
www.allitebooks.com

http://www.allitebooks.org

BeagleBone for Secret Agents

Browse anonymously, communicate secretly, and create
custom security solutions with open source software,
the BeagleBone Black, and cryptographic hardware

Josh Datko

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

BeagleBone for Secret Agents

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1190914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-604-0

www.packtpub.com

Cover image by Pratyush Mohanta (tysoncinematics@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Josh Datko

Reviewers
Raymond Boswel

Dr. Philip Polstra

Norbert Varga

Jay Zarfoss

Commissioning Editor
Akram Hussain

Acquisition Editor
Greg Wild

Content Development Editor
Dayan Hyames

Technical Editors
Taabish Khan

Humera Shaikh

Copy Editors
Dipti Kapadia

Laxmi Subramanian

Project Coordinator
Venitha Cutinho

Proofreader
Ameesha Green

Indexers
Priya Sane

Tejal Soni

Graphics
Ronak Dhruv

Valentina D'silva

Production Coordinator
Saiprasad Kadam

Cover Work
Saiprasad Kadam

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

The number of things on the Internet of Things is growing at an unfathomable rate.
A thermostat, weather station, desk lamp, and car charger are devices designed to be
as unobtrusive as possible. At the same time, we demand that they be knowledgeable
about our daily lives and quickly respond to our daily wants and needs. As technology
becomes more powerful and more pervasive, we don't spend much time thinking
about security. It's a common misconception: security is for my passwords and my
browser, so why does my electric meter need it? It is this type of gap in consideration
that can undermine the usability of the things we use every day.

I recently built an interactive exhibit at a museum. In order to monitor the use and to
know when maintenance was needed, I had the exhibit report of various interaction
events to the Internet, where I could see and monitor it. Security is for my bank
account; I didn't need to encrypt these messages! I simply needed to get my data from
point A to point B, so I used a clear-text method for posting to a database. Who cares if
a man-in-the-middle attack is possible? Who cares if someone does a replay attack and
posts the same data twice to my database? If other people saw the data being passed
back and forth, I figured I was doing something pretty cool because people generally
don't care about event flags. This changed when I had a discussion with someone
who had a reason to believe that the global temperature data was being modified for
various political and financial reasons. It suddenly struck me that if we're going to
make unbiased scientific decisions on (pick your societal ill), then we need data that we
can rely on. Cryptography is not always about secrets; it's also about ensuring that you
are having the conversation you want to have with the person you want to talk to.

We are riding on a wave of great creativity and exploration within physical computing
that will increase the quality of our relationship with technology and our quality of
life. Most people don't think of these devices as needing cryptography, but when left
without thought, the Internet of Things can wreak more havoc than identity theft or
wire fraud. This is not about spying, hackers, or rogue governments. If we can push
technology towards a more secure means of communication, we ensure the freedom
that modern society takes for granted. We should be laying the groundwork today for
the future generation of hackers, makers, tinkerers, and innovators to create amazing
things for sure—but we should be building this groundwork with security in mind.

www.allitebooks.com

http://www.allitebooks.org

Over the past few months, I have begun to learn about hashes, HMACs, and
nonces. Cryptography is no longer restricted to the realm of applied math PhDs or
government-funded researchers. It has been made approachable and stronger by a
loose net of enthusiasts that take it upon themselves to be the quiet but persistent force
of change. I encourage you to become an educated participant in the modern world
of technology. Cryptography should not be simply seen as something to strengthen
a project. Rather, we must reinforce a trend of secure communication so that future
projects and technologies use proper encryption and cryptography without thinking
about it.

Josh came to SparkFun as part of our Hacker-in-Residence program. We worked
with him to build his vision—a module that would help fellow hackers secure their
projects. I hope that you will find this book, which contains projects that combine
electronics, software, and security, of interest. It will make you appreciate the
challenge and necessity of securing our Internet of Things.

Nathan Seidle
CEO, SparkFun Electronics

www.allitebooks.com

http://www.allitebooks.org

About the Author

Josh Datko is the founder of Cryptotronix, LLC, an open source hardware company
that specializes in embedded, cryptographic electronics. He graduated with distinction
from the US Naval Academy with a Bachelor's of Science in Computer Science and
then served 10 years in the Navy, both actively and as a reserve submarine officer.
He has been deployed to locations worldwide including Afghanistan in support of
Operation Enduring Freedom. In 2014, Josh presented at both the HOPE and DEF
CON conferences. He completed his Master's of Science in Computer Science,
with a focus on security and networking, from Drexel University.

I'd like to thank F. and A. for their love and support.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Raymond Boswel is an electronic engineer from South Africa. He works as a
systems engineer for a telecommunications company. Although the powers that
be don't condone playing around with single-board computers during office hours,
he enjoys fiddling with them during his free time. So far, he's used his Beagle
for convolutional, frequency-response modeling to spice up his guitar amplifier,
automation, and time-lapse photography. Having read this book, he might just
turn his attention to espionage. Enjoy!

Dr. Philip Polstra (known as Dr. Phil to his friends) is an internationally recognized
hardware hacker. His work has been presented at numerous conferences around the
globe, including repeat performances at DEFCON, Black Hat, 44CON, Maker Faire,
and other top conferences. He is a well-known expert on USB Forensics and has
published several articles on this topic.

Recently, Dr. Polstra has developed a penetration testing Linux distribution, known as
The Deck, for the BeagleBone and BeagleBoard family of small computer boards. He
has also developed a new way of doing penetration testing with multiple low-power
devices, including an aerial hacking drone. This work is described in his book Hacking
and Penetration Testing With Low Power Devices, Syngress. He has also been a technical
reviewer on several books including BeagleBone Home Automation, Packt Publishing.

Dr. Polstra is an Associate Professor at Bloomsburg University of Pennsylvania
(http://bloomu.edu/digital_forensics), where he teaches Digital Forensics
among other topics. In addition to teaching, he provides training and performs
penetration tests on a consulting basis. When he is not working, he has been known to
fly and build aircrafts and tinker with electronics. His latest happenings can be found
on his blog at http://polstra.org. You can also follow him @ppolstra on Twitter.

www.allitebooks.com

http://bloomu.edu/digital_forensics
http://polstra.org
http://www.allitebooks.org

Norbert Varga has over 5 years of experience in the software and hardware
development industry. He is responsible for embedded software development,
hardware-software integration, and wireless telecommunication solutions for his
current employer, BME-Infokom.

He has extensive experience in networking and hardware-software integration—he
has engineered advanced systems including wireless mesh networks and smart
metering solutions. He also has a strong background in Linux system administration
and software development.

Previously, Norbert has worked as a software developer on various projects
at the Budapest University of Technology and Economics (Department of
Telecommunications), which is the most renowned technical university in Hungary.
He has played a key role throughout all the development processes, ranging from
initial planning through implementation to testing and production support.

He has a personal blog where he writes about his current projects at
http://nonoo.hu/.

Jay Zarfoss is a senior cloud security engineer at Netflix, where he is responsible
for building secure software solutions in Amazon Cloud. He has over 10 years of
experience in various fields of computer security in both public and private sectors,
and he has a broad range of eclectic interests in the realm of computer security, such
as tracking down and studying Botnets, applying cryptography to real-life situations,
and building security and key management solutions for virtualized environments.
When not implementing a timing attack or learning a foreign language, Jay enjoys
the outdoors with his wife Stefanie.

www.allitebooks.com

http://nonoo.hu/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Creating Your BeagleBone Black
Development Environment	 5

Introducing the BBB	 6
Appreciating BBB's commitment to open source hardware	 6
Unboxing the BBB and providing power	 7

Creating an embedded development environment with Emacs	 8
Understanding the complications of embedded development	 8
Installing Emacs 24	 10
Installing the prelude	 11
Learning how to learn about Emacs	 12
Streamlining the SSH connections	 13

Discovering the IP address of your networked BBB	 13
Editing the SSH configuration file	 15
Configuring password-less login	 16
Running an SSH agent to control access to your SSH keys	 17

Connecting to BBB with TRAMP	 18
Running commands from Emacs	 19
Using Emacs dired to copy files to and from BBB	 20

Finding additional background information	 21
Finding additional cryptography resources	 21
Finding additional electronics resources	 22
Finding additional Debian resources	 22

Summary	 23
Chapter 2: Circumventing Censorship with a Tor Bridge	 25

Learning about Tor	 26
Appreciating the various users of Tor	 28
Understanding Tor relays	 28
Understanding Tor bridges	 28

Table of Contents

[ii]

Using obfuscated proxies and pluggable transports	 29
Realizing the limitations of Tor	 29
The impact and benefits of running a Tor bridge	 30

Installing Tor on BBB	 31
Installing Tor from the development repository	 31
Configuring Tor for BBB	 32

Adding contact details to the torrc file	 33
Tuning the bandwidth usage of your bridge	 33

Understanding Tor exit policies	 33
Setting bridge-specific settings	 34
Starting your new Tor bridge	 34
Enabling port forwarding	 35
Adding physical interfaces to the bridge	 36

Gathering the front panel components	 36
Using an LCD to display status information	 37
Controlling the bandwidth with a potentiometer	 37
Designing the BeagleBridge circuit	 38
Wiring the hardware with a proto cape	 40
Developing the software using Python libraries	 41
Controlling the hardware with pyBBIO	 42

Determining your bandwidth with speedtest-cli	 45
Controlling the bridge with the Stem library	 46
Connecting to your obfuscated bridge	 47
Continuing with Tor-related projects	 48
Summary	 49

Chapter 3: Adding Hardware Security with the CryptoCape	 51
Exploring the differences between hardware and software
cryptography	 51

Understanding the advantages of hardware-based cryptography	 52
Offloading computation to a separate processor	 52
Protecting keys through physical isolation	 53

Understanding the disadvantages of hardware crypto devices	 54
Lacking cryptographic flexibility	 54
Exposing hardware-specific attack vectors	 54
Obfuscating implementation details	 55

Summarizing the hardware versus software debate	 55
Touring the CryptoCape	 55
Discovering the I2C protocol	 57
Understanding the benefit of cape EEPROMs	 58

Creating a cape EEPROM	 59
Creating the cape DTS file	 61

Creating an eLinux wiki site	 62

Table of Contents

[iii]

Keeping time with a real-time clock	 62
Trusting computing devices with a Trusted Platform Module	 64
Providing hardware authentication with ATSHA204 and ATECC108	 64
Encrypting EEPROM data with the ATAES132	 65
Combining the BBB with an ATmega328p	 65
Building a two-factor biometric system	 66

The fingerprint sensor overview	 67
Appreciating the limitations of fingerprint biometrics	 68
Preparing the CryptoCape	 69
Preparing the connections	 70
Connecting the Scanner to the CryptoCape	 70
Preparing the fingerprint sensor	 71
Uploading the biometric detection sketch	 73
Security analysis of the biometric system	 75

Summary	 75
Chapter 4: Protecting GPG Keys with a Trusted Platform Module	 77

History of PGP	 77
Reflecting on the Crypto Wars	 78

Developing a threat model	 79
Outlining the key protection system	 80
Identifying the assets we need to protect	 80
Threat identification	 80
Identifying the risks	 81
Mitigating the identified risks	 82
Summarizing our threat model	 82

Generating GPG keys	 83
Generating entropy	 83
Creating a good gpg.conf file	 84
Generating the key	 85
Postgeneration maintenance	 87
Using GPG	 88

Protecting your GPG key with a TPM	 89
Introducing trusted computing	 89
Encrypting data to a PCR state	 90

Adding the keypad	 91
Taking ownership of the TPM	 93
Extending a PCR	 94
Unlocking your key at startup	 96
Iterating on the threat model	 97
Summary	 98

Table of Contents

[iv]

Chapter 5: Chatting Off-the-Record	 99
Communicating Off-the-Record – a background	 100

Introducing Off-the-Record communication	 100
On the usability of OTR	 102
Using the BeagleBone to protect your online chats	 103

Installing BitlBee on the BeagleBone	 103
Creating a BitlBee account	 105
Adding a Google Talk account to BitlBee	 105
Adding a Jabber account to BitlBee	 108

Adding OTR to your BitlBee server	 108
Managing contacts in BitlBee	 109
Chatting with BitlBee	 109
Chatting with OTR in BitlBee	 110

Understanding the Socialist Millionaire Problem	 111
Marshalling your IRC connections with a Bouncer	 112

The modern uses of IRC	 112
Downloading and installing the IRC bouncer ZNC	 114
Configure ZNC to manage your IRC connections	 116
Adding OTR to your ZNC server	 120
Adding your networks to ZNC	 121

Connecting to ZNC from your IRC client	 123
Establishing OTR connections through ZNC	 124

Extending the project	 125
Summary	 126

Appendix: Selected Bibliography	 127
Index	 137

Preface
BeagleBone Black inspires embedded hackers in different ways. Some see it as
a controller board for a small robot, while others see it as a low-power, network
server. In this book, we'll treat BeagleBone Black as a defender of personal security
and privacy. Each chapter will discuss a technology and then provide a project to
reinforce the concept.

Let's get started!

What this book covers
Chapter 1, Creating Your BeagleBone Black Development Environment, starts the journey
by showing you how to set up Emacs to maximize your embedded hacking.

Chapter 2, Circumventing Censorship with a Tor Bridge, walks through how to transform
the BeagleBone Black into a Tor server with a front panel interface.

Chapter 3, Adding Hardware Security with the CryptoCape, investigates biometric
authentication and specialized security chips.

Chapter 4, Protecting GPG Keys with a Trusted Platform Module, shows you how to use
the BeagleBone Black to safeguard e-mail encryption keys.

Chapter 5, Chatting Off-the-Record, details how to run an IRC gateway on the
BeagleBone Black to encrypt instant messaging.

Appendix, Selected Bibliography, lists the referenced works cited throughout the book.

Preface

[2]

What you need for this book
This book contains several independent projects that use various software packages
and hardware components. All the software is open source, and installation
instructions are given throughout the chapter. A list of all the necessary hardware
is maintained as a SparkFun Electronics wish list at https://www.sparkfun.com/
wish_lists/93119. Each chapter will list the required components for that project,
so it's best to first read the chapter and then collect the necessary hardware.

Who this book is for
If you have an interest in individual security and privacy on the Internet, then you
hopefully should enjoy this book. If you have a security background but are new to
embedded computing, then you should find the projects challenging but rewarding.
Conversely, if you are versed in electronics and are working with GNU/Linux
distributions but haven't studied the security technologies mentioned in this book,
then you should appreciate the discussions of the technologies in each chapter.

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The LCD, controlled by the FrontPanelDisplay class, writes to the serial port,
/dev/ttyO4, on BBB's UART 4 at 9600 baud."

A block of code is set as follows:

self.clear_screen()
up_str = '{0:<16}'.format('Up: ' + self.block_char * up)
dn_str = '{0:<16}'.format('Down: ' + self.block_char * down)

self.port.write(up_str)
self.port.write(dn_str)

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

import Adafruit_BBIO.UART as UART
import serial
class FrontPanelDisplay(object):

https://www.sparkfun.com/wish_lists/93119
https://www.sparkfun.com/wish_lists/93119

Preface

[3]

 def __init__(self):
 self.uart = 'UART4'
 UART.setup(self.uart)
 self.port = serial.Serial(port="/dev/ttyO4", baudrate=9600)
 self.port.open()

Any command-line input or output is written as follows:

Mar 25 21:37:43.000 [notice] Tor has successfully opened a circuit. Looks
like client functionality is working.

Mar 25 21:37:43.000 [notice] Bootstrapped 100%: Done.

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "To connect
to your bridge, launch the Tor browser and click on Open Settings as it starts up."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message. If there is a topic that you
have expertise in and you are interested in either writing or contributing to a book,
see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Creating Your BeagleBone
Black Development

Environment
This book is for secret agents. James Bond is the secret agent who most likely comes
to mind, but in today's highly connected world, the real secret agents are to be
found in Q branch. Spycraft techniques such as camouflage, listening devices,
and palm-print weapons are useful for field agents, but online we need other tools.
These tools, like their field agent counterparts, enable you to hide in a crowd, protect
secret communication, and prove the identity of other agents. The software and
hardware projects in this book use tools relied upon by whistleblowers, journalists
protecting their sources, and everyday citizens attempting to access unfiltered
information in a strongly censored country.

BeagleBone Black (BBB) is a complete computer that fits inside an Altoid's tin. Its
small form factor, low power consumption, and capable performance empower the
device to help you secure your privacy and protect your communication online.
Before we can build upon these tools, we first need to know how to interact with the
BBB. This chapter will introduce you to BBB and suggest a development environment
in which you can build the later projects.

In this chapter, you will:

•	 Learn about BBB and the open source principles behind the project
•	 Install and use the Emacs editor
•	 Configure Emacs as your embedded development environment
•	 Tailor your SSH configuration for usability
•	 Investigate resources for background information on cryptography,

electronics, and Linux

www.allitebooks.com

http://www.allitebooks.org

Creating Your BeagleBone Black Development Environment

[6]

Introducing the BBB
From the BeagleBoard website (BeagleBoard.org), which is the nonprofit
foundation behind BeagleBoard-xM, BeagleBone, and BBB, the BBB is a low-cost,
community-supported development platform for developers and hobbyists. The Rev C,
which is the latest revision, has impressive specifications including the TI Sitara
AM3358 1GHz ARM Cortex-A8 processor, 512 MB of DDR3 RAM, and 4 GB
Embedded Multi-Media Card (eMMC) for on-board flash. When you take a look
at the board, you'll see two 46-pin expansions headers. If you compare it to other
hobbyist boards around the same price point, you'll come to the conclusion that the
other boards do not contain nearly as much expansion capability. The BBB supports
many more Input/Output (IO) options, including three I2C buses, multiple serial
ports, 65 General Purpose IO (GPIO), multiple Pulse Width Modulators (PWM),
and seven analog inputs with built-in Analog-to-Digital Converters (ADCs). If you
don't know what all of these are, that's not a problem, as we'll explain the systems
that we use throughout the projects.

The quality of the documentation from BeagleBoard.org is outstanding. You
should read the BBB System Reference Manual (SRM), the official manual for BBB,
which is located at https://github.com/CircuitCo/BeagleBone-Black/blob/
master/BBB_SRM.pdf?raw=true. This is a complete manual that covers connecting
the BBB, power options, and boot sequences. Many of the questions asked on the
BeagleBoard mailing list and IRC channel can be quickly answered in this manual.
The author of this book assumes that you've at least skimmed sections 3, 4, and 5 of
the SRM, which means you are aware of the basic capabilities of BBB and are familiar
with the physical connectors. There is simply no better reference for the BBB than
this document.

Appreciating BBB's commitment to open
source hardware
BBB has another very important quality: it is Open Source Hardware (OSHW).
OSHW is a relatively new concept, the exact definition of which may confuse people.
However, there is a group, the OSHW Association (OSHWA), whose mission is
to educate and promote OSHW. Their definition is maintained on their website:
http://www.oshwa.org/definition/. As with most organizations, a consensus
for a definition can be difficult to obtain. The definition of OSHW is well over a
page. The complication with defining OSHW from open source software is that
hardware is a physical thing. There are design files to manufacture hardware, but
there are physical components also. To make a software analogy, the compiler for
the hardware is the manufacturer. Therefore, the definition of OSHW is carefully
constructed and it generally applies to the design files of the hardware.

BeagleBoard.org
BeagleBoard.org
https://github.com/CircuitCo/BeagleBone-Black/blob/master/BBB_SRM.pdf?raw=true
https://github.com/CircuitCo/BeagleBone-Black/blob/master/BBB_SRM.pdf?raw=true
http://www.oshwa.org/definition/

Chapter 1

[7]

Alicia Gibb, the Executive Director of OSHWA, gave a TEDx talk
called The Death of Patents and What Comes After (https://www.
youtube.com/watch?v=z__Sbw1Ax4o). The talk illustrates how
hardware design straddles both copyrights and patent law. Alicia also
provides some interesting insights on the incentives behind patents
and OSHW.

BBB is OSHW, in that it releases documentation, schematics, Computer-Aided Design
(CAD) files, Bill Of Materials (BOM), and production files (Gerbers), all under a
Creative Commons license. This means that you can not only study the complete
design but you are also free to make your own derivative BBB.

Unboxing the BBB and providing power
Unlike Raspberry Pi, BBB is ready out of the box. A recent BBB will come with the
Debian distribution of GNU/Linux, henceforth referred to as Debian, installed on
the eMMC. eMMC is the on-board flash memory for the BBB. As soon as power is
applied to the board, BBB will start to boot from the eMMC. As shown in section
three of the SRM, you can connect the BBB directly to your PC with the supplied USB
cable. The BBB can also be powered from a 5V barrel jack, where you'll want a wall
adapter that can supply up to 1A. If you plan on connecting a mini liquid-crystal
display (LCD) to the BBB, you may want to use a 2A adapter. You can typically find
the output voltage and amperage specifications written on the adapter. You can tell
whether the board is powered and running if the blue user light-emitting diodes
(LEDs) are flashing. Specifically, the LED USER0 will flash in a heartbeat pattern.

Each user LED has a default meaning that corresponds to a specific
BBB activity. To further motivate you to read the SRM, the meanings
are defined in section 3.4.3 under step 6, Booting the Board.

Be very careful when choosing your power supply. The BBB needs
5VDC +/-.25V. Connecting a higher voltage power supply will damage
the board.

The BBB can support multiple peripherals such as a keyboard, mouse, and monitor.
However, in this book, we'll be using the BBB in a headless configuration, which means
without the monitor. Section 3 of the SRM details the various connection scenarios.

https://www.youtube.com/watch?v=z__Sbw1Ax4o
https://www.youtube.com/watch?v=z__Sbw1Ax4o

Creating Your BeagleBone Black Development Environment

[8]

Creating an embedded development
environment with Emacs
With the BBB powered, we need to find a way to interact with it. We need a set of
tools that will connect to the BBB, send shell commands, and transfer files. This set of
tools are your development environment. Development environments are a personal
choice and there is no shortage of choices. Finding a suitable environment is well
worth the time since it will be the main tool, or tools, with which you interface. Your
environment needs to be technically capable of performing the tasks you need, but it
also needs to be configurable and extensible. The environment that is described here
is fully contained within the Emacs editor.

If you would rather use a specific Integrated Development
Environment (IDE) such as Eclipse, you can take a look at some
useful tutorials at http://derekmolloy.ie/beaglebone/
setting-up-eclipse-on-the-beaglebone-for-c-
development/ and http://janaxelson.com/eclipse1.htm.

Understanding the complications of
embedded development
The history of Emacs is about as long as the history of modern computing. As an
editor, Emacs is often overlooked because of its reputation of being outdated and
difficult to learn. Emacs can be overwhelming since the interface is different from
most modern interfaces. Also, the keybindings were created prior to the invention
of modern Graphical User Interfaces (GUIs), so the keybindings don't correspond
to the shortcuts that you are typically accustomed to. However, there is active
development on various Emacs starter packs, which provide a smoother Emacs
experience. If you keep in mind that Emacs predates your operating system,
you may find it easier to accept the Emacs way.

Many early notable programmers have worked on Emacs, including
Guy Steele, Richard Stallman, James Gosling, and Jamie Zawinski.
The design of Emacs was presented by Richard Stallman in 1981 to
the ACM Conference on Text Processing; the full text is available at
https://www.gnu.org/software/emacs/emacs-paper.html.

http://derekmolloy.ie/beaglebone/setting-up-eclipse-on-the-beaglebone-for-c-development/
http://derekmolloy.ie/beaglebone/setting-up-eclipse-on-the-beaglebone-for-c-development/
http://derekmolloy.ie/beaglebone/setting-up-eclipse-on-the-beaglebone-for-c-development/
http://janaxelson.com/eclipse1.htm
https://www.gnu.org/software/emacs/emacs-paper.html

Chapter 1

[9]

Embedded development is slightly more complicated than web or desktop
development because there are typically two machines involved: the host
(your main computer) and the target (your embedded platform). Embedded systems
range in capabilities and some run without an operating system, which certainly
can't support running a compiler. In this case, the user cross-compiles the code
on the host for the target. This can be performed for the BBB, but compiling small
programs natively on the BBB does not take too long.

A common recommendation for development on the BBB is to connect to the device
over Secure Shell (SSH) and to use command-line tools. This can be an effective
technique, but this limits you to the command line and your terminal emulator.
These tools are very powerful and in this context, limited does not mean limited
in functionality but limited in the interface.

The one helpful feature of Emacs for embedded development is Transparent Remote
Access Multiple Protocol or the TRAMP mode. In short, the TRAMP mode lets you
run Emacs on your host machine, which is most likely more powerful than the BBB,
but access files and run commands on the BBB as if they were local. This is transparent
in TRAMP; working in this environment feels like you are working on a host, not on
an embedded platform. The following screenshot shows the TRAMP feature of Emacs:

Creating Your BeagleBone Black Development Environment

[10]

This screenshot was captured with Emacs running on Mac OS X, but connected to a
BBB with the hostname slartibartfast. Everything on this screen is running on the
BBB. In the top-left corner, the frame shows a live debugging session with the GNU
debugger (GDB) on a simple C program. In the bottom-left corner, the frame shows
the compilation result obtained from running gcc on the BBB. In the top-right corner,
the frame shows the interactive gdb session. Lastly, in the bottom-right corner,
the frames show the current directory and a shell, respectively. In the following
sections, we'll provide details on how to install Emacs and set up this
development environment.

To name your BBB, you'll have to change two files. The first file is /
etc/hostname and then you'll have to make the same change in /
etc/hosts. If you struggle to choose a proper name, you will find
some comfort in the following XKCD comic:
https://xkcd.com/910/

Installing Emacs 24
We'll need Emacs 24.x to take advantage of the prelude starter pack by Bozhidar
Batsov. Prelude is under active maintenance by Batsov and dedicated prelude users.
The code is maintained on GitHub (https://github.com/bbatsov/prelude),
where there is a detailed README. This software is optional; however, it adds
many convenient features and reasonable default configuration settings. Installation
procedures for Emacs vary greatly by operating system, but you can consult the
following table for the software locations:

OS Link
Windows http://ftp.gnu.org/gnu/emacs/windows/

Mac OS X http://emacsformacosx.com/builds

Source http://ftp.gnu.org/gnu/emacs/emacs-
24.3.tar.gz

If you are a Windows user and are having trouble installing Emacs, consult the guide
at https://www.gnu.org/software/emacs/manual/html_mono/efaq-w32.html.
Mac users should find the binaries listed in the previous section sufficient. If you are
using a *nix machine, you can either use your package manager to install Emacs or
build from the source. If you use the package manager, be sure to install Emacs' major
version 24. In a Debian-based system, the command is apt-get install emacs24.

https://xkcd.com/910/
https://github.com/bbatsov/prelude
http://ftp.gnu.org/gnu/emacs/windows/
http://emacsformacosx.com/builds
http://ftp.gnu.org/gnu/emacs/emacs-24.3.tar.gz
http://ftp.gnu.org/gnu/emacs/emacs-24.3.tar.gz
https://www.gnu.org/software/emacs/manual/html_mono/efaq-w32.html

Chapter 1

[11]

Installing the prelude
The Emacs prelude software can be installed by typing the following command:

curl -L http://git.io/epre | sh

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

If you are wary of shortened URLs, take a look at the prelude README for alternate
installation instructions, which is available at https://github.com/bbatsov/
prelude. The installer will complain about any missing packages that you need to
install. Once complete, you should run Emacs. If you have installed a binary version
for your OS, double-clicking on the icon should suffice. On a command line, just type
emacs to launch the program. On the initial start, Emacs will attempt to go to the Emacs
package managers and download additional software. It will then byte-compile the
source files, so it takes a minute or two. Once this is complete, close Emacs and open it
again; you should see something similar to what is shown in the following screen:

Yes, Emacs has its own package manager and Emacs-specific
repositories that provide the Emacs Lisp Package. See the following
blog post by Batsov for a deeper look at Emacs packaging:
http://batsov.com/articles/2012/02/19/package-
management-in-emacs-the-good-the-bad-and-the-ugly/

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/bbatsov/prelude
https://github.com/bbatsov/prelude
http://batsov.com/articles/2012/02/19/package-management-in-emacs-the-good-the-bad-and-the-ugly/
http://batsov.com/articles/2012/02/19/package-management-in-emacs-the-good-the-bad-and-the-ugly/

Creating Your BeagleBone Black Development Environment

[12]

Learning how to learn about Emacs
Emacs has too many features. Here's a tongue-in-cheek joke: Emacs is an operating
system that is in need of a good editor. This section will illustrate the basic skills that one
needs to use Emacs and more importantly, to learn how to use Emacs. One of the best
features of Emacs is the immense built-in help. If you have never run Emacs before,
press Ctrl-h t, abbreviated C-h t. This means that while holding the Ctrl key, press h,
then release it, and then press t. Also, note that the Emacs commands are case sensitive.
C-H T means to press Ctrl + Shift + H, then hit Shift + T, whereas C-h t is performed
without the shift modifier. You'll be presented with the interactive Emacs tutorial. This
tutorial will teach you the fundamentals of Emacs. In the tutorial, you'll see references
to a meta key, which you will be hard pressed to find on your keyboard. Command
sequences, such as M-x, mean to hold down the meta key while pressing x. Depending
on your system, the meta key may be Alt or Option. If neither of these work, you can
press the Esc key and release it to provide meta.

The tutorial is very good and for the rest of this chapter, it is assumed that you have
completed this tutorial or have an equivalent level of knowledge to understand the
more advanced features.

Some other helpful resources to learn Emacs are Sacha Chua's How to
Learn Emacs diagram (http://sachachua.com/blog/wp-content/
uploads/2013/05/How-to-Learn-Emacs-v2-Large.png) and the
official Emacs 24 Reference Card (https://www.gnu.org/software/
emacs/refcards/pdf/refcard.pdf).

If you are a vi user, there is a mode that emulates most vi keybindings,
called the viper mode (http://www.emacswiki.org/emacs/
ViperMode).

http://sachachua.com/blog/wp-content/uploads/2013/05/How-to-Learn-Emacs-v2-Large.png
http://sachachua.com/blog/wp-content/uploads/2013/05/How-to-Learn-Emacs-v2-Large.png
https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf
https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf
http://www.emacswiki.org/emacs/ViperMode
http://www.emacswiki.org/emacs/ViperMode

Chapter 1

[13]

Streamlining the SSH connections
Even if you don't use Emacs, you'll find yourself frequently connecting to the BBB
with SSH. If you run the BBB from the USB cable attached to your PC, then the
default Internet Protocol (IP) address of the BBB will be 192.168.7.2. However, if
you want to download software directly to the BBB, as you will need to do in order
to complete these projects, you'll have to forward your Internet connection from the
PC to the BBB. Also, when powered from the USB directly, there is typically a 500mA
current limit. When the BBB is powering expansion boards or other peripherals, it'll
need to be powered from a 5V DC plug that can supply up to 1A. As a result of these
two issues, you may find it much more convenient to run the BBB from a 5V power
supply and connect the Ethernet cable into your home network directly.

When you do this, the IP address will most likely be assigned by your router and will
only be known to your router. This will leaving you staring at the BBB pontificating
over its IP address.

Discovering the IP address of your networked BBB
There are a few ways to discover the IP address of your device. The first way is to
log in to your router and look up the IP address. This is a quick method but as there
are numerous routers, you'll have to consult your router's documentation on how to
accomplish this.

You can also use the nmap utility to conduct a quick ping scan on your network.
Assuming that you are familiar with the IP address of your own network, you
should be able to see a new device. If you are running an apt-based distribution,
you can install nmap with sudo apt-get install nmap. If you are on a Mac, you
can use the homebrew package manager (http://brew.sh/) and install it with brew
install nmap. Windows users should download the binary from http://nmap.
org/download.html#windows. Once it is installed, you'll want to run a command
similar to the following:

nmap -sn 192.168.1.0/24

Replace 192.168.1.0 with the appropriate address for your network. /24 is the
Classless Inter-Domain Routing (CIDR) notation for the subnet mask. In this case,
/24 means use a subnet mask of 24 bits of 1's, or 255.255.255.0. The -sn option
directs nmap to conduct a ping scan.

http://brew.sh/

Creating Your BeagleBone Black Development Environment

[14]

If you are still unable to determine the IP address, you can buy a USB-to-serial
adapter cable. BBB has a serial debug header located inboard of the P9 header.
You can attach the USB-to-serial adapter to BBB's serial debug header, as shown
in the following image:

In this figure, pin 1 (which is the black wire) is the ground, pin 4 is receive, and pin 5
is transmit. Once physically attached, you'll need a terminal emulator to connect over
the serial connection. GNU Screen is a widely available, free, and robust software
that will connect with the following command; just replace /dev/tty.XXXX with the
file of your connection:

screen /dev/tty.PL2303-004014FA 115200

Lastly, you can set a static IP for your BBB. Your router may support a static lease
feature, which will assign the IP of your choosing to the device when it performs a
Dynamic Host Configuration Protocol (DHCP) request. The lease on this request
can be indefinite and, therefore, effectively provides a static IP. You can also set the
IP statically on your device, but then you will have to manage conflicts manually.
Therefore, the preferred method is to let the router handle this situation.

To find a serial debugging cable, see the eLinux page at
http://elinux.org/Beagleboard:BeagleBone_Black_Serial.

http://elinux.org/Beagleboard:BeagleBone_Black_Serial

Chapter 1

[15]

To take full advantage of the SSH configuration options in the following section,
you'll want to have a static IP set. Otherwise, you will have to repeat the previous
steps to determine the IP address of the device when your router power cycles or
if the BBB is disconnected for a few days.

If you prefer to use a WiFi connection instead of Ethernet, be aware
that there are issues with some dongles. Refer to this eLinux page for
supported adapters: http://elinux.org/Beagleboard:BeagleBon
eBlack#WIFI_Adapters.

Editing the SSH configuration file
In order to connect to BBB, you need to type something similar to the following,
but use the BBB's IP address from the previous section:

ssh debian@192.168.1.10

If you are a Windows user, you should consider using more Unixy tools
on your host since the BBB is running Debian anyway. You can install
Cygwin (https://www.cygwin.com/), which will give you a nice
shell with the associated command-line tools. Or, consider downloading
VirtualBox (https://www.virtualbox.org/) and installing a GNU/
Linux distribution in a virtual machine.

The default username is debian and the default password is temppwd. If you only have
one device, typing this command may be manageable. Once you start collecting BBBs,
Raspberry Pis, pcDuinos, Cubieboards, Arduinos with a WiFly Shield, and so on, you
will have to remember each IP, username, and password. This can become annoying.
Fortunately, there are a few tricks that you can use to improve this situation.

First, you'll need a SSH private key. If you don't already have a key, you can generate
one on your host with the following command:

ssh-keygen -t rsa -b 4096

Now edit the ~/.ssh/config file. If you are doing this in Emacs, you can press
C-x C-f and then type ~/.ssh/config. Emacs keybindings are all bound to Emacs
Lisp commands (technically, there are a few basic commands implemented in C).
The keybinding C-x C-f is bound to the find-file function. An alternate, albeit
longer, way to open a file is to press M-x, type find-file, then open the file
of your choice.

www.allitebooks.com

http://elinux.org/Beagleboard:BeagleBoneBlack#WIFI_Adapters
http://elinux.org/Beagleboard:BeagleBoneBlack#WIFI_Adapters
https://www.cygwin.com/
https://www.virtualbox.org/
http://www.allitebooks.org

Creating Your BeagleBone Black Development Environment

[16]

Add the following section to your ~/.ssh/config file, replacing HostName with the
IP address of your BBB:

Host bbb

 HostName 192.168.1.10

 User debian

Now, you can SSH into the BBB just by typing ssh bbb. Add as many servers
as you want here and give them descriptive names, and this will you manage
your connections.

Configuring password-less login
If you've followed the above step, then connecting to your BBB is now simplified
with the exception of entering the password. Connect to your BBB and run the
ssh-keygen command on BBB. This will create the .ssh directory for you. You don't
have to generate an SSH key; you could just create the .ssh directory, but chances
are that you may need an SSH key anyway and this will accomplish both tasks.

Before you log out, we need to perform one bit of maintenance. We need to regenerate
the SSH host key, the key on the BBB, since the key on your device was cloned from an
image. The process involves just a few commands but requires running them as root.
You can either type sudo su and become root and run the commands, or append sudo
in front of each command in the following code snippet, based off the Nix Craft article
at http://www.cyberciti.biz/faq/howto-regenerate-openssh-host-keys/:

rm /etc/ssh/ssh_host_*

dpkg-reconfigure openssh-server

This will delete your existing SSH host key and regenerate it from scratch. Since the
host key has changed, we need to update your SSH client on you main computer. If
you log in to the BBB again, you will probably receive a warning that the fingerprint
doesn't match because you changed it. You can remove the old entry from your
client by typing the following (you may have to use the IP address instead of bbb):

ssh-keygen -R bbb

Alternatively, you can edit ~/.ssh/known_hosts directly and remove the entry.

With the new SSH key on the BBB and the old entry in known_hosts removed, log
back in to the BBB just to make sure everything is working. Log back out and return
to the terminal on your host. After executing the following command, you will no
longer be prompted for a password:

cat .ssh/id_rsa.pub | ssh bbb 'cat >> .ssh/authorized_keys'

http://www.cyberciti.biz/faq/howto-regenerate-openssh-host-keys/

Chapter 1

[17]

This will copy your public SSH key to the BBB, which will be recognized in the SSH
handshake as an authorized key, and therefore, it will not require you to enter the
debian user's password.

Most likely, you will need to perform this operation again and you may not want to
refer to this book to find this command. You can add this function to your .bashrc
file or an equivalent for further ease of use:

ssh_upload(){
 if [[$# -ne 1]]; then
 echo "usage: host\nNOTE: host should be set in ~/.ssh/config"
 else
 cat ~/.ssh/id_rsa.pub | ssh $1 'cat >> ~/.ssh/authorized_keys'
 fi
}

Then, you can add your key to servers with:

ssh_upload bbb

Don't forget to reload your .bashrc file to gain this function with:

source ~/.bashrc

Logging out and in again will also work.

Running an SSH agent to control access to your
SSH keys
Now you don't have to enter the debian account password each time you log in to
the BBB, but now you do have to enter the password for your SSH private key. This
is equally annoying. However, we can fix this by running ssh-agent. Installing and
configuring ssh-agent is OS-dependent, and instructions are easy to find online.
Once ssh-agent is running, you'll typically have to enter your SSH private key
password when you log in and if you make an SSH connection within a certain
time period, you'll instantly connect to the remote server without any additional
password entry.

Creating Your BeagleBone Black Development Environment

[18]

Connecting to BBB with TRAMP
Now that we've configured SSH, we will now have an easier time connecting to BBB
with TRAMP and Emacs. Emacs has a built-in directory editor called dired, which can
be invoked by pressing C-x d. We want to open dired on the BBB to view the remote
files. Press C-x d and then enter the following for the directory: /ssh:bbb:/home/
debian. A screen similar to the following should immediately open, which will show
you the contents of the home directory:

All the basic Emacs navigation commands work in dired, so you can navigate the
directory and press enter to open a file or another directory. The ^ key will navigate
you to the parent directory. You can also click on the directories or files to open them.

If the tramp-default-method variable is set to ssh, then you
can shorten your URLs to /bbb:/home/debian. You can view the
state of the variable by evaluating it. To evaluate Emacs Lisp, press
M-: and then type tramp-default-method and the mini buffer
should reply with ssh.

For more information on dired or anything about Emacs, you can view the
built-in documentation by pressing C-h r. If you scroll or search (by pressing C-s),
you'll find the dired manual on that page. The manual uses the info viewer, and
you can read about this by pressing C-h i to get the main information page and
then pressing h.

Chapter 1

[19]

One of the features of Emacs is its extensibility. Presumably, you will be connecting to
the BBB often, pressing C-x d, and typing /ssh:bbb:/home/debian can be tiresome.
Let's define a new key sequence to make this easier. Switch to the scratch buffer in
Emacs. This can be done by pressing C-x b, then typing *scratch, and then hitting
Tab + Enter. Paste the following code:

(global-set-key
 [(control x) (control y)]
 (lambda ()
 "Open a dired buffer on the BBB"
 (interactive)
 (dired "/ssh:bbb:/home/debian")))

Position the point, what Emacs calls the cursor, after the last parenthesis. Then,
press C-x C-e to evaluate this snippet of Emacs Lisp. The mini buffer should echo
the result. Now press C-x C-y and you should see the home directory of BBB.
Congratulations! You've just customized Emacs! If you restart Emacs, however,
you'll lose this convenient function, so you need to save it. If you are using the Emacs
prelude, customizations should go in ~/.emacs.d/personal/foo.el. You can save
this buffer with C-x C-s and specify the filename.

If you enjoy using Emacs, you will probably enjoy changing Emacs, which can be
done with Emacs Lisp. Of course, Emacs contains a great manual to learn Emacs
Lisp, An Introduction to Programming in Emacs Lisp. It can be accessed by pressing
C-h i d and then you can either scroll down to the manual or press m, type Emacs
Lisp, and then press Tab for tabcompletion to Emacs Lisp Intro.

Running commands from Emacs
If you are currently looking at the dired buffer in Emacs, then Emacs is aware that
you are on a remote machine. Certain commands are TRAMP-aware and will execute
remotely. For example, M-! will execute a shell command. When used over TRAMP,
it will execute the shell command remotely. Try using M-! with touch test.txt.
Now press g to refresh dired. You should now see test.txt. If you edit this file by
navigating to it in dired and then pressing Enter, you will now be editing the file
remotely. Technically, you are editing a local copy of this buffer but when you save
it with C-x C-s, it will send the changes over to the BBB.

There is a benefit to this system. If the SSH connection drops, for whatever reason,
the buffer is still in RAM on your local machine. Once the connection is restored,
Emacs will save the buffer. Emacs acts as a session manager for your remote
connections and will transparently reconnect when needed.

Creating Your BeagleBone Black Development Environment

[20]

If you open a C file in Emacs, Emacs will apply C-aware syntax highlighting, but it
can also compile and debug over TRAMP. To compile, invoke M-x, type compile,
and supply the compile command. If there is a makefile, then make should suffice;
otherwise, provide the full gcc compilation string. The benefit of using the compile
function is that Emacs will be aware of compilation errors and you can jump to each
one with C-x`. Lastly, if you install gdb on BBB, you debug with gdb from your host
computer. Assuming that you compiled your program with debug symbols, if you
are looking at the source file in the current buffer, you can press M-x, and then
type gdb.

You'll have to provide the gdb command, which is something such as gdb nameofexec
-i=mi. Emacs will remotely launch gdb and open an interactive session. If you set
breakpoints, Emacs will switch over to the code buffer and show you where the
instruction pointer has stopped in the code.

Lastly, you can run a shell inside Emacs on the remote system as well. If you are in a
TRAMP-aware buffer, pressing M-x and then typing shell will open a remote shell.
You can perform all your development actions while never leaving Emacs. Emacs can
also act as your mail reader, calculator, IRC client, and even play Tetris (by pressing
M-x, and then typing Tetris). Emacs is a cross platform editor, so if you learn how
to use Emacs once, you can use it as your development environment on any machine.

XKCD fans of comic 378, should press M-x and then type butterfly.
Be sure to respond yes to the question Do you really want to unleash the
powers of the butterfly? For background on M-x butterfly, see
https://xkcd.com/378/

Using Emacs dired to copy files to and from BBB
Another routine and tedious task is to copy files from the host to the target or vice
versa. Most likely, you can use the command line and a tool such as scp to send
files back and forth. Emacs dired using TRAMP will make this task much simpler.
In a dired buffer, press C to invoke the dired-do-copy function. This will prompt
you for the destination. If you specify a remote address such as /ssh:bbb:/home/
debian, then dired will copy the files over SSH. You can copy multiple files by
marking them with m and then pressing C. The reverse, copying files from BBB to
the host, is the same process. This prevents you from having to drop to a shell and
use scp.

https://xkcd.com/378/

Chapter 1

[21]

There are many resources online to learn Emacs. If you are an IRC user, the #emacs
channel on Freenode is the watering hole of many experienced Emacs users. The
Emacs wiki is also a good starting point for Emacs research, which has a Emacs
newbie entry (http://www.emacswiki.org/emacs/EmacsNewbie). The built-in help
system is quite extensive. To receive help on the help system, press C-h ?.

Finding additional background
information
The projects in the book are, for the most part, self-contained. However, they do
assume that you have some background knowledge in working with a GNU/Linux
system, electronics, and some cryptographic concepts. The following sections list
some resources in each area for those who want to seek further information.

Finding additional cryptography resources
The projects in this book all use some sort of cryptography. If you are familiar
with terms such as asymmetric cryptography, digital signatures, and message
authentication codes, then you should be OK. If not, you will still be able to
complete the projects but you may not appreciate the theory behind them.

As this is not a book on cryptography, a primer here will not provide enough detail
for a beginner and will be woefully inadequate for someone familiar with the material.
If cryptography is new to you, you can still proceed with the book. In the beginning
of each chapter, there is some tailored background to explain the material, which
should be enough for you to understand what the project is trying to accomplish.
Once complete, hopefully, you'll be interested in cryptography and you can get more
information from the following resources.

For a gentle introduction to the topic, Cryptography: A Very Short Introduction by Fred
Piper and Sean Murphy, Oxford University Press, 2002, is good starting point. However,
as the title suggests, it lacks technical depth. Understanding Cryptography: A Textbook
for Students and Practitioners by Christof Paar et. al., Springer, 2010, is a more detailed
introduction. For the more inquisitive readers, Introduction to Modern Cryptography
by Jonathan Katz and Yehuda Lindell, Chapman and Hall/CRC, 2007, is a good
up-to-date reference.

http://www.emacswiki.org/emacs/EmacsNewbie

Creating Your BeagleBone Black Development Environment

[22]

If lectures better suit you, you are in luck. Khan Academy has some interesting
and free mini-lectures covering ancient cryptography up to RSA (https://www.
khanacademy.org/computing/computer-science/cryptography). Another free
resource is Coursera, which has three cryptography classes, Cryptography I and II
taught by Standford Professor Dan Boneh, and a Cryptography class on modern
cryptography taught by Jonathan Katz. The links for these classes are https://www.
coursera.org/course/crypto, https://www.coursera.org/course/crypto2,
and https://www.coursera.org/course/cryptography, respectively.

Finding additional electronics resources
Similarly, this book assumes some basic electronics knowledge. If you are looking for
a book, Practical Electronics for Inventors, Third Edition by Paul Scherz and Simon Monk,
Tab Books, 2013, is a solid and approachable reference. Khan Academy has a series
on basic concepts in electricity and magnetism as well (https://www.khanacademy.
org/science/physics/electricity-and-magnetism). Dave Jones EEVBlog is an
entertaining and informative video blog that covers many areas of electronics and
should be of interest to hobbyists in electronics (http://www.eevblog.com/).

Finding additional Debian resources
For those new to Debian, there is an comprehensive and free handbook available
online called The Debian Administrator's Handbook by Raphaël Hertzog and Roland Mas,
Freexian SARL, 2014, at http://debian-handbook.info/browse/stable/. At a
minimum, you should read Chapter 6, Maintenance and Updates: The APT Tools, of this
book, which details how to use the apt set of tools for package management. There
is also a free class offered by the Linux Foundation and edX called Introduction to
Linux (https://www.edx.org/course/linuxfoundationx/linuxfoundationx-
lfs101x-introduction-1621). The class is fairly recent and it does not appear to
use the Debian distribution, but it does seem like a representative course on generic
Linux information. Lastly, there are several Debian IRC channels on the OFTC IRC
network. Most of the channels start with #debian and you should be able to ask
specific questions there. The BeagleBoard channel is #beagle on Freenode, and
there will be people there who can help answer your questions as well.

https://www.khanacademy.org/computing/computer-science/cryptography
https://www.khanacademy.org/computing/computer-science/cryptography
https://www.coursera.org/course/crypto
https://www.coursera.org/course/crypto
https://www.coursera.org/course/crypto2
https://www.coursera.org/course/cryptography
https://www.khanacademy.org/science/physics/electricity-and-magnetism
https://www.khanacademy.org/science/physics/electricity-and-magnetism
http://www.eevblog.com/
http://debian-handbook.info/browse/stable/
https://www.edx.org/course/linuxfoundationx/linuxfoundationx-lfs101x-introduction-1621
https://www.edx.org/course/linuxfoundationx/linuxfoundationx-lfs101x-introduction-1621

Chapter 1

[23]

Summary
In this chapter, you learned how to connect to your BBB. BeagleBoard.org has
streamlined the out-of-box experience, so there is a minimal setup on the device itself.
You learned that the definitive reference manual for the BBB is the System Reference
Manual, which should be your first stop for hardware-related questions about BBB.
You learned about Emacs and how to create an embedded development environment
with Emacs. Lastly, we identified several resources to find additional information on
cryptography, electronics, and Linux.

In the rest of this book, you will build projects around the most popular and trusted
software security packages: Tor, GNU Privacy Guide, and Off-the-Record messaging,
all of which are actively used and maintained. In the next chapter, we'll use Tor and
the BBB to help strengthen a censorship-resistant network.

BeagleBoard.org

Circumventing Censorship
with a Tor Bridge

In this chapter, you'll configure your BeagleBone Black (BBB) to run a bridge in
the Tor network. This bridge will allow you and others to access the Internet more
anonymously and provide an anti-censorship gateway. We'll add a simple hardware
control interface to BBB so that we can see and adjust the bandwidth usage of the
bridge in real time. We'll call this project BeagleBridge.

This chapter will discuss the following topics:

•	 An introduction to Tor
•	 The difference between a Tor relay and bridge
•	 Obfuscated Tor proxies
•	 How to download and install Tor on BBB
•	 How to configure BBB as a Tor bridge running an obfuscated proxy
•	 How to add hardware controls to adjust the bridge from a front panel

Circumventing Censorship with a Tor Bridge

[26]

Learning about Tor
In this project, you will learn how to use Tor, a tool and network designed to protect
your anonymity online. Tor originally developed from research, sponsored by the U.S.
Naval Research Laboratory, on onion routing (Dingledine, Mathewson, and Syverson,
2004). In onion routing, the client builds a circuit of nodes in an overlay network,
which is a network built on top of an existing network. The Tor network is an overlay
network that runs on the Internet, although it can run on separate networks. The client
sends a message to each node, which is specifically encrypted for that node, asking
the node to send it to the next node in the circuit. Each node peels back a layer of
encryption and forwards the result to the next hop in the circuit, and hence, the onion
analogy. The last node contains the client's actual message, which is forwarded to the
destination server.

Onion routing provides anonymity because the destination server does not know
the IP address of the client. Typically, when you use your browser to access the
Internet, the browser creates a Transmission Control Protocol (TCP) connection that
originates from your system and terminates at the website you are trying to visit. The
address for TCP is provided by the Internet Protocol (IP). Each IP datagram contains
a source and destination IP address. As datagrams arrive at the server, the server can
read the source IP address. This is generally useful as the server needs this address
to return your data. However, this also means that the server knows your IP address,
which is where you live on the Internet. Your IP address alone reveals information
about you, such as the country in which you live and your Internet Service Provider
(ISP). Geolocating by an IP address can be accurate to the zip code level, when you
use United States as an example.

Tor, originally an acronym for The Onion Router, is now simply
referred to as Tor, not TOR. When you ask questions on the Tor mailing
list or IRC channels, Tor developers will appreciate it if you make note
of this subtlety.

The following diagram shows this routing. In this case, Alice is a client who connects
to the first node of her circuit, which happens to be running on your BBB. This BBB
unwraps a layer and forwards Alice's communication to the middle node. The middle
node does the same to the final (exit) node. The exit node sends Alice's original
message to the destination server named Bob. The green arrows show internal Tor
connections that are encrypted. The connection from the exit node to Bob is shown as
an unencrypted connection because this traffic is not part of the Tor network. From
Bob's perspective, the IP originator of this connection is the exit node. However,
the true originator is Alice whose IP is hidden by the Tor network.

Chapter 2

[27]

Bob

Tor node
unencrypted link

encrypted link

Alice

The response to this information by many individuals is:

"So what? Why do I care if the website I'm visiting knows my IP address?"

The website, which knows the data you requested, now knows your location. This
information could be combined with other public information, for example, to conduct
a linkage attack. A linkage attack is an attempt at deanonymization by combining
information from multiple sources. For example, let's say you are searching for
information on a rare medical condition. You post a question on a forum, under a
pseudonym, asking for information. However, the website, and anybody passively
monitoring your connection (if it wasn't encrypted), knows your general location as
well as your question. Your medical condition is most prevalent in Hispanic females in
their seventies. Using your IP address combined with knowledge about your medical
condition, one can conduct a linkage attack possibly using public census data to reveal
your identity.

Tor protects against this kind of attacks by encrypting your traffic through the Tor
network and masking your IP address. To the remote website, your IP address will
be that of the last node in the Tor network, known as an exit relay.

Circumventing Censorship with a Tor Bridge

[28]

Appreciating the various users of Tor
A wide range of people use Tor for daily Internet access. Individuals who don't want
their ISP to collect information on the websites they visit, perhaps because they are
seeking information on sensitive topics, use Tor. Government agents and the military
use Tor. After all, it's difficult to go undercover online if the IP address you are
connecting FROM resolves to fbi.gov. Tor is used by whistleblowers, such as Edward
Snowden, to disclose information to the press. It is also used by normal citizens when
a government blocks access to the Internet. In late March 2014, when the Turkish
government attempted to ban access to Twitter, the number of Tor users in Turkey
jumped from around 25,000 to just under 70,000 in about two weeks.

Tor publishes, via a wide range of interactive graphs, numerous metrics
on who is using Tor and where they're using it from. The users spike
in Turkey can be seen in the graph available at https://metrics.
torproject.org/users.html?graph=userstats-relay-
country&start=2014-01-04&end=2014-04-04&country=tr&ev
ents=off#userstats-relay-country.

Understanding Tor relays
Tor relays are the individual nodes in the Tor network. A node is some type of
computer that is running the Tor software. These relays route messages throughout
the network. Exit nodes, which are the last nodes in the circuit, send the clients'
messages to the destination service. One of the interesting aspects of Tor is that most
of the nodes are run by volunteers. These relay operators volunteer their bandwidth,
time, and energy bill to increase the capacity of the Tor network. The Tor Project
encourages individuals to run relays in order to add to the diversity of the network.
The motivation behind this recommendation is that it is easier to hide in a crowd—it's
difficult to hide in a crowd of one person.

Understanding Tor bridges
In 2006, in response to an increased Internet censorship, the Tor project added an
anticensorship feature called a bridge relay or simply, a bridge (Dingledine, 2006).
A bridge is a special form of a relay—it's not listed in the public relay directory.
Strong Internet censors were able to block access to Tor through several methods.
One method that was effective was to look up all the public relays, which were
only a thousand or so at the time, and deny access to those IP addresses. Therefore,
bridge relays were created and distributed by less public means in order to allow
users to access the Tor network. If a client could access the bridge, which was already
connected to Tor, then the client could access the Internet. In this context, less public
means a distribution mechanism that does not work via the public relay list.

fbi.gov
https://metrics.torproject.org/users.html?graph=userstats-relay-country&start=2014-01-04&end=2014-04-04&country=tr&events=off#userstats-relay-country
https://metrics.torproject.org/users.html?graph=userstats-relay-country&start=2014-01-04&end=2014-04-04&country=tr&events=off#userstats-relay-country
https://metrics.torproject.org/users.html?graph=userstats-relay-country&start=2014-01-04&end=2014-04-04&country=tr&events=off#userstats-relay-country
https://metrics.torproject.org/users.html?graph=userstats-relay-country&start=2014-01-04&end=2014-04-04&country=tr&events=off#userstats-relay-country

Chapter 2

[29]

Using obfuscated proxies and pluggable
transports
Censors were still able to block access to Tor; the technique was to identify the traffic
patterns generated by Tor and block the connection. In 2010, Jacob Appelbaum and
Nick Mathewson of the Tor Project suggested a method to obfuscate the Tor traffic
between the client and the bridge in order to thwart deep packet inspection. As the
obfuscation mechanism might need to change, and has changed in fact, the Tor Project
wanted a generic protocol to allow different obfuscated proxies to run. This abstraction
was known as pluggable transport.

In this chapter, we will set up your BBB to run as a Tor bridge, running an obfuscated
proxy, using the obfs3 pluggable transport.

Realizing the limitations of Tor
Tor is one of the best tools currently available to protect anonymity. However, like
all the security tools discussed in this book, there are limits to its protection. First
of all, Tor's threat model does not hold up to a global passive adversary. Such an
adversary can passively monitor the entire Internet. If an adversary can monitor
the entire Internet, then it can correlate the traffic entering the Tor network with the
traffic leaving the network and can possibly deanonymize Tor clients. One of the
trade-offs of this design is that Tor is a low-latency system, meaning that you can
access the Internet using normal protocols such as HTTP without experiencing much
delay. This is one of the reasons why diversity in the Tor network is important. If all
the relays were in a particular country, it might be easier for that country to monitor
the traffic. However, currently it is thought to be difficult, in spite of the recent leaks
provided by Edward Snowden, for such an adversary to monitor the entire Internet.

Roger Dingledine of the Tor Project commented on NSA's exploits of
Tor with the following:
"The good news is that they [the NSA] went for a browser exploit, meaning
there's no indication that they can break the Tor protocol or do traffic analysis
on the Tor network. Infecting the laptop, phone, or desktop is still the easiest
way to learn about the human behind the keyboard."
The full text and additional commentary is available on the Tor
website (https://blog.torproject.org/blog/yes-we-know-
about-guardian-article).

https://blog.torproject.org/blog/yes-we-know-about-guardian-article
https://blog.torproject.org/blog/yes-we-know-about-guardian-article

Circumventing Censorship with a Tor Bridge

[30]

Also, Tor will not automatically encrypt all your traffic. If you request information
over unencrypted HTTP, the Tor exit node you use will relay this unencrypted
information to its destination. A malicious exit node can monitor or manipulate your
traffic; therefore, it's always best to use encrypted sessions, such as HTTPS, over Tor.
Tor does not protect all your traffic just because you are running Tor. Applications
generally need to be configured to use Tor. Even if you set up a transparent proxy
on your home network and route all of your traffic through that proxy, the malware
or exploits in your browser may leak your identity. This is why the Tor Project
recommends that you use the Tor Browser, which essentially is a forked version
of Mozilla Firefox that has been patched especially to not leak your identity. Lastly,
Tor can't protect your identity if you choose to reveal it. If you decide to log in to
Facebook over Tor, you've just told Facebook who you are and that you are using
Tor since all the Tor exit nodes are public.

An easy way to use Tor more securely is to use it only from Tails
(https://tails.boum.org/), which is a custom Linux distribution
that will boot from various media. Tails is a collection of free software
and includes numerous correctly configured tools to help protect your
confidentiality and anonymity.

The impact and benefits of running a Tor
bridge
So, why run a Tor bridge on BBB? The impact and benefits of Tor is in the network.
The more the Tor servers, the more the resources in the network. Many users
in developed nations have high-speed Internet connections that are orders of
magnitude faster than in countries where access to censor-free Internet is restricted.
A bridge is likely to receive less traffic than a relay, as there are fewer bridge users
than normal Tor users. Most likely, the limiting performance factor for your bridge
will be your home network's upload speed. This can be a constraining factor if you
are running a relay, but as a bridge, you are most likely helping those in precarious
Internet situations and any donated bandwidth is appreciated. Lastly, running a
bridge on BBB has the extra advantage of a low impact on your electric bill, as BBB
will only draw about 460mA when loading a web page according to the BeagleBone
Black System Reference Manual.

https://tails.boum.org/

Chapter 2

[31]

Installing Tor on BBB
The instructions provided in the following sections are geared towards the user
running BeagleBridge on a home network. The bridge will consume some otherwise
unused bandwidth and donate it to the Tor network. You should check your ISP's
Terms of Service before running a server to see whether it's permitted. Also, you'll
need to configure port forwarding from your home router. As there are numerous
devices, each with their own configuration mechanism, you should consult your
router's manual on how to enable port forwarding.

Installing Tor from the development
repository
The Tor images in the official Debian repository are not as up to date as those from
the Tor Project. We'll use the Tor Project's development repository to retrieve the
latest software. This is especially important when you are running a bridge, as the
bridge and the pluggable transport software are updated frequently.

The latest instructions as well as the latest GPG fingerprint can be found
on the Tor Project's website (https://www.torproject.org/docs/
debian). The following steps explain the installation procedure, but you
should cross-reference them with the published instructions.

Edit /etc/apt/sources.list by adding the following lines:

deb http://deb.torproject.org/torproject.org wheezy main

deb http://deb.torproject.org/torproject.org tor-experimental-0.2.5.x-
wheezy main

Next, add the GPG key used to sign these Tor packages:

gpg --keyserver keys.gnupg.net --recv 886DDD89

gpg --export A3C4F0F979CAA22CDBA8F512EE8CBC9E886DDD89 | sudo apt-key add
-

Then, issue the following command:

sudo apt-get update

The Tor Project recommends that you add the GPG key ring with the
following command:

sudo apt-get install deb.torproject.org-keyring

https://www.torproject.org/docs/debian
https://www.torproject.org/docs/debian

Circumventing Censorship with a Tor Bridge

[32]

Tor needs an up-to-date time as it enforces the time validity on certificates. In a later
chapter, we'll show you how to keep time with a dedicated Real Time Clock (RTC).
For now, update your clock from the Network Time Protocol (NTP) as follows:

sudo ntpdate -b -u pool.ntp.org

Install Tor:

sudo apt-get install tor

Then, install obfsproxy. Obfsproxy is the software that implements the obfuscated
proxy and allows various pluggable transports. Obfsproxy uses Python Twisted
library, an event-driven networking engine, which will install around 17 MB of
packages in total:

sudo apt-get install obfsproxy

While we are installing software, let's install the Stem Python package. Stem is
a Python controller library for Tor, and we'll be using it later to interact with our
bridge. The easiest method is to install it with pip:

sudo pip install stem

Configuring Tor for BBB
Under Debian, the configuration file for Tor is /etc/tor/torrc. Before editing /etc/
tor/torrc, you should first take a backup. This torrc file is available for download at
https://github.com/jbdatko/beagle-bone-for-secret-agents/blob/master/
ch2/torrc. We will discuss more interesting aspects of this configuration file in the
following sections. When you are ready, replace /etc/tor/torrc with the following:

We are running a relay, no need for the SocksPort
SocksPort 0
Extra logging is nice
Log notice file /var/log/tor/notices.log
Run in the background
RunAsDaemon 1
The following two lines are so we can connect with the
Tor Stem library over the control port
ControlPort 9051
CookieAuthentication 1
The is the Onion Router (OR) Port for normal relay operation
ORPort 9001
Your bridge's nickname, change!
Nickname changeme

https://github.com/jbdatko/beagle-bone-for-secret-agents/blob/master/ch2/torrc
https://github.com/jbdatko/beagle-bone-for-secret-agents/blob/master/ch2/torrc

Chapter 2

[33]

Bandwidth settings
RelayBandwidthRate 520 KB # Throttle traffic to 520 KB/s
RelayBandwidthBurst 640 KB # But allow burts up to 640 KB/s
You put a real email here, but consider making a new account
or alias address
ContactInfo Random Person <nobody AT example dot com>
Do not exit traffic
ExitPolicy reject *:* # no exits allowed
Yes, we want to be a bridge
BridgeRelay 1
Use the obfs3 pluggable transport
ServerTransportPlugin obfs3 exec /usr/bin/obfsproxy managed
Enable extra bridge statistics collection
ExtORPort auto
A nice option for embedded platforms to minimize writes
to eMMC or SD card
AvoidDiskWrites 1

Adding contact details to the torrc file
At minimum, you should change the Nickname field and ContactInfo. The Nickname
field is a shorter way to refer to your bridge; however, your bridge's fingerprint is
always the best method as it is unique. The ContactInfo field allows the Tor project
to send you an e-mail if there is a problem with your bridge. You can create an e-mail
alias if you are concerned about receiving spam. Just be sure to monitor this account
for infrequent e-mails from the Tor project.

Tuning the bandwidth usage of your bridge
Tor's man page will describe most of these settings in detail, but some warrant
extra explanation. The bandwidth settings, RelayBandwidthRate and
RelayBandwidthBurst, are tunable bandwidth settings, and in a later section,
we will connect our hardware controls to manipulate these settings. The rate and
the burst are in kilobytes per second, not in the more common kilo or megabits per
second, so watch your units.

Understanding Tor exit policies
A bridge, by definition, is the entry point to the Tor network. As such, the exit
policy, which will allow traffic to exit the Tor network from the server, should
be the following:

ExitPolicy reject *:*

Circumventing Censorship with a Tor Bridge

[34]

This prevents your server from running as an exit node. If you do decide to run an exit
node, be prepared to receive some complaints from your ISP if you are running it on
a home network. This is why the Tor Project and the Electronic Frontier Foundation
recommend that you don't run an exit relay on a home network. A thorough, legal
FAQ prepared by the Electronic Frontier Foundation can be found at
https://www.torproject.org/eff/tor-legal-faq.html.en.

Setting bridge-specific settings
There are three bridge specific settings: BridgeRelay, ServerTransportPlugin,
and ExtORPort. The BridgeRelay setting is the key setting that defines your relay as a
bridge. Your bridge's meta information is published in the bridge database instead of
the public directory server, which keeps your bridge's IP less public than a Tor relay's
IP address. ServerTransportPlugin defines which pluggable transport proxy your
bridge supports. Currently, ScrambleSuit is the latest promising pluggable transport
technology. However, obfs3, which is the transport enabled in our bridge configuration
example, is slightly more mature and it is the more conservative recommendation.
Lastly, ExtORPort allows the gathering and reporting of bridge statistics to the
Tor Project.

For those who are interested in running the ScrambleSuit obfsproxy,
take a look at the following link on how to configure your bridge:
https://lists.torproject.org/pipermail/tor-
relays/2014-February/003886.html.

Starting your new Tor bridge
With the time updated and the configuration set, it's time to turn on the bridge. At
the moment, the bridge should be able to make a connection to the Tor network, but
it will not be able to accept incoming connections as we have not yet configured port
forwarding from your router. However, the obfsproxy port is randomly assigned,
so we need to run the bridge first to find the port. Restart the Tor service with the
following command:

sudo service tor restart

Next, let's check the log to see whether Tor has started correctly:

tail -n 20 /var/log/tor/notices.log

https://www.torproject.org/eff/tor-legal-faq.html.en
https://lists.torproject.org/pipermail/tor-relays/2014-February/003886.html
https://lists.torproject.org/pipermail/tor-relays/2014-February/003886.html

Chapter 2

[35]

If you see something like the following, then your Tor client's behavior is working:

Mar 25 21:37:43.000 [notice] Tor has successfully opened a circuit. Looks
like client functionality is working.

Mar 25 21:37:43.000 [notice] Bootstrapped 100%: Done.

Enabling port forwarding
We know that we need to forward port 9001, as it is the ORPort, but we need to know
which port the obfsproxy software runs on. This will be logged in the same file and
will be discovered by searching the Tor log with the following command:

grep obfs3 /var/log/tor/notices.log

The previous command should yield the following search result:

Mar 05 01:56:04.000 [notice] Registered server transport 'obfs3' at
'0.0.0.0:59519'

The obfsproxy port for our obfs3 service is on 59519. From your home router,
configure port forwarding from 9001, and configure port forwarding from 59519
from your external IP to BBB. It will also help if you give your BBB a static internal
IP. Consult your router's manual for directions. Alternatively, you can specify the
port with the following line in the /etc/tor/torrc file:

ServerTransportListenAddr obfs3 0.0.0.0:xxxx

Replace the x's with the desired port address. However, it's best to let obfsproxy
pick a random address; otherwise, the Tor Project might end up with an uneven
distribution of bridges running on certain ports, which will make it easier to block
access to bridges.

Once you've forwarded the necessary ports, restart the router again. You should see
the following messages, indicating success:

Mar 25 21:37:43.000 [notice] Now checking whether ORPort xxx.xxx.xxx.
xxx:9001 is reachable... (this may take up to 20 minutes -- look for log
messages indicating success)

Mar 25 21:37:44.000 [notice] Self-testing indicates your ORPort is
reachable from the outside. Excellent. Publishing server descriptor.

Congratulations! You are now running a Tor bridge on BBB and are helping to
improve Internet freedom. You are also enabling agents, both secret and otherwise,
to access the unfiltered Internet.

www.allitebooks.com

http://www.allitebooks.org

Circumventing Censorship with a Tor Bridge

[36]

Adding physical interfaces to the bridge
Now you have a Tor bridge running and you can stop here. If you do, you'd be
missing out on the ability to combine software with custom hardware on BBB.
Our BBB Tor bridge currently has no visual feedback, so it's not obvious that it's
working. Also, the only means to control the bridge is to log in to BBB over SSH and
manipulate the configuration options. The Tor bridge is an appliance and it needs
appliance controls. In this section, we'll add a front panel, which will give us an easy
method to control the bridge's bandwidth and a quick indicator to know that the
software hasn't crashed. In the following section, we'll add the software to interface
with our bridge and control the hardware.

If you decide to run a Tor relay, there are websites such as Tor atlas
(https://atlas.torproject.org/) that will produce bandwidth
graphs and display other information about your relay. Another
tool that will also display information about your bridge is Globe
(https://globe.torproject.org/).

Gathering the front panel components
As this is our first project, we are going to use some basic components:
a light-emitting diode (LED), a rotary potentiometer, and a liquid-crystal
display (LCD), all shown in the following circuit diagram:

https://atlas.torproject.org/
https://globe.torproject.org/

Chapter 2

[37]

LCDs can been a bit tricky to work with, but SparkFun Electronics has combined a
16x2 LCD with a microcontroller so that it can use a serial interface instead of a more
complicated parallel one. The serial interface is simpler because it only requires one
data line to the device, whereas a parallel interface will require more wiring.

Using an LCD to display status information
Our Tor bridge generates a lot of metadata, such as the bandwidth usage, the
number of connections, and some Tor-specific statistics. For a home network, it's
useful to know how much bandwidth your bridge is using, and it would be nice
to know this without logging in to BBB all the time. In the serial LCDs, we will
draw a graphical representation of the bandwidth usage. We'll use ten bars, each
representing a tenth of the available bandwidth. If you see five bars, then the bridge
is using half of the available bandwidth. The LCD selected for this project was
LCD-09067 (SparkFun Electronics).

SparkFun Electronics is an international distributor that ships products
from Boulder, Colorado, in the United States. Some of the more common
components recommended in this book can be replaced with equivalent
ones in your local electronic store if you are trying to save on shipping.
You don't need to type in each component; they are all listed in one
consolidated wish list at https://www.sparkfun.com/wish_
lists/93119.

Controlling the bandwidth with a potentiometer
A potentiometer is like a variable resistor. If you've ever adjusted the volume of a
radio or speaker with a knob, you've probably used a potentiometer. By adjusting
the knob, you adjust the resistance in the potentiometer, which in turns adjusts the
voltage sensed at the output. The potentiometer has three leads: one for voltage (in),
one for ground, and the final is the output.

This knob, connected to BeagleBridge, will throttle the bandwidth available to Tor.
With the dial turned up to max, the bridge will report that all of your bandwidth is
available to route traffic to the Tor network. With the dial at its midpoint, the bridge
will report that half of your bandwidth is available for use. If you notice that the
bridge is consuming more bandwidth than you'd like, as indicated by the LCD, you
can turn down the volume of your bridge. The potentiometer and knob for this project
are COM-09939 and COM-10001 (SparkFun Electronics).

https://www.sparkfun.com/wish_lists/93119
https://www.sparkfun.com/wish_lists/93119

Circumventing Censorship with a Tor Bridge

[38]

Your bridge will not immediately attract users; it will take some time. Start with your
bridge set at the max bandwidth; if you discover that it is consuming more bandwidth
than you like, then turn it down. To receive an indication whether the Tor bridge is
working, we will use an LED controlled by a BBB's GPIO, which will flash periodically.
This way you can look over at the panel and tell whether the software is still running.
The LED by SparkFun is COM-10633, and the LED holder is COM-11148.

Designing the BeagleBridge circuit
The following Fritzing diagram shows the schematic for this project.

Chapter 2

[39]

The potentiometer is connected via BBB's Analog-to-Digital Converter (ADC) pins.
BBB's analog inputs can only tolerate a max of 1.8V; so, it's very important to use the
dedicated analog voltage pin, pin P9_32 (pin number 32 of the connector P9), which
provides this voltage. Do not connect the potentiometer to the normal 3.3V or 5V
power rails, as this will damage the processor. We'll arbitrarily pick the analog input
AIN5 on pin P9_36 as our input pin, and connect that to the middle lead or output of
the potentiometer. Lastly, connect the last lead of the potentiometer to the dedicated
analog ground pin, P9_34.

The LED and LCD both use 3.3V and the common ground. We need a serial transmit
pin for the LCD, so we'll arbitrarily pick P9_13, which is the transmit for UART4.
UART1 transmit on P9_24 or UART2 on P9_21 will also work fine.

Lastly, we need a GPIO to control the LED. Again, any will do, but I've picked
pin P9_15. You'll need a resistor to limit the current to the LED. Sizing a resistor is
straightforward using Ohm's Law; we just need to know the forward voltage drop
and the max current of the LED. This information is found in the datasheet. If you
are using SparkFun's 5mm Green LED, its max current is 20mA and has a forward
voltage drop of 2.2V.

Ohm's Law states that voltage is equal to the current multiplied by the resistance, or
V = IR. Subtracting 2.2V from 3.3V of our supply voltage, and dividing the resulting
value by .020 Amps gives 55 Ohms. 55 Ohms isn't a standard value, but 56 is, so you
can use this. But, you can always use a higher resistance value, and the LED will just
be less bright. The resistor used in this project had a value of 100 Ohms.

Circumventing Censorship with a Tor Bridge

[40]

Wiring the hardware with a proto cape
There are some special considerations when wiring this project as it is meant to go
inside an enclosure to provide the front panel. A stranded wire will bend and flex
better compared to a solid core. Once settled in the enclosure, we wouldn't expect the
wires to strain or move around, but they certainly will when you try to install the panel
inside the enclosure! We also have a few options to wire our project to BBB. We could
use jumper wires with male pins to insert into the female expansion headers, but these
pins can come out easily, especially when you put your project into the enclosure.

We'll use SparkFun's BeagleBone Black Proto Cape, DEV-12774, to easily combine
our circuit with BBB. This board breaks out power, ground, and other pin signals
for expansion. It includes an EEPROM, which is not only useful if you want to
have persistent data stored on your board but is also required if you are building a
BeagleBone Cape, which will be discussed in detail in the next chapter. The advantage
of a protoboard, especially the Beagle proto capes, is that we can solder male headers
on the board and then use female terminated wires, which tend to connect a little
better. Plus, by using the male headers, we can easily reuse the protoboard for a later
project. However, these protoboards are not required, and if you are trying to save
some money, with some creative wiring, you don't need one.

If you are using the protoboard approach, you don't have to populate all the headers
either. Only the male pins that we need are soldered to the corresponding pads on the
protoboard's P9 header. The way these protoboards work is that each pin is duplicated
on the pads next to them. Solder the 100 Ohm resistor from P9_15 to the bottom of one
of the male pins in the middle of the board. Then, connect a wire from the male pin to
the positive terminal of the LED.

When complete, your project should look something like the following circuit
diagram. We don't have the control software running yet, but you can see the LCD
displaying the bandwidth usage. The following diagram doesn't have soldered
connections to the potentiometer for the ease of testing, but instead uses IC Hooks.
In a finished installation, you will want to solder the wires for a better mechanical
and electrical connection.

Chapter 2

[41]

Developing the software using Python
libraries
The software for this project is freely available for download at https://github.
com/jbdatko/beagle-bone-for-secret-agents/. In this section, we'll highlight
the finer details of working with the existing libraries and outline the architecture of
the project. The code uses many asynchronous callbacks from these libraries since
there are several concurrent activities: the Tor bridge, the bandwidth knob, writing
to the LCD, and blinking of the LED. To interact with the bridge, we'll use the Tor
Stem library (https://stem.torproject.org/), and to interact with the hardware,
we'll use Adafruit's BeagleBone Python library (https://github.com/adafruit/
adafruit-beaglebone-io-python).

https://github.com/jbdatko/beagle-bone-for-secret-agents/
https://github.com/jbdatko/beagle-bone-for-secret-agents/
https://stem.torproject.org/
https://github.com/adafruit/adafruit-beaglebone-io-python
https://github.com/adafruit/adafruit-beaglebone-io-python

Circumventing Censorship with a Tor Bridge

[42]

Controlling the hardware with pyBBIO
We installed the Stem library when we installed Tor; so, now we need to install the
Adafruit BBIO library by performing the following commands:

sudo apt-get install build-essential python-dev python-setuptools python-
pip python-smbus -y

sudo pip install Adafruit_BBIO

sudo pip install pyserial

The Adafruit library conveniently enables the device tree overlays, which are the files
that describe the hardware configuration of BBB to the kernel, at runtime. Therefore,
there is no need to manipulate the configuration via the sysfs as everything is handled
in the Python library. The code models each hardware component as its own Python
class. The LED modeled by the TorFreedomLED class is the most straightforward. We
need the LED to blink; this is accomplished by toggling the output high, sleeping the
executing thread briefly, and then toggling the output low to turn it off. To set up the
GPIO, we only need to call GPIO.setup, by passing in the pin and the direction:

import Adafruit_BBIO.GPIO as GPIO
class TorFreedomLED(object):
 def __init__(self):
 self.pin = 'P9_15'
 GPIO.setup(self.pin, GPIO.OUT)

 def on(self):
 GPIO.output(self.pin, GPIO.HIGH)

 def off(self):
 GPIO.output(self.pin, GPIO.LOW)

 def blink(self):
 self.on()
 sleep(.5)
 self.off()

The LCD, controlled by the FrontPanelDisplay class, writes to the serial port, /dev/
ttyO4, on BBB's UART 4 at 9600 baud. The LCD only receives information; therefore,
we are only using the transmit lines from BBB. Commands are written to the attached
microcontroller, which in turn drives the display. The datasheet, available on the
SparkFun website, describes all of the commands. In general, the procedure is to move
the virtual cursor on the display and then send the text.

Chapter 2

[43]

SparkFun has a more complete quick start guide on the serial LCD at
https://www.sparkfun.com/tutorials/246. The example code
is for an Arduino, but porting it to Python is straightforward if you
follow the example of the bridge LCD in this chapter.

Similar to the GPIO example, the serial port in the Adafruit library can be used
as follows:

import Adafruit_BBIO.UART as UART
import serial
class FrontPanelDisplay(object):

 def __init__(self):
 self.uart = 'UART4'
 UART.setup(self.uart)
 self.port = serial.Serial(port="/dev/ttyO4", baudrate=9600)
 self.port.open()

The display will automatically wrap lines if the text you are trying to display is
longer than sixteen characters. Therefore, you have to manage the LCD to ensure
that it displays correctly. For example, let's take a look at the display_graph method
that is responsible for producing the bandwidth graph:

self.clear_screen()
up_str = '{0:<16}'.format('Up: ' + self.block_char * up)
dn_str = '{0:<16}'.format('Down: ' + self.block_char * down)

self.port.write(up_str)
self.port.write(dn_str)

The first line clears the screen and resets the cursor to the top-left corner of the 16x2
display. Next, we format the two lines to display the graph using the special block
character on the LCD. This line is left justified and is filled with whitespace up to
sixteen characters. Finally, the lines are written to the LCD with the serial write
methods. The cursor does not have to be reset between each line because after
writing the first, it will be ready in the second line.

https://www.sparkfun.com/tutorials/246

Circumventing Censorship with a Tor Bridge

[44]

Lastly, the bandwidth adjust knob is modeled in the BandwidthKnob class. This
class uses the ADC module and is also implemented as a thread. The analog input
will always produce a value when read, and we will ratio this value to the available
bandwidth for the bridge. The Adafruit library normalizes the values from 0.0 to
1.0; so, when the knob is at its midpoint, the call to ADC.read(pin) should return
0.5. There is some jitter in the analog signal, and we don't need a fine resolution on
the bandwidth. Sampling once every second should suffice since we don't expect
the knob to change frequently. We'll round up to the next whole number, which will
give the knob ten discrete settings. The run method will report back to the caller,
via a message queue, if the volume setting has changed. The calling thread can then
update the Tor bridge bandwidth limits accordingly.

This code sample shows you how to set up the ADC on BBB with the Adafruit
library and how to pass that result to a waiting thread with a message queue:

import Adafruit_BBIO.ADC as ADC
import threading
from time import sleep
from math import ceil, floor
import Queue
class BandwidthKnob(threading.Thread):

 def __init__(self, pin, *args, **kwargs):

 threading.Thread.__init__(self, *args, **kwargs)
 self.pin = pin
 self.setup_adc()
 self.kill = False
 self.prev_value = -1
 self.q = Queue.Queue()

 def setup_adc(self):
 'Load the Adafruit device tree fragment for ADC pins'
 ADC.setup()

 def read_value(self):
 return ceil(10 * ADC.read(self.pin))

 def stop(self):
 self.kill = True

 def run(self):
 knob = self.prev_value

Chapter 2

[45]

 while knob != 0 and not self.kill:
 sleep(1)
 knob = self.read_value()
 if knob != self.prev_value:
 self.q.put(knob)
 self.prev_value = knob

Determining your bandwidth with
speedtest-cli
In order to adjust the bandwidth rate, we first need to know how much bandwidth
our bridge has. Fortunately, there is a nice script to run a speed test from your
command line that is appropriately called speedtest-cli. This is installed with the
following command:

sudo pip install git+https://github.com/sivel/speedtest-cli.git

Run the test with the following command:

speedtest-cli --simple > speedtest.txt

If you inspect the output file, you should see something like the following:

Ping: 107.686 ms

Download: 28.23 Mbit/s

Upload: 5.37 Mbit/s

We'll use the results in this file as the basis for our bandwidth adjustment. At the
moment, we only need to remember its location for later use.

Circumventing Censorship with a Tor Bridge

[46]

Controlling the bridge with the
Stem library
The bridge is controlled using the Stem library, which communicates with the Tor
process over the Tor control protocol. The setup is managed in the BeagleBridge
class. After establishing a connection with the Tor process, this class registers two
event listeners for the Bandwidth and Configuration changed event. The bandwidth
event is triggered each second and reports, via the print_bw callback, the bytes used in
the last second. This information is used to draw the bandwidth graph. The following
callback function shows how the callback interacts with the LCD:

def make_bw_callback(test,lcd):
 '''Returns a callback function for the bandwidth event'''
 def print_bw(event):
 '''Obtains the bandwidth used from the last second from the
 bridge, normalizes it to the total bandwidth, and draw
 that information to the display'''
 up = int(test.get_up_ratio(event.written))
 down = int(test.get_down_ratio(event.read))
 lcd.display_graph(up, down)

 return print_bw

For those who want to dive deeper into the Stem library and the Tor
control protocol, the Stem library has thorough online documentation
and examples (https://stem.torproject.org/tutorials.
html). The control protocol, for those who want an even more in-depth
look, is located at https://gitweb.torproject.org/torspec.
git?a=blob_plain;hb=HEAD;f=control-spec.txt.

The Configuration Changed event is the callback to inform the process that the
bridge's configuration was changed. This occurs when the bandwidth knob is
adjusted, which causes the update_rate method to be called, that sends a command
to the bridge to update the configuration. The end result is that by adjusting the
knob, you directly affect the bandwidth limits on your bridge. When the callback
occurs, it will display the new bandwidth rates on the LCD so that you know that
your limit has changed. This callback is shown as follows:

def make_conf_callback(lcd):
 '''Returns a callback function for the configuration changed
 event'''
 def conf_changed(event):
 '''Reads the new bandwidth rates from the bridge and draws

https://stem.torproject.org/tutorials.html
https://stem.torproject.org/tutorials.html
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=control-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=control-spec.txt

Chapter 2

[47]

 that information to the display'''
 rate = str(int(event.config['RelayBandwidthRate']) / 1024)
 burst = str(int(event.config['RelayBandwidthBurst']) / 1024)
 lcd.display_rates(rate, burst)

 return conf_changed

The main section of the Python script performs the class instantiation and also
displays a one-time splash screen to the LCD. It will show the total bytes transmitted
by the bridge, the number of established circuits, and the last 24 bytes of the bridge's
fingerprint. The bridge controller will run forever, while the bandwidth knob is at a
nonzero value. When you dial the knob to zero, the program will exit and the LCD
will be filled with blocks.

Finally, to run the bridge controller, execute the following command, with the first
parameter being the location of the speed test results:

sudo python beaglebridge.py ~/speedtest.txt &

To avoid running as root, you'll have to manipulate user groups and permissions.
The Tor process runs as the debian-tor user, and the Adafruit library, which
enables device tree overlays on your behalf, needs to run at a user level that has the
permission to enable these features. You can create a custom group and a user that is
in the debian-tor group and then give that group permission to modify the device
tree files to not run as root.

Connecting to your obfuscated bridge
With BeagleBridge, you have your own entry point in the Tor network. You can
download and install the Tor browser and configure it to use your bridge. This is
useful anytime you find yourself on a restricted or hostile network and want to
access the Internet more anonymously. However, if you use your BeagleBridge,
passive attackers could learn the IP address to which you are connecting, which
happens to be your home network. The traffic is obfuscated, but it may look
suspicious over time. It might be better to use a random bridge address obtained
via Tor. Even if you don't directly connect to your own bridge, your bridge is
helping to contribute resources to the Tor network, which helps everybody access a
censor-free Internet. To connect to your bridge, launch the Tor browser and click on
Open Settings as it starts up. Then, answer with a Yes to questions about whether
your connection is censored. Select Enter Custom Bridges and enter your bridge as
follows, but replace the x's with your IP address and the port number of your bridge:

bridge obfs3 XXX.XXX.XXX.XXX:59519

Circumventing Censorship with a Tor Bridge

[48]

Continuing with Tor-related projects
This project is just the first step in learning Tor. If you want to route more traffic
with BBB, you can switch from a bridge to a public relay. Relays receive more traffic
but are also more public. Your IP address will be listed as a public bridge, and some
websites will refuse to serve you content even if you are running a nonexit relay.

You can also run a Tor hidden service on the BeagleBone. Using Tor with a client
helps to anonymize your IP address to a server, but a Tor hidden service hides the
server's IP address from a client. It would be an interesting project for a BeagleBone
if you had a service that you want accessible only through Tor.

Hardware-wise, consider placing the BeagleBone and front panel in a dedicated
enclosure. See whether there is a local hackerspace around you, and they may be able
to help you make a nice laser-cut enclosure! If you don't have a laser cutter, you can
use a SparkFun Electronics box like the one in the following screenshot:

The onion logo is a registered trademark of the Tor Project, used
with permission. The BeagleBridge project described in this
chapter is not affiliated to the Tor Project.

Chapter 2

[49]

Summary
In this chapter, you learned about Tor and how to circumvent Internet censorship
by running a Tor bridge on BBB. We've also shown how to add some basic hardware
controls to BBB in order to create a front panel interface. Lastly, through some
Python code, we were able to tie the hardware controls and the Tor bridge together.

In the next chapter, we'll take a closer look at specialized cryptographic hardware
available for BBB and show you how to use each of these devices.

Adding Hardware Security
with the CryptoCape

This chapter continues our custom security hardware journey by using a BeagleBone
Black (BBB) cape. In BeagleBone parlance, a cape is a daughterboard that attaches
to the BBB. We'll briefly introduce hardware cryptographic devices and then explore
the CryptoCape, which is a BBB cape containing numerous security features. We'll
describe the process of creating your own cape using the CryptoCape as an example.
This chapter introduces the crypto chips on the cape and shows you how to implement
a biometric authentication device using the CryptoCape and a fingerprint scanner.

This chapter will discuss the following topics:

•	 The pros and cons of hardware-based cryptography
•	 An overview of the CryptoCape
•	 How cape EEPROMs enable automatic hardware configuration on the BBB
•	 How to use the CryptoCape's real-time clock
•	 How to program an ATmega328p from BBB
•	 How to implement a biometric authentication system

Exploring the differences between
hardware and software cryptography
In the following sections, we'll discuss the advantages and disadvantages of using
hardware-based cryptography. The remaining projects in the book will use embedded
hardware cryptographic devices, so it's important to know their capabilities and their
limitations. Refer to Chapter 1, Creating Your BeagleBone Black Development Environment,
for additional resources on cryptography and terms used in this section.

Adding Hardware Security with the CryptoCape

[52]

Understanding the advantages of hardware-
based cryptography
For the advantages of hardware cryptography, we'll focus on the embedded
environment since that is the target use case of BBB. While chip manufacturers may
provide a laundry list of advantages, there are two main categories: cryptographic
acceleration and key isolation features.

Offloading computation to a separate processor
One advantage of using a dedicated cryptographic co-processor is to offload
computation to reduce CPU usage. A typical example is using hardware to perform
the Advanced Encryption Standard (AES) encryption and decryption operations in
a Transport Layer Security (TLS) session.

TLS is most commonly used in conjunction with the Hypertext Transfer Protocol
Secure (HTTPS) protocol. You use HTTPS every time you buy something online to
protect your credit card information. Depending on your browser, you may notice
a lock icon or a green bar to indicate when a web page is served over HTTPS. In a
TLS session, the client, your browser, and the server will negotiate to use the same
symmetric key. While there are several symmetric ciphers that can be negotiated,
AES is one of the preferred choices.

While some sites automatically redirect you to the HTTPS version of
the site, often you must manually specify this. Remembering to type
https:// is often annoying but fortunately there is a cross-browser
plugin that will automatically redirect you to the HTTPS site, if there is
one. The plugin is called HTTPS Everywhere and it is maintained by the
Electronic Frontier Foundation. Information and links to download the free
software are located at https://www.eff.org/https-everywhere.

In the crypto accelerator role, a cryptographic co-processor would perform the
encryption and decryption of each TLS record. This offloads the main CPU to
handle the processing of the network traffic and perform the intended application.
The BBB actually has such a cryptographic co-processor. Texas Instruments (TI)
crypto performance page for the AM335x, the processor on the BBB, shows the
results of their benchmark tests with OpenSSL. Using AES with a 256 bit key size
and operating on blocks of 8192 bytes, the measured throughput of data was 8129.19
kB/sec without using crypto acceleration. This test resulted in a CPU usage of 69
percent. However, using the crypto co-processor on the AM335x, they measured a
throughput of 24376.66 kB/sec with a CPU usage of 41 percent. That's almost a 200
percent gain in throughput performance and a 40 percent drop in CPU usage!

https://www.eff.org/https-everywhere

Chapter 3

[53]

More information on the crypto accelerators on the AM335x can be
found on TI Crypto Performance page at http://processors.
wiki.ti.com/index.php/AM335x_Crypto_Performance.

If your embedded application's purpose is to perform a computationally intense
calculation, using a cryptographic co-processor designed to offload the crypto
processing can save your CPU cycles for your main program.

Protecting keys through physical isolation
A major advantage of using hardware cryptography devices is that keys can be
generated internal to the device and are designed to be difficult to remove. In the
web server world, these devices are called Hardware Security Modules (HSMs).
In April 2014, a major vulnerability was announced that affected the OpenSSL
software, colloquially called heartbleed. The vulnerability was not a cryptographic
one per se, but rather the result of a programming error called a buffer overrun. This
vulnerability is unfortunately common in the C programming language, in which
OpenSSL is written, because of the lack of automatic array bounds checking. It was
possible for a client to exploit this error and view internal memory of the server,
potentially discovering sensitive information. The code to fix this problem was
shorter than this paragraph.

The following xkcd comic provides a succinct and amusing explanation
of the heartbleed bug:
https://xkcd.com/1354/

The scale and severity of this vulnerability cannot be overstated. The most damaging
attack is if the server's private key was leaked. Knowing the private key, an attacker
can impersonate the server, and clients could willingly disclose private information
to the impostor. However, on a server with a HSM, the heartbleed vulnerability was
more limited. Sensitive information, such as session cookies, would still have leaked
via the software exploit. Yet the server's private key, which remains in the HSM,
would not have leaked.

Since the hardware cryptographic co-processor runs as a physically separate machine,
it is very difficult for software exploits running on the main processor to disclose
secrets in the hardware module. In the embedded world, there are several chips
that perform this key isolation feature.

http://processors.wiki.ti.com/index.php/AM335x_Crypto_Performance
http://processors.wiki.ti.com/index.php/AM335x_Crypto_Performance
https://xkcd.com/1354/

Adding Hardware Security with the CryptoCape

[54]

Understanding the disadvantages of hardware
crypto devices
Adding hardware cryptographic devices doesn't automatically make your project
secure. In the following sections, we'll discuss some of the downsides to using
cryptographic hardware and some of the concerns you would need to resolve
when using them in your project.

Lacking cryptographic flexibility
A hardware cryptographic device is generally not configurable. This is usually
by design but the implication is that it is difficult, if not impossible, to alter the
cryptographic behavior of the device. If you select a chip that performs encryption
with a limited key size, you will not be able to upgrade the device with a stronger
key size later. It is generally easier to update software-based encryption systems.

Exposing hardware-specific attack vectors
While an isolated crypto processor may reduce attacks or exploits from the software,
it often allows more sophisticated hardware-based attacks. There are three categories
of hardware-based attacks: noninvasive, invasive, and semi-invasive (Skoroboga,
2011). Noninvasive attacks treat the chip as a black box and attempt to manipulate
the surrounding environment to perform an exploit. Successful non-invasive attacks
include performing a Differential Power Analysis (DPA) to monitor the chip as
it performs an encryption algorithm. By measuring the power usage during the
encryption operation, it is possible to see the key through distinct power signatures.
An invasive attack usually involves physically destroying the chip in some manner
to gain access to its internals. Semi-invasive attacks may involve some sort of laser
imaging to observe or interfere with the chip.

To perform a glitch attack, an attack attempts to manipulate the
executing instruction by injecting a fault (Bar-El, 2004). Colin
O'Flynn, a security researcher, has a concise and clear example of
how a glitch attack can cause a password-checking microprocessor
to fail: https://www.youtube.com/watch?v=Ruphw9-
8JWE&list=UUqc9MJwX_R1pQC6A353JmJg.

https://www.youtube.com/watch?v=Ruphw9-8JWE&list=UUqc9MJwX_R1pQC6A353JmJg
https://www.youtube.com/watch?v=Ruphw9-8JWE&list=UUqc9MJwX_R1pQC6A353JmJg

Chapter 3

[55]

Obfuscating implementation details
A final consideration is that while chip vendors may publish the interface to their
device, the internals are often proprietary. This is similar to a software vendor who
publishes the software programming interface, but provides only the compiled
binary and not the source code. In this case, the chip is treated as a black box, and
without a mechanism to verify the device, you have to trust that it is operating
correctly. As cryptographic libraries are ported to unique microcontrollers by the
open source community, this situation will hopefully improve.

Summarizing the hardware versus software
debate
So, which is the better route? As with most complex technologies the correct answer
is: it depends. For a truly embedded system, one that can't spare even a few extra
bytes, a hardware security chip may be your only option if you can't upgrade your
microprocessor. Also, if there is a high threat of leaking your key due to a software
vulnerability, then the separate crypto co-processor might help you. However, if an
attacker can gain physical access to your device, then they might be able to extract
the key with hardware-based attacks. Lastly, if transparency is paramount for you
to verify the lack or existence of backdoors, then only fully open source software
and hardware devices will satisfy you.

Touring the CryptoCape
The CryptoCape is BeagleBone's first dedicated security daughterboard. As the
BBB already has cryptographic accelerations, the chips on the CryptoCape provide
the key isolation features discussed in the previous section. In the BeagleBone
community, daughterboards are called capes which are analogous to Arduino shields.
The CryptoCape contains several crypto ICs that you may use in your projects.
The design is open source hardware, so you may also visit the SparkFun website to
retrieve the design files. The CryptoCape contains the following major components:

Component Manufacturer Features
AT97SC3205T Atmel TPM—RSA 2048 encryption

and SHA1 hashing
ATAES132 Atmel Encrypted EEPROM with

AES-128-CCM

ATSHA204 Atmel SHA-2 hashing (SHA-256,
HMAC-256)

ATECC108 Atmel ECDSA with NIST curves

Adding Hardware Security with the CryptoCape

[56]

Component Manufacturer Features
ATmega328p Atmel Microcontroller
DS3231M Maxim integrated Real-time clock with battery
CAT24C256 ON semiconductor EEPROM

If you imagine the BBB's Ethernet connector as a neck, then it appears that the cutouts
of the attached daughterboard seem to wrap around it as if it were wearing a cape,
hence the name. Also, Boris, the beagle mascot of BeagleBoard.org, looks more
adorable in a cape.

Each of these chips and the associated circuits are clearly labeled on the
CryptoCape board:

In the following sections, we'll briefly introduce each component and provide some
example project ideas.

BeagleBoard.org

Chapter 3

[57]

Discovering the I2C protocol
Every chip on the CryptoCape uses the Inter-Integrated Circuit (I2C) Bus. I2C was
developed by Phillips Semiconductor over 20 years ago, but it is still very prevalent
in electronics design today. I2C requires two signal lines, one for a Serial Clock
(SCL) and the other for Serial Data (SDA). Devices attached to the bus are either
classified as master or slave. Each slave device has an address and there can be
more than one master. The I2C protocol supports collision detection and is a true
multimaster protocol.

The SDA and SCL lines are pulled up to the system voltage, VCC, typically with
resistors connected from VCC to SDA and VCC to SCL. The processor on the BBB,
the AM335x, contains internal pull-up resistors for the bus. Data is encoded to the
bus by manipulating the logic levels of the SDA and SCL lines. For example, to start
sending data, the master pulls SDA low while holding SCL at a logic high. The stop
condition is sent with a low to high transition of SDA while holding SCL high.

Revision 6 of the I2C bus specification can be found on NXP
semiconductors (previously Phillips) website at http://www.nxp.
com/documents/user_manual/UM10204.pdf.

The following screenshot shows a normal I2C operation as captured by a logic
analyzer. A logic analyzer is an instrument that can sample electrical connections
and often decode the signals to produce a human readable format.

http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf

Adding Hardware Security with the CryptoCape

[58]

Understanding the benefit of cape
EEPROMs
At a glance, the CAT24C256 Electrically Erasable Programmable Read Only Memory
(EEPROM) doesn't appear to add much value to the board. After all, the BeagleBone
has a 2GB eMMC on the early revisions and a 4GB eMMC on revision C. An extra
256 kB of memory is hardly food scraps for the beagle. However, it serves a greater
purpose; it's what enables automatic cape detection by the BBB.

The BBB has two 46 pin female expansion ports offering much more I/O capabilities
than any other hobbyist board on the market. Certain pins can actually support eight
different modes, mode 0 through mode 7. The mapping of pin features to a mode is
known as pin muxing, short for pin multiplexing. To use a pin in a certain mode, the
software must enable and configure this pin through the kernel's interface. This can be
manually performed or scripted, but the easiest method is to use a BeagleBone cape.

During the kernel startup, the software will probe the I2C bus looking for cape
EEPROMs. There are four valid addresses for Cape EEPROMs, 0x54 through 0x57.
Therefore, the BBB supports up to four attached capes. The BBB will read the cape
EEPROM, which must be programmed using the format in the BBB System Reference
Manual (SRM). The BBB, using a software package called the capemgr, short for Cape
Manager, will read the board name and revision from the Cape EEPROM. It will then
try to match the name and revision to a compiled device tree fragment on your BBB. If
there is a match, it will load that fragment.

The latest production files for the BBB including the schematics and
the SRM are located on the BBB wiki at http://elinux.org/
Beagleboard:BeagleBoneBlack.

This automatic configuration provides two benefits. The first is that the pins on the BBB
are automatically configured for a cape. The second is that the device tree can specify
the kernel driver for the hardware on the cape, which means that the drivers for your
hardware can be automatically loaded. The capemgr provides a plug-and-play like
experience for embedded Linux.

http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/Beagleboard:BeagleBoneBlack

Chapter 3

[59]

If you are developing a BeagleBone cape, you should consider the process to have your
cape supported in the BeagleBone images. This is a three-step process. First, you need
to create a cape EEPROM file. This file should be written to your cape at manufacturing
time. Second, you need to create a Device Tree Source (DTS) file, following the cape
naming convention previously discussed, and submit a pull request on GitHub to
BeagleBoard.org. Lastly, you need to create an eLinux wiki site discussing your cape.
In the next sections, we'll briefly describe the software and hardware required to build
a BeagleBone cape using the CryptoCape as an example.

Creating a cape EEPROM
If you have any semi-complicated hardware for the BeagleBone, you will benefit
by adding a cape-compatible EEPROM. The essential reference to populating the
EEPROM is the BeagleBone SRM's section on Cape Board Support. This section
contains the EEPROM format. To jumpstart your EEPROM file creation, you can
use a tool called the EEPROM cape generator available at: https://github.com/
picoflamingo/BBCape_EEPROM. This tool with its simple command-line interface
will provide the skeleton for your cape EEPROM. Currently, it does not completely
implement the cape specification, so you must use a binary editor to set the remaining
values of the EEPROM. The process to create the EEPROM binary involves reading
through the SRM and writing the appropriate values, at the correct offsets, in a
binary file.

You can view the CryptoCape's EEPROM by executing the following command as root:

cat /sys/bus/i2c/devices/1-0057/eeprom | hexdump -C

By default, the CryptoCape EEPROM is located at address 0x57 on the I2C bus. If
you have multiple capes, you can change the address of the CryptoCape EEPROM
by placing a solder jumper or solder blob on the A0 or A1 address pads next to the
EEPROM. The results of reading the EEPROM with the previous command will
produce the following:

00000000 aa 55 33 ee 41 31 42 42 2d 42 4f 4e 45 2d 43 52

 |.U3.A1BB-BONE-CR|

00000010 59 50 54 4f 00 00 00 00 00 00 00 00 00 00 00 00

 |YPTO............|

00000020 00 00 00 00 00 00 30 30 41 30 53 70 61 72 6b 46

 |......00A0SparkF|

00000030 75 6e 00 00 00 00 00 00 00 00 42 42 2d 42 4f 4e

 |un........BB-BON|

00000040 45 2d 43 52 59 50 54 4f 00 00 00 11 32 30 31 34

https://github.com/picoflamingo/BBCape_EEPROM
https://github.com/picoflamingo/BBCape_EEPROM

Adding Hardware Security with the CryptoCape

[60]

 |E-CRYPTO....2014|

00000050 30 30 30 30 30 30 30 30 00 00 00 00 00 00 00 00

 |00000000........|

00000060 00 00 00 00 00 00 00 00 00 00 e0 73 e0 73 00 00

 |...........s.s..|

00000070 00 00 00 00 00 00 00 00 00 00 00 00 a0 26 c0 06

 |.............&..|

00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 |................|

00000090 00 00 a0 2f 00 00 00 00 00 00 c0 17 00 00 00 00

 |.../............|

000000a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 |................|

*

000000e0 00 00 00 00 00 00 00 00 00 00 00 00 01 f4 00 00

 |................|

000000f0 00 00 00 00 47 50 47 20 46 69 6e 67 65 72 70 72

 |....GPG Fingerpr|

00000100 69 6e 74 3a 20 30 78 42 35 39 31 39 42 31 41 43

 |int: 0xB5919B1AC|

00000110 37 31 33 35 39 30 35 46 34 36 36 39 43 38 34 37

 |7135905F4669C847|

00000120 42 46 41 35 30 33 31 42 44 32 45 44 45 41 36 0a

 |BFA5031BD2EDEA6.|

00000130 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 |................|

*

00008000

If you walk through the SRM EEPROM data format, you should be able to match
the fields with those in the CryptoCape EEPROM. The two most important fields
are the Board Name, which starts at offset 6 and is 32 bytes in length and the
Version, which starts at byte 38 and is 4 bytes in length. From the previous example,
the board name is BB-BONE-CRYPTO and the version is 00A0. These two components
are needed to name the DTS file in the next section. Starting at offset 244, the
manufacturer can place any nonvolatile information. The CryptoCape contains the
GNU Privacy Guard (GPG) fingerprint of the author's GPG public key, which is
used to sign software packages and e-mail. In your cape, you could populate this
with initial values for software or something similar.

Chapter 3

[61]

Creating the cape DTS file
Besides the EEPROM, you will also need to create a DTS file. This file defines attributes
of your hardware to the Linux kernel. The DTS file for the CryptoCape Revision 00A0
is located on GitHub at: https://github.com/beagleboard/linux/blob/3.8/
firmware/capes/BB-BONE-CRYPTO-00A0.dts. When creating a new DTS for your
hardware, it's best to review the existing BeagleBone DTS files. With the growing
number of capes, there is a good chance that there exists an approved DTS file with
the hardware configuration you seek.

The BBB device tree overlay system is one of the areas undergoing active development,
and important technical nuances change rapidly. If you need to build your own
DTS file, it's best to check in with the BeagleBoard.org mailing list available at
https://groups.google.com/forum/#!forum/beagleboard.

A detailed introduction to the device tree system in the Linux
kernel was presented by Thomas Petazzoni at the Embedded
Linux Conference Europe in November 2013. The presentation is
available on YouTube at https://www.youtube.com/watch?v=m_
NyYEBxfn8.

Let's briefly look at a portion of the CryptoCape's DTS file. The capemgr will load
the compiled version of this file to configure the hardware. The drivers for some of
the chips on the CryptoCape are also loaded automatically since they are specified
in the DTS file, as shown in the following code:

fragment@2 {
 target = <&i2c2>;

 __overlay__ {
 #address-cells = <1>;
 #size-cells = <0>;

 /* Real Time Clock */
 ds1307@68 {
 compatible = "ds1307";
 reg = <0x68>;
 };

 /* TPM */
 tpm_i2c_atmel@29 {
 compatible = "tpm_i2c_atmel";
 reg = <0x29>;
 };
 };
};

https://github.com/beagleboard/linux/blob/3.8/firmware/capes/BB-BONE-CRYPTO-00A0.dts
https://github.com/beagleboard/linux/blob/3.8/firmware/capes/BB-BONE-CRYPTO-00A0.dts
https://groups.google.com/forum/#!forum/beagleboard
https://www.youtube.com/watch?v=m_NyYEBxfn8
https://www.youtube.com/watch?v=m_NyYEBxfn8

Adding Hardware Security with the CryptoCape

[62]

The previous code snippet loads two kernel drivers for two devices on the I2C bus.
The first is the RTC at address 0x68. The DS3231M is compatible with the ds1307
driver. The second is the TPM driver, tpm_i2c_atmel, which is located at address
0x29. The EEPROM driver is automatically loaded and the other chips currently
do not have a native Linux kernel driver.

If you have your DTS file completed and want it included in the official BBB image,
you can submit a pull request to the previously mentioned repository that contains
the CryptoCape DTS file. Since this repository contains the existing DTS files for the
BeagleBone firmware, it is well worth studying if you are building your own cape.

Creating an eLinux wiki site
The last step is to create a Wiki site on eLinux.org and e-mail support@circuitco.
com to let them know to link it to the main BeagleBone Capes page. The page is the
main site for all BeagleBone capes and it is where the community expects to find cape
information. The CryptoCape page, with links to all the supporting software and
datasheet is located at http://elinux.org/Cryptotronix:CryptoCape.

The EEPROM is the defining cape component. Even if you don't manufacture a cape,
you can still benefit from adding the EEPROM and creating the DTS files for your own
design to take advantage of the BeagleBone's automatic hardware configuration.

Keeping time with a real-time clock
Having all clocks synchronized throughout a system is often an assumption that
doesn't hold for embedded devices. Specialized devices may not need to know the
time to perform their function. However, in security protocols, accurate time keeping
is often important. For example, in TLS, the X.509 certificates that are used to prove
the identity of web servers contain a validity range. There is a not before and not after
time that specifies when that certificate is valid. Without an accurate time keeping
system, a device can't enforce this date range allowing it to possibly accept expired
or not yet valid certificates.

If you use your BBB in an offline environment, but still need accurate time, then you
can insert a coin cell battery into the battery compartment of the CryptoCape. When
the BBB is disconnected from power, the RTC will receive enough power from the
battery to maintain accurate time.

The BBB already contains an RTC; however, it lacks a dedicated battery. It is possible
to power the entire BBB from a battery using the battery access pads located near the
DC barrel plug adapter; however, a greater capacity battery would be needed since
the entire board is powered from these pads.

eLinux.org
http://elinux.org/Cryptotronix:CryptoCape

Chapter 3

[63]

The RTC driver is loaded automatically, which you can verify by running:

dmesg | grep rtc

This should result in the following:

[0.729101] omap_rtc 44e3e000.rtc: rtc core: registered 44e3e000.rtc
as rtc0

[0.748605] rtc-ds1307 1-0068: rtc core: registered ds1307 as rtc1

[0.748627] rtc-ds1307 1-0068: 56 bytes nvram

[0.977426] [drm] Cannot find any crtc or sizes - going 1024x768

[1.048851] omap_rtc 44e3e000.rtc: setting system clock to 2000-01-01
00:00:01 UTC (946684801)

The previous example shows the BBB's RTC, omap_rtc, registered as rtc0 and the
not-so-accurate-time of 2000-01-01 being set. The CryptoCape's RTC is rtc1 and the
time value is not manipulated.

You will have to set the RTC time initially after installing the CryptoCape. First,
you'll need an accurate system time. Refer to the project from Chapter 2, Circumventing
Censorship with a Tor Bridge, on how this is done. Set the RTC from the system time
with the following command:

hwclock -w -f /dev/rtc1

Cross-check the time to ensure it was set properly:

hwclock -r -f /dev/rtc1

This should produce something like the following:

Tue 13 May 2014 07:29:27 PM UTC -0.198319 seconds

If you use the coin cell battery from SparkFun Electronics, it has a stated capacity of
47mAh. The DS3231m draws 2 micro Amps when on the battery. Ideally, this would
result in 23,500 hours of run time on the battery or about 2.7 years. In actuality, you
see much less run time from your battery, but even if the battery dies in half of the
ideal time, you should still see plenty of battery life from your RTC.

Adding Hardware Security with the CryptoCape

[64]

Trusting computing devices with a
Trusted Platform Module
The Trusted Platform Module (TPM) performs the RSA algorithm on the chip.
However, it is much more capable than just an encryption chip. The TPM
specification is developed and maintained by the Trusted Computing Group
(TCG), an international industry standards body.

TPMs are included on several major vendor laptops including Dell, HP, and even
Google Chromebooks. On laptops, TPMs are normally found in the Low Pin Count
(LPC) package and are enabled via the BIOS. Embedded devices typically don't
support the LPC bus; the TPM on the CryptoCape communicates over the I2C bus.

The software interface to the TPM is via the Trusted Computing Group Software
Stack (TSS). In Linux, the TSS is provided by the TrouSerS package. In the
next chapter, we'll be using the TPM and also take a closer look at the TPM
on the CryptoCape.

Providing hardware authentication with
ATSHA204 and ATECC108
Both ATSHA204 and ATECC108 are authentication devices. Authentication is the
process of guaranteeing the identity of communicating parties and ensuring data
integrity. Each chip uses a different approach to authentication. The ATECC108
device uses elliptical curve cryptography to provide the Elliptical Curve Digital
Signature Algorithm (ECDSA). The ATSHA024 device uses a hash algorithm,
SHA-256, to provide Hash Based Message Authentication Codes (HMAC).

These two devices are not used in this book, but you can download the
software from https://github.com/cryptotronix/hashlet
and https://github.com/cryptotronix/eclet and see the
example usage for ATSHA204 and ATECC108 respectively.

https://github.com/cryptotronix/hashlet
https://github.com/cryptotronix/eclet

Chapter 3

[65]

Encrypting EEPROM data with the
ATAES132
The ATAES132 is a 32kb EEPROM that can be encrypted with AES using a 128-bit key
using the Counter with CBC-MAC (CCM) mode. CCM provides an authenticated
encryption mode. With an encrypted EEPROM, you can store small amounts of
data-at-rest more securely. The ATAES132 also has the ability to encrypt and decrypt
small packets of up to 32 bytes and return the result over the bus. The AES key
remains in the device at all times.

At the time of writing this, there isn't a Linux driver for the ATAES132 device, but
Atmel provides full documentation and an AVR-based library on their website at
http://www.atmel.com/devices/ataes132.aspx.

Combining the BBB with an ATmega328p
Lastly, the CryptoCape contains an independent microcontroller. This microcontroller
is the ATmega328p, which is the same microcontroller on the Arduino UNO.
However, because the supply voltage is 3.3V and not 5V like the Arduino UNO, the
processor runs at a clock speed of 8MHz versus 16Mhz. In this sense, it is more like the
3.3V Arduino Pro Mini. Shipped from SparkFun, the CryptoCape contains the 3.3V
Arduino Pro Mini bootloader. Like any other Arduino-based board, you can reflash
the bootloader by attaching an In-System Programming (ISP) programmer to the ISP
headers next to the ATmega328p. SparkFun's pocket programmer is an inexpensive
tool to perform this task. Just be sure to set the switch to no power target since the
CryptoCape is powered from the BBB.

While you can use an ISP programmer, you can also use the BBB as a programmer. The
BBB contains both serial UART and SPI; however, only the serial UART, UART 4, is
connected to the onboard ATmega328p. Like the Arduino UNO, if the microprocessor
is reset, it will accept uploaded programs over the serial line.

A simple script that toggles the BBB GPIO connected to ATmega's reset line, which is
GPIO 49 for the CryptoCape, and then uploads the hex file using avrdude will do the
trick. The script is part of a GitHub repository which can be cloned with
the command:

git clone https://github.com/jbdatko/BBB_ATmega328P_flasher.git

In this repository, there is an upload.sh script, the main logic of which contains the
following code snippet:

(echo 0 > /sys/class/gpio/gpio49/value \
 && sleep $tts \

http://www.atmel.com/devices/ataes132.aspx

Adding Hardware Security with the CryptoCape

[66]

 && echo 1 > \
 /sys/class/gpio/gpio49/value) &

avrdude -c arduino -p m328p -b 57600 -v \
 -P /dev/ttyO4 -U flash:w:$1

The first part toggles the ATmega reset line low and sleeps for $tts, which is
currently defined to be .9 seconds. Then the script sets the reset line back to high
to let the ATmega run. The next line is the avrdude command to upload your hex
file. You'll need to install avrdude with the following command:

sudo apt-get install avrdude

Then, to run the script, perform the following:

sudo ./upload Blink.cpp.hex

Prior to flashing an Arduino sketch, you must have a sketch to flash. Depending on
your development preference, there are several options. You can build your AVR
program on the BBB with a makefile and gcc-avr. Or you can build your program
with Atmel's free AVR Studio or the Arduino IDE. Whichever way you choose,
you need to find the compiled hex file and download it to the BBB using sftp or
a similar tool.

Before you upload sketches to the CryptoCape's ATmega, you'll need to perform
one very important step: you need to attach jumpers to the two Program Jumper
pins. Without the jumpers, the ATmega is not electrically connected to the BBB
serial lines. This is a security feature. Using the Arduino bootloader, it is possible
to upload hex files using serial UART. Thus, with the jumpers installed, the sketch
on the CryptoCape's ATmega can always be modified. Now imagine if the BBB was
inflicted with malware, but had the jumpers removed. This malware can't change the
software on the ATmega. It can still do lots of other nasty things including resetting
the ATmega, but it can't upload new firmware unless the jumpers are attached.

Building a two-factor biometric system
With an independent processor on the CryptoCape, we can create some interesting
applications. Since the ATmega cannot be flashed from the BeagleBone unless the
physical jumpers are attached to the board, we can consider this to be a trusted
processor. In this project, we'll implement a biometric authentication system with
a fingerprint sensor and the CryptoCape. We'll use the ATmega to prevent access
to the security ICs on the CryptoCape until you have authenticated yourself to the
ATmega with your fingerprint.

Chapter 3

[67]

A notable example of fingerprint biometrics in consumer devices is Apple's Touch
ID technology on the iPhone 5s. The sensor used on the iPhone is much more
sophisticated and expensive than the sensor we will use in this project. But by
performing this project, you should appreciate the capabilities and challenges of
using biometric technologies. On the Touch ID support page, Apple motivates
the use of the technology with the argument that unlocking the phone with your
fingerprint is more secure than having no passcode and easier than entering a code
each time. In a later section, we'll discuss the weakness of biometric systems.

The major components needed for this project are listed in the following table. The
SparkFun parts are listed as they were the ones used, but feel free to substitute
equivalent components. The CryptoCape, which is only manufactured by SparkFun
Electronics, is open source hardware and the board design files are licensed under
a Creative Commons license, so you could also make your own CryptoCape if you
wish. You will also need a basic soldering station and appropriate accessories.

Component SparkFun SKU
Fingerprint sensor SEN-11792
CryptoCape DEV-12773
JST jumper wire assembly PRT-10359
Female jumper wires PRT-11710
Male breakaway headers PRT-00116
2-pin jumpers PRT-09044

The following components are optional, but are nice to have:

Component SparkFun SKU
Heat shrink kit PRT-09353
Third hand TOL-09317
Heaterizer XL-3000 TOL-10326

The fingerprint sensor overview
The Fingerprint sensor is the GT-511C3 device from ADH Technology. This device
contains an optical sensor for reading the fingerprints but also an ARM Cortex M3
processor for computing the image recognition. The interface to this device is via
serial UART, using 3.3V level logic, and at a baud rate of 9600 bps. There are four
wires to connect from the JST connector: transmit, receive, GND, and power.

Adding Hardware Security with the CryptoCape

[68]

The datasheet states that the false acceptance rate is less than .001 percent and the
false rejection rate is less than .1 percent. In short, this is a very capable fingerprint
sensor. The fingerprint data is analyzed and stored on this device. We will use an
existing library to communicate with this hardware.

Appreciating the limitations of fingerprint
biometrics
Realize that this fingerprint sensor authentication mechanism is only as strong as
your fingerprint. A common critic against using fingerprint sensors centers around
the fact that it is difficult for you to change your fingerprint. Once your fingerprint is
copied you can't revoke or change it as you can with a password. Using a fingerprint
as a two-factor mechanism slightly reduces the risk of an authentication breach since
a pin or password is still required. You can also mitigate the risk of a fake fingerprint
attack on your sensor by stationing an armed guard to watch the sensor as Bruce
Schneier, a security technologist, stated in a September 2013 opinion article in
WIRED magazine. Such luxuries are often limited to deep-pocketed governments.

Mythbusters, a popular science and engineering program on the Discovery
Channel, busted the myth that fingerprints could not be copied and
showed how to defeat fingerprint sensors: https://www.youtube.
com/watch?v=3Hji3kp_i9k. Also, days after the Apple iPhone 5s
was released, the biometrics hacking team of the Chaos Computer Club
(CCC) showed how to bypass the fingerprint sensor: http://www.ccc.
de/en/updates/2013/ccc-breaks-apple-touchid.

Perhaps the greatest danger of biometric systems is the potential for a grave
privacy breach. A database of fingerprints should be well protected since once the
fingerprints are exposed they are no longer useful for any other biometric system,
ever. In August 2014, Hold Security, an information security forensics company,
reported to the New York Times that over 1.2 billion usernames and passwords were
acquired by a Russian crime organization. While incredibly damaging, this breach
would be irrecoverable if fingerprint biometrics were used. Hopefully, companies
aren't storing fingerprints directly but representations of the fingerprint similar to
a hash digest. However, if implemented poorly, the results can be as disastrous as
storing the raw fingerprint.

With these warnings in mind, we will continue with using a fingerprint sensor for
this project. You'll gain insight on how a fingerprint sensor works and how to it fits
into an authentication system. When you are finished with this project, however,
you should probably delete your fingerprint from the sensor's database.

https://www.youtube.com/watch?v=3Hji3kp_i9k
https://www.youtube.com/watch?v=3Hji3kp_i9k
http://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid
http://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid

Chapter 3

[69]

Preparing the CryptoCape
In order to make the CryptoCape more hackable, we need to populate the pads attached
to the I/O signals with male headers. This will allow us to connect various external
components. While you could directly solder to the pads, it's best if you solder a male
0.1" pin, which will allow you to easily connect a female terminated wire for your
project, which can then be reused.

A fully populated CryptoCape will look like the following image. A strip of breakaway
headers of 31 pins or more will be enough to populate each pad. Technically, you
don't need to populate the EEPROM write protect pads unless you want to write to the
EEPROM. However, if you overwrite the EEPROM cape information, the BBB might
not load the correct drivers.

Adding Hardware Security with the CryptoCape

[70]

Preparing the connections
Before attaching any connections, we physically need a method to attach the ends of
the JST cable to the CryptoCape. The CryptoCape has 0.1" pads, which will fit 0.1"
male headers and female-to-female jumper wires fit nicely to that connection. One
end of the JST connector is simply four bare wires. If you solder each of these wires
to a 4x1 0.1" male header, you can make a simple connector. Using a third hand, you
can solder the JST wires to the headers and for a finishing touch, add heat-shrink
around the wire and the male pin. Just remember to put your heat shrink on before
you solder! The completed connector should look something like this:

Connecting the Scanner to the CryptoCape
We'll attach the fingerprint scanner to the CryptoCape. The Arduino compatible
library for this sensor was developed by Josh Hawley. This library is configured
to use digital pin 4 for the receive pin on the ATmega and digital pin 5 as the
transmit pin from the ATmega. These pins are appropriately labeled D4 and D5 on
the CryptoCape, just under the ATmega. The remaining two pins are 3.3V power
and ground which are also on the same row as the D4 and D5 pins. Attach the female
ends of the jumper wires to these pins. If you are using the SparkFun JST connector,
the pins from the fingerprint scanner are in the following order, starting with the
black wire: D4, D5, GND, Power.

Chapter 3

[71]

Preparing the fingerprint sensor
The fingerprint sensor must be trained to recognize your fingerprint through a
process called enrollment. There are several methods to enroll your fingerprint.
The SparkFun website has instructions on how to use the ADH-Tech provided
Windows-based software to program the sensor. However, you'll need an extra
component, that is, the FTDI Basic Breakout board to convert USB from your
computer to serial for the scanner. You could also use an Arduino directly, but
you must also use logic level converters if you are using a 5V Arduino. Since the
CryptoCape has an Arduino compatible processor, we will show you how to do
this with your BBB and CryptoCape. The repository that contains the ATmega
firmware can be cloned on your BBB with the following command:

git clone https://github.com/jbdatko/Fingerprint_Scanner-TTL.git

In this repository, the FPS_Enroll.ino file will enroll, or add, a fingerprint to the
sensor's database. As previously mentioned, you'll need to compile this file out of
band. Alternatively, you can use the pre-compiled version in the repository above.

Upload the enroll script:

sudo ./upload.sh FPS_Enroll.cpp.hex

You should see text scroll by that looks like this:

Reading | ## | 100% 0.00s

avrdude: Device signature = 0x1e950f

avrdude: safemode: lfuse reads as 0

avrdude: safemode: hfuse reads as 0

avrdude: safemode: efuse reads as 0

avrdude: NOTE: FLASH memory has been specified, an erase cycle will be
performed

 To disable this feature, specify the -D option.

avrdude: erasing chip

avrdude: reading input file "FPS_Enroll.cpp.hex"

avrdude: input file FPS_Enroll.cpp.hex auto detected as Intel Hex

avrdude: writing flash (11458 bytes):

Writing | ## | 100% 3.09s

avrdude: 11458 bytes of flash written

avrdude: verifying flash memory against FPS_Enroll.cpp.hex:

avrdude: load data flash data from input file FPS_Enroll.cpp.hex:

Adding Hardware Security with the CryptoCape

[72]

avrdude: input file FPS_Enroll.cpp.hex auto detected as Intel Hex

avrdude: input file FPS_Enroll.cpp.hex contains 11458 bytes

avrdude: reading on-chip flash data:

Reading | ## | 100% 2.21s

avrdude: verifying ...

avrdude: 11458 bytes of flash verified

avrdude: safemode: lfuse reads as 0

avrdude: safemode: hfuse reads as 0

avrdude: safemode: efuse reads as 0

avrdude: safemode: Fuses OK

avrdude done. Thank you.

If there is a problem, first check to see whether the jumpers are attached and then
try again.

This script will output to the serial port at 9600 baud, so we need to change /dev/
ttyO4 to reflect this:

sudo stty -F /dev/ttyO4 9600

Finally, let's display the output of the serial port with:

cat /dev/ttyO4

The script is patiently waiting for you to enroll a finger. Place your finger on
the reader and watch the output of the serial port and follow the instructions.
A successful enrollment looks like this:

Remove finger

Press same finger again

Remove finger

Press same finger yet again

Remove finger

Enrolling Successful

If there is a problem, and the enrollment process can be a bit finicky, you'll need
to reset the ATmega and re-attempt enrollment. In the same repository is a script,
reset.sh, that simply toggles the ATmega reset line. If you have troubles, reset
your ATmega and try again.

Chapter 3

[73]

Uploading the biometric detection sketch
With the sensor now trained to recognize your fingerprint, we'll upload a sketch that
will lock out the CryptoCape until you present your fingerprint. Specifically, it will
prevent access to the chips on the CryptoCape from the BBB. We'll accomplish this
by jamming the SCL line on the I2C bus.

One weakness of I2C is that one misaligned device can disrupt the entire bus.
On the CryptoCape, every IC is connected to the same I2C bus. We'll exploit this
for this project. The ATmega will hold the SCL low until a successful fingerprint is
received. This essentially jams the bus since the master, the BBB, can't generate the
start condition.

The software running on the BBB will hang until the ATmega releases the lock.
Typically, this is a very undesirable effect. For this project, however, it illustrates
how two microprocessors can interact and even interfere with one another. In the
following screenshot, you can see the effect of this jamming of Salee Logic Analyzer
software. Once the SCL is released, the BBB is finally able to send a start condition.

In the FPS_CryptoCape.ino file, this is accomplished by setting digital output 2 as
an output and then pulling the line low. When a fingerprint is recognized, the pin is
configured as an input, which prevents the ATmega from pulling the line either high
or low and allows normal I2C operation.

Adding Hardware Security with the CryptoCape

[74]

Add a jumper wire from D2 on the ATmega breakout pads to the SCL pad near the
TPM on the CryptoCape. This is that one extra wire that will allow the ATmega
to lock out the BBB's access to the I2C bus. Once you add that wire, upload the
FPS_CryptoCape.cpp.hex, which you can either compile yourself or use the
pre-compiled version. The wires on your CryptoCape should look like the
following image:

Upload the sketch as before and then listen to the serial port with the same cat /dev/
ttyO4 command. You will see the ATmega waiting for the sensor's fingerprint. Present
your fingerprint to the sensor and it will then print a verification when complete:

Please press finger

Verified ID:0

You will also notice that the green LED on the CryptoCape will turn off. While the
LED is on, the ATmega is locking out your BBB from accessing the CryptoCape.

Chapter 3

[75]

Security analysis of the biometric system
How secure is our biometric system? While it does prevent software on the BBB from
using the CryptoCape until a valid fingerprint is accepted, the system is easily defeated
by pulling (or cutting) the line from D2 to SCL. Without the electrical connection, the
ATmega can't interfere with the I2C bus. However, depending on your installation,
an attacker may have a difficult time physically accessing the hardware. The process
of assessing vulnerabilities and mitigations to those vulnerabilities is known as
threat modeling. In the previous chapter, the Tor design stated that it can't defend
against a global passive adversary. In your implementation of our biometric system,
maybe access to the jamming line is not a threat because you've placed your BBB in
an adamantium box. There is no perfectly secure system so a threat model helps us
understand the strengths, weaknesses, and assumptions of our system. We'll see
more threat modeling in our final two chapters.

Summary
This chapter provided a close look at BeagleBone capes and the CryptoCape. We
introduced the idea of trusted computing and built a biometric authentication system.
We've shown the normal use case for I2C devices and illustrated how one rogue device
can corrupt the entire bus.

In the next chapter, we'll use the BBB to protect e-mail encryption and signing keys
for Pretty Good Privacy (PGP) and its free software implementation: GPG.

www.allitebooks.com

http://www.allitebooks.org

Protecting GPG Keys with a
Trusted Platform Module

After our investigation into BBB hardware security, we'll now use that technology
to protect your personal encryption keys for the popular GPG software. GPG is a free
implementation of the OpenPGP standard. This standard was developed based on
the work of Philip Zimmerman and his Pretty Good Privacy (PGP) software. PGP has
a complex socio-political backstory, which we'll briefly cover before getting into the
project. For the project, we'll treat the BBB as a separate cryptographic co-processor
and use the CryptoCape, with a keypad code entry device, to protect our GPG keys
when they are not in use.

Specifically, we will do the following:

•	 Tell you a little about the history and importance of the PGP software
•	 Perform basic threat modeling to analyze your project
•	 Create a strong PGP key using the free GPG software
•	 Teach you to use the TPM to protect encryption keys

History of PGP
The software used in this chapter would have once been considered a munition by
the U.S. Government. Exporting it without a license from the government, would
have violated the International Traffic in Arms Regulations (ITAR). As late as the
early 1990s, cryptography was heavily controlled and restricted. While the early
90s are filled with numerous accounts by crypto-activists, all of which are well
documented in Steven Levy's Crypto, there is one man in particular who was the
driving force behind the software in this project: Philip Zimmerman.

Protecting GPG Keys with a Trusted Platform Module

[78]

Philip Zimmerman had a small pet project around the year 1990, which he called
Pretty Good Privacy. Motivated by a strong childhood passion for codes and ciphers,
combined with a sense of political activism against a government capable of strong
electronic surveillance, he set out to create a strong encryption program for the
people (Levy 2001).

One incident in particular helped to motivate Zimmerman to finish PGP and publish
his work. This was the language that the then U.S. Senator Joseph Biden added to
Senate Bill #266, which would mandate that:

"Providers of electronic communication services and manufacturers of electronic
communications service equipment shall ensure that communication systems
permit the government to obtain the plaintext contents of voice, data, and other
communications when appropriately authorized by law."

In 1991, in a rush to release PGP 1.0 before it was illegal, Zimmerman released his
software as a freeware to the Internet. Subsequently, after PGP spread, the U.S.
Government opened a criminal investigation on Zimmerman for the violation of the
U.S. export laws. Zimmerman, in what is best described as a legal hack, published the
entire source code of PGP, including instructions on how to scan it back into digital
form, as a book. As Zimmerman describes:

"It would be politically difficult for the Government to prohibit the export of a book
that anyone may find in a public library or a bookstore."

 (Zimmerman, 1995)

A book published in the public domain would no longer fall under ITAR export
controls. The genie was out of the bottle; the government dropped its case against
Zimmerman in 1996.

Reflecting on the Crypto Wars
Zimmerman's battle is considered a resilient victory. Many other outspoken
supporters of strong cryptography, known as cypherpunks, also won battles
popularizing and spreading encryption technology. But if the Crypto Wars were
won in the early nineties, why hasn't cryptography become ubiquitous? Well, to a
degree, it has. When you make purchases online, it should be protected by strong
cryptography. Almost nobody would insist that their bank or online store not use
cryptography and most probably feel more secure that they do. But what about
personal privacy protecting software? For these tools, habits must change as the
normal e-mail, chat, and web browsing tools are insecure by default. This change
causes tension and resistance towards adoption.

Chapter 4

[79]

Also, security tools are notoriously hard to use. In the seminal paper on security
usability, researchers conclude that the then PGP version 5.0, complete with a Graphical
User Interface (GUI), was not able to prevent users, who were inexperienced with
cryptography but all of whom had at least some college education, from making
catastrophic security errors (Whitten 1999). Glenn Greenwald delayed his initial contact
with Edward Snowden for roughly two months because he thought GPG was too
complicated to use (Greenwald, 2014). Snowden absolutely refused to share anything
with Greenwald until he installed GPG.

GPG and PGP enable an individual to protect their own communications. Implicitly,
you must also trust the receiving party not to forward your plaintext communication.
GPG expects you to protect your private key and does not rely on a third party. While
this adds some complexity and maintenance processes, trusting a third party with your
private key can be disastrous. In August of 2013, Ladar Levison decided to shut down
his own company, Lavabit, an e-mail provider, rather than turn over his users' data to
the authorities. Levison courageously pulled the plug on his company rather then turn
over the data.

The Lavabit service generated and stored your private key. While this key was
encrypted to the user's password, it still enabled the server to have access to the raw
key. Even though the Lavabit service alleviated users from managing their private
key themselves, it enabled the awkward position for Levison. To use GPG properly,
you should never turn over your private key. For a complete analysis of Lavabit,
see Moxie Marlinspike's blog post at http://www.thoughtcrime.org/blog/
lavabit-critique/.

Given the breadth and depth of state surveillance capabilities, there is a re-kindled
interest in protecting one's privacy. Researchers are now designing secure protocols,
with these threats in mind (Borisov, 2014). Philip Zimmerman ended the chapter on
Why Do You Need PGP? in the Official PGP User's Guide with the following statement,
which is as true today as it was when first inked:

"PGP empowers people to take their privacy into their own hands. There's a
growing social need for it."

Developing a threat model
At the end of the previous chapter, we introduced the concept of a threat model. A
threat model is an analysis of the security of the system that identifies assets, threats,
vulnerabilities, and risks. Like any model, the depth of the analysis can vary. In the
upcoming section, we'll present a cursory analysis so that you can start thinking about
this process. This analysis will also help us understand the capabilities and limitations
of our project.

http://www.thoughtcrime.org/blog/lavabit-critique/
http://www.thoughtcrime.org/blog/lavabit-critique/

Protecting GPG Keys with a Trusted Platform Module

[80]

Outlining the key protection system
The first step of our analysis is to clearly provide a description of the system we are
trying to protect. In this project, we'll build a logical GPG co-processor using the
BBB and the CryptoCape. We'll store the GPG keys on the BBB and then connect to
the BBB over Secure Shell (SSH) to use the keys and to run GPG. The CryptoCape
will be used to encrypt your GPG key when not in use, known as at rest. We'll add a
keypad to collect a numeric code, which will be provided to the TPM. This will allow
the TPM to unwrap your GPG key.

The idea for this project was inspired by Peter Gutmann's work on open
source cryptographic co-processors (Gutmann, 2000). The BBB, when acting
as a co-processor to a host, is extremely flexible, and considering the power
usage, relatively high in performance. By running sensitive code that will
have access to cleartext encryption keys on a separate hardware, we gain an
extra layer of protection (or at the minimum, a layer of indirection).

Identifying the assets we need to protect
Before we can protect anything, we must know what to protect. The most important
assets are the GPG private keys. With these keys, an attacker can decrypt past
encrypted messages, recover future messages, and use the keys to impersonate you.
By protecting your private key, we are also protecting your reputation, which is
another asset. Our decrypted messages are also an asset. An attacker may not care
about your key if he/she can easily access your decrypted messages. The BBB itself is
an asset that needs protecting. If the BBB is rendered inoperable, then an attacker has
successfully prevented you from accessing your private keys, which is known as a
Denial-Of-Service (DOS).

Threat identification
To identify the threats against our system, we need to classify the capabilities
of our adversaries. This is a highly personal analysis, but we can generalize our
adversaries into three archetypes: a well funded state actor, a skilled cracker, and a
jealous ex-lover. The state actor has nearly limitless resources both from a financial
and personnel point of view. The cracker is a skilled operator, but lacks the funding
and resources of the state actor. The jealous ex-lover is not a sophisticated computer
attacker, but is very motivated to do you harm.

Unfortunately, if you are the target of directed surveillance from a state actor, you
probably have much bigger problems than your GPG keys. This actor can put your
entire life under monitoring and why go through the trouble of stealing your GPG
keys when the hidden video camera in the wall records everything on your screen.

Chapter 4

[81]

Also, it's reasonable to assume that everyone you are communicating with is also
under surveillance and it only takes one mistake from one person to reveal your
plans for world domination.

The adage by Benjamin Franklin is apropos here: Three may keep
a secret if two of them are dead.

However, properly using GPG will protect you from global passive surveillance. When
used correctly, neither your Internet Service Provider, nor your e-mail provider, or any
passive attacker would learn the contents of your messages. The passive adversary
is not going to engage your system, but they could monitor a significant amount
of Internet traffic in an attempt to collect it all. Therefore, the confidentiality of your
message should remain protected.

We'll assume the cracker trying to harm you is remote and does not have physical
access to your BBB. We'll also assume the worst case that the cracker has compromised
your host machine. In this scenario there is, unfortunately, a lot that the cracker can
perform. He can install a key logger and capture everything, including the password
that is typed on your computer. He will not be able to get the code that we'll enter on
the BBB; however, he would be able to log in to the BBB when the key is available.

The jealous ex-lover doesn't understand computers very well, but he doesn't need to,
because he knows how to use a golf club. He knows that this BBB connected to your
computer is somehow important to you because you've talked his ear off about this
really cool project that you read in a book. He physically can destroy the BBB and
with it, your private key (and probably the relationship as well!).

Identifying the risks
How likely are the previous risks? The risk of active government surveillance in
most countries is fortunately low. However, the consequences of this attack are very
damaging. The risk of being caught up in passive surveillance by a state actor, as
we have learned from Edward Snowden, is very likely. However, by using GPG, we
add protection against this threat. An active cracker seeking you harm is probably
unlikely. Contracting keystroke-capturing malware, however, is probably not an
unreasonable event. A 2013 study by Microsoft concluded that 8 out of every 1,000
computers were infected with malware. You may be tempted to play these odds
but let's rephrase this statement: in a group of 125 computers, one is infected with
malware. A school or university easily has more computers than this. Lastly, only
you can assess the risk of a jealous ex-lover.

Protecting GPG Keys with a Trusted Platform Module

[82]

For the full Microsoft report, refer to http://blogs.technet.
com/b/security/archive/2014/03/31/united-states-
malware-infection-rate-more-than-doubles-in-the-
first-half-of-2013.aspx.

Mitigating the identified risks
If you find yourself the target of a state, this project alone is not going to help much.
We can protect ourselves somewhat from the cracker with two strategies. The first
is instead of connecting the BBB to your laptop or computer, you can use the BBB
as a standalone machine and transfer files via a microSD card. This is known as an
air-gap. With a dedicated monitor and keyboard, it is much less likely for software
vulnerabilities to break the gap and infect the BBB. However, this comes as a high
level of personal inconvenience, depending on how often you encrypt files. If you
consider the risk of running the BBB attached to your computer too high, create an
air-gapped BBB for maximum protection. If you deem the risk low, because you've
hardened your computer and have other protection mechanism, then keep the BBB
attached to the computer.

An air-gapped computer can still be compromised. In 2010, a highly
specialized worm known as Stuxnet was able to spread to networked
isolated machines through USB flash drives.

The second strategy is to somehow enter the GPG passphrase directly into the BBB
without using the host's keyboard. After we complete the project, we'll suggest a
mechanism to do this, but it is slightly more complicated. This would eliminate the
threat of the key logger since the pin is directly entered.

The mitigation against the ex-lover is to treat your BBB as you would your own wallet,
and don't leave it out of your sight. It's slightly larger than you would want, but it's
certainly small enough to fit in a small backpack or briefcase.

Summarizing our threat model
Our threat model, while cursory, illustrates the thought process one should go
through before using or developing security technologies. The term threat model is
specific to the security industry, but it's really just proper planning. The purpose of
this analysis is to find logic bugs and prevent you from spending thousands of dollars
on high-tech locks for your front door when you keep your backdoor unlocked. Now
that we understand what we are trying to protect and why it is important to use GPG,
let's build the project.

http://blogs.technet.com/b/security/archive/2014/03/31/united-states-malware-infection-rate-more-than-doubles-in-the-first-half-of-2013.aspx
http://blogs.technet.com/b/security/archive/2014/03/31/united-states-malware-infection-rate-more-than-doubles-in-the-first-half-of-2013.aspx
http://blogs.technet.com/b/security/archive/2014/03/31/united-states-malware-infection-rate-more-than-doubles-in-the-first-half-of-2013.aspx
http://blogs.technet.com/b/security/archive/2014/03/31/united-states-malware-infection-rate-more-than-doubles-in-the-first-half-of-2013.aspx

Chapter 4

[83]

Generating GPG keys
First, we need to install GPG on the BBB. It is mostly likely already installed, but you
can check and install it with the following command:

sudo apt-get install gnupg gnupg-curl

Next, we need to add a secret key. For those that already have a secret key, you can
import your secret key ring, secring.gpg, to your ~/.gnupg folder. For those that
want to create a new key, on the BBB, proceed to the upcoming section.

This project assumes some familiarity with GPG. If GPG is new to you,
the Free Software Foundation maintains the Email Self-Defense guide
which is a very approachable introduction to the software and can be
found at https://emailselfdefense.fsf.org/en/index.html.

Generating entropy
If you decided to create a new key on the BBB, there are a few technicalities we
must consider. First of all, GPG will need a lot of random data to generate the keys.
The amount of random data available in the kernel is proportional to the amount
of entropy that is available. You can check the available entropy with the
following command:

cat /proc/sys/kernel/random/entropy_avail

If this command returns a relatively low number, under 200, then GPG will not have
enough entropy to generate a key. On a PC, one can increase the amount of entropy
by interacting with the computer such as typing on the keyboard or moving the
mouse. However, such sources of entropy are difficult for embedded systems,
and in our current setup, we don't have the luxury of moving a mouse.

Fortunately, there are a few tools to help us. If your BBB is running kernel version
3.13 or later, we can use the hardware random number generator on the AM3358
to help us out. You'll need to install the rng-tools package. Once installed, you can
edit /etc/default/rng-tools and add the following line to register the hardware
random number generated for rng-tools:

HRNGDEVICE=/dev/hwrng

After this, you should start the rng-tools daemon with:

/etc/init.d/rng-tools start

https://emailselfdefense.fsf.org/en/index.html

Protecting GPG Keys with a Trusted Platform Module

[84]

If you don't have /dev/hwrng—and currently, the chips on the CryptoCape do not
yet have character device support and aren't available to /dev/hwrng—then you
can install haveged. This daemon implements the Hardware Volatile Entropy
Gathering and Expansion (HAVEGE) algorithm, the details of which are available
at http://www.irisa.fr/caps/projects/hipsor/. This daemon will ensure that
the BBB maintains a pool of entropy, which will be sufficient for generating a GPG
key on the BBB.

Creating a good gpg.conf file
Before you generate your key, we need to establish some more secure defaults
for GPG. As we discussed earlier, it is still not as easy as it should be to use e-mail
encryption. Riseup.net, an e-mail provider with a strong social cause, maintains
an OpenPGP best practices guide at https://help.riseup.net/en/security/
message-security/openpgp/best-practices. This guide details how to harden
your GPG configuration and provides the motivation behind each option. It is well
worth a read to understand the intricacies of GPG key management.

Jacob Applebaum maintains an implementation of these best practices, which
you should download from https://github.com/ioerror/duraconf/raw/
master/configs/gnupg/gpg.conf and save as your ~/.gnupg/gpg.conf file. The
configuration is well commented and you can refer to the best practices guide available
at Riseup.net for more information. There are three entries, however, that you should
modify. The first is default-key, which is the fingerprint of your primary GPG key.
Later in this chapter, we'll show you how to retrieve that fingerprint. We can't perform
this action now because we don't have a key yet. The second is keyserver-options
ca-cert-file, which is the certificate authority for the keyserver pool. Keyservers
host your public keys and a keyserver pool is a redundant collection of keyservers.
The instructions on Riseup.net gives the details on how to download and install that
certificate. Lastly, you can use Tor to fetch updates on your keys.

The act of you requesting a public key from a keyserver signals that you have a
potential interest in communicating with the owner of that key. This metadata might
be more interesting to a passive adversary than the contents of your message, since
it reveals your social network. As we learned in Chapter 2, Circumventing Censorship
with a Tor Bridge, Tor is apt at protecting traffic analysis. You probably don't want
to store your GPG keys on the same BBB as your bridge, so a second BBB would help
here. On your GPG BBB, you need to only run Tor as a client, which is its default
configuration. Then you can update keyserver-options http-proxy to point to
your Tor SOCKS proxy running on localhost.

http://www.irisa.fr/caps/projects/hipsor/
Riseup.net
https://help.riseup.net/en/security/message-security/openpgp/best-practices
https://help.riseup.net/en/security/message-security/openpgp/best-practices
https://github.com/ioerror/duraconf/raw/master/configs/gnupg/gpg.conf
https://github.com/ioerror/duraconf/raw/master/configs/gnupg/gpg.conf
Riseup.net
Riseup.net

Chapter 4

[85]

The Electronic Frontier Foundation (EFF) provides some hypothetical
examples on the telling nature of metadata, for example, They (the
government) know you called the suicide prevention hotline from the Golden
Gate Bridge. But the topic of the call remains a secret. Refer to the EFF
blog post at https://www.eff.org/deeplinks/2013/06/why-
metadata-matters for more details.

Generating the key
Now you can generate your GPG key. Follow the on screen instructions and don't
include a comment. Depending on your entropy source, this could take a while. This
example took 10 minutes using haveged as the entropy collector. There are various
opinions on what to set as the expiration date. If this is your first GPG, try one year
at first. You can always make a new key or extend the same one. If you set the key to
never expire and you lose the key, by forgetting the passphrase, people will still think
it's valid unless you revoke it. Also, be sure to set the user ID to a name that matches
some sort of identification, which will make it easier for people to verify that the holder
of the private key is the same person as a certified piece of paper. The command to
create a new key is gpg –-gen-key:

Please select what kind of key you want:

 (1) RSA and RSA (default)

 (2) DSA and Elgamal

 (3) DSA (sign only)

 (4) RSA (sign only)

Your selection? 1

RSA keys may be between 1024 and 4096 bits long.

What keysize do you want? (2048) 4096

Requested keysize is 4096 bits

Please specify how long the key should be valid.

 0 = key does not expire

 <n> = key expires in n days

 <n>w = key expires in n weeks

 <n>m = key expires in n months

 <n>y = key expires in n years

Key is valid for? (0) 1y

Key expires at Sat 06 Jun 2015 10:07:07 PM UTC

Is this correct? (y/N) y

You need a user ID to identify your key; the software constructs the user
ID

https://www.eff.org/deeplinks/2013/06/why-metadata-matters
https://www.eff.org/deeplinks/2013/06/why-metadata-matters

Protecting GPG Keys with a Trusted Platform Module

[86]

from the Real Name, Comment and Email Address in this form:

 "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Tyrone Slothrop

Email address: tyrone.slothrop@yoyodyne.com

Comment:

You selected this USER-ID:

 "Tyrone Slothrop <tyrone.slothrop@yoyodyne.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O

You need a Passphrase to protect your secret key.

We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.

......+++++

..+++++

gpg: key 0xABD9088171345468 marked as ultimately trusted

public and secret key created and signed.

gpg: checking the trustdb

gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model

gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u

gpg: next trustdb check due at 2015-06-06

pub 4096R/0xABD9088171345468 2014-06-06 [expires: 2015-06-06]

 Key fingerprint = CBF9 1404 7214 55C5 C477 B688 ABD9 0881 7134
5468

uid [ultimate] Tyrone Slothrop <tyrone.slothrop@yoyodyne.
com>

sub 4096R/0x9DB8B6ACC7949DD1 2014-06-06 [expires: 2015-06-06]

gpg --gen-key 320.62s user 0.32s system 51% cpu 10:23.26 total

From this example, we know that our secret key is 0xABD9088171345468. If you end
up creating multiple keys, but use just one of them more regularly, you can edit your
gpg.conf file and add the following line:

default-key 0xABD9088171345468

Chapter 4

[87]

Postgeneration maintenance
In order for people to send you encrypted messages, they need to know your public
key. Having your public key server can help distribute your public key. You can post
your key as follows, and replace the fingerprint with your primary key ID:

gpg --send-keys 0xABD9088171345468

GPG does not rely on third parties and expects you to perform key
management. To ease this burden, the OpenPGP standards define the
Web-of-Trust as a mechanism to verify other users' keys. Details on
how to participate in the Web-of-Trust can be found in the GPG Privacy
Handbook at https://www.gnupg.org/gph/en/manual/x334.
html.

You are also going to want to create a revocation certificate. A revocation certificate
is needed when you want to revoke your key. You would do this when the key has
been compromised, say if it was stolen. Or more likely, if the BBB fails and you can
no longer access your key. Generate the certificate and follow the ensuing prompts
replacing the ID with your key ID:

gpg --output revocation-certificate.asc --gen-revoke 0xABD9088171345468

sec 4096R/0xABD9088171345468 2014-06-06 Tyrone Slothrop <tyrone.
slothrop@yoyodyne.com>

Create a revocation certificate for this key? (y/N) y

Please select the reason for the revocation:

 0 = No reason specified

 1 = Key has been compromised

 2 = Key is superseded

 3 = Key is no longer used

 Q = Cancel

(Probably you want to select 1 here)

Your decision? 0

Enter an optional description; end it with an empty line:

>

Reason for revocation: No reason specified

(No description given)

Is this okay? (y/N) y

You need a passphrase to unlock the secret key for

https://www.gnupg.org/gph/en/manual/x334.html
https://www.gnupg.org/gph/en/manual/x334.html

Protecting GPG Keys with a Trusted Platform Module

[88]

user: "Tyrone Slothrop <tyrone.slothrop@yoyodyne.com>"

4096-bit RSA key, ID 0xABD9088171345468, created 2014-06-06

ASCII armored output forced.

Revocation certificate created.

Please move it to a medium which you can hide away; if Mallory gets
access to this certificate he can use it to make your key unusable.

It is smart to print this certificate and store it away, just in case
your media become unreadable. But have some caution: The print system
of your machine might store the data and make it available to others!

Do take the advice and move this file off the BeagleBone. Printing it out and storing
it somewhere safe is a good option, or burn it to a CD.

The lifespan of a CD or DVD may not be as long as you think. The
United States National Archives Frequently Asked Questions (FAQ)
page on optical storage media states that:
"CD/DVD experiential life expectancy is 2 to 5 years even though published
life expectancies are often cited as 10 years, 25 years, or longer."
Refer to their website http://www.archives.gov/records-
mgmt/initiatives/temp-opmedia-faq.html for more details.

Lastly, create an encrypted backup of your encryption key and consider storing that
in a safe location on durable media.

Using GPG
With your GPG private key created or imported, you can now use GPG on the BBB
as you would on any other computer. In Chapter 1, Creating Your BeagleBone Black
Development Environment, you installed Emacs on your host computer. If you follow
the GNU/Linux instructions, you can also install Emacs on the BBB. If you do,
you'll enjoy automatic GPG encryption and decryption for files that end in the .gpg
extension. For example, suppose you want to send a message to your good friend,
Pirate Prentice, whose GPG key you already have. Compose your message in Emacs,
and then save it with a .gpg extension. Emacs will prompt you to select the public
keys for encryption and will automatically encrypt the buffer. If a GPG-encrypted
message is encrypted to a public key, with which you have the corresponding
private key, Emacs will automatically decrypt the message if it ends with .gpg.
When using Emacs from the terminal, the prompt for encryption should look like
the following screenshot:

http://www.archives.gov/records-mgmt/initiatives/temp-opmedia-faq.html
http://www.archives.gov/records-mgmt/initiatives/temp-opmedia-faq.html

Chapter 4

[89]

Protecting your GPG key with a TPM
If you want, you could stop the project now and happily use GPG on your BBB. But
if you do, you would miss out on adding some extra protection with the CryptoCape,
specifically, the Trusted Platform Module (TPM). In the upcoming sections, we will
use the TPM to protect our GPG private key.

Introducing trusted computing
The TPM is a cryptographic co-processor. The TPM on the CryptoCape is Atmel's
embedded I2C version, which conforms to version 1.2 of the TPM spec published
by the Trusted Computing Group (TCG). The TCG is an industry consortium that
maintains and develops open specifications for trusted computing. Trusted in this
sense is the definition from RFC 4949: a system that operates as expected, according to
design and policy.

Cryptographically, TPM 1.2 is limited. It implements the RSA algorithm, SHA-1, has
an internal random number generator, and some limited storage. It does not provide
any symmetric ciphers. These limitations were a result of the design goal for a low
cost embeddable module. Symmetric ciphers were eliminated, because with the
TPM, one can protect the symmetric keys at rest and allow the much more powerful
host computer to operate on them.

Protecting GPG Keys with a Trusted Platform Module

[90]

The TPM 1.2 specification is, in total, over 700 pages. We will focus on a unique feature
of the TPM that enables many of its security features: Platform Control Registers
(PCRs). PCRs are TPM registers that can always be read but may only be written to
with the extend operation. The extend operation takes the current value of the 20 byte
PCR, combines it with a 20 byte input value, and sets the new PCR value to the SHA-1
result of the combination. The key point is that once a PCR is set, it can't be reversed. It
can only be continued to be combined in future extend operations.

At first, it may not be obvious how this feature helps. Let's consider an example. On
boot, your computer's BIOS, prior to loading the bootloader, first sends a SHA-1 hash
of the bootloader to the TPM to extend one of the PCRs. It then loads the bootloader.
The bootloader performs the same operation on your kernel. The kernel then performs
the same operation on various startup systems before finally allowing normal user
operation. At the end of this process, the PCRs will be populated with a series of
hash values.

The values of these registers represent a trusted measurement of your system. Now,
say malware has infected your computer and has modified the boot process. On next
boot, at least one of the PCRs will have a drastically different value than previously
recorded. PCRs enable measurements of the boot process which provide assertions
of the boot process.

There are several terms relating to the TPM-protected boot process. Secure boot
will halt the boot processes if the PCR values do not match a known configuration.
Authenticated boot simply measures the boot process and allows remote parties to
make assertions on the pedigree of the boot process. Trusted boot refers to a system
that uses both authenticated and secure boots.

Encrypting data to a PCR state
The TPM supports another feature that builds on the state of the PCRs. As previously
mentioned, the TPM can perform RSA encryption. However, the TPM can also
combine the state of the PCRs to the encryption in a process known as sealing.
Once data is sealed to a PCR value, it can only be decrypted when the PCR matches
the same value as when the encryption was performed.

How is this going to help us protect our GPG key? We will encrypt the GPG key to
a known PCR state. We'll use the numeric code entered from the keypad connected
to the CryptoCape as input into this PCR state. When the TPM decrypts the GPG
private key, it will be available for use by GPG as usual. While GPG private keys are
already protected with a passphrase, the TPM provides extra protection for the key
at rest. The passphrase could still be captured with a keylogger, but our key won't
be available until the BBB boots with the CryptoCape attached and the code entered
directly into the BBB.

Chapter 4

[91]

This system also helps in preventing offline attacks on the numeric code. The PCR
value, once extended with the correct code, will allow unsealing of the data. But, if
the wrong code is entered, the PCR value will be incorrect and the only way to reset
the PCR, if that PCR is one of the non-resettable PCRs, is to reboot.

Adding the keypad
We're going to need a way to enter this code into the BBB. This code is used to
populate one of the TPM's PCRs that will be used to seal the GPG key. This keypad
will be connected to the ATmega328p on the CryptoCape. While the BBB is more
than capable of handling the I/O for the keypad, by using the ATmega328p, we take
advantage of code reuse. For most hardware products in the SparkFun catalog, there
exists at least an unofficial Arduino library. If the components aren't available at
SparkFun, then you should be able to find similar parts from the product descriptions.
In the case of the keypad, there is an official library. The hardware for this project is
listed in the following table:

Device SparkFun number
CryptoCape DEV-12773
Keypad COM-08653
F/F jumper wires PRT-08430
Male breakaway headers PRT-00116

To build this Arduino library, you'll first need to install the Keypad library from the
Arduino playground site: http://playground.arduino.cc/code/Keypad. Then
clone the following repository from GitHub:

git clone https://github.com/jbdatko/beagle-bone-for-secret-agents.git

In the ch4 code folder, you'll find both the keypad.ino source and the compiled hex
that is ready to be loaded onto the 328p. From Chapter 3, Adding Hardware Security with
the CryptoCape, remember that compiled sketches can be uploaded to the ATmega328p
with the following command, just be sure to install the program jumpers:

sudo ./upload.sh keypad_cryptocape.cpp.hex

This program has the 328p joining the I2C bus at hex address 0x42. It then waits
to receive data from an I2C master device, the BBB, and then will collect your
five-digit code from the keypad. You have ten seconds to enter a five-digit code and
the timer starts once the CryptoCape LED is lit. Each time you press a key, the LED
will momentarily flash. Once all five characters are collected, the LED will turn off.

http://playground.arduino.cc/code/Keypad

Protecting GPG Keys with a Trusted Platform Module

[92]

To connect the keypad to the CryptoCape, you first need to solder 0.1" male pins to
the keypad. Also, you'll need to solder the 0.1" male header pins to the CryptoCape
ATmega328p pads. Once the pins are installed, now you need to connect a jumper
wire from the keypad to the CryptoCape. Note that the keypad has nine pins but
only seven are used. Consider the first pin, closest to the * character as pin 0.
Connect the jumpers per the following table:

Keypad pin Arduino digital pin
3 D2
1 D3
5 D4
2 D5
7 D6
6 D7
4 D8

The keypad, when attached to the CryptoCape, should look like the following image:

Chapter 4

[93]

The case shown in the image is logic supply's plated steel chassis. It
is available on their website: http://www.logicsupply.com/
components/beaglebone/boards-cases-kits/bb100-orange/.

Now, we need some software that will initiate the code collection process on the
ATmega328p. Remember that the software needs to collect the code and then extend
the PCR. In the previously listed repository is a file, keypad.c, which does exactly
this. To build this program, you'll need the development package of the open source
TCG software stack:

sudo apt-get install libtspi-dev

Then you should be able to compile the program with:

gcc keypad.c -o getgpgpin -ltspi

Taking ownership of the TPM
Before we use the TPM, we must first take ownership of it. Taking ownership
establishes an owner password for maintenance operations and a password for one
of the root keys inside the TPM, the Storage Root Key (SRK) (pronounced shark).
You can set the administrator password to any password you want, but to work
with legacy software, you'll want to set the SRK to the well-known password of twenty
zeros. You can set a unique SRK password if you want, but the TrouSerS software,
the software used to control the TPM, includes a command-line parameter to set the
password to its well-known value for a reason. First install tpm-tools:

sudo apt-get install tpm-tools

Then you should restart your BBB with the CryptoCape attached. This will ensure that
the TPM kernel driver and associate software load correctly. To check if everything is
working properly issue the following command:

dmesg | grep TPM

This should return:

[5.370109] tpm_i2c_atmel 1-0029: Issuing TPM_STARTUP

Then check for the daemon by issuing:

ps aux | grep tcsd

This command should return something like this:

tss 799 0.0 0.1 11492 980 ? Ss Jun08 0:00 /usr/sbin/tcsd

http://www.logicsupply.com/components/beaglebone/boards-cases-kits/bb100-orange/
http://www.logicsupply.com/components/beaglebone/boards-cases-kits/bb100-orange/

Protecting GPG Keys with a Trusted Platform Module

[94]

Then you can take ownership of the TPM as follows:

tpm_takeownership -z -l debug

You'll be prompted to enter an owner password. The -z option sets the SRK to the
well-known passphrase. The response should be:

Tspi_Context_Create success

Enter owner password:

Confirm password:

Tspi_Context_Connect success

Tspi_Context_GetTpmObject success

Tspi_GetPolicyObject success

Tspi_Policy_SetSecret success

Tspi_Context_CreateObject success

Tspi_GetPolicyObject success

Tspi_Policy_SetSecret success

Tspi_TPM_TakeOwnership success

tpm_takeownership succeeded

Tspi_Context_CloseObject success

Tspi_Context_FreeMemory success

Tspi_Context_Close success

Now you are ready to use the TPM.

If you have the CryptoCape v02, then you will need to perform some
additional steps. The version number is found on the bottom layer of
the board, above the P8 header, near the open source hardware logo,
which looks like a gear. The TPMs on this revision are shipped in
compliance mode, which means the keys loaded on them are test keys.
This helps test the TPM during manufacture, but the keys need to be
changed by the end user. Refer to the page http://cryptotronix.
com/cryptocape-tpm/ for more details.

Extending a PCR
We'll need to extend a PCR so that we can encrypt our GPG key. We'll arbitrarily
choose PCR number 9. First let's view the PCR status to be sure that it is blank:

cat /sys/class/misc/tpm0/device/pcrs | grep PCR-09

http://cryptotronix.com/cryptocape-tpm/
http://cryptotronix.com/cryptocape-tpm/

Chapter 4

[95]

This should return the current state of the PCR, which without using secure boot is:

PCR-09:00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Now, run the getgpgpin program from the following section. You should see the
LED turn green on the CryptoCape and you have 10 seconds to enter a five-digit pin.
Each time you press a key, the LED should briefly flash and when five digits have
been entered, the LED will turn off. After 10 seconds, the getgpgpin program will
silently exit. If you compiled the program with #define DEBUG set to 1, you should
see something like this:

54321

(Line 53, extend_pcr) Create a Context

 returned 0x00000000. Success.

(Line 55, extend_pcr) Connect to TPM

 returned 0x00000000. Success.

(Line 59, extend_pcr) GetTPM Handle

 returned 0x00000000. Success.

(Line 62, extend_pcr) Owner Policy

 returned 0x00000000. Success.

36987(Line 73, extend_pcr) extend

 returned 0x00000000. Success.

Now, check your PCR status again:

cat /sys/class/misc/tpm0/device/pcrs | grep PCR-09

You should now have a populated PCR9:

PCR-09:2B 1E 41 10 EB A0 91 9E B4 89 0E 04 83 0B 70 C5 C2 AA 23 44

You can only enter the code once. If you try it again, the program will extend PCR9
again using the now incorrect PCR state as input into the next. Now, let's seal our
GPG secret key ring:

tpm_sealdata -p 9 -i secring.gpg -o secring.gpg.tpm -z -l debug

You can remove -l debug if you wish and the command will silently complete.
Let's test decryption:

tpm_unsealdata -i secring.gpg.tpm -o deleteme -z

Protecting GPG Keys with a Trusted Platform Module

[96]

It should silently complete on success. You can now delete the temporary file
deleteme and the original secring.gpg. You did make an encrypted backup, right?
You'll probably want to delete the file in a more secure fashion. The secure remove
tool srm does just that and overwrites the file numerous times before deleting.
To install use the following command:

sudo apt-get install secure-delete

Then use just as you would rm.

Bunnie Huang and Sean Cross (also known as xobs) presented a talk at the
30th Chaos Communication Congress (30C3) on hacking SD cards. Your
SD or eMMC includes a small microcontroller that manages the attached
flash memory. This microcontroller is perfectly situated to act as a Man-in-
the-Middle attacker and manipulate the data you store on the device. For
example, the microcontroller could keep a backup copy of your data since
it would report to your computer a storage capacity of 8GB, but actually
it contains a 16 GB flash chip. More information can be found on Bunnie's
blog at http://www.bunniestudios.com/blog/?p=3554.

Unlocking your key at startup
Finally, we need to automate this process. When the BBB boots, we want it to collect
the code, extend the PCR, and unwrap the GPG keys so that they are ready to use.
We'll make an init.d script that will handle this, but we still need to deal with the
GPG key. We don't want an unwrapped GPG key lying around the disk, even if it is
protected with a password. Instead, we'll keep the GPG keys on a ramfs, which will
never touch persistent storage.

To create the ramfs, add the following to /etc/fstab:

ramfs /mnt/ramdisk ramfs nodev,nosuid,noexec,nodiratime,size=1M,uid=10
00,gid=1002 0 0

Be sure to replace your uid and gid with the appropriate values for your user. This
can be obtained by running the id command. Either reboot or run mount -a to
reload the fstab. Since GPG expects the secring.gpg to live in ~/.gnupg/secring.
gpg, we'll create a link from there to the ramdisk. Create the following symlink:

ln -s /mnt/ramdisk/secring.gpg ~/.gnupg/secring.gpg

http://www.bunniestudios.com/blog/?p=3554

Chapter 4

[97]

Now, we want a script to run on boot. In the beagle-bone-for-secret-agents/
ch4 repository, there is a script, tpm_gpg, which you can copy to /etc/init.d/. This
script expects getgpgpin to live in /usr/local/bin and that your secring.gpg is in
the normal place. Edit as desired. To register this script, run as root:

update-rc.d tpm_gpg defaults

With the script in place, the ramdisk set to mount at boot, the ATmega programmed
to collect the code, and the hardware attached, reboot one more time. Watch for
the CryptoCape LED to turn on, enter your pin, and then log back in to the BBB. If
your GPG key is in /mnt/ramdisk, congratulations, you have just used your TPM
to protect your GPG key! Because of the symlink, all GPG-related programs will use
the keys just as usual. If not, recompile keypad.c with debug set to 1 to make sure
everything is working.

While the ramfs is meant to ensure that the GPG key, which is still
protected by a password, is destroyed without power, researchers have
recovered keys from RAM in the past. Refer to the URL https://
citp.princeton.edu/research/memory/ on cold boot attacks.

Iterating on the threat model
Threat modeling and system design is an iterative process. The system we built in
this chapter is a good start, but it can be improved. We identified a problem at the
beginning of the chapter in that we still had to enter the GPG passphrase from a
potentially compromised computer. The code entry on the keypad is currently only
protecting the GPG key when the BBB is powered off. It also protects the key if an
attacker who doesn't know the code boots the BBB, since the PCR will not have the
correct value after the 10-second window has passed. To mitigate against the key
logger attack, we would want to enter a passphrase directly into the BBB.

There is a piece of software called gpg-agent, which manages your passphrase per
login session. It can support different types of pin entry programs. For example, one pin
entry program is X-Windows-based and another supports a command-line interface.
You could certainly create your own pin entry program that supported your custom
hardware. However, when you create this custom pin entry, you'd want to consider
the effect of a potentially weaker passphrase, one composed of only numbers, for your
GPG key. This demonstrates the importance of re-evaluating your threat model as new
features are added to the design to ensure the correctness of the original assumptions.

https://citp.princeton.edu/research/memory/
https://citp.princeton.edu/research/memory/

Protecting GPG Keys with a Trusted Platform Module

[98]

Also, you might want to consider adding an enclosure for your project. Your local
hackerspace will be able to help you make a professionally looking enclosure. If you
want something on the cheap, find a small translucent container and cut out room
for the keypad and the connectors as shown in the following image:

Summary
In this chapter, you learned how GPG can protect e-mail confidentiality. We created
a threat model for our system and showed how this analysis can help us understand
the capabilities and limitations of our design. At the end, we successfully built a BBB
GPG co-processor that uses a TPM to help protect the GPG keys at rest and got more
practice combining a microcontroller with an embedded Linux platform.

In the next chapter, we will investigate another major privacy enhancing technology
that is used to protect real-time chat. You'll learn about the unique cryptographic
properties of Off-the-Record (OTR) and how to use OTR over an Internet Relay
Chat gateway that is hosted by your BBB.

Chatting Off-the-Record
In this final chapter, we will use the BeagleBone Black (BBB) to protect the last bastion
of your online life: real-time chats. With your e-mail protected by GPG and your
browsing protected by Tor, we'll use the software called Off-the-Record (OTR) to
protect instant messaging chats. OTR addresses a weakness in the PGP threat model
and we will give an overview of the OTR design objectives before building the project.
We'll also consolidate all of your chat networks to be managed over an Internet Relay
Chat interface, which will run on your BBB. While this project doesn't require any
additional hardware other than the BBB, the cryptographic concepts and networking
interactions are slightly more challenging than the previous chapters. At the end of
this chapter and the book, you will have had exposure to and become familiar with
the three most effective tools to protect your privacy online.

In this chapter, you will do the following:

•	 Learn the difference between the cryptographic design between PGP
and OTR

•	 Run an IRC to chat gateway with BitlBee
•	 Incorporate your IRC networks with the IRC bouncer ZNC
•	 Set up and use OTR chat on BitlBee and ZNC

Chatting Off-the-Record

[100]

Communicating Off-the-Record – a
background
Before we investigate OTR, let's consider how we could encrypt our chat sessions.
We could use GPG for chat. We'd have to know the public key of our correspondent,
and each time we'd enter a message, it would encrypt and/or sign the message and
send it along. Some chat networks don't have an equivalent e-mail address, so it
could be awkward finding and verifying public keys. However, you can certainly
imagine a chat system that worked this way; it's a slightly more synchronous version
of GPG with e-mail.

Even if those technical problems are addressed there is a bigger issue lurking in
PGP's design. Let's return to our friends Alice and Bob. Alice and Bob have been
communicating with GPG for quite some time now. They use GPG flawlessly and
religiously practice the best security hygiene. Until one day, when somebody gets a
hold of Bob's private key. Now, there are several ways this could happen. Despite
Bob's willpower, perhaps he just couldn't resist clicking on the Watch cuTe kittys [sic]
link and malware infected his computer. Perhaps somebody stole his custom made
GPG key hardware token and guessed his GPG passphrase. Regardless of how his
private key was leaked, what matters is that now somebody else has it.

Bob, vigilant GPG user that he is, immediately revokes his key, which informs the
world that the key is compromised. This warns others not to use that particular key
and for future conversations, they should use a new key. But let's not forget about
Alice and the many communiqués she exchanged with Bob. What's to make of Alice?
This attacker, who has Bob's private key, can decrypt the entire past communication
between Alice and Bob. All of it. All of a sudden, their conversation doesn't seem
so private as Ian Goldberg, the designer of OTR, remarks about privacy in GPG
communications.

Introducing Off-the-Record communication
While GPG has its place, if you are concerned about losing control of your private
key, then maybe you should consider other tools. One tool, which was designed with
this threat in mind, is called Off-the-Record (OTR) which was originally published
in the paper Off-the-Record Communication, or, Why Not To Use PGP (Borisov 2004).
OTR includes some cryptographic features and design goals that differ from PGP.
For example, OTR was designed to incorporate perfect forward secrecy, which ensures
that session keys, the keys that are encrypting the communication traffic, can't be
re-derived if the longer term identity key is compromised. Also OTR only uses
digital signatures for the initial authentication step; individual messages are
not signed.

Chapter 5

[101]

The session keys are derived independently by both parties through a Diffie-Hellman
Key-Exchange protocol. The Diffie-Hellman protocol helps to solve a key distribution
problem. Alice and Bob want to secure their communications with a symmetric cipher,
but they both need the same key. Using Diffie-Hellman, they can both derive the
shared key value over an insecure channel, without exposing the value of the key to a
third party. OTR uses asymmetric cryptography in a Diffie-Hellman key-exchange, so
that both parties can derive a shared AES key in counter-mode. AES in counter-mode
(AES-CTR) uses AES as a stream cipher, the significance of which is discussed later in
this section.

A simplified, two-minute description of the Diffie-Hellman Key
Exchange is available at Khan Academy website https://
www.khanacademy.org/computing/computer-science/
cryptography/modern-crypt/v/diffie-hellman-key-
exchange--part-2.

Another feature of OTR that is different than PGP is that OTR was designed with
repudiability for messages, which is the ability to deny authorship or validity.
PGP was designed for non-repudiability, which provides a proof, via your digital
signature, that you indeed created that message. However, with OTR, neither Alice
nor Bob can prove the other, or themselves, created a particular message. The details
of this feature are a bit technical, but we'll provide a high-level summary since it is a
clever use of Message Authentication Codes (MACs).

A MAC is a small tag that accompanies a block of data. The tag is computed by the
sender and is sent to the receiver, who recomputes the value to check that the data
was not corrupted in transit, which attests the integrity of the data. Furthermore,
MACs involve a shared-key between parties. So, Alice has the same MAC key as
Bob. Therefore, when Bob verifies the MAC on a message, he is assured that the
sender has the same MAC key as himself. In OTR, because Alice and Bob have the
same MAC key that is applied to individual messages, either one of them can create
messages to imitate the other. Therefore, neither of them can prove that they, nor
their communicating partner, definitively produced a message. This provides
the repudiation feature in OTR.

https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange--part-2
https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange--part-2
https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange--part-2
https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange--part-2

Chatting Off-the-Record

[102]

The OTR designers incorporate one additional unorthodox feature for a cryptographic
system: forgeability. OTR is designed so that it is easy to change the ciphertext en
route to produce a meaningful output when the message is decrypted. This can be
performed because the designers chose a malleable encryption scheme using a stream
cipher; in OTR's case, it uses AES-CTR with a 128-bit key length. In stream ciphers,
the meat of the cipher is generating a key stream, but the actual encryption is typically
performed by applying the exclusive-OR operation to the plaintext. Decryption is
performed with the same exclusive-OR function applied to the same keystream. An
attacker, who can guess the plaintext of the message, can modify the ciphertext to
produce a different plaintext message of the same length. Therefore, the messages
can be forged.

Exclusive-OR, or XOR, can be used for both encryption and decryption
due to its logical definition: the XOR of A and B is true if and only if
either A or B is true. Digital messages are represented as binary streams.
The plaintext of a message is XORed with a key stream to produce a
ciphertext, and when that ciphertext is XORed with the same key stream,
the plaintext is returned. For example, if the plaintext bit is 1 and the key
stream bit is 1, the ciphertext will return 0. When the ciphertext bit, 0,
is applied to the keystream 1, the plaintext bit 1 is recovered. The Khan
Academy has an interactive and visual series on XOR in cryptography:
https://www.khanacademy.org/computing/computer-
science/cryptography/ciphers/a/xor-bitwise-operation.

Alice and Bob are still protected from a third party, who doesn't know the MAC key,
being able to tamper with their immediate conversation. However, OTR includes
yet another twist. It publishes the MAC keys of the previous conversation once
it has re-keyed to new MAC keys. Publishing the MAC keys means that anyone
who has passively monitored the conversation can change the ciphertext, and thus,
manipulate the plaintext of past messages. This adds another layer of deniability
to the conversation, as any recorded conversation could be easily manipulated and
might seem legitimate. Alice and Bob only publish old MAC keys, the key currently
in use is kept secret until the protocol requires them to re-key.

On the usability of OTR
Designing cryptosystems is not enough to ensure their adoption; they also need
to be robust and usable. OTR was not only published as an academic paper, but a
library was provided as well. OTR was designed to work over any existing Instant
Message (IM) protocol with any client that could incorporate the library, or plugin.
Your favorite IRC client probably has a plugin or library that can easily incorporate
OTR. In this chapter, we will be using OTR plugins that are built in the two IRC
applications we will examine.

https://www.khanacademy.org/computing/computer-science/cryptography/ciphers/a/xor-bitwise-operation
https://www.khanacademy.org/computing/computer-science/cryptography/ciphers/a/xor-bitwise-operation

Chapter 5

[103]

The design of OTR, specifically the perfect forward secrecy and deniability features,
have inspired derivates for other protocols besides real-time chatting. For example,
Open WhisperSystems' TextSecure app for mobile devices uses an OTR-like protocol
over SMS and other asynchronous IM channels.

Also, OTR, like Tor and GPG, is recommended by the Freedom of the Press
Foundation, a U.S. Non-profit organization that supports and defends public interest
journalism. This organization provides education and tutorials on how to use these
tools. While presented in the contexts of journalists protecting their sources, as Glenn
Greenwald and Laura Poitras used (Greenwald 2014), the information is applicable
to any user of privacy enhancing technology.

Using the BeagleBone to protect your
online chats
In this chapter, we'll be using the BBB to run OTR on various IRC gateways. The
BBB is well suited to act as your personal IRC gateway. It can easily handle the
IRC connections and act as an always-on server without dramatically increasing
your electric bill. While IRC may seem archaic, it provides an interface that is client
independent and modular. We'll eventually build a complete IRC solution, one that
manages all of your IRC networks. First we will look at the software BitlBee, which
merges your chat networks like Google Talk and Jabber into IRC.

Installing BitlBee on the BeagleBone
BitlBee is an IRC to-other-chat-networks gateway. This means that if you use an existing
chat program, such as Google Talk, Jabber, Twitter, AIM, or Facebook, you can
use BitlBee to chat over those protocols via IRC. The first question when a non-IRC
user hears about BitlBee is, why would you want to do this? while IRC users respond
with excitement. The major benefit is that by using IRC, you can effectively chat
with buddies over Google Talk using the same client software as you use to chat on
IRC. This reduces the number of programs you have to learn. While this may not
seem impressive at first, consider that each program typically has its own keyboard
shortcuts and distinct interface. Also, each vendor frequently changes the appearance
of their application, requiring you to re-learn how to use the tool. On the other
hand, IRC clients are fairly simple in their user interface and IRC interactions are
fairly standardized.

Chatting Off-the-Record

[104]

The other reason BitlBee is useful is that it acts as a proxy server for your chat networks.
Your chat network presence is persistent but you can attach and detach your client
at will. When you re-attach, you can catch-up on missed instant messages. This will
prevent receiving a message on one client, like your phone, but missing it because you
then logged into the chat network with your computer. Additionally, BitlBee supports
OTR so we can use BitlBee to manage our OTR protected conversations.

BitlBee and the OTR plugin are available through the Debian repositories,
so installing is as easy as:

sudo apt-get install bitlbee bitlbee-plugin-otr

The installation procedure will automatically start the BitlBee daemon running on
port 6667, which is the default IRC port. At this point, you can connect with your
favorite IRC client to your BitlBee server. This is one of the advantages of running
BitlBee on your local network from a BBB, it's always on and available from any
other internal computer or smartphone. Since BitlBee is marshalling your accounts,
it won't appear as if you are coming online and offline.

In this chapter, the IRC client we will use will be ERC, which is the Emacs IRC client.
ERC is a client that runs inside an Emacs instance and has several advantages over
traditional IRC clients. First and most important, if you are already using Emacs, you
can be more efficient if you can use Emacs for other tasks. Not only do you save the
cognitive friction from task switching, but the layout and keyboard commands are
already known to you. Also, ERC, like Emacs, is extremely modular and flexible. It
is, of course, a free software program, but there are also many existing modules from
nick highlighting to autoaway that you can use. Lastly, it's naturally cross-platform;
any platform that can run Emacs can run ERC.

For Emacs users, running an IRC client in Emacs makes sense. After
all, dedicated Emacs users consider Emacs to be the most portable
operating system. If you insist on not using Emacs, irssi is a well-
respected IRC client alternative: http://www.irssi.org/.

To connect to your BBB BitlBee server with ERC, inside Emacs, type M-x erc. You'll
be prompted for the IP address. Then hit enter for the default port number and enter
again for the password. You should join the &bitlbee channel and there will be
one other user in that channel with you, root. The following screenshot shows how
root interacts with you in the &bitlbee channel but also illustrates the IRC client
interface inside Emacs:

http://www.irssi.org/

Chapter 5

[105]

Creating a BitlBee account
The first task is to create an account on your BitlBee server. This is a new account that
will manage your BitlBee connections. Later, we can log back in with this account to
load our configuration. Otherwise, we would have to repeat the following steps each
time we connect. Since BitlBee is an IRC gateway, all the commands to BitlBee have
an IRC feel to them. Registration is performed by typing the following command in
the &bitlbee channel:

register <password>

Your password will be echoed back to you and the root user should reply with:

Account successfully created

With BitlBee, it's important to get into the habit of saving often. Otherwise, changes
are not persistent. Saving is simply done by typing save into the &bitlbee channel.
Go ahead and save now.

Adding a Google Talk account to BitlBee
A BitlBee account alone is not that useful. We need to add your other social media
accounts to BitlBee in order to make it useful. The first account we will add is a
Google Talk account. BitlBee supports other chat services such as Yahoo, AIM,
XMPP, MSN, Facebook, and Twitter, so you don't have to use a Google account.
For the full list, refer to http://wiki.bitlbee.org/FrontPage.

http://wiki.bitlbee.org/FrontPage

Chatting Off-the-Record

[106]

Unfortunately, in May 2013, Google announced its new communications product
Hangouts, which does not support XMPP, which is an IETF standard, but instead uses
a proprietary protocol. Specifically, Google Hangout does not support server-to-server
federation support with XMPP. If you have an independent XMPP server, or have an
account on Jabber.org or the Free Software Foundation's server, it will no longer be
possible to communicate with Google Hangout users. You can still use Google Talk,
which fully supports XMPP, but it is not clear when Google will retire Google Talk.

If you don't have a Google account, because of valid privacy concerns,
you should read Google has most of my e-mail because it has all of yours
by Benjamin Mako Hill http://mako.cc/copyrighteous/
google-has-most-of-my-email-because-it-has-all-of-
yours. The author didn't use Gmail, but over 50 percent of his e-mails
correspondence went to Google servers. Unless you are encrypting
your e-mail, Google servers have your correspondence.

To add your Gmail account in BitlBee, type the following into the &bitlbee channel:

account add jabber you@gmail.com

The BitlBee root account will respond with:

<root> Account successfully added with tag gtalk

<root> You can now use the /OPER command to enter the password

<root> Alternatively, enable OAuth if the account supports it: account
gtalk set oauth on

We'll go ahead and enable OAuth:

acc gtalk set oauth on

OAuth is an authorization framework that allows third-party access to
other web services without the need for the third-party application
to know your credential, for example, password. Limited use access
tokens are provided to the third-party application to restrict the access
on the hosting service. More information is available on the OAuth
website http://oauth.net.

As most people have Google+ accounts now, we have to set the format of the nicks
to full names. Otherwise, we will see random strings as nicknames:

account gtalk set nick_format %full_name

http://mako.cc/copyrighteous/google-has-most-of-my-email-because-it-has-all-of-yours
http://mako.cc/copyrighteous/google-has-most-of-my-email-because-it-has-all-of-yours
http://mako.cc/copyrighteous/google-has-most-of-my-email-because-it-has-all-of-yours
http://oauth.net

Chapter 5

[107]

Finally, enable the account with:

acc gtalk on

BitlBee will send a private message to a URL for your OAuth login:

<jabber_oauth> Open this URL in your browser to authenticate:

https://...

<jabber_oauth> Respond to this message with the returned authorization
token.

Clicking on the link will prompt you to accept BitlBee's permissions, which should
look like the following screenshot. After clicking on Accept, you'll receive a code,
which you can then paste back into the private message window.

Once complete, back in the &bitlbee window, you should see the following
messages indicating you are logging in to GTalk:

<root> jabber - Logging in: Starting OAuth authentication

<root> jabber - Logging in: Requesting OAuth access token

<root> jabber - Logging in: Connecting

<root> jabber - Logging in: Connected to server, logging in

<root> jabber - Logging in: Converting stream to TLS

<root> jabber - Logging in: Connected to server, logging in

<root> jabber - Logging in: Authentication finished

<root> jabber - Logging in: Server changed session resource string to
`BitlBee301D65C5'

<root> jabber - Logging in: Authenticated, requesting buddy list

Chatting Off-the-Record

[108]

<root> jabber - Logging in: Logged in

Don't forget to save!

Adding a Jabber account to BitlBee
If you have a Jabber (XMPP) account, you can go ahead and add that to Bitlbee.
The syntax is similar to the prior example:

account add jabber username@jabber.org password

The root user should return with something like:

Account successfully added with tag jabber

Turn the account on with:

acc jabber on

You should now see two accounts when you type account list. Lastly,
save your data!

You can add your Twitter account as well and tweet from IRC.
However, you'll need BitlBee version 3.2.1 or greater; otherwise,
you will receive SSL errors when trying to connect to twitter.

One of the many benefits of joining the Free Software Foundation as a member is
the use of the FSF's XMPP server. Through federation, users can reach you at your
FSF username at the member.fsf.org server. Similarly, fellows of the Free Software
Foundation Europe also have XMPP privileges. For more information, visit the
respective FSF sites at https://www.fsf.org/associate/benefits and
https://fsfe.org/fellowship/index.en.html, respectively.

Adding OTR to your BitlBee server
We installed the OTR plugin for BitlBee already, so it's ready to support OTR. Prior
to an encrypted conversation, we must first generate a key pair. For each account
you have registered with BitlBee, you can have unique key pairs. View your account
list and then generate an OTR key with:

otr keygen 0

After a few seconds, root will inform you that OTR key generation is complete.
At any point, you can view information on your OTR keys with:

otr info

https://www.fsf.org/associate/benefits
https://fsfe.org/fellowship/index.en.html

Chapter 5

[109]

This will provide the key fingerprints for each account. You are now ready to have
an encrypted chat.

Managing contacts in BitlBee
Your contacts, or buddy list, should have been available when BitlBee authenticated
your account. You can view your buddy list in the &bitlbee window with the blist
command. This table will show the nick, the handle at the specific account, and the
status of each contact. BitlBee converts the handle into IRC-friendly names, which are
the "nicks" in the first column. It can become confusing when people use the same
handle on separate accounts. BitlBee allows you to rename nicks to help manage this
problem. For example, BitlBee will append duplicate nicks with an underscore, but
you can rename them with the following command:

rename gabriel_ice_ gabriel_ice_jabber

Adding contacts is also straightforward with the familiar command syntax:

add 0 gabriel.ice@gmail.com

Just remember to check your account list to know which account number to use.

Chatting with BitlBee
Chatting can be performed directly in the &bitlbee channel. Use IRC syntax to
specify the nick and BitlBee will direct it to the appropriate service. A basic chat
session, between maxine and gabriel_ice_japper, would look like this:

<maxine> gabriel_ice_jabber: when can we meet to talk about DeepArcher?

<gabriel_ice_jabber> maxine: Tuesday at 10.

Alternatively, you can use the /query command to open a new window and chat
directly with the user. With this method, you don't have to specify the user's nick
each time because you and your buddy are in a private chat.

For those new to IRC, the following tutorial is a good introduction:
http://www.irchelp.org/irchelp/irctutorial.html.
For those looking for ERC-specific help, the Emacs Wiki has some
resources: http://www.emacswiki.org/emacs/ErcBasics.

http://www.irchelp.org/irchelp/irctutorial.html
http://www.emacswiki.org/emacs/ErcBasics

Chatting Off-the-Record

[110]

Chatting with OTR in BitlBee
To initiate an OTR protected chat, type:

otr connect gabriel_ice_jabber

While we are connected at this point and the chat session will be encrypted,
we are left with the problem of how do we really know who we are chatting with?
This question may seem existential, but it is an important one. A common attack on
a communication protocol is a Man-In-The-Middle (MITM) attack. The canonical
setup of the MITM attack involves two parties who wish to communicate, Alice and
Bob, and the malicious meddler Mallory. Alice initiates a connection with Bob, but
it is usurped by Mallory and likewise with the connection from Bob to Alice. Alice
thinks she is talking to Bob, but really she is talking to Mallory, who is forwarding
messages to Bob and vice versa. At this point, Mallory can direct and manipulate
the conversation at will.

To defeat this, we need to authenticate the receiving party. In OTR, you could
verify the key fingerprint of your partner. This requires you to have swapped
OTR fingerprints a priori and it might not be very convenient to carry your OTR
fingerprint with you at all times. The other mechanism is to use the Socialist
Millionaire Problem to authenticate your buddy. The Socialist Millionaire
Problem is discussed in more detail in the following subsection, for now, think
of it as a question and answer game where the answer would only be known by
the person with whom you are communicating.

To initiate the protocol in BitlBee, type something like the following:

otr smpq gabriel_ice_jabber "What beer did I order last night, one word,
lowercase?" ipa

Presumably, you and Gabriel Ice were out at dinner last night and he would know
the type of beer you ordered. When phrasing the question, it's good to include
instructions of how to type it. Else, it would result in an incorrect response and
probably confuse your partner, who despite the drinks, distinctly remembers
you drinking an IPA. If your partner responds correctly, you should see:

<root> smp: initiating with gabriel_ice_jabber_...

<root> smp gabriel_ice_jabber_: secrets proved equal, fingerprint trusted

This mechanism is one-way; Gabriel must initiate the protocol in order to fully trust
you as well. This portion of the exchange looks like this:

<root> smp: initiated by gabriel_ice_jabber with question: "What did I
have for lunch yesterday, one word, lowercase?"

<root> smp: respond with otr smp gabriel_ice_jabber <answer>

Chapter 5

[111]

<jbd> otr smp gabriel_ice_jabber pizza

<root> smp: responding to gabriel_ice_jabber...

<root> smp gabriel_ice_jabber: correct answer, you are trusted

Congratulations! You have connected and authenticated and may chat away with
OTR and BitlBee! If you are using GTalk and are also logged in to Google with your
browser, you may notice the encrypted messages going back and forth. You can
probably log out of GTalk from your browser, but just for fun, if you are logged in,
you will see the OTR messages, which look like this:

?OTR:AAIDAAAAAAQAAAAFAAAAwBPAdyxNJT7MYxOFBPfmPRCbW3yE6gADfimB7wikaf
/r9/DVQ3hZfJXj+c7HSddySk77fJi3csbRIIxKCSXGLO/9cOw7SJ+u10d8D6Wp2scCAi7TzO
/YGkZmeGlef3lYUbwaVkH5VoYfLSo+i90McmLrgEfM9kgZuXLtDA1H2f4jWdtBJh1XxdK
/GyZBZvTcncMs/e3rRrKpSNZiJq0kijMhIK6N4NRdaNK1URipDJai1d2bnGJ2Pk0rihXc5yzCr
gAAAAAAAAACAAAAEUw6xZ+tJrdEG/+yqaiwoDi0Fc9eloiWtIc1UWQ8JTIT3eaKvuMAAAAA.

Understanding the Socialist Millionaire Problem
Even a well-designed protocol such as OTR can have subtle design flaws. For those
looking to add cryptography to your project, there is a well-known saying, don't
roll your own crypto, which means don't invent your own cryptography because the
odds are against you and one mistake can undermine your security. Plus even
seasoned cryptographers don't get everything right on the first try. Fortunately,
releasing the research, design, and code helps with the peer review process.

In response to some critiques on OTR's authentication phase, the authors improved
their protocol (Alexander 2007). Prior to this paper, OTR users had to verify the
fingerprint of OTR keys out-of-band. While this works, it has a human factor
drawback as it is inconvenient and not very scalable to hand out OTR keys to people
with whom you may want to securely communicate. However, two parties may
share more intimate knowledge about each other that would prove their authenticity.
The problem then becomes how do Alice and Bob share some secret information
without revealing it to each other. The researchers discovered that this problem is
a re-statement of the Socialist Millionaire Problem where two millionaires want to
know whether they are equally wealthy without revealing to each other the quantity
of their wealth.

The mathematics behind this problem rely on a technique called a zero-knowledge
proof. A zero knowledge proof allows someone to attest to the correctness of a
statement without providing any additional information about the said statement.
The details and proof of OTR's zero-knowledge proofs are beyond the scope of this
book and described in detail in (Alexander 2007).

Chatting Off-the-Record

[112]

The implication of using the Socialist Millionaire Problem in OTR is that Alice can
ask Bob a specific question that only Bob would know. If Mallory is masquerading
as Bob and if Alice chose a good question to which Mallory doesn't know the answer,
Mallory won't gain any additional information about the answer if she guesses
wrong. For example, Alice asks Mallory, pretending to be Bob, who her favorite
guitarist is. Bob knows that Alice is a Who fan and the answer is none other then
Pete Townshend. Mallory does not know this detail so she provides an admirable,
but incorrect, answer of Jimmy Page. Alice will see the protocol fail and know that
Bob is not who he appears to be. But Mallory will not know any other information
about the answer other than that Jimmy Page is not correct. However, it is too late
for Mallory because Alice no longer trusts her and terminates the connection.

Marshalling your IRC connections with
a Bouncer
Now that BitlBee is running on the BeagleBone, you can enjoy OTR-protected instant
messaging, but we can improve the setup. Currently, we are connecting to BitlBee
directly from your IRC client. This is fine if you have one client. But, if you are chatting
with your laptop and then get up and go, you may want to continue a conversation on
your phone. For this, we will need a more persistent proxy connection. The problem
can be stated in a more general way: how can we maintain a persistent connection to
all of our IRC networks, including BitlBee. For this, we'll need an IRC bouncer.

IRC bouncers act as a proxy server and maintain your connection to an IRC server.
This may be useful on servers that don't support nick registration and you want to
maintain your nick. As mentioned in the previous use case, bouncers generally support
multiple clients which will allow you to have a near seamless IRC conversation as you
switch devices. Since we are using BitlBee as an IRC gateway to our XMPP and instant
message networks, we can combine IRC connections as well and have all of
this managed by the bouncer.

The modern uses of IRC
IRC was invented in 1988 and it was one of the first global, real-time, chat networks.
While social networks may have replaced much of the casual conversation on the
Internet, IRC still has its place. While those conversations still continue on IRC, there
is a group that routinely hangs out on IRC that should be of interest to the readers of
this book: open source developers. Most well-maintained open source projects have
a corresponding IRC channel where at all hours, you can generally find help.

Chapter 5

[113]

For open source projects, the two biggest IRC networks are freenode and oftc. In
fact, every major software and hardware package in this book has a corresponding
IRC channel where you can ask for help. There are a few benefits to using IRC over
other mediums. For active channels, it is beneficial and encouraged to lurk prior to
adding to the conversation. Lurking is just passively watching the conversation. You
may, and probably will, learn something just by reading the existing conversation.
Also, if you do have a problem or a question, IRC is a real-time chat, so you
potentially can quickly resolve your issue. It's also a more informal medium than
a public mailing list. If you have some trepidation about asking your question on
a mailing list, IRC is the place to ask.

On freenode, the relevant channels are: #sparkfun, for general
electronics questions and to chat with some SparkFun employees and
customers, #beagle, home to BeagleBone enthusiasts, #gnupg, for
GPG-related questions, and #cryptotronix, which is the author's
channel about open source crypto hardware. On oftc (irc.oftc.net),
you can check out the #bitlbee channel for help on BitlBee or #tor to
talk about Tor.

IRC, like any shared communication medium, has certain netiquette that users expect
everyone to follow. Surprisingly, there is an RFC that defines netiquette guidelines
(RFC 1855). It's certainly worth a read, but you should be ok if you follow these
tips. First of all, don't ask to ask. This means, don't ask in an IRC channel if you can
ask a question. You can just ask your question directly. While there are operators in
channels, IRC typically doesn't follow the raise-your-hand-and-wait-to-be-called-on
approach. Secondly, don't flood the channel. This means not to paste a large amount of
text into the channel as it will cause all connected clients to rapidly scroll the text off of
the screen. Instead, use a paste service like that provided by Debian (http://paste.
debian.net/) and then paste the link in the IRC channel, while explaining what is
contained in the linked information. Lastly, be patient. As previously stated, many
people lurk on IRC in the background and may not immediately see your question.
Depending on the time at which you asked your question, it's reasonable to wait 30
minutes or so. On an active channel, you'll probably get a response quicker than that,
just don't keep asking the question repeatedly.

irc.oftc.net
http://paste.debian.net/
http://paste.debian.net/

Chatting Off-the-Record

[114]

Downloading and installing the IRC bouncer
ZNC
We'll be using the IRC bouncer package called ZNC. ZNC is a well-maintained and
up-to-date package and like all good open source software, has an IRC channel: #znc
on freenode. The packages in the Debian repository are a bit old, so we'll install ZNC
from source. Download the source tarball by issuing the following command:

wget http://znc.in/releases/znc-1.4.tar.gz

We want to develop the good habit of checking signatures on downloaded software.
The 1.4 release is signed by Alexey Sokolov, whose GPG fingerprint is: D582 3CAC
B477 191C AC00 7555 5AE4 20CC 0209 989E. You can download his public key
with the following command:

gpg –recv-key D5823CACB477191CAC0075555AE420CC0209989E

Next, download the signature file for the release:

wget http://znc.in/releases/znc-1.4.tar.gz.sig

Lastly, verify the signature over the downloaded software:

gpg --verify znc-1.4.tar.gz.sig znc-1.4.tar.gz

You should see something like the following:

gpg: Signature made Thu 08 May 2014 08:21:40 PM UTC using RSA key ID
0209989E

gpg: Good signature from "Alexey Sokolov <alexey@alexeysokolov.co.cc>"

gpg: aka "Alexey Sokolov <ktonibud@gmail.com>"

gpg: aka "Alexey Sokolov <alexey@asokolov.org>"

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the
owner.

Primary key fingerprint: D582 3CAC B477 191C AC00 7555 5AE4 20CC 0209
989E

While this procedure adds a few steps, it should soon become second nature. If you
don't perform these steps, when there is a signature file available, you are assuming
that the software you downloaded is the software that was posted. Even though
there are checksums built into the TCP, which you are using when you use wget,
it does not guarantee that the file is the correct file since there is an opportunity
for a MITM attack. Regardless of your paranoia level, it's good practice to verify
the software each time. In fact, a quick bash script will help here since it's standard
practice to append .sig to the end of the file:

Chapter 5

[115]

wgetsig(){
 wget $1
 wget $1.sig
 fn=$(basename $1)
 gpg --verify $fn.sig $fn
}

If you add that function to your .bashrc or equivalent, you can just type wgetsig
<url> to grab the file, the signature, and run them through GPG. Now that you can
trust that the software you downloaded is the software that was posted, you can
finally extract the package:

tar -zxvf znc-1.4.tar.gz

To build ZNC from source, you'll want to install the following dependencies:

sudo apt-get install libssl-dev libperl-dev

Most software tarballs support the confgure-make-make install dance and this
one is no different. You can build and install with the following:

cd znc-*

./configure

make

sudo make install

Building ZNC on the BBB will take a while because it will build each of the ZNC
modules as well, so go enjoy some coffee.

Chatting Off-the-Record

[116]

Configure ZNC to manage your
IRC connections
Before we configure ZNC, let's step back and examine our system architecture. We
have at least three distinct pieces of hardware involved: the machine on which your
IRC client is running, the BBB, and the machines running IRC servers. One of those
machines is the BBB since it's running the BitlBee IRC server. Examine the following
deployment diagram:

Client

IRC Client

BeagleBone

ZNC:50000

BitIBee:6667

<<connects>>

Server

IRC Server

Server

XMPP/Chat Server

<<connects>>

<<connects>>

1

N

N
1

<<connects>>

N 1

Let's start with the BBB, depicted by the center cube. The BBB is running two
modules: ZNC and BitlBee. ZNC is the module to which multiple IRC clients can
connect. ZNC is connected to the BitlBee module, which is a process also running
on the same hardware. ZNC is also connected to one or more different IRC servers.
BitlBee maintains connections to various XMPP or chat servers but since BitlBee itself
is an IRC server, you connect to it through ZNC. Once everything is set up, you will
only have to worry about connecting to ZNC.

ZNC needs a configuration file and the easiest way to generate the configuration file
is to run the following command:

znc --makeconf

This will launch an interactive command-line interface. You'll need to create a new
ZNC username that is not associated with any BitlBee or IRC systems. You will also
have to decide what port to run the service. If you pick a port number in the private
range, 49152 to 65535, you'll have less of a chance of colliding with another service.
For this example, port 50000 was chosen. There are quite a few ZNC modules, but
you'll want to enable the webadmin module to easily configure ZNC. Lastly, be
sure to enable SSL. It will generate a self-signed certificate, at which most browsers
will grumble when connecting. Alternatively, you can create a full Public Key
Infrastructure (PKI), complete with your own certificate authority, and supply
the server certificate to ZNC.

Chapter 5

[117]

PKIs are a bookworthy subtopic. An introduction to the complexities
to PKI is well documented by Peter Gutmann in Everything you Never
Wanted to Know about PKI but were Forced to Find Out at http://www.
cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.pdf.

The example configuration session is listed as follows:

[..] Checking for list of available modules...

[>>] ok

[**] Building new config

[**]

[**] First let's start with some global settings...

[**]

[??] What port would you like ZNC to listen on? (1025 to 65535): 50000

[??] Would you like ZNC to listen using SSL? (yes/no) [no]: yes

[??] Would you like ZNC to listen using both IPv4 and IPv6? (yes/no)
[yes]: yes

[..] Verifying the listener...

[>>] ok

[**] Unable to locate pem file: [/home/debian/.znc/znc.pem], creating
it

[..] Writing Pem file [/home/debian/.znc/znc.pem]...

[>>] ok

[**]

[**] -- Global Modules --

[**]

[**] +-----------+---
-----+

[**] | Name | Description

[**] +-----------+---------------------------------------+

[**] | partyline | Internal channels and queries for users

 connected to znc |

[**] | webadmin | Web based administration module |

[**] +-----------+---------------------------------------+

[**] And 10 other (uncommon) modules. You can enable those

 later.

[**]

[??] Load global module <partyline>? (yes/no) [no]: yes

[??] Load global module <webadmin>? (yes/no) [no]: yes

[**]

http://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.pdf
http://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.pdf

Chatting Off-the-Record

[118]

[**] Now we need to set up a user...

[**]

[??] Username (AlphaNumeric): zncbeagle

[??] Enter Password:

[??] Confirm Password:

[??] Would you like this user to be an admin? (yes/no) [yes]:

 yes

[??] Nick [zncbeagle]:

[??] Alt Nick [zncbeagle_]:

[??] Ident [zncbeagle]:

[??] Real Name [Got ZNC?]: ZNC Admin

[??] Bind Host (optional):

[??] Number of lines to buffer per channel [50]:

[??] Would you like to clear channel buffers after replay?

 (yes/no) [yes]:

[??] Default channel modes [+stn]:

[**]

[**] -- User Modules --

[**]

[**] +--------------+--+

[**] | Name | Description |

[**] +--------------+--+

[**] | chansaver | Keep config up-to-date when user |

 | | joins/parts |

[**] | controlpanel | Dynamic configuration through IRC. Allows editing
only yourself if you're not ZNC admin. |

[**] | perform | Keeps a list of commands to be executed when ZNC
connects to IRC. |

[**] | webadmin | Web based administration module
|

[**] +--------------+--
--+

[**] And 21 other (uncommon) modules. You can enable those later.

[**]

[??] Load module <chansaver>? (yes/no) [no]:

[??] Load module <controlpanel>? (yes/no) [no]:

[??] Load module <perform>? (yes/no) [no]:

[??] Load module <webadmin>? (yes/no) [no]: yes

[**]

[??] Would you like to set up a network? (yes/no) [no]:

Chapter 5

[119]

[**]

[??] Would you like to set up another user? (yes/no) [no]:

[..] Writing config [/home/debian/.znc/configs/znc.conf]...

[>>] ok

[**]

[**]To connect to this ZNC you need to connect to it as your IRC server

[**]using the port that you supplied. You have to supply your login
info

[**]as the IRC server password like this: user/network:pass.

[**]

[**]Try something like this in your IRC client...

[**]/server <znc_server_ip> +50000 zncbeagle:<pass>

[**]And this in your browser...

[**]https://<znc_server_ip>:50000/

[**]

[??] Launch ZNC now? (yes/no) [yes]: yes

[..] Opening config [/home/debian/.znc/configs/znc.conf]...

[>>] ok

[..] Loading global module [partyline]...

[>>] [/usr/local/lib/znc/partyline.so]

[..] Loading global module [webadmin]...

[>>] [/usr/local/lib/znc/webadmin.so]

[..] Binding to port [+50000]...

[>>] ok

[**] Loading user [zncbeagle]

[..] Loading user module [webadmin]...

[>>] [/usr/local/lib/znc/webadmin.so]

[..] Forking into the background...

[>>] [pid: 7019]

[**] ZNC 1.4 - http://znc.in

Chatting Off-the-Record

[120]

Adding OTR to your ZNC server
While BitlBee has our XMPP and chat networks covered with OTR, our IRC networks
are OTR-less at the moment. If you don't plan on using OTR, then you can still use the
BBB as your IRC gateway and enjoy a consolidated IRC platform. Since OTR has to be
initiated by one of the communicating parties, this chat configuration will interoperate
with any IRC system. But, if you want OTR over your other IRC channels, then there
are two methods to resolve this. First of all, you can use OTR from your IRC client.
This will provide an end-to-end OTR session from your client to your communicating
party, assuming they are using OTR from their client. However, most, but not all
clients have an OTR-plugin. The other approach, the one that will be presented here,
is to use OTR inside ZNC.

There are pros and cons to this approach. The benefit is that for all of your chat
networks, regardless of your client, you will have the same OTR key. Therefore,
once your buddies authenticate you and trust your key, they can keep that trust
even when you switch to a different IRC network. Also, you will no longer need to
run an OTR plugin on your client. However, the OTR session is terminated at ZNC.
Therefore, it is extremely important to have a secure connection from your client to
ZNC. At minimum, you should turn on the SSL option as previously mentioned.
With that self-signed certificate, you are susceptible to a MITM attack, though, so
it may be worth your time to generate a certificate authority and issue a certificate
to your ZNC server. The reason you are at risk is that it's fairly easy to generate a
self-signed certificate as ZNC does. At minimum, you should take note of the public
key generated in the self-signed certificate and only trust the SSL connection if your
ZNC server presents that known key. This technique is known as certificate pinning.
As previously mentioned, generating PKIs is a nuanced task, so I'll leave this as a
(moderately difficult) exercise for the reader.

Another option, if you don't want to deal with SSL, is that you can ssh into your BBB
and run an IRC client on localhost. This will still provide confidentiality for your
messages between your computer and the server (the BBB) but it will restrict the IRC
clients available to you since the IRC client would be running on the BBB. For the rest
of this chapter, we will continue with the SSL approach.

The ZNC OTR module is fairly new, so it must be built from source. It also depends
on a version of OTR that is not available in Debian wheezy, but it is available as a
backport. Edit your apt-sources file to add the backport repository:

sudo nano /etc/apt/sources.list

Add the following line to the end:

deb http://http.debian.net/debian wheezy-backports main

Chapter 5

[121]

Then perform:

sudo apt-get update

To install the newer version of OTR, enter the following command:

sudo apt-get -t wheezy-backports install "libotr5" "libotr5-dev"

Clone the znc-otr module repository:

git clone https://github.com/mmilata/znc-otr.git

Enter the directory and type make. You should see:

LIBS="-lotr" znc-buildmod otr.cpp

Building "otr.so" for ZNC 1.4... [ok]

Copy otr.so to ~/.znc/modules and note, you may have to create the modules
directory. The znc-otr module is now installed, but not loaded.

Adding your networks to ZNC
With all of the components installed, we can now configure ZNC. Since we've enabled
the ZNC webadmin module, we can use our browser to configure our bouncer and
add accounts. You can access the webadmin module by typing the URL of your BBB
followed by the port number of ZNC as follows:

https://192.168.1.42:50000

Chatting Off-the-Record

[122]

Log in with your username and password. On the right-hand side of the page,
there will be a navigation menu as shown in the following screenshot:

Click on Your Settings. Then scroll down to the Networks section and click on Add.
Here you can add your BitlBee settings we previously created. The Network Name is
BitlBee and the Nickname is the BitlBee user you created. Under Servers of this IRC
Network, enter the following and replace the password with your BitlBee password:

localhost 6667 password

Scroll to the bottom of the page and click on Add Network to save. Now you can
go back to the Your Settings page and add other IRC networks in a similar manner.
For this chapter, let's add a freenode account as we'll be using it to demonstrate how
to use OTR over IRC. If you don't have one, you can make up a nick and enter the
following in the Servers of this IRC network section:

chat.freenode.net +6697

The +6697 indicates to ZNC that you want to connect to freenode using SSL on port
6697, which is the semi-official IRC TLS port. You can add channels by clicking on
Add under Channels and ZNC will not only keep you in the channel when your client
detaches, but will playback the channel's conversation. You can specify how many
lines to playback by changing the Buffer Count setting in the Channel Info screen.

Chapter 5

[123]

Connecting to ZNC from your IRC client
You can now connect to ZNC from your IRC client. Depending on the client, you should
be able to set your username and password in the server password field. If you receive
an incorrect password warning and you are sure that you typed in the password correctly,
set your password to username:password. You need to do this if using ERC. More
specifically, you should connect with M-x erc-tls and supply the IP of your BBB,
the port number of ZNC, username, and the password in the previous format.

If you've added multiple networks, the first messages you should see are the
following when you make your connection to your BBB:

-*status- You have several networks configured, but no network was
specified for the connection.

-*status- Selecting network [bitlbee]. To see list of all configured
networks, use /znc ListNetworks

-*status- If you want to choose another network, use /znc JumpNetwork
<network>, or connect to ZNC with username zncbeagle/<network> (instead
of just zncbeagle)

These messages are from a virtual user. The prefix for virtual users is an * and this
user is status. While ZNC is connected to multiple networks, you are only seeing the
BitlBee network at the moment. Here you can interact with BitlBee like we did in a
previous section. As long as ZNC and BitlBee are running, ZNC will remain connected
to BitlBee and you can attach and detach at will. To use OTR on an actual IRC network,
like freenode, we need to attach ZNC to the other network. There are two ways to
do this. We can, as status reminded us, jump to that network with the following
command, assuming you named your freenode network freenode:

/msg *status JumpNetwork freenode

This will take your existing session and jump it over to freenode. While you may be
in the same client window, you are now talking on a different IRC network since we
switched from BitlBee to freenode. If you use GNU screen or tmux, we just performed
a similar action as we would have had we switched to a new screen. The session is still
running; we are just looking at a different instance. This method has the benefit of only
using one connection from your client to ZNC, but it can be a bit confusing.

Alternatively, you can open another ZNC connection. To indicate to ZNC that you
want the new session to attach to a different network, you must use a different
syntax. Your username must be in the form username/network and if you were
sending the username in the password field, as you must with ERC, the format
is username/network:password. So, in this example the username is:

zncbeagle/freenode

Using either method, connect to freenode via IRC.

Chatting Off-the-Record

[124]

Establishing OTR connections through ZNC
Now that we are using ZNC to manage our IRC traffic, let's establish an OTR session.
The process is similar to what we did with BitlBee and by the end of this, you should
be well-versed in establishing identity with OTR. For this experiment, you will either
need a crypto-savy friend, a begrudging significant other, or a separate IRC account.
Basically, you need somebody with whom you can chat via OTR.

Now that you are logged onto freenode or your favorite IRC network, initiate a chat
with another user. On most clients, this will open the conversation in a new window
when you type the following command:

/query username

At this point, you can enjoy an old-fashioned, unencrypted chat with your buddy.
To chat with OTR, we first need to generate a key, like we did with BitlBee. In ZNC,
there is a virtual user, *otr, similar to the *status user, to whom you direct OTR
commands. First, you should generate a keypair by typing in the following command:

/msg *otr genkey

Remember, all virtual users in ZNC have the * prefix. This will probably open a new
window with the *otr user and you should see something like this:

<*otr> Starting key generation in a background thread.

<*otr> Key generation finished.

Now you can initiate an OTR conversation. If you want to initiate the OTR
conversation, type the following:

?OTR?

Otherwise, your buddy can initiate the OTR conversation and ZNC-OTR will
automatically proceed with the protocol. Unlike BitlBee, the question is not part
of the authenticate command, so you must type that first on your own. If Alice
and Bob are talking, the conversation prior to the authenticate step would look like:

<alice> When prompted, answer the question: What was printed on my
t-shirt which I wore yesterday? One word, lowercase.

<bob> got it.

The command to initiate authentication is of the format: /msg *otr auth username
answer. Continuing our example, the command would look like the following,
where the answer to the question is tworkeffx:

/msg *otr auth bob tworkeffx

Chapter 5

[125]

This will prompt your buddy to participate in the OTR authentication phase and
what he sees on his screen depends on the IRC client he is using. The *otr user
should respond with something like the following messages:

<*otr> [bob] Gone SECURE. Please make sure logging is turned off on your
IRC

<*otr> [bob] Peer is not authenticated. There are two ways of verifying
their identity:

<*otr> [bob] 1. Agree on a common secret (do not type it into the chat),
then type auth bob <secret>.

<*otr> [bob] 2. Compare their fingerprint over a secure channel, then
type trust bob.

<*otr> [bob] Your fingerprint: E8949490 D0326A85 1049EE79 DF111C0A
BCC68D42

<*otr> [bob] Their fingerprint: 00694775 3945FA05 B2E0DA61 5416DFFC
4F9C5936

<*otr> [bob] Initiated authentication.

<*otr> [bob] Peer replied to authentication request.

<*otr> [bob] Successfully authenticated.

As *otr reminds us, there are two methods to authenticate the user. We are using
method number 1, which is the Socialist Millionaire Protocol. Your buddy, Bob,
responded with your answer and you have authenticated him. Bob should conduct
a similar exchange and the format for the answer is:

/msg *otr auth bob <answer>

And now, you can enjoy an encrypted chat session.

Extending the project
Currently, your BeagleBone is only serving your local network. You can enable port
forwarding, like you did with your Tor server to open it up to the Internet to allow
access to ZNC while you are on-the-go. If you do this, be sure that you are using SSL
and consider using a Dynamic DNS service so you don't have to remember your
IP address.

Chatting Off-the-Record

[126]

The ZNC and BitlBee packages are quite extensible. Moreover, since they are IRC
servers, you can run an IRC bot in your ZNC server. There are several popular IRC
bot packages and perhaps the most well known is Eggdrop (http://www.eggheads.
org/). A custom bot on your BBB IRC server can interact with you from IRC to
hardware. For example, if you add a temperature sensor on your BBB, you can
query the bot to find out the temperature in the room. If you add a ZigBee radio to
your BBB and attach the same temperature sensor to a corresponding ZigBee radio
outside, powered by a battery, the bot can tell you the temperature outside. If you
become an avid IRC user, you will enjoy combining the hardware electronics project
with your BBB bot.

If you want to involve the CryptoCape to add some hardware protection, you could
store ZNC's SSL certificate in the TPM. The TPM can store RSA keys and the keys
can be generated such that the private key remains in the TPM. While there would
be significant programming to connect the various components, this would certainly
be a fun and challenging project!

Summary
In this chapter, you learned how to use another privacy tool, OTR. We used OTR with
two different applications and examined how OTR authentication works. We also have
our BBB set up to act as an IRC gateway to our chat networks and to manage all of our
IRC communication.

In this book, we've taken three of the most popular and well-respected privacy and
security applications and used them on the BeagleBone Black. The small form factor,
low power consumption, and extendibility of the BBB makes it an ideal privacy aid.
The software and hardware used in this book makes heavy use of cryptography,
which is inherently a social and often controversial technology. We've also learned
some of modern cryptography's social-political struggles along the way. Finally, you
don't need to be a secret agent to communicate privately and securely; the best tools
are freely available. You can improve these tools by using them and providing your
feedback to the developers.

Happy hacking!

http://www.eggheads.org/
http://www.eggheads.org/

Selected Bibliography

Chapter 1
•	 Gibb, Alicia. "The death of patents and what comes after." Accessed

September 3, 2014. https://www.youtube.com/watch?v=z__Sbw1Ax4o.
TEDx Stockholm, 2012.

•	 BeagleBone Black Wiki. "WIFI Adapters." Accessed September 3, 2014.
http://elinux.org/Beagleboard:BeagleBoneBlack#WIFI_Adapters.

•	 Batsov, Bozhidar. "Package Management in Emacs: The Good, the Bad
and the Ugly." Accessed September 3, 2014. http://batsov.com/
articles/2012/02/19/package-management-in-emacs-the-good-the-
bad-and-the-ugly/. 2012.

•	 Batsov, Bozhidar. "Prelude." Accessed September 3, 2014. https://github.
com/bbatsov/prelude. 2014.

•	 Cygwin. Accessed September 3, 2014. https://www.cygwin.com.
•	 Boneh, Dan. "Cryptography I." Accessed September 3, 2014. https://www.

coursera.org/course/crypto.
•	 Boneh, Dan. "Cryptography II." Accessed September 3, 2014. https://www.

coursera.org/course/crypto2.
•	 Molloy, Derek. "Setting up a C++ Cross-Development Platform." Accessed

September 3, 2014. http://derekmolloy.ie/beaglebone/ setting-up-
eclipse-on-the-beaglebone-for-c-development/. 2013.

•	 edX. "Introduction to Linux." Accessed September 3, 2014. https://www.
edx.org/course/linuxfoundationx/linuxfoundationx-lfs101x-
introduction-1621.

•	 eLinux Wiki. "BeagleBone Black Serial." Accessed September 3, 2014.
http://elinux.org/Beagleboard:BeagleBone_Black_Serial.

https://www.youtube.com/watch?v=z__Sbw1Ax4o
http://elinux.org/Beagleboard:BeagleBoneBlack#WIFI_Adapters
http://batsov.com/articles/2012/02/19/package-management-in-emacs-the-good-the-bad-and-the-ugly/
http://batsov.com/articles/2012/02/19/package-management-in-emacs-the-good-the-bad-and-the-ugly/
http://batsov.com/articles/2012/02/19/package-management-in-emacs-the-good-the-bad-and-the-ugly/
https://github.com/bbatsov/prelude
https://github.com/bbatsov/prelude
https://www.cygwin.com
https://www.coursera.org/course/crypto
https://www.coursera.org/course/crypto
https://www.coursera.org/course/crypto2
https://www.coursera.org/course/crypto2
http://derekmolloy.ie/beaglebone/ setting-up-eclipse-on-the-beaglebone-for-c-development/
http://derekmolloy.ie/beaglebone/ setting-up-eclipse-on-the-beaglebone-for-c-development/
https://www.edx.org/course/linuxfoundationx/linuxfoundationx-lfs101x-introduction-1621
https://www.edx.org/course/linuxfoundationx/linuxfoundationx-lfs101x-introduction-1621
https://www.edx.org/course/linuxfoundationx/linuxfoundationx-lfs101x-introduction-1621
http://elinux.org/Beagleboard:BeagleBone_Black_Serial

Selected Bibliography

[128]

•	 EmacsWiki. "Emacs Newbie." Accessed September 3, 2014. http://www.
emacswiki.org/emacs/EmacsNewbie.

•	 EmacsWiki. "Viper Mode." Accessed September 3, 2014. http://www.
emacswiki.org/emacs/ViperMode. 2014.

•	 Corey, Gerald. "BeagleBone Black System Reference Manual. Beagleboard.
org." Accessed September 3, 2014. https://github.com/CircuitCo/
BeagleBone-Black/ blob/master/BBB_SRM.pdf?raw=true. 2014.

•	 Hertzog, Raphael, and Roland Mas. The Debian Administrator's Handbook.
Freexian SARL. 2013.

•	 Homebrew. Accessed September 3, 2014. http://brew.sh/.
•	 Axelson, Jan. "Using Eclipse to Cross-compile Applications for Embedded

Systems." Accessed September 3, 2014. http://janaxelson.com/eclipse1.
htm. 2014.

•	 Katz, Jonathan. "Cryptography." Accessed September 3, 2014. https://www.
coursera.org/course/cryptography.

•	 Katz, Jonathan, and Yehuda Lindell. Introduction to Modern Cryptography
(Chapman & Hall/Crc Cryptography and Network Security Series). Chapman
& Hall/CRC. 2007.

•	 Khan Academy. "Electricity and magnetism." Accessed September 3, 2014.
https://www.khanacademy.org/science/physics/electricity-and-
magnetism.

•	 Khan Academy. "Journey into cryptography." Accessed September 3,
2014. https://www.khanacademy.org/computing/computer-science/
cryptography.

•	 Murphy, Sean, and Fred Piper. Cryptography: A Very Short Introduction.
Oxford University Press. 2002.

•	 nixCraft. "Ubuntu / Debian Linux Regenerate OpenSSH Host Keys."
Accessed September 3, 2014. http://www.cyberciti.biz/faq/howto-
regenerate-openssh-host-keys/.

•	 Nmap.org. "Microsoft Windows binaries." Accessed September 3, 2014.
http://nmap.org/download.html#windows.

•	 OSHWA. http://www.oshwa.org/definition/. 2013.
•	 Paar, Christof, and Jan Pelzl. Understanding Cryptography: A Textbook for

Students and Practitioners. Springer Publishing Company, Incorporated. 2009.
•	 Munroe, Randall. "Permanence." Accessed September 3, 2014. https://

xkcd.com/910/. 2008.

http://www.emacswiki.org/emacs/EmacsNewbie
http://www.emacswiki.org/emacs/EmacsNewbie
http://www.emacswiki.org/emacs/ViperMode
http://www.emacswiki.org/emacs/ViperMode
https://github.com/CircuitCo/BeagleBone-Black/ blob/master/BBB_SRM.pdf?raw=true
https://github.com/CircuitCo/BeagleBone-Black/ blob/master/BBB_SRM.pdf?raw=true
http://brew.sh/
http://janaxelson.com/eclipse1.htm
http://janaxelson.com/eclipse1.htm
https://www.coursera.org/course/cryptography
https://www.coursera.org/course/cryptography
https://www.khanacademy.org/science/physics/electricity-and-magnetism
https://www.khanacademy.org/science/physics/electricity-and-magnetism
https://www.khanacademy.org/computing/computer-science/cryptography
https://www.khanacademy.org/computing/computer-science/cryptography
http://www.cyberciti.biz/faq/howto-regenerate-openssh-host-keys/
http://www.cyberciti.biz/faq/howto-regenerate-openssh-host-keys/
http://nmap.org/download.html#windows
http://www.oshwa.org/definition/
https://xkcd.com/910/
https://xkcd.com/910/

Appendix

[129]

•	 Munroe, Randall. "Real Programmers." Accessed September 3, 2014.
https://xkcd.com/378/. 2008.

•	 Chua, Sacha. "How to Learn Emacs." Accessed September 3, 2014.
http://sachachua.com/blog/wp-content/uploads/2013/05/How-to-
Learn-Emacs-v2-Large.png. 2013.

•	 Scherz, Paul. Practical Electronics for Inventors. McGraw-Hill. 3rd edition. 2013.
•	 Stallman, Richard M. "Emacs the extensible, customizable self-documenting

display editor." In Proceedings of the ACM SIGPLAN SIGOA Symposium on
Text Manipulation: 147–56. ACM, New York, NY, USA. 1981. Also available at
http://doi.acm.Org/10.1145/800209.806466.

•	 Stallman, Richard M. Gnu Emacs Manual: For Version 24.3. Free Software
Foundation, 17th edition. 2013.

•	 VirtualBox.org. Accessed September 3, 2014. https://www.virtualbox.org/.

Chapter 2
•	 Adafruit Industries. "Adafruit's BeagleBone IO Python Library". Accessed

September 3, 2014. https://github.com/adafruit/adafruit-beaglebone-
io-python.

•	 Appelbaum, Jacob and Nick Mathewson. Pluggable transports for circumvention.
2010. Accessed September 3, 2014. https://gitweb.torproject.org/
torspec.git/blob/refs/heads/master:/proposals/180-pluggable-
transport.txt.

•	 Dingledine, Roger. "Yes, we know about the Guardian article.". Accessed
September 3, 2014. https://blog.torproject.org/blog/yes-we-know-
about-guardian-article. 2013.

•	 Dingledine, Roger and Nick Mathewson. Design of a blocking-resistant anonymity
system. Technical Report 2006-11-001, The Tor Project, https://research.
torproject.org/techreports/blocking-2006-11.pdf. November 2006.

•	 Dingledine, Roger, Nick Mathewson, and Paul Syverson. "In Proceedings of
the 13th Conference on USENIX Security Symposium - Volume 13, SSYM'04."
Tor: The second-generation onion router: 21. USENIX Association. Berkeley, CA,
USA. 2004. http://dl.acm.org/citation.cfm?id=1251375.1251396.

•	 Electronic Frontier Foundation. "The Legal FAQ for Tor Relay Operators."
Accessed September 3, 2014. https://www.torproject.org/eff/tor-
legal-faq.html.en. 2014

https://xkcd.com/378/
http://sachachua.com/blog/wp-content/uploads/2013/05/How-to-Learn-Emacs-v2-Large.png
http://sachachua.com/blog/wp-content/uploads/2013/05/How-to-Learn-Emacs-v2-Large.png
http://doi.acm.Org/10.1145/800209.806466
https://www.virtualbox.org/
https://github.com/adafruit/adafruit-beaglebone-io-python
https://github.com/adafruit/adafruit-beaglebone-io-python
https://gitweb.torproject.org/torspec.git/blob/refs/heads/master:/proposals/180-pluggable-transport.txt
https://gitweb.torproject.org/torspec.git/blob/refs/heads/master:/proposals/180-pluggable-transport.txt
https://gitweb.torproject.org/torspec.git/blob/refs/heads/master:/proposals/180-pluggable-transport.txt
https://blog.torproject.org/blog/yes-we-know-about-guardian-article
https://blog.torproject.org/blog/yes-we-know-about-guardian-article
https://research.torproject.org/techreports/blocking-2006-11.pdf
https://research.torproject.org/techreports/blocking-2006-11.pdf
http://dl.acm.org/citation.cfm?id=1251375.1251396
https://www.torproject.org/eff/tor-legal-faq.html.en
https://www.torproject.org/eff/tor-legal-faq.html.en

Selected Bibliography

[130]

•	 Fuss, Juergen, Tobias Pulls, and Philipp Winter. "Scramblesuit: a
polymorphic network protocol to circumvent censorship." Proceedings of the
12th ACM workshop on Workshop on Privacy in the electronic society, WPES'13:
213-24. New York, NY, USA: ACM. 2013. Also available at http://doi.acm.
org/10.1145/2517840.2517856.

•	 Grusin, Mike. "Serial LCD quickstart." Accessed September 3, 2014.
https://www.sparkfun.com/tutorials/246. 2011.

•	 Kadianakis, George. "New obfsproxy transport: scramblesuit." Accessed
September 3, 2014. https://lists.torproject.org/pipermail/tor-
relays/2014-February/003886.html. 2014

•	 speedtest-cli. Accessed September 3, 2014. https://github.com/sivel/
speedtest-cli.

•	 Tails. Accessed September 3, 2014. https://tails.boum.org/.
•	 Tor Atlas. Accessed September 3, 2014. https://atlas.torproject.org/.
•	 Tor Globe. Accessed September 3, 2014. https://globe.torproject.org/.
•	 Tor Metrics. "Directly connecting users from Turkey." Accessed September 3,

2014. https://metrics.torproject.org/users.html?graph=userstats-
relay-country&start=2014-01-04&end=2014-04-04&country=tr&events
=off#userstats-relay-country.

•	 Tor Project. "Installing Tor on Debian/Ubuntu." Accessed September 3, 2014.
https://www.torproject.org/docs/debian.

•	 Tor Project. Tc: A Tor control protocol (Version 1). Accessed September
3, 2014. https://gitweb.torproject.org/torspec.git?a=blob_
plain;hb=HEAD;f=control-spec.txt.

•	 Tor Stem. Accessed September 3, 2014. https://stem.torproject.org/.
•	 Tor Stem. "Tutorials." Accessed September 3, 2014. https://stem.

torproject.org/tutorials.html.

Chapter 3
•	 Atmel. "ATAES 132." Accessed September 3, 2014. http://www.atmel.com/

devices/ataes132.aspx.
•	 Beagleboard forum. Accessed September 3, 2014. https://groups.google.

com/forum/#!forum/beagleboard.
•	 eLinux Wiki. "BeagleBone Black." Accessed September 3, 2014.

http://elinux.org/Beagleboard:BeagleBoneBlack.

http://doi.acm.org/10.1145/2517840.2517856
http://doi.acm.org/10.1145/2517840.2517856
https://www.sparkfun.com/tutorials/246
https://lists.torproject.org/pipermail/tor-relays/2014-February/003886.html
https://lists.torproject.org/pipermail/tor-relays/2014-February/003886.html
https://github.com/sivel/speedtest-cli
https://github.com/sivel/speedtest-cli
https://tails.boum.org/
https://atlas.torproject.org/
https://globe.torproject.org/
https://metrics.torproject.org/users.html?graph=userstats-relay-country&start=2014-01-04&end=2014-04-04&country=tr&events=off#userstats-relay-country
https://metrics.torproject.org/users.html?graph=userstats-relay-country&start=2014-01-04&end=2014-04-04&country=tr&events=off#userstats-relay-country
https://metrics.torproject.org/users.html?graph=userstats-relay-country&start=2014-01-04&end=2014-04-04&country=tr&events=off#userstats-relay-country
https://www.torproject.org/docs/debian
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=control-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=control-spec.txt
https://stem.torproject.org/
https://stem.torproject.org/tutorials.html
https://stem.torproject.org/tutorials.html
http://www.atmel.com/devices/ataes132.aspx
http://www.atmel.com/devices/ataes132.aspx
https://groups.google.com/forum/#!forum/beagleboard
https://groups.google.com/forum/#!forum/beagleboard
http://elinux.org/Beagleboard:BeagleBoneBlack

Appendix

[131]

•	 Chaos Computer Club. "Chaos Computer Club Breaks Apple TouchID."
Accessed September 3, 2014. http://www.ccc.de/en/updates/2013/ccc-
breaks-apple-touchid. 2013.

•	 Datko, Josh. "BeagleBone Black ATmega Flasher." Accessed September 3,
2014. https://github.com/jbdatko/BBB_ATmega328P_flasher. 2014.

•	 Datko, Josh. "Cryptotronix:CryptoCape." Accessed September 3, 2014.
http://elinux.org/Cryptotronix:CryptoCape. 2014.

•	 Datko, Josh. "CryptoCape Device Tree Source." Accessed September 3, 2014.
https://github.com/beagleboard/linux/blob/3.8/firmware/capes/
BB-BONE-CRYPTO-00A0.dts. 2014.

•	 Datko, Josh. "EClet" Accessed September 3, 2014. https://github.com/
cryptotronix/eclet. 2014

•	 Datko, Josh. "Hashlet." Accessed September 3, 2014. https://github.com/
cryptotronix/hashlet. 2014.

•	 Electronic Frontier Foundation. "Https Everywhere." Accessed September 3,
2014. https://www.eff.org/https-everywhere. 2014.

•	 Gellesaug, David and Nicole Perlroth. "Russian hackers amass over a
billion internet passwords. New York Times." http://www.nytimes.
com/2014/08/06/technology/russian-gang-said-to-amass-more-than-
a-billion-stolen-internet-credentials.html. 2014.

•	 Texas Instrument. "AM335x Crypto Performance." Accessed September 3,
2014. http://processors.wiki.ti.com/index.php/AM335x_Crypto_
Performance.

•	 Munroe, Randall. "Heartbleed explanation." Accessed September 3, 2014.
https://xkcd.com/1354/. 2014.

•	 MythBusters. "Crimes and Myth-Demeanors 2." Episode 59. Accessed
September 3, 2014. https://www.youtube.com/watch?v=3Hji3kp_i9k. 2006

•	 NXP Semiconductor. I2C-Bus Specification and User Manual. http://www.
nxp.com/documents/user_manual/UM10204.pdf. 2014.

•	 O'Flynn, Colin. "Clock Glitch Attack Examples - Bypassing Password Check."
Accessed September 3, 2014. https://www.youtube.com/watch?v=Ruphw98J
WE&list=UUqc9MJwX_R1pQC6A353JmJg. 2014.

•	 Oliveira, David. "BeagleBone Cape EEPROM Generator." Accessed September
3, 2014. https://github.com/picoflamingo/BBCape_EEPROM. 2013.

•	 Petazzoni, Thomas. "Device Tree for Dummies." Embedded Linux Conference
Europe. https://www.youtube.com/watch?v=m_NyYEBxfn8. 2013.

http://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid
http://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid
https://github.com/jbdatko/BBB_ATmega328P_flasher
http://elinux.org/Cryptotronix:CryptoCape
https://github.com/beagleboard/linux/blob/3.8/firmware/capes/BB-BONE-CRYPTO-00A0.dts
https://github.com/beagleboard/linux/blob/3.8/firmware/capes/BB-BONE-CRYPTO-00A0.dts
https://github.com/cryptotronix/eclet
https://github.com/cryptotronix/eclet
https://github.com/cryptotronix/hashlet
https://github.com/cryptotronix/hashlet
https://www.eff.org/https-everywhere
http://www.nytimes.com/2014/08/06/technology/russian-gang-said-to-amass-more-than-a-billion-stolen-internet-credentials.html
http://www.nytimes.com/2014/08/06/technology/russian-gang-said-to-amass-more-than-a-billion-stolen-internet-credentials.html
http://www.nytimes.com/2014/08/06/technology/russian-gang-said-to-amass-more-than-a-billion-stolen-internet-credentials.html
http://processors.wiki.ti.com/index.php/AM335x_Crypto_Performance
http://processors.wiki.ti.com/index.php/AM335x_Crypto_Performance
https://xkcd.com/1354/
https://www.youtube.com/watch?v=3Hji3kp_i9k
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
https://www.youtube.com/watch?v=Ruphw98JWE&list=UUqc9MJwX_R1pQC6A353JmJg
https://www.youtube.com/watch?v=Ruphw98JWE&list=UUqc9MJwX_R1pQC6A353JmJg
https://github.com/picoflamingo/BBCape_EEPROM
https://www.youtube.com/watch?v=m_NyYEBxfn8

Selected Bibliography

[132]

•	 Skorobogatov, Dr Sergei. Physical Attacks on Tamper Resistance: Progress and
Lessons. 2nd ARO Special Workshop on Hardware Assurance. http://www.
cl.cam.ac.uk/~sps32/ARO_2011.pdf. 2011.

Chapter 4
•	 Appelbaum, Jacob. "GPG Configuration." Accessed September 3, 2014.

https://github.com/ioerror/duraconf/raw/master/configs/gnupg/
gpg.conf.

•	 Appelbaum, Jacob, Joseph A. Calandrino, William Clarkson, Edward W.
Felten, Ariel J. Feldman, J. Alex Halderman, Nadia Heninger, Seth D. Schoen,
and William Paul. Lest We Remember: Cold-boot Attacks on Encryption Keys.
52(5): 91-98. Commun. ACM. 2009. Also available at http://doi.acm.
org/10.1145/1506409.1506429.

•	 Borisov, Nikita, George Danezis, and Ian Goldberg. DP5: A Private Presence
Service. Technical Report 2014-10. The Tor Project. http://cacr.uwaterloo.
ca/techreports/2014/cacr2014-10.pdf. 2014.

•	 Datko, Josh. "CryptoCape Trusted Platform Module." Accessed September 3,
2014. http://cryptotronix.com/cryptocape-tpm/. 2014.

•	 Free Software Foundation. "Email Self-Defense." Accessed September 3, 2014.
https://emailselfdefense.fsf.org/en/index.html. 2014.

•	 Free Software Foundation. The GNU Privacy Handbook. https://www.gnupg.
org/gph/en/manual.html. 1999.

•	 Greenwald, Glenn. No Place to Hide: Edward Snowden, the NSA, and the U.S.
Surveillance State. 2014. Metropolitan Books. USA.

•	 Gutmann, Peter. "An Open-Source Cryptographic Coprocessor." Proceedings
of the 9th Conference on USENIX Security Symposium - Volume 9, SSYM'00: 8-8.
USENIX Association, Berkeley, CA, USA. 2000. Also available at http://
dl.acm.org/citation.cfm?id=1251306.1251314.

•	 HAVEGE. Accessed September 3, 2014. http://www.irisa.fr/caps/
projects/hipsor/.

•	 Huang, Bunnie. "On Hacking MicroSD Cards." Accessed September 3, 2014.
http://www.bunniestudios.com/blog/?p=3554. 2013.

•	 Langner, Ralph. Stuxnet: Dissecting a Cyberwarfare Weapon. 9(3): 49-51. IEEE
Security and Privacy. 2011. Also available at http://dx.doi.org/10.1109/
MSP.2011.67.

http://www.cl.cam.ac.uk/~sps32/ARO_2011.pdf
http://www.cl.cam.ac.uk/~sps32/ARO_2011.pdf
https://github.com/ioerror/duraconf/raw/master/configs/gnupg/gpg.conf
https://github.com/ioerror/duraconf/raw/master/configs/gnupg/gpg.conf
http://doi.acm.org/10.1145/1506409.1506429
http://doi.acm.org/10.1145/1506409.1506429
http://cacr.uwaterloo.ca/techreports/2014/cacr2014-10.pdf
http://cacr.uwaterloo.ca/techreports/2014/cacr2014-10.pdf
http://cryptotronix.com/cryptocape-tpm/
https://emailselfdefense.fsf.org/en/index.html
https://www.gnupg.org/gph/en/manual.html
https://www.gnupg.org/gph/en/manual.html
http://dl.acm.org/citation.cfm?id=1251306.1251314
http://dl.acm.org/citation.cfm?id=1251306.1251314
http://www.irisa.fr/caps/projects/hipsor/
http://www.irisa.fr/caps/projects/hipsor/
http://www.bunniestudios.com/blog/?p=3554
http://dx.doi.org/10.1109/MSP.2011.67
http://dx.doi.org/10.1109/MSP.2011.67

Appendix

[133]

•	 Levy, Steven. Crypto: How the Code Rebels Beat the Government: Saving Privacy in
the Digital Age. Penguin USA, New York, NY, USA. 2001.

•	 Marlinspike, Moxie. "A Critique of Lavabit." Accessed September 3, 2014.
http://www.thoughtcrime.org/blog/lavabit-critique/. 2013.

•	 Microsoft. "United States' Malware Infection Rate More than Doubles in the
First Half of 2013." Accessed September 3, 2014. http://blogs.technet.
com/b/security/archive/2014/03/31/united-states-malware-
infection-rate-more-than-doubles-in-the-first-half-of-2013.
aspx. 2014.

•	 National Archives. "Frequently Asked Questions About Optical Storage
Media." Accessed September 3, 2014. http://www.archives.gov/records-
mgmt/initiatives/temp-opmedia-faq.html.

•	 Opsahl, Kurt. "Why Metadata Matters." Accessed September 3, 2014.
https://www.eff.org/deeplinks/2013/06/why-metadata-matters.

•	 riseup.net. "OpenPGP Best Practices." Accessed September 3, 2014.
https://help.riseup.net/en/security/message-security/openpgp/
best-practices.

•	 Shirey, R. "Internet Security Glossary. RFC 4949 (Informational)." Accessed
September 3, 2014. http://www.ietf.org/rfc/rfc4949.txt. 2007.

•	 Trusted Computing Group. "TPM 1.2 Specification." Accessed September 3,
2014. http://www.trustedcomputinggroup.org/resources/tpm_main_
specification. 2011.

•	 Tygar, J. D. and Alma Whitten. "Why Johnny can't encrypt: A Usability
Evaluation of PGP 5.0." Proceedings of the 8th Conference on USENIX Security
Symposium - Volume 8, SSYM'99: 14-14. USENIX Association Berkeley,
CA, USA. 1999. Also available at http://dl.acm.org/citation.
cfm?id=1251421.1251435.

•	 Zimmermann, Philip R. PGP Source Code and Internals. MIT Press, Cambridge,
MA, USA. 1995.

•	 Zimmermann, Philip R. The Official PGP User's Guide. MIT Press, Cambridge,
MA, USA. 1995.

http://www.thoughtcrime.org/blog/lavabit-critique/
http://blogs.technet.com/b/security/archive/2014/03/31/united-states-malware-infection-rate-more-than-doubles-in-the-first-half-of-2013.aspx
http://blogs.technet.com/b/security/archive/2014/03/31/united-states-malware-infection-rate-more-than-doubles-in-the-first-half-of-2013.aspx
http://blogs.technet.com/b/security/archive/2014/03/31/united-states-malware-infection-rate-more-than-doubles-in-the-first-half-of-2013.aspx
http://blogs.technet.com/b/security/archive/2014/03/31/united-states-malware-infection-rate-more-than-doubles-in-the-first-half-of-2013.aspx
http://www.archives.gov/records-mgmt/initiatives/temp-opmedia-faq.html
http://www.archives.gov/records-mgmt/initiatives/temp-opmedia-faq.html
https://www.eff.org/deeplinks/2013/06/why-metadata-matters
https://help.riseup.net/en/security/message-security/openpgp/best-practices
https://help.riseup.net/en/security/message-security/openpgp/best-practices
http://www.ietf.org/rfc/rfc4949.txt
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://dl.acm.org/citation.cfm?id=1251421.1251435
http://dl.acm.org/citation.cfm?id=1251421.1251435

Selected Bibliography

[134]

Chapter 5
•	 Alexander, Chris and Ian Goldberg. "Improved User authentication in Off-

the-Record Messaging." Proceedings of the 2007 ACM Workshop on Privacy in
Electronic Society, WPES '07: 41-47, New York, NY, USA. ACM. 2007. Also
available at http://doi.acm.org/10.1145/1314333.1314340.

•	 Borisov, Nikita, Eric Brewer, and Ian Goldberg. "Off-the-Record Communication,
or, Why not to use PGP." Proceedings of the 2004 ACM Workshop on Privacy in
the Electronic Society, WPES '04: 77-84, New York, NY, USA. ACM 2004. Also
available at http://doi.acm.org/10.1145/1029179.1029200.

•	 Cruise, Brit. "Walkthrough of Diffie-Gellman Key Exchange." Accessed
September 3, 2014. https://www.khanacademy.org/computing/computer-
science/cryptography/modern-crypt/v/diffie-hellman-key-
exchange—part-2.

•	 EggHEADS.ORG. "Eggdrop." Accessed September 3, 2014.
http://www.eggheads.org/.

•	 EmacsWiki. "ERC Basics." Accessed September 3, 2014.
http://www.emacswiki.org/emacs/ErcBasics.

•	 fellowship. "Join FSFE's Community." Accessed September 3, 2014.
https://fsfe.org/fellowship/index.en.html.

•	 Google. "What is Google Talk?." Accessed September 3, 2014.
https://developers.google.com/talk/. 2013.

•	 Gutmann, Peter. Everything you Never Wanted to Know about PKI but were
Forced to Find Out. Accessed September 3, 2014. https://www.cs.auckland.
ac.nz/~pgut001/pubs/pkitutorial.pdf.

•	 Hill, Benjamin. "Google has Most of my Email Because it Has All of Yours."
Accessed September 3, 2014. http://mako.cc/copyrighteous/google-
has-most-of-my-email-because-it-has-all-of-yours. 2014.

•	 IRC Help. "An IRC Tutorial." Accessed September 3, 2014.
http://www.irchelp.org/irchelp/irctutorial.html.

•	 irssi. "Irssi IRC Client." Accessed September 3, 2014.
http://www.irssi.org/.

•	 Khan Academy. "XOR Bitwise Operation." Accessed September 3, 2014
https://www.khanacademy.org/computing/computer-science/
cryptography/ciphers/a/xor-bitwise-operation.

http://doi.acm.org/10.1145/1314333.1314340
http://doi.acm.org/10.1145/1029179.1029200
https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange-part-2
https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange-part-2
https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/diffie-hellman-key-exchange-part-2
http://www.eggheads.org/
http://www.emacswiki.org/emacs/ErcBasics
https://fsfe.org/fellowship/index.en.html
https://developers.google.com/talk/
https://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.pdf
https://www.cs.auckland.ac.nz/~pgut001/pubs/pkitutorial.pdf
http://mako.cc/copyrighteous/google-has-most-of-my-email-because-it-has-all-of-yours
http://mako.cc/copyrighteous/google-has-most-of-my-email-because-it-has-all-of-yours
http://www.irchelp.org/irchelp/irctutorial.html
http://www.irssi.org/
https://www.khanacademy.org/computing/computer-science/cryptography/ciphers/a/xor-bitwise-operation
https://www.khanacademy.org/computing/computer-science/cryptography/ciphers/a/xor-bitwise-operation

Appendix

[135]

•	 OAuth. Accessed September 3, 2014. http://oauth.net/.
•	 Rasata, Jeanne. Free Software Foundation. "Associate Member Benefits."

Accessed September 3, 2014. https://www.fsf.org/associate/benefits.
2012.

•	 ZNC Wiki. "ZNC." Accessed September 3, 2014. http://wiki.znc.in/ZNC.

www.allitebooks.com

http://oauth.net/
https://www.fsf.org/associate/benefits
http://wiki.znc.in/ZNC
http://www.allitebooks.org

Index
A
Adafruit library 42, 44
additional background information

additional cryptography resources,
finding 21

additional Debian resources, finding 22
additional electronics resources, finding 22
finding 21

Advanced Encryption Standard (AES) 52
advantages, hardware-based cryptography

keys, protecting through
physical isolation 53

offloading computation,
to separate processor 52

AES in counter-mode (AES-CTR) 101
air-gap 82
Analog-to-Digital Converter (ADC) 6, 39
Arduino shields 55
ATAES132

EEPROM data, encrypting with 65
references, for documentation 65

ATECC108
about 64
references 64
used, for providing hardware

authentication 64
ATmega328p

about 65
BBB, combining with 65, 66

ATSHA204
about 64
references 64
used, for providing hardware

authentication 64

authentication 64
authorization framework 106

B
bandwidth

determining, with speedtest-cli 45
bandwidth usage

tuning, of bridge 33
BBB

about 6, 25, 99
combining, with ATmega328p 65, 66
commitment, appreciating to OSHW 6, 7
GPG key, installing on 83
power, providing 7
Tor, configuring for 32
Tor, installing on 31
unboxing 7

BBB cape. See cape
BBB, with TRAMP

commands, running from Emacs 19
Emacs dired, used for copying files 20

BeagleBoard.org
URL, for mailing list 61

BeagleBoard website
URL 6

BeagleBone
BitlBee, installing on 104
used, for protecting online chats 103

BeagleBone Black. See BBB
BeagleBone Python library

URL 41
BeagleBridge circuit

designing 38, 39
Bill Of Materials (BOM) 7

[138]

BitlBee
about 103
account, creating 105
chatting with 109
contacts, managing in 109
Google Talk account, adding to 105-107
installing, on BeagleBone 104
jabber account, adding to 108
URL, for front page 105

BitlBee server
OTR, adding to 108

Bouncer
IRC connections, marshalling with 112

bridge
controlling, with Stem library 46, 47

BridgeRelay setting 34
bridge-specific settings

BridgeRelay 34
ExtORPort 34
ServerTransportPlugin 34

bridges, Tor 28
buffer overrun 53
Bunnie's blog

URL 96

C
cape 51, 55
cape DTS file

creating 61, 62
cape EEPROM

benefits 58
creating 59, 60

Cape Manager (capemgr) 58, 61
certificate pinning 120
Chaos Computer Club (CCC)

about 68
references 68

chatting, with BitlBee 109
chatting, with OTR in BitlBee

about 110
Socialist Millionaire Problem 111

Classless Inter-Domain Routing (CIDR) 13
clocks

synchronizing, throughout system 62, 63
commands

running, from Emacs 19

components, CryptoCape
AT97SC3205T 55
ATAES132 55
ATECC108 55
ATmega328p 56
ATSHA204 55
CAT24C256 56
DS3231M 56

Computer-Aided Design (CAD) 7
computing devices

trusting, with Trusted Platform
Module (TPM) 64

Configuration Changed event 46
configuration, Tor

for BBB 32
contacts

managing, in BitlBee 109
Counter with CBC-MAC (CCM) 65
crypto accelerators, AM335x

URL 53
CryptoCape

about 55
components 55
keypad, connecting to 92, 93
references 94
URL 62

CryptoCape v02 94
cryptography

URL 22
Cygwin

URL 15
cypherpunks 78

D
Denial-Of-Service (DOS) 80
development repository

Tor, installing from 31, 32
Device Tree Source (DTS) 59
device tree system, Linux kernel

URL 61
Differential Power Analysis (DPA) 54
Diffie-Hellman Key Exchange

protocol 101
reference 101

[139]

disadvantages, hardware-based
cryptography

hardware-specific attack vectors,
exposing 54

lacking cryptographic flexibility 54
obfuscating implementation details 55

DTS file, CryptoCape Revision 00A0
URL 61

Dynamic Host Configuration
Protocol (DHCP) 14

E
EEPROM 58
EEPROM cape generator

URL 59
EEPROM data

encrypting, with ATAES132 65
Eggdrop

URL 126
Electrically Erasable Programmable Read

Only Memory. See EEPROM
electricity and magnetism

URL 22
Electronic Frontier Foundation (EFF)

about 85
reference 85

eLinux wiki site
creating 62

Elliptical Curve Digital Signature
Algorithm (ECDSA) 64

Emacs
about 12
commands, running from 19
embedded development environment,

creating with 8
Emacs 24

installing 10
Emacs dired

used, for copying files 20
Emacs newbie

URL 21
Email Self-Defense guide

reference 83

embedded development environment
BBB, connecting with TRAMP 18, 19
complications 8-10
creating, with Emacs 8
Emacs 24, installing 10
Emacs, learning 12
prelude, installing 11
SSH connections, streamlining 13

Embedded Multi-Media Card (eMMC) 6
enrollment 71
Entropy

generating 83, 84
Exclusive-OR (XOR) 102
exit policies, Tor 33
ExtORPort setting 34

F
fingerprint biometrics

limitations, appreciating 68
fingerprint sensor

overview 67
Fritzing diagram 38, 39
FSF sites

references 108

G
General Purpose IO (GPIO) 6
glitch attack

URL 54
Globe

URL 36
GNU debugger (GDB) 10
Google Talk account

adding, to BitlBee 105-107
GPG

about 60, 79
using 88

gpg-agent 97
gpg.conf

reference 84

[140]

GPG key
Entropy, generating 83, 84
generating 85, 86
good gpg.conf, creating 84
installing, on BBB 83
postgeneration maintenance 87, 88
reference 88
unlocking, at startup 96, 97

GPG key protection, with TPM
about 89
data, encrypting to PCR state 90, 91
trusted computing 89, 90

Graphical User Interface (GUI) 8, 79

H
hardware authentication

providing, with ATECC108 64
providing, with ATSHA204 64

hardware-based cryptography
about 51
advantages 52
disadvantages 54

Hardware Security Modules (HSMs) 53
hardware versus software debate

summarizing 55
Hardware Volatile Entropy Gathering

and Expansion (HAVEGE) 84
Hash Based Message Authentication

Codes (HMAC) 64
heartbleed 53
hidden service 48
history, PGP

about 77
reflecting, on Crypto wars 78, 79

HTTPS Everywhere
about 52
URL 52

Hypertext Transfer Protocol Secure
(HTTPS) 52

I
I2C bus specification

URL 57
I2C protocol 57
Input/Output (IO) 6
installation, BitlBee

on BeagleBone 104
installation, IRC bouncer ZNC 114
installation, Tor

from development repository 31, 32
on BBB 31

installing, GPG key
on BBB 83

Instant Message (IM) 102
In-System Programming (ISP) 65
Integrated Development

Environment (IDE) 8
Inter-Integrated Circuit. See I2C protocol
International Traffic in Arms

Regulations (ITAR) 77
Internet Protocol (IP) 26
Internet Service Provider (ISP) 26
IP address

discovering, of networked BBB 13, 14
IRC

modern usage 112, 113
IRC bot 126
IRC bouncer ZNC

downloading 114
installing 114

IRC client
ZNC, connecting from 123

IRC connections
managing, ZNC configuration used 116
marshalling, with Bouncer 112

irssi
about 104
URL 104

[141]

J
jabber account

adding, to BitlBee 108

K
key isolation features, CryptoCape 55
keypad

adding 91
connecting, to CryptoCape 92, 93
references 91

key protection system
overview 80

keyserver pool 84

L
Lavabit service

about 79
reference 79

light-emitting diode (LED) 7, 36
limitations, Tor 29, 30
linkage attack 27
liquid-crystal display (LCD) 7, 36
logic analyzer 57
logic bugs 82
logic supply

references 93
Low Pin Count (LPC) 64

M
Man-In-The-Middle (MITM) attack 110
Message Authentication Codes (MACs) 101

N
netiquette 113
networked BBB

IP address, discovering of 13, 14
networks

adding, to ZNC 121, 122
Network Time Protocol (NTP) 32
Nix Craft article

URL 16

O
OAuth

about 106
URL 106

Obfsproxy 32
obfuscated bridge

connecting to 47
obfuscated proxies

using 29
Off-the-Record (OTR)

about 98-100
adding, to BitlBee server 108
adding, to ZNC server 120
communicating 100
usability 102

onion analogy 26
onion logo 48
onion routing

about 26
features 26

online chats
protecting, BeagleBone used 103

OpenPGP
reference 84

Open Source Hardware (OSHW)
BBB's commitment, appreciating to 6, 7
URL 6

OSHW Association (OSHWA) 6
OTR connections

establishing, through ZNC 124, 125

P
password-less login

configuring 16, 17
paste service, Debian

URL 113
PCR

about 90
extending 94-96

PGP
about 75, 79
history 77, 78

[142]

physical interfaces, adding to bridge
about 36
bandwidth, controlling with

potentiometer 37
BeagleBridge circuit, designing 38, 39
front panel components, gathering 36, 37
hardware, controlling with

pyBBIO 42-44
hardware, wiring with proto cape 40
LCD, used for displaying status

information 37
software, developing with Python

libraries 41
pin entry programs 97
pin muxing 58
ping scan 13
PKI 117
Platform Control Register. See PCR
pluggable transports

about 29
using 29

pocket programmer, SparkFun 65
port forwarding

enabling 35
potentiometer 37
prelude

installing 11
URL 10

Pretty Good Privacy. See PGP
production files, BBB

URL 58
project

extending 125
Public Key Infrastructure. See PKI
Pulse Width Modulators (PWM) 6

R
Real Time Clock (RTC) 32
relays, Tor 28
rng-tools package 83

S
ScrambleSuit obfsproxy

URL, for bridge configuration 34
sealing 90
Secure Shell (SSH) 9, 80
Serial Clock (SCL) 57
Serial Data (SDA) 57
serial debugging cable

URL 14
ServerTransportPlugin setting 34
session keys 100
Socialist Millionaire Problem 110, 111
SparkFun

about 43
URL 37

SparkFun Electronics 37
speedtest-cli

bandwidth, determining with 45
SSH agent

running, for controlling access to
SSH keys 17

SSH configuration file
editing 15, 16

SSH connections
IP address, discovering of networked

BBB 13, 14
password-less login, configuring 16, 17
SSH agent, running to control access to

SSH keys 17
SSH configuration file, editing 15, 16
streamlining 13

Stem library
references, for online documentation 46
URL 41
used, for controlling bridge 46, 47

Storage Root Key (SRK) 93
System Reference Manual (SRM) 6, 58

[143]

T
Tails

about 30
URL 30

Texas Instruments (TI) 52
The Onion Router. See Tor
threat identification 80, 81
threat model

assets, identifying for protection 80
developing 79
identified risks, mitigating 82
iterating on 97, 98
key protection system, outlining 80
risks, identifying 81
summarizing 82
URL, for Microsoft report 82

threat modeling 75
Tor

about 26
configuring, for BBB 32
installing, from development

repository 31, 32
installing, on BBB 31
limitations 29, 30
URL 29
users appreciation 28

Tor atlas
URL 36

Tor bridge
about 28
bandwidth usage, tuning of 33
benefits 30
impacts 30
starting 34

Tor, configuring for BBB
about 32
bandwidth usage, tuning of bridge 33
contact details, adding to torrc file 33

Tor exit policies 33
Tor network 26
Tor Project

URL 31
torrc file

about 32
contact details, adding to 33

Tor-related projects
continuing with 48

Tor relays 28
TPM

ownership, taking of 93, 94
TRAMP

BBB, connecting with 18, 19
Transmission Control Protocol (TCP) 26
Transparent Remote Access Multiple

Protocol. See TRAMP
Transport Layer Security (TLS) 52
Trusted Computing Group Software

Stack (TSS) 64
Trusted Computing Group (TCG) 64, 89
Trusted Platform Module (TPM)

about 64, 89
computing devices, trusting with 64

two-factor biometric system
biometric detection sketch, updating 73, 74
building 66
connections, preparing 70
CryptoCape, preparing 69
Fingerprint scanner, connecting

to CryptoCape 70
fingerprint sensor, overview 67
fingerprint sensor, preparing 71, 72
limitations, appreciating of fingerprint

biometrics 68
security analysis 75

U
users appreciation, Tor 28
users spike, Turkey

URL 28

V
viper mode

URL 12
VirtualBox

URL 15
virtual user 123

[144]

W
Web-of-Trust, GPG Privacy Handbook

reference 87

X
xkcd comic

URL 53

Z
zero-knowledge proof 111
ZNC

connecting, from IRC client 123
networks, adding to 121, 122
OTR connections, establishing

through 124, 125
ZNC configuration

used, for managing IRC connections 116
ZNC server

OTR, adding to 120

Thank you for buying
BeagleBone for Secret Agents

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

BeagleBone Home Automation
ISBN: 978-1-78328-573-0 Paperback: 178 pages

Live your sophisticated dream with home automation
using BeagleBone

1.	 Practical approach to home automation using
BeagleBone; starting from the very basics of
GPIO control and progressing up to building
a complete home automation solution.

2.	 Covers the operating principles of a range
of useful environment sensors, including
their programming and integration to the
server application.

Building a Home Security System
with BeagleBone
ISBN: 978-1-78355-960-2 Paperback: 120 pages

Build your own high-tech alarm system at a fraction
of the cost

1.	 Build your own state-of-the-art security system.

2.	 Monitor your system from any place where you
can receive e-mails.

3.	 Add control of other systems such as sprinklers
and gates.

Please check www.PacktPub.com for information on our titles

Raspberry Pi for Secret Agents
ISBN: 978-1-84969-578-7 Paperback: 152 pages

Turn your Raspberry Pi into your very own secret
agent toolbox with this set of exciting projects!

1.	 Detect an intruder on camera and set off
an alarm.

2.	 Listen in or record conversations from
a distance.

3.	 Find out what the other computers on your
network are up to.

Rapid BeagleBoard Prototyping
with MATLAB and Simulink
ISBN: 978-1-84969-604-3 Paperback: 152 pages

Leverage the power of BeagleBoard to develop and
deploy practical embedded projects

1.	 Develop and validate your own embedded
audio/video applications rapidly with
Beagleboard.

2.	 Create embedded Linux applications on a pure
Windows PC.

3.	 Full of illustrations, diagrams, and tips for
rapid BeagleBoard Prototyping with clear,
step-by-step instructions and hands-on
examples.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Creating Your BeagleBone Black Development Environment
	Introducing the BBB
	Appreciating BBB's commitment to Open Source Hardware
	Unboxing the BBB and providing power

	Creating an embedded development environment with Emacs
	Understanding the complications of embedded development
	Installing Emacs 24
	Installing the prelude
	Learning how to learn about Emacs
	Streamlining the SSH connections
	Discovering the IP address of your networked BBB
	Editing the SSH configuration file
	Configuring password-less login
	Running an SSH agent to control access to your SSH keys

	Connecting to BBB with TRAMP
	Running commands from Emacs
	Using Emacs dired to copy files to and from BBB

	Finding additional background information
	Finding additional cryptography resources
	Finding additional electronics resources
	Finding additional Debian resources

	Summary

	Chapter 2: Circumventing Censorship
with a Tor Bridge
	Learning about Tor
	Appreciating the various users of Tor
	Understanding Tor relays
	Understanding Tor bridges
	Using obfuscated proxies and pluggable transports
	Realizing the limitations of Tor
	The impact and benefits of running a Tor bridge

	Installing Tor on BBB
	Installing Tor from the development repository
	Configuring Tor for BBB
	Adding contact details to the torrc file
	Tuning the bandwidth usage of your bridge

	Understanding Tor exit policies
	Setting bridge-specific settings
	Starting your new Tor bridge
	Enabling port forwarding
	Adding physical interfaces to the bridge
	Gathering the front panel components
	Using an LCD to display status information
	Controlling the bandwidth with a potentiometer
	Designing the BeagleBridge circuit
	Wiring the hardware with a proto cape
	Developing the software using Python libraries
	Controlling the hardware with pyBBIO

	Determining your bandwidth with speedtest-cli
	Controlling the bridge with the
Stem library
	Connecting to your obfuscated bridge
	Continuing with Tor-related projects
	Summary

	Chapter 3: Adding Hardware Security
with the CryptoCape
	Exploring the differences between hardware and software cryptography
	Understanding the advantages of hardware-based cryptography
	Offloading computation to a separate processor
	Protecting keys through physical isolation

	Understanding the disadvantages of hardware crypto devices
	Lacking cryptographic flexibility
	Exposing hardware-specific attack vectors
	Obfuscating implementation details

	Summarizing the hardware versus software debate

	Touring the CryptoCape
	Discovering the I2C protocol
	Understanding the benefit of cape EEPROMs
	Creating a cape EEPROM
	Creating the cape DTS file

	Creating an eLinux wiki site
	Keeping time with a real-time clock
	Trusting computing devices with a Trusted Platform Module
	Providing hardware authentication with ATSHA204 and ATECC108
	Encrypting EEPROM data with the ATAES132
	Combining the BBB with an ATmega328p
	Building a two-factor biometric system
	The fingerprint sensor overview
	Appreciating the limitations of fingerprint biometrics
	Preparing the CryptoCape
	Preparing the connections
	Connecting the Scanner to the CryptoCape
	Preparing the fingerprint sensor
	Uploading the biometric detection sketch
	Security analysis of the biometric system

	Summary

	Chapter 4: Protecting GPG Keys with a Trusted Platform Module
	History of PGP
	Reflecting on the Crypto Wars

	Developing a threat model
	Outlining the key protection system
	Identifying the assets we need to protect
	Threat identification
	Identifying the risks
	Mitigating the identified risks
	Summarizing our threat model

	Generating GPG keys
	Generating Entropy
	Creating a good gpg.conf file
	Generating the key
	Postgeneration maintenance
	Using GPG

	Protecting your GPG key with a TPM
	Introducing trusted computing
	Encrypting data to a PCR state

	Adding the keypad
	Taking ownership of the TPM
	Extending a PCR
	Unlocking your key at startup
	Iterating on the threat model
	Summary

	Chapter 5: Chatting Off-the-Record
	Communicating off-the-record – a background
	Introducing off-the-record communication
	On the usability of OTR
	Using the BeagleBone to protect your
online chats

	Installing BitlBee on the BeagleBone
	Creating a BitlBee account
	Adding a Google Talk account to BitlBee
	Adding a jabber account to BitlBee

	Adding OTR to your BitlBee server
	Managing contacts in BitlBee
	Chatting with BitlBee
	Chatting with OTR in BitlBee
	Understanding the Socialist Millionaire Problem

	Marshalling your IRC connections with
a Bouncer
	The modern uses of IRC
	Downloading and installing the IRC bouncer ZNC
	Configure ZNC to manage your
IRC connections
	Adding OTR to your ZNC server
	Adding your networks to ZNC
	Connecting to ZNC from your IRC client

	Establishing OTR connections through ZNC

	Extending the project
	Summary

	Appendix: Selected Bibliography
	Index

