

Table	of	Contents
Introduction

Overview

Introduction	to	React

How	to	install	React

Modern	JavaScript	core	concepts	you	need	to	know	to	use	React

How	much	JS	you	need	to	use	React

Variables

Arrow	functions

Work	with	objects	and	arrays	using	Rest	and	Spread

Object	and	array	destructuring

Template	literals

Classes

Callbacks

Promises

Async/Await

ES	Modules

React	Concepts

Single	Page	Apps

Declarative

Immutability

Purity

Composition

The	Virtual	DOM

Unidirectional	Data	Flow

In-depth

JSX

Components

State

Props

Presentational	vs	container	components

2

State	vs	Props

PropTypes

Fragment

Events

Lifecycle	events

Handling	forms

Reference	a	DOM	element

Server	side	rendering

Context	API

Higher-order	components

Render	Props

Hooks

Code	splitting

Styling

CSS	in	React

SASS	with	React

Styled	Components

Tooling

Babel

Webpack

Prettier

Testing

Introduction	to	Jest

Testing	React	Components

A	look	at	the	React	Ecosystem

React	Router

Redux

Next.js

Gatsby

Wrapping	up

3

4

Introduction

The	React	Handbook	follows	the	80/20	rule:	learn	in	20%	of	the	time	the	80%	of	a	topic.

I	find	this	approach	gives	a	well-rounded	overview.	This	book	does	not	try	to	cover	everything
under	the	sun	related	to	React.	If	you	think	some	specific	topic	should	be	included,	tell	me.

In	this	book	I	make	use	of	React	hooks,	so	you	need	to	set	the	required	versions	of	React	and
ReactDOM	to	use	 	16.7.0-alpha.2		(if	when	you're	reading	this	Hooks	are	released	officially,
you	don't	need	to	do	this).	You	can	do	so	in	CodeSandbox	by	clicking	"Add	Dependency"	and
searching	 	react		and	choosing	 	16.7.0-alpha.2		from	the	select,	and	repeat	this	for	 	react-
dom	.	When	using	 	create-react-app	,	run	 	npm	install	react@16.7.0-alpha.2	react-dom@16.7.0-
alpha.2		after	you	create	the	project.

I	hope	the	contents	of	this	book	will	help	you	achieve	what	you	want:	learn	the	basics	of
React.

This	book	is	written	by	Flavio.	I	publish	web	development	tutorials	every	day	on	my	website
flaviocopes.com.

You	can	reach	me	on	Twitter	@flaviocopes.

Introduction

5

https://flaviocopes.com
https://twitter.com/flaviocopes

Enjoy!

Introduction

6

Introduction	to	React
An	introduction	to	the	React	view	library

What	is	React?
React	is	a	JavaScript	library	that	aims	to	simplify	development	of	visual	interfaces.

Developed	at	Facebook	and	released	to	the	world	in	2013,	it	drives	some	of	the	most	widely
used	apps,	powering	Facebook	and	Instagram	among	countless	other	applications.

Its	primary	goal	is	to	make	it	easy	to	reason	about	an	interface	and	its	state	at	any	point	in
time,	by	dividing	the	UI	into	a	collection	of	components.

Why	is	React	so	popular?
React	has	taken	the	frontend	web	development	world	by	storm.	Why?

Less	complex	than	the	other	alternatives

At	the	time	when	React	was	announced,	Ember.js	and	Angular	1.x	were	the	predominant
choices	as	a	framework.	Both	these	imposed	so	many	conventions	on	the	code	that	porting	an
existing	app	was	not	convenient	at	all.	React	made	a	choice	to	be	very	easy	to	integrate	into
an	existing	project,	because	that's	how	they	had	to	do	it	at	Facebook	in	order	to	introduce	it	to
the	existing	codebase.	Also,	those	2	frameworks	brought	too	much	to	the	table,	while	React
only	chose	to	implement	the	View	layer	instead	of	the	full	MVC	stack.

Perfect	timing

At	the	time,	Angular	2.x	was	announced	by	Google,	along	with	the	backwards	incompatibility
and	major	changes	it	was	going	to	bring.	Moving	from	Angular	1	to	2	was	like	moving	to	a
different	framework,	so	this,	along	with	execution	speed	improvements	that	React	promised,
made	it	something	developers	were	eager	to	try.

Backed	by	Facebook

Being	backed	by	Facebook	obviously	is	going	to	benefit	a	project	if	it	turns	out	to	be
successful.

Introduction	to	React

7

https://flaviocopes.com/javascript/

Facebook	currently	has	a	strong	interest	in	React,	sees	the	value	of	it	being	Open	Source,	and
this	is	a	huge	plus	for	all	the	developers	using	it	in	their	own	projects.

Is	React	simple	to	learn?
Even	though	I	said	that	React	is	simpler	than	alternative	frameworks,	diving	into	React	is	still
complicated,	but	mostly	because	of	the	corollary	technologies	that	can	be	integrated	with
React,	like	Redux	and	GraphQL.

React	in	itself	has	a	very	small	API,	and	you	basically	need	to	understand	4	concepts	to	get
started:

Components
JSX
State
Props

All	these	(and	more)	are	explained	in	this	handbook.

Introduction	to	React

8

How	to	install	React
How	to	install	React	on	your	development	computer

How	do	you	install	React?

React	is	a	library,	so	saying	install	might	sound	a	bit	weird.	Maybe	setup	is	a	better	word,	but
you	get	the	concept.

There	are	various	ways	to	setup	React	so	that	it	can	be	used	on	your	app	or	site.

Load	React	directly	in	the	web	page
The	simplest	one	is	to	add	the	React	JavaScript	file	into	the	page	directly.	This	is	best	when
your	React	app	will	interact	with	the	elements	present	on	a	single	page,	and	not	actually
controls	the	whole	navigation	aspect.

In	this	case,	you	add	2	script	tags	to	the	end	of	the	 	body		tag:

<html>

		...

		<body>

				...

				<script

						src="https://cdnjs.cloudflare.com/ajax/libs/react/16.7.0-alpha.2/umd/react.developme

nt.js"

						crossorigin

				></script>

				<script

						src="https://cdnjs.cloudflare.com/ajax/libs/react-dom/16.7.0-alpha.2/umd/react-dom.p

roduction.min.js"

						crossorigin

				></script>

		</body>

</html>

The	 	16.7.0-alpha.2		version	in	the	links	points	to	the	latest	Alpha	of	16.7	(at	the	time	of
writing),	which	has	Hooks	available.	Please	change	it	to	the	latest	version	of	React	that	is
available.

Here	we	loaded	both	React	and	React	DOM.	Why	2	libraries?	Because	React	is	100%
independent	from	the	browser	and	can	be	used	outside	it	(for	example	on	Mobile	devices	with
React	Native).	Hence	the	need	for	React	DOM,	to	add	the	wrappers	for	the	browser.

How	to	install	React

9

After	those	tags	you	can	load	your	JavaScript	files	that	use	React,	or	even	inline	JavaScript	in
a	 	script		tag:

<script	src="app.js"></script>

<!--	or	-->

<script>

		//my	app

</script>

To	use	JSX	you	need	an	extra	step:	load	Babel

<script	src="https://unpkg.com/babel-standalone@6/babel.min.js"></script>

and	load	your	scripts	with	the	special	 	text/babel		MIME	type:

<script	src="app.js"	type="text/babel"></script>

Now	you	can	add	JSX	in	your	app.js	file:

const	Button	=	()	=>	{

		return	<button>Click	me!</button>

}

ReactDOM.render(<Button	/>,	document.getElementById('root'))

Check	out	this	simple	Glitch	example:	https://glitch.com/edit/#!/react-example-inline-jsx?
path=script.js

Starting	in	this	way	with	script	tags	is	good	for	building	prototypes	and	enables	a	quick	start
without	having	to	set	up	a	complex	workflow.

Use	create-react-app
	create-react-app		is	a	project	aimed	at	getting	you	up	to	speed	with	React	in	no	time,	and	any
React	app	that	needs	to	outgrow	a	single	page	will	find	that	 	create-react-app		meets	that
need.

You	start	by	using	 	npx	,	which	is	an	easy	way	to	download	and	execute	Node.js	commands
without	installing	them.	 	npx		comes	with	 	npm		(since	version	5.2)	and	if	you	don't	have	npm
installed	already,	do	it	now	from	https://nodejs.org	(npm	is	installed	with	Node).

If	you	are	unsure	which	version	of	npm	you	have,	run	 	npm	-v		to	check	if	you	need	to	update.

How	to	install	React

10

https://flaviocopes.com/jsx/
https://flaviocopes.com/babel/
https://glitch.com/edit/#!/react-example-inline-jsx?path=script.js
https://flaviocopes.com/npx/
https://nodejs.org

Tip:	check	out	my	OSX	terminal	tutorial	at	https://flaviocopes.com/macos-terminal/	if
you're	unfamiliar	with	using	the	terminal,	applies	to	Linux	as	well	-	I'm	sorry	but	I	don't
have	a	tutorial	for	Windows	at	the	moment,	but	Google	is	your	friend.

When	you	run	 	npx	create-react-app	<app-name>	,	 	npx		is	going	to	download	the	most	recent
	create-react-app		release,	run	it,	and	then	remove	it	from	your	system.	This	is	great	because
you	will	never	have	an	outdated	version	on	your	system,	and	every	time	you	run	it,	you're
getting	the	latest	and	greatest	code	available.

Let's	start	then:

npx	create-react-app	todolist

This	is	when	it	finished	running:

How	to	install	React

11

https://flaviocopes.com/macos-terminal/

	create-react-app		created	a	files	structure	in	the	folder	you	told	(todolist		in	this	case),	and
initialized	a	Git	repository.

It	also	added	a	few	commands	in	the	 	package.json		file,	so	you	can	immediately	start	the	app
by	going	into	the	folder	and	run	 	npm	start	.

How	to	install	React

12

https://flaviocopes.com/git/

In	addition	to	 	npm	start	,	 	create-react-app		added	a	few	other	commands:

How	to	install	React

13

	npm	run	build	:	to	build	the	React	application	files	in	the	 	build		folder,	ready	to	be
deployed	to	a	server
	npm	test	:	to	run	the	testing	suite	using	Jest
	npm	eject	:	to	eject	from	 	create-react-app	

Ejecting	is	the	act	of	deciding	that	 	create-react-app		has	done	enough	for	you,	but	you	want	to
do	more	than	what	it	allows.

Since	 	create-react-app		is	a	set	of	common	denominator	conventions	and	a	limited	amount	of
options,	it's	probable	that	at	some	point	your	needs	will	demand	something	unique	that
outgrows	the	capabilities	of	 	create-react-app	.

When	you	eject,	you	lose	the	ability	of	automatic	updates	but	you	gain	more	flexibility	in	the
Babel	and	Webpack	configuration.

When	you	eject	the	action	is	irreversible.	You	will	get	2	new	folders	in	your	application
directory,	 	config		and	 	scripts	.	Those	contain	the	configurations	-	and	now	you	can	start
editing	them.

If	you	already	have	a	React	app	installed	using	an	older	version	of	React,	first	check	the
version	by	adding	 	console.log(React.version)		in	your	app,	then	you	can	update	by
running	 	yarn	add	react@16.7	,	and	yarn	will	prompt	you	to	update	(choose	the	latest
version	available).	Repeat	for	 	yarn	add	react-dom@16.7		(change	"16.7"	with	whatever	is
the	newest	version	of	React	at	the	moment)

CodeSandbox
An	easy	way	to	have	the	 	create-react-app		structure,	without	installing	it,	is	to	go	to
https://codesandbox.io/s	and	choose	"React".

How	to	install	React

14

https://flaviocopes.com/jest/
https://flaviocopes.com/babel/
https://flaviocopes.com/webpack/
https://codesandbox.io/s

CodeSandbox	is	a	great	way	to	start	a	React	project	without	having	to	install	it	locally.

Codepen
Another	great	solution	is	Codepen.

You	can	use	this	Codepen	starter	project	which	already	comes	pre-configured	with	React,	with
support	for	Hooks:	https://codepen.io/flaviocopes/pen/VqeaxB

Codepen	"pens"	are	great	for	quick	projects	with	one	JavaScript	file,	while	"projects"	are	great
for	projects	with	multiple	files,	like	the	ones	we'll	use	the	most	when	building	React	apps.

One	thing	to	note	is	that	in	Codepen,	due	to	how	it	works	internally,	you	don't	use	the	regular
ES	Modules	 	import		syntax,	but	rather	to	import	for	example	 	useState	,	you	use

How	to	install	React

15

https://codepen.io
https://codepen.io/flaviocopes/pen/VqeaxB

const	{	useState	}	=	React

and	not

import	{	useState	}	from	'react'

How	to	install	React

16

How	much	JS	you	need	to	use	React
Find	out	if	you	have	to	learn	something	before	diving	into	learning	React

If	you	are	willing	to	learn	React,	you	first	need	to	have	a	few	things	under	your	belt.	There	are
some	prerequisite	technologies	you	have	to	be	familiar	with,	in	particular	related	to	some	of
the	more	recent	JavaScript	features	you'll	use	over	and	over	in	React.

Sometimes	people	think	one	particular	feature	is	provided	by	React,	but	instead	it's	just
modern	JavaScript	syntax.

There	is	no	point	in	being	an	expert	in	those	topics	right	away,	but	the	more	you	dive	into
React,	the	more	you'll	need	to	master	those.

I	will	mention	a	list	of	things	to	get	you	up	to	speed	quickly.

How	much	JS	you	need	to	use	React

17

Variables
A	variable	is	a	literal	assigned	to	an	identifier,	so	you	can	reference	and	use
it	later	in	the	program.	Learn	how	to	declare	one	with	JavaScript

A	variable	is	a	literal	assigned	to	an	identifier,	so	you	can	reference	and	use	it	later	in	the
program.

Variables	in	JavaScript	do	not	have	any	type	attached.	Once	you	assign	a	specific	literal	type
to	a	variable,	you	can	later	reassign	the	variable	to	host	any	other	type,	without	type	errors	or
any	issue.

This	is	why	JavaScript	is	sometimes	referred	to	as	"untyped".

A	variable	must	be	declared	before	you	can	use	it.	There	are	3	ways	to	do	this,	using	 	var	,
	let		or	 	const	,	and	those	3	ways	differ	in	how	you	can	interact	with	the	variable	later	on.

Using	 	var	
Until	ES2015,	 	var		was	the	only	construct	available	for	defining	variables.

var	a	=	0

If	you	forget	to	add	 	var		you	will	be	assigning	a	value	to	an	undeclared	variable,	and	the
results	might	vary.

In	modern	environments,	with	strict	mode	enabled,	you	will	get	an	error.	In	older	environments
(or	with	strict	mode	disabled)	this	will	simply	initialize	the	variable	and	assign	it	to	the	global
object.

If	you	don't	initialize	the	variable	when	you	declare	it,	it	will	have	the	 	undefined		value	until	you
assign	a	value	to	it.

var	a	//typeof	a	===	'undefined'

You	can	redeclare	the	variable	many	times,	overriding	it:

var	a	=	1

var	a	=	2

You	can	also	declare	multiple	variables	at	once	in	the	same	statement:

Variables

18

https://flaviocopes.com/javascript/

var	a	=	1,	b	=	2

The	scope	is	the	portion	of	code	where	the	variable	is	visible.

A	variable	initialized	with	 	var		outside	of	any	function	is	assigned	to	the	global	object,	has	a
global	scope	and	is	visible	everywhere.	A	variable	initialized	with	 	var		inside	a	function	is
assigned	to	that	function,	it's	local	and	is	visible	only	inside	it,	just	like	a	function	parameter.

Any	variable	defined	in	a	function	with	the	same	name	as	a	global	variable	takes	precedence
over	the	global	variable,	shadowing	it.

It's	important	to	understand	that	a	block	(identified	by	a	pair	of	curly	braces)	does	not	define	a
new	scope.	A	new	scope	is	only	created	when	a	function	is	created,	because	 	var		does	not
have	block	scope,	but	function	scope.

Inside	a	function,	any	variable	defined	in	it	is	visible	throughout	all	the	function	code,	even	if
the	variable	is	declared	at	the	end	of	the	function	it	can	still	be	referenced	in	the	beginning,
because	JavaScript	before	executing	the	code	actually	moves	all	variables	on	top	(something
that	is	called	hoisting).	To	avoid	confusion,	always	declare	variables	at	the	beginning	of	a
function.

Using	 	let	
	let		is	a	new	feature	introduced	in	ES2015	and	it's	essentially	a	block	scoped	version	of
	var	.	Its	scope	is	limited	to	the	block,	statement	or	expression	where	it's	defined,	and	all	the
contained	inner	blocks.

Modern	JavaScript	developers	might	choose	to	only	use	 	let		and	completely	discard	the	use
of	 	var	.

If	 	let		seems	an	obscure	term,	just	read	 	let	color	=	'red'		as	let	the	color	be	red	and	it
all	makes	much	more	sense

Defining	 	let		outside	of	any	function	-	contrary	to	 	var		-	does	not	create	a	global	variable.

Using	 	const	
Variables	declared	with	 	var		or	 	let		can	be	changed	later	on	in	the	program,	and
reassigned.	Once	a	 	const		is	initialized,	its	value	can	never	be	changed	again,	and	it	can't	be
reassigned	to	a	different	value.

const	a	=	'test'

Variables

19

We	can't	assign	a	different	literal	to	the	 	a		const.	We	can	however	mutate	 	a		if	it's	an	object
that	provides	methods	that	mutate	its	contents.

	const		does	not	provide	immutability,	just	makes	sure	that	the	reference	can't	be	changed.

	const		has	block	scope,	same	as	 	let	.

Modern	JavaScript	developers	might	choose	to	always	use	 	const		for	variables	that	don't
need	to	be	reassigned	later	in	the	program.

Why?	Because	we	should	always	use	the	simplest	construct	available	to	avoid	making
errors	down	the	road.

Variables

20

Arrow	functions
Arrow	Functions	are	one	of	the	most	impactful	changes	in	ES6/ES2015,	and
they	are	widely	used	nowadays.	They	slightly	differ	from	regular	functions.
Find	out	how

Arrow	functions	were	introduced	in	ES6	/	ECMAScript	2015,	and	since	their	introduction	they
changed	forever	how	JavaScript	code	looks	(and	works).

In	my	opinion	this	change	was	so	welcoming	that	you	now	rarely	see	the	usage	of	the
	function		keyword	in	modern	codebases.

Visually,	it’s	a	simple	and	welcome	change,	which	allows	you	to	write	functions	with	a	shorter
syntax,	from:

const	myFunction	=	function()	{

		//...

}

to

const	myFunction	=	()	=>	{

		//...

}

If	the	function	body	contains	just	a	single	statement,	you	can	omit	the	brackets	and	write	all	on
a	single	line:

const	myFunction	=	()	=>	doSomething()

Parameters	are	passed	in	the	parentheses:

const	myFunction	=	(param1,	param2)	=>	doSomething(param1,	param2)

If	you	have	one	(and	just	one)	parameter,	you	could	omit	the	parentheses	completely:

const	myFunction	=	param	=>	doSomething(param)

Thanks	to	this	short	syntax,	arrow	functions	encourage	the	use	of	small	functions.

Implicit	return

Arrow	functions

21

Arrow	functions	allow	you	to	have	an	implicit	return:	values	are	returned	without	having	to	use
the	 	return		keyword.

It	works	when	there	is	a	one-line	statement	in	the	function	body:

const	myFunction	=	()	=>	'test'

myFunction()	//'test'

Another	example,	when	returning	an	object,	remember	to	wrap	the	curly	brackets	in
parentheses	to	avoid	it	being	considered	the	wrapping	function	body	brackets:

const	myFunction	=	()	=>	({	value:	'test'	})

myFunction()	//{value:	'test'}

How	 	this		works	in	arrow	functions
	this		is	a	concept	that	can	be	complicated	to	grasp,	as	it	varies	a	lot	depending	on	the
context	and	also	varies	depending	on	the	mode	of	JavaScript	(strict	mode	or	not).

It's	important	to	clarify	this	concept	because	arrow	functions	behave	very	differently	compared
to	regular	functions.

When	defined	as	a	method	of	an	object,	in	a	regular	function	 	this		refers	to	the	object,	so	you
can	do:

const	car	=	{

		model:	'Fiesta',

		manufacturer:	'Ford',

		fullName:	function()	{

				return	`${this.manufacturer}	${this.model}`

		}

}

calling	 	car.fullName()		will	return	 	"Ford	Fiesta"	.

The	 	this		scope	with	arrow	functions	is	inherited	from	the	execution	context.	An	arrow
function	does	not	bind	 	this		at	all,	so	its	value	will	be	looked	up	in	the	call	stack,	so	in	this
code	 	car.fullName()		will	not	work,	and	will	return	the	string	 	"undefined	undefined"	:

const	car	=	{

		model:	'Fiesta',

		manufacturer:	'Ford',

		fullName:	()	=>	{

Arrow	functions

22

				return	`${this.manufacturer}	${this.model}`

		}

}

Due	to	this,	arrow	functions	are	not	suited	as	object	methods.

Arrow	functions	cannot	be	used	as	constructors	either,	when	instantiating	an	object	will	raise	a
	TypeError	.

This	is	where	regular	functions	should	be	used	instead,	when	dynamic	context	is	not
needed.

This	is	also	a	problem	when	handling	events.	DOM	Event	listeners	set	 	this		to	be	the	target
element,	and	if	you	rely	on	 	this		in	an	event	handler,	a	regular	function	is	necessary:

const	link	=	document.querySelector('#link')

link.addEventListener('click',	()	=>	{

		//	this	===	window

})

const	link	=	document.querySelector('#link')

link.addEventListener('click',	function()	{

		//	this	===	link

})

Arrow	functions

23

Work	with	objects	and	arrays	using	Rest
and	Spread
Learn	two	modern	techniques	to	work	with	arrays	and	objects	in	JavaScript

You	can	expand	an	array,	an	object	or	a	string	using	the	spread	operator	

Let's	start	with	an	array	example.	Given

const	a	=	[1,	2,	3]

you	can	create	a	new	array	using

const	b	=	[...a,	4,	5,	6]

You	can	also	create	a	copy	of	an	array	using

const	c	=	[...a]

This	works	for	objects	as	well.	Clone	an	object	with:

const	newObj	=	{	...oldObj	}

Using	strings,	the	spread	operator	creates	an	array	with	each	char	in	the	string:

const	hey	=	'hey'

const	arrayized	=	[...hey]	//	['h',	'e',	'y']

This	operator	has	some	pretty	useful	applications.	The	most	important	one	is	the	ability	to	use
an	array	as	function	argument	in	a	very	simple	way:

const	f	=	(foo,	bar)	=>	{}

const	a	=	[1,	2]

f(...a)

(in	the	past	you	could	do	this	using	 	f.apply(null,	a)		but	that's	not	as	nice	and	readable)

The	rest	element	is	useful	when	working	with	array	destructuring:

const	numbers	=	[1,	2,	3,	4,	5]

[first,	second,	...others]	=	numbers

Work	with	objects	and	arrays	using	Rest	and	Spread

24

and	spread	elements:

const	numbers	=	[1,	2,	3,	4,	5]

const	sum	=	(a,	b,	c,	d,	e)	=>	a	+	b	+	c	+	d	+	e

const	sum	=	sum(...numbers)

ES2018	introduces	rest	properties,	which	are	the	same	but	for	objects.

Rest	properties:

const	{	first,	second,	...others	}	=	{

		first:	1,

		second:	2,

		third:	3,

		fourth:	4,

		fifth:	5

}

first	//	1

second	//	2

others	//	{	third:	3,	fourth:	4,	fifth:	5	}

Spread	properties	allow	to	create	a	new	object	by	combining	the	properties	of	the	object
passed	after	the	spread	operator:

const	items	=	{	first,	second,	...others	}

items	//{	first:	1,	second:	2,	third:	3,	fourth:	4,	fifth:	5	}

Work	with	objects	and	arrays	using	Rest	and	Spread

25

Object	and	array	destructuring
Learn	how	to	use	the	destructuring	syntax	to	work	with	arrays	and	objects	in
JavaScript

Given	an	object,	using	the	destructuring	syntax	you	can	extract	just	some	values	and	put	them
into	named	variables:

const	person	=	{

		firstName:	'Tom',

		lastName:	'Cruise',

		actor:	true,

		age:	54	//made	up

}

const	{	firstName:	name,	age	}	=	person	//name:	Tom,	age:	54

	name		and	 	age		contain	the	desired	values.

The	syntax	also	works	on	arrays:

const	a	=	[1,	2,	3,	4,	5]

const	[first,	second]	=	a

This	statement	creates	3	new	variables	by	getting	the	items	with	index	0,	1,	4	from	the	array
	a	:

const	[first,	second,	,	,	fifth]	=	a

Object	and	array	destructuring

26

Template	literals
Introduced	in	ES2015,	aka	ES6,	Template	Literals	offer	a	new	way	to	declare
strings,	but	also	some	new	interesting	constructs	which	are	already	widely
popular.

Introduction	to	Template	Literals
Template	Literals	are	a	new	ES2015	/	ES6	feature	that	allows	you	to	work	with	strings	in	a
novel	way	compared	to	ES5	and	below.

The	syntax	at	a	first	glance	is	very	simple,	just	use	backticks	instead	of	single	or	double
quotes:

const	a_string	=	`something`

They	are	unique	because	they	provide	a	lot	of	features	that	normal	strings	built	with	quotes	do
not,	in	particular:

they	offer	a	great	syntax	to	define	multiline	strings
they	provide	an	easy	way	to	interpolate	variables	and	expressions	in	strings
they	allow	you	to	create	DSLs	with	template	tags	(DSL	means	domain	specific	language,
and	it's	for	example	used	in	React	by	Styled	Components,	to	define	CSS	for	a
component)

Let's	dive	into	each	of	these	in	detail.

Multiline	strings
Pre-ES6,	to	create	a	string	spanning	over	two	lines	you	had	to	use	the	 	\		character	at	the	end
of	a	line:

const	string	=

		'first	part	\

second	part'

This	allows	to	create	a	string	on	2	lines,	but	it's	rendered	on	just	one	line:

	first	part	second	part	

Template	literals

27

To	render	the	string	on	multiple	lines	as	well,	you	explicitly	need	to	add	 	\n		at	the	end	of	each
line,	like	this:

const	string	=

		'first	line\n	\

second	line'

or

const	string	=	'first	line\n'	+	'second	line'

Template	literals	make	multiline	strings	much	simpler.

Once	a	template	literal	is	opened	with	the	backtick,	you	just	press	enter	to	create	a	new	line,
with	no	special	characters,	and	it's	rendered	as-is:

const	string	=	`Hey

this

string

is	awesome!`

Keep	in	mind	that	space	is	meaningful,	so	doing	this:

const	string	=	`First

																Second`

is	going	to	create	a	string	like	this:

First

																Second

an	easy	way	to	fix	this	problem	is	by	having	an	empty	first	line,	and	appending	the	trim()
method	right	after	the	closing	backtick,	which	will	eliminate	any	space	before	the	first
character:

const	string	=	`

First

Second`.trim()

Interpolation

Template	literals

28

Template	literals	provide	an	easy	way	to	interpolate	variables	and	expressions	into	strings.

You	do	so	by	using	the	 	${...}		syntax:

const	var	=	'test'

const	string	=	`something	${var}`	//something	test

inside	the	 	${}		you	can	add	anything,	even	expressions:

const	string	=	`something	${1	+	2	+	3}`

const	string2	=	`something	${foo()	?	'x'	:	'y'}`

Template	tags
Tagged	templates	is	one	feature	that	might	sound	less	useful	at	first	for	you,	but	it's	actually
used	by	lots	of	popular	libraries	around,	like	Styled	Components	or	Apollo,	the	GraphQL
client/server	lib,	so	it's	essential	to	understand	how	it	works.

In	Styled	Components	template	tags	are	used	to	define	CSS	strings:

const	Button	=	styled.button`

		font-size:	1.5em;

		background-color:	black;

		color:	white;

`

In	Apollo	template	tags	are	used	to	define	a	GraphQL	query	schema:

const	query	=	gql`

		query	{

				...

		}

`

The	 	styled.button		and	 	gql		template	tags	highlighted	in	those	examples	are	just	functions:

function	gql(literals,	...expressions)	{}

this	function	returns	a	string,	which	can	be	the	result	of	any	kind	of	computation.

	literals		is	an	array	containing	the	template	literal	content	tokenized	by	the	expressions
interpolations.

	expressions		contains	all	the	interpolations.

Template	literals

29

https://flaviocopes.com/styled-components/
https://flaviocopes.com/apollo/
https://flaviocopes.com/graphql/

If	we	take	an	example	above:

const	string	=	`something	${1	+	2	+	3}`

	literals		is	an	array	with	two	items.	The	first	is	 	something	,	the	string	until	the	first
interpolation,	and	the	second	is	an	empty	string,	the	space	between	the	end	of	the	first
interpolation	(we	only	have	one)	and	the	end	of	the	string.

	expressions		in	this	case	is	an	array	with	a	single	item,	 	6	.

A	more	complex	example	is:

const	string	=	`something

another	${'x'}

new	line	${1	+	2	+	3}

test`

in	this	case	 	literals		is	an	array	where	the	first	item	is:

;`something

another	`

the	second	is:

;`

new	line	`

and	the	third	is:

;`

test`

	expressions		in	this	case	is	an	array	with	two	items,	 	x		and	 	6	.

The	function	that	is	passed	those	values	can	do	anything	with	them,	and	this	is	the	power	of
this	kind	feature.

The	most	simple	example	is	replicating	what	the	string	interpolation	does,	by	simply	joining
	literals		and	 	expressions	:

const	interpolated	=	interpolate`I	paid	${10}€`

and	this	is	how	 	interpolate		works:

Template	literals

30

function	interpolate(literals,	...expressions)	{

		let	string	=	``

		for	(const	[i,	val]	of	expressions)	{

				string	+=	literals[i]	+	val

		}

		string	+=	literals[literals.length	-	1]

		return	string

}

Template	literals

31

Classes
In	2015	the	ECMAScript	6	(ES6)	standard	introduced	classes.	Learn	all	about
them

In	2015	the	ECMAScript	6	(ES6)	standard	introduced	classes.

JavaScript	has	a	quite	uncommon	way	to	implement	inheritance:	prototypical	inheritance.
Prototypal	inheritance,	while	in	my	opinion	great,	is	unlike	most	other	popular	programming
language's	implementation	of	inheritance,	which	is	class-based.

People	coming	from	Java	or	Python	or	other	languages	had	a	hard	time	understanding	the
intricacies	of	prototypal	inheritance,	so	the	ECMAScript	committee	decided	to	sprinkle
syntactic	sugar	on	top	of	prototypical	inheritance	so	that	it	resembles	how	class-based
inheritance	works	in	other	popular	implementations.

This	is	important:	JavaScript	under	the	hood	is	still	the	same,	and	you	can	access	an	object
prototype	in	the	usual	way.

A	class	definition
This	is	how	a	class	looks.

class	Person	{

		constructor(name)	{

				this.name	=	name

		}

		hello()	{

				return	'Hello,	I	am	'	+	this.name	+	'.'

		}

}

A	class	has	an	identifier,	which	we	can	use	to	create	new	objects	using	 	new
ClassIdentifier()	.

When	the	object	is	initialized,	the	 	constructor		method	is	called,	with	any	parameters	passed.

A	class	also	has	as	many	methods	as	it	needs.	In	this	case	 	hello		is	a	method	and	can	be
called	on	all	objects	derived	from	this	class:

const	flavio	=	new	Person('Flavio')

flavio.hello()

Classes

32

https://flaviocopes.com/javascript-prototypal-inheritance/

Class	inheritance
A	class	can	extend	another	class,	and	objects	initialized	using	that	class	inherit	all	the
methods	of	both	classes.

If	the	inherited	class	has	a	method	with	the	same	name	as	one	of	the	classes	higher	in	the
hierarchy,	the	closest	method	takes	precedence:

class	Programmer	extends	Person	{

		hello()	{

				return	super.hello()	+	'	I	am	a	programmer.'

		}

}

const	flavio	=	new	Programmer('Flavio')

flavio.hello()

(the	above	program	prints	"Hello,	I	am	Flavio.	I	am	a	programmer.")

Classes	do	not	have	explicit	class	variable	declarations,	but	you	must	initialize	any	variable	in
the	constructor.

Inside	a	class,	you	can	reference	the	parent	class	calling	 	super()	.

Static	methods
Normally	methods	are	defined	on	the	instance,	not	on	the	class.

Static	methods	are	executed	on	the	class	instead:

class	Person	{

		static	genericHello()	{

				return	'Hello'

		}

}

Person.genericHello()	//Hello

Private	methods
JavaScript	does	not	have	a	built-in	way	to	define	private	or	protected	methods.

There	are	workarounds,	but	I	won't	describe	them	here.

Classes

33

Getters	and	setters
You	can	add	methods	prefixed	with	 	get		or	 	set		to	create	a	getter	and	setter,	which	are	two
different	pieces	of	code	that	are	executed	based	on	what	you	are	doing:	accessing	the
variable,	or	modifying	its	value.

class	Person	{

		constructor(name)	{

				this.name	=	name

		}

		set	name(value)	{

				this.name	=	value

		}

		get	name()	{

				return	this.name

		}

}

If	you	only	have	a	getter,	the	property	cannot	be	set,	and	any	attempt	at	doing	so	will	be
ignored:

class	Person	{

		constructor(name)	{

				this.name	=	name

		}

		get	name()	{

				return	this.name

		}

}

If	you	only	have	a	setter,	you	can	change	the	value	but	not	access	it	from	the	outside:

class	Person	{

		constructor(name)	{

				this.name	=	name

		}

		set	name(value)	{

				this.name	=	value

		}

}

Classes

34

Classes

35

Promises
Promises	are	one	way	to	deal	with	asynchronous	code	in	JavaScript,	without
writing	too	many	callbacks	in	your	code.

A	promise	is	commonly	defined	as	a	proxy	for	a	value	that	will	eventually	become
available.

Promises	are	one	way	to	deal	with	asynchronous	code,	without	writing	too	many	callbacks	in
your	code.

Although	they've	been	around	for	years,	they	were	standardized	and	introduced	in	ES2015,
and	now	they	have	been	superseded	in	ES2017	by	async	functions.

Async	functions	use	the	promises	API	as	their	building	block,	so	understanding	them	is
fundamental	even	if	in	newer	code	you'll	likely	use	async	functions	instead	of	promises.

How	promises	work,	in	brief

Once	a	promise	has	been	called,	it	will	start	in	pending	state.	This	means	that	the	caller
function	continues	the	execution,	while	it	waits	for	the	promise	to	do	its	own	processing,	and
give	the	caller	function	some	feedback.

At	this	point,	the	caller	function	waits	for	it	to	either	return	the	promise	in	a	resolved	state,	or
in	a	rejected	state,	but	as	you	know	JavaScript	is	asynchronous,	so	the	function	continues	its
execution	while	the	promise	does	it	work.

Which	JS	API	use	promises?

In	addition	to	your	own	code	and	library	code,	promises	are	used	by	standard	modern	Web
APIs	such	as:

the	Battery	API
the	Fetch	API
Service	Workers

It's	unlikely	that	in	modern	JavaScript	you'll	find	yourself	not	using	promises,	so	let's	start
diving	right	into	them.

Creating	a	promise

Promises

36

https://flaviocopes.com/ecmascript/#es2015-aka-es6
https://flaviocopes.com/ecmascript/#es2017-aka-es8
https://flaviocopes.com/javascript-async-await
https://flaviocopes.com/javascript/
https://flaviocopes.com/fetch-api/
https://flaviocopes.com/service-workers/

The	Promise	API	exposes	a	Promise	constructor,	which	you	initialize	using	 	new	Promise()	:

let	done	=	true

const	isItDoneYet	=	new	Promise((resolve,	reject)	=>	{

		if	(done)	{

				const	workDone	=	'Here	is	the	thing	I	built'

				resolve(workDone)

		}	else	{

				const	why	=	'Still	working	on	something	else'

				reject(why)

		}

})

As	you	can	see	the	promise	checks	the	 	done		global	constant,	and	if	that's	true,	we	return	a
resolved	promise,	otherwise	a	rejected	promise.

Using	 	resolve		and	 	reject		we	can	communicate	back	a	value,	in	the	above	case	we	just
return	a	string,	but	it	could	be	an	object	as	well.

Consuming	a	promise
In	the	last	section,	we	introduced	how	a	promise	is	created.

Now	let's	see	how	the	promise	can	be	consumed	or	used.

const	isItDoneYet	=	new	Promise()

//...

const	checkIfItsDone	=	()	=>	{

		isItDoneYet

				.then(ok	=>	{

						console.log(ok)

				})

				.catch(err	=>	{

						console.error(err)

				})

}

Running	 	checkIfItsDone()		will	execute	the	 	isItDoneYet()		promise	and	will	wait	for	it	to
resolve,	using	the	 	then		callback,	and	if	there	is	an	error,	it	will	handle	it	in	the	 	catch	
callback.

Promises

37

Chaining	promises
A	promise	can	be	returned	to	another	promise,	creating	a	chain	of	promises.

A	great	example	of	chaining	promises	is	given	by	the	Fetch	API,	a	layer	on	top	of	the
XMLHttpRequest	API,	which	we	can	use	to	get	a	resource	and	queue	a	chain	of	promises	to
execute	when	the	resource	is	fetched.

The	Fetch	API	is	a	promise-based	mechanism,	and	calling	 	fetch()		is	equivalent	to	defining
our	own	promise	using	 	new	Promise()	.

Example	of	chaining	promises

const	status	=	response	=>	{

		if	(response.status	>=	200	&&	response.status	<	300)	{

				return	Promise.resolve(response)

		}

		return	Promise.reject(new	Error(response.statusText))

}

const	json	=	response	=>	response.json()

fetch('/todos.json')

		.then(status)

		.then(json)

		.then(data	=>	{

				console.log('Request	succeeded	with	JSON	response',	data)

		})

		.catch(error	=>	{

				console.log('Request	failed',	error)

		})

In	this	example,	we	call	 	fetch()		to	get	a	list	of	TODO	items	from	the	 	todos.json		file	found	in
the	domain	root,	and	we	create	a	chain	of	promises.

Running	 	fetch()		returns	a	response,	which	has	many	properties,	and	within	those	we
reference:

	status	,	a	numeric	value	representing	the	HTTP	status	code
	statusText	,	a	status	message,	which	is	 	OK		if	the	request	succeeded

	response		also	has	a	 	json()		method,	which	returns	a	promise	that	will	resolve	with	the
content	of	the	body	processed	and	transformed	into	JSON.

So	given	those	premises,	this	is	what	happens:	the	first	promise	in	the	chain	is	a	function	that
we	defined,	called	 	status()	,	that	checks	the	response	status	and	if	it's	not	a	success
response	(between	200	and	299),	it	rejects	the	promise.

Promises

38

https://flaviocopes.com/fetch-api
https://fetch.spec.whatwg.org/#concept-response

This	operation	will	cause	the	promise	chain	to	skip	all	the	chained	promises	listed	and	will	skip
directly	to	the	 	catch()		statement	at	the	bottom,	logging	the	 	Request	failed		text	along	with
the	error	message.

If	that	succeeds	instead,	it	calls	the	json()	function	we	defined.	Since	the	previous	promise,
when	successful,	returned	the	 	response		object,	we	get	it	as	an	input	to	the	second	promise.

In	this	case,	we	return	the	data	JSON	processed,	so	the	third	promise	receives	the	JSON
directly:

.then((data)	=>	{

		console.log('Request	succeeded	with	JSON	response',	data)

})

and	we	simply	log	it	to	the	console.

Handling	errors
In	the	above	example,	in	the	previous	section,	we	had	a	 	catch		that	was	appended	to	the
chain	of	promises.

When	anything	in	the	chain	of	promises	fails	and	raises	an	error	or	rejects	the	promise,	the
control	goes	to	the	nearest	 	catch()		statement	down	the	chain.

new	Promise((resolve,	reject)	=>	{

		throw	new	Error('Error')

}).catch(err	=>	{

		console.error(err)

})

//	or

new	Promise((resolve,	reject)	=>	{

		reject('Error')

}).catch(err	=>	{

		console.error(err)

})

Cascading	errors

If	inside	the	 	catch()		you	raise	an	error,	you	can	append	a	second	 	catch()		to	handle	it,	and
so	on.

new	Promise((resolve,	reject)	=>	{

Promises

39

		throw	new	Error('Error')

})

		.catch(err	=>	{

				throw	new	Error('Error')

		})

		.catch(err	=>	{

				console.error(err)

		})

Orchestrating	promises

	Promise.all()	

If	you	need	to	synchronize	different	promises,	 	Promise.all()		helps	you	define	a	list	of
promises,	and	execute	something	when	they	are	all	resolved.

Example:

const	f1	=	fetch('/something.json')

const	f2	=	fetch('/something2.json')

Promise.all([f1,	f2])

		.then(res	=>	{

				console.log('Array	of	results',	res)

		})

		.catch(err	=>	{

				console.error(err)

		})

The	ES2015	destructuring	assignment	syntax	allows	you	to	also	do

Promise.all([f1,	f2]).then(([res1,	res2])	=>	{

		console.log('Results',	res1,	res2)

})

You	are	not	limited	to	using	 	fetch		of	course,	any	promise	is	good	to	go.

	Promise.race()	

	Promise.race()		runs	as	soon	as	one	of	the	promises	you	pass	to	it	resolves,	and	it	runs	the
attached	callback	just	once	with	the	result	of	the	first	promise	resolved.

Example:

const	promiseOne	=	new	Promise((resolve,	reject)	=>	{

Promises

40

https://flaviocopes.com/ecmascript/#destructuring-assignments

		setTimeout(resolve,	500,	'one')

})

const	promiseTwo	=	new	Promise((resolve,	reject)	=>	{

		setTimeout(resolve,	100,	'two')

})

Promise.race([promiseOne,	promiseTwo]).then(result	=>	{

		console.log(result)	//	'two'

})

Common	errors

Uncaught	TypeError:	undefined	is	not	a	promise

If	you	get	the	 	Uncaught	TypeError:	undefined	is	not	a	promise		error	in	the	console,	make	sure
you	use	 	new	Promise()		instead	of	just	 	Promise()	

Promises

41

Async/Await
Discover	the	modern	approach	to	asynchronous	functions	in	JavaScript.
JavaScript	evolved	in	a	very	short	time	from	callbacks	to	Promises,	and
since	ES2017	asynchronous	JavaScript	is	even	simpler	with	the	async/await
syntax

Introduction
JavaScript	evolved	in	a	very	short	time	from	callbacks	to	promises	(ES2015),	and	since
ES2017	asynchronous	JavaScript	is	even	simpler	with	the	async/await	syntax.

Async	functions	are	a	combination	of	promises	and	generators,	and	basically,	they	are	a
higher	level	abstraction	over	promises.	Let	me	repeat:	async/await	is	built	on	promises.

Why	were	async/await	introduced?
They	reduce	the	boilerplate	around	promises,	and	the	"don't	break	the	chain"	limitation	of
chaining	promises.

When	Promises	were	introduced	in	ES2015,	they	were	meant	to	solve	a	problem	with
asynchronous	code,	and	they	did,	but	over	the	2	years	that	separated	ES2015	and	ES2017,	it
was	clear	that	promises	could	not	be	the	final	solution.

Promises	were	introduced	to	solve	the	famous	callback	hell	problem,	but	they	introduced
complexity	on	their	own,	and	syntax	complexity.

They	were	good	primitives	around	which	a	better	syntax	could	be	exposed	to	developers,	so
when	the	time	was	right	we	got	async	functions.

They	make	the	code	look	like	it's	synchronous,	but	it's	asynchronous	and	non-blocking	behind
the	scenes.

How	it	works
An	async	function	returns	a	promise,	like	in	this	example:

const	doSomethingAsync	=	()	=>	{

		return	new	Promise(resolve	=>	{

				setTimeout(()	=>	resolve('I	did	something'),	3000)

		})

Async/Await

42

https://flaviocopes.com/javascript/
https://flaviocopes.com/javascript-promises/
https://flaviocopes.com/ecmascript/#es2017-aka-es8
https://flaviocopes.com/ecmascript/#generators

}

When	you	want	to	call	this	function	you	prepend	 	await	,	and	the	calling	code	will	stop	until
the	promise	is	resolved	or	rejected.	One	caveat:	the	client	function	must	be	defined	as
	async	.	Here's	an	example:

const	doSomething	=	async	()	=>	{

		console.log(await	doSomethingAsync())

}

A	quick	example
This	is	a	simple	example	of	async/await	used	to	run	a	function	asynchronously:

const	doSomethingAsync	=	()	=>	{

		return	new	Promise(resolve	=>	{

				setTimeout(()	=>	resolve('I	did	something'),	3000)

		})

}

const	doSomething	=	async	()	=>	{

		console.log(await	doSomethingAsync())

}

console.log('Before')

doSomething()

console.log('After')

The	above	code	will	print	the	following	to	the	browser	console:

Before

After

I	did	something	//after	3s

Promise	all	the	things
Prepending	the	 	async		keyword	to	any	function	means	that	the	function	will	return	a	promise.

Even	if	it's	not	doing	so	explicitly,	it	will	internally	make	it	return	a	promise.

This	is	why	this	code	is	valid:

const	aFunction	=	async	()	=>	{

		return	'test'

}

Async/Await

43

aFunction().then(alert)	//	This	will	alert	'test'

and	it's	the	same	as:

const	aFunction	=	async	()	=>	{

		return	Promise.resolve('test')

}

aFunction().then(alert)	//	This	will	alert	'test'

The	code	is	much	simpler	to	read
As	you	can	see	in	the	example	above,	our	code	looks	very	simple.	Compare	it	to	code	using
plain	promises,	with	chaining	and	callback	functions.

And	this	is	a	very	simple	example,	the	major	benefits	will	arise	when	the	code	is	much	more
complex.

For	example	here's	how	you	would	get	a	JSON	resource,	and	parse	it,	using	promises:

const	getFirstUserData	=	()	=>	{

		return	fetch('/users.json')	//	get	users	list

				.then(response	=>	response.json())	//	parse	JSON

				.then(users	=>	users[0])	//	pick	first	user

				.then(user	=>	fetch(`/users/${user.name}`))	//	get	user	data

				.then(userResponse	=>	response.json())	//	parse	JSON

}

getFirstUserData()

And	here	is	the	same	functionality	provided	using	await/async:

const	getFirstUserData	=	async	()	=>	{

		const	response	=	await	fetch('/users.json')	//	get	users	list

		const	users	=	await	response.json()	//	parse	JSON

		const	user	=	users[0]	//	pick	first	user

		const	userResponse	=	await	fetch(`/users/${user.name}`)	//	get	user	data

		const	userData	=	await	user.json()	//	parse	JSON

		return	userData

}

getFirstUserData()

Multiple	async	functions	in	series

Async/Await

44

Async	functions	can	be	chained	very	easily,	and	the	syntax	is	much	more	readable	than	with
plain	promises:

const	promiseToDoSomething	=	()	=>	{

		return	new	Promise(resolve	=>	{

				setTimeout(()	=>	resolve('I	did	something'),	10000)

		})

}

const	watchOverSomeoneDoingSomething	=	async	()	=>	{

		const	something	=	await	promiseToDoSomething()

		return	something	+	'	and	I	watched'

}

const	watchOverSomeoneWatchingSomeoneDoingSomething	=	async	()	=>	{

		const	something	=	await	watchOverSomeoneDoingSomething()

		return	something	+	'	and	I	watched	as	well'

}

watchOverSomeoneWatchingSomeoneDoingSomething().then(res	=>	{

		console.log(res)

})

Will	print:

I	did	something	and	I	watched	and	I	watched	as	well

Easier	debugging
Debugging	promises	is	hard	because	the	debugger	will	not	step	over	asynchronous	code.

Async/await	makes	this	very	easy	because	to	the	compiler	it's	just	like	synchronous	code.

Async/Await

45

ES	Modules
ES	Modules	is	the	ECMAScript	standard	for	working	with	modules.	While
Node.js	has	been	using	the	CommonJS	standard	for	years,	the	browser
never	had	a	module	system,	as	every	major	decision	such	as	a	module
system	must	be	first	standardized	by	ECMAScript	and	then	implemented

ES	Modules	is	the	ECMAScript	standard	for	working	with	modules.

While	Node.js	has	been	using	the	CommonJS	standard	for	years,	the	browser	never	had	a
module	system,	as	every	major	decision	such	as	a	module	system	must	be	first	standardized
by	ECMAScript	and	then	implemented	by	the	browser.

This	standardization	process	completed	with	ES6	and	browsers	started	implementing	this
standard	trying	to	keep	everything	well	aligned,	working	all	in	the	same	way,	and	now	ES
Modules	are	supported	in	Chrome,	Safari,	Edge	and	Firefox	(since	version	60).

Modules	are	very	cool,	because	they	let	you	encapsulate	all	sorts	of	functionality,	and	expose
this	functionality	to	other	JavaScript	files,	as	libraries.

ES	Modules

46

https://flaviocopes.com/node/
https://flaviocopes.com/es6/

The	ES	Modules	Syntax
The	syntax	to	import	a	module	is:

import	package	from	'module-name'

while	CommonJS	uses

const	package	=	require('module-name')

A	module	is	a	JavaScript	file	that	exports	one	or	more	values	(objects,	functions	or	variables),
using	the	 	export		keyword.	For	example,	this	module	exports	a	function	that	returns	a	string
uppercase:

uppercase.js

export	default	str	=>	str.toUpperCase()

In	this	example,	the	module	defines	a	single,	default	export,	so	it	can	be	an	anonymous
function.	Otherwise	it	would	need	a	name	to	distinguish	it	from	other	exports.

ES	Modules

47

Now,	any	other	JavaScript	module	can	import	the	functionality	offered	by	uppercase.js	by
importing	it.

An	HTML	page	can	add	a	module	by	using	a	 	<script>		tag	with	the	special	 	type="module"	
attribute:

<script	type="module"	src="index.js"></script>

Note:	this	module	import	behaves	like	a	 	defer		script	load.	See	efficiently	load
JavaScript	with	defer	and	async

It's	important	to	note	that	any	script	loaded	with	 	type="module"		is	loaded	in	strict	mode.

In	this	example,	the	 	uppercase.js		module	defines	a	default	export,	so	when	we	import	it,	we
can	assign	it	a	name	we	prefer:

import	toUpperCase	from	'./uppercase.js'

and	we	can	use	it:

toUpperCase('test')	//'TEST'

You	can	also	use	an	absolute	path	for	the	module	import,	to	reference	modules	defined	on
another	domain:

import	toUpperCase	from	'https://flavio-es-modules-example.glitch.me/uppercase.js'

This	is	also	valid	import	syntax:

import	{	foo	}	from	'/uppercase.js'

import	{	foo	}	from	'../uppercase.js'

This	is	not:

import	{	foo	}	from	'uppercase.js'

import	{	foo	}	from	'utils/uppercase.js'

It's	either	absolute,	or	has	a	 	./		or	 	/		before	the	name.

Other	import/export	options

ES	Modules

48

https://flaviocopes.com/javascript-async-defer/
https://flaviocopes.com/javascript-strict-mode/

We	saw	this	example	above:

export	default	str	=>	str.toUpperCase()

This	creates	one	default	export.	In	a	file	however	you	can	export	more	than	one	thing,	by	using
this	syntax:

const	a	=	1

const	b	=	2

const	c	=	3

export	{	a,	b,	c	}

Another	module	can	import	all	those	exports	using

import	*	from	'module'

You	can	import	just	a	few	of	those	exports,	using	the	destructuring	assignment:

import	{	a	}	from	'module'

import	{	a,	b	}	from	'module'

You	can	rename	any	import,	for	convenience,	using	 	as	:

import	{	a,	b	as	two	}	from	'module'

You	can	import	the	default	export,	and	any	non-default	export	by	name,	like	in	this	common
React	import:

import	React,	{	Component	}	from	'react'

You	can	see	an	ES	Modules	example	here:	https://glitch.com/edit/#!/flavio-es-modules-
example?path=index.html

CORS
Modules	are	fetched	using	CORS.	This	means	that	if	you	reference	scripts	from	other
domains,	they	must	have	a	valid	CORS	header	that	allows	cross-site	loading	(like	 	Access-
Control-Allow-Origin:	*)

ES	Modules

49

https://flaviocopes.com/es6/#destructuring-assignments
https://glitch.com/edit/#!/flavio-es-modules-example?path=index.html
https://flaviocopes.com/cors/

What	about	browsers	that	do	not	support
modules?
Use	a	combination	of	 	type="module"		and	 	nomodule	:

<script	type="module"	src="module.js"></script>

<script	nomodule	src="fallback.js"></script>

Conclusion
ES	Modules	are	one	of	the	biggest	features	introduced	in	modern	browsers.	They	are	part	of
ES6	but	the	road	to	implement	them	has	been	long.

We	can	now	use	them!	But	we	must	also	remember	that	having	more	than	a	few	modules	is
going	to	have	a	performance	hit	on	our	pages,	as	it's	one	more	step	that	the	browser	must
perform	at	runtime.

Webpack	is	probably	going	to	still	be	a	huge	player	even	if	ES	Modules	land	in	the	browser,
but	having	such	a	feature	directly	built	in	the	language	is	huge	for	a	unification	of	how	modules
work	client-side	and	on	Node.js	as	well.

ES	Modules

50

https://flaviocopes.com/webpack/

Single	Page	Apps
React	Applications	are	also	called	Single	Page	Applications.	What	does	this
mean?

In	the	past,	when	browsers	were	much	less	capable	than	today,	and	JavaScript	performance
was	poor,	every	page	was	coming	from	a	server.	Every	time	you	clicked	something,	a	new
request	was	made	to	the	server	and	the	browser	subsequently	loaded	the	new	page.

Only	very	innovative	products	worked	differently,	and	experimented	with	new	approaches.

Today,	popularized	by	modern	frontend	JavaScript	frameworks	like	React,	an	app	is	usually
built	as	a	single	page	application:	you	only	load	the	application	code	(HTML,	CSS,	JavaScript)
once,	and	when	you	interact	with	the	application,	what	generally	happens	is	that	JavaScript
intercepts	the	browser	events	and	instead	of	making	a	new	request	to	the	server	that	then
returns	a	new	document,	the	client	requests	some	JSON	or	performs	an	action	on	the	server
but	the	page	that	the	user	sees	is	never	completely	wiped	away,	and	behaves	more	like	a
desktop	application.

Single	page	applications	are	built	in	JavaScript	(or	at	least	compiled	to	JavaScript)	and	work	in
the	browser.

The	technology	is	always	the	same,	but	the	philosophy	and	some	key	components	of	how	the
application	works	are	different.

Examples	of	Single	Page	Applications
Some	notable	examples:

Gmail
Google	Maps
Facebook
Twitter
Google	Drive

Pros	and	cons	of	SPAs
An	SPA	feels	much	faster	to	the	user,	because	instead	of	waiting	for	the	client-server
communication	to	happen,	and	wait	for	the	browser	to	re-render	the	page,	you	can	now	have
instant	feedback.	This	is	the	responsibility	of	the	application	maker,	but	you	can	have

Single	Page	Apps

51

https://flaviocopes.com/css/
https://flaviocopes.com/javascript/

transitions	and	spinners	and	any	kind	of	UX	improvement	that	is	certainly	better	than	the
traditional	workflow.

In	addition	to	making	the	experience	faster	to	the	user,	the	server	will	consume	less	resources
because	you	can	focus	on	providing	an	efficient	API	instead	of	building	the	layouts	server-
side.

This	makes	it	ideal	if	you	also	build	a	mobile	app	on	top	of	the	API,	as	you	can	completely
reuse	your	existing	server-side	code.

Single	Page	Applications	are	easy	to	transform	into	Progressive	Web	Apps,	which	in	turn
enables	you	to	provide	local	caching	and	to	support	offline	experiences	for	your	services	(or
simply	a	better	error	message	if	your	users	need	to	be	online).

SPAs	are	best	used	when	there	is	no	need	for	SEO	(search	engine	optimization).	For	example
for	apps	that	work	behind	a	login.

Search	engines,	while	improving	every	day,	still	have	trouble	indexing	sites	built	with	an	SPA
approach	rather	than	the	traditional	server-rendered	pages.	This	is	the	case	for	blogs.	If	you
are	going	to	rely	on	search	engines,	don't	even	bother	with	creating	a	single	page	application
without	having	a	server	rendered	part	as	well.

When	coding	an	SPA,	you	are	going	to	write	a	great	deal	of	JavaScript.	Since	the	app	can	be
long-running,	you	are	going	to	need	to	pay	a	lot	more	attention	to	possible	memory	leaks	-	if	in
the	past	your	page	had	a	lifespan	that	was	counted	in	minutes,	now	an	SPA	might	stay	open
for	hours	at	a	time	and	if	there	is	any	memory	issue	that's	going	to	increase	the	browser
memory	usage	by	a	lot	more	and	it's	going	to	cause	an	unpleasantly	slow	experience	if	you
don't	take	care	of	it.

SPAs	are	great	when	working	in	teams.	Backend	developers	can	just	focus	on	the	API,	and
frontend	developers	can	focus	on	creating	the	best	user	experience,	making	use	of	the	API
built	in	the	backend.

As	a	con,	Single	Page	Apps	rely	heavily	on	JavaScript.	This	might	make	using	an	application
running	on	low	power	devices	a	poor	experience	in	terms	of	speed.	Also,	some	of	your	visitors
might	just	have	JavaScript	disabled,	and	you	also	need	to	consider	accessibility	for	anything
you	build.

Overriding	the	navigation
Since	you	get	rid	of	the	default	browser	navigation,	URLs	must	be	managed	manually.

This	part	of	an	application	is	called	the	router.	Some	frameworks	already	take	care	of	them	for
you	(like	Ember),	others	require	libraries	that	will	do	this	job	(like	React	Router).

Single	Page	Apps

52

https://flaviocopes.com/react-router/

What's	the	problem?	In	the	beginning,	this	was	an	afterthought	for	developers	building	Single
Page	Applications.	This	caused	the	common	"broken	back	button"	issue:	when	navigating
inside	the	application	the	URL	didn't	change	(since	the	browser	default	navigation	was
hijacked)	and	hitting	the	back	button,	a	common	operation	that	users	do	to	go	to	the	previous
screen,	might	move	to	a	website	you	visited	a	long	time	ago.

This	problem	can	now	be	solved	using	the	History	API	offered	by	browsers,	but	most	of	the
time	you'll	use	a	library	that	internally	uses	that	API,	like	React	Router.

Single	Page	Apps

53

https://flaviocopes.com/history-api/

Declarative
What	does	it	mean	when	you	read	that	React	is	declarative

You'll	run	across	articles	describing	React	as	a	declarative	approach	to	building	UIs.

React	made	its	"declarative	approach"	quite	popular	and	upfront	so	it	permeated	the	frontend
world	along	with	React.

It's	really	not	a	new	concept,	but	React	took	building	UIs	a	lot	more	declaratively	than	with
HTML	templates:

you	can	build	Web	interfaces	without	even	touching	the	DOM	directly
you	can	have	an	event	system	without	having	to	interact	with	the	actual	DOM	Events.

The	opposite	of	declarative	is	iterative.	A	common	example	of	an	iterative	approach	is	looking
up	elements	in	the	DOM	using	jQuery	or	DOM	events.	You	tell	the	browser	exactly	what	to	do,
instead	of	telling	it	what	you	need.

The	React	declarative	approach	abstracts	that	for	us.	We	just	tell	React	we	want	a	component
to	be	rendered	in	a	specific	way,	and	we	never	have	to	interact	with	the	DOM	to	reference	it
later.

Declarative

54

Immutability
What	is	immutability?	And	how	does	it	fit	in	the	React	world?

One	concept	you	will	likely	meet	when	programming	in	React	is	immutability	(and	its	opposite,
mutability).

It's	a	controversial	topic,	but	whatever	you	might	think	about	the	concept	of	immutability,	React
and	most	of	its	ecosystem	kind	of	forces	this,	so	you	need	to	at	least	have	a	grasp	of	why	it's
so	important	and	the	implications	of	it.

In	programming,	a	variable	is	immutable	when	its	value	cannot	change	after	it's	created.

You	are	already	using	immutable	variables	without	knowing	it	when	you	manipulate	a	string.
Strings	are	immutable	by	default,	when	you	change	them	in	reality	you	create	a	new	string	and
assign	it	to	the	same	variable	name.

An	immutable	variable	can	never	be	changed.	To	update	its	value,	you	create	a	new	variable.

The	same	applies	to	objects	and	arrays.

Instead	of	changing	an	array,	to	add	a	new	item	you	create	a	new	array	by	concatenating	the
old	array,	plus	the	new	item.

An	object	is	never	updated,	but	copied	before	changing	it.

This	applies	to	React	in	many	places.

For	example,	you	should	never	mutate	the	 	state		property	of	a	component	directly,	but	only
through	the	 	setState()		method.

In	Redux,	you	never	mutate	the	state	directly,	but	only	through	reducers,	which	are	functions.

The	question	is,	why?

There	are	various	reasons,	the	most	important	of	which	are:

Mutations	can	be	centralized,	like	in	the	case	of	Redux,	which	improves	your	debugging
capabilities	and	reduces	sources	of	errors.
Code	looks	cleaner	and	simpler	to	understand.	You	never	expect	a	function	to	change
some	value	without	you	knowing,	which	gives	you	predictability.	When	a	function	does
not	mutate	objects	but	just	returns	a	new	object,	it's	called	a	pure	function.
The	library	can	optimize	the	code	because	for	example	JavaScript	is	faster	when
swapping	an	old	object	reference	for	an	entirely	new	object,	rather	than	mutating	an
existing	object.	This	gives	you	performance.

Immutability

55

Immutability

56

Purity
What	is	purity,	a	pure	function	and	a	pure	component

In	JavaScript,	when	a	function	does	not	mutate	objects	but	just	returns	a	new	object,	it's	called
a	pure	function.

A	function,	or	a	method,	in	order	to	be	called	pure	should	not	cause	side	effects	and	should
return	the	same	output	when	called	multiple	times	with	the	same	input.

A	pure	function	takes	an	input	and	returns	an	output	without	changing	the	input	nor	anything
else.

Its	output	is	only	determined	by	the	arguments.	You	could	call	this	function	1M	times,	and
given	the	same	set	of	arguments,	the	output	will	always	be	the	same.

React	applies	this	concept	to	components.	A	React	component	is	a	pure	component	when	its
output	is	only	dependant	on	its	props.

All	functional	components	are	pure	components:

const	Button	=	props	=>	{

		return	<button>{props.message}</button>

}

Class	components	can	be	pure	if	their	output	only	depends	on	the	props:

class	Button	extends	React.Component	{

		render()	{

				return	<button>{this.props.message}</button>

		}

}

Purity

57

Composition
What	is	composition	and	why	is	it	a	key	concept	in	your	React	apps

In	programming,	composition	allows	you	to	build	more	complex	functionality	by	combining
small	and	focused	functions.

For	example,	think	about	using	 	map()		to	create	a	new	array	from	an	initial	set,	and	then
filtering	the	result	using	 	filter()	:

const	list	=	['Apple',	'Orange',	'Egg']

list.map(item	=>	item[0]).filter(item	=>	item	===	'A')	//'A'

In	React,	composition	allows	you	to	have	some	pretty	cool	advantages.

You	create	small	and	lean	components	and	use	them	to	compose	more	functionality	on	top	of
them.	How?

Create	specialized	version	of	a	component
Use	an	outer	component	to	expand	and	specialize	a	more	generic	component:

const	Button	=	props	=>	{

		return	<button>{props.text}</button>

}

const	SubmitButton	=	()	=>	{

		return	<Button	text="Submit"	/>

}

const	LoginButton	=	()	=>	{

		return	<Button	text="Login"	/>

}

Pass	methods	as	props
A	component	can	focus	on	tracking	a	click	event,	for	example,	and	what	actually	happens
when	the	click	event	happens	is	up	to	the	container	component:

const	Button	=	props	=>	{

		return	<button	onClick={props.onClickHandler}>{props.text}</button>

}

Composition

58

const	LoginButton	=	props	=>	{

		return	<Button	text="Login"	onClickHandler={props.onClickHandler}	/>

}

const	Container	=	()	=>	{

		const	onClickHandler	=	()	=>	{

				alert('clicked')

		}

		return	<LoginButton	onClickHandler={onClickHandler}	/>

}

Using	children
The	 	props.children		property	allows	you	to	inject	components	inside	other	components.

The	component	needs	to	output	 	props.children		in	its	JSX:

const	Sidebar	=	props	=>	{

		return	<aside>{props.children}</aside>

}

and	you	embed	more	components	into	it	in	a	transparent	way:

<Sidebar>

		<Link	title="First	link"	/>

		<Link	title="Second	link"	/>

</Sidebar>

Higher	order	components
When	a	component	receives	a	component	as	a	prop	and	returns	a	component,	it's	called
higher	order	component.

We'll	see	them	in	a	little	while.

Composition

59

The	Virtual	DOM
The	Virtual	DOM	is	a	technique	that	React	uses	to	optimize	interacting	with
the	browser

Many	existing	frameworks,	before	React	came	on	the	scene,	were	directly	manipulating	the
DOM	on	every	change.

First,	what	is	the	DOM?

The	DOM	(Document	Object	Model)	is	a	Tree	representation	of	the	page,	starting	from	the
	<html>		tag,	going	down	into	every	child,	which	are	called	nodes.

It's	kept	in	the	browser	memory,	and	directly	linked	to	what	you	see	in	a	page.	The	DOM	has
an	API	that	you	can	use	to	traverse	it,	access	every	single	node,	filter	them,	modify	them.

The	API	is	the	familiar	syntax	you	have	likely	seen	many	times,	if	you	were	not	using	the
abstract	API	provided	by	jQuery	and	friends:

document.getElementById(id)

document.getElementsByTagName(name)

document.createElement(name)

parentNode.appendChild(node)

element.innerHTML

element.style.left

element.setAttribute()

element.getAttribute()

element.addEventListener()

window.content

window.onload

window.dump()

window.scrollTo()

React	keeps	a	copy	of	the	DOM	representation,	for	what	concerns	the	React	rendering:	the
Virtual	DOM

The	Virtual	DOM	Explained

Every	time	the	DOM	changes,	the	browser	has	to	do	two	intensive	operations:	repaint	(visual
or	content	changes	to	an	element	that	do	not	affect	the	layout	and	positioning	relative	to	other
elements)	and	reflow	(recalculate	the	layout	of	a	portion	of	the	page	-	or	the	whole	page
layout).

React	uses	a	Virtual	DOM	to	help	the	browser	use	less	resources	when	changes	need	to	be
done	on	a	page.

The	Virtual	DOM

60

When	you	call	 	setState()		on	a	Component,	specifying	a	state	different	than	the	previous	one,
React	marks	that	Component	as	dirty.	This	is	key:	React	only	updates	when	a	Component
changes	the	state	explicitly.

What	happens	next	is:

React	updates	the	Virtual	DOM	relative	to	the	components	marked	as	dirty	(with	some
additional	checks,	like	triggering	 	shouldComponentUpdate())
Runs	the	diffing	algorithm	to	reconcile	the	changes
Updates	the	real	DOM

Why	is	the	Virtual	DOM	helpful:	batching

The	key	thing	is	that	React	batches	much	of	the	changes	and	performs	a	unique	update	to	the
real	DOM,	by	changing	all	the	elements	that	need	to	be	changed	at	the	same	time,	so	the
repaint	and	reflow	the	browser	must	perform	to	render	the	changes	are	executed	just	once.

The	Virtual	DOM

61

Unidirectional	Data	Flow
Working	with	React	you	might	encounter	the	term	Unidirectional	Data	Flow.
What	does	it	mean?

Unidirectional	Data	Flow	is	not	a	concept	unique	to	React,	but	as	a	JavaScript	developer	this
might	be	the	first	time	you	hear	it.

In	general	this	concept	means	that	data	has	one,	and	only	one,	way	to	be	transferred	to	other
parts	of	the	application.

In	React	this	means	that:

state	is	passed	to	the	view	and	to	child	components
actions	are	triggered	by	the	view
actions	can	update	the	state
the	state	change	is	passed	to	the	view	and	to	child	components

The	view	is	a	result	of	the	application	state.	State	can	only	change	when	actions	happen.
When	actions	happen,	the	state	is	updated.

Unidirectional	Data	Flow

62

Thanks	to	one-way	bindings,	data	cannot	flow	in	the	opposite	way	(as	would	happen	with	two-
way	bindings,	for	example),	and	this	has	some	key	advantages:

it's	less	error	prone,	as	you	have	more	control	over	your	data
it's	easier	to	debug,	as	you	know	what	is	coming	from	where
it's	more	efficient,	as	the	library	already	knows	what	the	boundaries	are	of	each	part	of	the
system

A	state	is	always	owned	by	one	Component.	Any	data	that's	affected	by	this	state	can	only
affect	Components	below	it:	its	children.

Changing	state	on	a	Component	will	never	affect	its	parent,	or	its	siblings,	or	any	other
Component	in	the	application:	just	its	children.

This	is	the	reason	that	the	state	is	often	moved	up	in	the	Component	tree,	so	that	it	can	be
shared	between	components	that	need	to	access	it.

Unidirectional	Data	Flow

63

JSX
JSX	is	a	technology	that	was	introduced	by	React.	Let's	dive	into	it

Introduction	to	JSX
JSX	is	a	technology	that	was	introduced	by	React.

Although	React	can	work	completely	fine	without	using	JSX,	it's	an	ideal	technology	to	work
with	components,	so	React	benefits	a	lot	from	JSX.

At	first,	you	might	think	that	using	JSX	is	like	mixing	HTML	and	JavaScript	(and	as	you'll	see
CSS).

But	this	is	not	true,	because	what	you	are	really	doing	when	using	JSX	syntax	is	writing	a
declarative	syntax	of	what	a	component	UI	should	be.

And	you're	describing	that	UI	not	using	strings,	but	instead	using	JavaScript,	which	allows	you
to	do	many	nice	things.

A	JSX	primer
Here	is	how	you	define	a	h1	tag	containing	a	string:

const	element	=	<h1>Hello,	world!</h1>

JSX

64

https://flaviocopes.com/javascript/

It	looks	like	a	strange	mix	of	JavaScript	and	HTML,	but	in	reality	it's	all	JavaScript.

What	looks	like	HTML,	is	actually	syntactic	sugar	for	defining	components	and	their	positioning
inside	the	markup.

Inside	a	JSX	expression,	attributes	can	be	inserted	very	easily:

const	myId	=	'test'

const	element	=	<h1	id={myId}>Hello,	world!</h1>

You	just	need	to	pay	attention	when	an	attribute	has	a	dash	(-)	which	is	converted	to
camelCase	syntax	instead,	and	these	2	special	cases:

	class		becomes	 	className	
	for		becomes	 	htmlFor	

because	they	are	reserved	words	in	JavaScript.

Here's	a	JSX	snippet	that	wraps	two	components	into	a	 	div		tag:

<div>

		<BlogPostsList	/>

		<Sidebar	/>

</div>

A	tag	always	needs	to	be	closed,	because	this	is	more	XML	than	HTML	(if	you	remember	the
XHTML	days,	this	will	be	familiar,	but	since	then	the	HTML5	loose	syntax	won).	In	this	case	a
self-closing	tag	is	used.

Notice	how	I	wrapped	the	2	components	into	a	 	div	.	Why?	Because	the	render()	function
can	only	return	a	single	node,	so	in	case	you	want	to	return	2	siblings,	just	add	a	parent.	It
can	be	any	tag,	not	just	 	div	.

Transpiling	JSX
A	browser	cannot	execute	JavaScript	files	containing	JSX	code.	They	must	be	first
transformed	to	regular	JS.

How?	By	doing	a	process	called	transpiling.

We	already	said	that	JSX	is	optional,	because	to	every	JSX	line,	a	corresponding	plain
JavaScript	alternative	is	available,	and	that's	what	JSX	is	transpiled	to.

For	example	the	following	two	constructs	are	equivalent:

JSX

65

Plain	JS

ReactDOM.render(

		React.DOM.div(

				{	id:	'test'	},

				React.DOM.h1(null,	'A	title'),

				React.DOM.p(null,	'A	paragraph')

),

		document.getElementById('myapp')

)

JSX

ReactDOM.render(

		<div	id="test">

				<h1>A	title</h1>

				<p>A	paragraph</p>

		</div>,

		document.getElementById('myapp')

)

This	very	basic	example	is	just	the	starting	point,	but	you	can	already	see	how	more
complicated	the	plain	JS	syntax	is	compared	to	using	JSX.

At	the	time	of	writing	the	most	popular	way	to	perform	the	transpilation	is	to	use	Babel,	which
is	the	default	option	when	running	 	create-react-app	,	so	if	you	use	it	you	don't	have	to	worry,
everything	happens	under	the	hood	for	you.

If	you	don't	use	 	create-react-app		you	need	to	setup	Babel	yourself.

JS	in	JSX
JSX	accepts	any	kind	of	JavaScript	mixed	into	it.

Whenever	you	need	to	add	some	JS,	just	put	it	inside	curly	braces	 	{}	.	For	example	here's
how	to	use	a	constant	value	defined	elsewhere:

const	paragraph	=	'A	paragraph'

ReactDOM.render(

		<div	id="test">

				<h1>A	title</h1>

				<p>{paragraph}</p>

		</div>,

		document.getElementById('myapp')

)

This	is	a	basic	example.	Curly	braces	accept	any	JS	code:

JSX

66

const	paragraph	=	'A	paragraph'

ReactDOM.render(

		<table>

				{rows.map((row,	i)	=>	{

						return	<tr>{row.text}</tr>

				})}

		</div>,

		document.getElementById('myapp')

)

As	you	can	see	we	nested	JavaScript	inside	JSX	defined	inside	JavaScript	nested	in	JSX.	You
can	go	as	deep	as	you	need.

HTML	in	JSX
JSX	resembles	HTML	a	lot,	but	it's	actually	XML	syntax.

In	the	end	you	render	HTML,	so	you	need	to	know	a	few	differences	between	how	you	would
define	some	things	in	HTML,	and	how	you	define	them	in	JSX.

You	need	to	close	all	tags

Just	like	in	XHTML,	if	you	have	ever	used	it,	you	need	to	close	all	tags:	no	more	 	
		but
instead	use	the	self-closing	tag:	 	
		(the	same	goes	for	other	tags)

camelCase	is	the	new	standard

In	HTML	you'll	find	attributes	without	any	case	(e.g.	 	onchange).	In	JSX,	they	are	renamed	to
their	camelCase	equivalent:

	onchange		=>	 	onChange	
	onclick		=>	 	onClick	
	onsubmit		=>	 	onSubmit	

	class		becomes	 	className	

Due	to	the	fact	that	JSX	is	JavaScript,	and	 	class		is	a	reserved	word,	you	can't	write

<p	class="description">

but	you	need	to	use

<p	className="description">

JSX

67

The	same	applies	to	 	for		which	is	translated	to	 	htmlFor	.

The	style	attribute	changes	its	semantics

The	 	style		attribute	in	HTML	allows	to	specify	inline	style.	In	JSX	it	no	longer	accepts	a	string,
and	in	CSS	in	React	you'll	see	why	it's	a	very	convenient	change.

Forms

Form	fields	definition	and	events	are	changed	in	JSX	to	provide	more	consistency	and	utility.

Forms	in	JSX	goes	into	more	details	on	forms.

CSS	in	React
JSX	provides	a	cool	way	to	define	CSS.

If	you	have	a	little	experience	with	HTML	inline	styles,	at	first	glance	you'll	find	yourself	pushed
back	10	or	15	years,	to	a	world	where	inline	CSS	was	completely	normal	(nowadays	it's
demonized	and	usually	just	a	"quick	fix"	go-to	solution).

JSX	style	is	not	the	same	thing:	first	of	all,	instead	of	accepting	a	string	containing	CSS
properties,	the	JSX	 	style		attribute	only	accepts	an	object.	This	means	you	define	properties
in	an	object:

var	divStyle	=	{

		color:	'white'

}

ReactDOM.render(<div	style={divStyle}>Hello	World!</div>,	mountNode)

or

ReactDOM.render(<div	style={{	color:	'white'	}}>Hello	World!</div>,	mountNode)

The	CSS	values	you	write	in	JSX	are	slightly	different	from	plain	CSS:

the	keys	property	names	are	camelCased
values	are	just	strings
you	separate	each	tuple	with	a	comma

Why	is	this	preferred	over	plain	CSS	/	SASS	/	LESS?

JSX

68

CSS	is	an	unsolved	problem.	Since	its	inception,	dozens	of	tools	around	it	rose	and	then	fell.
The	main	problem	with	JS	is	that	there	is	no	scoping	and	it's	easy	to	write	CSS	that	is	not
enforced	in	any	way,	thus	a	"quick	fix"	can	impact	elements	that	should	not	be	touched.

JSX	allows	components	(defined	in	React	for	example)	to	completely	encapsulate	their	style.

Is	this	the	go-to	solution?

Inline	styles	in	JSX	are	good	until	you	need	to

1.	 write	media	queries
2.	 style	animations
3.	 reference	pseudo	classes	(e.g.	 	:hover)
4.	 reference	pseudo	elements	(e.g.	 	::first-letter)

In	short,	they	cover	the	basics,	but	it's	not	the	final	solution.

Forms	in	JSX
JSX	adds	some	changes	to	how	HTML	forms	work,	with	the	goal	of	making	things	easier	for
the	developer.

	value		and	 	defaultValue	

The	 	value		attribute	always	holds	the	current	value	of	the	field.

The	 	defaultValue		attribute	holds	the	default	value	that	was	set	when	the	field	was	created.

This	helps	solve	some	weird	behavior	of	regular	DOM	interaction	when	inspecting
	input.value		and	 	input.getAttribute('value')		returning	one	the	current	value	and	one	the
original	default	value.

This	also	applies	to	the	 	textarea		field,	e.g.

<textarea>Some	text</textarea>

but	instead

<textarea	defaultValue={'Some	text'}	/>

For	 	select		fields,	instead	of	using

<select>

JSX

69

https://flaviocopes.com/dom/

		<option	value="x"	selected>

				...

		</option>

</select>

use

<select	defaultValue="x">

		<option	value="x">...</option>

</select>

A	more	consistent	onChange

Passing	a	function	to	the	 	onChange		attribute	you	can	subscribe	to	events	on	form	fields.

It	works	consistently	across	fields,	even	 	radio	,	 	select		and	 	checkbox		input	fields	fire	a
	onChange		event.

	onChange		also	fires	when	typing	a	character	into	an	 	input		or	 	textarea		field.

JSX	auto	escapes
To	mitigate	the	ever	present	risk	of	XSS	exploits,	JSX	forces	automatic	escaping	in
expressions.

This	means	that	you	might	run	into	issues	when	using	an	HTML	entity	in	a	string	expression.

You	expect	the	following	to	print	 	©	2017	:

<p>{'©	2017'}</p>

But	it's	not,	it's	printing	 	©	2017		because	the	string	is	escaped.

To	fix	this	you	can	either	move	the	entities	outside	the	expression:

<p>©	2017</p>

or	by	using	a	constant	that	prints	the	Unicode	representation	corresponding	to	the	HTML	entity
you	need	to	print:

<p>{'\u00A9	2017'}</p>

JSX

70

White	space	in	JSX
To	add	white	space	in	JSX	there	are	2	rules:

Horizontal	white	space	is	trimmed	to	1

If	you	have	white	space	between	elements	in	the	same	line,	it's	all	trimmed	to	1	white	space.

<p>Something							becomes															this</p>

becomes

<p>Something	becomes	this</p>

Vertical	white	space	is	eliminated

<p>

		Something

		becomes

		this

</p>

becomes

<p>Somethingbecomesthis</p>

To	fix	this	problem	you	need	to	explicitly	add	white	space,	by	adding	a	space	expression	like
this:

<p>

		Something

		{'	'}becomes

		{'	'}this

</p>

or	by	embedding	the	string	in	a	space	expression:

<p>

		Something

		{'	becomes	'}

		this

</p>

JSX

71

Adding	comments	in	JSX
You	can	add	comments	to	JSX	by	using	the	normal	JavaScript	comments	inside	an
expression:

<p>

		{/*	a	comment	*/}

		{

				//another	comment

		}

</p>

Spread	attributes
In	JSX	a	common	operation	is	assigning	values	to	attributes.

Instead	of	doing	it	manually,	e.g.

<div>

		<BlogPost	title={data.title}	date={data.date}	/>

</div>

you	can	pass

<div>

		<BlogPost	{...data}	/>

</div>

and	the	properties	of	the	 	data		object	will	be	used	as	attributes	automatically,	thanks	to	the
ES6	spread	operator

How	to	loop	in	JSX
If	you	have	a	set	of	elements	you	need	to	loop	upon	to	generate	a	JSX	partial,	you	can	create
a	loop,	and	then	add	JSX	to	an	array:

const	elements	=	[]	//..some	array

const	items	=	[]

for	(const	[index,	value]	of	elements.entries()	{

		items.push(<Element	key={index}	/>)

}

JSX

72

Now	when	rendering	the	JSX	you	can	embed	the	 	items		array	simply	by	wrapping	it	in	curly
braces:

const	elements	=	['one',	'two',	'three'];

const	items	=	[]

for	(const	[index,	value]	of	elements.entries()	{

		items.push(<li	key={index}>{value})

}

return	(

		<div>

				{items}

		</div>

)

You	can	do	the	same	directly	in	the	JSX,	using	 	map		instead	of	a	for-of	loop:

const	elements	=	['one',	'two',	'three'];

return	(

		

				{elements.map((value,	index)	=>	{

						return	<li	key={index}>{value}

				})}

		

)

JSX

73

Components
A	brief	introduction	to	React	Components

A	component	is	one	isolated	piece	of	interface.	For	example	in	a	typical	blog	homepage	you
might	find	the	Sidebar	component,	and	the	Blog	Posts	List	component.	They	are	in	turn
composed	of	components	themselves,	so	you	could	have	a	list	of	Blog	post	components,	each
for	every	blog	post,	and	each	with	its	own	peculiar	properties.

React	makes	it	very	simple:	everything	is	a	component.

Even	plain	HTML	tags	are	component	on	their	own,	and	they	are	added	by	default.

The	next	2	lines	are	equivalent,	they	do	the	same	thing.	One	with	JSX,	one	without,	by
injecting	 	<h1>Hello	World!</h1>		into	an	element	with	id	 	app	.

import	React	from	'react'

import	ReactDOM	from	'react-dom'

ReactDOM.render(<h1>Hello	World!</h1>,	document.getElementById('app'))

ReactDOM.render(

		React.DOM.h1(null,	'Hello	World!'),

		document.getElementById('app')

)

See,	 	React.DOM		exposed	us	an	 	h1		component.	Which	other	HTML	tags	are	available?	All	of
them!	You	can	inspect	what	 	React.DOM		offers	by	typing	it	in	the	Browser	Console:

Components

74

(the	list	is	longer)

The	built-in	components	are	nice,	but	you'll	quickly	outgrow	them.	What	React	excels	in	is
letting	us	compose	a	UI	by	composing	custom	components.

Custom	components
There	are	2	ways	to	define	a	component	in	React.

A	function	component:

const	BlogPostExcerpt	=	()	=>	{

		return	(

				<div>

						<h1>Title</h1>

						<p>Description</p>

				</div>

)

}

A	class	component:

import	React,	{	Component	}	from	'react'

class	BlogPostExcerpt	extends	Component	{

		render()	{

				return	(

						<div>

								<h1>Title</h1>

								<p>Description</p>

Components

75

						</div>

)

		}

}

Up	until	recently,	class	components	were	the	only	way	to	define	a	component	that	had	its	own
state,	and	could	access	the	lifecycle	methods	so	you	could	do	things	when	the	component
was	first	rendered,	updated	or	removed.

React	Hooks	changed	this,	so	our	function	components	are	now	much	more	powerful	than
ever	and	I	believe	we'll	see	fewer	and	fewer	class	components	in	the	future,	although	it	will	still
be	perfectly	valid	way	to	create	components.

There	is	also	a	third	syntax	which	uses	the	 	ES5		syntax,	without	the	classes:

import	React	from	'react'

React.createClass({

		render()	{

				return	(

						<div>

								<h1>Title</h1>

								<p>Description</p>

						</div>

)

		}

})

You'll	rarely	see	this	in	modern,	 	>	ES6		codebases.

Components

76

State
How	to	interact	with	the	state	of	your	components

Setting	the	default	state

In	the	Component	constructor,	initialize	 	this.state	.	For	example	the	BlogPostExcerpt
component	might	have	a	 	clicked		state:

class	BlogPostExcerpt	extends	Component	{

		constructor(props)	{

				super(props)

				this.state	=	{	clicked:	false	}

		}

		render()	{

				return	(

						<div>

								<h1>Title</h1>

								<p>Description</p>

						</div>

)

		}

}

Accessing	the	state

The	clicked	state	can	be	accessed	by	referencing	 	this.state.clicked	:

class	BlogPostExcerpt	extends	Component	{

		constructor(props)	{

				super(props)

				this.state	=	{	clicked:	false	}

		}

		render()	{

				return	(

						<div>

								<h1>Title</h1>

								<p>Description</p>

								<p>Clicked:	{this.state.clicked}</p>

						</div>

)

		}

}

State

77

Mutating	the	state

A	state	should	never	be	mutated	by	using

this.state.clicked	=	true

Instead,	you	should	always	use	 	setState()		instead,	passing	it	an	object:

this.setState({	clicked:	true	})

The	object	can	contain	a	subset,	or	a	superset,	of	the	state.	Only	the	properties	you	pass	will
be	mutated,	the	ones	omitted	will	be	left	in	their	current	state.

Why	you	should	always	use		setState()	

The	reason	is	that	using	this	method,	React	knows	that	the	state	has	changed.	It	will	then	start
the	series	of	events	that	will	lead	to	the	Component	being	re-rendered,	along	with	any	DOM
update.

Unidirectional	Data	Flow

A	state	is	always	owned	by	one	Component.	Any	data	that's	affected	by	this	state	can	only
affect	Components	below	it:	its	children.

Changing	the	state	on	a	Component	will	never	affect	its	parent,	or	its	siblings,	or	any	other
Component	in	the	application:	just	its	children.

This	is	the	reason	the	state	is	often	moved	up	in	the	Component	tree.

Moving	the	State	Up	in	the	Tree

Because	of	the	Unidirectional	Data	Flow	rule,	if	two	components	need	to	share	state,	the	state
needs	to	be	moved	up	to	a	common	ancestor.

Many	times	the	closest	ancestor	is	the	best	place	to	manage	the	state,	but	it's	not	a	mandatory
rule.

The	state	is	passed	down	to	the	components	that	need	that	value	via	props:

class	Converter	extends	React.Component	{

		constructor(props)	{

				super(props)

				this.state	=	{	currency:	'€'	}

		}

State

78

https://flaviocopes.com/dom/

		render()	{

				return	(

						<div>

								<Display	currency={this.state.currency}	/>

								<CurrencySwitcher	currency={this.state.currency}	/>

						</div>

)

		}

}

The	state	can	be	mutated	by	a	child	component	by	passing	a	mutating	function	down	as	a
prop:

class	Converter	extends	React.Component	{

		constructor(props)	{

				super(props)

				this.state	=	{	currency:	'€'	}

		}

		handleChangeCurrency	=	event	=>	{

				this.setState({	currency:	this.state.currency	===	'€'	?	'$'	:	'€'	})

		}

		render()	{

				return	(

						<div>

								<Display	currency={this.state.currency}	/>

								<CurrencySwitcher

										currency={this.state.currency}

										handleChangeCurrency={this.handleChangeCurrency}

								/>

						</div>

)

		}

}

const	CurrencySwitcher	=	props	=>	{

		return	(

				<button	onClick={props.handleChangeCurrency}>

						Current	currency	is	{props.currency}.	Change	it!

				</button>

)

}

const	Display	=	props	=>	{

		return	<p>Current	currency	is	{props.currency}.</p>

}

State

79

State

80

Props
How	to	use	props	to	pass	data	around	your	React	components

Props	is	how	Components	get	their	properties.	Starting	from	the	top	component,	every	child
component	gets	its	props	from	the	parent.	In	a	function	component,	props	is	all	it	gets	passed,
and	they	are	available	by	adding	 	props		as	the	function	argument:

const	BlogPostExcerpt	=	props	=>	{

		return	(

				<div>

						<h1>{props.title}</h1>

						<p>{props.description}</p>

				</div>

)

}

In	a	class	component,	props	are	passed	by	default.	There	is	no	need	to	add	anything	special,
and	they	are	accessible	as	 	this.props		in	a	Component	instance.

import	React,	{	Component	}	from	'react'

class	BlogPostExcerpt	extends	Component	{

		render()	{

				return	(

						<div>

								<h1>{this.props.title}</h1>

								<p>{this.props.description}</p>

						</div>

)

		}

}

Passing	props	down	to	child	components	is	a	great	way	to	pass	values	around	in	your
application.	A	component	either	holds	data	(has	state)	or	receives	data	through	its	props.

It	gets	complicated	when:

you	need	to	access	the	state	of	a	component	from	a	child	that's	several	levels	down	(all
the	previous	children	need	to	act	as	a	pass-through,	even	if	they	do	not	need	to	know	the
state,	complicating	things)
you	need	to	access	the	state	of	a	component	from	a	completely	unrelated	component.

Default	values	for	props

Props

81

If	any	value	is	not	required	we	need	to	specify	a	default	value	for	it	if	it's	missing	when	the
Component	is	initialized.

BlogPostExcerpt.propTypes	=	{

		title:	PropTypes.string,

		description:	PropTypes.string

}

BlogPostExcerpt.defaultProps	=	{

		title:	'',

		description:	''

}

Some	tooling	like	ESLint	have	the	ability	to	enforce	defining	the	defaultProps	for	a	Component
with	some	propTypes	not	explicitly	required.

How	props	are	passed
When	initializing	a	component,	pass	the	props	in	a	way	similar	to	HTML	attributes:

const	desc	=	'A	description'

//...

<BlogPostExcerpt	title="A	blog	post"	description={desc}	/>

We	passed	the	title	as	a	plain	string	(something	we	can	only	do	with	strings!),	and	description
as	a	variable.

Children
A	special	prop	is	 	children	.	That	contains	the	value	of	anything	that	is	passed	in	the	 	body		of
the	component,	for	example:

<BlogPostExcerpt	title="A	blog	post"	description="{desc}">

		Something

</BlogPostExcerpt>

In	this	case,	inside	 	BlogPostExcerpt		we	could	access	"Something"	by	looking	up
	this.props.children	.

While	Props	allow	a	Component	to	receive	properties	from	its	parent,	to	be	"instructed"	to	print
some	data	for	example,	state	allows	a	component	to	take	on	life	itself,	and	be	independent	of
the	surrounding	environment.

Props

82

https://flaviocopes.com/eslint/

Props

83

Presentational	vs	container	components
The	difference	between	Presentational	and	Container	Components	in	React

In	React	components	are	often	divided	into	2	big	buckets:	presentational	components	and
container	components.

Each	of	those	have	their	unique	characteristics.

Presentational	components	are	mostly	concerned	with	generating	some	markup	to	be
outputted.

They	don't	manage	any	kind	of	state,	except	for	state	related	the	the	presentation

Container	components	are	mostly	concerned	with	the	"backend"	operations.

They	might	handle	the	state	of	various	sub-components.	They	might	wrap	several
presentational	components.	They	might	interface	with	Redux.

As	a	way	to	simplify	the	distinction,	we	can	say	presentational	components	are	concerned
with	the	look,	container	components	are	concerned	with	making	things	work.

For	example,	this	is	a	presentational	component.	It	gets	data	from	its	props,	and	just	focuses
on	showing	an	element:

const	Users	=	props	=>	(

		

				{props.users.map(user	=>	(

						{user}

))}

		

)

On	the	other	hand	this	is	a	container	component.	It	manages	and	stores	its	own	data,	and
uses	the	presentational	component	to	display	it.

class	UsersContainer	extends	React.Component	{

		constructor()	{

				this.state	=	{

						users:	[]

				}

		}

		componentDidMount()	{

				axios.get('/users').then(users	=>

						this.setState({	users:	users	}))

)

		}

Presentational	vs	container	components

84

		render()	{

				return	<Users	users={this.state.users}	/>

		}

}

Presentational	vs	container	components

85

State	vs	Props
What's	the	difference	between	state	and	props	in	React?

In	a	React	component,	props	are	variables	passed	to	it	by	its	parent	component.	State	on	the
other	hand	is	still	variables,	but	directly	initialized	and	managed	by	the	component.

The	state	can	be	initialized	by	props.

For	example,	a	parent	component	might	include	a	child	component	by	calling

<ChildComponent	/>

The	parent	can	pass	a	prop	by	using	this	syntax:

<ChildComponent	color=green	/>

Inside	the	ChildComponent	constructor	we	could	access	the	prop:

class	ChildComponent	extends	React.Component	{

		constructor(props)	{

				super(props)

				console.log(props.color)

		}

}

and	any	other	method	in	this	class	can	reference	the	props	using	 	this.props	.

Props	can	be	used	to	set	the	internal	state	based	on	a	prop	value	in	the	constructor,	like	this:

class	ChildComponent	extends	React.Component	{

		constructor(props)	{

				super(props)

				this.state.colorName	=	props.color

		}

}

Of	course	a	component	can	also	initialize	the	state	without	looking	at	props.

In	this	case	there's	nothing	useful	going	on,	but	imagine	doing	something	different	based	on
the	prop	value,	probably	setting	a	state	value	is	best.

Props	should	never	be	changed	in	a	child	component,	so	if	there's	something	going	on	that
alters	some	variable,	that	variable	should	belong	to	the	component	state.

State	vs	Props

86

Props	are	also	used	to	allow	child	components	to	access	methods	defined	in	the	parent
component.	This	is	a	good	way	to	centralize	managing	the	state	in	the	parent	component,	and
avoid	children	to	have	the	need	to	have	their	own	state.

Most	of	your	components	will	just	display	some	kind	of	information	based	on	the	props	they
received,	and	stay	stateless.

State	vs	Props

87

PropTypes
How	to	use	PropTypes	to	set	the	required	type	of	a	prop

Since	JavaScript	is	a	dynamically	typed	language,	we	don't	really	have	a	way	to	enforce	the
type	of	a	variable	at	compile	time,	and	if	we	pass	invalid	types,	they	will	fail	at	runtime	or	give
weird	results	if	the	types	are	compatible	but	not	what	we	expect.

Flow	and	TypeScript	help	a	lot,	but	React	has	a	way	to	directly	help	with	props	types,	and
even	before	running	the	code,	our	tools	(editors,	linters)	can	detect	when	we	are	passing	the
wrong	values:

import	PropTypes	from	'prop-types'

import	React	from	'react'

class	BlogPostExcerpt	extends	Component	{

		render()	{

				return	(

						<div>

								<h1>{this.props.title}</h1>

								<p>{this.props.description}</p>

						</div>

)

		}

}

BlogPostExcerpt.propTypes	=	{

		title:	PropTypes.string,

		description:	PropTypes.string

}

export	default	BlogPostExcerpt

Which	types	can	we	use

These	are	the	fundamental	types	we	can	accept:

PropTypes.array
PropTypes.bool
PropTypes.func
PropTypes.number
PropTypes.object
PropTypes.string
PropTypes.symbol

We	can	accept	one	of	two	types:

PropTypes

88

PropTypes.oneOfType([

		PropTypes.string,

		PropTypes.number

]),

We	can	accept	one	of	many	values:

PropTypes.oneOf(['Test1',	'Test2']),

We	can	accept	an	instance	of	a	class:

PropTypes.instanceOf(Something)

We	can	accept	any	React	node:

PropTypes.node

or	even	any	type	at	all:

PropTypes.any

Arrays	have	a	special	syntax	that	we	can	use	to	accept	an	array	of	a	particular	type:

PropTypes.arrayOf(PropTypes.string)

Objects,	we	can	compose	an	object	properties	by	using

PropTypes.shape({

		color:	PropTypes.string,

		fontSize:	PropTypes.number

})

Requiring	properties

Appending	 	isRequired		to	any	PropTypes	option	will	cause	React	to	return	an	error	if	that
property	is	missing:

PropTypes.arrayOf(PropTypes.string).isRequired,

PropTypes.string.isRequired,

PropTypes

89

PropTypes

90

Fragment
How	to	use	React.Fragment	to	create	invisible	HTML	tags

Notice	how	I	wrap	return	values	in	a	 	div	.	This	is	because	a	component	can	only	return	one
single	element,	and	if	you	want	more	than	one,	you	need	to	wrap	it	with	another	container	tag.

This	however	causes	an	unnecessary	 	div		in	the	output.	You	can	avoid	this	by	using
	React.Fragment	:

import	React,	{	Component	}	from	'react'

class	BlogPostExcerpt	extends	Component	{

		render()	{

				return	(

						<React.Fragment>

								<h1>{this.props.title}</h1>

								<p>{this.props.description}</p>

						</React.Fragment>

)

		}

}

which	also	has	a	very	nice	shorthand	syntax	 	<></>		that	is	supported	only	in	recent	releases
(and	Babel	7+):

import	React,	{	Component	}	from	'react'

class	BlogPostExcerpt	extends	Component	{

		render()	{

				return	(

						<>

								<h1>{this.props.title}</h1>

								<p>{this.props.description}</p>

						</>

)

		}

}

Fragment

91

Events
Learn	how	to	interact	with	events	in	a	React	application

React	provides	an	easy	way	to	manage	events.	Prepare	to	say	goodbye	to	 	addEventListener	.

In	the	previous	article	about	the	State	you	saw	this	example:

const	CurrencySwitcher	=	props	=>	{

		return	(

				<button	onClick={props.handleChangeCurrency}>

						Current	currency	is	{props.currency}.	Change	it!

				</button>

)

}

If	you've	been	using	JavaScript	for	a	while,	this	is	just	like	plain	old	JavaScript	event	handlers,
except	that	this	time	you're	defining	everything	in	JavaScript,	not	in	your	HTML,	and	you're
passing	a	function,	not	a	string.

The	actual	event	names	are	a	little	bit	different	because	in	React	you	use	camelCase	for
everything,	so	 	onclick		becomes	 	onClick	,	 	onsubmit		becomes	 	onSubmit	.

For	reference,	this	is	old	school	HTML	with	JavaScript	events	mixed	in:

<button	onclick="handleChangeCurrency()">...</button>

Event	handlers

It's	a	convention	to	have	event	handlers	defined	as	methods	on	the	Component	class:

class	Converter	extends	React.Component	{

		handleChangeCurrency	=	event	=>	{

				this.setState({	currency:	this.state.currency	===	'€'	?	'$'	:	'€'	})

		}

}

All	handlers	receive	an	event	object	that	adheres,	cross-browser,	to	the	W3C	UI	Events	spec.

Bind	 	this		in	methods

Don't	forget	to	bind	methods.	The	methods	of	ES6	classes	by	default	are	not	bound.	What	this
means	is	that	 	this		is	not	defined	unless	you	define	methods	as	arrow	functions:

Events

92

https://flaviocopes.com/javascript-events/
https://www.w3.org/TR/DOM-Level-3-Events/

class	Converter	extends	React.Component	{

		handleClick	=	e	=>	{

				/*	...	*/

		}

		//...

}

when	using	the	the	property	initializer	syntax	with	Babel	(enabled	by	default	in	 	create-react-
app),	otherwise	you	need	to	bind	it	manually	in	the	constructor:

class	Converter	extends	React.Component	{

		constructor(props)	{

				super(props)

				this.handleClick	=	this.handleClick.bind(this)

		}

		handleClick(e)	{}

}

The	events	reference

There	are	lots	of	events	supported,	here's	a	summary	list.

Clipboard

onCopy
onCut
onPaste

Composition

onCompositionEnd
onCompositionStart
onCompositionUpdate

Keyboard

onKeyDown
onKeyPress
onKeyUp

Focus

onFocus

Events

93

onBlur

Form

onChange
onInput
onSubmit

Mouse

onClick
onContextMenu
onDoubleClick
onDrag
onDragEnd
onDragEnter
onDragExit
onDragLeave
onDragOver
onDragStart
onDrop
onMouseDown
onMouseEnter
onMouseLeave
onMouseMove
onMouseOut
onMouseOver
onMouseUp

Selection

onSelect

Touch

onTouchCancel
onTouchEnd
onTouchMove
onTouchStart

UI

Events

94

onScroll

Mouse	Wheel

onWheel

Media

onAbort
onCanPlay
onCanPlayThrough
onDurationChange
onEmptied
onEncrypted
onEnded
onError
onLoadedData
onLoadedMetadata
onLoadStart
onPause
onPlay
onPlaying
onProgress
onRateChange
onSeeked
onSeeking
onStalled
onSuspend
onTimeUpdate
onVolumeChange
onWaiting

Image

onLoad
onError

Animation

onAnimationStart
onAnimationEnd

Events

95

onAnimationIteration

Transition

onTransitionEnd

Events

96

Lifecycle	events
Find	out	the	React	Lifecycle	events	and	how	you	can	use	them

React	class	components	can	have	hooks	for	several	lifecycle	events.

Hooks	allow	function	components	to	access	them	too,	in	a	different	way.

During	the	lifetime	of	a	component,	there's	a	series	of	events	that	gets	called,	and	to	each
event	you	can	hook	and	provide	custom	functionality.

What	hook	is	best	for	what	functionality	is	something	we're	going	to	see	here.

First,	there	are	3	phases	in	a	React	component	lifecycle:

Mounting
Updating
Unmounting

Let's	see	those	3	phases	in	detail	and	the	methods	that	get	called	for	each.

Mounting
When	mounting	you	have	4	lifecycle	methods	before	the	component	is	mounted	in	the	DOM:
the	 	constructor	,	 	getDerivedStateFromProps	,	 	render		and	 	componentDidMount	.

Constructor

The	constructor	is	the	first	method	that	is	called	when	mounting	a	component.

You	usually	use	the	constructor	to	set	up	the	initial	state	using	 	this.state	=

getDerivedStateFromProps()

When	the	state	depends	on	props,	 	getDerivedStateFromProps		can	be	used	to	update	the	state
based	on	the	props	value.

It	was	added	in	React	16.3,	aiming	to	replace	the	 	componentWillReceiveProps		deprecated
method.

In	this	method	you	haven't	access	to	 	this		as	it's	a	static	method.

It's	a	pure	method,	so	it	should	not	cause	side	effects	and	should	return	the	same	output	when
called	multiple	times	with	the	same	input.

Lifecycle	events

97

Returns	an	object	with	the	updated	elements	of	the	state	(or	null	if	the	state	does	not	change)

render()

From	the	render()	method	you	return	the	JSX	that	builds	the	component	interface.

It's	a	pure	method,	so	it	should	not	cause	side	effects	and	should	return	the	same	output	when
called	multiple	times	with	the	same	input.

componentDidMount()

This	method	is	the	one	that	you	will	use	to	perform	API	calls,	or	process	operations	on	the
DOM.

Updating
When	updating	you	have	5	lifecycle	methods	before	the	component	is	mounted	in	the	DOM:
the	 	getDerivedStateFromProps	,	 	shouldComponentUpdate	,	 	render	,	 	getSnapshotBeforeUpdate		and
	componentDidUpdate	.

getDerivedStateFromProps()

See	the	above	description	for	this	method.

shouldComponentUpdate()

This	method	returns	a	boolean,	 	true		or	 	false	.	You	use	this	method	to	tell	React	if	it	should
go	on	with	the	rerendering,	and	defaults	to	 	true	.	You	will	return	 	false		when	rerendering	is
expensive	and	you	want	to	have	more	control	on	when	this	happens.

render()

See	the	above	description	for	this	method.

getSnapshotBeforeUpdate()

In	this	method	you	have	access	to	the	props	and	state	of	the	previous	render,	and	of	the
current	render.

Its	use	cases	are	very	niche,	and	it's	probably	the	one	that	you	will	use	less.

Lifecycle	events

98

componentDidUpdate()

This	method	is	called	when	the	component	has	been	updated	in	the	DOM.	Use	this	to	run	any
3rd	party	DOM	API	or	call	APIs	that	must	be	updated	when	the	DOM	changes.

It	corresponds	to	the	 	componentDidMount()		method	from	the	mounting	phase.

Unmounting
In	this	phase	we	only	have	one	method,	 	componentWillUnmount	.

componentWillUnmount()

The	method	is	called	when	the	component	is	removed	from	the	DOM.	Use	this	to	do	any	sort
of	cleanup	you	need	to	perform.

Legacy
If	you	are	working	on	an	app	that	uses	 	componentWillMount	,	 	componentWillReceiveProps		or
	componentWillUpdate	,	those	were	deprecated	in	React	16.3	and	you	should	migrate	to	other
lifecycle	methods.

Lifecycle	events

99

Handling	forms
How	to	handle	forms	in	a	React	application

Forms	are	one	of	the	few	HTML	elements	that	are	interactive	by	default.

They	were	designed	to	allow	the	user	to	interact	with	a	page.

Common	uses	of	forms?

Search
Contact	forms
Shopping	carts	checkout
Login	and	registration
and	more!

Using	React	we	can	make	our	forms	much	more	interactive	and	less	static.

There	are	two	main	ways	of	handling	forms	in	React,	which	differ	on	a	fundamental	level:	how
data	is	managed.

if	the	data	is	handled	by	the	DOM,	we	call	them	uncontrolled	components

Handling	forms

100

if	the	data	is	handled	by	the	components	we	call	them	controlled	components

As	you	can	imagine,	controlled	components	is	what	you	will	use	most	of	the	time.	The
component	state	is	the	single	source	of	truth,	rather	than	the	DOM.	Some	form	fields	are
inherently	uncontrolled	because	of	their	behavior,	like	the	 	<input	type="file">		field.

When	an	element	state	changes	in	a	form	field	managed	by	a	component,	we	track	it	using	the
	onChange		attribute.

class	Form	extends	React.Component	{

		constructor(props)	{

				super(props)

				this.state	=	{	username:	''	}

		}

		handleChange(event)	{}

		render()	{

				return	(

						<form>

								Username:

								<input

										type="text"

										value={this.state.username}

										onChange={this.handleChange}

								/>

						</form>

)

		}

}

In	order	to	set	the	new	state,	we	must	bind	 	this		to	the	 	handleChange		method,	otherwise
	this		is	not	accessible	from	within	that	method:

class	Form	extends	React.Component	{

		constructor(props)	{

				super(props)

				this.state	=	{	username:	''	}

				this.handleChange	=	this.handleChange.bind(this)

		}

		handleChange(event)	{

				this.setState({	value:	event.target.value	})

		}

		render()	{

				return	(

						<form>

								<input

										type="text"

										value={this.state.username}

										onChange={this.handleChange}

Handling	forms

101

								/>

						</form>

)

		}

}

Similarly,	we	use	the	 	onSubmit		attribute	on	the	form	to	call	the	 	handleSubmit		method	when
the	form	is	submitted:

class	Form	extends	React.Component	{

		constructor(props)	{

				super(props)

				this.state	=	{	username:	''	}

				this.handleChange	=	this.handleChange.bind(this)

				this.handleSubmit	=	this.handleSubmit.bind(this)

		}

		handleChange(event)	{

				this.setState({	value:	event.target.value	})

		}

		handleSubmit(event)	{

				alert(this.state.username)

				event.preventDefault()

		}

		render()	{

				return	(

						<form	onSubmit={this.handleSubmit}>

								<input

										type="text"

										value={this.state.username}

										onChange={this.handleChange}

								/>

								<input	type="submit"	value="Submit"	/>

						</form>

)

		}

}

Validation	in	a	form	can	be	handled	in	the	 	handleChange		method:	you	have	access	to	the	old
value	of	the	state,	and	the	new	one.	You	can	check	the	new	value	and	if	not	valid	reject	the
updated	value	(and	communicate	it	in	some	way	to	the	user).

HTML	Forms	are	inconsistent.	They	have	a	long	history,	and	it	shows.	React	however	makes
things	more	consistent	for	us,	and	you	can	get	(and	update)	fields	using	its	 	value		attribute.

Here's	a	 	textarea	,	for	example:

<textarea	value={this.state.address}	onChange={this.handleChange}	/>

Handling	forms

102

The	same	goes	for	the	 	select		tag:

<select	value="{this.state.age}"	onChange="{this.handleChange}">

		<option	value="teen">Less	than	18</option>

		<option	value="adult">18+</option>

</select>

Previously	we	mentioned	the	 	<input	type="file">		field.	That	works	a	bit	differently.

In	this	case	you	need	to	get	a	reference	to	the	field	by	assigning	the	 	ref		attribute	to	a
property	defined	in	the	constructor	with	 	React.createRef()	,	and	use	that	to	get	the	value	of	it
in	the	submit	handler:

class	FileInput	extends	React.Component	{

		constructor(props)	{

				super(props)

				this.curriculum	=	React.createRef()

				this.handleSubmit	=	this.handleSubmit.bind(this)

		}

		handleSubmit(event)	{

				alert(this.curriculum.current.files[0].name)

				event.preventDefault()

		}

		render()	{

				return	(

						<form	onSubmit={this.handleSubmit}>

								<input	type="file"	ref={this.curriculum}	/>

								<input	type="submit"	value="Submit"	/>

						</form>

)

		}

}

This	is	the	uncontrolled	components	way.	The	state	is	stored	in	the	DOM	rather	than	in	the
component	state	(notice	we	used	 	this.curriculum		to	access	the	uploaded	file,	and	have	not
touched	the	 	state	.

I	know	what	you're	thinking	-	beyond	those	basics,	there	must	be	a	library	that	simplifies	all
this	form	handling	stuff	and	automates	validation,	error	handling	and	more,	right?	There	is	a
great	one,	Formik	(Formik	tutorial	coming	tomorrow!)

Handling	forms

103

Reference	a	DOM	element
Find	out	how	to	ref	a	DOM	element	in	React

React	is	great	at	abstracting	away	the	DOM	from	you	when	building	apps.

But	what	if	you	want	to	access	the	DOM	element	that	a	React	component	represents?

Maybe	you	have	to	add	a	library	that	interacts	directly	with	the	DOM	like	a	chart	library,	maybe
you	need	to	call	some	DOM	API,	or	add	focus	on	an	element.

Whatever	the	reason	is,	a	good	practice	is	making	sure	there's	no	other	way	of	doing	so
without	accessing	the	DOM	directly.

In	the	JSX	of	your	component,	you	can	assign	the	reference	of	the	DOM	element	to	a
component	property	using	this	attribute:

ref={el	=>	this.someProperty	=	el}

Put	this	into	context,	for	example	with	a	 	button		element:

<button	ref={el	=>	(this.button	=	el)}	/>

	button		refers	to	a	property	of	the	component,	which	can	then	be	used	by	the	component's
lifecycle	methods	(or	other	methods)	to	interact	with	the	DOM:

class	SomeComponent	extends	Component	{

		render()	{

				return	<button	ref={el	=>	(this.button	=	el)}	/>

		}

}

In	a	function	component	the	mechanism	is	the	same,	you	just	avoid	using	 	this		(since	it	does
not	point	to	the	component	instance)	and	use	a	property	instead:

function	SomeComponent()	{

		let	button

		return	<button	ref={el	=>	(button	=	el)}	/>

}

Reference	a	DOM	element

104

Reference	a	DOM	element

105

Server	side	rendering
What	is	Server	Side	Rendering?	How	to	do	it	with	React?

Server	Side	Rendering,	also	called	SSR,	is	the	ability	of	a	JavaScript	application	to	render	on
the	server	rather	than	in	the	browser.

Why	would	we	ever	want	to	do	so?

it	allows	your	site	to	have	a	faster	first	page	load	time,	which	is	the	key	to	a	good	user
experience
it	is	essential	for	SEO:	search	engines	cannot	(yet?)	efficiently	and	correctly	index
applications	that	exclusively	render	client-side.	Despite	the	latest	improvements	to
indexing	in	Google,	there	are	other	search	engines	too,	and	Google	is	not	perfect	at	it	in
any	case.	Also,	Google	favors	sites	with	fast	load	times,	and	having	to	load	client-side	is
not	good	for	speed
it's	great	when	people	share	a	page	of	your	site	on	social	media,	as	they	can	easily	gather
the	metadata	needed	to	nicely	share	the	link	(images,	title,	description..)

Without	Server	Side	Rendering,	all	your	server	ships	is	an	HTML	page	with	no	body,	just	some
script	tags	that	are	then	used	by	the	browser	to	render	the	application.

Client-rendered	apps	are	great	at	any	subsequent	user	interaction	after	the	first	page	load.
Server	Side	Rendering	allows	us	to	get	the	sweet	spot	in	the	middle	of	client-rendered	apps
and	backend-rendered	apps:	the	page	is	generated	server-side,	but	all	interactions	with	the
page	once	it's	been	loaded	are	handled	client-side.

However	Server	Side	Rendering	has	its	drawback	too:

it's	fair	to	say	that	a	simple	SSR	proof	of	concept	is	simple,	but	the	complexity	of	SSR	can
grow	with	the	complexity	of	your	application
rendering	a	big	application	server-side	can	be	quite	resource-intensive,	and	under	heavy
load	it	could	even	provide	a	slower	experience	than	client-side	rendering,	since	you	have
a	single	bottleneck

A	very	simplistic	example	of	what	it	takes	to
Server-Side	render	a	React	app
SSR	setups	can	grow	very,	very	complex	and	most	tutorials	will	bake	in	Redux,	React	Router
and	many	other	concepts	from	the	start.

To	understand	how	SSR	works,	let's	start	from	the	basics	to	implement	a	proof	of	concept.

Server	side	rendering

106

Feel	free	to	skip	this	paragraph	if	you	just	want	to	look	into	the	libraries	that	provide	SSR
and	not	bother	with	the	ground	work

To	implement	basic	SSR	we're	going	to	use	Express.

If	you	are	new	to	Express,	or	need	some	catch-up,	check	out	my	free	Express	Handbook
here:	https://flaviocopes.com/page/ebooks/.

Warning:	the	complexity	of	SSR	can	grow	with	the	complexity	of	your	application.	This	is	the
bare	minimum	setup	to	render	a	basic	React	app.	For	more	complex	needs	you	might	need	to
do	a	bit	more	work	or	also	check	out	SSR	libraries	for	React.

I	assume	you	started	a	React	app	with	 	create-react-app	.	If	you	are	just	trying,	install	one	now
using	 	npx	create-react-app	ssr	.

Go	to	the	main	app	folder	with	the	terminal,	then	run:

npm	install	express

You	have	a	set	of	folders	in	your	app	directory.	Create	a	new	folder	called	 	server	,	then	go
into	it	and	create	a	file	named	 	server.js	.

Following	the	 	create-react-app		conventions,	the	app	lives	in	the	 	src/App.js		file.	We're	going
to	load	that	component,	and	render	it	to	a	string	using	ReactDOMServer.renderToString(),
which	is	provided	by	 	react-dom	.

You	get	the	contents	of	the	 	./build/index.html		file,	and	replace	the	 	<div	id="root"></div>	
placeholder,	which	is	the	tag	where	the	application	hooks	by	default,	with	 	̀ <div

id="root">\${ReactDOMServer.renderToString(<App	/>)}</div>	.

All	the	content	inside	the	 	build		folder	is	going	to	be	served	as-is,	statically	by	Express.

import	path	from	'path'

import	fs	from	'fs'

import	express	from	'express'

import	React	from	'react'

import	ReactDOMServer	from	'react-dom/server'

import	App	from	'../src/App'

const	PORT	=	8080

const	app	=	express()

const	router	=	express.Router()

const	serverRenderer	=	(req,	res,	next)	=>	{

		fs.readFile(path.resolve('./build/index.html'),	'utf8',	(err,	data)	=>	{

				if	(err)	{

Server	side	rendering

107

https://flaviocopes.com/page/ebooks/
https://reactjs.org/docs/react-dom-server.html

						console.error(err)

						return	res.status(500).send('An	error	occurred')

				}

				return	res.send(

						data.replace(

								'<div	id="root"></div>',

								`<div	id="root">${ReactDOMServer.renderToString(<App	/>)}</div>`

)

)

		})

}

router.use('^/$',	serverRenderer)

router.use(

		express.static(path.resolve(__dirname,	'..',	'build'),	{	maxAge:	'30d'	})

)

//	tell	the	app	to	use	the	above	rules

app.use(router)

//	app.use(express.static('./build'))

app.listen(PORT,	()	=>	{

		console.log(`SSR	running	on	port	${PORT}`)

})

Now,	in	the	client	application,	in	your	 	src/index.js	,	instead	of	calling	 	ReactDOM.render()	:

ReactDOM.render(<App	/>,	document.getElementById('root'))

call	 	ReactDOM.hydrate()	,	which	is	the	same	but	has	the	additional	ability	to	attach	event
listeners	to	existing	markup	once	React	loads:

ReactDOM.hydrate(<App	/>,	document.getElementById('root'))

All	the	Node.js	code	needs	to	be	transpiled	by	Babel,	as	server-side	Node.js	code	does	not
know	anything	about	JSX,	nor	ES	Modules	(which	we	use	for	the	 	include		statements).

Install	these	3	packages:

npm	install	@babel/register	@babel/preset-env	@babel/preset-react	ignore-styles	express

	ignore-styles		is	a	Babel	utility	that	will	tell	it	to	ignore	CSS	files	imported	using	the	 	import	
syntax.

Let's	create	an	entry	point	in	 	server/index.js	:

require('ignore-styles')

Server	side	rendering

108

https://reactjs.org/docs/react-dom.html#hydrate
https://flaviocopes.com/babel/
https://www.npmjs.com/package/ignore-styles

require('@babel/register')({

		ignore:	[/(node_modules)/],

		presets:	['@babel/preset-env',	'@babel/preset-react']

})

require('./server')

Build	the	React	application,	so	that	the	build/	folder	is	populated:

npm	run	build

and	let's	run	this:

node	server/index.js

I	said	this	is	a	simplistic	approach,	and	it	is:

it	does	not	handle	rendering	images	correctly	when	using	imports,	which	need	Webpack
in	order	to	work	(and	which	complicates	the	process	a	lot)
it	does	not	handle	page	header	metadata,	which	is	essential	for	SEO	and	social	sharing
purposes	(among	other	things)

So	while	this	is	a	good	example	of	using	 	ReactDOMServer.renderToString()		and
	ReactDOM.hydrate		to	get	this	basic	server-side	rendering,	it's	not	enough	for	real	world	usage.

Server	Side	Rendering	using	libraries
SSR	is	hard	to	do	right,	and	React	has	no	de-facto	way	to	implement	it.

It's	still	very	much	debatable	if	it's	worth	the	trouble,	complication	and	overhead	to	get	the
benefits,	rather	than	using	a	different	technology	to	serve	those	pages.	This	discussion	on
Reddit	has	lots	of	opinions	in	that	regard.

When	Server	Side	Rendering	is	an	important	matter,	my	suggestion	is	to	rely	on	pre-made
libraries	and	tools	that	have	had	this	goal	in	mind	since	the	beginning.

In	particular,	I	suggest	Next.js	and	Gatsby,	two	projects	we'll	see	later	on.

Server	side	rendering

109

https://www.reddit.com/r/reactjs/comments/7o6oj6/serverside_rendering_not_worth_it/

Context	API
The	Context	API	is	a	neat	way	to	pass	state	across	the	app	without	having	to
use	props

The	Context	API	was	introduced	to	allow	you	to	pass	state	(and	enable	the	state	to	update)
across	the	app,	without	having	to	use	props	for	it.

The	React	team	suggests	to	stick	to	props	if	you	have	just	a	few	levels	of	children	to	pass,
because	it's	still	a	much	less	complicated	API	than	the	Context	API.

In	many	cases,	it	enables	us	to	avoid	using	Redux,	simplifying	our	apps	a	lot,	and	also
learning	how	to	use	React.

How	does	it	work?

You	create	a	context	using	 	React.createContext()	,	which	returns	a	Context	object.:

const	{	Provider,	Consumer	}	=	React.createContext()

Then	you	create	a	wrapper	component	that	returns	a	Provider	component,	and	you	add	as
children	all	the	components	from	which	you	want	to	access	the	context:

class	Container	extends	React.Component	{

		constructor(props)	{

				super(props)

				this.state	=	{

						something:	'hey'

				}

		}

		render()	{

				return	(

						<Provider	value={{	state:	this.state	}}>{this.props.children}</Provider>

)

		}

}

class	HelloWorld	extends	React.Component	{

		render()	{

				return	(

						<Container>

								<Button	/>

						</Container>

)

		}

}

Context	API

110

I	used	Container	as	the	name	of	this	component	because	this	will	be	a	global	provider.	You
can	also	create	smaller	contexts.

Inside	a	component	that's	wrapped	in	a	Provider,	you	use	a	Consumer	component	to	make
use	of	the	context:

class	Button	extends	React.Component	{

		render()	{

				return	(

						<Consumer>

								{context	=>	<button>{context.state.something}</button>}

						</Consumer>

)

		}

}

You	can	also	pass	functions	into	a	Provider	value,	and	those	functions	will	be	used	by	the
Consumer	to	update	the	context	state:

<Provider	value={{

		state:	this.state,

		updateSomething:	()	=>	this.setState({something:	'ho!'})

		{this.props.children}

</Provider>

/*	...	*/

<Consumer>

		{(context)	=>	(

				<button	onClick={context.updateSomething}>{context.state.something}</button>

)}

</Consumer>

You	can	see	this	in	action	in	this	Glitch.

You	can	create	multiple	contexts,	to	make	your	state	distributed	across	components,	yet
expose	it	and	make	it	reachable	by	any	component	you	want.

When	using	multiple	files,	you	create	the	content	in	one	file,	and	import	it	in	all	the	places	you
use	it:

//context.js

import	React	from	'react'

export	default	React.createContext()

//component1.js

import	Context	from	'./context'

//...	use	Context.Provider

//component2.js

import	Context	from	'./context'

Context	API

111

https://glitch.com/edit/#!/flavio-react-context-api-example?path=app/components/HelloWorld.jsx

//...	use	Context.Consumer

Context	API

112

Higher-order	components
Find	out	what	Higher	Order	Components	are	and	how	they	are	useful	when
programming	a	React	application

You	might	be	familiar	with	Higher	Order	Functions	in	JavaScript.	Those	are	functions	that
accept	functions	as	arguments,	and/or	return	functions.

Two	examples	of	those	functions	are	 	Array.map()		or	 	Array.filter()	.

In	React,	we	extend	this	concept	to	components,	and	so	we	have	a	Higher	Order
Component	(HOC)	when	the	component	accepts	a	component	as	input	and	returns	a
component	as	its	output.

In	general,	higher	order	components	allow	you	to	create	code	that's	composable	and	reusable,
and	also	more	encapsulated.

We	can	use	a	HOC	to	add	methods	or	properties	to	the	state	of	a	component,	or	a	Redux
store	for	example.

You	might	want	to	use	Higher	Order	Components	when	you	want	to	enhance	an	existing
component,	operate	on	the	state	or	props,	or	its	rendered	markup.

There	is	a	convention	of	prepending	a	Higher	Order	Component	with	the	 	with		string	(it's	a
convention,	so	it's	not	mandatory),	so	if	you	have	a	 	Button		component,	its	HOC	counterpart
should	be	called	 	withButton	.

Let's	create	one.

The	simplest	example	ever	of	a	HOC	is	one	that	simply	returns	the	component	unaltered:

const	withButton	=	Button	=>	()	=>	<Button	/>

Let's	make	this	a	little	bit	more	useful	and	add	a	property	to	that	button,	in	addition	to	all	the
props	it	already	came	with,	the	color:

const	withButton	=	Element	=>	props	=>	<Button	{...props}	color="red"	/>

We	use	this	HOC	in	a	component	JSX:

const	Button	=	()	=>	{

		return	<button>test</button>

}

const	WrappedButton	=	withButton(Button)

Higher-order	components

113

and	we	can	finally	render	the	WrappedButton	component	in	our	app	JSX:

function	App()	{

		return	(

				<div	className="App">

						<h1>Hello</h1>

						<WrappedButton	/>

				</div>

)

}

This	is	a	very	simple	example	but	hopefully	you	can	get	the	gist	of	HOCs	before	applying
those	concepts	to	more	complex	scenarios.

Higher-order	components

114

Render	Props
Learn	how	Render	Props	can	help	you	build	a	React	application

A	common	pattern	used	to	share	state	between	components	is	to	use	the	 	children		prop.

Inside	a	component	JSX	you	can	render	 	{this.props.children}		which	automatically	injects
any	JSX	passed	in	the	parent	component	as	a	children:

class	Parent	extends	React.Component	{

		constructor(props)	{

				super(props)

				this.state	=	{

						/*...*/

				}

		}

		render()	{

				return	<div>{this.props.children}</div>

		}

}

const	Children1	=	()	=>	{}

const	Children2	=	()	=>	{}

const	App	=	()	=>	(

		<Parent>

				<Children1	/>

				<Children2	/>

		</Parent>

)

However,	there	is	a	problem	here:	the	state	of	the	parent	component	cannot	be	accessed	from
the	children.

To	be	able	to	share	the	state,	you	need	to	use	a	render	prop	component,	and	instead	of
passing	components	as	children	of	the	parent	component,	you	pass	a	function	which	you	then
execute	in	 	{this.props.children()}	.	The	function	can	accept	arguments,	:

class	Parent	extends	React.Component	{

		constructor(props)	{

				super(props)

				this.state	=	{	name:	'Flavio'	}

		}

		render()	{

				return	<div>{this.props.children(this.state.name)}</div>

		}

}

Render	Props

115

const	Children1	=	props	=>	{

		return	<p>{props.name}</p>

}

const	App	=	()	=>	<Parent>{name	=>	<Children1	name={name}	/>}</Parent>

Instead	of	using	the	 	children		prop,	which	has	a	very	specific	meaning,	you	can	use	any	prop,
and	so	you	can	use	this	pattern	multiple	times	on	the	same	component:

class	Parent	extends	React.Component	{

		constructor(props)	{

				super(props)

				this.state	=	{	name:	'Flavio',	age:	35	}

		}

		render()	{

				return	(

						<div>

								<p>Test</p>

								{this.props.someprop1(this.state.name)}

								{this.props.someprop2(this.state.age)}

						</div>

)

		}

}

const	Children1	=	props	=>	{

		return	<p>{props.name}</p>

}

const	Children2	=	props	=>	{

		return	<p>{props.age}</p>

}

const	App	=	()	=>	(

		<Parent

				someprop1={name	=>	<Children1	name={name}	/>}

				someprop2={age	=>	<Children2	age={age}	/>}

		/>

)

ReactDOM.render(<App	/>,	document.getElementById('app'))

Render	Props

116

Hooks
Learn	how	Hooks	can	help	you	build	a	React	application

Hooks	is	a	feature	that	will	be	introduced	in	React	16.7,	and	is	going	to	change	how	we	write
React	apps	in	the	future.

Before	Hooks	appeared,	some	key	things	in	components	were	only	possible	using	class
components:	having	their	own	state,	and	using	lifecycle	events.	Function	components,	lighter
and	more	flexible,	were	limited	in	functionality.

Hooks	allow	function	components	to	have	state	and	to	respond	to	lifecycle	events	too,
and	kind	of	make	class	components	obsolete.	They	also	allow	function	components	to	have	a
good	way	to	handle	events.

Access	state
Using	the	 	useState()		API,	you	can	create	a	new	state	variable,	and	have	a	way	to	alter	it.
	useState()		accepts	the	initial	value	of	the	state	item	and	returns	an	array	containing	the	state
variable,	and	the	function	you	call	to	alter	the	state.	Since	it	returns	an	array	we	use	array
destructuring	to	access	each	individual	item,	like	this:	 	const	[count,	setCount]	=	useState(0)	

Here's	a	practical	example:

import	{	useState	}	from	'react'

const	Counter	=	()	=>	{

		const	[count,	setCount]	=	useState(0)

		return	(

				<div>

						<p>You	clicked	{count}	times</p>

						<button	onClick={()	=>	setCount(count	+	1)}>Click	me</button>

				</div>

)

}

ReactDOM.render(<Counter	/>,	document.getElementById('app'))

You	can	add	as	many	 	useState()		calls	you	want,	to	create	as	many	state	variables	as	you
want.	Just	make	sure	you	call	it	in	the	top	level	of	a	component	(not	in	an	 	if		or	in	any	other
block).

Example	on	Codepen:

Hooks

117

https://flaviocopes.com/es6/#destructuring-assignments

See	the	Pen	React	Hooks	example	#1	counter	by	Flavio	Copes	(@flaviocopes)	on	CodePen.

Access	lifecycle	hooks
Another	very	important	feature	of	Hooks	is	allowing	function	components	to	have	access	to	the
lifecycle	hooks.

Using	class	components	you	can	register	a	function	on	the	 	componentDidMount	,
	componentWillUnmount		and	 	componentDidUpdate		events,	and	those	will	serve	many	use	cases,
from	variables	initialization	to	API	calls	to	cleanup.

Hooks	provide	the	 	useEffect()		API.	The	call	accepts	a	function	as	argument.

The	function	runs	when	the	component	is	first	rendered,	and	on	every	subsequent	re-
render/update.	React	first	updates	the	DOM,	then	calls	any	function	passed	to	 	useEffect()	.
All	without	blocking	the	UI	rendering	even	on	blocking	code,	unlike	the	old	 	componentDidMount	
and	 	componentDidUpdate	,	which	makes	our	apps	feel	faster.

Example:

const	{	useEffect,	useState	}	=	React

const	CounterWithNameAndSideEffect	=	()	=>	{

		const	[count,	setCount]	=	useState(0)

		const	[name,	setName]	=	useState('Flavio')

		useEffect(()	=>	{

				console.log(`Hi	${name}	you	clicked	${count}	times`)

		})

		return	(

				<div>

						<p>

								Hi	{name}	you	clicked	{count}	times

						</p>

						<button	onClick={()	=>	setCount(count	+	1)}>Click	me</button>

						<button	onClick={()	=>	setName(name	===	'Flavio'	?	'Roger'	:	'Flavio')}>

								Change	name

						</button>

				</div>

)

}

ReactDOM.render(

		<CounterWithNameAndSideEffect	/>,

		document.getElementById('app')

)

Hooks

118

https://codepen.io/flaviocopes/pen/maVPKa/
https://codepen.io/flaviocopes
https://codepen.io

The	same	 	componentWillUnmount		job	can	be	achieved	by	optionally	returning	a	function	from
our	 	useEffect()		parameter:

useEffect(()	=>	{

		console.log(`Hi	${name}	you	clicked	${count}	times`)

		return	()	=>	{

				console.log(`Unmounted`)

		}

})

	useEffect()		can	be	called	multiple	times,	which	is	nice	to	separate	unrelated	logic	(something
that	plagues	the	class	component	lifecycle	events).

Since	the	 	useEffect()		functions	are	run	on	every	subsequent	re-render/update,	we	can	tell
React	to	skip	a	run,	for	performance	purposes,	by	adding	a	second	parameter	which	is	an
array	that	contains	a	list	of	state	variables	to	watch	for.	React	will	only	re-run	the	side	effect	if
one	of	the	items	in	this	array	changes.

useEffect(

		()	=>	{

				console.log(`Hi	${name}	you	clicked	${count}	times`)

		},

		[name,	count]

)

Similarly	you	can	tell	React	to	only	execute	the	side	effect	once	(at	mount	time),	by	passing	an
empty	array:

useEffect(()	=>	{

		console.log(`Component	mounted`)

},	[])

	useEffect()		is	great	for	adding	logs,	accessing	3rd	party	APIs	and	much	more.

Example	on	Codepen:

See	the	Pen	React	Hooks	example	#3	side	effects	by	Flavio	Copes	(@flaviocopes)	on
CodePen.

Handle	events	in	function	components
Before	hooks,	you	either	used	class	components,	or	you	passed	an	event	handler	using	props.

Now	we	can	use	the	 	useCallback()		built-in	API:

Hooks

119

https://codepen.io/flaviocopes/pen/WLrxXp/
https://codepen.io/flaviocopes
https://codepen.io

const	Button	=	()	=>	{

		const	handleClick	=	useCallback(()	=>	{

				//...do	something

		})

		return	<button	onClick={handleClick}	/>

}

Any	parameter	used	inside	the	function	must	be	passed	through	a	second	parameter	to
	useCallback()	,	in	an	array:

const	Button	=	()	=>	{

		let	name	=	''	//...	add	logic

		const	handleClick	=	useCallback(

				()	=>	{

						//...do	something

				},

				[name]

)

		return	<button	onClick={handleClick}	/>

}

Enable	cross-component	communication	using
custom	hooks
The	ability	to	write	your	own	hooks	is	the	feature	that	is	going	to	significantly	alter	how	you
write	React	apps	in	the	future.

Using	custom	hooks	you	have	one	more	way	to	share	state	and	logic	between	components,
adding	a	significant	improvement	to	the	patterns	of	render	props	and	higher	order
components.	Which	are	still	great,	but	now	with	custom	hooks	have	less	relevance	in	many
use	cases.

How	do	you	create	a	custom	hook?

A	hook	is	just	a	function	that	conventionally	starts	with	 	use	.	It	can	accept	an	arbitrary	number
of	arguments,	and	return	anything	it	wants.

Examples:

const	useGetData()	{

		//...

		return	data

}

or

Hooks

120

const	useGetUser(username)	{

		//...const	user	=	fetch(...)

		//...const	userData	=	...

		return	[user,	userData]

}

In	your	own	components,	you	can	use	the	hook	like	this:

const	MyComponent	=	()	=>	{

		const	data	=	useGetData()

		const	[user,	userData]	=	useGetUser('flavio')

		//...

}

When	exactly	to	add	hooks	instead	of	regular	functions	should	be	determined	on	a	use	case
basis,	and	only	experience	will	tell.

Hooks

121

Code	splitting
What	is	Code	Splitting	and	how	to	introduce	it	in	a	React	app

Modern	JavaScript	applications	can	be	quite	huge	in	terms	of	bundle	size.	You	don't	want	your
users	to	have	to	download	a	1MB	package	of	JavaScript	(your	code	and	the	libraries	you	use)
just	to	load	the	first	page,	right?	But	this	is	what	happens	by	default	when	you	ship	a	modern
Web	App	built	with	Webpack	bundling.

That	bundle	will	contain	code	that	might	never	run	because	the	user	only	stops	on	the	login
page	and	never	sees	the	rest	of	your	app.

Code	splitting	is	the	practice	of	only	loading	the	JavaScript	you	need	the	moment	when	you
need	it.

This	improves:

the	performance	of	your	app
the	impact	on	memory,	and	so	battery	usage	on	mobile	devices
the	downloaded	KiloBytes	(or	MegaBytes)	size

React	16.6.0,	released	in	October	2018,	introduced	a	way	of	performing	code	splitting	that
should	take	the	place	of	every	previously	used	tool	or	library:	React.lazy	and	Suspense.

	React.lazy		and	 	Suspense		form	the	perfect	way	to	lazily	load	a	dependency	and	only	load	it
when	needed.

Let's	start	with	 	React.lazy	.	You	use	it	to	import	any	component:

import	React	from	'react'

const	TodoList	=	React.lazy(()	=>	import('./TodoList'))

export	default	()	=>	{

		return	(

				<div>

						<TodoList	/>

				</div>

)

}

the	TodoList	component	will	be	dynamically	added	to	the	output	as	soon	as	it's	available.
Webpack	will	create	a	separate	bundle	for	it,	and	will	take	care	of	loading	it	when	necessary.

	Suspense		is	a	component	that	you	can	use	to	wrap	any	lazily	loaded	component:

Code	splitting

122

import	React	from	'react'

const	TodoList	=	React.lazy(()	=>	import('./TodoList'))

export	default	()	=>	{

		return	(

				<div>

						<React.Suspense>

								<TodoList	/>

						</React.Suspense>

				</div>

)

}

It	takes	care	of	handling	the	output	while	the	lazy	loaded	component	is	fetched	and	rendered.

Use	its	 	fallback		prop	to	output	some	JSX	or	a	component	output:

...

						<React.Suspense	fallback={<p>Please	wait</p>}>

								<TodoList	/>

						</React.Suspense>

...

All	this	plays	well	with	React	Router:

import	React	from	'react'

import	{	BrowserRouter	as	Router,	Route,	Switch	}	from	'react-router-dom'

const	TodoList	=	React.lazy(()	=>	import('./routes/TodoList'))

const	NewTodo	=	React.lazy(()	=>	import('./routes/NewTodo'))

const	App	=	()	=>	(

		<Router>

				<React.Suspense	fallback={<p>Please	wait</p>}>

						<Switch>

								<Route	exact	path="/"	component={TodoList}	/>

								<Route	path="/new"	component={NewTodo}	/>

						</Switch>

				</React.Suspense>

		</Router>

)

Code	splitting

123

CSS	in	React
How	to	use	CSS	to	style	a	React	application

Using	React	you	have	various	ways	to	add	styling	to	your	components.

Using	classes	and	CSS
The	first	and	most	simple	is	to	use	classes,	and	use	a	normal	CSS	file	to	target	those	classes:

const	Button	=	()	=>	{

		return	<button	className="button">A	button</button>

}

.button	{

		background-color:	yellow;

}

You	can	import	the	stylesheet	using	an	import	statement,	like	this:

import	'./style.css'

and	Webpack	will	take	care	of	adding	the	CSS	property	to	the	bundle.

Using	the	style	attribute
A	second	method	is	to	use	the	 	style		attribute	attached	to	a	JSX	element.	Using	this
approach	you	don't	need	a	separate	CSS	file.

const	Button	=	()	=>	{

		return	<button	style={{	backgroundColor:	'yellow'	}}>A	button</button>

}

CSS	is	defined	in	a	slightly	different	way	now.	First,	notice	the	double	curly	brackets:	it's
because	 	style		accepts	an	object.	We	pass	in	a	JavaScript	object,	which	is	defined	in	curly
braces.	We	could	also	do	this:

const	buttonStyle	=	{	backgroundColor:	'yellow'	}

const	Button	=	()	=>	{

		return	<button	style={buttonStyle}>A	button</button>

CSS	in	React

124

https://flaviocopes.com/webpack/

}

When	using	 	create-react-app	,	those	styles	are	autoprefixed	by	default	thanks	to	its	use	of
Autoprefixer.

Also,	the	style	now	is	camelCased	instead	of	using	dashes.	Every	time	a	CSS	property	has	a
dash,	remove	it	and	start	the	next	word	capitalized.

Styles	have	the	benefit	of	being	local	to	the	component,	and	they	cannot	leak	to	other
components	in	other	parts	of	the	app,	something	that	using	classes	and	an	external	CSS	file
can't	provide.

Using	CSS	Modules
CSS	Modules	seem	to	be	a	perfect	spot	in	the	middle:	you	use	classes,	but	CSS	is	scoped	to
the	component,	which	means	that	any	styling	you	add	cannot	be	applied	to	other	components
without	your	permission.	And	yet	your	styles	are	defined	in	a	separate	CSS	file,	which	is	easier
to	maintain	than	CSS	in	JavaScript	(and	you	can	use	your	good	old	CSS	property	names).

Start	by	creating	a	CSS	file	that	ends	with	 	.module.css	,	for	example	 	Button.module.css	.	A
great	choice	is	to	give	it	the	same	name	as	the	component	you	are	going	to	style

Add	your	CSS	here,	then	import	it	inside	the	component	file	you	want	to	style:

import	style	from	'./Button.module.css'

now	you	can	use	it	in	your	JSX:

const	Button	=	()	=>	{

		return	<button	className={style.content}>A	button</button>

}

That's	it!	In	the	resulting	markup,	React	will	generate	a	specific,	unique	class	for	each
rendered	component,	and	assign	the	CSS	to	that	class,	so	that	the	CSS	is	not	affecting	other
markup.

CSS	in	React

125

https://github.com/postcss/autoprefixer

CSS	in	React

126

SASS	with	React
How	to	use	SASS	to	style	a	React	application

When	you	build	a	React	application	using	 	create-react-app	,	you	have	many	options	at	your
disposal	when	it	comes	to	styling.

Of	course,	if	not	using	 	create-react-app	,	you	have	all	the	choices	in	the	world,	but	we
limit	the	discussion	to	the	 	create-react-app	-provided	options.

You	can	style	using	plain	classes	and	CSS	files,	using	the	style	attribute	or	CSS	Modules,	to
start	with.

SASS/SCSS	is	a	very	popular	option,	a	much	loved	one	by	many	developers.

You	can	use	it	without	any	configuration	at	all,	starting	with	 	create-react-app		2.

All	you	need	is	a	 	.sass		or	 	.scss		file,	and	you	just	import	it	in	a	component:

import	'./styles.scss'

You	can	see	an	example	of	it	working	at	https://codesandbox.io/s/18qq31rp3.

SASS	with	React

127

https://flaviocopes.com/react-create-react-app/
https://codesandbox.io/s/18qq31rp3

Styled	Components
Styled	Components	are	one	of	the	new	ways	to	use	CSS	in	modern
JavaScript.	It	is	the	meant	to	be	a	successor	of	CSS	Modules,	a	way	to	write
CSS	that's	scoped	to	a	single	component,	and	not	leak	to	any	other	element
in	the	page

A	brief	history
Once	upon	a	time,	the	Web	was	really	simple	and	CSS	didn't	even	exist.	We	laid	out	pages
using	tables	and	frames.	Good	times.

Then	CSS	came	to	life,	and	after	some	time	it	became	clear	that	frameworks	could	greatly
help	especially	in	building	grids	and	layouts,	Bootstrap	and	Foundation	playing	a	big	part	in
this.

Preprocessors	like	SASS	and	others	helped	a	lot	to	slow	down	the	adoption	of	frameworks,
and	to	better	organize	the	code,	conventions	like	BEM	and	SMACSS	grew	in	use,	especially
within	teams.

Conventions	are	not	a	solution	to	everything,	and	they	are	complex	to	remember,	so	in	the	last
few	years	with	the	increasing	adoption	of	JavaScript	and	build	processes	in	every	frontend
project,	CSS	found	its	way	into	JavaScript	(CSS-in-JS).

New	tools	explored	new	ways	of	doing	CSS-in-JS	and	a	few	succeeded	with	increasing
popularity:

React	Style
jsxstyle
Radium

and	more.

Introducing	Styled	Components
One	of	the	most	popular	of	these	tools	is	Styled	Components.

It	is	the	meant	to	be	a	successor	to	CSS	Modules,	a	way	to	write	CSS	that's	scoped	to	a
single	component,	and	not	leak	to	any	other	element	in	the	page.

(more	on	CSS	modules	here	and	here)

Styled	Components

128

https://flaviocopes.com/javascript/
https://css-tricks.com/css-modules-part-1-need/
https://glenmaddern.com/articles/css-modules

Styled	Components	allow	you	to	write	plain	CSS	in	your	components	without	worrying	about
class	name	collisions.

Installation
Simply	install	styled-components	using	npm	or	yarn:

npm	install	styled-components

yarn	add	styled-components

That's	it!	Now	all	you	have	to	do	is	to	add	this	import:

import	styled	from	'styled-components'

Your	first	styled	component
With	the	 	styled		object	imported,	you	can	now	start	creating	Styled	Components.	Here's	the
first	one:

const	Button	=	styled.button`

		font-size:	1.5em;

		background-color:	black;

		color:	white;

`

	Button		is	now	a	React	Component	in	all	its	greatness.

We	created	it	using	a	function	of	the	styled	object,	called	 	button		in	this	case,	and	passing
some	CSS	properties	in	a	template	literal.

Now	this	component	can	be	rendered	in	our	container	using	the	normal	React	syntax:

render(<Button	/>)

Styled	Components	offer	other	functions	you	can	use	to	create	other	components,	not	just
	button	,	like	 	section	,	 	h1	,	 	input		and	many	others.

The	syntax	used,	with	the	backtick,	might	be	weird	at	first,	but	it's	called	Tagged	Templates,
it's	plain	JavaScript	and	it's	a	way	to	pass	an	argument	to	the	function.

Using	props	to	customize	components

Styled	Components

129

https://flaviocopes.com/npm/
https://flaviocopes.com/yarn/
https://flaviocopes.com/react/
https://flaviocopes.com/ecmascript/#template-literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

When	you	pass	some	props	to	a	Styled	Component,	it	will	pass	them	down	to	the	DOM	node
mounted.

For	example	here's	how	we	pass	the	 	placeholder		and	 	type		props	to	an	 	input		component:

const	Input	=	styled.input`

		//...

`

render(

		<div>

				<Input	placeholder="..."	type="text"	/>

		</div>

)

This	will	do	just	what	you	think,	inserting	those	props	as	HTML	attributes.

Props	instead	of	just	being	blindly	passed	down	to	the	DOM	can	also	be	used	to	customize	a
component	based	on	the	prop	value.	Here's	an	example:

const	Button	=	styled.button`

		background:	${props	=>	(props.primary	?	'black'	:	'white')};

		color:	${props	=>	(props.primary	?	'white'	:	'black')};

`

render(

		<div>

				<Button>A	normal	button</Button>

				<Button>A	normal	button</Button>

				<Button	primary>The	primary	button</Button>

		</div>

)

Setting	the	 	primary		prop	changes	the	color	of	the	button.

Extending	an	existing	Styled	Component
If	you	have	one	component	and	you	want	to	create	a	similar	one,	just	styled	slightly	differently,
you	can	use	 	extend	:

const	Button	=	styled.button`

		color:	black;

		//...

`

const	WhiteButton	=	Button.extend`

		color:	white;

`

Styled	Components

130

https://flaviocopes.com/dom/
https://flaviocopes.com/dom/

render(

		<div>

				<Button>A	black	button,	like	all	buttons</Button>

				<WhiteButton>A	white	button</WhiteButton>

		</div>

)

It's	Regular	CSS
In	Styled	Components,	you	can	use	the	CSS	you	already	know	and	love.	It's	just	plain	CSS.	It
is	not	pseudo	CSS	nor	inline	CSS	with	its	limitations.

You	can	use	media	queries,	nesting	and	anything	else	you	might	need.

Using	Vendor	Prefixes
Styled	Components	automatically	add	all	the	vendor	prefixes	needed,	so	you	don't	need	to
worry	about	this	problem.

Conclusion
That's	it	for	this	Styled	Components	introduction!	These	concepts	will	help	you	get	an
understanding	of	the	concept	and	help	you	get	up	and	running	with	this	way	of	using	CSS	in
JavaScript.

Styled	Components

131

https://tabatkins.github.io/specs/css-nesting/

Babel
Babel	is	an	awesome	entry	in	the	Web	Developer	toolset.	It's	an	awesome
tool,	and	it’s	been	around	for	quite	some	time,	but	nowadays	almost	every
JavaScript	developer	relies	on	it,	and	this	will	continue	going	on,	because
Babel	is	now	indispensable	and	has	solved	a	big	problem	for	everyone.

Babel	is	an	awesome	tool,	and	it’s	been	around	for	quite	some	time,	but	nowadays	almost
every	JavaScript	developer	relies	on	it,	and	this	will	continue,	because	Babel	is	now
indispensable	and	has	solved	a	big	problem	for	everyone.

Which	problem?

The	problem	that	every	Web	Developer	has	surely	had:	a	feature	of	JavaScript	is	available	in
the	latest	release	of	a	browser,	but	not	in	the	older	versions.	Or	maybe	Chrome	or	Firefox
implement	it,	but	Safari	iOS	and	Edge	do	not.

For	example,	ES6	introduced	the	arrow	function:

[1,	2,	3].map((n)	=>	n	+	1)

Which	is	now	supported	by	all	modern	browsers.	IE11	does	not	support	it,	nor	Opera	Mini
(How	do	I	know?	By	checking	the	ES6	Compatibility	Table).

So	how	should	you	deal	with	this	problem?	Should	you	move	on	and	leave	those	customers
with	older/incompatible	browsers	behind,	or	should	you	write	older	JavaScript	code	to	make	all
your	users	happy?

Enter	Babel.	Babel	is	a	compiler:	it	takes	code	written	in	one	standard,	and	it	transpiles	it	to
code	written	into	another	standard.

You	can	configure	Babel	to	transpile	modern	ES2017	JavaScript	into	JavaScript	ES5	syntax:

[1,	2,	3].map(function(n)	{

		return	n	+	1

})

This	must	happen	at	build	time,	so	you	must	setup	a	workflow	that	handles	this	for	you.
Webpack	is	a	common	solution.

(P.S.	if	all	this	ES	thing	sounds	confusing	to	you,	see	more	about	ES	versions	in	the
ECMAScript	guide)

Babel

132

https://flaviocopes.com/javascript/
http://kangax.github.io/compat-table/es6/#test-arrow_functions
https://flaviocopes.com/webpack/
https://flaviocopes.com/ecmascript/

Installing	Babel
Babel	is	easily	installed	using	npm,	locally	in	a	project:

npm	install	--save-dev	@babel/core	@babel/cli

In	the	past	I	recommended	installing	 	babel-cli		globally,	but	this	is	now	discouraged	by
the	Babel	maintainers,	because	by	using	it	locally	you	can	have	different	versions	of
Babel	in	each	project,	and	also	checking	in	babel	in	your	repository	is	better	for	team
work

Since	npm	now	comes	with	 	npx	,	locally	installed	CLI	packages	can	run	by	typing	the
command	in	the	project	folder:

So	we	can	run	Babel	by	just	running

npx	babel	script.js

An	example	Babel	configuration
Babel	out	of	the	box	does	not	do	anything	useful,	you	need	to	configure	it	and	add	plugins.

Here	is	a	list	of	Babel	plugins

To	solve	the	problem	we	talked	about	in	the	introduction	(using	arrow	functions	in	every
browser),	we	can	run

npm	install	--save-dev	\

				@babel/plugin-transform-es2015-arrow-functions

to	download	the	package	in	the	 	node_modules		folder	of	our	app,	then	we	need	to	add

{

		"plugins":	["transform-es2015-arrow-functions"]

}

to	the	 	.babelrc		file	present	in	the	application	root	folder.	If	you	don't	have	that	file	already,
you	just	create	a	blank	file,	and	put	that	content	into	it.

TIP:	If	you	have	never	seen	a	dot	file	(a	file	starting	with	a	dot)	it	might	be	odd	at	first
because	that	file	might	not	appear	in	your	file	manager,	as	it's	a	hidden	file.

Now	if	we	have	a	 	script.js		file	with	this	content:

Babel

133

https://flaviocopes.com/npm/
https://flaviocopes.com/node/npx/
https://babeljs.io/docs/en/plugins

var	a	=	()	=>	{};

var	a	=	(b)	=>	b;

const	double	=	[1,2,3].map((num)	=>	num	*	2);

console.log(double);	//	[2,4,6]

var	bob	=	{

		_name:	"Bob",

		_friends:	["Sally",	"Tom"],

		printFriends()	{

				this._friends.forEach(f	=>

						console.log(this._name	+	"	knows	"	+	f));

		}

};

console.log(bob.printFriends());

running	 	babel	script.js		will	output	the	following	code:

var	a	=	function	()	{};var	a	=	function	(b)	{

		return	b;

};

const	double	=	[1,	2,	3].map(function	(num)	{

		return	num	*	2;

});console.log(double);	//	[2,4,6]

var	bob	=	{

		_name:	"Bob",

		_friends:	["Sally",	"Tom"],

		printFriends()	{

				var	_this	=	this;

				this._friends.forEach(function	(f)	{

						return	console.log(_this._name	+	"	knows	"	+	f);

				});

		}

};

console.log(bob.printFriends());

As	you	can	see	arrow	functions	have	all	been	converted	to	JavaScript	ES5	functions.

Babel	presets
We	just	saw	in	the	previous	article	how	Babel	can	be	configured	to	transpile	specific
JavaScript	features.

You	can	add	much	more	plugins,	but	you	can't	add	to	the	configuration	features	one	by	one,
it's	not	practical.

Babel

134

This	is	why	Babel	offers	presets.

The	most	popular	presets	are	 	env		and	 	react	.

Tip:	Babel	7	deprecated	(and	removed)	yearly	presets	like	 	preset-es2017	,	and	stage
presets.	Use	 	@babel/preset-env		instead.

	env		preset

The	 	env		preset	is	very	nice:	you	tell	it	which	environments	you	want	to	support,	and	it	does
everything	for	you,	supporting	all	modern	JavaScript	features.

E.g.	"support	the	last	2	versions	of	every	browser,	but	for	Safari	let's	support	all	versions	since
Safari	7`

{

		"presets":	[

				["env",	{

						"targets":	{

								"browsers":	["last	2	versions",	"safari	>=	7"]

						}

				}]

]

}

or	"I	don't	need	browser	support,	just	let	me	work	with	Node.js	6.10"

{

		"presets":	[

				["env",	{

						"targets":	{

								"node":	"6.10"

						}

				}]

]

}

	react		preset

The	 	react		preset	is	very	convenient	when	writing	React	apps:	adding	 	preset-flow	,	 	syntax-
jsx	,	 	transform-react-jsx	,	 	transform-react-display-name	.

By	including	it,	you	are	all	ready	to	go	developing	React	apps,	with	JSX	transforms	and	Flow
support.

More	info	on	presets

Babel

135

https://flaviocopes.com/node/

https://babeljs.io/docs/plugins/

Using	Babel	with	webpack
If	you	want	to	run	modern	JavaScript	in	the	browser,	Babel	on	its	own	is	not	enough,	you	also
need	to	bundle	the	code.	Webpack	is	the	perfect	tool	for	this.

TIP:	read	the	webpack	guide	if	you're	not	familiar	with	webpack

Modern	JS	needs	two	different	stages:	a	compile	stage,	and	a	runtime	stage.	This	is	because
some	ES6+	features	need	a	polyfill	or	a	runtime	helper.

To	install	the	Babel	polyfill	runtime	functionality,	run

npm	install	@babel/polyfill	\

												@babel/runtime	\

												@babel/plugin-transform-runtime

Now	in	your	 	webpack.config.js		file	add:

entry:	[

		'babel-polyfill',

		//	your	app	scripts	should	be	here

],

module:	{

		loaders:	[

				//	Babel	loader	compiles	ES2015	into	ES5	for

				//	complete	cross-browser	support

				{

						loader:	'babel-loader',

						test:	/\.js$/,

						//	only	include	files	present	in	the	`src`	subdirectory

						include:	[path.resolve(__dirname,	"src")],

						//	exclude	node_modules,	equivalent	to	the	above	line

						exclude:	/node_modules/,

						query:	{

								//	Use	the	default	ES2015	preset

								//	to	include	all	ES2015	features

								presets:	['es2015'],

								plugins:	['transform-runtime']

						}

				}

]

}

By	keeping	the	presets	and	plugins	information	inside	the	 	webpack.config.js		file,	we	can
avoid	having	a	 	.babelrc		file.

Babel

136

https://babeljs.io/docs/plugins/
https://flaviocopes.com/webpack/

Babel

137

Webpack
Webpack	is	a	tool	that	has	got	a	lot	of	attention	in	the	last	few	years,	and	it	is
now	seen	used	in	almost	every	project.	Learn	about	it.

What	is	webpack?
Webpack	is	a	tool	that	lets	you	compile	JavaScript	modules,	also	known	as	module	bundler.

Given	a	large	number	of	files,	it	generates	a	single	file	(or	a	few	files)	that	run	your	app.

It	can	perform	many	operations:

helps	you	bundle	your	resources.
watches	for	changes	and	re-runs	the	tasks.
can	run	Babel	transpilation	to	ES5,	allowing	you	to	use	the	latest	JavaScript	features
without	worrying	about	browser	support.
can	transpile	CoffeeScript	to	JavaScript
can	convert	inline	images	to	data	URIs.
allows	you	to	use	require()	for	CSS	files.

Webpack

138

https://flaviocopes.com/javascript/

can	run	a	development	webserver.
can	handle	hot	module	replacement.
can	split	the	output	files	into	multiple	files,	to	avoid	having	a	huge	js	file	to	load	in	the	first
page	hit.
can	perform	tree	shaking.

Webpack	is	not	limited	to	be	use	on	the	frontend,	it's	also	useful	in	backend	Node.js
development	as	well.

Predecessors	of	webpack,	and	still	widely	used	tools,	include:

Grunt
Broccoli
Gulp

There	are	lots	of	similarities	in	what	those	and	Webpack	can	do,	but	the	main	difference	is	that
those	are	known	as	task	runners,	while	webpack	was	born	as	a	module	bundler.

It's	a	more	focused	tool:	you	specify	an	entry	point	to	your	app	(it	could	even	be	an	HTML	file
with	script	tags)	and	webpack	analyzes	the	files	and	bundles	all	you	need	to	run	the	app	in	a
single	JavaScript	output	file	(or	in	more	files	if	you	use	code	splitting).

Installing	webpack
Webpack	can	be	installed	globally	or	locally	for	each	project.

Global	install

Here's	how	to	install	it	globally	with	Yarn:

yarn	global	add	webpack	webpack-cli

with	npm:

npm	i	-g	webpack	webpack-cli

once	this	is	done,	you	should	be	able	to	run

webpack-cli

Webpack

139

https://flaviocopes.com/javascript-glossary/#tree-shaking
https://flaviocopes.com/yarn/
https://flaviocopes.com/npm/

Local	install

Webpack	can	be	installed	locally	as	well.	It's	the	recommended	setup,	because	webpack	can
be	updated	per-project,	and	you	have	less	resistance	to	using	the	latest	features	just	for	a
small	project	rather	than	updating	all	the	projects	you	have	that	use	webpack.

With	Yarn:

yarn	add	webpack	webpack-cli	-D

with	npm:

npm	i	webpack	webpack-cli	--save-dev

Once	this	is	done,	add	this	to	your	 	package.json		file:

{

		//...

		"scripts":	{

				"build":	"webpack"

		}

}

once	this	is	done,	you	can	run	webpack	by	typing

Webpack

140

https://flaviocopes.com/yarn/
https://flaviocopes.com/npm/

yarn	build

in	the	project	root.

Webpack	configuration
By	default,	webpack	(starting	from	version	4)	does	not	require	any	config	if	you	respect	these
conventions:

the	entry	point	of	your	app	is	 	./src/index.js	
the	output	is	put	in	 	./dist/main.js	.
Webpack	works	in	production	mode

You	can	customize	every	little	bit	of	webpack	of	course,	when	you	need.	The	webpack
configuration	is	stored	in	the	 	webpack.config.js		file,	in	the	project	root	folder.

The	entry	point
By	default	the	entry	point	is	 	./src/index.js		This	simple	example	uses	the	 	./index.js		file	as
a	starting	point:

module.exports	=	{

		/*...*/

		entry:	'./index.js'

		/*...*/

}

The	output
By	default	the	output	is	generated	in	 	./dist/main.js	.	This	example	puts	the	output	bundle
into	 	app.js	:

module.exports	=	{

		/*...*/

		output:	{

				path:	path.resolve(__dirname,	'dist'),

				filename:	'app.js'

		}

		/*...*/

}

Webpack

141

Loaders
Using	webpack	allows	you	to	use	 	import		or	 	require		statements	in	your	JavaScript	code	to
not	just	include	other	JavaScript,	but	any	kind	of	file,	for	example	CSS.

Webpack	aims	to	handle	all	our	dependencies,	not	just	JavaScript,	and	loaders	are	one	way	to
do	that.

For	example,	in	your	code	you	can	use:

import	'style.css'

by	using	this	loader	configuration:

module.exports	=	{

		/*...*/

		module:	{

				rules:	[

						{	test:	/\.css$/,	use:	'css-loader'	},

				}]

		}

		/*...*/

}

The	regular	expression	targets	any	CSS	file.

A	loader	can	have	options:

module.exports	=	{

		/*...*/

		module:	{

				rules:	[

						{

								test:	/\.css$/,

								use:	[

										{

												loader:	'css-loader',

												options:	{

														modules:	true

												}

										}

]

						}

]

		}

		/*...*/

}

You	can	require	multiple	loaders	for	each	rule:

Webpack

142

https://flaviocopes.com/javascript-regular-expressions/

module.exports	=	{

		/*...*/

		module:	{

				rules:	[

						{

								test:	/\.css$/,

								use:

										[

												'style-loader',

												'css-loader',

]

						}

]

		}

		/*...*/

}

In	this	example,	 	css-loader		interprets	the	 	import	'style.css'		directive	in	the	CSS.	 	style-
loader		is	then	responsible	for	injecting	that	CSS	in	the	DOM,	using	a	 	<style>		tag.

The	order	matters,	and	it's	reversed	(the	last	is	executed	first).

What	kind	of	loaders	are	there?	Many!	You	can	find	the	full	list	here.

A	commonly	used	loader	is	Babel,	which	is	used	to	transpile	modern	JavaScript	to	ES5	code:

module.exports	=	{

		/*...*/

		module:	{

				rules:	[

						{

								test:	/\.js$/,

								exclude:	/(node_modules|bower_components)/,

								use:	{

										loader:	'babel-loader',

										options:	{

												presets:	['@babel/preset-env']

										}

								}

						}

]

		}

		/*...*/

}

This	example	makes	Babel	preprocess	all	our	React/JSX	files:

module.exports	=	{

		/*...*/

		module:	{

				rules:	[

						{

Webpack

143

https://webpack.js.org/loaders/
https://flaviocopes.com/babel/

								test:	/\.(js|jsx)$/,

								exclude:	/node_modules/,

								use:	'babel-loader'

						}

]

		},

		resolve:	{

				extensions:	[

						'.js',

						'.jsx'

]

		}

		/*...*/

}

See	the	 	babel-loader		options	here.

Plugins
Plugins	are	like	loaders,	but	on	steroids.	They	can	do	things	that	loaders	can't	do,	and	they	are
the	main	building	block	of	webpack.

Take	this	example:

module.exports	=	{

		/*...*/

		plugins:	[

				new	HTMLWebpackPlugin()

]

		/*...*/

}

The	 	HTMLWebpackPlugin		plugin	has	the	job	of	automatically	creating	an	HTML	file,	adding	the
output	JS	bundle	path,	so	the	JavaScript	is	ready	to	be	served.

There	are	lots	of	plugins	available.

One	useful	plugin,	 	CleanWebpackPlugin	,	can	be	used	to	clear	the	 	dist/		folder	before	creating
any	output,	so	you	don't	leave	files	around	when	you	change	the	name	of	the	output	file:

module.exports	=	{

		/*...*/

		plugins:	[

				new	CleanWebpackPlugin(['dist']),

]

		/*...*/

}

Webpack

144

https://webpack.js.org/loaders/babel-loader/
https://webpack.js.org/plugins/

The	webpack	mode
This	mode	(introduced	in	webpack	4)	sets	the	environment	on	which	webpack	works.	It	can	be
set	to	 	development		or	 	production		(defaults	to	production,	so	you	only	set	it	when	moving	to
development)

module.exports	=	{

		entry:	'./index.js',

		mode:	'development',

		output:	{

				path:	path.resolve(__dirname,	'dist'),

				filename:	'app.js'

		}

}

Development	mode:

builds	very	fast
is	less	optimized	than	production
does	not	remove	comments
provides	more	detailed	error	messages	and	suggestions
provides	a	better	debugging	experience

Production	mode	is	slower	to	build,	since	it	needs	to	generate	a	more	optimized	bundle.	The
resulting	JavaScript	file	is	smaller	in	size,	as	it	removes	many	things	that	are	not	needed	in
production.

I	made	a	sample	app	that	just	prints	a	 	console.log		statement.

Here's	the	production	bundle:

Webpack

145

Here's	the	development	bundle:

Webpack

146

Running	webpack
Webpack	can	be	run	from	the	command	line	manually	if	installed	globally,	but	generally	you
write	a	script	inside	the	 	package.json		file,	which	is	then	run	using	 	npm		or	 	yarn	.

For	example	this	 	package.json		scripts	definition	we	used	before:

"scripts":	{

		"build":	"webpack"

}

allows	us	to	run	 	webpack		by	running

npm	run	build

or

yarn	run	build

Webpack

147

or	simply

yarn	build

Watching	changes
Webpack	can	automatically	rebuild	the	bundle	when	a	change	in	your	app	happens,	and	keep
listening	for	the	next	change.

Just	add	this	script:

"scripts":	{

		"watch":	"webpack	--watch"

}

and	run

npm	run	watch

or

yarn	run	watch

or	simply

yarn	watch

One	nice	feature	of	the	watch	mode	is	that	the	bundle	is	only	changed	if	the	build	has	no
errors.	If	there	are	errors,	 	watch		will	keep	listening	for	changes,	and	try	to	rebuild	the	bundle,
but	the	current,	working	bundle	is	not	affected	by	those	problematic	builds.

Handling	images
Webpack	allows	us	to	use	images	in	a	very	convenient	way,	using	the	 	file-loader		loader.

This	simple	configuration:

module.exports	=	{

		/*...*/

		module:	{

				rules:	[

Webpack

148

https://webpack.js.org/loaders/file-loader/

						{

								test:	/\.(png|svg|jpg|gif)$/,

								use:	[

										'file-loader'

]

						}

]

		}

		/*...*/

}

Allows	you	to	import	images	in	your	JavaScript:

import	Icon	from	'./icon.png'

const	img	=	new	Image()

img.src	=	Icon

element.appendChild(img)

(img		is	an	HTMLImageElement.	Check	the	Image	docs)

	file-loader		can	handle	other	asset	types	as	well,	like	fonts,	CSV	files,	xml,	and	more.

Another	nice	tool	to	work	with	images	is	the	 	url-loader		loader.

This	example	loads	any	PNG	file	smaller	than	8KB	as	a	data	URL.

module.exports	=	{

		/*...*/

		module:	{

				rules:	[

						{

								test:	/\.png$/,

								use:	[

										{

												loader:	'url-loader',

												options:	{

														limit:	8192

												}

										}

]

						}

]

		}

		/*...*/

}

Process	your	SASS	code	and	transform	it	to
CSS

Webpack

149

https://developer.mozilla.org/en-US/docs/Web/API/HTMLImageElement/Image
https://flaviocopes.com/data-urls/

Using	 	sass-loader	,	 	css-loader		and	 	style-loader	:

module.exports	=	{

		/*...*/

		module:	{

				rules:	[

						{

								test:	/\.scss$/,

								use:	[

										'style-loader',

										'css-loader',

										'sass-loader'

]

						}

]

		}

		/*...*/

}

Generate	Source	Maps
Since	webpack	bundles	the	code,	Source	Maps	are	mandatory	to	get	a	reference	to	the
original	file	that	raised	an	error,	for	example.

You	tell	webpack	to	generate	source	maps	using	the	 	devtool		property	of	the	configuration:

module.exports	=	{

		/*...*/

		devtool:	'inline-source-map',

		/*...*/

}

	devtool		has	many	possible	values,	the	most	used	probably	are:

	none	:	adds	no	source	maps
	source-map	:	ideal	for	production,	provides	a	separate	source	map	that	can	be	minimized,
and	adds	a	reference	into	the	bundle,	so	development	tools	know	that	the	source	map	is
available.	Of	course	you	should	configure	the	server	to	avoid	shipping	this,	and	just	use	it
for	debugging	purposes
	inline-source-map	:	ideal	for	development,	inlines	the	source	map	as	a	Data	URL

Webpack

150

https://webpack.js.org/configuration/devtool/

Prettier
Prettier	is	an	opinionated	code	formatter.	It	is	a	great	way	to	keep	code
formatted	consistently	for	you	and	your	team,	and	supports	a	lot	of	different
languages	out	of	the	box

Prettier	is	an	opinionated	code	formatter.

It	supports	a	lot	of	different	syntax	out	of	the	box,	including:

JavaScript

Prettier

151

Flow,	TypeScript
CSS,	SCSS,	Less
JSX
GraphQL
JSON
Markdown

and	with	plugins	you	can	use	it	for	Python,	PHP,	Swift,	Ruby,	Java	and	more.

It	integrates	with	the	most	popular	code	editors,	including	VS	Code,	Sublime	Text,	Atom	and
more.

Prettier	is	hugely	popular,	as	in	February	2018	it	has	been	downloaded	over	3.5	million	times.

The	most	important	links	you	need	to	know	more	about	Prettier	are

https://prettier.io/
https://github.com/prettier/prettier
https://www.npmjs.com/package/prettier

Less	options
I	learned	Go	recently	and	one	of	the	best	things	about	Go	is	gofmt,	an	official	tool	that
automatically	formats	your	code	according	to	common	standards.

95%	(made	up	stat)	of	the	Go	code	around	looks	exactly	the	same,	because	this	tool	can	be
easily	enforced	and	since	the	style	is	defined	for	you	by	the	Go	maintainers,	you	are	much
more	likely	to	adapt	to	that	standard	instead	of	insisting	on	your	own	style.	Like	tabs	vs
spaces,	or	where	to	put	an	opening	bracket.

This	might	sound	like	a	limitation,	but	it's	actually	very	powerful.	All	Go	code	looks	the	same.

Prettier	is	the	 	gofmt		for	the	rest	of	the	world.

It	has	very	few	options,	and	most	of	the	decisions	are	already	taken	for	you	so	you	can
stop	arguing	about	style	and	little	things,	and	focus	on	your	code.

Difference	with	ESLint
ESLint	is	a	linter,	it	does	not	just	format,	but	it	also	highlights	some	errors	thanks	to	its	static
analysis	of	the	code.

It	is	an	invaluable	tool	and	it	can	be	used	alongside	Prettier.

Prettier

152

https://prettier.io/docs/en/plugins.html
https://prettier.io/
https://github.com/prettier/prettier
https://www.npmjs.com/package/prettier
https://flaviocopes.com/eslint/

ESLint	also	highlights	formatting	issues,	but	since	it's	a	lot	more	configurable,	everyone	could
have	a	different	set	of	formatting	rules.	Prettier	provides	a	common	ground	for	all.

Now,	there	are	a	few	things	you	can	customize,	like:

the	tab	width
the	use	of	single	quotes	vs	double	quotes
the	line	columns	number
the	use	of	trailing	commas

and	some	others,	but	Prettier	tries	to	keep	the	number	of	those	customizations	under	control,
to	avoid	becoming	too	customizable.

Installation
Prettier	can	run	from	the	command	line,	and	you	can	install	it	using	Yarn	or	npm.

Another	great	use	case	for	Prettier	is	to	run	it	on	PRs	for	your	Git	repositories,	for	example	on
GitHub.

If	you	use	a	supported	editor	the	best	thing	is	to	use	Prettier	directly	from	the	editor,	and	the
Prettier	formatting	will	be	run	every	time	you	save.

For	example	here	is	the	Prettier	extension	for	VS	Code:
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode

Prettier	for	beginners
If	you	think	Prettier	is	just	for	teams,	or	for	pro	users,	you	are	missing	a	good	value	proposition
of	this	tool.

A	good	style	enforces	good	habits.

Formatting	is	a	topic	that's	mostly	overlooked	by	beginners,	but	having	clean	and	consistent
formatting	is	key	to	your	success	as	a	new	developer.

Also,	even	if	you	started	using	JavaScript	2	weeks	ago,	with	Prettier	your	code	-	style	wise	-
will	look	just	like	code	written	from	a	JavaScript	Guru	writing	JS	since	1998.

Prettier

153

https://flaviocopes.com/yarn/
https://flaviocopes.com/npm/
https://flaviocopes.com/git/
https://flaviocopes.com/github/
https://marketplace.visualstudio.com/items?itemName=esbenp.prettier-vscode
https://flaviocopes.com/javascript/

Introduction	to	Jest
Jest	is	a	library	for	testing	JavaScript	code.	It's	an	open	source	project
maintained	by	Facebook,	and	it's	especially	well	suited	for	React	code
testing,	although	not	limited	to	that:	it	can	test	any	JavaScript	code.	Jest	is
very	fast	and	easy	to	use

Jest	is	a	library	for	testing	JavaScript	code.

It's	an	open	source	project	maintained	by	Facebook,	and	it's	especially	well	suited	for	React
code	testing,	although	not	limited	to	that:	it	can	test	any	JavaScript	code.	Its	strengths	are:

it's	fast
it	can	perform	snapshot	testing
it's	opinionated,	and	provides	everything	out	of	the	box	without	requiring	you	to	make
choices

Jest	is	a	tool	very	similar	to	Mocha,	although	they	have	differences:

Mocha	is	less	opinionated,	while	Jest	has	a	certain	set	of	conventions
Mocha	requires	more	configuration,	while	Jest	works	usually	out	of	the	box,	thanks	to
being	opinionated

Introduction	to	Jest

154

Mocha	is	older	and	more	established,	with	more	tooling	integrations

In	my	opinion	the	biggest	feature	of	Jest	is	it's	an	out	of	the	box	solution	that	works	without
having	to	interact	with	other	testing	libraries	to	perform	its	job.

Installation
Jest	is	automatically	installed	in	 	create-react-app	,	so	if	you	use	that,	you	don't	need	to	install
Jest.

Jest	can	be	installed	in	any	other	project	using	Yarn:

yarn	add	--dev	jest

or	npm:

npm	install	--save-dev	jest

notice	how	we	instruct	both	to	put	Jest	in	the	 	devDependencies		part	of	the	 	package.json		file,	so
that	it	will	only	be	installed	in	the	development	environment	and	not	in	production.

Add	this	line	to	the	scripts	part	of	your	 	package.json		file:

{

		"scripts":	{

				"test":	"jest"

		}

}

so	that	tests	can	be	run	using	 	yarn	test		or	 	npm	run	test	.

Alternatively,	you	can	install	Jest	globally:

yarn	global	add	jest

and	run	all	your	tests	using	the	 	jest		command	line	tool.

Create	the	first	Jest	test
Projects	created	with	 	create-react-app		have	Jest	installed	and	preconfigured	out	of	the	box,
but	adding	Jest	to	any	project	is	as	easy	as	typing

Introduction	to	Jest

155

https://flaviocopes.com/yarn/
https://flaviocopes.com/npm/

yarn	add	--dev	jest

Add	to	your	 	package.json		this	line:

{

		"scripts":	{

				"test":	"jest"

		}

}

and	run	your	tests	by	executing	 	yarn	test		in	your	shell.

Now,	you	don't	have	any	tests	here,	so	nothing	is	going	to	be	executed:

Let's	create	the	first	test.	Open	a	 	math.js		file	and	type	a	couple	functions	that	we'll	later	test:

const	sum	=	(a,	b)	=>	a	+	b

const	mul	=	(a,	b)	=>	a	*	b

const	sub	=	(a,	b)	=>	a	-	b

const	div	=	(a,	b)	=>	a	/	b

export	default	{	sum,	mul,	sub,	div	}

Now	create	a	 	math.test.js		file,	in	the	same	folder,	and	there	we'll	use	Jest	to	test	the
functions	defined	in	 	math.js	:

const	{	sum,	mul,	sub,	div	}	=	require('./math')

test('Adding	1	+	1	equals	2',	()	=>	{

		expect(sum(1,	1)).toBe(2)

})

Introduction	to	Jest

156

test('Multiplying	1	*	1	equals	1',	()	=>	{

		expect(mul(1,	1)).toBe(1)

})

test('Subtracting	1	-	1	equals	0',	()	=>	{

		expect(sub(1,	1)).toBe(0)

})

test('Dividing	1	/	1	equals	1',	()	=>	{

		expect(div(1,	1)).toBe(1)

})

Running	 	yarn	test		results	in	Jest	being	run	on	all	the	test	files	it	finds,	and	returning	us	the
end	result:

Run	Jest	with	VS	Code
Visual	Studio	Code	is	a	great	editor	for	JavaScript	development.	The	Jest	extension	offers	a
top	notch	integration	for	our	tests.

Once	you	install	it,	it	will	automatically	detect	if	you	have	installed	Jest	in	your
devDependencies	and	run	the	tests.	You	can	also	invoke	the	tests	manually	by	selecting	the
Jest:	Start	Runner	command.	It	will	run	the	tests	and	stay	in	watch	mode	to	re-run	them
whenever	you	change	one	of	the	files	that	have	a	test	(or	a	test	file):

Introduction	to	Jest

157

https://marketplace.visualstudio.com/items?itemName=Orta.vscode-jest

Matchers
In	the	previous	article	I	used	 	toBe()		as	the	only	matcher:

test('Adding	1	+	1	equals	2',	()	=>	{

		expect(sum(1,	1)).toBe(2)

})

A	matcher	is	a	method	that	lets	you	test	values.

Most	commonly	used	matchers,	comparing	the	value	of	the	result	of	 	expect()		with	the	value
passed	in	as	argument,	are:

	toBe		compares	strict	equality,	using	 	===	
	toEqual		compares	the	values	of	two	variables.	If	it's	an	object	or	array,	it	checks	the
equality	of	all	the	properties	or	elements
	toBeNull		is	true	when	passing	a	null	value
	toBeDefined		is	true	when	passing	a	defined	value	(opposite	to	the	above)
	toBeUndefined		is	true	when	passing	an	undefined	value
	toBeCloseTo		is	used	to	compare	floating	values,	avoiding	rounding	errors

Introduction	to	Jest

158

	toBeTruthy		true	if	the	value	is	considered	true	(like	an	 	if		does)
	toBeFalsy		true	if	the	value	is	considered	false	(like	an	 	if		does)
	toBeGreaterThan		true	if	the	result	of	expect()	is	higher	than	the	argument
	toBeGreaterThanOrEqual		true	if	the	result	of	expect()	is	equal	to	the	argument,	or	higher
than	the	argument
	toBeLessThan		true	if	the	result	of	expect()	is	lower	than	the	argument
	toBeLessThanOrEqual		true	if	the	result	of	expect()	is	equal	to	the	argument,	or	lower	than
the	argument
	toMatch		is	used	to	compare	strings	with	regular	expression	pattern	matching
	toContain		is	used	in	arrays,	true	if	the	expected	array	contains	the	argument	in	its
elements	set
	toHaveLength(number)	:	checks	the	length	of	an	array
	toHaveProperty(key,	value)	:	checks	if	an	object	has	a	property,	and	optionally	checks	its
value
	toThrow		checks	if	a	function	you	pass	throws	an	exception	(in	general)	or	a	specific
exception
	toBeInstanceOf()	:	checks	if	an	object	is	an	instance	of	a	class

All	those	matchers	can	be	negated	using	 	.not.		inside	the	statement,	for	example:

test('Adding	1	+	1	does	not	equal	3',	()	=>	{

		expect(sum(1,	1)).not.toBe(3)

})

For	use	with	promises,	you	can	use	 	.resolves		and	 	.rejects	:

expect(Promise.resolve('lemon')).resolves.toBe('lemon')

expect(Promise.reject(new	Error('octopus'))).rejects.toThrow('octopus')

Setup
Before	running	your	tests	you	will	want	to	perform	some	initialization.

To	do	something	once	before	all	the	tests	run,	use	the	 	beforeAll()		function:

beforeAll(()	=>	{

		//do	something

})

To	perform	something	before	each	test	runs,	use	 	beforeEach()	:

Introduction	to	Jest

159

https://flaviocopes.com/javascript-regular-expressions/

beforeEach(()	=>	{

		//do	something

})

Teardown
Just	as	you	can	do	with	setup,	you	can	also	perform	something	after	each	test	runs:

afterEach(()	=>	{

		//do	something

})

and	after	all	tests	end:

afterAll(()	=>	{

		//do	something

})

Group	tests	using	describe()
You	can	create	groups	of	tests,	in	a	single	file,	that	isolate	the	setup	and	teardown	functions:

describe('first	set',	()	=>	{

		beforeEach(()	=>	{

				//do	something

		})

		afterAll(()	=>	{

				//do	something

		})

		test(/*...*/)

		test(/*...*/)

})

describe('second	set',	()	=>	{

		beforeEach(()	=>	{

				//do	something

		})

		beforeAll(()	=>	{

				//do	something

		})

		test(/*...*/)

		test(/*...*/)

})

Introduction	to	Jest

160

Testing	asynchronous	code
Asynchronous	code	in	modern	JavaScript	can	have	basically	2	forms:	callbacks	and	promises.
On	top	of	promises	we	can	use	async/await.

Callbacks

You	can't	have	a	test	in	a	callback,	because	Jest	won't	execute	it	-	the	execution	of	the	test	file
ends	before	the	callback	is	called.	To	fix	this,	pass	a	parameter	to	the	test	function,	which	you
can	conveniently	call	 	done	.	Jest	will	wait	until	you	call	 	done()		before	ending	that	test:

//uppercase.js

function	uppercase(str,	callback)	{

		callback(str.toUpperCase())

}

module.exports	=	uppercase

//uppercase.test.js

const	uppercase	=	require('./src/uppercase')

test(`uppercase	'test'	to	equal	'TEST'`,	(done)	=>	{

		uppercase('test',	(str)	=>	{

				expect(str).toBe('TEST')

				done()

		}

})

Introduction	to	Jest

161

Promises

With	functions	that	return	promises,	we	simply	return	a	promise	from	the	test:

//uppercase.js

const	uppercase	=	str	=>	{

		return	new	Promise((resolve,	reject)	=>	{

				if	(!str)	{

						reject('Empty	string')

						return

				}

				resolve(str.toUpperCase())

		})

}

module.exports	=	uppercase

//uppercase.test.js

const	uppercase	=	require('./uppercase')

test(`uppercase	'test'	to	equal	'TEST'`,	()	=>	{

		return	uppercase('test').then(str	=>	{

				expect(str).toBe('TEST')

		})

})

Introduction	to	Jest

162

Promises	that	are	rejected	can	be	tested	using	 	.catch()	:

//uppercase.js

const	uppercase	=	str	=>	{

		return	new	Promise((resolve,	reject)	=>	{

				if	(!str)	{

						reject('Empty	string')

						return

				}

				resolve(str.toUpperCase())

		})

}

module.exports	=	uppercase

//uppercase.test.js

const	uppercase	=	require('./uppercase')

Introduction	to	Jest

163

test(`uppercase	'test'	to	equal	'TEST'`,	()	=>	{

		return	uppercase('').catch(e	=>	{

				expect(e).toMatch('Empty	string')

		})

})

Async/await

To	test	functions	that	return	promises	we	can	also	use	async/await,	which	makes	the	syntax
very	straightforward	and	simple:

//uppercase.test.js

const	uppercase	=	require('./uppercase')

Introduction	to	Jest

164

test(`uppercase	'test'	to	equal	'TEST'`,	async	()	=>	{

		const	str	=	await	uppercase('test')

		expect(str).toBe('TEST')

})

Mocking
In	testing,	mocking	allows	you	to	test	functionality	that	depends	on:

Database
Network	requests
access	to	Files
any	External	system

so	that:

1.	 your	tests	run	faster,	giving	a	quick	turnaround	time	during	development

Introduction	to	Jest

165

2.	 your	tests	are	independent	of	network	conditions,	or	the	state	of	the	database
3.	 your	tests	do	not	pollute	any	data	storage	because	they	do	not	touch	the	database
4.	 any	change	done	in	a	test	does	not	change	the	state	for	subsequent	tests,	and	re-running

the	test	suite	should	start	from	a	known	and	reproducible	starting	point
5.	 you	don't	have	to	worry	about	rate	limiting	on	API	calls	and	network	requests

Mocking	is	useful	when	you	want	to	avoid	side	effects	(e.g.	writing	to	a	database)	or	you	want
to	skip	slow	portions	of	code	(like	network	access),	and	also	avoids	implications	with	running
your	tests	multiple	times	(e.g.	imagine	a	function	that	sends	an	email	or	calls	a	rate-limited
API).

Even	more	important,	if	you	are	writing	a	Unit	Test,	you	should	test	the	functionality	of	a
function	in	isolation,	not	with	all	its	baggage	of	things	it	touches.

Using	mocks,	you	can	inspect	if	a	module	function	has	been	called	and	which	parameters
were	used,	with:

	expect().toHaveBeenCalled()	:	check	if	a	spied	function	has	been	called
	expect().toHaveBeenCalledTimes()	:	count	how	many	times	a	spied	function	has	been
called
	expect().toHaveBeenCalledWith()	:	check	if	the	function	has	been	called	with	a	specific	set
of	parameters
	expect().toHaveBeenLastCalledWith()	:	check	the	parameters	of	the	last	time	the	function
has	been	invoked

Spy	packages	without	affecting	the	functions	code

When	you	import	a	package,	you	can	tell	Jest	to	"spy"	on	the	execution	of	a	particular	function,
using	 	spyOn()	,	without	affecting	how	that	method	works.

Example:

const	mathjs	=	require('mathjs')

test(`The	mathjs	log	function`,	()	=>	{

		const	spy	=	jest.spyOn(mathjs,	'log')

		const	result	=	mathjs.log(10000,	10)

		expect(mathjs.log).toHaveBeenCalled()

		expect(mathjs.log).toHaveBeenCalledWith(10000,	10)

})

Mock	an	entire	package

Introduction	to	Jest

166

Jest	provides	a	convenient	way	to	mock	an	entire	package.	Create	a	 	__mocks__		folder	in	the
project	root,	and	in	this	folder	create	one	JavaScript	file	for	each	of	your	packages.

Say	you	import	 	mathjs	.	Create	a	 	__mocks__/mathjs.js		file	in	your	project	root,	and	add	this
content:

module.exports	=	{

		log:	jest.fn(()	=>	'test')

}

This	will	mock	the	log()	function	of	the	package.	Add	as	many	functions	as	you	want	to	mock:

const	mathjs	=	require('mathjs')

test(`The	mathjs	log	function`,	()	=>	{

		const	result	=	mathjs.log(10000,	10)

		expect(result).toBe('test')

		expect(mathjs.log).toHaveBeenCalled()

		expect(mathjs.log).toHaveBeenCalledWith(10000,	10)

})

Mock	a	single	function

More	simply,	you	can	mock	a	single	function	using	 	jest.fn()	:

const	mathjs	=	require('mathjs')

mathjs.log	=	jest.fn(()	=>	'test')

test(`The	mathjs	log	function`,	()	=>	{

		const	result	=	mathjs.log(10000,	10)

		expect(result).toBe('test')

		expect(mathjs.log).toHaveBeenCalled()

		expect(mathjs.log).toHaveBeenCalledWith(10000,	10)

})

You	can	also	use	 	jest.fn().mockReturnValue('test')		to	create	a	simple	mock	that	does
nothing	except	returning	a	value.

Pre-built	mocks

You	can	find	pre-made	mocks	for	popular	libraries.	For	example	this	package
https://github.com/jefflau/jest-fetch-mock	allows	you	to	mock	 	fetch()		calls,	and	provide
sample	return	values	without	interacting	with	the	actual	server	in	your	tests.

Snapshot	testing

Introduction	to	Jest

167

https://github.com/jefflau/jest-fetch-mock

Snapshot	testing	is	a	pretty	cool	feature	offered	by	Jest.	It	can	memorize	how	your	UI
components	are	rendered,	and	compare	it	to	the	current	test,	raising	an	error	if	there's	a
mismatch.

This	is	a	simple	test	on	the	App	component	of	a	simple	 	create-react-app		application	(make
sure	you	install	 	react-test-renderer):

import	React	from	'react'

import	App	from	'./App'

import	renderer	from	'react-test-renderer'

it('renders	correctly',	()	=>	{

		const	tree	=	renderer.create(<App	/>).toJSON()

		expect(tree).toMatchSnapshot()

})

the	first	time	you	run	this	test,	Jest	saves	the	snapshot	to	the	 	__snapshots__		folder.	Here's
what	App.test.js.snap	contains:

//	Jest	Snapshot	v1,	https://goo.gl/fbAQLP

exports[`renders	correctly	1`]	=	`

<div

		className="App"

>

		<header

				className="App-header"

		>

				<img

						alt="logo"

						className="App-logo"

						src="logo.svg"

				/>

				<h1

						className="App-title"

				>

						Welcome	to	React

				</h1>

		</header>

		<p

				className="App-intro"

		>

				To	get	started,	edit

				<code>

						src/App.js

				</code>

					and	save	to	reload.

		</p>

</div>

`

Introduction	to	Jest

168

As	you	see	it's	the	code	that	the	App	component	renders,	nothing	more.

The	next	time	the	test	compares	the	output	of	 	<App	/>		to	this.	If	App	changes,	you	get	an
error:

When	using	 	yarn	test		in	 	create-react-app		you	are	in	watch	mode,	and	from	there	you	can
press	 	w		and	show	more	options:

Watch	Usage

	›	Press	u	to	update	failing	snapshots.

	›	Press	p	to	filter	by	a	filename	regex	pattern.

	›	Press	t	to	filter	by	a	test	name	regex	pattern.

	›	Press	q	to	quit	watch	mode.

	›	Press	Enter	to	trigger	a	test	run.

Introduction	to	Jest

169

If	your	change	is	intended,	pressing	 	u		will	update	the	failing	snapshots,	and	make	the	test
pass.

You	can	also	update	the	snapshot	by	running	 	jest	-u		(or	 	jest	--updateSnapshot)	outside	of
watch	mode.

Introduction	to	Jest

170

Testing	React	Components
Test	your	first	React	component	using	Jest	and	`react-testing-library`

The	easiest	way	to	start	with	testing	React	components	is	doing	snapshot	testing,	a	testing
technique	that	lets	you	test	components	in	isolation.

If	you	are	familiar	with	testing	software,	it's	just	like	unit	testing	you	do	for	classes:	you	test
each	component	functionality.

I	assume	you	created	a	React	app	with	 	create-react-app	,	which	already	comes	with	Jest
installed,	the	testing	package	we'll	need.

Let's	start	with	a	simple	test.	CodeSandbox	is	a	great	environment	to	try	this	out.	Start	with	a
React	sandbox,	and	create	an	 	App.js		component	in	a	 	components		folder,	and	add	an
	App.test.js		file.

import	React	from	'react'

export	default	function	App()	{

		return	(

				<div	className="App">

						<h1>Hello	CodeSandbox</h1>

						<h2>Start	editing	to	see	some	magic	happen!</h2>

				</div>

)

}

Our	first	test	is	dumb:

test('First	test',	()	=>	{

		expect(true).toBeTruthy()

})

When	CodeSandbox	detects	test	files,	it	automatically	runs	them	for	you,	and	you	can	click	the
Tests	button	in	the	bottom	of	the	view	to	show	your	test	results:

Testing	React	Components

171

A	test	file	can	contain	multiple	tests:

Let's	do	something	a	bit	more	useful	now,	to	actually	test	a	React	component.	We	only	have
App	now,	which	is	not	doing	anything	really	useful,	so	let's	first	set	up	the	environment	with	a
little	application	with	more	functionality:	the	counter	app	we	built	previously.	If	you	skipped	it,
you	can	go	back	and	read	how	we	built	it,	but	for	easier	reference	I	add	it	here	again.

Testing	React	Components

172

It's	just	2	components:	App	and	Button.	Create	the	 	App.js		file:

import	React,	{	useState	}	from	'react'

import	Button	from	'./Button'

const	App	=	()	=>	{

		const	[count,	setCount]	=	useState(0)

		const	incrementCount	=	increment	=>	{

				setCount(count	+	increment)

		}

		return	(

				<div>

						<Button	increment={1}	onClickFunction={incrementCount}	/>

						<Button	increment={10}	onClickFunction={incrementCount}	/>

						<Button	increment={100}	onClickFunction={incrementCount}	/>

						<Button	increment={1000}	onClickFunction={incrementCount}	/>

						{count}

				</div>

)

}

export	default	App

and	the	 	Button.js		file:

import	React	from	'react'

const	Button	=	({	increment,	onClickFunction	})	=>	{

		const	handleClick	=	()	=>	{

				onClickFunction(increment)

		}

		return	<button	onClick={handleClick}>+{increment}</button>

}

export	default	Button

We	are	going	to	use	the	 	react-testing-library	,	which	is	a	great	help	as	it	allows	us	to	inspect
the	output	of	every	component	and	to	apply	events	on	them.	You	can	read	more	about	it	on
https://github.com/kentcdodds/react-testing-library	or	by	watching	this	video.

Let's	test	the	Button	component	first.

We	start	by	importing	 	render		and	 	fireEvent		from	 	react-testing-library	,	two	helpers.	The
first	lets	us	render	JSX.	The	second	lets	us	emit	events	on	a	component.

Create	a	 	Button.test.js		and	put	it	in	the	same	folder	as	 	Button.js	.

import	React	from	'react'

import	{	render,	fireEvent	}	from	'react-testing-library'

Testing	React	Components

173

https://github.com/kentcdodds/react-testing-library
https://www.youtube.com/watch?v=JKOwJUM4_RM

import	Button	from	'./Button'

Buttons	are	used	in	the	app	to	accept	a	click	event	and	then	they	call	a	function	passed	to	the
	onClickFunction		prop.	We	add	a	 	count		variable	and	we	create	a	function	that	increments	it:

let	count

const	incrementCount	=	increment	=>	{

		count	+=	increment

}

Now	off	to	the	actual	tests.	We	first	initialize	count	to	0,	and	we	render	a	 	+1		 	Button	
component	passing	a	 	1		to	 	increment		and	our	 	incrementCount		function	to	 	onClickFunction	.

Then	we	get	the	content	of	the	first	child	of	the	component,	and	we	check	it	outputs	 	+1	.

We	then	proceed	to	clicking	the	button,	and	we	check	that	the	count	got	from	0	to	1:

test('+1	Button	works',	()	=>	{

		count	=	0

		const	{	container	}	=	render(

				<Button	increment={1}	onClickFunction={incrementCount}	/>

)

		const	button	=	container.firstChild

		expect(button.textContent).toBe('+1')

		expect(count).toBe(0)

		fireEvent.click(button)

		expect(count).toBe(1)

})

Similarly	we	test	a	+100	button,	this	time	checking	the	output	is	 	+100		and	the	button	click
increments	the	count	of	100.

test('+100	Button	works',	()	=>	{

		count	=	0

		const	{	container	}	=	render(

				<Button	increment={100}	onClickFunction={incrementCount}	/>

)

		const	button	=	container.firstChild

		expect(button.textContent).toBe('+100')

		expect(count).toBe(0)

		fireEvent.click(button)

		expect(count).toBe(100)

})

Let's	test	the	App	component	now.	It	shows	4	buttons	and	the	result	in	the	page.	We	can
inspect	each	button	and	see	if	the	result	increases	when	we	click	them,	clicking	multiple	times
as	well:

Testing	React	Components

174

import	React	from	'react'

import	{	render,	fireEvent	}	from	'react-testing-library'

import	App	from	'./App'

test('App	works',	()	=>	{

		const	{	container	}	=	render(<App	/>)

		console.log(container)

		const	buttons	=	container.querySelectorAll('button')

		expect(buttons[0].textContent).toBe('+1')

		expect(buttons[1].textContent).toBe('+10')

		expect(buttons[2].textContent).toBe('+100')

		expect(buttons[3].textContent).toBe('+1000')

		const	result	=	container.querySelector('span')

		expect(result.textContent).toBe('0')

		fireEvent.click(buttons[0])

		expect(result.textContent).toBe('1')

		fireEvent.click(buttons[1])

		expect(result.textContent).toBe('11')

		fireEvent.click(buttons[2])

		expect(result.textContent).toBe('111')

		fireEvent.click(buttons[3])

		expect(result.textContent).toBe('1111')

		fireEvent.click(buttons[2])

		expect(result.textContent).toBe('1211')

		fireEvent.click(buttons[1])

		expect(result.textContent).toBe('1221')

		fireEvent.click(buttons[0])

		expect(result.textContent).toBe('1222')

})

Check	the	code	working	on	this	CodeSandbox:	https://codesandbox.io/s/pprl4y0wq

Testing	React	Components

175

https://codesandbox.io/s/pprl4y0wq

React	Router
React	Router	4	is	the	perfect	tool	to	link	together	the	URL	and	your	React
app.	React	Router	is	the	de-facto	React	routing	library,	and	it's	one	of	the
most	popular	projects	built	on	top	of	React.

This	tutorial	introduces	React	Router	4,	the	last	stable	version

React	Router	is	the	de-facto	React	routing	library,	and	it's	one	of	the	most	popular	projects
built	on	top	of	React.

React	at	its	core	is	a	very	simple	library,	and	it	does	not	dictate	anything	about	routing.

Routing	in	a	Single	Page	Application	is	the	way	to	introduce	some	features	to	navigating	the
app	through	links,	which	are	expected	in	normal	web	applications:

1.	 The	browser	should	change	the	URL	when	you	navigate	to	a	different	screen
2.	 Deep	linking	should	work:	if	you	point	the	browser	to	a	URL,	the	application	should

reconstruct	the	same	view	that	was	presented	when	the	URL	was	generated.
3.	 The	browser	back	(and	forward)	button	should	work	like	expected.

Routing	links	together	your	application	navigation	with	the	navigation	features	offered
by	the	browser:	the	address	bar	and	the	navigation	buttons.

React	Router	offers	a	way	to	write	your	code	so	that	it	will	show	certain	components	of
your	app	only	if	the	route	matches	what	you	define.

Installation

React	Router

176

With	npm:

npm	install	react-router-dom

With	Yarn:

yarn	add	react-router-dom

Types	of	routes
React	Router	provides	two	different	kind	of	routes:

	BrowserRouter	

	HashRouter	

One	builds	classic	URLs,	the	other	builds	URLs	with	the	hash:

https://application.com/dashboard			/*	BrowserRouter	*/

https://application.com/#/dashboard	/*	HashRouter				*/

Which	one	to	use	is	mainly	dictated	by	the	browsers	you	need	to	support.	 	BrowserRouter		uses
the	History	API,	which	is	relatively	recent,	and	not	supported	in	IE9	and	below.	If	you	don't
have	to	worry	about	older	browsers,	it's	the	recommended	choice.

Components
The	3	components	you	will	interact	the	most	when	working	with	React	Router	are:

	BrowserRouter	,	usually	aliased	as	 	Router	
	Link	

	Route	

	BrowserRouter		wraps	all	your	Route	components.

	Link		components	are	-	as	you	can	imagine	-	used	to	generate	links	to	your	routes

	Route		components	are	responsible	for	showing	-	or	hiding	-	the	components	they	contain.

BrowserRouter

React	Router

177

https://flaviocopes.com/npm/
https://flaviocopes.com/yarn/
https://flaviocopes.com/history-api/

Here's	a	simple	example	of	the	BrowserRouter	component.	You	import	it	from	react-router-
dom,	and	you	use	it	to	wrap	all	your	app:

import	React	from	'react'

import	ReactDOM	from	'react-dom'

import	{	BrowserRouter	as	Router	}	from	'react-router-dom'

ReactDOM.render(

		<Router>

						<div>

								<!--	-->

						</div>

		</Router>,

		document.getElementById('app')

)

A	BrowserRouter	component	can	only	have	one	child	element,	so	we	wrap	all	we're	going	to
add	in	a	 	div		element.

Link
The	Link	component	is	used	to	trigger	new	routes.	You	import	it	from	 	react-router-dom	,	and
you	can	add	the	Link	components	to	point	at	different	routes,	with	the	 	to		attribute:

import	React	from	'react'

import	ReactDOM	from	'react-dom'

import	{	BrowserRouter	as	Router,	Link	}	from	'react-router-dom'

ReactDOM.render(

		<Router>

						<div>

								<aside>

										<Link	to={`/dashboard`}>Dashboard</Link>

										<Link	to={`/about`}>About</Link>

								</aside>

								<!--	-->

						</div>

		</Router>,

		document.getElementById('app')

)

Route
Now	let's	add	the	Route	component	in	the	above	snippet	to	make	things	actually	work	as	we
want:

React	Router

178

import	React	from	'react'

import	ReactDOM	from	'react-dom'

import	{	BrowserRouter	as	Router,	Link,	Route	}	from	'react-router-dom'

const	Dashboard	=	()	=>	(

		<div>

				<h2>Dashboard</h2>

				...

		</div>

)

const	About	=	()	=>	(

		<div>

				<h2>About</h2>

				...

		</div>

)

ReactDOM.render(

		<Router>

				<div>

						<aside>

								<Link	to={`/`}>Dashboard</Link>

								<Link	to={`/about`}>About</Link>

						</aside>

						<main>

								<Route	exact	path="/"	component={Dashboard}	/>

								<Route	path="/about"	component={About}	/>

						</main>

				</div>

		</Router>,

		document.getElementById('app')

)

Check	this	example	on	Glitch:	https://flaviocopes-react-router-v4.glitch.me/

When	the	route	matches	 	/	,	the	application	shows	the	Dashboard	component.

When	the	route	is	changed	by	clicking	the	"About"	link	to	 	/about	,	the	Dashboard	component
is	removed	and	the	About	component	is	inserted	in	the	DOM.

Notice	the	 	exact		attribute.	Without	this,	 	path="/"		would	also	match	 	/about	,	since	 	/		is
contained	in	the	route.

Match	multiple	paths
You	can	have	a	route	respond	to	multiple	paths	simply	using	a	regex,	because	 	path		can	be	a
regular	expressions	string:

React	Router

179

https://flaviocopes-react-router-v4.glitch.me/

<Route	path="/(about|who)/"	component={Dashboard}	/>

Inline	rendering
Instead	of	specifying	a	 	component		property	on	 	Route	,	you	can	set	a	 	render		prop:

<Route

		path="/(about|who)/"

		render={()	=>	(

				<div>

						<h2>About</h2>

						...

				</div>

)}

/>

Match	dynamic	route	parameter
You	already	saw	how	to	use	static	routes	like

const	Posts	=	()	=>	(

		<div>

				<h2>Posts</h2>

				...

		</div>

)

//...

<Route	exact	path="/posts"	component={Posts}	/>

Here's	how	to	handle	dynamic	routes:

const	Post	=	({match})	=>	(

		<div>

				<h2>Post	#{match.params.id}</h2>

				...

		</div>

)

//...

<Route	exact	path="/post/:id"	component={Post}	/>

In	your	Route	component	you	can	lookup	the	dynamic	parameters	in	 	match.params	.

React	Router

180

	match		is	also	available	in	inline	rendered	routes,	and	this	is	especially	useful	in	this	case,
because	we	can	use	the	 	id		parameter	to	lookup	the	post	data	in	our	data	source	before
rendering	Post:

const	posts	=	[

		{	id:	1,	title:	'First',	content:	'Hello	world!'	},

		{	id:	2,	title:	'Second',	content:	'Hello	again!'	}

]

const	Post	=	({post})	=>	(

		<div>

				<h2>{post.title}</h2>

				{post.content}

		</div>

)

//...

<Route	exact	path="/post/:id"	render={({match})	=>	(

		<Post	post={posts.find(p	=>	p.id	===	match.params.id)}	/>

)}	/>

React	Router

181

Redux
Redux	is	a	state	manager	that's	usually	used	along	with	React,	but	it's	not
tied	to	that	library.	Learn	Redux	by	reading	this	simple	and	easy	to	follow
guide

Why	you	need	Redux
Redux	is	a	state	manager	that's	usually	used	along	with	React,	but	it's	not	tied	to	that	library	-
it	can	be	used	with	other	technologies	as	well,	but	we'll	stick	to	React	for	the	sake	of	the
explanation.

React	has	its	own	way	to	manage	state,	as	you	can	read	on	the	React	Beginner's	Guide,
where	I	introduce	how	you	can	manage	State	in	React.

Moving	the	state	up	in	the	tree	works	in	simple	cases,	but	in	a	complex	app	you	might	find	you
are	moving	almost	all	the	state	up,	and	then	down	using	props.

React	in	version	16.3.0	introduced	the	Context	API,	which	makes	Redux	redundant	for	the
use	case	of	accessing	the	state	from	different	parts	of	your	app,	so	consider	using	the	Context
API	instead	of	Redux,	unless	you	need	a	specific	feature	that	Redux	provides.

Redux	is	a	way	to	manage	an	application	state,	and	move	it	to	an	external	global	store.

There	are	a	few	concepts	to	grasp,	but	once	you	do,	Redux	is	a	very	simple	approach	to	the
problem.

Redux	is	very	popular	with	React	applications,	but	it's	in	no	way	unique	to	React:	there	are
bindings	for	nearly	any	popular	framework.	That	said,	I'll	make	some	examples	using	React	as
it	is	its	primary	use	case.

When	should	you	use	Redux?
Redux	is	ideal	for	medium	to	big	apps,	and	you	should	only	use	it	when	you	have	trouble
managing	the	state	with	the	default	state	management	of	React,	or	the	other	library	you	use.

Simple	apps	should	not	need	it	at	all	(and	there's	nothing	wrong	with	simple	apps).

Immutable	State	Tree

Redux

182

https://flaviocopes.com/react/
https://flaviocopes.com/react/#the-context-api

In	Redux,	the	whole	state	of	the	application	is	represented	by	one	JavaScript	object,	called
State	or	State	Tree.

We	call	it	Immutable	State	Tree	because	it	is	read	only:	it	can't	be	changed	directly.

It	can	only	be	changed	by	dispatching	an	Action.

Actions
An	Action	is	a	JavaScript	object	that	describes	a	change	in	a	minimal	way	(with	just	the
information	needed):

{

		type:	'CLICKED_SIDEBAR'

}

//	e.g.	with	more	data

{

		type:	'SELECTED_USER',

		userId:	232

}

The	only	requirement	of	an	action	object	is	having	a	 	type		property,	whose	value	is	usually	a
string.

Actions	types	should	be	constants

In	a	simple	app	an	action	type	can	be	defined	as	a	string,	as	I	did	in	the	example	in	the
previous	lesson.

When	the	app	grows	is	best	to	use	constants:

const	ADD_ITEM	=	'ADD_ITEM'

const	action	=	{	type:	ADD_ITEM,	title:	'Third	item'	}

and	to	separate	actions	in	their	own	files,	and	import	them

import	{	ADD_ITEM,	REMOVE_ITEM	}	from	'./actions'

Action	creators

Actions	Creators	are	functions	that	create	actions.

function	addItem(t)	{

Redux

183

https://flaviocopes.com/javascript/

		return	{

				type:	ADD_ITEM,

				title:	t

		}

}

You	usually	run	action	creators	in	combination	with	triggering	the	dispatcher:

dispatch(addItem('Milk'))

or	by	defining	an	action	dispatcher	function:

const	dispatchAddItem	=	i	=>	dispatch(addItem(i))

dispatchAddItem('Milk')

Reducers
When	an	action	is	fired,	something	must	happen,	the	state	of	the	application	must	change.

This	is	the	job	of	reducers.

What	is	a	reducer

A	reducer	is	a	pure	function	that	calculates	the	next	State	Tree	based	on	the	previous	State
Tree,	and	the	action	dispatched.

;(currentState,	action)	=>	newState

A	pure	function	takes	an	input	and	returns	an	output	without	changing	the	input	or	anything
else.	Thus,	a	reducer	returns	a	completely	new	state	tree	object	that	substitutes	the	previous
one.

What	a	reducer	should	not	do

A	reducer	should	be	a	pure	function,	so	it	should:

never	mutate	its	arguments
never	mutate	the	state,	but	instead	create	a	new	one	with	 	Object.assign({},	...)	
never	generate	side-effects	(no	API	calls	changing	anything)
never	call	non-pure	functions,	functions	that	change	their	output	based	on	factors	other
than	their	input	(e.g.	 	Date.now()		or	 	Math.random())

Redux

184

There	is	no	reinforcement,	but	you	should	stick	to	the	rules.

Multiple	reducers

Since	the	state	of	a	complex	app	could	be	really	wide,	there	is	not	a	single	reducer,	but	many
reducers	for	any	kind	of	action.

A	simulation	of	a	reducer

At	its	core,	Redux	can	be	simplified	with	this	simple	model:

The	state

{

		list:	[

				{	title:	"First	item"	},

				{	title:	"Second	item"	},

],

		title:	'Groceries	list'

}

A	list	of	actions

{	type:	'ADD_ITEM',	title:	'Third	item'	}

{	type:	'REMOVE_ITEM',	index:	1	}

{	type:	'CHANGE_LIST_TITLE',	title:	'Road	trip	list'	}

A	reducer	for	every	part	of	the	state

const	title	=	(state	=	'',	action)	=>	{

				if	(action.type	===	'CHANGE_LIST_TITLE')	{

						return	action.title

				}	else	{

						return	state

				}

}

const	list	=	(state	=	[],	action)	=>	{

		switch	(action.type)	{

				case	'ADD_ITEM':

						return	state.concat([{	title:	action.title	}])

				case	'REMOVE_ITEM':

						return	state.map((item,	index)	=>

								action.index	===	index

										?	{	title:	item.title	}

										:	item

Redux

185

				default:

						return	state

		}

}

A	reducer	for	the	whole	state

const	listManager	=	(state	=	{},	action)	=>	{

		return	{

				title:	title(state.title,	action),

				list:	list(state.list,	action)

		}

}

The	Store
The	Store	is	an	object	that:

holds	the	state	of	the	app
exposes	the	state	via	 	getState()	
allows	us	to	update	the	state	via	 	dispatch()	
allows	us	to	(un)register	a	state	change	listener	using	 	subscribe()	

A	store	is	unique	in	the	app.

Here	is	how	a	store	for	the	listManager	app	is	created:

import	{	createStore	}	from	'redux'

import	listManager	from	'./reducers'

let	store	=	createStore(listManager)

Can	I	initialize	the	store	with	server-side	data?

Sure,	just	pass	a	starting	state:

let	store	=	createStore(listManager,	preexistingState)

Getting	the	state

store.getState()

Update	the	state

Redux

186

store.dispatch(addItem('Something'))

Listen	to	state	changes

const	unsubscribe	=	store.subscribe(()	=>

		const	newState	=	store.getState()

)

unsubscribe()

Data	Flow
Data	flow	in	Redux	is	always	unidirectional.

You	call	 	dispatch()		on	the	Store,	passing	an	Action.

The	Store	takes	care	of	passing	the	Action	to	the	Reducer,	generating	the	next	State.

The	Store	updates	the	State	and	alerts	all	the	Listeners.

Redux

187

Next.js
Next.js	is	a	very	popular	Node.js	framework	which	enables	easy	server-side
React	rendering,	and	provides	many	other	amazing	features

Working	on	a	modern	JavaScript	application	powered	by	React	is	awesome	until	you	realize
that	there	are	a	couple	problems	related	to	rendering	all	the	content	on	the	client-side.

First,	the	page	takes	longer	to	the	become	visible	to	the	user,	because	before	the	content
loads,	all	the	JavaScript	must	load,	and	your	application	needs	to	run	to	determine	what	to
show	on	the	page.

Second,	if	you	are	building	a	publicly	available	website,	you	have	a	content	SEO	issue.	Search
engines	are	getting	better	at	running	and	indexing	JavaScript	apps,	but	it's	much	better	if	we
can	send	them	content	instead	of	letting	them	figure	it	out.

The	solution	to	both	of	those	problems	is	server	rendering,	also	called	static	pre-rendering.

Next.js	is	one	React	framework	to	do	all	of	this	in	a	very	simple	way,	but	it's	not	limited	to	this.
It's	advertised	by	its	creators	as	a	zero-configuration,	single-command	toolchain	for	React
apps.

It	provides	a	common	structure	that	allows	you	to	easily	build	a	frontend	React	application,
and	transparently	handle	server-side	rendering	for	you.

Next.js

188

https://flaviocopes.com/javascript/
https://flaviocopes.com/react/

Main	features
Here	is	a	non-exhaustive	list	of	the	main	Next.js	features:

Hot	Code	Reloading:	Next.js	reloads	the	page	when	it	detects	any	change	saved	to	disk.
Automatic	Routing:	any	URL	is	mapped	to	the	filesystem,	to	files	put	in	the	 	pages	
folder,	and	you	don't	need	any	configuration	(you	have	customization	options	of	course).
Single	File	Components:	using	styled-jsx,	completely	integrated	as	built	by	the	same
team,	it's	trivial	to	add	styles	scoped	to	the	component.
Server	Rendering:	you	can	(optionally)	render	React	components	on	the	server	side,
before	sending	the	HTML	to	the	client.
Ecosystem	Compatibility:	Next.js	plays	well	with	the	rest	of	the	JavaScript,	Node	and
React	ecosystem.
Automatic	Code	Splitting:	pages	are	rendered	with	just	the	libraries	and	JavaScript	that
they	need,	no	more.
Prefetching:	the	 	Link		component,	used	to	link	together	different	pages,	supports	a
	prefetch		prop	which	automatically	prefetches	page	resources	(including	code	missing
due	to	code	splitting)	in	the	background.
Dynamic	Components:	you	can	import	JavaScript	modules	and	React	Components
dynamically	(https://github.com/zeit/next.js#dynamic-import).
Static	Exports:	using	the	 	next	export		command,	Next.js	allows	you	to	export	a	fully
static	site	from	your	app.

Installation
Next.js	supports	all	the	major	platforms:	Linux,	macOS,	Windows.

A	Next.js	project	is	started	easily	with	npm:

npm	install	next	react	react-dom

or	with	Yarn:

yarn	add	next	react	react-dom

Getting	started
Create	a	 	package.json		file	with	this	content:

Next.js

189

https://github.com/zeit/styled-jsx
https://github.com/zeit/next.js#dynamic-import
https://flaviocopes.com/npm/
https://flaviocopes.com/yarn/

{

		"scripts":	{

				"dev":	"next"

		}

}

If	you	run	this	command	now:

npm	run	dev

the	script	will	raise	an	error	complaining	about	not	finding	the	 	pages		folder.	This	is	the	only
thing	that	Next.js	requires	to	run.

Create	an	empty	 	pages		folder,	and	run	the	command	again,	and	Next.js	will	start	up	a	server
on	 	localhost:3000	.

If	you	go	to	that	URL	now,	you'll	be	greeted	by	a	friendly	404	page,	with	a	nice	clean	design.

Next.js	handles	other	error	types	as	well,	like	500	errors	for	example.

Create	a	page
In	the	 	pages		folder	create	an	 	index.js		file	with	a	simple	React	functional	component:

export	default	()	=>	(

		<div>

				<p>Hello	World!</p>

		</div>

)

If	you	visit	 	localhost:3000	,	this	component	will	automatically	be	rendered.

Next.js

190

Why	is	this	so	simple?

Next.js	uses	a	declarative	pages	structure,	which	is	based	on	the	filesystem	structure.

Simply	put,	pages	are	inside	a	 	pages		folder,	and	the	page	URL	is	determined	by	the	page	file
name.	The	filesystem	is	the	pages	API.

Server-side	rendering
Open	the	page	source,	 	View	->	Developer	->	View	Source		with	Chrome.

As	you	can	see,	the	HTML	generated	by	the	component	is	sent	directly	in	the	page	source.	It's
not	rendered	client-side,	but	instead	it's	rendered	on	the	server.

The	Next.js	team	wanted	to	create	a	developer	experience	for	server	rendered	pages	similar
to	the	one	you	get	when	creating	a	basic	PHP	project,	where	you	simply	drop	PHP	files	and
you	call	them,	and	they	show	up	as	pages.	Internally	of	course	it's	all	very	different,	but	the
apparent	ease	of	use	is	clear.

Add	a	second	page
Let's	create	another	page,	in	 	pages/contact.js	

export	default	()	=>	(

		<div>

				<p>

						Contact	us!

				</p>

		</div>

)

If	you	point	your	browser	to	 	localhost:3000/contact		this	page	will	be	rendered.	As	you	can
see,	also	this	page	is	server	rendered.

Hot	reloading
Note	how	you	did	not	have	to	restart	the	 	npm		process	to	load	the	second	page.	Next.js	does
this	for	you	under	the	hood.

Client	rendering

Next.js

191

Server	rendering	is	very	convenient	in	your	first	page	load,	for	all	the	reasons	we	saw	above,
but	when	it	comes	to	navigating	inside	the	website,	client-side	rendering	is	key	to	speeding	up
the	page	load	and	improving	the	user	experience.

Next.js	provides	a	 	Link		component	you	can	use	to	build	links.	Try	linking	the	two	pages
above.

Change	 	index.js		to	this	code:

import	Link	from	'next/link'

export	default	()	=>	(

		<div>

				<p>Hello	World!</p>

				<Link	href="/contact">

						<a>Contact	me!

				</Link>

		</div>

)

Now	go	back	to	the	browser	and	try	this	link.	As	you	can	see,	the	Contact	page	loads
immediately,	without	a	page	refresh.

This	is	client-side	navigation	working	correctly,	with	complete	support	for	the	History	API,
which	means	your	users	back	button	won't	break.

If	you	now	 	cmd-click		the	link,	the	same	Contact	page	will	open	in	a	new	tab,	now	server
rendered.

Dynamic	pages
A	good	use	case	for	Next.js	is	a	blog,	as	it's	something	that	all	developers	know	how	it	works,
and	it's	a	good	fit	for	a	simple	example	of	how	to	handle	dynamic	pages.

A	dynamic	page	is	a	page	that	has	no	fixed	content,	but	instead	display	some	data	based	on
some	parameters.

Change	 	index.js		to

import	Link	from	'next/link'

const	Post	=	props	=>	(

		

				<Link	href={`/post?title=${props.title}`}>

						<a>{props.title}

				</Link>

		

)

Next.js

192

https://flaviocopes.com/history-api/

export	default	()	=>	(

		<div>

				<h2>My	blog</h2>

				

						

								<Post	title="Yet	another	post"	/>

								<Post	title="Second	post"	/>

								<Post	title="Hello,	world!"	/>

						

				

		</div>

)

This	will	create	a	series	of	posts	and	will	fill	the	title	query	parameter	with	the	post	title:

Now	create	a	 	post.js		file	in	the	 	pages		folder,	and	add:

export	default	props	=>	<h1>{props.url.query.title}</h1>

Now	clicking	a	single	post	will	render	the	post	title	in	a	 	h1		tag:

You	can	use	clean	URLs	without	query	parameters.	The	Next.js	Link	component	helps	us	by
accepting	an	 	as		attribute,	which	you	can	use	to	pass	a	slug:

Next.js

193

import	Link	from	'next/link'

const	Post	=	props	=>	(

		

				<Link	as={`/${props.slug}`}	href={`/post?title=${props.title}`}>

						<a>{props.title}

				</Link>

		

)

export	default	()	=>	(

		<div>

				<h2>My	blog</h2>

				

						

								<Post	slug="yet-another-post"	title="Yet	another	post"	/>

								<Post	slug="second-post"	title="Second	post"	/>

								<Post	slug="hello-world"	title="Hello,	world!"	/>

						

				

		</div>

)

CSS-in-JS
Next.js	by	default	provides	support	for	styled-jsx,	which	is	a	CSS-in-JS	solution	provided	by
the	same	development	team,	but	you	can	use	whatever	library	you	prefer,	like	Styled
Components.

Example:

export	default	()	=>	(

		<div>

				<p>

						Contact	us!

				</p>

				<style	jsx>{`

						p	{

								font-family:	'Courier	New';

						}

						a	{

								text-decoration:	none;

								color:	black;

						}

						a:hover	{

								opacity:	0.8;

						}

				`}</style>

		</div>

)

Next.js

194

https://github.com/zeit/styled-jsx
https://flaviocopes.com/styled-components/

Styles	are	scoped	to	the	component,	but	you	can	also	edit	global	styles	adding	 	global		to	the
	style		element:

export	default	()	=>	(

		<div>

				<p>

						Contact	us!

				</p>

				<style	jsx	global>{`

						body	{

								font-family:	'Benton	Sans',	'Helvetica	Neue';

								margin:	2em;

						}

						h2	{

								font-style:	italic;

								color:	#373fff;

						}

				`}</style>

		</div>

)

Exporting	a	static	site
A	Next.js	application	can	be	easily	exported	as	a	static	site,	which	can	be	deployed	on	one	of
the	super	fast	static	site	hosts,	like	Netlify	or	Firebase	Hosting,	without	the	need	to	set	up	a
Node	environment.

The	process	requires	you	to	declare	the	URLs	that	compose	the	site,	but	it's	a	straightforward
process.

Deploying
Creating	a	production-ready	copy	of	the	application,	without	source	maps	or	other
development	tooling	that	aren't	needed	in	the	final	build,	is	easy.

At	the	beginning	of	this	tutorial	you	created	a	 	package.json		file	with	this	content:

{

		"scripts":	{

				"dev":	"next"

		}

}

which	was	the	way	to	start	up	a	development	server	using	 	npm	run	dev	.

Now	just	add	the	following	content	to	 	package.json		instead:

Next.js

195

https://flaviocopes.com/netlify/
https://flaviocopes.com/firebase-hosting/
https://github.com/zeit/next.js/#static-html-export

{

		"scripts":	{

				"dev":	"next",

				"build":	"next	build",

				"start":	"next	start"

		}

}

and	prepare	your	app	by	running	 	npm	run	build		and	 	npm	run	start	.

Now
The	company	behind	Next.js	provides	an	awesome	hosting	service	for	Node.js	applications,
called	Now.

Of	course	they	integrate	both	their	products	so	you	can	deploy	Next.js	apps	seamlessly,	once
you	have	Now	installed,	by	running	the	 	now		command	in	the	application	folder.

Behind	the	scenes	Now	sets	up	a	server	for	you,	and	you	don't	need	to	worry	about	anything,
just	wait	for	your	application	URL	to	be	ready.

Zones
You	can	set	up	multiple	Next.js	instances	to	listen	to	different	URLs,	yet	the	application	to	an
outside	user	will	simply	look	like	it's	being	powered	by	a	single	server:
https://github.com/zeit/next.js/#multi-zones

Plugins
Next.js	has	a	list	of	plugins	at	https://github.com/zeit/next-plugins

Starter	kit	on	Glitch
If	you're	looking	to	experiment,	I	recommend	Glitch.	Check	out	my	Next.js	Glitch	Starter	Kit.

Read	more	on	Next.js
I	can't	possibly	describe	every	feature	of	this	great	framework,	and	the	main	place	to	read
more	about	Next.js	is	the	project	readme	on	GitHub.

Next.js

196

https://zeit.co/now
https://zeit.co/download
https://github.com/zeit/next.js/#multi-zones
https://github.com/zeit/next-plugins
https://glitch.com/edit/#!/flavio-starter-nextjs
https://github.com/zeit/next.js/blob/canary/readme.md

Next.js

197

Gatsby
Gatsby	is	a	platform	for	building	apps	and	websites	using	React

Gatsby	is	a	platform	for	building	apps	and	websites	using	React.

It	is	one	of	the	tools	that	allow	you	to	build	on	a	set	of	technologies	and	practices	collectively
known	as	JAMstack.

Gatsby	is	one	of	the	cool	kids	in	the	Frontend	Development	space	right	now.	Why?	I	think	the
reasons	are:

the	explosion	of	the	JAMstack	approach	to	building	Web	Apps	and	Web	Sites
the	rapid	adoption	of	the	Progressive	Web	Apps	technology	in	the	industry,	which	is	one
of	the	key	features	of	Gatsby
it's	built	in	React	and	GraphQL,	which	are	two	very	popular	and	rising	technologies
it's	really	powerful
it's	fast
the	documentation	is	great
the	network	effect	(people	use	it,	create	sites,	make	tutorials,	people	know	more	about	it,
creating	a	cycle)
everything	is	JavaScript	(no	need	to	learn	a	new	templating	language)
it	hides	the	complexity,	in	the	beginning,	but	allows	us	access	into	every	step	to	customize

All	those	are	great	points,	and	Gatsby	is	definitely	worth	a	look.

How	does	it	work?
With	Gatsby,	your	applications	are	built	using	React	components.

Gatsby

198

https://flaviocopes.com/jamstack/
https://flaviocopes.com/progressive-web-apps/
https://flaviocopes.com/react/
https://flaviocopes.com/graphql/

The	content	you'll	render	in	a	site	is	generally	written	using	Markdown,	but	you	can	use	any
kind	of	data	source,	like	an	headless	CMS	or	a	web	service	like	Contentful.

Gatsby	builds	the	site,	and	it's	compiled	to	static	HTML	which	can	be	deployed	on	any	Web
Server	you	want,	like	Netlify,	AWS	S3,	GitHub	Pages,	regular	hosting	providers,	PAAS	and
more.	All	you	need	is	a	place	that	serves	plain	HTTP	pages	and	your	assets	to	the	client.

I	mentioned	Progressive	Web	Apps	in	the	list.	Gatsby	automatically	generates	your	site	as	a
PWA,	with	a	service	worker	that	speeds	up	page	loading	and	resource	caching.

You	can	enhance	the	functionality	of	Gatsby	via	plugins.

Installation
You	can	install	Gatsby	by	simply	running	this	in	your	terminal:

npm	install	-g	gatsby-cli

This	installs	the	 	gatsby		CLI	utility.

(when	a	new	version	is	out,	update	it	by	calling	this	command	again)

You	create	a	new	"Hello	World"	site	by	running

gatsby	new	mysite	https://github.com/gatsbyjs/gatsby-starter-hello-world

This	command	creates	a	brand	new	Gatsby	site	in	the	 	mysite		folder,	using	the	starter
available	at	https://github.com/gatsbyjs/gatsby-starter-hello-world.

Gatsby

199

https://flaviocopes.com/netlify/
https://flaviocopes.com/macos-terminal/
https://github.com/gatsbyjs/gatsby-starter-hello-world

A	starter	is	a	sample	site	that	you	can	build	upon.	Another	common	starter	is	 	default	,
available	at	https://github.com/gatsbyjs/gatsby-starter-default.

Here	you	can	find	a	list	of	all	the	starters	you	can	use

Running	the	Gatsby	site
After	the	terminal	has	finished	installing	the	starter,	you	can	run	the	website	by	calling

cd	mysite

gatsby	develop

which	will	start	up	a	new	Web	Server	and	serve	the	site	on	port	8000	on	localhost.

Gatsby

200

https://github.com/gatsbyjs/gatsby-starter-default
https://www.gatsbyjs.org/docs/gatsby-starters/

And	here	is	our	Hello	World	starter	in	action:

Gatsby

201

Inspecting	the	site
If	you	open	the	site	you	created	with	your	favorite	code	editor	(I	use	VS	Code),	you'll	find	there
are	3	folders:

	.cache	,	an	hidden	folder	that	contains	the	Gatsby	internals,	nothing	you	should	change
right	now
	public	,	which	contains	the	resulting	website	once	you	build	it
	src		contains	the	React	components,	in	this	case	just	the	 	index		component
	static		which	will	contain	the	static	resources	like	CSS	and	images

Gatsby

202

https://flaviocopes.com/vscode/

Now,	making	a	simple	change	to	the	default	page	is	easy,	just	open	 	src/pages/index.js		and
change	"Hello	world!"	to	something	else,	and	save.	The	browser	should	instantly	hot	reload
the	component	(which	means	the	page	does	not	actually	refresh,	but	the	content	changes	-	a
trick	made	possible	by	the	underlying	technology).

To	add	a	second	page,	just	create	another	.js	file	in	this	folder,	with	the	same	content	of
	index.js		(tweak	the	content)	and	save	it.

For	example	I	created	a	 	second.js		file	with	this	content:

import	React	from	'react'

export	default	()	=>	<div>Second	page!</div>

and	I	opened	the	browser	to	http://localhost:8000/second:

Gatsby

203

http://localhost:8000/second

Linking	pages
You	can	link	those	pages	by	importing	a	Gatsby-provided	React	component	called	 	Link	:

import	{	Link	}	from	"gatsby"

and	using	it	in	your	component	JSX:

<Link	to="/second/">Second</Link>

Adding	CSS
You	can	import	any	CSS	file	using	a	JavaScript	import:

import	'./index.css'

You	can	use	React	styling:

<p	style={{

				margin:	'0	auto',

				padding:	'20px'

Gatsby

204

https://flaviocopes.com/jsx/

		}}>Hello	world</p>

Using	plugins
Gatsby	provides	lots	of	things	out	of	the	box,	but	many	other	functionalities	are	provided	by
plugins.

There	are	3	kind	of	plugins:

source	plugins	fetch	data	from	a	source.	Create	nodes	that	can	be	then	filtered	by
transformer	plugins
transformer	plugins	transform	the	data	provided	by	source	plugins	into	something
Gatsby	can	use
functional	plugins	implement	some	kind	of	functionality,	like	adding	sitemap	support	or
more

Some	commonly	used	plugins	are:

gatsby-plugin-react-helmet	which	allows	to	edit	the	 	head		tag	content
gatsby-plugin-catch-links	which	uses	the	History	API	to	prevent	the	browser	reloading	the
page	when	a	link	is	clicked,	loading	the	new	content	using	AJAX	instead

A	Gatsby	plugin	is	installed	in	2	steps.	First	you	install	it	using	 	npm	,	then	you	add	it	to	the
Gatsby	configuration	in	 	gatsby-config.js	.

For	example	you	can	install	the	Catch	Links	plugin:

npm	install	gatsby-plugin-catch-links

In	 	gatsby-config.js		(create	it	if	you	don't	have	it,	in	the	website	root	folder),	add	the	plugin	to
the	 	plugins		exported	array:

module.exports	=	{

		plugins:	['gatsby-plugin-catch-links']

}

That's	it,	the	plugin	will	now	do	its	job.

Building	the	static	website
Once	you	are	done	tweaking	the	site	and	you	want	to	generate	the	production	static	site,	you
will	call

Gatsby

205

https://www.gatsbyjs.org/plugins/
https://www.gatsbyjs.org/packages/gatsby-plugin-react-helmet/
https://www.gatsbyjs.org/packages/gatsby-plugin-catch-links/
https://flaviocopes.com/history-api/

gatsby	build

At	this	point	you	can	check	that	it	all	works	as	you	expect	by	starting	a	local	Web	Server	using

gatsby	serve

which	will	render	the	site	as	close	as	possible	to	how	you	will	see	it	in	production.

Deployment
Once	you	build	the	site	using	 	gatsby	build	,	all	you	need	to	do	is	to	deploy	the	result
contained	in	the	 	public		folder.

Depending	on	the	solution	you	choose,	you'll	need	different	steps	here,	but	generally	you'll
push	to	a	Git	repository	and	let	the	Git	post-commit	hooks	do	the	job	of	deploying.

Here	are	some	great	guides	for	some	popular	hosting	platforms.

Gatsby

206

https://www.gatsbyjs.org/docs/deploying-and-hosting/

Wrapping	up
I	hope	the	book	helped	you	get	started	with	React,	and	maybe	it	gave	you	a	head	start	in
exploring	some	of	the	most	advanced	aspects	of	React	programming.

That's	my	hope,	at	least.

I	will	soon	release	a	practical	online	course	to	apply	those	concepts.	Stay	tuned.

Wrapping	up

207

	Introduction
	Introduction to React
	How to install React
	How much JS you need to use React
	Variables
	Arrow functions
	Work with objects and arrays using Rest and Spread
	Object and array destructuring
	Template literals
	Classes
	Promises
	Async/Await
	ES Modules
	Single Page Apps
	Declarative
	Immutability
	Purity
	Composition
	The Virtual DOM
	Unidirectional Data Flow
	JSX
	Components
	State
	Props
	Presentational vs container components
	State vs Props
	PropTypes
	Fragment
	Events
	Lifecycle events
	Handling forms
	Reference a DOM element
	Server side rendering
	Context API
	Higher-order components
	Render Props
	Hooks
	Code splitting
	CSS in React
	SASS with React
	Styled Components
	Babel
	Webpack
	Prettier
	Introduction to Jest
	Testing React Components
	React Router
	Redux
	Next.js
	Gatsby

	Wrapping up

