step training procedure. In contrast, most real machine learning algorithms use iterative or multi-

step training procedures, as we’ll describe later.

Validating the Algorithm
Before you rely on this algorithm for real decisions, you need to make sure it is valid. You’ll want some way to 

test how accurate this algorithm is at predicting infected systems. Rather than using all of this data to train 

Note

It may seem like this chapter uses the terms model and algorithm somewhat interchange-

ably. The difference is subtle and may even be a bit confusing at first. The term model is 

more general and just defines how the elements fit together. An algorithm is a specific 

way of implementing a model, so there can be many alternative algorithms that fit the 

same model.
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the algorithm, how about you hold back some of the data to test how accurate the algorithm can predict 

malware? The process of “making sure” you have a good approach is one of the strong suits of machine 

learning. It has evolved just as much (if not more so) in computer science as it has in statistics, and there 

is a strong element of pragmatism in the field. Many techniques have evolved to validate the decisions 

you’ll make and they are so ingrained in the process, it becomes impossible not to perform those steps as 

part of the model selection.

For this example, you will keep it simple and split the original data into two data sets. In serious machine 

learning projects, you would probably create multiple data sets from the original data, and train and test 

the data over multiple iterations (and validations).

Once you split the data into two groups, as we mentioned, call the first group the training data, since 

you’ll use it to train the algorithm, and call the second group the test data, since you’ll use it to (yup, you 

guessed it) test your approach. To split the data randomly, make use of the sample() command. You will 

pull a random sample of the indexes (the index is the location in the vector data) of the original data and 

use that sample to split into the train and test data. There’s no definitive rule as to where to make the split 

(different techniques split in different ways), so you will simply take one third for the test data and train 

the algorithm on the other two thirds. Since there is an element of randomness here we make the splitting 

repeatable by setting the seed for the random number generator (see Listing 9-3).

LISTING 9-3
# requires package : ggplot2

# requires object: memproc (9-1)

# make this repeatable

set.seed(1492)

# count how many in the overall sample

n <- nrow(memproc)

# set the test.size to be 1/3rd

test.size <- as.integer(n/3)

# randomly sample the rows for test set

testset <- sample(n, test.size)

# now split the data into test and train

test <- memproc[testset, ]

train <- memproc[-testset, ]

Now you can train the algorithm on the train data and verify how good it is with test data. Please 

keep in mind that there are much more robust methods for validation. Splitting the data once like this is 

better than just assuming the algorithm is good, but in the real world, you’d need something more robust 

like cross-validation, which we discuss later in this chapter.

Implementing the Algorithm
Recall that the first step in training this algorithm is to calculate the average (mean) for the infected proces-

sor and memory usage and the mean for the normal processor and memory usage. You do this by taking a 

subset of the rows based on the state field (so only infected or normal is returned) and then apply that 

to the columns of the proc and mem fields. That reduced data can be passed directly into colMeans(),
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which will compute the means on the two columns and return a named vector with two elements (see 

Listing 9-4).

LISTING 9-4
# requires object: train (9-3)

# pull out proc and mem columns for infected then normal

# then use colMeans() to means of the columns

inf <- colMeans(train[train$state=="Infected", c("proc", "mem")])

nrm <- colMeans(train[train$state=="Normal", c("proc", "mem")])

print(inf)

##     proc      mem 

## 1.152025 1.201779 

print(nrm)

##       proc        mem 

## -0.8701412 -0.9386983 

The differences between the means here is not exactly small, so this rather simple approach may do 

okay with your simple algorithm. With the algorithm now trained and ready to predict, the next step is 

to create a predict.malware() function (Listing 9-5). This will take in a single named vector called 

data, extract out the proc and mem values, than calculate how far those are from the means that you 

generated during the training. What is the best way to calculate distance? Think back to geometry class 

and the Pythagorean theorem—a2 + b2 = c2, where a and b are the two sides of the triangle and c is the 

hypotenuse. This is called “Euclidean distance,” since it is based on Euclidean geometry. In your case, a is 

the difference between the trained proc mean and the test proc value, and b is the difference between 

the trained mem mean and the test mem value. Once you get the two distances, you simply compare them. 

Whichever is smaller is the one you will predict.

LISTING 9-5
requires object: inf (9-4), nrm (9-4)

predict.malware <- function(data) {

  # get 'proc' and 'mem' as numeric values

  proc <- as.numeric(data[['proc']])

  mem <- as.numeric(data[['mem']])

  # set up infected comparison

  inf.a <- inf['proc'] - proc

  inf.b <- inf['mem'] - mem

  # pythagorean distance c = sqrt(a^2 + b^2)

  inf.dist <- sqrt(inf.a^2 + inf.b^2)

  # repeat for normal systems

  nrm.a <- nrm['proc'] - proc

  nrm.b <- nrm['mem'] - mem

  nrm.dist <- sqrt(nrm.a^2 + nrm.b^2)

  # assign a label of the closest (smallest)

  ifelse(inf.dist<nrm.dist,"Infected", "Normal")

}
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Feel free to pass in a few values if you like and inspect the output. At this point, everything is ready to run 

against the test data. To pass in the test data you can use the apply() function with the first argument 

being the test data set and the second argument being a 1 to denote to apply it over the rows (instead of a 2

for columns). Then you’ll pass in the function we just created called predict.malware (see Listing 9-6). 

The apply function will convert in each row to a named vector. We have to be careful here, because the 

state and host variables are characters, so the whole vector is converted to a character vector when 

apply passes it in. This is why you convert the proc and mem variables back to numeric variables with 

the as.numeric() function in the predict.malware() function. 

LISTING 9-6
# requires object: test (9-3), predict.malware (9-5)

prediction <- apply(test, 1, predict.malware)

Once the test data runs through that code, you’ll have a set of predictions and the ability to compare 

them to the real values (see the power of this method?). To determine how well it did, you’ll want to look at 

the proportion of correctly predicted results on the test data. You can calculate that by taking the number 

of correct predictions (where the real test$state and the predicted prediction match) and then 

dividing that by the total number of predictions (Listing 9-7).

LISTING 9-7
# requires object: test (9-3), prediction (9-6)

sum(test$state==prediction)/nrow(test)

## [1] 0.8780488

First, Do No Harm; Second, Do Better Than the Null Model

This is a great time to point out that this is a very basic algorithm and it’s only for discussion purposes. 

There is a concept within statistics known as the null model, which is a very simple model that 

you’ll always want to do better than (or at least no worse). For example, in the ZeroAccess infection 

data in Chapter 5, the null model could be the calculation of the average (mean) infection across 

all the states (5,253 infections). The null model (for prediction) would estimate 5,253 infections for 

any new state regardless of any data about that state. In this case you are omitting or “nullifying” 

the variables to simplify the model. Intuitively, you know that the average across the states will be 

a very poor predictor, but that’s the purpose. You’ll want to use this as a reference point and exceed 

it. And even though this seems like a “well duh” type of statement, we are not kidding about this. 

You could spend days preparing data and training an intricate support vector machine and do worse 

than a much simpler model. Just take the time to create a simple “must be this tall to ride” mark, 

and then make sure you surpass it.
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This very simple algorithm predicted almost 88 percent of the values correctly, which is probably more 

a statement about how segregated the data is than the strength of the algorithm. But overall, 88 percent is 

pretty good for your first machine learning algorithm; congratulations! The results are pictured in Figure 9-2.

This classifier creates a line halfway between the two means and perpendicular to an intersecting line. 

Anything above the line is predicted as infected; anything below is predicted to be normal. The misclassified 

values are clearly marked in Figure 9-2. You can see how any normal systems above the line are mislabeled 

as well as any infected systems below the line. 

FIGURE 9-2 Predictions from the algorithm

Spam, Spam, Spam

Open any non-InfoSec book on machine learning (which may be all of them) and you will probably 

see spam filtering mentioned, and perhaps even see an in-depth example. We’ve decided not to go 

into spam filtering, given that we’ve got a single chapter to cover everything and there are already 

some great examples out there. One of the better discussions of spam filtering (including a guided 

walkthrough) is in Machine Learning for Hackers by Drew Conway and John Myles White. Another 

good thing about playing with spam classification is that there is no end to the available data, right?
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Benefiting from Machine Learning
Now that you’ve seen a rather simple example (perhaps too simple), you should have a basic understanding 

of the change in thinking that machine learning brings. Rather than focusing on rule sets and signatures, 

machine learning can shift the focus toward continual adaptation based on the computers learning directly 

from the data. Hopefully, the days of thresholds and regular expressions rules will soon be behind us.

Before you can read about the benefits of machine learning, you need to learn about the two types of 

machine learning algorithms—supervised and unsupervised. Which type you use is determined more 

by the type of data you have than by personal preference. 

 ● Supervised algorithms require that the training set have known samples just like the opening example 

of this chapter. The data in that example was collected from hosts that were identified as infected with 

malware or not. Another example is the ZeroAccess data in Chapter 5, where you knew how many 

infections there were in each state and county and you could correlate that with other data about the 

states and counties. Supervised learning is possible only when you have labeled or known data.

 ● Unsupervised algorithms are usually applied to data when you don’t know ahead of time what 

outcome you are seeking. Unsupervised learning “lets the data speak for itself,” as much as pos-

sible. As an example, think of the recommendation systems at Amazon or Netflix. Those systems 

begin with data on the history of movie rentals or purchases and apply unsupervised learning 

techniques to group similar people (their habits actually) based on patterns in the data. This 

enables them to recommend products that other people like you have purchased. You don’t 

decide ahead of time what the groups should be. Unsupervised methods enable you to dis-

cover groupings and relationships, and do other and typically deeper explorations like no other 

approach. Given the unsupervised nature of these approaches, it is difficult to definitively prove 

something with unsupervised methods, but that’s not what these are designed to do. As you’ll 

see, you can discover some interesting relationships with unsupervised learning methods.

Answering Questions with Machine Learning
What types of questions can machine learning answer? What sort of problems can it solve? Broadly speak-

ing machine learning can help you with questions of:

 ● Classification

 ● Quantitative prediction

To Parametric or Not to Parametric, That Is the Question

In addition to supervised and unsupervised, machine learning algorithms may also be separated 

into parametric methods and non-parametric methods. The term parametric refers to one or more 

parameters in the model or algorithm that must be estimated as a result of the training step. The 

linear regression performed in Chapter 5 is an example of a parametric model. Part of the output of 

the lm() command is the linear coefficients (parameters), which are then used in both prediction 

and inference within regression analysis. Compare this to the random forest algorithm (discussed 

later in this chapter). When you train a random forest algorithm, there are no parameters to estimate. 

Instead, you grow a series of decision trees that are then used for further classification.
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 ● Inference

 ● Exploration and discovery

The opening example in this chapter already introduced the concept of classification, where you tried 

to determine if the hosts were infected or not. Classiication is the process of identifying the category 

something belongs in, or determining which label should be applied. Classification always begins with a list 

of possible categories and known data that describes those categories (so they are supervised algorithms). 

Many of the tactical challenges within information security revolve around a single classification problem, 

such as “Is this malicious or not?” Mechanisms exist to authenticate and authorize users, but do their actions 

match that of a normal user or a malicious user? Is this HTTP request valid or is the source attempting 

something they shouldn’t be? These are all questions that classification algorithms are best at tackling.

What if you wanted to forecast a quantity instead? Machine learning (and classical statistics) offers 

methods to do quantitative prediction. The overall approach may make people with a strong engineer-

ing background a bit uneasy thinking that prediction is impossible. But relax—nobody is claiming that the 

precise future is hidden in the data. However you can use the data to make a pretty good estimate. Given a 

set of observations and the outcome that resulted (so again, these are supervised methods), you can build 

a predictive model that will provide estimates of future values.

Think back to the linear regression analysis performed in Chapter 5. If by some strange turn of events 

another state appears with 6 million people, the regression analysis using just population would predict 

just under 5,000 ZeroAccess infections in that state. Although that example isn’t exactly practical, you could 

use techniques to estimate bandwidth usage next month, or even forecast the probable magnitudes for 

the next DDoS attack.

Sometimes the end result isn’t a prediction of a quantity or category. Sometimes you just want to know 

about the variables you observe and determine how they contribute to and interact with the outcome. In 

these cases you’ll want to apply methods for inference. Inferential methods allow you to describe your 

environment. How important are these variables? Are data around processor and memory usage the best 

predictors of an infected machine? For example, linear regression enables you to toss multiple variables into 

a single analysis and see how each of them contributes to the outcome and see the quantitative relation-

ships around them. Both supervised and unsupervised methods support inference about the variables, 

and that inference is an important part of any model or algorithm.

The last application of machine learning is for exploration and discovery. This is an area where 

unsupervised algorithms truly excel, but supervised methods can also support exploration. Sometimes 

you may find yourself just sitting on a mound of data and you want to know what sort of relationships 

or patterns exist in the data. Using methods like multidimensional scaling and hierarchical clustering 

will help you explore and gain perspectives on the data that just aren’t possible with simple descriptive 

statistics.

Measuring Good Performance
At the core of good learning is good feedback. If you’re creating models and algorithms and never check 

if they are doing well, you’re doomed to repeat the same mistakes and improvement is nigh impossible. 

This is such a fundamental concept that several techniques have been developed to measure performance 

within supervised algorithms. It’s important to understand that unsupervised algorithms are generally not 

used to prove (or disprove) a theory. We don’t have the space to go into the mathematical details for each 

method; instead this section explains a few basic approaches and some of the terms for further exploration.
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Following common sense, the best way to measure the performance of any predictive algorithm is to 

simply see how well it predicts (or how poorly it predicts if you are a pessimist). There is no single, perfect 

approach, so you will want to choose an approach that performs better than all the available approaches 

(don’t toss out a helpful approach simply because it’s imperfect). All of the fancy math formulas that describe 

this process are just variations on a simple theme: If you are working with quantitative values, select the 

approach in which predictions are the closest to the observations. If you are working with a classification 

system, choose the model with the highest number of correct classifications. 

Within classic regression analysis, the difference between the calculated prediction and the observed 

value is squared for each of the values and then added up. When the difference is squared, it amplifies the 

larger distances and rewards the smaller values and gives a better indication of quality. The fancy term 

for this is the sum square of errors (SSE). In the grand tradition of multiple ways to express the same 

thing, this is also called the error sum of squares, sum square of residuals (SS residual), or the residual sum 

of squares (RSS).

Since calculating SSE involves adding the squared differences, larger sample sizes have larger SSE values. 

That makes it impossible to compare between a training data set and the test data set when they don’t 

have the same number of data points. To standardize the SSE, it is divided by the number of data points 

(sample size), and the result can be compared when the sample size is not the same. That result is called 

the mean squared error (MSE). Prior to the concept of a training data set and test data set, this was (and 

still is in default classic approaches) calculated on the data set used to train the model. The challenge with 

just relying on the MSE of the training data is that it is prone to overitting (see the sidebar on overfitting). 

One approach to comparing quantitative models and algorithms is to calculate the MSE and compare it 

across multiple approaches and feature selections. You’ll read more about this process in the section titled 

“Validating Your Model” later in this chapter.

Selecting Features
Before you can train an algorithm and measure its performance, you need to have data to run on. One of the 

less talked about topics within machine learning is how you go about selecting the data to collect and include 

in your analysis. The variables that you collect and use within your algorithm are called features. Within clas-

sic statistics they are also called explanatory, independent, or predictor variables (and a few other things). 

Overfitting

Since learning algorithms “learn” what to do from the data, it’s possible that they’ll learn too much 

or put too much confidence in the data. When this happens, the algorithm may do very well on 

the training data, but fail miserably when run on real data. This is called overitting and occurs 

when the training algorithm is too aggressive in fitting to the training data. Because it’s a sample, 

the training data will have it’s own quirks and characteristics that may not match the population. 

Ideally, you want the learning process to ignore the quirks of the training data and just focus on 

the characteristics that apply to the general population. It’s a good thing to be aware of overfitting, 

but awareness alone doesn’t help all that much. Several approaches exist to help detect and avoid 

overfitting, and you’ll read about a few in the next section.
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The processor and memory usage in the opening example of this chapter were the features you used to train 

your algorithm.

The tricky part with feature selection is that there are no guidelines in selecting the initial set of features, 

so this is where your domain expertise comes into play. You collect the data points that may be important 

and then (as discussed in the previous section) run them through the algorithm and check if they are actually 

contributing to the outcome. (By doing this relatively simple step that is supported in almost every statistical 

approach, you will have surpassed every risk analysis model within information security; congratulations.) 

Although it’s tempting to grab everything and anything, remember that data collection and cleaning has 

a cost (at least in time and resources). And be aware that many approaches benefit from fewer variables 

and may perform quite poorly with a lot of variables.

As an example, if you were thinking of improving on the malware classifier, you could pull variables 

from network traffic logs, such as the ports and protocols used, how often, and how much, as a starting 

point. The first pass of variables doesn’t really matter all that much because whatever you choose initially 

will undoubtedly be wrong-—and that’s okay. Grab data that makes sense and then try to make sense of it. 

You may find that only some of the variables are helpful, or that none of the variables do well, or variables 

do well only when used in combination. But the point is that feature selection is an iterative process. In 

the end, you should not only look at how well the features contribute to the outcome, but also how well 

(or accurately) the whole algorithm performs and then try to improve on it.

Using the Best Subset

Given a bunch of features, how could you determine which ones to include or exclude? One approach 

is to try every possible combination of features and select the subset of features that performs the best. 

This technique is rather appropriately named the best subset approach. The benefit and drawback of this 

approach is the same—every possible combination is tested. On one hand, this approach may discover 

a combination of features that you wouldn’t have found without this brute force method. On the other 

hand, you have to run through all the combinations of features and that may take considerable time. As a 

reference point, using the best subset selection method on 20 variables will require well over one million 

iterations through the algorithm and validation steps.

There is another caveat with the best subset approach. As the number of features increases, the prob-

ability of finding bogus relationships in the features also increases. The good news is that it will generally 

not happen silently. Overfitting with this method may look “best” on the training data, but perform very 

poorly on the test data. One way to tackle that problem is to apply several of the best subsets to the test 

data or move to another technique.

Using Stepwise Comparison

When the brute force method of the best subset is infeasible or undesirable, the stepwise approach may 

be a good compromise. Rather than tossing everything in, you build up the correct set of features by step-

ping over them. In a forward stepwise process, the method begins by training with each of the features 

individually. Whichever feature performs the best is kept and the process is repeated by adding one more 

feature to the previous results. The features are added in one by one based on their contribution. Once all 

of the features have been added, all of the best performing algorithms at each of the steps are compared. 

The overall best set of features is selected as the final set.
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The benefit of this method is that it constitutes an enormous reduction in the number of iterations 

compared to the best subset method. But the drawback is that not all the combinations are tried and so 

the best combination may be hidden. In some cases, a feature that performs best alone may not perform 

best when other features are added. You can also perform a reverse stepwise comparison, where you start 

with all the features and then sequentially step backward, removing the least helpful feature until you’re 

down to one feature again. Then, you look at all of the best combinations and select the best that way.

Validating Your Model
However you go about selecting the features to include, you still need to validate how well the approach 

performs. Each algorithm may have subtle differences in how it works and the test statistics it generates 

and focuses on. Still, there are a few general approaches for validating how you’re doing, and they apply 

to almost all the methods. The most widely used method is cross-validation, and it’s discussed here. As 

a second validation pass, you could look at any other resampling methods, such as bootstrapping or the 

jackknife method.

The opening example started with 247 observations and then was split into a training set to train the 

algorithm and a test set to test how the training set did. Recall that the data was arbitrarily split so that 

two thirds was training data and the remaining one third was test data. One drawback in doing that is that 

you can’t train on the one third that you pulled out, and that introduces more variation in the outcome of 

the training process.

What if you were to repeat the splitting and testing process so all data could contribute to both the 

training and test of the algorithm? It is possible to increase the accuracy of the algorithm by generating 

multiple training and test data sets and comparing the results from all of the splits. This approach is called 

cross-validation, and it works better than when you just split the data once.

The common method of performing cross-validation is to split the data into some number of equal 

partitions (more than a few) and then iterate over the data using each partition as the test data once. This is 

known as k-fold cross-validation, because you fold the data k times (once for each partition). For example, 

you could go back to the data in the first example and divide it into 10 partitions and iterate through the 

process 10 times each, with a different test data set and a slightly different training data set. By combining 

(averaging) the estimation of the accuracy across each of the iterations, you can have more confidence in 

how that approach will perform on new data.

A variation on the k-fold cross-validation is to set the number of partitions equal to the number of 

samples in the data. The result is the leave-one-out cross-validation. Named because you can sequen-

tially leave out one value from the training set and test against that one value across the whole data 

set. The results from this method are often more accurate in assessing the algorithm, but it comes at a 

computational cost.

Specific Learning Methods
There are a lot of learning methods, and it isn’t possible to survey all of them in one chapter. We chose 

a handful of approaches and will briefly touch on what makes them unique, including their strengths, 

weaknesses, and so on. But the field of machine learning is as wide as it is deep, and there are many methods 

we don’t touch on here. Do not take that to mean they are less important or not as good. On the contrary, a 
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method such as neural networks or support vector machines may perform better in some circumstances. 

We have just picked a few to serve as an introduction and overview.

Supervised
Supervised methods require that you begin with known or labeled data. You will not be able to apply 

supervised methods for malware detection unless you have data from known infection and known normal 

systems. While this may present a challenge in some circumstances, the power of supervised learning may 

make the extra effort well worth it.

Linear Regression (and Transformation)

Linear regression is a very popular approach when it comes to quantitative prediction and inference about 

the independent variables, and for good reason. Linear regression has been around since the late 1800s and 

has evolved into a robust and flexible approach. One of the early “a-ha” moments with linear regression is 

that it can be used on data that is not actually linear. For example, look at the line in Figure 9-3. That line 

was fit to the data with linear regression.

FIGURE 9-3 Linear regression on non-linear data
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Can you see the linear relationship in Figure 9-3? Believe it or not, it’s there. The linear part of linear 

regression is a reference to the linear coeicients estimated, not the data. In other words, you can use a 

linear model to describe non-linear data. The trick (although it’s not really a trick) is to transform the data 

prior to running linear regression on it. Looking back at Figure 9-3, the relationship between x and y is a 

cubic polynomial, and some variation around y = x3. Therefore, you would want to transform the x variable 

and include that in the model so you can estimate the (linear) coefficients for each of those variables. When 

transforming the variables like this, you must be careful not to overfit the data. It would be possible to 

add enough transformed variables to perfectly fit the training data, but such an approach would perform 

horribly on the test or real data.

Linear regression has many variations and nuances that make it powerful, especially when combined 

to some of the techniques mentioned earlier in this chapter. Classic linear regression relies on computing 

a p-value (see Chapter 5) to assess the strength of the model and variables. The recent trend is to also 

integrate validation methods such as cross-validation to support model selection and validation. See the 

lm() and glm() commands within R for the specifics on how to execute linear regression.

Logistic Regression

Although linear regression is designed for predicting quantitative variables, it isn’t helpful when the problem 

isn’t quantitative. For example, in the opening example, you needed to classify the hosts as infected or 

not; linear regression wouldn’t be helpful in that circumstance. Instead, you can turn to logistic regression, 

which is an extension of linear regression. It models a yes/no output, that is, choosing between just two 

outcomes. Figure 9-4 shows logistic regression applied to that training data.

The output (on the x-axis) is an estimated probability of a host being infected based on the input 

variables. That output is plotted against the known value in the test data (on the y-axis, and remember 

the y-axis is not known in real life). It’s clear that, given these input values, you would be able to estimate 

a large portion of the hosts correctly. No matter where the cutoff is set (for example, hosts above 0.4 are 

classified as “infected”), you will undoubtedly have some false positives (identifying hosts as infected when 

they are not) and false negatives (identifying hosts as not infected when they are). Traditionally, logistic 

regression is used to make a logical classification (this is or is not something). There are techniques for 

applying logistic regression to multiple categories, which we won’t cover here.

FIGURE 9-4 Logistic regression on infection test data
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Within R, there are several approaches to logistic regression; however, the glm() function can handle 

most situations.

K-Nearest Neighbors

The technique of k-nearest neighbors is best described using a generic sports analogy. Suppose you want to 

choose a person at random from anywhere in the world and predict his or her favorite sports teams. When 

you choose that person at random, you can ask his or her neighbors and friends (“k” of them, where k is any 

consistent number) which teams that person cheers for. Then, you determine which teams the majority 

of those neighbors cheer for and assume the person you plucked has similar taste as their neighbors.

The k-nearest neighbors algorithm does the same thing. Given a set of known (this is supervised algo-

rithm) variables, for each new data point, this algorithm looks at the nearest k data points (you pick the value 

for k) and assumes that the new data point is like its neighbors. This gets away from the linear classification 

of the opening example. This approach increases in accuracy as the number of observations increases. One 

drawback is that it is sensitive to the selection of k. With very large values of k, this approach gets closer 

and closer to creating a linear boundary. Overall, the k-nearest neighbors can be a very effective classifier 

and outperform many other techniques. It’s worth understanding.

Within R, the class package offers support for k-nearest neighbors (and other knn functions).

Random Forests

Random forests are built on the concept of the decision tree and excel at multidimensional data (data with 

a lot of features). The decision tree is what IT people think of as a flowchart. You start at the top of the tree 

and branch off in different directions, depending on the criteria within the tree compared to the observed 

features. Imagine the various types of decisions that could be built given data types—if the data is above 

average, fork here; if data fits into that category, go there. If you have complex data, you must use more 

than one decision tree. A technique called boosting was developed to create a whole lot of decision trees 

and then look at the aggregate result from all of them. Boosting provides a huge improvement. Although 

each individual tree performs poorly, they all performed poorly in a predictable spread around the best 

answer. Therefore, the best answer can be derived from looking at all the trees (see where this is going 

with the forest?).

Boosting decision trees works quite well, but it’s influenced by noisy features. One or two bad eggs in 

the basket can bias the result by consistently pulling trees in a weird (and difficult to detect) direction. The 

random forest technique gets around that problem by growing the trees with only a small subset of the 

features. This makes each individual tree an even worse predictor, but the aggregate improves because 

the noisy variables are included only in a subset of the features selected for each tree, and not influenced 

by every tree in the forest.

Random forests bring a new way of thinking and are squarely in the non-parametric camp. They do not 

attempt to create a model of reality and then derive the parameters of the model (such as with regression 

techniques). Instead, random forests create a huge set of relatively weak predictors and then aggregate 

across them all. This is like going to a new town and asking only tourists for directions. Many of the answers 

will be way off, but if you look at the aggregation of all the answers, you’ll probably get where you’re going.

As you may be thinking, you would never attempt to apply the random forest technique with pencil 

and paper. This technique grows hundreds or even thousands of multi-branched decision trees based on 
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random points in random features and can be done only with the aid of a computer. Within R, random 

forests are available from the appropriately named randomForest package. It’s also worthwhile to 

explore parallel processing solutions, and the R package doParallel offers a good solution for spread-

ing the processing across multiple cores and reducing the computational time needed for random forests.

Unsupervised
As we mentioned earlier in this chapter, unsupervised approaches are quite useful to find underlying pat-

terns and relationships in the data. Given some pile of data, what kinds of trends exist in there?

K-Means Clustering

K-means, like k-nearest neighbor, uses the “k” to represent a variable that you will set as part of the approach. 

The k in this technique represents the number of clusters to be generated. The k-means approach follows 

the following algorithm:

1. Set k “center points” randomly among the data.

2. Assign all the data points to the nearest center point.

3. Calculate a new (mean) center of the data points assigned.

4. Move the center points to the new calculated (mean) center.

5. Repeat Steps 2-4 until all centers no longer move in Step 4.

Notice how Step 1 in the k-means technique uses randomness? This means that if you rerun a k-means 

clustering, you may get different clusters. Figure 9-5 shows the same data with multiple different k-values. 

The kmeans() function in base R will perform k-means clustering.

Hierarchical Clustering

The downside to k-means is that you have to specify the number of clusters. This is where hierarchical 

clustering can help by deriving all of the clusters within the data. The output of hierarchical clustering is 

Comprehension versus Performance

One of the challenges with machine learning is that some of the techniques are so complex and 

abstract that they push the boundaries of human comprehension. At some point, you’ll reach a 

trade-off between the ability to comprehend an approach and the performance it brings. Neural 

networks are an example of this trade-off. In some cases, neural networks offer better performance, 

but they are rather complex and difficult to comprehend and difficult to tune properly without that 

comprehension. You may opt for an approach that is easier to comprehend, easier to explain to 

others, and easier to use at the expense of a slight deterioration in performance, and you should be 

comfortable with that. Given the complex nature of many decisions with information security, any 

approach with machine learning is better than any decision without machine learning.
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called a dendrogram (see Figure 9-7 later in this chapter) and looks like a tree, starting at the top and 

branching off into two groups at a time until all of the objects are in their own cluster. Algorithmically, the 

approach actually starts at the bottom with everything in its own cluster. It then scans across all the pairs, 

comparing and looking for the most similar pairing. When it finds similar clusters, it will combine those 

two. This repeats until there is one cluster with everything at the top.

The advantage to hierarchical clustering is that it is possible to “cut” the tree down and inspect the 

clusters at any point in the tree, which is what you’ll do later in this chapter when you use the hclust()

function on breach data.

Principal Component Analysis

Principal component analysis (PCA) reduces the number of features you look at to those that really matter 

and is one of a few techniques to perform this dimension reduction. PCA works best on data that is highly 

correlated because it can capture most of the variation in the data with a reduced number of variables. The 

outcome of PCA is a list of derived components ordered by how much variance they describe in the data. 

Once the data is reduced to that format, you can pull out the significant components and use those moving 

FIGURE 9-5 K-means clustering with centers shown
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forward rather than the larger (and possibly noisy) number of dimensions. Running PCA in R requires the 

single command of prcomp().

Multidimensional Scaling

Sometimes you’ll just want to see the clusters. This can be problematic with multidimensional data because 

you cannot visualize in more than three dimensions (and even that third dimension is tough on a flat 

screen or paper). The solution is to use a technique called multidimensional scaling (MDS). Like PCA, 

MDS performs dimension reduction. It can squish the multidimensional data into two dimensions so you 

can visualize the relative similarities between objects. You’ll run through an example of this technique 

later in this chapter, using the R command cmdscale() for classic multidimensional scaling. In the next 

section you will see the output of multidimensional scaling when applied to the industries of breach data.

Hands On: Clustering Breach Data
In this section, you revisit the VERIS community database (VCDB) data you used in Chapter 7 in order to see 

multidimensional scaling and hierarchical clustering in action.

The natural approach to breach data is to simply count the categories, see what occurs more often, 

and then draw some conclusions from that information. But the challenge with that approach is that any 

conclusions drawn may be applied too broadly if the conclusions don’t apply across the board. After working 

with breach data for a while, it becomes clear that different industries have different problems. Each industry 

shares some common traits, like they all deal with the same type of information, causing some industries 

to be targeted more or less than others. Organizations in the same industry are more likely to copy others 

in the same industry, so the breach data may also show some type of pattern because of that.

The problem then is this:

Just how diferent (or similar) are the incidents across industries?

This is a rather interesting challenge because the only thing you start with is a hunch that industries 

are in fact, different. The best approach to this question is in some of the clustering algorithm. If you can 

isolate variables across the industries, you can calculate a “distance” between the industries in order to 

determine which are alike and which display some unique traits.

You’ll begin this analysis by converting the VCDB data to a matrix (see Listing 9-8). You haven’t read 

much about matrices in R, but they are similar to a data frame in that they have fixed row and column widths 

(think of spreadsheet cells, which are “rows” long and “columns” wide). The unique aspect of matrices is 

that they can contain only one type of variable (such as just characters or just numbers). For this work, you 

will convert the VCDB to a numeric matrix. Luckily, the verisr package has a function for just such an 

occasion, and it’s appropriately called veris2matrix(). Begin by loading the verisr package (see 

Listing 7-5 in Chapter 7 if you haven’t installed it yet).

LISTING 9-8
# requires package : verisr (7-5)

# requires VCDB data from chapter 7 (see comments)

library(verisr)

# if you have grabbed the incidents from the VCDB repository at 
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# https://github.com/vz-risk/VCDB you can set the directory to that

# Otherwise, this should reference the data from chapter 7

jsondir <- '../ch07/data/vcdb/'

# create a veris instance with the vcdb data

vcdb <- json2veris(jsondir)

# finally, you can convert veris object into a numeric matrix

vmat <- veris2matrix(vcdb)

# you may look at the size of

# the matrix with the dim() command

dim(vmat)

## [1] 1643  264

Looking at the output from the dim() command, the data from VCDB at this point is providing 1,643 

rows (one row per incident in the data repository) and 264 columns. Each column is a single enumeration in 

the data, and you can see what the columns are by looking at the column names with the colnames()

command. When veris2matrix() creates the matrix, it will create a unique column for every enumera-

tion it sees within the VERIS data. For example, if the hacking variety of a SQL injection attack is present, 

one column in the matrix will be action.hacking.variety.SQLi and the column will be a 0 or 

a1, depending on if that particular value was present in the incident, and will be set for all the incidents in 

the matrix. If none of the incidents is recorded with SQL injection, the whole column will not be present. 

The entire matrix is just a collection of ones and zeros at this point. This matrix isn’t directly helpful as is, 

but it will serve as the base data from which you’ll generate the training data. 

Next, you’ll identify the variables that you want to compare—the victim industries. In order to get that 

list, you can simply look at the column names, pull out columns with victim.industry in the title, 

and use them as the variables (see Listing 9-9). You will want to pass that into the function from verisr

called foldmatrix(), which will take in the numeric matrix you just created and the list of variables 

you’re going to fold this matrix on (the victim industries).

You will also pass in two other variables. The first variable is min, which enables you to set a minimum 

threshold for the number of incidents in each industry. If an industry has less than the minimum, it will not 

be included in the analysis. For this exercise, you’ll set 10 as the minimum. The last variable to pass in is 

clean, which asks the function to clean up the final matrix by removing the rows less than the minimum 

and any columns that are all the same. You will need to clean it up since those variables will not contribute 

to the analysis. If you were using this approach to do PCA analysis, it would throw an error if you didn’t 

first clean up the matrix.

LISTING 9-9
# requires package : verisr (7-5), 

# requires object : vmat (9-8)

# now pull the column names and extract industries

vmat.names <- colnames(vmat)

industry <- vmat.names[grep('victim.industry', vmat.names)]

# "fold" the matrix on industries

# this pulls all the incidents for the industry

# and compresses so the proportions of the features are represented.

(continues)



238 DEMYSTIFYING MACHINE LEARNING

LISTING 9-9 (continued)
imat <- foldmatrix(vmat, industry, min=10, clean=T)

dim(imat)

## [1]  17 251

There were 17 industries (actually 17 unique two-digit industry codes from the NAICS specification 

discussed in Chapter 7). It also looks like the function cleaned up 13 columns after folding the matrix. 

Now you have one row per industry; the columns represent a VERIS variable, and the value represents the 

proportion of incidents in the industry with the VERIS variable present.

For example, if you were looking at healthcare and SQL injection (again), and 40 of the 100 healthcare 

incidents involved SQL injection, you would see a 0.4 in the column of action.hacking.variety.

SQLi in the healthcare row. This is where the comparison occurs. You compare the differences in all of 

these variables across the industries.

Multidimensional Scaling on Victim Industries
The purpose of all that prep work was to get the data ready to apply some multidimensional scaling to the 

industries. And finally, this is where the magic happens! As with many tasks within data analysis, you spent 

more time preparing the data than you spend actually running the analysis. The first command converts 

your matrix of industries and variables into a distance matrix. This matrix uses the Canberra metric of 

distance (it does better with values around the origin) to calculate a distance metric between each pair of 

industries. Then you can feed that distance matrix into the cmdscale() function, which projects it onto 

a two-dimensional plane for plotting (see Listing 9-10).

LISTING 9-10
# requires object : imat (9-9), vmat (9-8), 

# convert the distance matrix

idist <- dist(imat, method='canberra')

# run it through classical MDS

cmd <- cmdscale(idist)

# and take a look at the first few rows returned

head(cmd)

##                           [,1]       [,2]

## victim.industry2.32 -75.080869 -50.662403

## victim.industry2.33 -29.457487  -2.942502

## victim.industry2.42 -24.727909  21.751872

## victim.industry2.44   3.692422   7.840992

## victim.industry2.45 -18.855236  93.787627

## victim.industry2.48 -54.382350  23.166301

Look at what is returned from cmdscale(). It looks ready to be visualized because those are x and 

y points. In fact, at this point you could run plot(cmd) and see where those points are. However, the 

points would be unlabeled, and it’s worth it to spend some time to create a good-looking plot. In a final 

plot, it’d be nice if you gave some indication of size per industry, and since you still have that original vmat

matrix, you should be able to pull out a count of incidents in each industry. Then you should fix those labels 

because the VERIS data deals with the NAICS industry codes. Although very helpful, the industry codes 
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are not all that user friendly. You can get nicer labels by loading the industry2 data in the verisr

package and mapping the industry codes to the shorter labels (see Listing 9-11).

LISTING 9-11
# requires package : verisr (7-5), 

# requires object : cmd (9-10), vmat (9-8), 

# get the size of bubbles

ind.counts <- colSums(vmat[ , rownames(cmd)])

# extract the industry label

ind.label <- sapply(rownames(cmd), function(x) { 

  tail(unlist(strsplit(x, "[.]")), 1) 

})

# load up industry data, included with verisr package

data(industry2)

# create a new list of short tet

txt.label <- industry2$short[which(industry2$code %in% ind.label)]

And now you have variables called ind.counts and txt.label in the same order as the cmd

object. Now you can create a data frame and create a plot with ggplot2 (Listing 9-12).

LISTING 9-12
# requires package : ggplot2

# requires object : cmd (9-10), ind.counts, txt.label (9-11) 

library(ggplot2)

indf <- data.frame(x=cmd[ ,1], y=cmd[, 2], label=txt.label, 

                  size=ind.counts)

gg <- ggplot(indf, aes(x, y, label=label, size=size))

gg <- gg + scale_size(trans="log2", range=c(10,30), guide=F)

gg <- gg + geom_point(fill="lightsteelblue", color="white", shape=21)

gg <- gg + xlim(range(indf$x)*1.1) # expand x scale

gg <- gg + geom_text(size=4)

gg <- gg + theme(panel.grid = element_blank(),

                 panel.border = element_blank(),

                 panel.background = element_blank(),

                 axis.text = element_blank(),

                 axis.title = element_blank(),

                 axis.ticks = element_blank())

print(gg)

You use the ggplot theme() command to strip out everything because the scales and labels are irrel-

evant for viewing. You want to view the relative location of the industries in respect to other industries. In 

this plot the x- and y-axes are a distance measurement using the Canberra metric, and the numbers don’t 

have any meaning or significance for a person viewing them.

Figure 9-6 is rather interesting. You can see that healthcare and government (public) victims 

appear to be similar (probably due to the large amount of lost devices and error that is reported 
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within those demographics). The little cluster on the top of accommodation and retail is interesting. 

Those two industries see the bulk of the “point of sale smash and grab” attacks. The cluster of three in 

the lower-left corner might be worth more investigation. It’s hard to say exactly why those three are 

grouped up there without looking further into the data.

Hierarchical Clustering on Victim Industries
Although it’s possible to look at Figure 9-6 and make some clusters visually, you should be careful in doing 

so. MDS reduces (approximates) a multidimensional object into two dimensions so there will be some 

perspective and detail lost. Figure 9-6 can serve as a visual to some talking points or, better yet, a point 

from which to jump into more analysis.

So let’s keep going with this data and apply some hierarchical clustering on this data to derive the clus-

ters mathematically. You can simply feed the idist distance matrix right into the hclust command and 

plot it (Listing 9-13). To make the labels on the plot user friendly, you should relabel the rows of the original 

industry matrix and rerun the dist() command to recreate the idist object with readable labels:

LISTING 9-13
# requires object : imat (9-9), txt.label (9-11)

# go back and relabel imat

FIGURE 9-6 Basic MDS plot of breaches within an industry
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rownames(imat) <- txt.label

# rerun idist

idist <- dist(imat, 'canberra')

# hclust couldn't be easier

hc <- hclust(idist) # , method="complete")

plot(hc)

From Figure 9-7, you can see how and when things are split off into clusters. The end result is that they 

are all “clustered” into their own groups since each is unique. Now you can use the cutree() command 

to cut the hierarchical tree down into an appropriate number of clusters. You can try whatever number 

you like, but this example shows six clusters. Since you are subjectively choosing where to cut the tree, 

you cannot use this approach to prove there are six clusters here (or however many you choose). But what 

you can say is that, if the hierarchical cluster is cut at six, these are the clusters it produces. Of course, many 

people won’t have a clue what you’re talking about, but at least now you do.

When you run the cutree() command, it will take in the output from the hclust() command 

and the number of clusters to cut it off at. It will return a vector of the numbered clusters that each industry 

is assigned. You can then use that vector to assign a unique fill color per cluster so the plot will visually be 

clustered by color (Listing 9-14). You do this by converting the cuttree() command to a factor and then 

adding it to the indf object created previously. Then plot it again with the colors, as shown in Figure 9-8.

FIGURE 9-7 Hierarchical clustering on victim industries
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LISTING 9-14
# requires package : ggplot2

# requires object : indf (9-12), hc (9-13)

# we can now cut off the heirarchical clustering at some level

# and use those levels to color the MDS plot

indf$cluster <- as.factor(cutree(hc, 6))

gg <- ggplot(indf, aes(x, y, label=label, size=size, fill=cluster))

gg <- gg + scale_size(trans="log2", range=c(10,30), guide=F)

gg <- gg + geom_point(color="gray80", shape=21)

gg <- gg + scale_fill_brewer(palette="Set2")

gg <- gg + xlim(range(indf$x)*1.06) # expand x scale

gg <- gg + geom_text(size=4)

gg <- gg + theme(panel.grid = element_blank(),

                 panel.border = element_blank(),

                 panel.background = element_blank(),

                 axis.text = element_blank(),

                 axis.title = element_blank(),

                 legend.position="none",

                 axis.ticks = element_blank())

print(gg)

Remember earlier we mentioned that this process converts multi-dimensional data into two dimensions? 

In looking at Figure 9-8, you can see how the transportation industry is clustered with the industries in the 

lower left, instead of the visually closer trade industry. Feel free to try changing experimenting with the 

number of clusters fed into the cuttree command. What you can take away from this particular visualiza-

tion is that there are a lot more questions than answers from it. Why is healthcare in its own cluster? Why 

is the retail industry with NAICS code 44 so distant from the retail industry with NAICS code 45? What is 

going on in the Information industry that they are out on their own like that? The good news is that we’ve 

got the data, and the answers to these questions are just waiting to be discovered.

Summary
Open source applications like R and Python have made running machine learning algorithms accessible 

and relatively easy. However, there is a big difference between running a machine learning algorithm and 

running a machine learning algorithm well. Like it or not, machine learning has very deep roots in statistics 

and mathematics. Attempting to dive into these techniques without an understanding of the subtleties 

and nuances may create more problems than they solve. Having said that, the best way to learn is to jump 

in head first and splash around. Grab (or generate) data, read the blogs, books, and documentation, and 

try several approaches. I can guarantee there will be some frustration along the way, but the outcome 

will be better learning and an overall better understanding of the data and, thus, the world around you. 

Such knowledge can feed directly into the security decisions you and your organization are facing on a 

daily basis.
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Recommended Reading
The following are some recommended readings that can further your understanding on some of the topics 

we touch on in this chapter. For full information on these recommendations and for the sources we cite in 

the chapter, please see Appendix B.

Machine Learning for Hackers by Drew Conway and John Myles White—There aren’t many 

machine learning books for beginners, but this book is one of them. It does a very good job at giving 

hands-on examples in both R and Python. They avoid most of the math but not the challenges with 

the approaches. Overall, this is a good first book to purchase. 

An Introduction to Statistical Learning with Applications in R by Gareth James, Daniela 

Witten, Trevor Hastie, and Robert Tibshirani—As you progress beyond the basics and begin 

looking for that next step, this book is a fantastic next resource. It doesn’t shy away from the math, 

but at the same time, it doesn’t dive too deep into it and provides just enough explanation to make 

sense. The authors spend quite a bit of time on the algorithms, including covering resampling meth-

ods, model-selection techniques, and the foundations of all the algorithms.

FIGURE 9-8 Clustered MDS plot of victim industries
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“Perfection is achieved, not when there is nothing more to add, but when there is 
nothing left to take away.”
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Just when you thought it was safe to leave the comfort of your analytics lab to grab another caffeinated 

beverage you find yourself in a conversation with one of the security managers and are asked the inevitable 

and dreaded question, “Can you help us build a security dashboard?” If that sentence did not cause even 

a flicker of your own fight-or-flight response, you may not truly understand the difficulty of designing 

succinct, meaningful displays of quantitative information in order to drive some type of action. This chapter 

presents techniques and advice that will enable you to design dashboards to help measure, monitor, and 

mobilize every layer of security in your organization.

What Is a Dashboard, Anyway?
It’s nigh impossible to discuss the subject of dashboards without quoting the definition of dashboard

coined by the “Godfather” of dashboards, Stephen Few:

“A dashboard is a visual display of the most important information needed to achieve 

one or more objectives that has been consolidated in a single computer screen [or 

printed page] so it can be monitored at a glance.”

—Stephen Few, Information Dashboard Design

We’ve added “or printed page” since organizations are still quite fond of paper, and there are special 

design considerations when including printed output.

We can make Few’s definition a bit more real by phrasing it another way: A dashboard provides a single 

screen/page opportunity to provide the most critical/relevant information in the most concise and effective 

ways possible to enable the viewer to quickly understand the elements being described and, if necessary, 

make the most appropriate decision(s).

If you present data that is irrelevant, your dashboard will not be used. If you have too many or too 

complex encodings, your dashboard will be ignored. If it’s ugly . . . well, at least you won’t be asked to make 

dashboards anymore! Dashboard creation truly is a daunting endeavor. To fully grasp the nuances of what 

a dashboard is we’ll start by chipping away at the marble block of what a dashboard is not to reveal the 

underlying true nature.

A Dashboard Is Not an Automobile
The term dashboard originally referred to a board in a horse-drawn carriage that helped prevent mud 

from splashing on occupants. When the automobile was invented, the term morphed into something that 

we all recognize today as the crucial set of performance indicators available to drivers. It was this familiarity 

(almost everyone knows what an automobile dashboard is) that caused the computer industry to associate 

the term with the summary displays in executive information systems.

The automobile dashboard has the elements it does because they make sense in context. Gauges react to 

the point-in-time changes we make when accelerating or decelerating; we get an accurate—but not neces-

sarily precise—understanding of fuel supply and battery condition; and, we know how far we’ve gone—all 

at a quick glance. Somewhere along the way, designers of executive information systems forgot the concept 

of “makes sense in context” and brought these (and other) real-world elements into the digital world.
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Gauges, dials, thermometers, stoplights, and other skeuomorphic elements consume valuable space 

and rarely communicate information better than other visual elements, but they can hold useful informa-

tion, including:

 ● Current value of key measure(s)

 ● Comparison to target measure(s)

 ● A range of possible values of the measure(s) with a qualitative association

Consider Splunk’s dashboard example for “Notable Events by Security Domain” gauges in Figure 10-1. 

The gauges are huge and the information displayed in each—47, 81, 8, 2, 31, 30—is repeated in the top-

level labels, making them also redundant. It’s also hard to mentally correlate the gauge needle position to 

any type of urgency, since each one has a giant red arrow above it, but not all needles are in the red zone 

on the gauge. 

If you apply the knowledge gained from Chapter 6, you can combine a few basic plots to make what’s 

known as a bullet graph and replace the skeuomorphic gauges (see Figure 10-2), although you have to 

invent some of the comparative measures and guess at the quantitative scale since the original did not 

encode those well (or at all). This new view makes it much easier to see where you are exceeding event 

thresholds in various areas than you could in the figure using the gauges. 

The value change is also important to display, but the giant red, upward-pointing arrows in Figure 10-1 

do not help to tell an accurate story. You can augment the bullet graph with paired sparklines—“data-

intense, design-simple, word-sized graphics” (from Tufte and Graves-Morris, 1983, which you can find in 

the references in Appendix B of this book)—of each 24-hour measure to provide a quick picture of what 

happened in the various event streams. See Figure 10-4.

The file ch10/R/bullet.R  on the book’s website (www.wiley.com/go/data

drivensecurity) shows how to create bullet graphs in R, but you can easily create basic bullet graphs 

in Google Charts by building a simple URL such as (enter the following as one, contiguous line in your 

browser or look at the example in ch10/docs/bullet.html):

http://chart.apis.google.com/chart?cht=bhs&chs=250x30&chd=t:93

&chm=r,DDDDDD,0,0.0,0.57|r,999999,0,0.57,0.85|r,888888,0,0.85,

1.0|r,FF0000,0,0.85,0.86&chco=000000&chbh=15

FIGURE 10-1 Sample Splunk dashboard
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You can even use Excel to make enhanced visualization elements. The source for the sparklines used in 

Figure 10-4 can be found in ch10/docs/ch10-sparklines.xlsx, and Excel offers both sparkline 

and sparkbar chart options with many options for customization.

Ironically, Splunk has a rich visualization library that includes bullet graphs and sparklines, so if you’re 

building your dashboards in that tool, ditch the gauges and switch to the more informative options.

A Dashboard Is Not a Report
IT and information security professionals tend to be very detail-oriented people. They are the type of people 

who get excited at the “show your work” directive on school assignments and love to dig into the details to 

show folks how they arrived at their conclusions. It’s absolutely necessary to have multiple levels of detail 

behind the dashboards you create to enable verification/validation and to support drilling into specific areas 

as needed. However, the top-level view should be designed solely to give the viewer situational awareness 

of the desired task. Just because the onboard diagnostic system in an automobile can tell you the value of 

the “Bank 2, Sensor 3: Oxygen sensor voltage, Short term fuel trim” does not mean that we need another 

FIGURE 10-2 Bullet graph makeover
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gauge in our cars that displays this value while we’re driving. The “check engine” light is enough for us to 

know that something requires more deliberate attention and detailed examination.

Do not take this caution to mean that you shouldn’t use text, lists, and tables in a dashboard. Those 

elements are valid to include where you need precision, provided they support quick perception, compre-

hension, and a call to action. If you wanted to communicate number of events per second being processed 

Bullet Graph Basics

The bullet graph is a fairly new chart type, especially when compared to more traditional visual-

izations, such as bar charts and line graphs. It was invented in 2005 by Stephen Few as a way to 

incorporate the positive attributes of gauges into a more utilitarian graphic. As such, there is a bit 

of a learning curve both in creating them (encoding) and understanding (decoding) them.

As seen in Figure 10-3, there are five core components of a bullet graph:

 ● A bar that encodes the performance measure of the actual item you are measuring 

and trying to communicate the value of

 ● The overall scale of measures

 ● At least one marker with a comparison measure

 ● Background shades or colors that represent qualitative ranges for values

 ● A label for the bullet graph

The sixth component shown in Figure 10-3—the actual value of the number of events per second 

being processed by the security information and event management (SIEM) system on the right 

side—is optional, but useful if your viewers need more precision.

Although these examples are sized a bit larger for the purposes of explanation, bullet graphs resize/

shrink quite well without losing their ability to communicate effectively and efficiently.

FIGURE 10-3 Elements of a bullet graph
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by the SIEM from Figure 10-3 with just straight text, there are multiple possibilities to choose from, as 

shown in Figure 10-5, including plain text or colored text (if highlighting the value as “interesting”), or 

even a simple textual table. If you really just need to drive action without presenting underlying detail, the 

simple “Variance +43%” statement should be enough to motivate someone to find out why the system is 

suddenly seeing 43 percent more events than usual.

FIGURE 10-4 Sparklines

FIGURE 10-5 Encoding measures with text



What Is a Dashboard, Anyway? 251

As indicated in Chapter 6, it’s usually best to display a graphic instead of large amounts of tabular data. 

Numbers and text always require attention whereas shapes and colors can draw attention preattentively. 

Just be ready to call up specific values or provide a data table if there is a call to action that requires a 

detailed review before making a decision. This can be easily done online, since most dashboard-creation 

tools provide some sort of drill-down capability. For printed or non-interactive dashboards, you can pro-

vide a standalone, supplemental report or a link to an online resource that supports further investigation.

A Dashboard Is Not a Moving Van
Boxes are great for shipping items, but they are detrimental to the effective display of information on a 

dashboard, as seen in Figure 10-6.

Most of the elements contained in those boxes are themselves boxes, making the extra framing redun-

dant. Excessive framing is often an issue with online dashboards. This is because many interfaces tend to 

align items in singular cells in a fixed grid and provide options for “on-the-fly” modification.

Figure 10-7 shows a transformation of Figure 10-6 using Microsoft Excel. You start by removing super-

fluous markings, borders, and annotations. We also take the opportunity to change the encoding of some 

of the measures to enhance the readability.

Whitespace now frames each element and there is a more cohesive feel to the entire dashboard. We’ve 

removed the map, since a color-coded table is a better choice for the type of information displayed. We’ve 

also replaced the “funnel” with a normalized, grouped bullet graph. We significantly reduced the “chartjunk” 

and used a more subdued but deliberate color. You can find an Excel version of most of the components for 

this example in ch10/docs/ch10-overhaul.xlsx on the book’s website at www.wiley.com/

go/datadrivensecurity, which should be a good starting point for your own dashboard makeovers.

When Dashboards Fail

Dashboards establish a partnership between the viewers and producers. Viewers need to trust 

that the summarized views they are interpreting represent a good-faith attempt on the part of 

the producers to provide the most accurate data in the most effective way possible. Similarly, 

producers must have some assurance that the “messenger won’t be shot” for providing honest, 

accurate information.

This seems obvious, but how many times have you been in a dashboard review meeting where you 

cringed at some measure being reported as acceptable when you knew that there was cause for 

concern (especially as it relates to the status of highly visible projects). This is a situation even the 

most elegantly crafted dashboard cannot resolve. Chapter 6 presented the concept of “truth” as it 

relates to data, and it’s vital that a dashboard always display truthful measures if an organization is 

serious about managing operations with them.

Dashboards also fail when they regularly miscommunicate or overcommunicate the performance 

measures. It’s a far easier task to make a lazy guess and put a green stoplight in a PowerPoint docu-

ment than it is to admit you don’t have enough real data to back the analysis and quantification 

of an important measure. Similarly, if the viewers always review the supporting material for every 

performance measure, they probably don’t trust the producers and should trade their dashboards 

in for reports.
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There are still some core issues with this dashboard. The individual elements seem haphazardly chosen 

and put together with almost no opportunity for logical groupings. The foremost issue is that there are 

no indicators of what is good or bad (we had to fabricate thresholds for the bullet graphs in order to use 

them). Without those indicators, a dashboard like this more appropriately belongs in the “report” category, 

although it falls short of those requirements as well.

FIGURE 10-6 Sample “boxy” dashboard

Dashboard Excel-lence

We chose to model the dashboard in Figure 10-7 in Excel, as this will likely be the only tool available 

to most readers. Books dedicated to dashboards often provide examples of perfect dashboards that 

require specialized tools or post-processing by hand in applications like Adobe Illustrator to generate. 

With a little extra effort, it is possible to make well-designed charts, graphs, and dashboards in Excel.
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It’s important to note that the single-cell, fixed-grid is not your only option. Different layouts can layer 

on top of a virtual landscape grid to provide more room for larger or more prominent chart types or to 

allow for logical groupings of elements that naturally fit together. You must take your output medium into 

consideration when planning your dashboard elements and layout. Your dashboard may look wonderful 

on the 27-inch “retina” display where you designed it, but it may be unintelligible on a standard resolution, 

15-inch laptop screen. There may also be times when a vertical (portrait) layout works better with your data, 

so you should not box yourself into a corner by having only one layout system handy.

Be sure to follow the advice on eye movements in Chapter 6 and reserve the upper-left area for the 

most critical information that needs attention by your viewers.

A Dashboard Is Not an Art Show
Given the graphical nature of dashboards, it’s easy to fall into the trap of making them look like pieces 

of modern (or fringe) art when they are far more akin to architectural/industrial diagrams that require 

more controlled, deliberate, and constrained design. To put it simply: Just because you can do some-

thing in the context of a dashboard does not mean you should. Take Figure 10-8 (from http://www

.securitywizardry.com/radar.htm), for example.

This is an example of a situational awareness dashboard from Security Wizardry. It uses the “modern” 

light-on-black design with quite a diversity of colors and tries to pull in data from multiple sources. It’s 

“glitzy” but it is not informative.

FIGURE 10-7 Dashboard makeover
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The system dashboard in Figure 10-9 pushes the artistic envelope even further with considerable use 

of various 3D charts. If you can overlook the redundancy between the “Recently Completed Scans” and 

“Current Threat Level” panels (even with the discrepancy between where the gauge reports the value 

versus the marked, segmented bar), you are faced with having to spend real mental cycles processing 

3D shapes for “Current License Usage” and “Total Vulnerabilities Last 12 Months” when a simple numeric 

value would have sufficed. The pyramid in the “Vulnerability Severities” forces you to perform even more 

cognitive processing to decode and inverts the usual “most critical on top” rule that is usually associated 

with triangular charts. In other words, you spend far more time deciphering and decoding these panels 

than understanding what information they are trying to convey and reacting to those messages.

FIGURE 10-8 Example of a monitoring dashboard from Security Wizardry

FIGURE 10-9 -3D dashboard



What Is a Dashboard, Anyway? 255

To be effective, dashboards must be pleasant to view, so there must be some amount of artistic choice 

going into the creation. However, it’s necessary to design within constraints. It’s similar to the difference 

between free verse poetry and more formal types—such as a haiku or a Shakespearean sonnet—where 

constraints provide context for creativity without muting it in any way. Likewise, there are some design 

guidelines that can help channel your creative side when building dashboards.

Limit Chart Types

When encoding information into a chart, stick with the ones that are easiest for viewers to decode. Some 

good choices are:

 ● Bar graphs/bullet graphs

 ● Dot plots/scatterplots

 ● Line graphs/sparklines

 ● Boxplots

 ● Spatial maps/heatmaps/treemaps

Limit the diversity of chart types used in any single dashboard and ensure that the chart you’ve 

chosen is the most appropriate one for the type of information you are encoding. Tools such as Chart 

Chooser (http://labs.juiceanalytics.com/chartchooser/index.html) by Juice 

Analytics and Chart Suggestions (http://extremepresentation.typepad.com/files/

choosing-a-good-chart-09.pdf) can help refresh your memory if that book isn’t handy and 

you are unsure which chart to use.

Remember Space Constraints

You have one page or screen. That’s it. Choose the best encoding element for the medium you are using. 

This may mean re-thinking the types of elements you choose if you learn that your viewers prefer viewing 

information on their phones or mini-tablet-sized screens. 

You should also be wary of cramming elements into that single screen and use whitespace whenever 

possible to group and separate elements. If the information density of the dashboard is too high to enable 

the use of whitespace, subtle placement of very light lines and borders can facilitate the same grouping 

and separation.

Take Care with Colors

Choose a focused color palette and stick with it throughout the dashboard. Color has a strong ability to tie 

elements together, even when they are separated onscreen. Your viewers may draw erroneous correlations 

if your dashboard lacks color consistency. Take a look back at Figure 10-7. We deliberately used consistent 

colors for categorical measures—(High, Medium, Low) and (Incidents, Intel, Exposures)—to logically tie 

elements with similar attributes together even though they were not physically grouped together.

Remember the lessons of Chapter 6 and also consider that your digital creations may find their way to 

black-and-white laser printers more often than you would like to admit. The charts in the dashboard in 

Figure 10-7 lose much of their meaning when they become black and white (Figure 10-10). In this case, we 



256 DESIGNING EFFECTIVE SECURITY DASHBOARDS

knew our graphics were destined for a four-color press. Make sure your creations can withstand such a 

transformation without completely losing their meaning.

Use Fonts Wisely

Stick to a single font if at all possible. Choose serif (such as Palatino or Times New Roman) or sans-serif (such 

as Verdana or Arial) and be consistent where and how you apply the font. If you look to more modern or 

esoteric font choices, be sure to select one that scales consistently, supports variable width text, and has 

fixed-width numbers. Finally, use bold, italics, and color sparingly with fonts to highlight only the most 

important qualitative elements.

FIGURE 10-10 De-saturated dashboard

No One Dashboard to Rule Them All

DASHBOARD EVOLUTION

From their first physical incarnations, dashboards have been living, evolving organisms. For exam-

ple, the dashboard on the Ford Model T—produced in 1908—contained a single element: an 

ammeter (an instrument used to measure the electric current) that helped show the health of ignition 

system. It was one of the only components that could not be visually inspected without a specialized 

instrument. To know the status of gas reserves, you just checked the dipstick. To see whether the 

car was overheating, you just looked for the signs of smoke and steam coming out of the engine 

compartment!

(continues)
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Drivers who were concerned about violating the speed limit (8 mph city/20 mph highway at that 

time) could purchase an optional speedometer, which eventually joined the ammeter as standard 

equipment years later. It was also possible to replace the radiator cap with a motometer, a very 

fancy and expensive temperature gauge that was more ornamental than operational (perhaps a sign 

of things to come in modern dashboards?). As drivers became more dependent on the automobile, 

other elements were added to the dashboard out of both need and convenience.

Dashboards in many modern vehicles retain most of the same elements as the updated Model T 

instrument panel, but some require new and customized elements to, say, monitor the performance 

of their electric, natural gas, or hybrid systems. Similarly, vehicles that can switch between two-

wheel and four-wheel drive require a special indicator letting the driver know which mode they 

are operating in.

AN ITERATIVE PROCESS

This same process of evolution and customization should occur in the digital realm where each 

dashboard must be tailored to:

 ● The specific process(es) being monitored

 ● The viewers of the information

 ● The display medium

 ● The data available for encoding

 ● The expected update frequency

For example, when creating a dashboard for the chief information security office (CISO), it’s unlikely 

that executive will care about the number of events per second being processed by the SIEM. 

However, this is a performance measure that the Security Operations Manager may be keenly inter-

ested in, especially when if there have been performance issues with the SIEM.

Indeed, if SIEM issues are emerging, you should consider adding salient performance measures 

to the interactive, daily or weekly operations dashboard until the situation is resolved. Once 

stable, the measure can be replaced with other important items requiring evaluation and response. 

Thoughtful, regular updates to dashboard’s core content will help keep it fresh and—more impor-

tantly—reviewed and processed by your viewers. If a dashboard developed 2 years ago has

never changed a single element, chances are good that your organization is not using dash-

boards efectively.

The only way to know what truly belongs on a dashboard is to have regular dialogue with the various 

viewers/process owners to understand what they care about and inform them as to what data is

available. Ask them to identify what they view as the model for the processes or objectives they 

find most important. Ask them how they mentally assess the efficacy of those models now and then 

ask them what data would help support a more quantitative view of this model. This will help you 

make the dashboard a success while also identifying and resolving gaps in your ability to provide 

situational awareness for a given process.

(continued)
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Communicating and Managing “Security” 
through Dashboards
There is an inherent “call to action” nature to dashboards, with each element being either quantitative (has 

a value) or categorical (a list of items). Most of us have a great deal of readily available quantitative data 

related to information security ranging from lost assets, to security incidents, to SIEM events-per-second, 

to firewall/IPS operational data. In order for this data to be useful in the context of a dashboard, these 

quantitative measures must be able to answer two questions:

 ● What’s going on?

 ● So what?

For the categorical measures, you are usually identifying a set of elements that:

 ● Provide useful information—such as “which incident handlers are primary for the day?”; 

 ● Require the most attention—such as “which Payment Card Industry Data Security Standard (PCI 

DSS) controls are slipping?”; or 

 ● Need follow up—such as “what are the top expedited firewall port open requests?”

Let’s take a look at these measures through some examples.

Lending a Hand to Handlers
The incident response team has asked for help in creating an incident response dashboard and—among 

other items—would like a view of “bad port” activity. You decide, without probing any further, that the 

problem is the number of denied firewall transactions for a port for the month-to-date, so you whip up 

the graphic shown in Figure 10-11.

FIGURE 10-11 Top port denies
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Although the chart answers a “what’s going on?” question, it may not fully answer the “what’s going 

on?” question for the incident response team. It definitely lacks an answer to the “so what?” question. It’s 

back to the drawing board and back to the incident response team to see if you can glean more about what 

they are looking for and whether you have the data to support it.

Through your investigation, you learn that the team really wants a view of the top five ports with 

anomalous activity. This is quite a different measure than just a raw port count and requires answering 

both questions—“what’s going on” and “so what?”—in order to provide the view they are looking for.

In general, “what’s going on?” will be a count of some kind (it’s a quantitative value, after all). For the 

anomalous port measure, what will you count? Session attempts and/or bytes transferred? What time frame 

will you count over? The past hour, intra-day to now, or the past week/month? Will you focus on denies and 

accepts or just denies (which will shape the answers to some of the previous questions)?

After further consultation with the team, you agree that “what’s going on” is answered by counting 

denied attempts over the past 24 hours. But…so what? This measure alone has little value. It requires 

context or comparison to be useful and comparisons are trickier than you might expect at first glance. For 

the port activity, for example, do you compare the measure against:

 ● The same port’s position in SANS trending port list (https://isc.sans.edu/trends.
html) for that time period (that is, the same measure but from a different source)?

 ● The same value against the same 24-hour period (that is, the same day of the week) at one or more 

points in the past?

 ● The same value against a different 24-hour period (that is, a different day of the week)?

 ● The same value as it relates to daily activity across the previous week or month?

If you choose to compare the port activity against the same value for the same day the previous week 

(in this case, percentage change from previous week), you get a much different view/list (Figure 10-12).

FIGURE 10-12 Top anomalous ports
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Knowing there was a 2,000+ percent change in volume for this port is definitely more actionable that a 

raw session count. That’s a significant change that should trigger an investigation into why. For example, you 

might examine which nodes were involved in the communication, and check to see if external Information 

Sharing and Analysis Centers (ISACs) identified malicious activity on this port. Although it’s not perfect, 

it’s a good starting place for this new dashboard element. As the team uses this data and as you perform 

additional exploratory data analyses using the other comparative conditions, you may find that one or 

more of the other measures works better for the team.

Raising Dashboard Awareness
Your dashboard prowess is garnering quite a bit of attention with your latest request coming from the CISO. 

She wants a new measure added to the CISO dashboard that shows how well the new security awareness 

initiatives are working. You can’t say “no” to the CISO, but this request lies far outside your comfort zone of 

bytes, sessions, and IP addresses. How are you going to measure the effectiveness of an awareness program?

Consider the advice offered on the website of the SANS “Securing the Human” project (http://www

.securingthehuman.org/resources/metrics). There, you will find some seemingly “easy” 

measures such as “percent completion of annual security awareness training,” but these you should quickly 

dismiss. That example may be good for a compliance dashboard, but it’s not what the CISO is looking for. 

Instead, there are some good candidates that you can hone in on:

 ● Tracking the number of people who fall victim to a phishing attack

 ● Tracking the number of people who detect and report a phishing attack

 ● Tracking the results from a comprehensive security awareness survey

You might offer these to your CISO to see which one(s) meet her objectives. After your discussion, she 

chooses to go the security awareness survey route. For you, this means working with the appropriate internal 

groups to regularly set up the survey; select the recipients; distribute the survey; and collect, analyze, and 

publish the results. However, dealing with the mechanics of the survey is the easy part.

This dashboard request is going a bit more smoothly than the last one, but still poses some challenges. 

Which part of the organization is going to get the survey, and when will they receive it? How frequently 

will you run the survey? What supplemental data will be required if the CISO asks for more information?

Although it may seem intuitive to decide who will receive the survey, you actually need to step back and 

define whom you want to describe with the survey. In statistics, this is known as defining the population

from which you want to sample. For example, if you want to measure all employees, you should survey a 

random sample of employees. If you limit these surveys to one or two departments, you could be introduc-

ing bias and might not be able to apply these results to all employees. You may also want to think about 

how and if this survey will be repeated. If you know the survey will be repeated and you want the results 

to be comparable (conducting a benchmark study), you need to focus on standardizing the questions 

and the long-term goals. Conducting a survey like this has some challenges and pitfalls, but with a little 

preparation you can get some interesting and informative data from surveys. 

After significant collaboration, you decide to focus on new hires as the population, so the samples are 

defined as the monthly new hires as the survey recipients. Most of these individuals are completely unfa-

miliar with the security awareness program. There is a full multi-month training program that interleaves 

security awareness messages throughout this introduction period. By waiting 3 months after the hire date, 
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you can see how much each new hire class retains. You can also get a feel for how tweaks to the awareness 

program impact new groups.

You get only one measure for the CISO dashboard, so let’s opt for the summary effectiveness metric 

recommended by SANS (the calculation is documented in their survey materials). See Table 10-1.

TABLE 10-1 Security Program Effectiveness Measures 

SECURITY 

AWARENESS RISK 

LEVEL DESCRIPTION

Low (25–39) Users are aware of good security principles and threats, have been properly 

trained, and comply with all organizational security standards and policies.

Elevated (40–60) Users have already been trained on organizational security standards and poli-

cies; they are aware of threats, but may not follow good security principles and 

controls. 

Moderate (61–81) Users are aware of threats and know they should follow good security prin-

ciples and controls, but need training on organizational security standards and 

policies. They also may not know how to identify or report a security event.

Significant 

(82–96)

Users are not aware of good security principles or threats, nor are they aware of 

or compliant with organizational security standards and policies.

High (97–120) Users are not aware of threats and disregard known security standards and 

policies or do not comply. They engage in activities or practices that are easily 

attacked and exploited.

Source: http://www.securingthehuman.org/resources/metrics

The benefit of the SANS approach is that you get standardized questions and a defined and open source 

method for computing the metric. This should provide a good measure for the CISO and you can refer to 

the individual responses to the survey questions when you’re asked for more details. This new process also 

tracks the number of new hires per survey, the primary “handlers” responsible for the new hires during 

their introductory period, and the date the survey was held along with the survey results. None of this 

detail should or will make it to the dashboard chart, but may be invaluable when seeking to make changes 

based upon the dashboard element.

As this new process runs, data is accumulated and the awareness performance measure becomes popu-

lated. As you can see in Figure 10-13, the measure begins to trend in the wrong direction but never gets to 

the point where it needs immediate action; instead, it seems to level off. Rather than bombard the CISO with 

colored bands, this method uses subtle, colored level markers that delineate when an individual month mea-

sure moves into a different zone. It also shows, at a glance, how well the awareness program is performing.

The CISO becomes curious and asks someone to look at the supplementary data you collected to see 

what happened in June and July. It turns out that there is usually a single “handler” for the new hires and 

she was out on maternity leave in June and July, leaving a substitute to take her place. The new individual 



262 DESIGNING EFFECTIVE SECURITY DASHBOARDS

was not as familiar with the security elements of the new hire program and did not follow up in the same 

ways the primary handler typically does. Because of this knowledge, the CISO was able to ensure that all 

potential handlers were familiar with the elements of the security awareness program.

This measure will no doubt change yearly. Once there is a comfort level that the awareness program is 

reaching new employees, you might want to consider running the survey against other areas of the orga-

nization or switch to one or both of the phishing measures to get a different view of program effectiveness.

The Devil (and Incident Response Delays) Is in the Details
Just as you are about to dive into a new data set, you get an instant message from the incident response 

manager stating that her dashboard is “broken.” Since you take a great deal of pride in your professional 

work, you head down to her office to see what the problem is and (hopefully) find a quick resolution.

It seems that she received a call from one of the application teams complaining about how long it took 

to resolve an incident last week. She was surprised, given that there were no indications on the weekly 

dashboard that anything was amiss. The performance measure showed that Tier 4 incidents (the level 

of the incident that was flagged by the application team) were handled within the standard one-day 

timeframe. You immediately suspect what’s causing the issue and you head to the data to validate your 

assumptions. Sure enough, the culprit lies in the name of the performance measure itself: “Mean Time to 

Incident Resolution.”

The mean is often used as a singular, descriptive statistic for a data set, and it can be used as a quick 

comparative measure of performance (such as batting average in baseball), but it isn’t perfect. Consider 

the resolution times (in days) for the incidents on the “broken” dashboard:

0.50 1.10 1.10 1.10 0.10 0.30 0.20

0.10 0.60 0.10 0.10 0.10 0.60 7.00

FIGURE 10-13 Security awareness risk



Communicating and Managing “Security” through Dashboards 263

The mean works out to be 0.9286, which falls within normal parameters. Now, look at the last value 

(7.00). This incident took substantially longer than normal, but did not generate a call to action on the 

dashboard. There are a few ways to fix this. If there is room, you could add a new performance measure that 

lists all incidents that fall within a certain percentage outside of an expected range. However, the incident 

manager really likes the single line encoding you’ve provided for the measure:

MTT Incident Resolution: 0.93

You need to come up with a way to programmatically identify problematic conditions and fit the encod-

ing in the same space without losing any detail. The ultimate solution comes from three data analysis and 

visualization allies: the five number summary from Chapter 3, boxplots from Chapter 6, and sparklines 

(introduced in this chapter).

As a refresher, the five number summary consists of:

 ● The minimum (smallest observation)

 ● The lower quartile or irst quartile

 ● The median (middle value)

 ● The upper quartile or third quartile

 ● The maximum (largest observation)

These values are important for encoding many types of per-

formance measures and can be used to succinctly summarize 

data without losing as much detail as you currently do with the 

mean alone. A boxplot provides a visual representation of these 

values that you can augment with a line for the performance 

measure threshold, as shown in Figure 10-14.

The incident manager now has an at-a-glance view that 

encodes valuable details without sacrificing space. If necessary, the boxplot can be color-coded to more 

overtly call attention to measures outside normal parameters. The mean value can be displayed next to 

the boxplot if that measure still provides value.

Projecting “Security”
The word “security” is in quotes here and in the section title because the definition of security is up to 

individual interpretation. A penetration tester might think of security in a completely different way than 

a CISO, just as an application developer will likely have a different view of it than a firewall engineer. From 

a big picture perspective, these interpretations are complementary because they are all parts of a whole. 

Each activity is necessary to ensure the protection of an organization’s information assets.

Perhaps one of the least “security-like” elements that readily lends itself to a dashboard is the venerable 

project or task “status view.” This could involve tracking projects for remediation of internal audit issues or 

monitoring full-scale, enterprise-wide security programs. Security, IT, and business executives need some 

way to get a quick overview of all these moving parts so they know where resources and attention should 

potentially be redirected. It might not be sexy, but there would be little happening in “security” without 

this governance layer.

FIGURE 10-14 Boxplot sparkline
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If you become known as the “dashboard person” in your organization, you must face the inevitable 

request to build a set of measures to track program, project, and remediation status. These initiatives will 

have their own set of detailed measures and reports, which project and program managers will gladly 

provide. The challenge lies in how to communicate the status of 35-50 (or more) measures at a glance as 

one component of an executive-level dashboard.

The first step is to identify the components that your viewers want to track. For our make-believe 

organization, the components will be:

 ● Internal audit issues remediation items

 ● Enterprise-wide security program initiatives

 ● Customer audit-remediation process (these are the items your customers are requesting that your 

organization remediate)

 ● PCI DSS compliance controls remediation progress

From your discussions with the CISO you know that you are constrained to one quadrant of the execu-

tive dashboard, and that the items of most importance to her are PCI controls and customer audits. You’ve 

verified that the data for the performance measures are readily available and accurate, and you set off to 

meet this challenge head on.

The prioritization and list of measures provided by the CISO gives you logical groupings for the measures 

you need to encode. For each group, you must decide how to prioritize the elements within the group. Given 

that all of these elements will themselves be grouped together, the individual encoding for each measure 

you choose should be common across all four groups. Finding a way to satisfy all these constraints will cre-

ate a seamless message for the “Security Program, Project, & Remediation Status” dashboard component.

After reviewing the data, you settle on four sections and draw a rough sketch showing how you 

want to present the information. This sketch eventually turns into the wireframe concept, as shown in 

Figure 10-15 (the phrases “Lorem ipsum” are placeholders for real text labels).

This will become a common process for your dashboard development:

1. Stakeholder/viewer identifies a need.

2. You work to understand the need and determine if you have the data to support the dashboard 

or dashboard element.

3. You sketch a set of rough concepts for the dashboard, and then wireframe and model the ones 

that seem to work best.

4. You choose a final model and find the most efficient process to encode the measures in support 

of the frequency requirements.

For encoding each list of items, the proper order becomes apparent after examining the project and 

program artifacts:

 ● The PCI program has been laid out according to the 12 requirements.

 ● The customer audits make the most sense in reverse date order (so the ones that should be closing 

soon are at the top).
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 ● The enterprise-wide security program initiatives are displayed in the order they appear in the budget 

documents.

 ● The internal audit items are ordered like the customer audits.

This ordering is part of the dashboard contract with the CISO and other viewers. Once established, the 

expectation will be that it does not change without informing involved parties.

Given that projects track completion to 100 percent, bars are good choices for the overall encoding. 

However, shorter does not necessarily mean “bad” in this case. You could use a variation on a bullet graph 

to provide more details, but that level of encoding is not necessary for this scenario. The viewers can always 

head to the supporting data (which includes detailed Gantt charts, project risks, and status history) for 

more detail. A subtle color highlight for the projects or program elements that are truly in danger of missing 

their dates is all that is needed to identify areas of concern, projects or elements that may need help from 

senior management to get back on track. Management will need to dig into the details of each wayward 

issue, so make sure the project and program managers have armed the CISO with all the necessary details.

The finished product can be seen in Figure 10-16, and the Excel template can be found in ch10/

docs/ch10-project-security.xlsx on the book’s website (www.wiley.com/go/

datadrivensecurity). 

FIGURE 10-15 Dashboard wireframe
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FIGURE 10-16 Project and program status dashboard

Note

Excel’s built-in ability to make sparkline-like “data bars” can drastically reduce the time 

it takes to produce an effective dashboard component. These elements implement user-

defined rules to apply color and size from cell values.



Recommended Reading 267

Summary
Designing, building, and delivering dashboards is not for the casual practitioner. It takes skill, practice, and 

a great deal of trial and error to create minimal, optimal encodings for critical measures and present them 

in a logical and visually appealing manner. 

This chapter presented core dashboard concepts through both real-world scenarios and critiques/

makeovers of actual dashboards found in the wild. You also learned about innovative encodings (such 

as bullet graphs and sparklines) along with design techniques that you can replicate in Excel and R using 

materials provided on the companion website.

Recommended Reading
The following are some recommended readings that can further your understanding on some of the topics 

we touch on in this chapter. For full information on these recommendations and for the sources we cite in 

the chapter, please see Appendix B.

Information Dashboard Design: The Efective Visual Communication of Data by Stephen 

Few—If you can acquire only one other resource for designing dashboards, pick this one. It provides 

detail on every level of element creation with numerous examples. 

Security Metrics: Replacing Fear, Uncertainty, and Doubt by Andrew Jaquith—Dashboards 

are about displaying the most important information and driving action. Jaquith’s book is your gate-

way drug into finding the right security information to present and how best to present it.  

The Visual Display of Quantitative Information by Edward R. Tufte and P. R. Graves-

Morris—This book is required reading for anyone who wishes to fully understand how information 

should be presented. While not a “dashboards” book, it emphasizes how best to communicate with 

visualizations with numerous examples. 

Design, Evaluation, and Analysis of Questionnaires for Survey Research by Willem E. Saris 

and Irmtraud N. Gallhofer—This book will help you see that designing surveys is no trivial task. 

Even researchers in fields that are reliant upon surveys have trouble building ones that are effective 

at getting to the information that they truly want captured. If you dare to delve into this area for your 

security program, you’ll absolutely need this book as a guide. 

Modern Analysis of Customer Surveys: with Applications Using R by Ron Kenett and Silvia 

Salini—If you’re still adamant on using surveys, you’ll need to know how to analyze them. This text 

will provide you with the proper statistical foundations along with a good set of reusable R code that 

should make you more confident in presenting your results.  
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“Many in the design community understand that design must convey the essence 
of a device’s operation; the way it works; the possible actions that can be taken; 

and, through feedback, just what it is doing at any particular moment. Design is 
really an act of communication, which means having a deep understanding of the 

person with whom the designer is communicating.”

Donald A. Norman, The Design of Everyday Things

Building Interactive Security 
Visualizations
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The main purpose behind any of your data visualization efforts should be to help consumers understand 

and learn from the data. In other words, effective communication is the primary goal of your visual creations.

As you’ve seen in previous chapters, developing simple and successful fixed tables and charts requires 

knowledge, skill, and practice, but can provide substantive illumination of a topic, issue, or problem if 

executed correctly. In most cases—probably 95 percent of the time—these fixed views are all that is 

needed to achieve the goal of communication. There are situations, however, when static views of data are 

either insufficient or just not practical, requiring the move to a more dynamic medium to help consumers 

explore the messages the data has to offer. This chapter helps you understand when the move to interac-

tive visualizations makes sense and introduces you to some of the resources and techniques that will help 

you craft effective messages, dashboards, and exploration tools.

Moving from Static to Interactive
Assuming the “95 percent” premise holds true, your first instinct when planning visualizations should be 

to “go static.” It will generally take much less time to construct fixed visualizations even with the tweaking 

and polishing necessary to produce an audience-worthy graphic. You should also consider sticking with 

stationary images if the project you’re working on is fairly discrete with a data set having a minimal number 

of dimensions (that is, rows, variables/columns/fields). As Scott Murray put it in his book Interactive Data

Visualization for the Web, “A fixed image is ideal when alternate views are neither needed nor desired, 

and required when publishing to a static medium, such as print.”

If you’re still feeling the “interactive itch,” there are three primary goals to consider when contemplat-

ing a new visualization:

 ● Augmentation—If adding interactive capabilities helps speed up or automate tasks consumers 

would normally perform manually, going interactive is definitely the right thing to do.

 ● Exploration—If the number of dimensions and size/diversity of the data set grow sufficiently 

large, it may be better to enable consumers to explore the relationships and outcomes on their 

own rather than trying to guess which set of static graphics will be most useful.

 ● Illumination—If a topic is complex enough, it may help to provide a well-executed, interactive 

visualization that provides a user-friendly interface for directed/constrained navigation around 

the data you’ve chosen to present.

Let’s delve a bit further into each of these areas with a focus on information security examples.

Note

The skills, art, and science surrounding interactive visualizations span a multitude of dis-

ciplines across many decades. As a result, this single chapter serves more as a survey and 

reference for further study for the topic as a whole. It provides practical guidance for where 

to apply interactivity within the scope of information security.
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Interaction for Augmentation
There are many repetitive, time-consuming, data-driven tasks in information security. Logs must be col-

lected and correlated, alerts must be received and attended to, and anomalies must be investigated. These 

actions often involve running a variety of utilities over individual pieces of data or sets of data elements to 

determine whether there truly is an issue on your network. Any tool that helps alleviate this tedium and 

speeds up reliable detection of malicious activity is a welcome addition to any security engineer’s toolbox.

Recognizing this fact, a research team led by Robert Erbacher worked to understand both the prob-

lem domain—situational awareness of malicious network activity—and how incident responders think 

and process information. This resulted in the creation of VisAlert (http://digital.cs.usu

.edu/~erbacher/publications/VisAlertCGA2006.pdf), a visual correlation tool that 

facilitates situational awareness in complex network environments. Figure 11-1 shows an example screen 

from the VisAlert tool that we’ll be focusing on in the remainder of this section. This single image places a 

logical network layout at the center so there is immediate, practical context for the viewer. The concentric 

circles represent delta time intervals for when security events happened (that is now, 5 minutes ago, 15 min-

utes ago, etc.). The lines from those events to the resources provide quick context for what type of attacks 

were happening to what systems and when, all without having to stare at multiple lines in multiple log files.

With tools such as Circos (http://circos.ca/), it’s fairly straightforward to build a radial diagram 

similar to the VisAlert model in Figure 11-1 and add some interactive features. However, it takes more than 

eye-candy appeal for any visualization—fixed or interactive—to be truly useful. VisAlert’s detailed focus 

on the following areas makes it notable.

De�ne the Problem

This is merely an extension of the “start with a question” mantra you’ve seen in many of the preceding 

chapters. Although there is merit in building visualizations in a vacuum to learn how to work with a new 

language or framework, it is imperative that you understand what problem you’re trying to solve with 

a consumer-oriented interactive visualization and who the users will be before you attempt to deliver a 

finished product. Even if you’re an established practitioner, your personal experiences may give you insight 

into only one aspect of a problem domain, and collaboration with others—especially those who you 

believe to be the natural consumers of your interactive visualization work—can make or break a project.

For the VisAlert team, this ultimately meant their goal was to aid analysts’ decision-making processes 

by providing a robust visual correlation mechanism. Rather than try to build a new intrusion-detection 

system or deliver a “toy model” solution that works only with perfect and limited data sets, they chose to 

design a system that works at-scale with real-world data volumes and types that security analysts already 

use in their daily workflows. Although the problem scope is narrowly defined, it has sufficient breadth and 

scope to be useful as well as visually appealing.

Seek Domain Expertise

The VisAlert team started with real-world information security analysts to understand their mental models

of how they go about identifying badness. Mental models are conceptual models of the way things work 

or people’s understanding of how to interact with the world or systems around them. Security analysts 
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develop domain-specific mental models through their training and practical work experiences. These 

models evolve with each successful (or failed) identification and eradication of malicious activity. With each 

investigation, analysts learn which processes provided the most value, and these are automatically added 

to their existing mental framework. By working with these individuals throughout the design process, the 

team was able to identify what parts of the analysts’ workflows would benefit from enhanced visualiza-

tions (for example, inclusion of salient parts of network diagrams and automatically highlighting specific 

protocols and paths) and automation (for example, DNS lookups and targeted correlations).

FIGURE 11-1 The VisAlert Visual Correlation Tool

Figures based on Foresti, Stefano, James Agutter, Yarden Livnat, Shaun Moon, and Robert Erbacher. "Visual correlation of 
network alerts." Computer Graphics and Applications, IEEE 26, no. 2 (2006): 48–59.
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Take an Interdisciplinary Approach

The team drew on the talents and works of experts in the fields of information architecture, cognitive 

psychology, application development, and computer science—along with the domain experts—to build 

and refine the tool. They called this process a “modified hermeneutic circle”—the movement back and 

forth between the parts and the whole. It’s shown in Figure 11-2. 

FIGURE 11-2 The VisAlert Visual Correlation Tool design methodology

Figures based on Foresti, Stefano, James Agutter, Yarden Livnat, Shaun Moon, and Robert Erbacher. "Visual correlation of 
network alerts." Computer Graphics and Applications, IEEE 26, no. 2 (2006): 48–59.
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Their methodology has a strong resemblance to the Agile development process (http://

agilemanifesto.org/principles.html), where all those involved are equal partners, each 

working together to yield a successful finished product. If your organization has an application develop-

ment team and you’re not familiar with Agile, you would do well to invite a member to lunch to understand 

how Agile works in the real world. (Plus, you’ll have made a friend in the development community and can 

hopefully help them understand application security a bit better as well.)

Fundamentally, both concepts employ highly effective and efficient feedback loops to help ensure your 

project stays on the rails and arrives at the desired destination as quickly as possible. You may be the one 

building the finished product and you may be a savvy practitioner, but you should also regularly seek input 

and feedback from others in and outside your domain to ensure you’re constructing the right elements.

The VisAlert tool has been featured in papers and security-oriented conferences since 2006 but has not 

been developed as a commercial or open source product as of this book’s publication. 

Interaction for Exploration
Most networks contain their fair share of vulnerabilities. The Nessus (http://www.tenable.com/

products/nessus) vulnerability scanner (by Tenable) is one of the most commonly used tools that can 

help you find them. If you’ve ever seen the output from a detailed Nessus report (Figure 11-3), you know 

that each host will have a listing of vulnerable components and each component will have many attributes, 

including basic and detailed descriptions, overall rating, and Common Vulnerability Scoring System (CVSS) 

(http://www.first.org/cvss) score. A full report can be hundreds of pages long and makes for 

excellent nighttime reading if you’re having trouble sleeping.

Even a small network, such as the one created for the VAST 2011 visualization challenge (http://

hcil.cs.umd.edu/localphp/hcil/vast11/), can have thousands of vulnerability findings. 

(The VAST network data—included as ch11/data/vast_2011.nbe on this book’s website at www

.wiley.com/go/datadrivensecurity—has over 2,000.) Although it’s possible to spin the 

data multiple ways and produce reams of static visualizations, this is definitely a perfect example of how 

an interactive tool can help security analysts explore and prioritize how they will attack the problem of 

which vulnerabilities to remediate first. 

Tenable does provide interactive reporting tools, but this chapter focuses on an innovative open 

source tool released in 2013 by John Goodall called the Nessus Vulnerability Explorer (NV) (http://

ornl-sava.github.io/nv/#). NV allows you to take an export from your Nessus scans, drag the 

file right into your browser, and begin exploring the vulnerabilities contained within. See Figure 11-4.

The interface is based on a treemap, which is a visualization that enables presentation of hierarchical 

data in a very compact way through nested rectangles, with the size and color of each rectangle being 

mapped to categorical or quantitative variables within the data set. Treemaps take a bit of getting used 

to, but once you learn how to decode them they can become valuable allies in targeted visualizations.

Goodall’s interactive treemap lets the consumer rearrange the structure of the hierarchy through a 

simple drag-and-drop action, so you can present a traditional IP address-centric view of the vulnerabilities 

or switch to a view based on Nessus vulnerability (plug-in) ID or even by port. Through a single click, nodes 

can be sized by volume or potential impact and vulnerability details are revealed through single clicks on 

individual rectangles. 
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FIGURE 11-3 Sample Nessus detailed vulnerability report
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The view in Figure 11-4 has over 240 nodes, yet it’s very straightforward (and quick) to see all nodes with 

similar vulnerability profiles. All necessary information is kept onscreen and the bar charts at the bottom 

of the display provide a useful high-level overview to help guide exploration. A traditional summarized 

report view would no doubt require much scrolling and panning to provide the same type of information 

and it would be almost impossible to discern patterns in the environment.

However, all exploratory interfaces do not need to be this elaborate. Figure 11-5 shows a simple Excel 

workbook of a firewall log extract that includes filtering controls at the top of the log entry data table. 

It also has two pivot tables showing views by firewall and port (respectively), with matching bar charts 

that dynamically change as you manipulate the pivot table values. More modern versions of Excel do not 

have the workbook size limitations of previous offerings and can comfortably fit over a million rows and 

16,000 columns, provided you have a robust enough system to support such a large workbook. You might 

be surprised just how useful it can be to simply provide intelligently summarized tabular views of data 

sets—paired with basic visualizations—that can be easily sorted on demand by the consumer. It may 

sound simple, but remember: You still need to do the hard work of finding, cataloging, acquiring, cleaning, 

augmenting, and processing the data (ah, the glamorous life of a security data scientist).

Interaction for Illumination
Although everyone may seem to be carrying an i-device of some sort and is constantly plugged in to every-

thing, the truth is that most individuals still have only a surface-level understanding of the digital world 

they live in. For instance, they know that their Instagram app requires an account with a username and 

password before they can post pictures for their friends to see, but the details of the binary world below 

that process—where hue, saturation, and brightness are digitized; network packets are exchanged; and 

FIGURE 11-4 Nessus Vulnerability Explorer interactive treemap interface
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information is transported and stored potentially thousands of miles away—remains as much a mystery 

as does most of the inner workings of a modern automobile engine.

Even in our workplaces, where business processes are more often understood, the complexity of the 

information technology components that make those processes possible can be somewhat overwhelming 

to IT specialists, let alone business professionals. 

Consider that a modest application has code that might be touched by over 30 developers, supported 

by over 15 operations administrators, span 3 firewall zones, and have components that reside on 16 dispa-

rate systems. It’s incredible we have as much security as we do in such diverse and complex environments 

and a bit more understandable why all of those individuals involved in the process don’t fully grasp all the 

nuances of how to ensure that security is a primary emergent property of the system as a whole.

Understanding how complexity is masked, hidden, or ignored should make it easier to see why topics 

we security-folk are passionate about—such as encryption, system/data integrity, and data privacy—are 

faint blips on the radars of most individuals. However, our cause and profession have merit, and we can

help raise awareness of these important topics. One good way to do this is through the use of interactive 

visualizations.

A great example of how to do this is the “World’s Biggest Data Breaches” visualization (http://

www.informationisbeautiful.net/visualizations/worlds-biggest-

data-breaches-hacks/), created by David McCandless and Tom Evans of Information is Beautiful 

(http://www.informationisbeautiful.net/). See Figure 11-6.

Data breaches, as discussed in Chapter 7, are a reality, yet are not well understood outside of the security 

domain (perhaps not even fully within the security domain). When the technical and general news media 

FIGURE 11-5 Excel pivot table with linked charts
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report almost one breach per week, it can be difficult for people to keep up, let alone digest the diversity 

of the attacks. David and Tom—who are visualization and development experts, not information security 

professionals—set out to build an easy-to-use tool that would help consumers gain a better understand-

ing of the quantity, variety, and magnitude of breaches that have made headlines over the past few years.

By following a paradigm of “overview first, zoom and filter, then details-on-demand” put forth by Ben 

Shneiderman back in 1996 in his “Visual Information Seeking Mantra,” they created an interactive bubble 

chart (see Figure 11-6) organized vertically by year. Consumers can filter the display to show breaches by 

organization type or method of leak and can also change the factors that make up bubble size and color.

Publications such as the Verizon Data Breach Investigations Report (h t t p : / / w w w

.verizonenterprise.com/DBIR/2013/) and Trustwave Global Security Report (http://

www2.trustwave.com/rs/trustwave/images/2013-Global-Security-Report

.pdf), plus online databases such as DataLoss DB (http://datalossdb.org/) and the Privacy 

Rights Clearinghouse (http://www.privacyrights.org/data-breach), have covered 

breaches for many years, yet tend to be read and mined mostly by information security professionals. 

What has made David and Tom’s interactive tool more appealing and useful to a much broader audience 

than these established resources?

FIGURE 11-6 World’s Biggest Data Breaches interactive visualization
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Make Interfaces Accessible

There’s nothing quite like a never-ending, scrolling table filled with security jargon and wrapped in cold, 

official language to make the average person head for the nearest cat picture. Even a well-crafted, com-

prehensive report can be daunting to pick up and look through when the topic is so far removed from the 

daily experience of even the most tech-savvy business executive.

The World’s Biggest Data Breaches visualization succeeds because it presents the data within a familiar 

and friendly setting—a web page—and makes excellent use of color, style, and design to present a tool 

that has an intuitive look and feel with no fear of “breaking” anything. The “buttons” look and behave as 

expected. The filtering interface has plenty of whitespace and steers clear from too much jargon or too 

little context. Mouse movements and actions provide instant, game-like feedback; and, even without 

instruction, the interface is almost instantly usable.

Imagine if this had been released as a Microsoft Excel file (yes, you can make clickable bubble charts 

with Excel) with macro warnings popping up on open, and the ribbon and column headers consuming 

prime display space, and with your operating system switching between Excel and your default browser 

whenever you clicked to see the news story behind the detail. The basic functionality would have been 

the same, but the user experience would have been radically different.

Your consumers live in the browser and that’s where most (if not all) your creations should be targeted 

for deployment. Latter sections of this chapter introduce some of the technologies that make these visual-

izations possible, but they do not include phrases like “Java applet” or “Adobe Flash.” Relying on the native 

capabilities of modern browsers and web frameworks will help you reach the largest possible audience in 

the most compatible and accessible ways possible. It will have the added benefit of making you sympathize 

a bit more with the complexities faced by user-interface developers (whom you should also take to lunch 

on occasion to trade security knowledge for useful front-end coding tips and techniques).

Facilitate Directed Exploration

Donald Norman coined the phrase “the tyranny of the blank screen” in his book The Design of Everyday

Things. The perfect, illuminating, interactive visualization lies somewhere between this fully open, onscreen 

world and a fixed graphic. Which design choices made the World’s Biggest Data Breaches visualization 

easy to explore?

 ● Critical exploration elements and operations are prominent and visible. Through consis-

tent colors, shapes, and prominent placement, the controls for the visualization are immediately 

discernible. By having the filter controls come up right after the visualization loads, there is the 

immediate reaction of “Oh, I can click this!” on the part of the consumer. Color also draws attention 

to what the creators feel are especially compelling stories.

 ● All components and actions are consistent and deliberate. Mouse movements highlight 

elements and mouse clicks select options and provide detail. There is no jumping between mouse 

and keyboard or switching between dragging and clicking. The interface becomes immediately 

predictable with no surprises, apart from interesting and engaging stories.

 ● Feedback is instant and all operations are safe. Although the site loads fairly quickly given 

all the data and resources it uses behind the scenes, there is a slight delay and this is where the 

helpful feedback starts. A familiar “loading” message appears but quickly fades directly to the 

core visualization. Every click produces instant feedback that is 100 percent undoable, either via 
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the controls on the visualization or with a quick click of the browser reload button. This feeling of 

safety puts consumers at ease and encourages them to explore.

The (Slow) Demise of Flash and Java

There was a time when Java and Flash applets were the only way to add “decent” visual interactivity to 

a website. Java was (and is) a formal language taught in many schools, which had made it an especially 

easy choice for academic visualizations. Flash was (and is) easy to learn with friendly development 

tools that have made it highly popular among the general web development community. 

Although Flash still commands a presence on around 17 percent of websites (Figure 11-7), the use 

of it as a visualization medium is in a slow, steady decline. In contrast, Java applets hold on to a 

razor-thin 0.1 percent share of the web.

The fading of each technology can be attributed to many factors, including:

 ● The never-ending vulnerability, breach, and security update cycle

 ● The rise in popularity of platforms such as the iPad, iPhone, and other touch environ-

ments that do not provide support for website elements built with these tools

 ● The increased native platform capabilities due to widespread adoption of HTML5, CSS, 

and JavaScript across the most used browsers

To reach the broadest audience, it’s best to avoid proprietary technologies or visualization toolkits 

that require browser extensions.

FIGURE 11-7 The decline of Flash
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Include Appropriate Detail

Breaches are complex entities, as illustrated by the breadth and depth of the VERIS taxonomy explained in 

Chapter 7. This level of technical detail is completely inappropriate for the mass-consumer audience of the 

World’s Biggest Data Breaches visualization. Rather than bombard the consumer with multi-level taxonomy 

details, McCandless and Evans opt for simple summaries and succinct descriptions available upon clicking, 

while making detailed news stories also available on demand.

The level of detail you choose to provide in this type of visualization is highly dependent on the target 

consumer. Including VERIS-level taxonomy details within a similar tool released at a conference of security 

professionals focused on metrics (Metricon, http://securitymetrics.org/) is both appropriate 

and expected by the audience. You must have a solid grasp of who will be using your creations and what 

their level of expertise and expectations are in order to build a truly successful interactive visualization.

Developing Interactive Visualizations
Even with the elimination of Flash and Java as options, you are still faced with the aforementioned paradox 

of choice when it comes to deciding on how you want to develop interactive visualizations. Most often, you’ll 

have to roll up your sleeves and write code, especially since you will usually be dealing with sensitive data 

that cannot be published on the public Internet. The vast majority of Internet-accessible “point-and-click” 

tools store data in the “cloud” and use public websites for the presentation layer, but there are desktop 

tools that can be of great assistance when fixed visualizations are not sufficient.

Building Interactive Dashboards with Tableau
One standalone, Office-like tool that excels at building assisted/directed interactive visualizations and 

dashboards is Tableau (http://tableausoftware.com/). Tableau is a Windows-only application 

Note

Barry Schwartz writes about The Paradox of Choice: Why Less Is More (Ecco, 2004) in 

more detail in his book. 

 ● Actions are limited. The interface provides options to change color and size of bubbles 

and highlight certain organization and breach types. However, you cannot group 

elements together and generate a bar chart or select individual organizations out 

from a list of thousands. These constraints make the interface much less daunting—a 

condition referred to as the paradox of choice—since some argue that people want 

more freedom and more tools and ways to explore. Limiting actions also enables you 

to shape or guide the exploration in a particular direction. Considering how fixed 

graphics represent the extreme in limiting actions, you should be able to think back 

to what made the data interesting to you as you explored it and come up with a set 

of constrained, exploratory actions that lie somewhere between the freedom of an 

RStudio window and the constraints of a static graphic.
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that was heavily influenced by research conducted by Jock Mackinlay in automating the design of graphi-

cal presentations of relational information (http://cs171.org/2008/papers/mackinlay86

.pdf). A foundational premise of Tableau, therefore, is to have the system analyze your data and provide 

suggestions for the best way to visualize it. If your goal is to build interactive, user-friendly dashboards or 

quickly provide an interactive exploratory interface for a complex data set, Tableau should be your “go 

to” tool of choice.

If you look back at the security awareness use case in Chapter 10, one way to build such a survey is to 

use an in-house tool such as Microsoft SharePoint or look to a commercial solution such as SurveyMonkey 

to present the desired survey questions. The raw survey results will look something like the almost end-

less series of data points shown in Figure 11-8. Slicing and dicing that data into generate static views is

possible, but it is neither practical nor useful for communicating the messages contained within the data set.

FIGURE 11-8 Raw data from the security awareness survey
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Tableau can easily digest this data, analyze the types of variables it contains, and guide you through 

selecting the most appropriate visualizations to encode the individual elements or relationships between 

elements. That’s great for producing fixed graphics, but Tableau can also be used to quickly generate 

interactive visualizations that can be distributed to other Tableau Desktop users or be presented to web 

browsers via Tableau Server. 

After looking at the data (ch11/data/awareness-survey.csv, which is available on the book’s 

website, www.wiley.com/go/datadrivensecurity, as part of Chapter 11 download materi-

als), we decided it would be most helpful to provide views of each survey answer by business unit, years 

employed, and employee level (management or individual contributor), since we could then attempt to 

discern if any of those factors stood out (which will help us tailor messages in future awareness initia-

tives). With this goal in mind, we used Tableau to create the interactive dashboard shown in Figure 11-9. 

It’s viewable at http://public.tableausoftware.com/views/UserAwareness/

UserAwareness. The whole process—from data import to finished dashboard—took about 20 minutes.

FIGURE 11-9 Awareness survey results presented with Tableau
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Rather than build a giant, scrolling web page, we chose to let consumers explore individual survey 

questions and had Tableau automatically pivot the compact detail views on demand. Each visual compo-

nent in each section is also selectable and provides further levels of detail when inspected (Figure 11-10). 

This all required nothing more than a few mouse clicks and drags. We never entered even one line of 

code, yet produced an interactive tool that can be used by anyone with a web browser. Plus, we can give 

the entire workbook (also available at www.wiley.com/go/datadrivensecurity at ch11/

data/user-awareness.twbx) to other analysts to produce other customized views—provided 

they also have the Tableau Desktop software.

Tableau is great for producing straightforward fixed and interactive visualizations using standard 

charting components. However, if you want to create more specialized interactive visualizations or prefer not 

to be locked into a proprietary desktop tool, you’ll need to head to your favorite text editor and start coding.

Building Browser-Based Visualizations with D3
There is a vast landscape of tools, languages, and techniques available to help you craft engaging, web-

based, fixed, and interactive data visualizations. It would be impossible to cover them all in one book, let 

alone part of one chapter, so we’ll highlight one of the most flexible and popular visualization libraries avail-

able today—D3—and show you a fully working example using a meta-language built on top of D3—Vega.

D3 (http://d3js.org/) is a powerful JavaScript library created by Mike Bostock that makes it 

possible to dynamically transform and manipulate the contents of web pages based on data. To fully bend 

D3 to your will, you’ll need to:

 ● Become proficient in the web trifecta¾HTML5, Cascading Style Sheets (CSS), and JavaScript

 ● Be familiar with the structure of Scalable Vector Graphics (SVG)

 ● Have a solid understanding of the Document Object Model (DOM); see http://www.w3.org/
TR/1998/WD-DOM-19980720/introduction.html

FIGURE 11-10 Tableau details on demand
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However, you can begin to learn D3 without deep knowledge in those areas, just by 
viewing and exploring the plethora of examples found on the “of�cial” D3 GitHub site 
(https://github.com/mbostock/d3/wiki/Gallery) and by gathering expertise 
along the way.

Unlike most proprietary technologies, you can dissect and inspect all D3 visualizations just by choosing 

“view source” from your web browser. Since D3 visualizations are fully driven by the data being visualized, 

the data itself is also available for download and should be in a recognizable format—usually CSV, TSV, 

JSON, or hardcoded HTML tables and JavaScript arrays.

Getting started with D3 requires only three things—a text editor, the D3 JavaScript library, and 

a web server. To prove this, read through this annotated, basic example of a static bar chart (Figure 

11-11) to see what it’s like to code in D3. You can find the source for Listing 11-1 in ch11/support/

ch11-figure11.html.

LISTING 11-1
<!--

  -- Listing 11-1

  -- Example of D3 visualization

  --> 

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<style>

rect.bar {

  fill: #8DA0CB; /* fill color for the bars */

}

.axis text {

  font: 10px sans-serif; /* 10-pt text for axis labels */

}

.axis path, .axis line { /* line style for the axes */

fill: none;

  stroke: #000;

  shape-rendering: crispEdges;

}

</style>

// Load the D3 js library

<script src="http://d3js.org/d3.v3.min.js" 

        charset="utf-8"></script>

</head>

<body>

<script>

// set up the data that will generate the bar chart

var data = [3, 3, 5, 9, 15, 18];

// define that margins for the plot and document

var margin = {top: 40, right: 40, bottom: 40, left: 40},

(continues)
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LISTING 11-1 (continued)
    width = 960,

    height = 500;

// we can use many scales with D3, but we'll stick with a basic

// linear scale for the X axis that is based on the values

// contained in our data set. in ggplot parlance this would 

// be akin to using scale_x_continuous()

var x = d3.scale.linear()

    .domain([0, d3.max(data)])

    .range([0, width - margin.left - margin.right]);

// for the Y axis, we'll use an ordinal scale since these are really

// just individual factors being displayed. in ggplot parlance, this

// would be akin to scale_y_discrete()

var y = d3.scale.ordinal()

    .domain(d3.range(data.length))

    .rangeRoundBands([height - margin.top - margin.bottom, 0], .2);

// apply the scales to each axis, setting attributed for text

// text alignment and tick marks

var xAxis = d3.svg.axis()

    .scale(x)

    .orient("bottom")

    .tickPadding(8);

var yAxis = d3.svg.axis()

    .scale(y)

    .orient("left")

    .tickSize(0)

    .tickPadding(8);

// create an SVG element at the top of the the document body

// that will hold the bar chart visualiztion, setting basic 

// layout parameters

var svg = d3.select("body").append("svg")

    .attr("width", width) // 'attr' sets DOM element attributes

    .attr("height", height)

    .attr("class", "bar chart")

  .append("g")

    .attr("transform", 

          "translate(" + margin.left + "," + margin.top + ")");

// this creates all the bars in the chart using SVG 'rects'. 

// try chaning the number of entries and values in the 'data' array

// above to see how it affects the display

svg.selectAll(".bar")

    .data(data)
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  .enter().append("rect") // 'enter+append' creates new elements

    .attr("class", "bar") // each 'rect' will use the CSS 'bar' format

    .attr("y", function(d, i) { return y(i); }) // scaled y coordinate

    .attr("width", x) // width based on the x value

    .attr("height", y.rangeBand()); // bar widths dynamically scaled to 

fit

// display the axes we set up earlier

svg.append("g")

    .attr("class", "x axis")

    .attr("transform", "translate(0," + y.rangeExtent()[1] + ")")

    .call(xAxis);

// we could have embedded labels in array, but this just assigns

// A-Z+ character codes, which helps show how to make almost any 

// D3 element dynamic

svg.append("g")

    .attr("class", "y axis")

    .call(yAxis)

  .selectAll("text")

    .text(function(d) { return String.fromCharCode(d + 65); });

</script>

</body>

</html>

You can test the visualization in your browser by using the built-in HTTP server found in Python standard 

library and executing:

python -m SimpleHTTPServer 8888 &

Execute this in the directory containing the example D3 HTML file (ch11/support) and point your 

browser to http://localhost:8888/ch11-figure11.html.

If the syntax looks a bit daunting, remember that it’s just a web page with formatting and JavaScript. 

You can start to get more comfortable with this code (or any D3 example) by experimenting with changing 

small things like the bar color and axis fonts. Then add, remove, and modify elements in the data array. If 

you use Google Chrome or Mozilla Firefox, you can bring up the Developer Tools JavaScript console and 

interact directly with the document elements. For instance, you can see all of the objects that were created 

by D3 when you told it to make the bars by typing svg.selectAll(".bar") in the console (once 

the visualization displays). You can inspect the results (Figure 11-12).

More complex and interactive D3 code can take a bit of getting used to, but there are ways of using D3 

without always having to interact with code on this level.

Going Meta with Vega

If the ggplot library is the R incarnation of the “grammar of graphics,” then Vega (http://trifacta

.github.io/vega/) is D3’s counterpart. 
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FIGURE 11-11 Basic D3 bar chart

FIGURE 11-12 Viewing D3-created elements in the JavaScript Console
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With Vega, you describe a visualization using very readable JSON and simply use Vega’s parse()

function to read the file and display the visualization. The Vega library takes care of translating the speci-

fication into the appropriate D3 code. To see the difference, compare the raw D3 bar chart example given 

previously with this Vega version described in Listing 11-2 and shown in Figure 11-13.

LISTING 11-2
// Listing 11-2

// Vega chart description

{

  "width": 500,

  "height": 960,

  "padding": {"top": 40, "left": 40, "bottom": 40, "right": 40},

  "data": [

    {

      "name": "table",

      "values": [

        {"x": "A",  "y": 3}, {"x": "B",  "y": 3},

        {"x": "C",  "y": 5}, {"x": "D",  "y": 9},

        {"x": "E",  "y": 15}, {"x": "F",  "y": 18}

      ]

    }

  ],

  "scales": [

    {

      "name": "x",

      "type": "ordinal",

      "range": "width",

      "domain": {"data": "table", "field": "data.x"}

    },

    {

      "name": "y",

      "range": "height",

      "nice": true,

      "domain": {"data": "table", "field": "data.y"}

    }

  ],

  "axes": [

    {"type": "x", "scale": "x"},

    {"type": "y", "scale": "y"}

  ],

Note

For more on the grammar of graphics, read Leland Wilkinson’s The Grammar of Graphics, 

Second Edition (Springer, 2005).

(continues)
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LISTING 11-2 (continued)
  "marks": [

    {

      "type": "rect",

      "from": {"data": "table"},

      "properties": {

        "enter": {

          "x": {"scale": "x", "field": "data.x"},

          "width": {"scale": "x", "band": true, "offset": -1},

          "y": {"scale": "y", "field": "data.y"},

          "y2": {"scale": "y", "value": 0}

        },

        "update": {

          "fill": {"value": "#8DA0CB"}

        }

      }

    }

  ]

}

FIGURE 11-13 Basic Vega bar chart output
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This syntax is much more readable than straight D3 code and the JSON format makes it easy to build 

graphics based on templates that are populated with computed data and customized styles. You can also 

use this flexibility—combined with some extra JavaScript code—to build fully interactive visualizations.

Creating an Interactive “Threat Explorer”

Imagine that you’ve been asked to visualize which internal hosts are talking to external hosts on a port-

by-port basis using the same visualization technique as the network graphs highlighting malicious traffic 

that you saw in Chapter 4. This will require adapting the graph code a bit to work with firewall data, but 

that should be a simple exercise at this point.

You find this request intriguing and sit down with the SOC analysts to get more requirements. After 

delving into the details with them, you come up with the following objectives:

 ● The interface must let an analyst choose which port to explore.

 ● The visualization should—if the metadata is available—identify internal nodes by type (server or 

workstation) and IP address and also by which data center egress connection attempts were made 

from.

 ● External nodes should be easy to identify, with the default direction for graph edges being internal 

to external.

 ● The analysts would like to be able to view at least a month’s data at a time.

During your interaction with the analysts, you notice that when they are looking for malicious traffic, 

they often check IP address reputation using external resources. This gives you an idea to have your code 

perform this lookup ahead of time and color-code external nodes that are found in the AlienVault Reputation 

database. You want to also provide a way for analysts to quickly check all external nodes against other 

external resources. With the problem domain fairly well defined, you set off to create the tool.

You decide to use Vega for the visualization components and the jQuery (http://jquery.com/)

and Opentip (http://www.opentip.org/) JavaScript libraries to add the interactive layer to the 

core, static Vega visualizations. “Interaction” is just a fancy way of saying “listening and responding to mouse 

and keyboard events,” something that browser-based JavaScript is very good at. By targeting the browser 

environment, you can take advantage of all the other open web development resources to help simplify 

and accelerate the development process. You can also work directly with these events in low-level D3 code.

The result is an interactive “threat viewer” shown in Figure 11-14. The entirety of the code for this 

visualization is in the Chapter 11 download materials at www.wiley.com/go/datadriven

security, with the main component of the visualization contained in the index.html file in the 

ch11/support/ch11-threat-view/ directory.

Rather than go line-by-line through the file, we’ll highlight some of the core components that make up 

the interactive visualization. The following jQuery routine starts the whole visualization:

// The $(document).ready(…) pattern lets us excude a block of code

// once all of the HTML in the document has been read and parsed by

// the browser. This means we can rely on all the base objects being 

// ready when we want to start our visualization display

$(document).ready(function() {

  // Opentip is a very flexible tooltip library that we'll use
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  // to pop-up details of individual nodes on demand

  Opentip.defaultStyle = "dark" // dark-styled tooltips

  // This tells Opentip to look for mouse events on the vis div

  // element which can be found in the <body> of the HTML file

  tip = new Opentip(document.getElementById("vis"));

  tip.deactivate(); // hide tooltip for now

  doParse("22"); // start visualization with port 22

});

Each “port” visualization has its own pair of files, one for the JSON visualization graph specification 

(##-vega.json) and one for the actual graph data (##-data.json). This naming convention makes 

it very straightforward to programmatically change the display—via doParse()—when the port popup 

registers a new selection.

FIGURE 11-14 The “Threat View” interactive visualization
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<div>Select port: <select name="port" onchange="doParse(this.value)">

<option value="22">ssh</option>

<option value="23">telnet</option>

<option value="prt">Printers</option>

<option value="161">SNMP</option>

<option value="554">Streaming (554)</option>

<option value="7070">Streaming (7070)</option>

<option value="16464">Port 16464</option>

</select></div>

The doParse() routine does some minor error checking and then calls Vega’s parse() function 

to do all the work:

function parse(spec) {

  // load the visualization specficication (spec) which,

  // in turn, loads the data file and lets us create the graph

  // and attach mouse events to the graphic

  vg.parse.spec(spec, function(chart) { 

    // render the chart in the vis div and give us a handy

    // reference to it in the graph object

    graph = chart({el:"#vis"})

    graph.renderer("svg").update()

    // when the user mouses over one of the shapes, 

    // build the tooltip on the fly and display it.

    // tooltips can contain any type of HTML formatting.

    // here we add whatever metadata we have, including

    // country flag if available.

    graph.on("mouseover", function(event, item) {

      if (item.shape == "circle" || item.shape == "square") {

        tip.setContent("<div>INFO: " + item.datum.info + "<br/>CC: " + 

          item.datum.cc + " <img src=\"images/flags/png/" + 

          item.datum.cc.toLowerCase() + ".png\"/><br/>DNS: " + 

          item.datum.dns + "<br/></div>");

        tip.activate();

        tip._storeAndLockDimensions();

        tip.reposition();

        tip.show();

      } else {

        tip.deactivate();

        tip.hide();

      }

    })

    // turn off tooltips when the mouse moves out of an element

    graph.on("mouseout", function(event, item) {
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      tip.hide();

      tip.deactivate();

    })

    // if the user clicks on an external node, look up the selected IP

    // address on the tcpiputils.com site

    graph.on("click", function(event, item) { 

      a = item

      if ((item.datum.group == 4) || (item.datum.group == 5)) {

        window.open("http://www.tcpiputils.com/browse/ip-address/" + 

          item.datum.name,"_blank")

      }

      graph.update("click", item);

    });

  });

}

There are many additions you could make to enhance this basic interactive tool, including:

 ● Sizing nodes based on the number of connections

 ● Incorporating other IP reputation resources 

 ● Performing additional metadata queries on internal hosts that have suspicious activity and display-

ing other layers of information 

This should be a good starting point to help you explore both D3 and JavaScript further.

Summary
Creating interactive dashboards and visualizations is a multi-disciplinary endeavor. You must understand 

both the problem domain and mental models of your consumers, know which goals—augmentation, 

exploration and illumination—must be accounted for in the finished product, and be certain that interac-

tion is truly necessary for effective communication.

Avoid proprietary solutions whenever possible to ensure your creations can be viewed by the larg-

est audience. Make note of characteristics in other visualizations that you find to be effective so you can 

duplicate their best parts in your own work.

Note

You can find the complete working “threat-view” example on the book’s website (www
.wiley.com/go/datadrivensecurity) and interact with it by starting the 

Python web server in the ch11/support/ch11-threat-view/ directory in the 

Chapter 11 download materials.
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Although there are ways of building useful interactive visuals without coding, you will need to learn 

the intricacies of modern web frameworks to build highly customized and tailored interactive tools. As you 

work to fine-tune your finished product, you should endeavor to create a regular feedback loop with those 

who will end up using your work. This will ensure that you are delivering the most effective tool possible 

with just the right amount of functionality to make it a success.

Recommended Reading
The following are some recommended readings that can further your understanding on some of the topics 

we touch on in this chapter. For full information on the book included in these recommendations and for 

any sources we mention in the chapter, please see Appendix B.

The Design of Everyday Things by Donald A. Norman—This book will change your perspective of 

everything around you and how you approach building things for others, whether it be a user inter-

face or a static visualization. You will learn how to approach design in very practical ways and will 

come away with a much better perspective on how individuals work in and perceive the world.

Interactive Data Visualization for the Web by Scott Murray—If you endeavor to build D3-based 

interfaces, this is the seminal text on the subject. It is a very hands-on and extremely practical text.

The Functional Art by Alberto Cairo—This book is beautiful. You will learn the core elements of 

design and come away with a solid understanding of how to approach visualization projects of all 

scopes and sizes.

“VisAlert: From Idea to Product” by Stefano Foresti and James Agutter—This paper is one of the few 

domain-specific “soup to nuts” explanations of how to apply data science concepts to solve real 

world information security problems. It will teach you how to avoid designing in a vacuum and pro-

vide invaluable insight into the development process.

D3 Tips and Tricks: Interactive Data Visualization in a Web Browser by Malcolm Maclean—See 

http://leanpub.com/D3-Tips-and-Tricks. This book is one of the most comprehen-

sive D3 reference and “cookbook” texts. With this book and Scott Murray’s book, you will have at 

your fingertips almost everything you need to understand and implement D3-based visualizations.
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“My job was to �nd questions about baseball that have objective answers; that’s all 
that I do; that’s all that I’ve done.”

—Bill James, sabermetrician

Moving Toward Data-Driven 
Security 
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If you’ve been following along up to this point, you have covered a lot of ground, and you’ve hopefully 

realized that there is knowledge buried in the data. As you begin to move your security practice into a 

data-driven mindset, we suggest that you take a “panning for gold” approach instead of a “drilling for oil” 

stance—meaning that you shouldn’t get bogged down with a single focus (or a single source of data) out 

of the gate. Instead, roll your pants up, step into the stream of data, and just explore and learn what you 

can about it. Once you understand what’s in the data, you can start to ask (and answer) the interesting 

questions that will begin to make a difference. 

This last chapter is dedicated to that difference. The first half is about moving yourself (or those you work 

with) toward a data-driven approach at a personal level. The second half is about moving your organization 

toward a data-driven security program.

Moving Yourself toward Data-Driven Security
Figure 12-1 is a slight modification of Drew Conway’s “Data Science Venn Diagram” (http://

drewconway.com/zia/2013/3/26/the-data-science-venn-diagram), which is a 

simple visualization that can help you quickly evaluate where you currently are on your journey toward 

data-driven security. This chapter looks at each major component, along with the interactions between 

some components. The idea is to help you identify areas that aren’t currently your strengths. You don’t 

have to be strong in all the major areas discussed here, but you want to be sure that weakness in any one 

area doesn’t silently pull you off course.

FIGURE 12-1 The Data science venn diagram

Licensed under Creative Commons Attribution-NonCommercial (http://creativecommons.org/
licenses/by-nc/3.0/legalcode)
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The Hacker
The term hacker has a great deal of confusion surrounding it, as it has been usurped by news media and 

manipulated by marketing firms. In the context of a security data scientist, we are updating the classic use of 

“hacker” to describe someone with a passion for using (and perhaps abusing) technology for a benevolent 

goal, including skills such as:

 ● Being able to command computers through code, either via scripting in a language like Python or full 

on programming in something like C

 ● Knowing a wide variety of data formats and understanding how to slice, dice, and bend them to your 

will

 ● Having the ability to think critically, logically, scientifically (essentially, not jumping to conclusions) as 

well as algorithmically (break apart a problem into its composite parts)

 ● Being able to communicate your work through visualizations, charts, tables, or even a good old-

fashioned collection of words

The Coder

If you are an information security professional who isn’t a coder, Chapters 2, 3, and 4 have been designed 

to help you bootstrap into that skill. If you are a coder, those same chapters cover a language that is 

most likely new to you (R) and place coding in the context of data analysis versus application building or 

systems administration, which may be more familiar problem domains for you. Whether you’re at the top 

of your game as a programmer or just getting started, there is always more to learn. There is no shortage 

of resources available, including:

 ● Codecademy (http://www.codecademy.com/)—This is an especially good resource for 

those new to programming in general or those unfamiliar with a particular language. It’s worth-

while to take a look at the JavaScript and jQuery offerings given the emphasis on JSON in Chapter 

8 and D3.js in Chapter 11. If you don’t know Python well (or at all), their Python course can defi-

nitely help.

 ● Code School (https://www.codeschool.com/courses)—The offerings at Code 

School can be a bit overwhelming and not all are free. However, their R course is freely available at 

the time of this writing and will help you navigate the syntax and nuances of the language.

 ● W3Schools (http://www.w3schools.com/)—If you haven’t had the opportunity to shore 

up your HTML/CSS/JavaScript skills, W3Schools provides an extremely friendly environment to 

learn and experiment. You’ll need at least a basic understanding of these client-side components 

if you want your analyses and results to reach the widest audience.

 ● StackExchange(http://stackexchange.com/)—Although you won’t necessarily learn 

how to code at the StackExchange family of websites, you will have a place to look for answers or 

ask questions when you’re stumped. Whether it’s trying to understand some esoteric option in 

ggplot2 or doing something a bit more complex with a pandas data frame, there’s a very good 

chance the answer will be in StackExchange.
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The Data Munger

When it comes to data formats, security professionals are in the unenviable position of having to be able 

to manipulate everything from NetFlow captures, to full packet capture (PCAP) dumps, and almost every 

log format known to humankind. The IronPort log file snippet in the “MongoDB” section of Chapter 8 is 

an example of how “imperfect” your data world is. Although that log file contains highly useful data, it’s 

in a format that you must parse and convert to make useful. The only way to get good at that is to do it 

over and over again, building up reusable bits of code and techniques along the way to save time later.

The Thinker

Learning how to think critically, logically, scientifically, and algorithmically requires time, effort, and 

practice. Formal, in-person, instructor-led education may work best for some students, especially those 

who have shied away from programming. However, introductory sites like Project Euler (http://

projecteuler.net/problems) can get you started down this path; more advanced and diverse 

problem sets can be found at Kaggle (http://www.kaggle.com/competitions); and you can 

delve into wide and deep security domain problems at the VAST Challenge (http://vacommunity.

org/VAST+Challenge+2013) site (look in both the current and previous years’ sections).  

These resources will supply data in various states. One of the criticisms of competitions like Kaggle 

though, is that they offer the data in a ready-to-be-analyzed format. As we mentioned in the last section, 

this is very much unlike the real world and so just focusing on things like the Kaggle competitions may 

give you a skewed perspective of the real world. As a stark contrast, the VAST Challenge has constructed 

real-world logs and device outputs that must be cleaned and prepared prior to analysis, thus giving you a 

better idea of what real-world data is like.

The Visualizer

The skill to communicate to outsiders was never part of the original use of the term hacker, though it 

certainly is evolving into that. It’s not enough to make the technology bend to your will and make a discov-

ery. You must also be able to communicate that in a language that the audience can not only understand, 

Note

We can tell you from experience, while data analysis is absolutely about the analysis, that’s 

not where you will spend most of your time. Most of your time will be spent transforming, 

cleaning, and preparing data. That task is at its core a combination of the previous section 

on coding and the next section on thinking, as both of those skills will be used to extract 

the useful data and prepare it for analysis. Though the skills of security domain expertise 

and statistics will also help to identify what you want to keep and how you want to clean 

it to be helpful in the analysis. For a list of helpful tools for this task, see Appendix A, the 

section on “Data Cleansing.”
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but also relate to and appreciate. While this skill may mostly be about data visualization skill (and all of 

Chapter 6), that shouldn’t be the only tool in your toolbox. Realizing when to scrap those glossy color 

pictures and produce a simple table or even just describe the results in an email or in person is more 

valuable sometimes than the data visualization skill itself. Many resources are freely available and doing 

a quick search over the Internet will lead you to far more resources than we can list here. However, here 

are a few to get you started:

 ● Flowing Data (http://flowingdata.com)—Not only does the maintainer Nathan Yau 

provide some incredibly inspirational data visualizations, but he will also include a few comments 

and insights into the data. Having written two books on the subject of data visualization, Yau 

knows good data visualizations!

 ● Junk Charts (http://junkcharts.typepad.com)—Because sometimes knowing how 

not to create a visualization is more helpful than knowing how to create one. 

 ● Storytelling with Data (http://www.storytellingwithdata.com)—One of the 

great things about this site is that Cole Nussbaumer has a very pragmatic approach to visualiza-

tions and will talk about visualization makeover and the processes used so almost anyone can 

follow along and learn.

There are other sites that aggregate visualizations and are good to keep an eye on such as http://

visualizing.org,http://visual.ly, or http://eagereyes.org, and there are plenty 

of other tools and resources in Appendix A.

Overarching these traits is the need to develop and hone a sense of curiosity. In fact, curiosity may be 

the single most important trait of a hacker. The need to know why or how something works the way it 

does from start to finish is an invaluable driving force when faced with a complex data science problem. 

When combined with the other main security data science skills (statistics knowledge and security domain 

expertise), you’ll eventually get to a place where developing a successful NetFlow-based malware traffic 

clustering algorithm is as rewarding as beating the other team in a capture-the-flag competition.

Developing Developer Skills

Although the resources in this section can help you pick up the skills necessary to write code, there 

are skills around writing code that come in handy as a code warrior. Two of the not-so-secret skills 

you should develop are unit testing and source code control. 

 ● Becoming comfortable with writing and executing unit tests tightens up not just your 

code, but how you think about your code. Yes—you are a brilliant person with amazing 

skills—but you will still make mistakes and logic errors in your code despite that fact. 

Unit testing helps you catch those inevitable oversights that creep into your code. 

 ● Along the same lines, source code control helps track multiple developers’ code efforts, 

and enables more advanced features such as version control and code branching. 

More than that, source code repositories also help you avoid that awful question, 

“Now where did we put that source code?”
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The Statistician
Given some of the “rookie mistakes” seen in many security industry reports and the prevalence of raw 

counts in security dashboards, there’s a high probability that statistics is the weakest area for information 

security professionals. You learned about some statistical concepts in depth and read a whirlwind overview 

of others in Chapters 4, 5, 7, and 9. Okay, you don’t need a PhD in statistics to be an effective security data 

scientist. However, it’s important to have an understanding of the fundamentals of statistical analysis and 

machine learning, even when you’re part of a multidisciplinary team.

Although you can head over to your local college or university and dive into a traditional classroom 

program, there are two other options to consider when you want a better understanding of statistics:

 ● Massively Open Online Courses (MOOCs) like Coursera’s Introduction to Data Science course 

(https://www.coursera.org/course/datasci), edX’s Learning From Data course 

(https://www.edx.org/course/caltechx/cs1156x/
learning-data/1120), and Syracuse University’s Data Science Open Online course 

(http://ischool.syr.edu/future/cas/introtodatasciencemooc.aspx)

provide a low-risk way to plug into a formal statistics curriculum, but aren’t right for everyone. 

Lectures, handouts, and assignments are available at your convenience (within a course’s overall 

schedule), and discussion forums provide a way to interact with professors, teaching assistants, 

and fellow students. It can be bit overwhelming or even distracting to be in a setting with 2,000 

to 4,000 individuals. Individual attention can also be difficult to obtain if you’re struggling. 

Employers and professional organizations may also not yet accept the certifications from MOOCs, 

making the time investment more for personal benefit than professional credential gains. 

 ● Online certificate or master’s courses such as UC Berkeley’s MIDS program (http://www
.ischool.berkeley.edu/programs/mids), University of Washington’s certificate in 

data science (http://www.pce.uw.edu/certificates/data-science.html), 

and Penn State’s Applied Statistics online curriculum (http://www.worldcampus.psu
.edu/degrees-and-certificates/applied-statistics-certificate/
overview) offer the structure and size of a traditional classroom with the convenience 

being online. 

Understanding and applying statistics correctly is more complex than you might imagine, and indi-

viduals in disciplines with a rich history of using statistics to solve complex problems oftentimes fall into 

common traps. Resources such as Alex Reinhart’s Statistics Done Wrong (http://www.refsmmat

.com/statistics/) and DZone’s misnamed “Big Data” Machine Learning reference (http://

refcardz.dzone.com/refcardz/machine-learning-predictive) are good to have 

on hand to keep your analyses on track.

The Security Domain Expert
When focusing on the topic of security domain expertise as it relates to data science, “thought leaders,” 

“gurus,” and “rock stars” need not apply. What I’m talking about here are practitioners with solid, in the 

trenches, real-world experience. Depending on your area of focus (information security covers a broad 

range of topics), you may be applying your combined hacking skills, statistics knowledge, and expertise to:

 ● Develop smarter endpoint-protection system algorithms.

 ● Discover new ways to detect anomalous behavior in network data.
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 ● Uncover patterns from vulnerability assessments to help determine why some systems fall out of 

compliance more than others.

 ● Provide meaningful and useful metrics for various components of your overall security program.

Or a host of other areas.

Your insight is, perhaps, the most valuable component to this data science triad, as it will move com-

putations sans context into the realm of analyses driving action. There is virtually no way for an organiza-

tion or individual to effectively crunch “security data” without this domain expertise. Your assistance and 

knowledge is vital in crafting clever questions and confirming results. Your insight into the networks and 

systems of your organization, the behaviors and characteristics of malware, and the classification and 

qualification incidents is the critical factor in corresponding analyses.

The Danger Zone
A little knowledge is a dangerous thing, and having the basic ability to gather and programmatically crunch 

data, along with a bit of industry knowledge is tricky. Don’t fall into the trap of thinking you’re doing data 

science when all you’re doing is reputational damage to all three component areas (and, potentially, your-

self). How do you steer clear of the danger zone? Try these approaches:

 ● Embrace (versus dabble in) statistics. Statistics and machine learning have enabled advance-

ments in everything from a deeper understanding of the microscopic workings of human genes, 

to telling you how many steps and flights of stairs you’ve taken, to building spacecraft that even-

tually break past the limits of the solar system. They can absolutely help enhance your knowledge 

of security issues and even help solve some of them. Just don’t think you can dip your toe in. Not 

everyone can become a genius with statistics, but make sure your team (physical or virtual) has at 

least one strong stats person.

 ● Dig deep, but stay wide. You need to know certain aspects of information security just as thor-

oughly as individual biologists know the deep vertical segments of their discipline. But, because 

so many areas outside security (for example, economics, politics, and human rights) have an 

impact on security, you’ll need to factor those in as you move from asking what and how, to why 

and who. Finally, there’s a reason the CISSP certification has 10 domains. You can’t be an expert in 

each, but you should know enough about each of them to bring in expert help when needed.

 ● Challenge assumptions and validate results. Keep an open mind, because data has a way 

of changing your mind for you. Hold yourself and ask others to hold you accountable all the way 

through your analyses. Whether you’re working on internal organizational data or performing 

research you intend to publish and/or speak about, pair up with practitioners who can help you 

keep on the straight and narrow path. When you’ve released your findings, take an example from 

the reproducible research movement (http://www.foastat.org/resources.html)

and ensure there is sufficient documentation and data available for others to test your findings.

Moving Your Organization toward Data-
Driven Security
By now you realize that becoming data-driven doesn’t just mean firing up R or Python and tossing in the 

data. Becoming data-driven is an evolutionary process that will slowly shift how you and those in your 
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organization view the world. The value will not be immediate. Instead, the value will develop over time with 

punctuated flashes of brilliance. The components of a good data-driven program within any organization 

have some combination of the following:

 ● Ask questions that have objective answers.

 ● Find and collect relevant data.

 ● Learn through iteration.

 ● Find statistics (again).

The most difficult part of the transformation is getting started because the first two components present 

a chicken and egg problem. You want to ask questions that you have data for, yet you only want to gather 

data that answer your questions. But don’t worry; through iteration, you can build up both. 

Ask Questions That Have Objective Answers
The opening quote in this chapter was from sabermetrician Bill James. You may know him and his work 

portrayed in the book Moneyball by Michael Lewis. He challenged much of the conventional wisdom 

within baseball by leveraging data. Recall that he said, “My job was to find questions about baseball that 

have objective answers, that’s all that I do, that’s all that I’ve done.” His focus was not on simply exploring 

and describing the data that is available, nor did he focus on creating colorful visualizations from the data. 

His focus was on finding good questions that have answers in the data. 

Chapter 1 discussed creating a good question. Remember that a good question has two qualities—it 

can be objectively answered with data, and somebody wants to know the answer. Although Bill James 

could have asked about the effect of stealing bases on player sponsorships, nobody (except maybe the 

players stealing bases) wanted to know that. He focused on relationships with runs scored or players on 

base because those are the questions people wanted answered. The same is true in your work. Although 

you can count blocked spam or create maps covered with botnet infections, if it’s not answering a practical 

question that someone wants answered, it might be a waste of time. 

Knowing that someone cares about the answer can also help shape the question and make the analysis 

easier. Remember back in Chapter 1, we changed the question from asking how much spam was blocked 

to asking how much time employees spent dealing with unblocked spam. If, for example, you identified 

that nothing would change if employees spent less than an hour a week on unfiltered spam, the question 

then becomes “do employees spend more than an hour a week dealing with spam?” With that threshold 

in mind, you should be able to simplify the analysis. Rather than calculating how much time, you just need 

to know if it’s over an hour a week. Context and purpose of the question can only clarify the work you do.

Find and Collect Relevant Data
As mentioned at the beginning of this section, data collection and asking good questions have a natural 

interdependency. The questions you ask depend on having data to answer them, yet you don’t want to 

collect data you’ll never use. Which comes first? Just from being in your environment you should have some 

concept of available data—proxy and firewall logs, server authentication logs, and even data within the 

company ticketing system are all good candidates to start. Start there and form a few practical questions 
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that data can answer. As you get the data to answer your questions, you may need to refine your questions 

and then learn more about the data and refine again. 

Be prepared to work with others on getting data. Chances are very good you won’t be the custodian of 

all of the data you’ll want. This is why having executive sponsorship is important. If you’re a practitioner, 

seek executive sponsorship. If you’re in executive leadership, make data sharing happen internally. This 

will have very limited success as a grassroots effort. You need to involve others and probably even reach 

out across corporate silos in order to get data. You will undoubtedly encounter several objections in some 

combination of real and imaginary. Keep your eye on the goal, though; the effort will pay off in the long run.

Learn through Iteration
When you’re building a data-driven security program, you won’t follow a typical waterfall project plan 

where the tasks are defined up front and executed one after another. It’s a much more iterative process 

like the one shown in Figure 12-2, and the path from question to resolution can easily turn into a twisty 

maze. Each source of data offers its own challenges and opportunities. Iteration becomes the name of 

the game, and setbacks and challenges become just as much a part of the project as success. But do not 

get discouraged; the setbacks will occur less and less frequently, and each one is a learning opportunity. 

One of the big lessons you will undoubtedly learn early on is the importance of data quality and the 

benefit of building in repeatability. It won’t take long before you pull a data extract and realize a date 

variable was corrupted, a field was clipped, or some other act of nature requires that the whole process 

be repeated. So not only will the extract, transformation, and loading tools need to be automated, data 

validation processes should be introduced often. You’ll want to realize that the integrity of the data was 

compromised long before you’re generating the final report. 

Information Sharing Takes a Lot More Than Information

There is a subtle push across the information security industry that we should all be sharing data, 

which is a good thing. The initial objection (and a big objection you may run into internally) is a 

lack of trust and/or a concern about the privacy and confidentiality of the data being shared, even 

internally within an organization. This is a valid concern and it’s something that you have to address. 

But that’s actually the easy part of information sharing. Sharing information often turns out to 

be a much larger effort than people imagine. There is an eye-opening moment when the people 

sharing the information realize that they have underestimated the amount of time and energy it 

takes to prepare and share data. There may be some fields that do not or should not be shared and 

those must be removed. Then there is a validation step to ensure they are sharing only what they 

intend to share. Finally, storage and transfer of the data may present a challenge in logistics, as the 

data may be too large to simply email or even to set up for downloading. The best course is to be 

open about these challenges and communicate the reality to potential partners. The silver lining 

is that the amount of learning you can do when you share data often more than makes up for the 

effort to share it.
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Finally, with the iteration and constant discovery that comes from working with data, you will be forced 

to check your ego at the door. There is very little room for estimations and guesswork. If things go well, you’ll 

have this lesson forced upon you over and over. Once the data has proven you wrong a few times, you’ll 

realize that the data works without motive or agenda and may produce unpopular results. Assumptions 

should be replaced by questions and data analysis. When things start to come together, you’ll be impressed 

about the types of questions you can answer. 

Find Statistics
We debated on putting this at the top of the list, but hopefully we’ve pounded this point home by now. 

Proceeding down a data-driven path may head right into the danger zone we talked about in the previous 

section without some element of statistics involved. The entire point of moving to a data-driven security 

program is to learn from data. The wide field of statistics (encompassing classic, data mining, and machine 

learning) has already learned how to learn from data. Not taking advantage of all that history may doom 

you to repeat the failures others have already overcome.

There are two options here: Hire someone with a background in statistics or start enhancing 

current employees (or yourself!) with training and education we mentioned in the first part of this chapter. 

FIGURE 12-2 The data science workflow
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Unfortunately, candidates with both good domain expertise and good statistics experience are few and 

far between. So hiring externally may mean bringing in someone with less experience with information 

security, which is fine if you are prepared for it. On the other hand, becoming a professional statistician 

isn’t possible through a simple weeklong training session. If you are seeking educational programs in 

statistics, keep in mind the two cultures Leo Breiman wrote about. Some universities focus on the classic 

statistics with less (or no) focus on programming and data management, whereas others focus heavily on 

programming at the expense of teaching a strong foundation in classical statistics. 

Building a Real-Life Security Data Science Team

When Bob had his internal team start their move into security data science, it was difficult to resist 

the urge to spin up a giant, shiny Hadoop cluster and start importing every log from every system 

into a massive data store. In truth, his team did start down the Hadoop path and found it fraught 

with peril (and screens full of warning messages). 

Rather than focus on the technology, they stopped and focused on defining what single question 

they would like answered if they had the data. Not five. Not three. One. That single question was 

“Have we seen this IP before?” That question set them up for a clear goal: Given an IP address (or 

IP/Port combination), search across all our perimeter devices in less than five minutes. For most 

organizations—including Bob’s—the total volume of such data would fit well within the category 

of “medium-sized” (that is, not “big”) data.

His team focused on using traditional SQL (MariaDB), NoSQL (MongoDB & Redis), R, Python, and 

JavaScript. For 6 long months, they iterated through tasks, adjusting as they learned, trying differ-

ent ways to acquire, clean, and store data (they call that data curating); structure schemas; and 

formulate queries. Along the way, they suffered setbacks when log file formats changed without 

warning, when data access issues cropped up, and when the absolute need for referential metadata 

reared its ugly head.

Three core principles focused the team. 

 ● First, explore the open source versions of tools before engaging vendors. If you don’t 

know how the sausage is being made, you really have no idea what’s being done, and 

this is vital when working with real data. 

 ● Second, follow the mantra of “no single tool; no single database; and, no single approach 

to solving a problem.” Do not put blinders on because you are either comfortable with 

certain technologies or have an affinity for a certain tool. 

 ● Third, failure is expected, but you must learn from each journey down the wrong path. 

Continuous adaptation and adjustment is the name of the game. 

Ultimately, Bob’s team met the 5-minute challenge and is moving on to other questions. Your 

team—and it is a team effort—will also be successful if they start with a question, are iterative and 

methodical in their approach, and never stop learning from their mistakes.
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Summary
You have learned a lot through the pages of this book, and you should realize that you don’t have to do 

all of this right out of the gate. Through the mixture of hacking skills, domain expertise, and statistics, you 

can move toward a data-driven lifestyle. Combine that with the art of asking the right questions and get-

ting the data to answer those questions, and you’ll start to move your organization toward a data-driven 

security program. You don’t have to implement everything right away to see value. An iterative approach 

should provide more value over time and help you adapt to the inevitable challenges that arise. Start slow, 

try everything, try everything again, and let us know how you’re doing.

Recommended Reading
The following are some recommended readings that can further your understanding on some of the topics

we touch on in this chapter. For full information on these recommendations and for the sources we cite in

the chapter, please see Appendix B.

“The Data Science Venn Diagram” by Drew Conway (http://drewconway.com/
zia/2013/3/26/the-data-science-venn-diagram)—We discussed this in the chap-

ter but it’s worth reading the original post.

Building Data Science Teams by D. J. Patil—This book was written by folks who have real-world 

experience recruiting, managing, and retaining data science teams. They include a special section 

specifically on fraud, abuse, risk, and security teams and also cover topics on tooling, hiring, and 

team/department organization. It’s definitely a “must-read” for those who are looking to delve into 

data science.
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Though we’ve provided contextual links and resources throughout the book, there were a few that 

didn’t fit properly in the chapters, but are still important go-to resources and part of our daily workflows. 

We’ve compiled them—along with a “best of the best” of links from selected chapters—into an organized 

and annotated list for quick reference.

Data Cleansing
 ● OpenReine (http://openrefine.org/)—An open source, locally installed, cross-platform 

toolkit that makes it extremely easy to import, explore, clean, transform, and enrich messy data into 

something usable for analysis.

 ● DataWrangler (http://vis.stanford.edu/wrangler/)—A browser-based, JavaScript 

tool created by Stanford University’s Visualization Group that lets you explore and transform small 

data sets in-browser, and then export a custom Python or JavaScript source file, suitable for running 

locally on both small and large data sets.

 ● WebPlotDigitizer (http://arohatgi.info/WebPlotDigitizer/app/)—This online 

tool makes it possible to quickly “reverse engineer” charts and graphs that have no associated open 

data files. 

 ● Google CRUSH Tools (https://code.google.com/p/crush-tools/)—A command-

line processing engine and data transformation tool that makes it possible to work efficiently with 

large data sets from a shell prompt.

 ● csvkit (https://github.com/onyxfish/csvkit)—A suite of open source Python 

utilities that are similar to the CRUSH tools, but usable from both the command line and from within 

Python scripts.

 ● DataCleaner (http://datacleaner.org/)—This product is similar to OpenRefine, but 

with both commercial and open source offerings.

 ● Mr. Data Converter (http://shancarter.github.io/mr-data-converter/)

—In-browser and locally installable open source tool created by Shan Carter to improve data 

cleansing workflows at The New York Times.

 ● Miso Dataset (http://misoproject.com/dataset/)—Client-side JavaScript data 

transformation and management library.

 ● Your favorite scripting language—Never underestimate the power of a Python, R, Perl, or awk 

script when it comes to cleaning data. You’ll have to do more up-front work, but you may be able to 

build a far more reusable and customized cleanup and transformation workflow with your own tools.

Data Analytics and Visualization: Core Tools
 ● R (http://www.r-project.org/) + RStudio (http://www.rstudio.com/)—The

language of data science. Commercial offering available via Revolution Analytics

(http://www.revolutionanalytics.com/).

 ● Python (http://www.python.org/) + pandas (http://pandas.pydata.org/)—

The other language of data science. Additional open source and commercial offerings available 
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via Enthought Canopy (https://www.enthought.com/products/canopy/) and 

Continuum Analytics Anaconda (http://docs.continuum.io/anaconda
/install.html).

 ● Tableau (http://www.tableausoftware.com/)—Commercial tool with an emphasis on 

producing interactive dashboards and visualizations.

Data Analytics and Visualization: JavaScript Tools
 ● D3.js (http://d3js.org/)—Enables the creation of “data-driven documents” and pro-

vides templates and examples for creating almost every type of modern static and interactive 

visualization.

 ● JavaScript InfoVis Toolkit (http://philogb.github.io/jit/)—Similar to D3, but may 

be more accessible to those new to JavaScript.

 ● Highcharts JS (http://www.highcharts.com/)—Provides robust charting and graphing 

functions, especially well-suited for dashboards.

Data Analytics and Visualization: Mapping Tools 
 ● OpenHeatMap (http://www.openheatmap.com/)—Produce high-quality heatmaps from 

CSV data right in your browser. No coding required.

 ● Lea�et (http://leafletjs.com/)—A very robust and mobile-friendly JavaScript mapping 

library.

Data Analytics and Visualization: Specialized Tools
 ● TimeFlow (https://github.com/FlowingMedia/TimeFlow/wiki)—An open 

source tool specifically designed for analysis and visualization of temporal/time series data.

 ● Gephi (https://gephi.org/)—Open source network graph analysis and visualization tool.

 ● Quadrigram (http://www.quadrigram.com/)—Provides a visual programming interface 

for working with data and designing highly customized, interactive visualizations.

Aggregation Sites, Q&A Sites, and Blogs to Follow
 ● R-Bloggers (http://www.r-bloggers.com/)—Rather than follow a plethora of individual 

blogs, you can follow the R-Bloggers RSS feed to see only R-related posts that deal with all aspects 

of data analysis and visualization.

 ● Stats Blogs (http://www.statsblogs.com/)—An aggregation of sites, similar to 

R-Bloggers, but with a focus on statistics.

 ● StackExchange (http://stackexchange.com/)—The perfect place to go if you have R, 

Python, or pandas questions, can’t remember a ggplot option, or need some help with a gnarly 

statistics problem.
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 ● Junk Charts (http://junkcharts.typepad.com/)—Learn from the visualization 

mistakes of others.

 ● FlowingData (http://flowingdata.com/)—Resources, news, and tutorials that will 

improve the way you think and design visualizations. 

 ● DataVisualization.ch (http://selection.datavisualization.ch/)—Aggregation 

and index of the most popular and useful visualization tools currently available. 

 ● Data Analysis & Visualization Bit.ly Bundle (http://bitly.com/bundles/hrbrm-

str/1)—An aggregation of links maintained by us, the authors of this book, along with David 

Severski. 

Color
 ● ColorBrewer (http://colorbrewer2.org/)—Designed by Cynthia Brewer, this is the color 

resource that should be the first tool you head for when designing visualizations. It provides a wide 

range of palettes with options for creating print-safe and colorblind-friendly images.

 ● HCL Picker (http://tristen.ca/hcl-picker/)—An open source, D3-based color picker 

that lets you select colors based on hue, chroma, and lightness.

 ● Adobe Kuler (https://kuler.adobe.com/)—An online tool provided by Adobe that 

allows you to design compelling color palettes or choose from a wide assortment of pre-made 

palettes.

 ● OS X Color Picker Palettes (https://github.com/sathomas/colors)—Use 

ColorBrewer palettes in Excel, Photoshop, and any other application on your Mac. 
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Machine Learning for Hackers, 

225

coord_map( ) function, 107

Coords character string, 47

cor( ) function, 88

correlation, 86

causation and, 87

Kendall method, 88

Pearson correlation method, 

86

Pearson method, 88

scatterplots, 87

Spearman method, 88

cost per datum, 166

counting records, VERIS, 175

Country character string, 47

Country chart, 55

cross-validation of algorithms, 230

CSS (Cascading Style Sheets), 9, 

284

CSV (comma-separated value) files, 

11, 43, 44

JSON, 44

cutree( ) function, 241

CVSS (Common Vulnerability 

Scoring System), 274

D
D3, 284–294

dashboard

3D, 254

ammeter, 256–257

anomalous activity, 259

boxy dashboard, 252

chartjunk, 251

charts, limiting, 255

color, 255–256

Excel and, 252

failures, 251

fonts, 256

framing, excessive, 251–252

graphics, 253–257

handlers, 258–259

interactive

D3, 284–294

Tableau, 281–284

interation, 257

measures, 247

motometer, 257

overview, 246–247

report comparison, 248–249

security awareness risk, 262

security through, 258–266

skeuomorphic gauges, 247

space constraints, 255

Splunk, 247

visual features, 141

wireframe, 265

data

categorical, color and, 147

information security and, 41

quantitative, color and, 147

scope, changing, 111–113

splitting, 222

data analysis

analyst personality traits, 6

deceptive conclusions, 12

EDA (exploratory data 

analysis), 18

history, 2–5

versus statistics, 5

data collection

framework

conflation, 165–166

cost per datum, 166

minutiae, 165–166

objective answers, 164

“Other” answers, 164–165

possible answers, 164

“Unknown” answers, 

164–165

relevant data, 304–305

data exchange, 44

data exploration, 47–58

data frames, 33–35

data management skills, 10–11

data munger, 300

data normalization, 114–117

data retrieval, 42–43

Data Science Open Online course 

(Syracuse Univ.), 301

data science team building, 307

Data Science Venn Diagram, 298

data sets, IP Reputation database, 

41

data story, 138

data structure server, Redis, 203

data visualization. See visualization

databases, 11. See also RDBMS 

(relational databases)

NoSQL, 200–201

DataLossDB, 168–169, 278
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db_close( ) function, 

201–202

DBIR (Data Breach Investigation 

Report), 162

decision trees, random forests, 

233–234

declaring variables, 29

delimited files, reading in data, 

43–44

dendrograms, 235

clusters, 241

density plots, 154–155

depth in graphing, 144–145

color and, 146

describe( ) function, 48

descriptive statistics, 47

descriptive visualization, 12, 13

design, experiments, 3

The Design of Everyday Things 

(Norman), 279–280

detail level, 281

detecting malware, 218–225

developer skills development, 301

dim( ) function, 237

dimension reduction, 235–236

directed exploration, 279–281

directory structure, 36

shell scripts, 36–37

Discovery/Response (VERIS), 167, 

176

distribution

box plots, 155–156

density plots, 154–155

empirical rule, 119

Gaussian distribution, 119

histograms, 154–155

standard deviation, 119

time series, 156–157

divergent color palette, 148

diverging color scheme, 113

DOM (Document Object Model), 

284

domain expertise, analysts, 6–8

doParse( ) function, 293

downloads, code snippet data 

files, 72–73

E
ECC (error-correcting code) 

memory, 199

ecosystem, Python, 25–26

EDA (exploratory data analysis), 18

edit/compile/run workflow, 22

editors, Canopy, 25

ElasticSearch, 214–215

element_blank( ) function, 112

empirical rule of standard normal 

distribution, 119

Enthought support site, 193

Environmental category (VERUS 

Threat Actions), 170

Envisioning Information (Tufte), 

146

equirectangular maps, 106

Error category (VERUS Threat 

Actions), 170

errors, 22

type I, 13

Euclidean distance, 223

Excel, dashboards and, 252

experiment design, 3

EXPLAIN statement, 197–198

exploration, 22, 270

directed, 279–281

interaction and, 274–276

exploration and discovery, 227

exploring data, 47–58

eye movements, tracking, 140–141

F
factors, 49

Farr, William, 2–3

features, algorithms, 229–230

Few, Stephen, 146

dashboard description, 246

Information Dashboard 

Design, 246

fields (RDBMS), 193, 194

firewall data, 98–100

Fisher, Ronald Aylmer, 3

five-number summary, 18, 48

Flash, decline, 280

Flowing Data, 301

foldmatrix( ) function, 237

fonts, dashboard, 256

form, preattentive processing and, 

142–143

functions

apply( ), 224

as.numeric( ), 224

boxplot( ), 117–119

BulkOrigin( ), 93

BulkPeer( ), 93

cmdscale( ), 236, 

238–240

colMeans( ), 222–223

colnames( ), 237

confint( ), 129

coord_map( ), 107

cor( ), 88

cutree( ), 241

db_close( ), 201–202

dim( ), 237

doParse( ), 293

element_blank( ), 112

foldmatrix( ), 237

geom_smooth( ), 126

getenum( ), 183–185

glm( ), 233

graph.asn(ips,av.df), 99

graph.cc(ips,av.df), 99

head( ) function, 46

hist( ), 89, 119, 155

kmeans( ), 234

latlong2map( ),
108–109, 112, 121, 122

lm( ), 129

map_data( ), 30

merge( ), 124–125

plot( ), 94

prcomp( ), 236

predict.malware( ), 223–224

read.csv( ), 43

read.csv( ) function, 93

read.delim( ), 43

read.table( ), 43

read.table( ) function, 

93
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rnorm( ), 126

sample( ), 61

scale_fill_gradient2( ), 

109–110

strsplit( ), 123

summary( ), 49, 127–128

table( ), 49

theme( ), 112

unlist( ), 123

veris2matrix( ), 236

G
Gallup, George, 13

Gaussian distribution, 119

geolocation of IP addresses, 77–79

geom_smooth( ) function, 

126

getenum( ) function, 183–185

ggplot

regression analysis and, 126

theme( ) command, 238

Vega, 287–291

ggplot2 package, 30, 107

auto-scaling, 112

GitHub, D3, 285

glm( ) function, 233

Goodall, John, 274

Google Charts, bullet graphs, 

247–248

Google Fusion Tables, IP address 

map location, 78

graph structures, 92

graph.asn(ips,av.df) function, 99

graph.cc(ips,av.df) function, 99

graphical methods, 144–145

graphs

bar charts, 145, 151–152

bullet graphs, 247

comparison measures, 249

creating, 247–248

labels, 249

performance measure, 249

scale, 249

color opacity, 152–153

malicious destination traffic by 

country, 100

pie charts, 146

size encoding, 153–154

grep, 207

grouped bar chart, 152

grouping IP addresses, 75–76

H
hackers, 299

hacking, VERIS Threat Actions, 169

hacking key, 181

Hadoop, 11

Cassandra, 210

Hive and, 207–210

MapReduce, 207–208

MongoDb, 210

NetFlow data, 209

handlers, dashboards, 258–259

hashes, Redis, 203

HCL Picker, 146

head( ) function, 46

output, 47

heatmaps, 58–59

risk/reliability, 61

“Hello World,” 40

hierarchical clustering, 234–235

victim industries, 240–242

hist( ) function, 89, 119, 

155

histogram, 119

binning, 154–155

Hive, 207–210

HiveQL, 208

HTML, 9

HTML5, 284

I
IANA IPv4 Address Space Registry, 

80

block allocations, 84

blocks, 84–85, 89

iconic memory, 139–140

idea, 22

IDS/IPS (Intrusion Detection 

System/Intrusion Prevention 

System), importing reputation 

data, 58

illumination, 270

interaction, 276–281

images, inline, 25

Impact (VERIS), 167, 176–177

import statement, 28

Incident Tracking (VERIS), 167, 168

indexes (RDBMS), 194

Indicators (VERIS), 167, 179

inference, 227

Information Assets (VERIS), 167, 

173

attributes, 173–175

availability and utility, 174

confidentiality, possession, 

and control, 174

integrity and authenticity, 

174

Information Dashboard Design 

(Few), 246

information security, data and, 41

inline images, Canopy, 25

in-memory tables, RAM and, 199

input variable, residuals, 128

integers

Reliability, 47

Risk, 47

x, 47

interaction

augmentation and, 271–274

exploration and, 274–276

illumination and, 276–281

Tableau, 281–284

Interactive Data Visualization for 

the Web (Murray), 270

intercept, residuals, 128

Introduction to Data Science 

course (Coursera), 301

IP addresses, 47, 72

32-bit integer value, 73–74

classes method, 75–76

data augmentation, 80–90

dotted-decimal notation, 73

geolocation, 77–79

grouping, 75–76
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IANA IPv4 Address Space 

Registry, 80

IPv4 addresses

converting to/from 32-bit 

integers, 74–75

testing, 76–77

octets, 73

segmenting, 75–76

IP character string, 47

ipaddr package, 75

IPv4 addresses, BerkeleyDB, 201

IPython, 25

IPython Notebooks, benefits, 40

IQR (inter-quartile range), 117, 155

ISACs (Information Sharing and 

Analysis Centers), 259

iteration, 22, 305–306

dashboards, 257

J
Java, decline, 280

JavaScript, 9, 284

jQuery, Vega and, 291

JSON format, 44

MongoDB, 211

notation, 183

VERIS and, 179–182

Junk Charts, 301

K
Kaggle, 300

Kendall correlation method, 

88

keys

BerkeleyDB, 201

hacking, 181

k-fold cross-validation, 230

Kiosk/Public Terminal (K) category 

(VERIS Information Assets), 173

kmeans( ) function, 234

k-means clustering, 234, 235

k-nearest neighbors, 233

knowledge base, 193

Kutner, Michael H., Applied Linear 

Statistical Models, 125

Kyoto Cabinet, 203

L
LAMP (Linux/Apache/MySQL/PHP), 

200

latent patterns, 139

latitude/longitude

converting to country, 

108–109

scatterplot, 105–106

latlong2map( ) function, 

108–109, 112, 121, 122

Learning From Data course (edX), 

301

leave-one-out cross-validation, 

230

libraries

Matplotlib, 27

NumPy, 26

pandas, 27

rjson, 181

SciPy, 26

linear coefficients, 232

linear comparison, 86

linear regression, 86, 104–105, 

125–127

adjusted coefficient of 

determination, 129

confidence interval, 129

prediction and, 227

residuals, 128–129

supervised learning and, 

231–232

lines, points and, 150–151

lists, Redis, 203

Literary Digest election prediction, 

13

lm( ) function, 129, 226

Locale character string, 47

logarithmic scale, 151

logistic regression, 232–233

long-term memory, 140

M
MAC (media access control), 

addresses, 77

machine learning

algorithm, 5

development, 220–221

features, 229–230

implementation, 222–225

performance measuring, 

227–228

supervised, 226, 231–234

unsupervised, 226, 

234–236

validating model, 230

validation, 221–222

answering questions, 226–227

definition, 218

quantitative prediction, 227

spam filtering, 225

Machine Learning (Mitchell), 218

Machine Learning for Hackers 

(Conway & White), 225

malicious destination traffic by 

country, 100

malware

detection, 218–225

VERIS Threat Actions, 169

Malware domain type, 67

map_data( ) function, 30

MapDB, 203

MapReduce (Hadoop), 207–208

maps

auto-scaling, 112

chartjunk, 112

choropleths, 108–110

ZeroAccess infections, 110, 

117

color, diverging color scheme, 

113

coord_map( ) function, 

107

data normalization, 114–117

equirectangular, 106

ggplot2 package, 30, 107

graphical features, removing, 

112

latitude/longitude conversion 

to country, 108–109

plotting countries, 107

polyconic, 106

scatterplot, latitude/

longitude, 105–106
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three-dimensional look, 106

Winkel Tripel, 106

x,y coordinates, latitude/

longitude points as, 105

ZeroAccess infections, 108–110

county level, 120–125

MariaDB, 193, 200

Matplotlib, 27

matrices, 236

Maxmind GeoIP database, 77

McGill, Robert, 144–145

MDS (multidimensional scaling), 

236

Media (M) category (VERIS 

Information Assets), 173

memory

iconic memory, 139–140

long-term, 140

working memory, 140

mental grouping, 142

mental models (VisAlert), 271–272

Mercator projection, 113

merge( ) function, 124–125

miasma theory, cholera and, 2

MIDS program (UC Berkeley), 301

Misuse category (VERIS Threat 

Actions), 169

Mitchell, Tom M., Machine

Learning, 218

modules, template, 28

MongoDB, 210–214, 300

VERIS, 211

MOOCs (Massively Open Online 

Courses), 301

motion, preattentive processing 

and, 142–143

motometer, 257

MSE (mean squared error), 228

multicollinear variables, 133

multidimensional scaling, 236

VCDB, 238–240

Murray, Scott, Interactive Data 

Visualization for the Web, 

270

muse, data visualization as, 

139

MySQL, 193

N
NAICS (North American Industry 

Classification System), 165

natural variation in measuring 

accuracy, 117

negative correlations, 86

Neo4j, 215

Nessus Vulnerability Explorer, 

274

report example, 275

treemap interface, 276

Neter, John, Applied Linear 

Statistical Models, 125

NetFlow data, Hadoop and, 209

Network (N) category (VERIS 

Information Assets), 173

nominal values, 49

normalizing data, 114–117

SQL and, 200

Norman, Donald, The Design of 

Everyday Things, 279–280

NoSQL databases, 11, 

200–201

BerkeleyDB, 201–203

Hive, 207–210

MongoDB, 210–214

Redis, 203–207

null hypothesis, 120

null model, 224

NumPy library, 26

O
objective answers to questions, 

304

online certificates/master’s 

courses, 301

opacity of color, 152–153

Oracle, 193

organization, directory structure, 

36

shell scripts, 36–37

outliers

boxplots, 117–119

z-score, 119–120

overfitting training data, 

228

P
packages

randomForest, 234

verisr, 236–238

panda, read.csv( ) function, 

43

pandas

creation, 23

library, 27

parametrics, 226

Parker, Donn, 174

Parkerian Hexad, 174

partitioning, Redis, 204

patterns, 12, 139

PCA (principal component 

analysis), 235–236

Pearson correlation method, 86, 88

penetration testing, 262

People (P) category (VERIS 

Information Assets), 173

performance measuring, machine 

learning algorithm, 227–228

Perl, 9

BerkeleyDB, 201–203

Physical category (VERUS Threat 

Actions), 170

pie chart

arguments against, 146

bar chart, depth comparison, 

145

plot( ) function, 94

Plus (VERIS), 167, 179

points

lines and, 150–151

quantitative variables, 

148–150

time series, 158

polyconic maps, 106

Polyconic projection, 113

positive correlations, 86

PostgreSQL, 193

Potwin Effect in ZeroAccess 

infections, 113–117

prcomp( ) function, 236

preattentive processing, 139, 

141–144
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prediction

predictive accuracy, 5

regression analysis and, 126

ZeroAccess infections, 134

predict.malware( )
function, 223–224

preduct.lm( ), 128

Privacy Rights Clearinghouse, 168, 

278

programming languages

Perl, 9

Python, 9, 22

pandas, 9

R, 9, 22

web-centric, 9

programming skills, 8–10

Project Euler, 300

projection

Mercator, 113

Polyconic, 113

publish-subscribe service, Redis, 

204

p-value, 120

linear regression and, 

129

Pythagorean theorem, 223

Python, 9, 22. See also Canopy

benefits, 22–24

Canopy, knowledge base 

articles, 193

capabilities, 23

creation, 23

ecosystem, 25–26

Matplotlib, 27

NumPy, 10

NumPy library, 26

packages, external sources, 

193

pandas, 9, 10

creation, 23

pandas library, 27

Redis server, 193

Redis support, 204

SciPy, 10

SciPy library, 26

versions, 29

whitespace, 29

Q
qualitative color palette, 148

qualitative data, 49

qualititative variables, 49

quality control, 139

quantitative data, 47, 49

color and, 147

scatterplots, 148–150

treemaps, 153

quantitative prediction, 227

queries (RDBMS), 194

queries (SQL), 197–198

questions, 16

creating, 17–18

objective answers, 304

R
R programming language, 9, 22

bar charts, IANA block 

allocations, 84

benefits, 22–24

ggplot2 package, 30, 107

introduction, 30

map data packages, 107

modules, 32

read.csv( ) function, 43

read.delim( ) function, 

43

read.table( ) function, 

43

versions, 33

R2 value, 129

RAM, SQL constraints, 199

random forests, 233–234

randomForest package, 234

RDBMS (relational databases), 192. 

See also SQL (Structured Query 

Language)

columns, 193

experience with, 193

EXPLAIN statement, 197–198

fields, 193, 194

indexes, 194

MariaDB, 193

MySQL, 193

Oracle, 193

PostgreSQL, 193

queries, 194

records, 193

rows, 193, 194

schema, 193

tables, 193

read.csv( ) function, 43, 93

read.delim( ) function, 43

reading in data, 43–47

read.table( ) function, 43, 

93

realization, 61

records (RDBMS), 193

Redis, 193, 203–207

hashes, 203

lists, 203

partitioning, 204

publish-subscribe, 204

sets, 204

sorted sets, 204

regression analysis, 112–113

linear regression, 86, 104–105, 

125–127

logistic, 232–233

multicollinear variables, 133

observable input versus

observable output, 125

outlier influence, 130

pitfalls in, 130–131

prediction and, 126

rnorm( ) function, 126–127

variance inflation, 133

ZeroAccess infections, 131–135

relational databases. See RDBMS 

(relational databases)

relevance, 138

data collection and, 304–305

Reliability, 47

Reliability field, 58

Reliability rating, 58

reports

dashboard comparison, 

248–249

Nessus Vulnerabiklity Explorer, 

275

reputation data

contingency tables, 58–59
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Country character string, 44

header, 44

IDS/IPS (Intrusion Detection 

System/Intrusion 

Prevention System), 

importing to, 58

IP character string, 44

Locale character string, 44

prioritization, 58

SEIM, importing to, 58

Type character string, 44

research questions, 16

creating, 17–18

research setup, 162–163

residuals, 128–129

input variable, 128

intercept, 128

Risk, 47

Risk field, 58

Risk variable, 58

risk/reliability

contingency tables, 60

unbiased, 62

heatmaps, 61

risk/reliability/type

bar charts, 65

without Scanning Host, 67

contingency tables, 64, 68, 69

without Scanning Host, 66

rjson library, 181

rnorm( ) function, 126

rows (RDBMS), 193, 194

R/RStudio, setup, 29–33

RStudio

benefits, 40

workspace, 31

RStudio Desktop, 30

RStudio Server, 30

S
saccades, 140

saccadic movements, 139, 140–141

limiting, 141

sample( ) function, 61

scale_fill_gradient2( ) function, 

109–110

scaling, multidimensional, 

238–240

Scanning Hosts category, 66

scatterplot

ggplot, 126

maps, 105–106

quantitative variables, 

148–150

schema (RDBMS), 193

constraints, 196–197

SciPy library, 26

SciPy stack, 27

scope

auto-scaling, 112

changing, 111–113

security through dashboards, 

258–266

Security Wizardry, 253–254

segmenting IP addresses, 75–76

SEIM (Security Incident & Event 

Management)

dashboard, 138

importing reputation data, 58

sequential color palette, 148

series, time series, 156–157

Server (S) category (VERIS 

Information Assets), 173

sets

Redis, 204

sorted, Redis, 204

setup for research, 162–163

shell scripts, 36–37

SIEM (Security Information and 

Event Management), 41

size encoding, 153–154

skeuomorphic gauges, 247

skills

combining, 15

communication, 14–15

data management, 10–11

domain expertise, 6–8

programming skills, 8–10

statistics, 12–13

visualization, 14–15

Snow, John, 3

SOC (Security Operations Center), 

41

Social category (VERIS Threat 

Actions), 169

spam filtering, 225

sparklines, 248, 250

spatial position, preattentive 

processing and, 142–143

Spearman correlation method, 

88, 89

splitting data, 222

Splunk dashboard, 247

spreadsheets, 9–10

limits, 10

SQL (Structured Query Language), 

194–195

constraints, 195

data, 200

RAM, 199

schema, 196–197

storage, 198–199

EXPLAIN statement, 197–198

normalization and, 200

queries, 197–198

SQLi (SQL Injection), 193

SSE (sum square of errors), 228

stacked bar charts, 152

StackExchange, 299

standard deviations, z-score and, 

119–120

statistics, 12–13

versus data analysis, 5

deceptive conclusions, 12

patterns and, 12

regression analysis, 112–113

variations in, 121–122

Statistics Gone Wrong (Reinhart), 

301

stem and leaf plot, 18

stepwise comparison (algorithms), 

229

stop-motion software, 158–159

storage

ElasticSearch, 214–215

Neo4j, 215

NoSQL databases, 200–201

BerkeleyDB, 201–203

Hive, 207–210

MongoDB, 210–214



330 Index

Redis, 203–207

SQL and, 198–199

Storytelling with Data, 301

strsplit( ) function, 123

summary( ) function, 48, 49, 

127–128

supervised algorithms, 226

k-nearest neighbors, 233

linear regression, 231–232

logistic regression, 232–233

random forests, 233–234

SVG (Scalable Vector Graphics), 

284

T
table( ) function, 49

Tableau, 281–284

tables (RDBMS), 193

TCP port numbers, 49

team building, 307

Team Cymru, ZeuS and, 93

template for statements, 28

theme( ) function, 112

third dimensions, 144–146

Threat Actions (VERIS), 167, 

169–172

Threat Actor (VERIS), 167, 168–169

threat viewer, 291–292

Tianhe-2 computer, 9

time series, 156–157

line plot, 158

one hour averages, 158

points, 158

Torfs, Paul, 30

tracking eye movements, 140–141

training data, algorithm, 221, 222

overfitting, 228

SSE and, 228

transparency of color, 152–153

treemaps, 153

Nessus Vulnerability Explorer, 

274, 276

trial, 22

trim( ) function, 93

Trustwave Global Security Report, 

278

truth, 138

TSV (tab-separated value) files, 

43, 44

JSON, 44

Tufte, Edward, 112

Envisioning Information, 146

Tukey, John, 5

boxplot, 117–119

Type character string, 47

type I error, 13

Type variable, risk/reliability and, 

63

types, 33

U
UDP port numbers, 49

University of Washington 

certificate in data science, 301

unlist( ) function, 123

unsupervised algorithms, 226

hierarchical clustering, 

234–235

k-means clustering, 234, 235

multidimensional scaling, 236

PCA (principal component 

analysis), 235–236

User Device (U) category (VERIS 

Information Assets), 173

V
validation, algorithm, 230

van Rossum, Guido, 23

variables

declaring, 29

multicollinear, 133

Risk, 58

variance inflation, 133

variation in measuring accuracy, 

117

variations in statistics, 

121–122

VAST 2011 visualization challenge, 

274

VAST Challenge, 300

VCDB (VERIS Community 

Database), 162

breach data, clustering, 

236–238

data, converting to matrix, 

236–238

GitHub repository, 181

scaling, multidimensional, 

238–240

Vega, 287–291

VERIS (Vocabulary for Event 

Recording and Incident Sharing) 

framework, 162, 166–167

attack chain, 171–172

Attributes, 167

counting records, 175

Discovery/Response, 

167, 176

disparate data sets, 187

Impact, 167, 176–177

Incident Tracking, 167, 168

Indicators, 167, 179

Information Assets, 167, 173

attributes, 173–175

JSON and, 179–182

Plus, 167, 179

Threat Actions, 167, 

169–172

Threat Actor, 167, 

168–169

Victim, 167, 177–179

veris2matrix( ) function, 236

verisr package, 182, 

236–238

Verizon Data Breach Investigations 

Report, 278

vertical bar chart, 152

Victim (VERIS), 167, 177–179

victim industries

breach data clustering, 

236–238

hierarchical clustering, 

240–242

multidimensional scaling, 

238–240

VisAlert, 271

Correlation Tool, 272

design methodology, 273

mental models, 271–272
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visual communications, third 

dimension, 144–146

visual memory, 139

mental grouping, 142

visual stimulus, 139

visual thinking

iconic memory, 

139–140

long-term memory, 140

saccades, 140

saccadic movements, 

140–141

tracking eye movements, 

140–141

working memory, 140

visualization

benefits, 139

reasons for, 

138–139

visualization skills, 14–15

vulnerability

CVSS (Common Vulnerability 

Scoring System), 274

Nessus scanner, 274

W
W3Schools, 299
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