
www.allitebooks.com

http:///
http://www.allitebooks.org

Google Visualization API

Essentials

Make sense of your data: make it visual with the

Google Visualization API

Traci L. Ruthkoski

BIRMINGHAM - MUMBAI

www.allitebooks.com

http:///
http://www.allitebooks.org

Google Visualization API Essentials

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2013

Production Reference: 1080413

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-436-0

www.packtpub.com

Cover Image by Faiz Fattohi (faizfattohi@gmail.com)

www.allitebooks.com

http:///
http://www.allitebooks.org

Credits

Author

Traci L. Ruthkoski

Reviewers

Louis-Guillaume

Carrier-Bédard

Christophe Van Gysel

Thomas Schäfer

Acquisition Editor

Usha Iyer

Lead Technical Editor

Arun Nadar

Technical Editors

Prasad Dalvi

Kirti Pujari

Project Coordinator

Amey Sawant

Proofreader

Kevin McGowan

Indexer

Rekha Nair

Graphics

Aditi Gajjar

Production Coordinator

Arvindkumar Gupta

Cover Work

Arvindkumar Gupta

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Author

Traci L. Ruthkoski is from an eclectic background in computation, statistics,
media technology, and business. Traci is always looking for the latest challenges
in technology. Having worked as an IT professional in both clinical and medical
research settings, she has built High Performance Computing clusters from
hardware to software application. More recently, Traci has been enabling academic
research advancement through computing and cyber infrastructure in the cloud
domain. She continues to work at the University of Michigan, now holding several
roles supporting the overall advancement of Research Cyber Infrastructure and
Information Technology at the University. Traci has published academic work in the
IEEE CloudCom 2010 proceedings as well as maintaining a blog/tutorial repository
for cloud computing tools and trends.

I would like to thank my wife, Molly M. Nuzzo, for her constant
encouragement. Thanks also go to my family, Tom, LuAnn,
and Jason for the camaraderie that comes with being a family
of IT professionals.

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Reviewers

Louis-Guillaume Carrier-Bédard has been working for the last 9 years with
Oracle technologies. Developments in the private and public sectors have helped
him to build a solid background and renown in the Oracle APEX community.
Louis-Guillaume received an honorable mention from Google Security for reporting
security vulnerabilities; he appears on Google's Hall of Fame.

Louis-Guillaume is Oracle APEX Development Director at SIE-Solutions and CTO
of newMarket. He is an adventurer who seeks new challenges to quench his thirst
for knowledge.

He has worked as Technical Reviewer of the book Oracle Application Express Forms
Converter (http://www.packtpub.com/oracle-application-express-forms-
converter/book).

I would like to say thank you to Michelle, the woman with whom
I share my life. Thank you Bruno-Pierre, Stéphane, and Éric for the
fun we had working on many projects.

Christophe Van Gysel (http://chri.stophr.be) is a Computer Scientist
active in the Drupal community where he maintains and contributes to several
projects. Beyond Drupal, he is also experienced in Distributed Systems and Machine
Learning. In his spare time, Christophe specializes in Web Security research. He has
participated in various white hat hacker programs.

He is the author and maintainer of Visualization API (http://drupal.org/
project/visualization), an actively used module for Drupal that provides a
robust and easy accessible way to visualize data. It supports, but is not limited to,
the Google Visualization API.

www.allitebooks.com

http://drupal.org/project/visualization
http://drupal.org/project/visualization
http:///
http://www.allitebooks.org

Thomas Schäfer, who is a Former German Air Force Captain (academic degree),
lives in Erftstadt, small city near Cologne, Germany.

He is an IT Pro since 2003. As a developer at Questback GmbH (Enterprise Feedback
Software Company), he has worked on PHP, Javascript, MySQL, jQuery, and
MooTools. He is also proicient with other technologies such as VisualBasic, C#,
JAVA, Ruby, Python, PostgresSQL, NoSQL, ExtJS, GoogleVis API, and NodeJS.
He has also worked in CSS Responsive Design using Compass.

He is 46 years old, married, and has two children.

www.allitebooks.com

http:///
http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub iles available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print and bookmark content

• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

This book is dedicated to my mentor, Daniel E. Atkins III, the father of
cyberinfrastructure and a lover of all things Google.

www.allitebooks.com

http:///
http://www.allitebooks.org

http:///

Table of Contents

Preface 1

Chapter 1: Tools and Setup 7

Knowledge prerequisites 7

Skill summary 8

System requirements 8

Interacting with Google Visualization Tools 8

Charts for Google Spreadsheets 9
Getting started – creating a new spreadsheet 9

Fusion Tables 11
Getting started – creating a new Fusion Table 11

Scripting code 12

Code Playground 13
Debugging tools 15

Console 15

Gadget Editor 16

Summary 18
Chapter 2: Anatomy of a Visualization 19

Common structure 19
Apps Script 21

Forms 21

Framework 22

Fusion Tables 23

Scripting code 24
HTML Framework 25

Technique options 25

Categories of visualizations 26

Static 27

http:///

Table of Contents

[ii]

Interactive 27
Dashboards 27

Events 29

Time-based charts 31

Summary 33
Chapter 3: Spreadsheets, Charts, and Fusion Tables 35

Spreadsheets 36
Creating a chart 36

The Chart Editor 38
Chart types 39

Reopening the Chart Editor 40

Chart styles 40

Using Apps Script 41
Framework 41

Scripting console 42

Fusion Tables 46

Importing or creating data 46

Data management 48
Editing rows 48

Modifying columns 49

Adding a formula 50

Views 50

New look in Fusion Tables 51

Merging tables 52

Creating a visualization 52

Non-map visualizations 53
A simple line graph 53

Experimental charts 54

Mapping features 55
Geocoding 55

Cell formatting 60

Summary 64
Chapter 4: Basic Charts 65

Programming concepts 66
Variables 66

Number 67

Boolean 67

String 67

Array 68

Equation 69

Functions 70

Classes (and objects) 71

Libraries 71
Commenting 72

Spacing/format 73

http:///

Table of Contents

[iii]

Visualization API common Framework 73
Load API modules 73

Apps Script Wrapper 80

A basic visualization 82

Code Playground 83

Apps Script 86

Summary 88
Chapter 5: Formatting Charts 89

Static 90
Spreadsheets 90

Fusion Tables 90
Chart Editor 92

Filters 92

API 93
Colors and fonts: Inline 93

Colors and fonts: Cascading Style Sheets 95

Views 96

DataTable formatters 99

Dynamic or interactive 106
Animated transitions 106

Dashboards and controls 107

Chart Editor for users 107

Summary 107
Chapter 6: Data Manipulation and Sources 109

Preparing data 110
Google Reine – importing data 110
Google Reine – Facets 111
Google Reine – clean and supplement 112
Google Reine – export options 114

Architecture and data modiication 115
Protocol 115

Visualization API data capabilities 117
Group and join 118

Spreadsheets 124
Forms 124

API 125

Fusion Tables – API 126

Data sources for Charts 126

Spreadsheets 126
Preparation 126

Query 129

http:///

Table of Contents

[iv]

Fusion Tables 132
Preparation 132

Query 133

Chart Tools Query Language 138

Build your own data source 139

Summary 140
Chapter 7: Dashboards, Controls, and Events 141

Architecture 142

HTML framework 142

API framework 143
ControlWrapper 144

ChartWrapper 144

Dashboards 149
Controls 150

StringFilter 150

NumberRangeFilter 156

CategoryFilter 158

ChartRangeFilter 160

Controls with dependencies 161

Programmatic control 163
Global variables 165

Transition animation 170
Programmatic switch 173

User interface toggle 173
Create button 174

Button behavior 174

Chart editor for users 176

Summary 179
Chapter 8: Advanced Charts 181

Time-based charts 181
Motion chart 182

Spreadsheets 186

Code 188

Annotated timeline 190
Spreadsheets 191

Code 192

Maps 195
geochart versus geomap 195

The region option 196

The marker option 196

geochart 197
The ISO 3166 standard 197

Spreadsheets 198

Code 199

http:///

Table of Contents

[v]

geomap 201
Code 202

Map API 203

Your own visualization 203
Summary 205

Chapter 9: Publishing Options 207
Sharing 207

Private sharing 208

Public sharing 211

Publishing 211

Spreadsheets 212

Fusion Tables 214

Apps Script 215
Publishing basics 215

Embedded in a Spreadsheet 217

App Engine 217
App Engine Launcher and SDK 217

Eclipse plugin 218

Integrated Development Environments in the Cloud (IDEs) 220

More APIs 222

A word on security 223
Summary 224

Index 225

http:///

http:///

Preface
Visualization is a key component of analytics in both public and private
organizations. The ability to view and even manipulate data visually is quickly
becoming commonplace. Chart Tools, also known as the Visualization API, are
powerful tools with low barriers to entry and are capable of impressive results with
very little development time. Learning the Google Visualization API is also a helpful
introduction to the larger collection of Google APIs.

What this book covers
Chapter 1, Tools and Setup, shows an overview of the various tools that can be used
to create visualizations, from beginner to advanced levels. The purpose here is to
explain the multiple approaches of using the API through different tools.

Chapter 2, Anatomy of a Visualization, describes the common high-level architecture
that covers all methods of working with the Visualization API. This chapter also
discusses the integrated nature of using the Visualization, Maps, and Fusion
Tools APIs.

Chapter 3, Spreadsheet Charts and Fusion Tables, discusses becoming familiar with
Fusion Tables and Google Spreadsheets user interfaces for chart creation and offers
an easy to understand foundation from which advanced examples can be built.

Chapter 4, Basic Charts, dives deeper into the coding methods for the Visualization
API. The examples are illustrated from beginner to advanced levels through
examining each in Spreadsheets, Fusion Tables, and inally the code.

Chapter 5, Formatting Charts, shows formatting and style options for both tables
and charts.

http:///

Preface

[2]

Chapter 6, Data Manipulation and Sources, describes methods of data sourcing
for all visualization approaches. Techniques for querying and displaying data
are also discussed.

Chapter 7, Dashboards, Controls, and Events, discusses user dashboards and controls.
Dashboards and controls allow for user interactivity with the visualization.

Chapter 8, Advanced Charts, covers advanced topics in visualization with Google tools.
Also included is further instruction on the use of Fusion Tables speciically for map
data generation. The last section of the chapter will give a brief overview on how to
build a fully custom virtualization.

Chapter 9, Publishing Options, discusses how, similar to multiple development options
for Google Visualization, there are also multiple ways to share charts with others.
This chapter presents common methods for publishing and sharing visualizations.

What you need for this book
Very little is required to get started. At the bare minimum, a Google account
(free) and some experience working with HTML is expected. For advanced topics,
knowledge of the basic programming concepts as well as some JavaScript experience
is ideal.

The Google Visualization API does not require software to be installed on
your computer. It is possible to perform all the development through an
HTML5/SVG-capable web browser. However, for developers already
familiar with common development environments such as Eclipse, it is
also possible to develop for the Visualization API from these applications.

Who this book is for
This book will show you how to create web-ready data visualizations using
Google's infrastructure. From casual Spreadsheets users to web developers,
this book provides readers with both novice and advanced examples. Anyone
with a need to dynamically visualize data on a website will beneit from reading
this book.

http:///

Preface

[3]

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, ilenames, ile extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Fusion Tables allows uploading of spreadsheets, delimited text iles (.csv, .tsv,
or .txt), and Keyhole Markup Language iles (.kml) as table sources."

A block of code is set as follows:

function drawVisualization() {

 // Create and populate the data table.

 var data = google.visualization.arrayToDataTable([

 ['Age', 'Male', 'Female', 'Both Sexes'],

 ['Under 5 years', 94100, 91787, 185887],

 ['5 to 9 years', 84122, 81955, 166077],

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

function drawVisualization() {

 // Create and populate the data table.

 var data = google.visualization.arrayToDataTable([

 ['Age', 'Male', 'Female', 'Both Sexes'],

 ['Under 5 years', 94100, 91787, 185887],

 ['5 to 9 years', 84122, 81955, 166077],

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Create the spreadsheet in Google Drive by selecting Create | Spreadsheet."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.allitebooks.com

http:///
http://www.allitebooks.org

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

http:///

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http:///

http:///

Tools and Setup
It may come as a surprise to learn that using Google Visualization (Chart)
Tools requires very little prior knowledge. One of the most satisfying aspects of
working with this set of tools is the ease of leveraging a cloud platform. In other
words, there is no requirement for high performance personal hardware and
software setup that requires constant care and feeding on a laptop or desktop.
While not ideal, it is even possible to develop projects from a tablet interface. In
addition, with the interactive nature of the environment, real-time programming
capability is a big plus during development.

In this chapter, the following topics are covered:

• Knowledge prerequisites

• Interacting with Google Visualization Tools

Knowledge prerequisites
With Google Visualization Tools, a developer with knowledge of HTML5 and
some JavaScript can utilize approximately 90 percent of the functionality of the
Application Programming Interface (API). Some methods of creating visualizations
do not even require writing code at all, but instead rely on the Graphic User
Interface (GUI) of common Google Drive (previously known as Google Docs) tools.
The remaining 10 percent of the functionality comes from the ability to interface
with custom data sources. Google often makes its Java Libraries, in this case the
Data Source Libraries, available for developers to use. A developer requiring
such a capability can build custom data source connectors to a database on a web
server. However, data connectors provided in the Visualization API, including
communications through a SQL-like query language and jQuery, are generally
adequate for most visualization projects.

http:///

Tools and Setup

[8]

Skill summary
To work in depth with the Visualization APIs, the following programming skills are
highly recommended:

• HTML5

• JavaScript

• Java (speciic uses only)

System requirements
In short, the Visualization API requires very little beyond a text editor and Internet
access to create visualizations. However, additional tools make development much
easier. Suggested tools or services when working with the Visualization API are
as follows:

• A service or web server to host HTML pages

• A Google account with Google Drive activated
(https://drive.google.com/start)

A Google account is required for the purposes of this book. Without a Google
account, many of the tutorials and examples will not work properly.

Interacting with Google Visualization

Tools
The key to understanding and then navigating the Google tool options is to irst
understand that everything is designed with integration in mind. In fact, much
of Google's environment is already integrated to some degree. In this respect, the
Google environment is truly an ecosystem of tools and capabilities. Some tools are
focused on users that do not want to write code to create visualizations, while other
tools allow a seasoned programmer to manipulate data with the API in very creative
ways. The rest of this chapter is dedicated to an overview of the tools that are most
commonly used as entry points for creating Google visualizations.

http:///

Chapter 1

[9]

Charts for Google Spreadsheets
For anyone new to creating data visualizations with Google tools or those who are
lacking in programming abilities, Google Spreadsheets is the ideal starting point.
Spreadsheets allow developers at any experience level to easily create a wide variety
of visualizations from Google's Spreadsheet platform through a point-and-click
user interface. The primary limitation to this method is the lack of style and data
formatting lexibility.

Fast facts: Google Spreadsheets Charts

• Experience level: Beginner to intermediate
• Programming languages: Google CodeScript (not required)
• Advantages: Easy to use, fast deployment, and code not

required
• Limitations: Style options, data format flexibility, and

scaling limits
• Documentation: http://www.google.com/google-

d-s/spreadsheets/

Getting started – creating a new spreadsheet
Once logged in to Google Drive, create a chart using Google Spreadsheets. Create the
spreadsheet in Google Drive by selecting Create | Spreadsheet.

http:///

Tools and Setup

[10]

In the newly created spreadsheet, copy and paste, or otherwise enter the data to
be visualized. Advanced methods of data import and manipulation can also be
accomplished using the built-in scripting capabilities of Google Docs or through the
Spreadsheets API. It is important to note that when using Spreadsheets to create
charts, data must be arranged according to the requirement of the chart. To select a
chart and in turn learn about its data formatting requirements, irst insert the chart
into the spreadsheet by selecting Insert | Chart… from the menu tab options.

To select the appropriate chart for your data, the Spreadsheet Chart Editor detects
the current data layout and then attempts to determine the correct chart selection.
Further selection and customization techniques for charts in Google Spreadsheets
are covered in Chapter 3, Spreadsheets, Charts, and Fusion Tables.

http:///

Chapter 1

[11]

Fusion Tables
Google Fusion Tables is a tool primarily focused on geospatial visualization, and
is available through logging in to Google Drive. If map visualization is desired,
Fusion Tables is an ideal tool due to its built-in geocoding capabilities, recognition of
standard marker names, and HTML-ready information windows. Fusion Tables is
also capable of producing other charts such as line, bar, pie, scatter, and timelines. As
a rapidly evolving application, Fusion Tables also presents a variety of experimental
features still in testing. Opportunities to experiment with the latest features can
be found by selecting the link, View in Experimental, at the top of the browser
window, as shown in the following screenshot. Fusion Tables accepts a variety of
import formats, including CSV, KML, ODS, XLS, and Google Spreadsheets.

Fast facts: Google Fusion Tables

• Experience level: Beginner to intermediate
• Programming languages: Some HTML
• Advantages: Maps applications, scaling capacity, bulk

data handling
• Limitations: Chart selection, style customization
• Documentation: http://www.google.com/

fusiontables/

Getting started – creating a new Fusion Table
To build a Fusion Tables visualization, create a new Table from the Google Drive
Create tab. An alternative method to open the Fusion Table application is to visit
http://www.google.com/fusiontables/ and click on the button.

http:///

Tools and Setup

[12]

In addition to manual entry, Fusion Tables allows Google Spreadsheets or a
local ile to be imported as data. Fusion Tables allows uploading of spreadsheets,
delimited text iles (.csv, .tsv, or .txt), and Keyhole Markup Language
iles (.kml) as table sources.

For users with enterprise class map visualization needs, Google offers a for-fee
service, Google Map Engine. Map Engine runs with the same services that support
regular maps and earth, but are backed by Google's compute cloud for high
performance mapping capabilities. Unlike Fusion Tables, Map Engine does not
include visualization methods other than map-based options.

You can ind more information on Google Map Engine at http://www.google.com/
enterprise/mapsearth/products/mapsengine.html.

Scripting code
HTML code that contains references to the Visualization API (or any Google API
for that matter) can be run locally, or hosted by any web hosting service. However,
one of the easiest methods is to simply use Google's own App Engine to host
visualizations. App Engine is a scalable web hosting environment that can be linked
to development platforms, such as Eclipse, which offers a seamless web development
worklow when using the Google Web Tools plugin for Eclipse.

Google App Engine currently offers developers 10 free, hosted applications, with
additional capacity available through pay-as-you-go fees. For developers looking to
experiment with Google APIs, including the Visualization API, App Engine paired
with Eclipse is a capable yet affordable platform. However, for developers not quite
ready to build complex applications, Google maintains a free, real-time API sandbox
for development use. Additionally, for developers who are not quite so advanced at
this time, online IDE environments are easy and affordable for code development.
They also generally offer an automated connection to cloud hosting services, such as
Google App Engine.

http:///

Chapter 1

[13]

Fast facts: Scripting code using the Visualization API

• Experience level: Intermediate to advanced
• Advantages: Full customization and scalability
• Limitations: Developer experience
• Web hosting: Optional but Recommended
• Documentation: https://developers.google.com/chart/

You can ind more information at the following links:

• Google App Engine: https://developers.google.com/appengine/

• Eclipse: http://www.eclipse.org/

• Google Web Tools plugin for Eclipse: https://developers.google.com/
web-toolkit/

Code Playground
Code Playground is Google's real-time AJAX code development sandbox for
discovering, learning, and testing Google API code. The Playground is updated
regularly, with feature updates as well as new API examples. It's worth the effort
to check this space regularly to see if something new has been released. The
Visualization API release notes are also a very helpful resource for this task.

The sandbox has a tree-structured Navigation window in the upper-left corner
of the page. Depending on which API example is highlighted, sample code and
corresponding live output are displayed in the Edit Code and Output windows
respectively. Code in the Edit Code window can be edited in real time, with changes
appearing in the Output window after the button is clicked.

www.allitebooks.com

http:///
http://www.allitebooks.org

Tools and Setup

[14]

Code Playground also allows developers to save modiications to existing API
examples within the environment. If a developer wants to save the state of HTML
displayed in the Edit Code window, there are options to Save as well as Export to
view a live version. When logged in with a Google account, the Save option saves
the current code state to the Code Playground itself. Export saves the current state to
a Google App Engine instance that can be referenced by the ID contained in the URL.

http:///

Chapter 1

[15]

Finally, to view Google's documentation and other resources for the currently
highlighted API, select the button. To edit all HTML encapsulating the API
calls, click on the button.

You can ind more information at the following links:

• Google Code Playground: http://code.google.com/apis/ajax/
playground/

• Visualization API Release Notes: https://developers.google.com/
chart/interactive/docs/release_notes

Debugging tools
A clear advantage to developing Google APIs in the Code Playground environment
is the integrated debugging mode. Code Playground makes use of the Firebug Lite
web development tool. To activate debug mode, click on the button.
(Note that Chrome users can also use Chrome's built-in JavaScript console.)

Firebug Lite

http://getfirebug.com/firebuglite

Console
Debug mode offers several methods of testing and debugging code. To toggle
between the DOM and Console views, select the appropriate tab. To clear the
console, select Clear. To get more information on Firebug and Firebug Lite,
click on the bug icon.

http:///

Tools and Setup

[16]

A feature of Firebug Lite that can be easily missed is the Firebug Lite Settings
window. To view Firebug Lite Settings, select Options in the bottom-right corner
of the Playground interface. To conigure the debugging environment as desired,
check or uncheck the options in the list.

Additionally, the command line offers yet another method of testing and debugging
the code in the Code Playground environment. Developers can set variables, test
scenarios, and otherwise debug code through a command line real-time input. The
resulting output, depending on the entries to the command line, is viewed in the
debug Console window.

Gadget Editor
If the end purpose of the visualization is to be embedded in a Google Calendar,
Gmail, Sites, or other application, encapsulating the visualization within a
Google Gadget wrapper can be helpful. A simple method of creating a visualization
intended for a Gadget is to irst edit the API code, with HTML included, in the
Code Playground, and then cut and paste in between the appropriate tags in the
Google Gadget Editor.

http:///

Chapter 1

[17]

The Gadget Editor itself is a simple HTML editing interface with a preview mode
included. A Google Gadget is comprised of two major sections within a set of
<Module> tags. The <ModulePrefs> tag contains information about the gadget,
including the title, author name, thumbnail location (in the Gadget Gallery at
http://www.google.com/ig/directory), and description. To publicly publish a
gadget in the Gadget Gallery, the ModulePrefs section must be laid out according
to Google's standards (http://www.google.com/ig/submit), as well as follow
Google's terms of service (https://developers.google.com/gadgets/terms-nc).

To insert content, place the desired gadget's content to be displayed between the
<Content> tags. The general format for content is HTML, but JavaScript can also be
used. To save a Gadget, select File | Save. The gadget is now stored on Google servers,
but is only available to those with the link and not available publicly. To publish a
gadget to the public Gadget Gallery, select File | Publish from the menu options.

Just as the newly created gadget is stored on Google infrastructure when using
Gadget Editor, images and other content can also be stored in the same location
for the gadget's use. Select File | Upload to upload images for the gadget's use.
The image URL resulting from the upload, usually of the form http://hosting.
gmodules.com/ig/gadgets/file/12345…/filename.png, can then be used to
reference the image in the gadget HTML.

http:///

Tools and Setup

[18]

Fast facts: Gadget Editor

• Experience level: Intermediate to advanced
• Advantages: Free Google hosting available and embedding

in web pages and apps
• Limitations: Developer experience
• Documentation: https://developers.google.com/

gadgets/

WARNING

The future of Google Gadgets is unclear at the time of
publishing. Many features of Gadgets are being absorbed by
other Google services. However, they are still available as a
platform for development.

You can ind more information on Google Gadget Editor at
https://developers.google.com/gadgets/docs/tools#GGE.

Summary
It is important to remember that there are multiple methods of creating
visualizations when working with Google tools. A developer may choose to select
one method over another, depending on the complexity and features required by
the visualization. It is also important to observe that Google is actively adding
functionality to the API collections as well as the user interface applications. Regular
visits to the API documentation and Code Playground will generally yield new
methods of visualization creation. In summary, at the time of this publication,
visualizations using Google tools can be created with:

• Google Spreadsheets

• Google Fusion Tables

• Custom applications that reference the Google Visualization API, created in
Code Playground or a third-party platform (for example, Eclipse)

Architecture and types of visualization options is the topic of the next chapter.

http:///

Anatomy of a Visualization
There are multiple approaches with which a developer can work with the
Visualization API, so it is helpful to give an architectural overview of various
worklows. This chapter describes the common high-level architecture that underlies
the most common methods of working with the Visualization API. In this chapter,
we will also discuss the integration of various aspects of Visualization (Chart), Maps,
and Fusion Tables. These three APIs often work together to allow developers varying
in expertise to build complex, dynamic visualizations with relatively little effort. The
inal section of this chapter is dedicated to outlining the types of visualizations.

In this chapter we will cover the following:

• API architecture overview

• Interaction with other APIs

• Visualization types

Common structure
At its core, the Visualization API acts as a bridge between a data source that
contains data and an HTML page displaying the data. Regardless of platform, the
Visualization API follows the same architecture as other Google API products.
Methods to use for Google APIs consequently also follow the same general structure
as APIs from other application providers such as Flickr or Facebook. For most APIs,
including the Google APIs, the JavaScript namespace structure is as follows:

application.category.function(variables)

For example, to create a new pie chart with the Google Visualization API, the
corresponding code would be as follows:

new google.visualization.PieChart(document.getElementById('visualizat
ion'));

http:///

Anatomy of a Visualization

[20]

For non-code based platforms, such as Spreadsheets and Fusion Tables, the user
interface that encapsulates the Visualization API is designed to enhance the strengths
of a particular tool set for a wide spectrum of users. For example, Fusion Tables is
primarily focused on map visualization by inclusion of geocoding capabilities, as
well as speciic format standards to simplify map overlay deployment. Similarly,
Spreadsheets primarily functions as a spreadsheet application, but is capable of some
chart visualizations through an integrated graphic user interface. The integration
of the Visualization API in these cases is primarily for the enhancement of the
capabilities of the parent application. On the other hand, developing applications
directly with the Visualization API affords the developer a higher level of freedom
in design than either Spreadsheets or Fusion Tables.

Data Source

Visualization (Chart) API

Code

HTML Web Page

Spreadsheets integrates much of the Visualization API into an easy-to-use graphic
user interface within the Spreadsheets application itself. Data manipulation and data
input can be done programmatically through the Spreadsheets Forms feature, Apps
Script, or even the Spreadsheet API. Each method is likely to affect chart renderings,
as they offer opportunities to collect, move, format, and delete data in methodical,
repeatable ways.

You can ind more information about Google Spreadsheets Documentation
at http://www.google.com/google-d-s/spreadsheets/.

http:///

Chapter 2

[21]

Apps Script
Chart rendering is one of the many uses of Google's scripting platform, Apps Script.
Initially it was included only within Google Spreadsheets and Documents. Apps
Script has since been elevated to a standalone iletype in Google Drive. The purpose
of Apps Script is to allow a user to programmatically manipulate data, or even the
Google document interface itself in Google Drive. Apps Script projects created in
Google Drive documents can also be launched as applications through the Apps
Script development platform. Introducing the creation of web forms, ilter controls,
and other web interfaces outside the Google Drive environment enhances the
interactive, data-driven chart potential.

You can ind more information about Google Apps Script Documentation
at https://developers.google.com/apps-script/.

Forms
Another method available to input data into Spreadsheets is through the Forms
functionality. Launch the Forms coniguration tool by selecting Insert | Form from
the Spreadsheet menu tabs. The resulting survey-style form can then be embedded
into a website iFrame, or can be a standalone web page hosted by Google. Forms are
not intended to facilitate two-way interaction with data, but are only a method of
inputting data into spreadsheets. Note that when a form is created to bring data into
a spreadsheet, the format of the spreadsheet is automatically conigured to collect the
timestamp of each entry submission in the irst column. Form question responses are
collected in the order they are asked and stored in subsequent columns. When the form
is deleted, the irst column returns to its default state and the Form tab disappears.

http:///

Anatomy of a Visualization

[22]

You can ind more information about Google Forms Documentation
at http://www.google.com/google-d-s/forms/.

Framework
The combined result of Spreadsheets and its compatible technologies is a
simpliied yet capable web platform. A developer may choose to interact with
visualization tools through the Spreadsheets GUI, Apps Script, or JavaScript
(most often inside the <script> tags). Multiple methods of data manipulation
can also be programmatically invoked. These methods include using Forms,
Apps Script, Visualization API, or the Spreadsheets API itself. The charts created
in Spreadsheets can be displayed as embedded in an iFrame, standalone App
Engine web application, or custom application.

Visualization (Chart) API

Integration

Data

Apps Script Forms

Google Speradsheets

Google App Engine

HTML

<script> Apps Script Web

App

Embeded iFrame

http:///

Chapter 2

[23]

Fusion Tables
Similar to Spreadsheets, Fusion Tables creates an easy-to-use environment in which
visualizations can be created without writing code. However, Fusion Tables is
primarily focused on visualization of map data and integrates the map and chart API
functionalities with a table optimized for map data. Maps rendered in Fusion Tables
can be displayed in an embedded iFrame, standalone HTML link, or as part of a
larger custom application.

Visualization (Chart)

API Integration

Data

Google Fusion Tables

Google App Engine

HTML

<script>
HTML Link

Embeded

iFrame

Maps API Integration

You can ind more information about Google Fusion Tables
Documentation at http://www.google.com/fusiontables.

www.allitebooks.com

http:///
http://www.allitebooks.org

Anatomy of a Visualization

[24]

Scripting code
Writing applications wrapped in HTML and directly manipulating the Visualization
API is the most versatile method of chart creation. Consequently, this method
can often be the most labor intensive and will require some HTML and JavaScript
programming experience. The following diagram depicts the HTML page residing in
Google App Engine. While this is a possible hosting location, it is not a requirement
to publish code that references the Google APIs in Google App Engine. A key
difference between the Spreadsheets or Fusion Tables approach and scripting custom
code is that the data resides outside of the development platform. Both Spreadsheets
and Fusion Tables encapsulate their data within the development platform, where
a custom application using the Visualization API must interact with the data
through various API methods. The Visualization API itself contains a simple set of
programmatic data manipulation and retrieval calls using google.visualization.
dataclass of functions. Other APIs may also be leveraged to manage data if the
hosting application also has an API. For example, Spreadsheets API or Fusion
Tables API can be used along side the Visualization API in the same application.
One method of using Spreadsheets and Fusion Tables data programmatically within
the Visualization API framework is to use the SQL-like language provided in the
Visualization API. This SQL-like language is named Query and functions from its
class can be called by the method google.visualization.query.

You can ind more information about Google Chart Tools API
Documentation at https://developers.google.com/chart/.

Google App Engine

HTML Application

Visualization API

Data

http:///

Chapter 2

[25]

HTML Framework
The API use is not limited to just one section of the HTML document. For the
purposes of the instructions in this book, Chart API visualizations will be included
within the <script> tags of HTML code. As expected in HTML, the <script> tags
are included inside the <head> tags. To place the code on an HTML page, a <div>
tag names the ID in the <body> tag, which the visualization uses to create the chart
on the page. General HTML styles for the browser window and visualization frame
can be provided in the <body> tag deinition by following normal HTML practices.
The generalized structure of an application using the visualization API, including its
HTML framework, is as follows:

<html>

 <head>

 <script>

 API code goes here, including any libraries to be loaded.

 </script>

 </head>

 <body>

 <div id="chart_name_goes_here"</div>

 </body>

</html>

Downloading the example code

You can download the example code iles for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the iles e-mailed
directly to you.

Technique options
In the code inside the <script> tags, there are three primary methods in which
the Visualization API can be invoked to draw charts. The most versatile of the
three is chart.draw(). However, a drawback of using chart.draw() is that it
requires explicit loading of the directories required for the particular visualization.
Alternatively, ChartWrapper is an easier method to use, but trades ease of use
for less lexibility when working with event handling. With almost the same
functionality, Draw.Chart() is an even more compact version of ChartWrapper,
and requires less code. However, Draw.Chart() further trades functionality for
ease of use as Draw.Chart() is not capable of handling events.

http:///

Anatomy of a Visualization

[26]

Drawing techniques: chart.draw() versus ChartWrapper versus
Draw.Chart()

You can ind information about this at https://developers.
google.com/chart/interactive/docs/drawing_charts.

Comparison: chart.draw() versus ChartWrapper versus

Draw.Chart()
The following table compares the three drawing techniques:

Feature chart.draw() ChartWrapper Draw.Chart()

Explicit control: Loading visualization
libraries required

Explicit control: Callback function
needed for event handling and queries

Functionality: Handles events

Automated: Load visualization libraries

Automated: Event handling and queries

In general, the ChartWrapper method will sufice for most projects. Draw.Chart()
can be used on projects that do not require event handling. A developer may choose
to use the chart.draw() method, and will generally tend to do so if verbose event
handling is required.

Categories of visualizations
Visualizations fall into two categories, static and interactive. Static visualizations
are simply pictures that do not include controls or manipulation capabilities for the
viewer. Conversely, an interactive visualization allows the viewer to manipulate data
views, cause events, and otherwise have a dynamic interaction with the visualization.

http:///

Chapter 2

[27]

Static
A static chart is a snapshot view of data. The viewer cannot manipulate the chart,
other than viewing details through simple mouse-over windows. Chart types that
generally fall into the Static category are as follows:

• Line charts

• Pie charts

• Bar graphs

• Candlestick charts

• Geography maps and charts

• Scatter plots

• Basic tables

• Tree maps

• Organizational charts

However, note that Static charts may be transformed into Interactive charts
by adding dashboard controls, which is a topic covered in detail in Chapter 7,
Dashboards, Controls, and Events.

Interactive
Interactive charts allow the viewer to manipulate the display properties of the chart's
data. Often these visualizations are built from simpler static charts, with controls
added to allow the viewer interaction. However, there are also charts that are
capable of referencing a timeline to provide data representation over a given period
of time. Interactive data observation over time can be accomplished by using either
the motion chart or timeline chart. Also, advanced interactive map charts that are
timeline driven can be rendered using the Maps API.

Dashboards
A dashboard is the inclusive name given to a set of controls presented to the
viewer with which the viewer is able to manipulate the visualization in order
to get his/her own desired views of the data. Dashboards usually include one
or more ilters to allow for end user data viewing control.

http:///

Anatomy of a Visualization

[28]

Filter by string
The string iltering option is equivalent to providing a contained search option to the
chart's end user. Data displayed, in whatever chart format, will be restricted based
on the string entered in the ield. Results iltered by the string are real time.

Filter by number range
The number range slider allows the viewer to select a range of values from the
dataset to display. The chart view will relect the restriction of values set by the
slider. Parameters set by the slider are real time.

Filter by chart range
The chart range slider allows users to select a smaller section of a larger chart in
order to gain a more detailed view. The slider parameters are drag-and-drop on
either side of the selected area. Rendering for the selected chart area is real time.

Programmatic iltering
The number range slider, combined with one or more preset button selections
allows programmatic iltering of data into methods. The range of the slider itself is
determined by the maximum and minimum values of the associated dataset. The text
on the button is deined using HTML deinitions within the <body> tag. The range of
data viewed can be set by dragging the number range handles to the desired range,
in the same way as manipulating a standard number range bar. The number range
can also be conigured by clicking on the preset button (the Select range [15, 27]
button in the following screenshot), to set pre-conigured values. Buttons can also be
used to set the visualization properties.

http:///

Chapter 2

[29]

Filter by category
Category ilters allow chart users to selectively view data based on categories
presented in the drop-down menu. In the following example, books will only be
viewed in the corresponding chart if they fall into the categories of Non-Fiction
and Biographies. The categories presented for iltering are deined by specifying a
column in the data table.

Filter by dependencies
The dependency ilter allows data to be viewed in a drilldown method. Each
subsequent set of options for selection is dependent on the previous drop-down
selection. The data displayed on the visualization is pared down accordingly
with each additional selection from the ilter list. Similar to button deinitions for
programmatic iltering, the drop-down IDs for each ilter are created inside the
<body> tags and then referenced in the API script.

Events
In general application programming, event handling is a structured method of
programmatically reacting to user interactions. Event handling is a key tool in the
creation of interactive charts because it allows a variety of feedback opportunities to
the user.

http:///

Anatomy of a Visualization

[30]

Selection and sort
It is possible to trigger events by making a selection on a table display. For example,
selecting a row in a table can trigger a browser alert and message to the viewer of the
chart. It is also possible to conigure the title bar of a chart to sort data in a speciied
order. The corresponding chart visualization will display the data in the order that
was sorted in the table. Similarly, a chart may be the source of a user click, with the
corresponding table row being selected by the user's action.

Ready for interaction
Visualizations can also be programmed to be rendered on the command of the
viewer. For example, a button on an HTML page can be programmed to wait for a
user click in order to initiate the rendering of a chart. The resulting actions after the
button click may also set formatting parameters, initiate sending alert messages to
the user, or even initiate additional events.

Error handling
Errors are a form of events, and all well-written applications should include
some method of error handling. Google provides an error handling namespace
included in the Visualization API. The google.visualization.errors namespace
provides static functions that allow the developer to display error messages to the
user, if necessary.

You can ind Error Handling Documentation at
https://developers.google.com/chart/
interactive/docs/reference#errordisplay.

http:///

Chapter 2

[31]

Time-based charts
There are two types of visualizations intended to display data that changes over a
period of time. These charts are the annotated timeline chart and the motion chart.

Annotated timeline charts
The annotated timeline chart is as its name describes, and it displays annotations
of speciic points on a line chart over time. Each annotation can be documented
with detailing text, which appears in the right-most column. Moving a set of
sliders across the bottom range viewer can specify a magniied view of a point
in time on the timeline.

Data Source:

http://factfinder2.census.gov

http:///

Anatomy of a Visualization

[32]

Motion charts
The motion chart maps the changes of one or more variables over time on a deined
axis. There are a number of user-deined controls available to manipulate the chart
during viewing. The following example of a motion chart depicts the population of
three U.S. states between the years 2000-2010. The segment of each state's population
that is of age 18 and over is signiied by the size of the motion trail. The bottom
segment of each motion trail represents the population of each state under the age of
18. The upper portion of the motion trail signiies the total number of persons over
the age of 18.

Data Source:

http://factfinder2.census.gov

http:///

Chapter 2

[33]

Summary
The purpose of this chapter was to give an overview of several architectures
available for creating chart visualizations. It must be understood that the
architectures presented here are by no means exclusive to the options available
to developers working within the Google API framework or even with the
Visualization API. Rather it is more useful to view the preceding overview as
of the most common architectures that can be used as a starting point for chart
development. The integration capabilities are provided by Google enable creativity,
but can also be limiting due to confusion of how and when to use combinations
of methods. Missed opportunities to visualize data creatively can be common
when there is a lack of understanding that two or more methods may need to be
incorporated in order to provide the desired solution.

All visualizations, regardless of the tools used to create them, follow the same
methodology. This methodology is inclusive of naming hierarchy as well as
application structure. It is also the same or similar to other Google APIs and very
often third-party API conventions. Basic understanding of recommended uses for
the various capabilities of the Visualization API and partnering Google applications
will help the developer make informed design decisions. Using the more familiar
applications of Spreadsheets and Fusion Tables, and discussion on individual API
charts are the topics of the next chapter.

www.allitebooks.com

http:///
http://www.allitebooks.org

http:///

Spreadsheets, Charts, and

Fusion Tables
As a result of high demand for the Visualization API, Fusion Tables API, and
Maps API functionalities, several applications have been developed by Google to
provide a simple graphic user interface (GUI) on top of these common but fairly
complex integrations. Fusion Tables and Google Spreadsheets provide application
interfaces for chart creation, but ultimately rely on various underlying Google API
infrastructure functionalities. Using the GUIs prior to direct API manipulation offers
an easy-to-understand building block for learning the Visualization API.

In this chapter we will cover:

• Creating charts in Google Spreadsheets

• The Chart Editor

• Apps Script

• Creating charts in Google Fusion Tables

• Geocoding

• Markers, Lines, Areas, and Info Windows

http:///

Spreadsheets, Charts, and Fusion Tables

[36]

Spreadsheets
For anyone who has used a generic spreadsheet application in the past, Google
Spreadsheets becomes a natural starting point when learning about Google
visualizations. Data entry, chart creation, and formula functionality in Google
Spreadsheets is extremely similar to other generic spreadsheet applications. Yet,
a signiicant difference between traditional spreadsheet charting applications and
Google Spreadsheets is the ability to enhance capabilities by overlying Apps Scripts,
and re-create and enhance the same chart with the Visualization API. Direct API
access allows a developer to include advanced features such as style customization
and dynamic manipulation of the data.

Spreadsheets are built from Google infrastructure, and thus inherit some dynamic
capabilities from the Visualization API. These features are generally presented as
static capabilities in Spreadsheets, and can only be modiied if control has been
offered through the GUI (for example, colors and fonts). Then, additional chart
functionality can be implemented through the JavaScript language used to extend
Google Apps, named Apps Script. It is also worth noting that the Spreadsheets
application has its own API interface, which opens up entirely new opportunities
to be used that are outside the scope of the Spreadsheets GUI application.

Creating a chart
To create a new spreadsheet, click on the CREATE button, or open an existing
spreadsheet in Google Drive.

Enter data into the spreadsheet manually, or use the bulk import method. To import,
select File | Import… from the Spreadsheets menu. The Import ile dialogue will
give a variety of import formatting options as well as data placement options within
the existing or new spreadsheet.

http:///

Chapter 3

[37]

The data used in the following Spreadsheets example is the United States Census
data, collected from the city of Chicago in 2010. The data lists the number of male
and female individuals residing in the city of Chicago, divided by age group.

Data Source:

http://factfinder2.census.gov

With data populated in the spreadsheet, select Insert | Chart… from the menu
options to create a visualization of the data.

http:///

Spreadsheets, Charts, and Fusion Tables

[38]

The Chart Editor
In Google Spreadsheets, the Chart Editor appears when we open an existing chart
to edit in the advanced mode. It is the interface for developing visualizations from
within Google Spreadsheets.

Chart Editor offers three primary functions. These functions are as follows:

• Conigure data: Sets which data from the table is actually used in the
visualization

• Chart type: Line, bar, or pie

• Style customization: Colors, fonts, and titles

In the Chart Editor, the ability to deine which data is used in the visualization
is found under the Start tab, which also happens to be the default view when
opening Chart Editor. In this tab, the spreadsheet cells to be included in the
visualization are set in the Data – Select ranges… box. It is also possible to
combine ranges, switch rows and columns, and set label/header information
to be displayed in the visualization.

http:///

Chapter 3

[39]

Chart types
Chart types are determined primarily in the Charts tab, but can also be set in the
Recommended charts box in the Start tab. Depending on the coniguration of the
columns and rows in the spreadsheet, Spreadsheets will recommend the most
suitable chart for the existing data's structure. If a desired type of chart does not
correspond to the current data layout, it is necessary to learn about a chart's layout
in order to conigure the data appropriately. A chart that its the current data
coniguration is represented by a colored thumbnail preview of itself. A chart that
does not it the current data layout will be represented as a grayed-out thumbnail
preview of itself. Select the grayed-out thumbnail preview to view information on
the required data layout for that particular visualization.

http:///

Spreadsheets, Charts, and Fusion Tables

[40]

Reopening the Chart Editor
If additional detailed modiications to the chart are required beyond the quick edit
funcionality, return to editing an existing visualization by selecting the Advanced
chart… option in the drop-down menu on the chart itself.

Chart styles
Basic formatting of a visualization can be accomplished in the Customize tab. The
features available for customization are dependent on the type of chart, but generally
always include abilities to create a title, placement, and font format for the chart's
legend, and change the colors and fonts of various attributes.

http:///

Chapter 3

[41]

The Visualization functionality from within Google Spreadsheets is fairly
basic. However, additional capabilities can be implemented through the
use of Google Apps Script.

Using Apps Script
Apps Script is a JavaScript-based platform for scripting customized features into a
variety of Google applications. Apps Scripts are allowed to call Google APIs and
thus can be used to manipulate various aspects of a handful of Google applications.
Apps Script is also as much a script management platform as it is a script executable
platform. Scripts can be embedded in the respective Google application or can be
standalone iles in Google Drive. Additionally, Apps Script is capable of launching
the scripts as a standalone web application.

You can ind more information about Apps Script Documentation
at https://developers.google.com/apps-script/.

Framework
The following is a list of the Apps Script compatible Google products. Apps Script
can be used in:

• Spreadsheets

• Documents

• Google Drive

• Sites

• Google-Hosted Web Application

• Gmail

• Calendar

Spreadsheets Documents Drive Sites Web App Gmail Calender

Apps Script

http:///

Spreadsheets, Charts, and Fusion Tables

[42]

The advantage of using Apps Script is that it provides a single platform on
which to mix Google application functionality. With this capability, it is possible
to create a single, feature-rich application from many Google applications and
services. For example, the 2010 Chicago Census chart could beneit from dynamic
user-controlled ilters on the Male or Female columns or the Age column. Apps
Script can facilitate data retrieval from the Spreadsheet and a development platform
from which user-deined iltering web applications can be launched. Apps Script
web applications are stripped-down versions of Google App Engine applications,
but they run on the App Engine infrastructure. The Apps Script framework is
designed so that scripts can be easily deployed as web applications.

Scripting console
In Fusion Tables, creating new scripts and customizing scripts is done in the
manager and editor options. Navigating to Insert Tab | Script… allows insertion
of existing third-party scripts from the user community gallery. Gallery scripts can
then be modiied once they are placed in a new, Apps Script supportive Google
ile. Navigating through the Tools Tab options, Tools | Script editor... and Tools
| Script manager… allows access to the script editing console and a management
function for spreadsheets embedded in the Spreadsheets ile respectively. The Apps
Script development platform also opens as a separate tab in the browser window, in
this case, separate from the Spreadsheets tab.

http:///

Chapter 3

[43]

The Apps Script editor console is arranged in a project style, which also includes
basic debugging and web app publishing capabilities. Code is entered in the code
view or edit window for which a ile of type Google Script (gs) is created. Scripts
contained in the project are organized in the side column. The menu tab and
console controls contain several of the same functions, allowing various worklow
preferences while developing.

Testing functions
To test a function in your project, select the name of the function from the
drop-down menu and then click on the arrow or run button. This capability is
nice to have when it's dificult to determine a script error. Running each function
separately is a good way to test if each one is working on its own. To select a
function to test apart from other functions in a script, use the drop-down list
in the console controls bar.

Clicking on the drop-down list will display functions in the script that can be run.
Select a function in the list to test its functionality.

www.allitebooks.com

http:///
http://www.allitebooks.org

Spreadsheets, Charts, and Fusion Tables

[44]

Debugging scripts
The console control button with a bug icon will put the console in debug mode
when clicked.

Apps Script is also a development environment for Google web apps that make use
of various Google APIs. The debug mode, in addition to inline syntax and function
help, makes Apps Script a decent development platform for Google API based apps.

Event triggers
The purpose of triggers is to initiate an event, such as sending notiications via e-mail
at a scheduled time, if a particular action on or about the spreadsheet has occurred.
The clock icon in the controls console bar will initiate a dialog with the developer to
add, modify, or remove event triggers from the script.

Types of events that can trigger script execution are as follows:

• Opening the spreadsheet itself

• When a script function has been run

• Time-driven events

Publishing as an App
The cloud button is used to publish an Apps Script to Google App Engine.

To publish, Apps Script requires saving and managing versions by navigating to File
| Manage Versions…. After a version is saved, navigating to Publish | Deploy as
web app… or clicking on the cloud button will initiate the web deployment dialog.

http:///

Chapter 3

[45]

The versioning control and the user interface creation options are currently in the
experimental phase and are both currently under the File tab. Google updates its
services and applications regularly, so whenever an experimental feature is added,
it will be marked as EXPERIMENTAL! within the application itself.

Apps Script is versatile in its abilities beyond scripting web apps using the APIs. It
is also capable of acting as a medium for using the APIs to create customizations
in Google applications themselves. The following is a short example of how Apps
Script can be used for creating a custom spreadsheet menu item. The menu item
created in this example is named Launch App. Launch App contains a drop-down
list for a script function called doGet. To continually illustrate the usefulness of Apps
Script when combined with the Google APIs, Apps Script compatible code will be
provided throughout the remainder of this book for each topic.

functiononOpen() {

 /* Retrieves the active spreadsheet as a source */

 var sheet = SpreadsheetApp.getActiveSpreadsheet();

 /* Create the menu entry for a function */

 var entries = [{

 name : "Launch App",

 functionName : "doGet"

 }];

 /* Create the Spreadsheet Menu tab. */

 sheet.addMenu("Script Menu", entries);

};

http:///

Spreadsheets, Charts, and Fusion Tables

[46]

Fusion Tables
Google Fusion Tables is a GUI application targeted towards providing a simple
data source in combination with a host of standard visualization options. The
biggest difference between Fusion Tables and Spreadsheets is that Fusion Tables is
a visualization tool irst, then a data source, and does not include much calculation
functionality. Like Google Spreadsheets, Fusion Tables has its own accompanying
API. The API is primarily focused on SQL-like capabilities and usage of Fusion
Tables as a data source.

Importing or creating data
To create an empty table or import data into a table, use the method outlined in
Chapter 1, Tools and Setup. Select Create | Table in Google Drive. The Import new
table wizard will automatically open. Select the type of import or create an empty
table. Alternatively, Fusion Tables offers a collection of public data tables that can
also be imported. Data is also available in the form of existing user Fusion Tables
that have been made available by the user community.

Search user community Fusion Tables at
http://www.google.com/fusiontables/search.

http:///

Chapter 3

[47]

For the following example, the existing Spreadsheets ile of Chicago Census 2010
data was imported into Fusion Tables. When Google Spreadsheets has been chosen
as the imported source, any spreadsheets that exist in Google Drive will be available
for import. In this instance, Chicago_Census_2010_Ages is selected and imported.

Once the import wizard has inished, the Fusion Tables ile is given the default name,
New Table. To change the ilename as well as add additional attribute information
to the Fusion Tables ile, select Edit | Modify Table Info (or File | Rename in the
experimental Fusion Tables version). In the pop-up window that appears, enter the
desired table name as well as additional information about the data being used. For
example, if the data was pulled from a website, it is appropriate to cite the website
in the Attribution page link and/or Description ields. If a link is provided and the
Attribute data to ield is illed in, Fusion Tables will provide a clickable link under
the ilename to the link provided in Table Info.

http:///

Spreadsheets, Charts, and Fusion Tables

[48]

Data management
The Edit and Merge tabs are the key menu items for data management and
manipulation. The View menu item holds options for creating data ilters as well as
viewing comments made on the various cell elements. Filters can also be applied by
clicking on the options link just below the menu bar. The Experiment menu option
is where newly released functions, speciically new visualization types, will reside.
Finally, the publishing and sharing capabilities in Fusion Tables are available by
clicking on the Get Link and Share buttons.

Editing rows
To modify cell content, click on the cell to edit. To add additional layout-conforming
data to the table, select Edit | Add row. By selecting Edit | Add Column in
the menu, an additional column is added to the table along with an additional
visualization attribute.

http:///

Chapter 3

[49]

Modifying columns
Navigate to Edit | Modify columns to modify existing columns. This includes
existing map attributes, including type, name, and order of appearance in the
table. The following is the coniguration used for the Fusion Tables maps
example in this chapter:

When coniguring columns, it is often a good idea to delete all default
columns completely before creating your own. Each Fusion Tables
column is assigned a data type, causing pervasive formatting issues
if a column is simply relabeled for another purpose. This is especially
true for Location-type columns, as modifying a column from one type
to another does not always translate correctly.

http:///

Spreadsheets, Charts, and Fusion Tables

[50]

Adding a formula
When a mathematical or logical operation is to be performed on the table data,
navigate to Edit | Add Formula. Coniguring a formula automatically creates an
additional column in the table, and thus can be used as an additional visualization
attribute. The functions currently supported by the Fusion Tables formula option are
as follows:

• Basic operations: +, -, *, and /

• Functions: cos(), sin(), and power(base, exponent)

• Logic: if (condition, then, else)

Views
Often times iltering a subset of data from the larger data set is desirable. This
is a desirable feature to have when working with any data set that becomes too
burdensome to view at once in its entirety. Select File | Create View… to select
the columns to be included in the new view.

http:///

Chapter 3

[51]

Setting up a view creates an entirely new Fusion Tables ile in Google Drive. To
switch between views, simply search or browse GDrive to ind the desired views.
As a best practice, creating a collection (folder) to contain the views is ideal. Also,
creating meaningful titles for each view, and possibly referencing the original view
in the ilename are methods of best practice for organization.

New look in Fusion Tables
The new look in Fusion Tables is intended to support easier interface use and
lessen the number of steps it takes to complete repetitive tasks when developing a
visualization. These tasks mostly revolve around changing data settings and values
and then visualizing them each time to view the result of the change. Row data
editing remains similar to the view as presented by a spreadsheet. The Cards tabs
present a preview of how data will look in an info window. The visualization of the
data when using maps capabilities will appear in a third tab, and will be labeled
the same as the location data column. Currently, at the time of publication, both the
classic look and new look are available in Fusion Tables. However, new tables are
created with the new look by default, and old tables have the option of either look.

http:///

Spreadsheets, Charts, and Fusion Tables

[52]

Merging tables
Fusion Tables provides basic table merge capabilities. Select Merge | Table (File
| Merge in the newer experimental version). Follow the Merge with another table
dialog to conigure a table merge.

Creating a visualization
Select Visualize | Line to render the visualization of data. Visualization types
compatible with the current data formatting will be available, while non-compatible
formats will be grayed out.

http:///

Chapter 3

[53]

Non-map visualizations
Once Visualize | Map has been selected, Fusion Tables may require several
coniguration steps to properly graph the data. For example, Fusion Tables may
ask the developer to select which row contains the column labels. Follow the online
instructions to inish your particular visualization.

A simple line graph
The following graph was created by navigating to Visualize | Line. The graph is
quite similar to the Spreadsheets version of the same chart. In the Fusion Tables
version, additional ilter controls are provided in the options link. Real-time iltering
with the X Axis and Y Axis selection controls is also available. In the following
graph, the ilter controls are restricting the data viewed to only the number of males
in each age group.

www.allitebooks.com

http:///
http://www.allitebooks.org

Spreadsheets, Charts, and Fusion Tables

[54]

Experimental charts
Google is also actively developing new visualization types for Fusion Tables. The
following visualization is the network graph type, found as an option under the
Experimental tab at the time of publication. A network graph is used when it is
helpful to view the relationships between data elements. For the Chicago 2010
Census data, relationships can be drawn between the age groups and number of
persons in that particular age group. Network graphs also allow an additional
element of weighting, based on a data attribute. In the following graph, the number
of males in the age group is relected as the size of the blue circles. Notice the young
adult range 25 to 29 years. The circles are quite large. Then, look at the circle size for
90 years and over, which is quite small. The size difference of the circles indicates
younger males are more in number than elderly males in Chicago during 2010. This
conclusion corresponds with the previously presented line graph of the same data.
The coniguration of these ilter elements can be changed dynamically using the
drop-down and selection menus above the graph.

http:///

Chapter 3

[55]

Mapping features
Customized, easy map creation is one of the core capabilities of Fusion Tables. One,
or sometimes two columns are conigured as the designated space where location
information is stored. Mapping in general requires Geocoding, which is deined as
any method that transforms human readable address information into latitude and
longitude information. In Fusion Tables, the Keyhole Markup Language (KML) is
used to extend geocoded data from a single point to multipoint lines and polygons.
In Fusion Tables, a column is conigured (using Edit | Modify columns) to accept
data that is of the Location type. For the example discussed in the following section,
the column that has been designated to hold location-type data is called Geometry.

You can ind more information about KML at https://developers.
google.com/kml/documentation/kml_tut.

Geocoding
For this example, the primary method of setting points for markers, lines,
and polygons is through latitude and longitude geocoding in a KML wrapper.
The irst topic to be covered is how to collect latitude and longitude information
in the irst place.

http:///

Spreadsheets, Charts, and Fusion Tables

[56]

The following are data sources:

• Marathon route map: http://www.london2012.com/mm/Document/
Documents/General/01/25/71/49/OLYMarathoncourseGTW_Neutral.pdf

• Olympic Park map: http://www.london2012.com/mm/Document/
Documents/Venue/01/24/89/77/olympicparkmap2_Neutral.pdf

• Westminster Abbey web page: http://www.westminster-abbey.org/

• Velodrome Information web page: http://www.london2012.com/venue/
velodrome/

Manual method
Google Maps is a reliable method of manually collecting the geocoded information.
Open Google Maps in a browser window. Zoom in on the location that is to be
geocoded, and then pressing Shift right-click to bring up a pop-up window. In the
pop-up window, select What's here?.

http:///

Chapter 3

[57]

The What's here? selection will populate the Google search cell with the latitude and
longitude of the point selected on the map. Copy and paste these coordinates into the
Location (Geometry) column in Fusion Tables.

Address method
Fusion Tables itself is capable of providing a basic level of geocoding capability.
Enter an address, including city, state, and zip code into a Geometry cell. Select
File | Geocode to create a marker at that location on a map.

Then select Visualize | Map (select the Geometry tab in new look Fusion Tables
version) to view the newly geocoded point on the map.

Google also provides an API to access Google geocoding capabilities, which is part
of the Google Maps API Web Services collection. Fusion Tables limits geocoding
to address, but the Geocoding API is capable of returning not only latitude and
longitude, but also a variety of characteristics about the address.

You can ind more information about Google Maps API Web
Services Geocoding at https://developers.google.com/
maps/documentation/geocoding/.

http:///

Spreadsheets, Charts, and Fusion Tables

[58]

Third-party tools method
There are also tools generally available on the Internet to help with the task of
geocoding. A free and easy-to-use tool is the EZ Google Maps Digitizer. Select a
drawing mode or enter a location in the open ield (the default is set to Mountain
View, CA). The Polyline mode will capture a continuous series of mouse clicks on the
map and render them as a line on the map. The Polygon mode collects a series of clicks
on the map and renders them as a polygon. To transfer the geocoded points to Fusion
Tables, copy and paste the coordinates into the appropriate cell, which is usually the
Geometry column. The geocoding tool also inserts formatting into the code output,
which should be reduced to only the necessary KML tags before visualizing.

You can ind more information about EZ Google Maps Digitizer
at http://gmaps-samples.googlecode.com/svn/trunk/
ezdigitizer.htm.

Recognizing errors
Geocoding and KML issues appear highlighted in yellow. If the formatting passes
the Fusion Tables validity check, the language type appears by name and is followed
by three periods. KML is generally the language used. In the following table excerpt,
input in rows 1 and 2 have not been entered, resulting in small warning indicators in
the ields.

http:///

Chapter 3

[59]

The following screenshot shows incorrectly formatted input. The cell is missing the
second of two geocoding latitude/longitude numbers, resulting in the cell value
being highlighted.

Once highlighted warnings have been resolved, testing geocoding accuracy is a good
idea before visualizing the entire table. To test that a geocoded location appears as
expected, hover over the Geometry column and a Google Earth; the marble-esque
icon will appear in the far right of the cell. Select this Globe icon to preview the
geocoded location on a map. If the marker appears where it is expected (and not
in the middle of the ocean or something similar), the mapped location is correctly
geocoded. If the point appears in the ocean or somewhere undesired, irst swap the
latitude and longitude points and re-test the preview. Also note that occasionally
some points will pass the geocode preview test but still fail to appear on a map.
Another potential issue involves incorrect formatting of a ield, speciically KML
tags. It's also possible that a style has been set incorrectly in Fusion Tables. Usually,
verifying the correct formatting and geocoding solves most problems, with chart
styles being an area to check as well.

http:///

Spreadsheets, Charts, and Fusion Tables

[60]

Cell formatting
In Fusion Tables, the table cells can hold various types of map information when the
content is formatted correctly. This includes some HTML tags, marker references,
and HTML hexadecimal colors.

Markers, lines, and area
The Google Maps API, as well as built-in API functionality in Fusion Tables, has
multiple ways to denote locations and areas on a map. Markers identify a single point
on a map and often are represented by indicators of various colors, shapes, sizes,
and graphics. They only require the latitude and longitude in the geocoding column.
Marker icons available for public use are available from Google. They are referenced in
Fusion Tables by using the name given to them on the following website.

You can ind more information about marker icons for
use with Fusion Tables at https://www.google.com/
fusiontables/DataSource?snapid=99003.

Lines are a series of points linked together using the KML tags <lineString> and
<coordinates>. The structure of a KML entry in Fusion Tables is as follows:

<lineString><coordinates>

Coordinate Pair, 0

Coordinate Pair, 0

Coordinate Pair, 0

.

.

</coordinates></lineString>

A polygon is the mapping method used to outline an area on a map. The polygon is
created by combining multiple latitude and longitude points, and then using KML
tags to connect and shade the shape. The KML tags used for creating a polygon are
<Polygon>, <outerBoundaryIs>, <LinearRing>, and <coordinates>. The structure
of a polygon KML entry in the Fusion Tables Geometry column is as follows:

<Polygon><outerBoundaryIs><LinearRing><coordinates>

Coordinate Pair, 20

Coordinate Pair, 20

Coordinate Pair, 20

Coordinate Pair, 20

.

.

</coordinates></LinearRing></outerBoundaryIs><Polygon>

http:///

Chapter 3

[61]

While previously mentioned as a potential pitfall when visualizing maps, map styles
allow a developer to add dimensions and meaning to a map programmatically.
Markers (points), polygons, and lines can be formatted to display various colors,
transparencies, and sizes. Click on the Conigure styles link after selecting Visualize
| Map (Tools | Change map styles… in the new look Fusion Tables version, when
location tab is selected) to open the Change map styles window. The Fixed and
Column tabs allow a table column to set color or marker icon designation. The
Buckets tab allows colors to be assigned to various data values. The Gradient tab
is similar to the Buckets tab, but instead allows gradients of a single color to be
assigned to groups of data values.

http:///

Spreadsheets, Charts, and Fusion Tables

[62]

Info windows
Info windows are the pop-up windows that appear when an area or marker is
clicked on a map. They usually contain various points of interest about the marked
item on the map. The basic format for creating an info window is through HTML
encapsulated in a cell on the Fusion Table, although the default is to display all
columns for the entry, though not always desirable.

The info window layout can be automatically conigured, or it can be conigured
with some customizations available by selecting which columns data to display
in the window via Change info window layout. Launch the info window layout
window by clicking on the Conigure info window link under Visualize | Map
mode (Tools | Change info window layout… in the new look Fusion Tables
version). The Automatic tab allows for minimal modiication, only allowing to select
columns to be included or excluded. For a more customized info window, select the
Custom link to edit the code directly.

http:///

Chapter 3

[63]

The following is an example of a maps window that has been modiied from
the default Fusion Tables settings. In the following code, the {Title} and
{Description} tags are used to include the corresponding table columns in the
window. The HTML div tags are used to format the window.

<div class='googft-info-window' style='font-family: sans-
serif'>{Title}
{description}</div>

Within the Description column, HTML is once again used to display a picture and
create an active link to a website. The HTML used in the Description window is very
simple, and mostly consists of the
, <a href>, and <imgsrc=" > tags.

You can ind a live example at https://www.google.com/
fusiontables/DataSource?docid=1NwzGHjDNiqGS7uFx
B5KB2lvnQ9wGr2ARHXjmq9g.

http:///

Spreadsheets, Charts, and Fusion Tables

[64]

Summary
Spreadsheets charts and Fusion Tables are accessible entry points when starting
to work with Google Visualizations. They provide insight and structure to fairly
complex visualizations without requiring immense investment in learning API calls.
While they do pose limitations in comparison to the API, Spreadsheets and Fusion
Tables provide a simple method of creating visualizations, which can in turn be
expanded by using Google API capabilities.

Note that advanced layering technique or view control customization is not part of
the GUI Fusion Tables. Manipulating these advanced features, such as user deined
search ilters, unique styling of controls, and layer manipulation in the user interface
must be developed using the Fusion Tables API, Maps API, and Visualization
API. Data from Spreadsheets and particularly Fusion Tables is encouraged and
these applications become primary data sources with bonus features that can only
be unlocked through the API methods. Publishing options for the visualizations
discussed in this chapter will be addressed in Chapter 9, Publishing Options.

In the next chapter, the creation of some basic visualizations shown as part of this
chapter is discussed, but this time directly using the Visualization API.

http:///

Basic Charts
So far, the visualization examples in this book have relied heavily on the GUI
interface of various Google applications. Unfortunately, the customization
limitations of using only GUI applications quickly become evident. With the Google
applications discussed in the previous chapters, Spreadsheets and Fusion Charts, it
is fairly simple to create basic graphs and charts. Unfortunately, the sophistication of
viewing controls, data source coniguration, and even the style of the visualization
itself is ultimately limited to the controls presented by default in the application.
Apps Script gives some relief to the issue of customization, although limitations of
the Apps Script platform impose their own set of limitations. Thus, what is needed
is a customizable, feature-rich option, to build on top of the simplistic charts of
Spreadsheets and Fusion Tables. The Google APIs, speciically the Visualization
(Chart tools) API, are the required building blocks to accomplish this goal.

The world of Google APIs can at irst appear somewhat overwhelming. However,
the design and methodology behind all Google APIs is strikingly similar. This
similarity exists because of an adherence by Google to standard programming
elements, as well as existing JavaScript conventions. In addition, Google provides a
methodic, nested approach to its API architecture.

Topics covered in this chapter:

• Crash-course in basic programming concepts

• Framework of the Visualization API

• A basic Chart: two methods

Visualization API Reference is available at https://developers.
google.com/chart/interactive/docs/reference.

http:///

Basic Charts

[66]

Programming concepts
This section presents a baseline of general programming concepts in an attempt
to thwart the confusion of non-programmers while exploring the vast ocean of
Google APIs. This brief introduction to programming is by no means a complete or
authoritative source for the art that is application programming. Individuals often
spend their lives learning the particularities of programming languages; others invest
heavily in the improvement of the languages themselves. For the Google Visualization
API, a more realistic approach is to provide universal concepts that are inherent in the
Google API to developers that have little to no application programming experience.
Readers with programming experience may wish to skip this section and go to the
Visualization API common Framework section of this chapter.

Variables
Variables are locations in a program designated for storing information
temporarily while an application runs. The application is able to access the
variable and manipulate its contents. To illustrate, the task of a programming
variable is somewhat similar to the aim of a mathematical equation variable.
In an equation where 2 + x = 5, the value assigned to the variable x for this instance
would be 3. Also, it is worth noting that in this case the value of x will be static.
Variables whose purpose is to not change is referred to as a constant variable.

The style used to set variables in Google API code follows this pattern:

varvariable_name = something

Here, the variable_name is a name chosen by the developer and should be
representative of the something that's being stored in it.

Best practice

Use variable names that represent their purpose. For example: a
variable name representing an AreaChart API function could
be ac, which would be somewhat representative of the variable's
purpose (AreaChart). Better yet, assigning a variable name of data for
DataTable API function would be more representative. Note that, in
general, variables x, y, z are not good representative variable names as
it is easy to confuse their purposes in even a small amount of code.

In general, variables have the lexibility to assume various types. Text and numeric
values are generic examples. With the Visualization API, the type of variable is
automatically detected and generally does not require action on the part of the
developer in order to set the correct type.

http:///

Chapter 4

[67]

The various types of variables available in the Visualization API are as follows:

Number
In the programming world there are various types of numbers. In some
programming languages, numbers need to be identiied by type in the program in
order for the program to recognize them properly. For example, the number 2 is an
integer, but the number 2.222 is of a type called loating point due to its fraction in
decimal format. However, for the general purpose of using the Visualization API,
all types of numbers are treated simply as one type. In the previous example, 2 and
2.222 are both simply called numbers in the Visualization API.

Boolean
The concept of a Boolean value is fairly straightforward. A Boolean value can only
hold the values "True" or "False". Using a Boolean variable is similar to asking a yes
or no question without the ability to accept "maybe" as an answer. In programming
practice, Boolean variables are very useful when a condition needs to be tested to be
true or false before taking a certain action in the program. How to propose a condition
to be tested is covered in the Conditional logic section of this chapter.

The Boolean method of logical decision-making was devised by
the mathematician George Boole, and continues to bear his name.

String
A string is exactly as it sounds: it is a collection of characters saved in one variable.
Note that characters are not simply A to Z and 0 to 9, but also include punctuation
and often other special characters. Similar to number variables, strings can be used
to hold information for the application, or store static information to be used by
the application. For example, a string containing the characters that spell the word
Google would look like this:

string_name = 'Google'

It is important that characters designated to be a single string must be enclosed in
quotes. Depending on the speciic program method being used, the quotes may be
required to be single or double quotes. An example of using a string as a constant
label is as follows:

Varname_label = 'Name: '

http:///

Basic Charts

[68]

Here, 'Name: ' could be a ield label appearing in an address form application.
Note the blank space to the right of the colon. For strings, whitespace is considered
a character and may change the expected output of an application if not taken
into account.

Also, a variable may be used to store user input as a string. For example, to capture
the name entered by a user in an address form application, a variable could be
deined as follows:

Var name_field = ''

Notice, in the previous statement there is nothing, not even a whitespace, being
stored in the name_field variable. When nothing is assigned to a variable, the
variable is considered to have a value of null, or nothing. Giving a variable a
value of null is commonly used to set a clean default state. When the application
runs, the name_field variable can then be used with conidence to capture user
input accurately. Given the variable name of name_field, it would seem that this
particular variable is intended to capture name data from a form application.

Best practice

Remember that whitespace is a character if it is part of a string.

Array
Arrays look a lot like tables, but they are more versatile than a simple table as
they can have various dimensions and hold several layers of information. Yet for
purposes of the Visualization API, most arrays are generally two-dimensional, thus
having the familiar format of columns and rows with single values in the cells. The
underlying structure of the Visualization API DataTable function is essentially
an array. The DataTable function is used to create a dataset within the API script.
For example, the 2010 Chicago Census data from previous chapters can be created
completely within the script, and then manipulated by the Visualization API. The
following example constructs an array of data using a DataTable helper function
called arrayToDataTable(), and consists of several lines of data from the 2010
Chicago Census data.

http:///

Chapter 4

[69]

To reference a speciic cell in the data table, a coordinate system is used.
For example, to ind the number of females that are 20 to 24 years old,
matrix coordinates are attached to the data variable.

data[5,2]

It is important to observe that the column and row ranges begin at zero and not with
the number one. Also note the entries 'Under 5 years' is in quotes while the other
entries are numbers. Arrays can hold a variety of data types; in this speciic case,
both strings and numbers are contained within a single array.

Equation
Just as in mathematics, equations in Google API applications are a method of
performing an operation and equating it to something else. Common mathematical
operators (+, -, *, /), as well as Boolean operators (AND, OR, NOT, or alternatively
notated as &&, ||, !) can be used.

API call and attributes
Sometimes, when calling the Google APIs, it is helpful to save the resulting value.
For example, if data is created or imported it is helpful to have a single name to
reference the entire structure of data. Using the 2010 Census data for Chicago, a
data array becomes encompassed in a variable through the use of the google.
visualization.arrayToDataTable API call. Once the data variable is created,
it can be referenced in the same code as an array data[x,y], or simply as data.

var data = google.visualization.arrayToDataTable([
 ['Age', 'Male', 'Female', 'Both Sexes'],

 ['Under 5 years', 94100, 91787, 185887],

 ['5 to 9 years', 84122, 81955, 166077]

]);

http:///

Basic Charts

[70]

Conditional logic
The concept of conditional logic and loops is a natural continuation of the
Boolean section discussed previously. Boolean logic is in fact the combination
of True or False testing outcomes, also known as conditional logic. To create
meaningful logic expressions, the Boolean operators AND, OR, and NOT are
introduced. These operators are fairly self-explanatory in that they can be
communicated as a sentence in regular language. For example, "If it is sunny
AND warm, I will use my air conditioning".

The logical expression, written in pseudo syntax, to which the preceding
sentence translates:

If (sunny AND warm) {

airconditioning = true

}

If statements, as seen previously, are to test for a condition. Sunny, as well as warm
must be true in order for the preceding condition to be true. The testing result of true
assigns air conditioning a value of true. This of course is an over simpliication of the
power of conditional logic, but does provide basic insight into the thought process.
Additional tutorials on this topic can be found on the web.

Functions
Functions are essentially the "guts" of any application, and thus are also at the
core of any application using the Google APIs. Rather than writing a program of
unorganized components, functions are used to group snippets of code together
by functionality. Conceptually, functions are the method a developer uses to create
reusable tools. The following is the general structure of a function:

function doSomething () {

// create some variables…

//do some computation…

//return (or not) a result.

}

http:///

Chapter 4

[71]

With the Visualization API, functions are the primary method of encapsulating all of
the work that goes into creating the visualization itself.

Best practice

As with the variables, name functions should be named in such a way
that the name is descriptive of the purpose they serve.

Classes (and objects)
Classes have the potential to be a confusing concept, but it also helps to remember
the concept of classes in computer programming, which are no different than
other areas of study. In biology, a class is part of a hierarchy that is used to deine
animals. In education, a class is a grouping of students whose learning progress is
roughly of the same level (for example, 1st grade, 5th grade, and Kindergarten are all
educational class groupings). Therefore, a class in computer programming is a set of
instructions for building instances of functions. These instances, that can hold states,
are called Objects. When using the Visualization API, requests to the API are formed
in such a way as to relect this hierarchy.

Libraries
In relation to the Visualization API, Libraries are a collection of classes that are
used to build applications. Libraries generally consist of commonly used code,
such as mathematical functions, that are needed regularly in most applications.
Google has opted to call their API Libraries packages. For Google, API packages
are the sets of Google objects that allow any programmer a path to manipulating
Google's vast infrastructure.

Best practices

In addition to creating descriptive variable names, there are several
additional programming habits that are considered best practice
when writing code.

http:///

Basic Charts

[72]

Commenting
The purpose of good commenting practice is to ensure that another developer
will be able to determine the purpose of the application without signiicant
forensic efforts. In general, single-line comments are marked by a double forward
slash // and blocks of comments are indicated by a forward slash plus asterisks
combination /*…*/. It is generally appropriate to provide a block comment at the
beginning of a script, application, or even a function. There are a handful of topics
that can be included in the comment block:

• Description of the overall functionality

• Name/contact information of the author

• Date of the last update

• Packages/libraries used

• Revision number

/* Description: This application draws a bar chart of some data.

Author: Traci Ruthkoski

Date Revised: 9/1/2012

*/

The purpose of single-line commenting is to give short descriptions of a speciic
line or section of code in order to aid in its readability. However, a potential pitfall
when commenting is the overuse of comments, ultimately reducing the readability
of the code.

var year='2012'; // Define the year.

Of course, lack of comments does not prevent code from running. The developer
must determine the types of comments that are appropriate to their code. Ultimately,
commenting is not a requirement but a strongly suggested element of an application,
and is often a requirement when publishing applications to Google galleries
and forums.

http:///

Chapter 4

[73]

Spacing/format
When writing good code, it is also important to address its readability from a
formatting perspective. Just as writing prose requires paragraphs and margins to be
read easily, code is more readable when its logical functions are visually segmented.
The collection of proper spacing and formatting for a given code language is known
as code conventions. The following illustrates a simple framework for detecting an
error in an application. Indentation indicates that the error checking statement is
encapsulated within the computation of the DrawChart function.

function DrawChart {

 if (something == error) {

 message = 'This app encountered an error!'

 }

}

Visualization API common Framework
As discussed in Chapter 2, Anatomy of a Visualization, Visualization API code is
JavaScript-based and resides within HTML <script> tags. Unless otherwise noted,
it is assumed that all the API code intended for a HTML framework is located within
these tags.

Load API modules
For all Google API code, including the Visualization API, there are several general
components required. These are:

• Declaration of an API source URL

• Request API objects using the Google Loader

http:///

Basic Charts

[74]

Inside the irst script tag, a few short lines of HTML indicate the location of the
Google Visualization API library, hosted by Google. The second script tag invokes
a call to google.load, which is the Google Loader. The Google Loader options
indicate which API is to be loaded for the application, as well as what packages and
options for the API should also be loaded. The google.load call in the following
sample script indicates that Version 1 of the Visualization API is to be loaded. It also
indicates that the core chart package from the Visualization API module is to be
retrieved. The Google Loader is a common component across all Google APIs, and is
generally found shortly after the JavaScript declarations and source information.

After the API source has been set and the API has been speciied, the subsequent
script tag set holds the actual API application logic. At the very end of the
code, a inal common component renders the visualization. The google.setOn
LoadCallback(drawVisualization); line tells the Google Loader to execute
drawVisualization once the page has loaded.

The Google Loader documentation is available at:
https://developers.google.com/loader/.

The combination of Visualization API packages and chart types is not particularly
intuitive. The corechart package happens to contain the most types of chart. This is
useful knowledge as visualizations that fall under the same package are most likely
to be interchangeable, while other types almost certainly require a different data
layout. At the time of publication, the following chart is a listing of current packages
and chart types pairings. Note that older, depreciated versions of the API may still be
available, but are instead covered under a Google depreciation policy.

http:///

Chapter 4

[75]

Package Chart type Visual example

corechart AreaChart

corechart BarChart

corechart BubbleChart

corechart CandlestickChart

corechart ColumnChart

http:///

Basic Charts

[76]

Package Chart type Visual example

corechart ComboChart

corechart LineChart

corechart PieChart

corechart ScatterChart

http:///

Chapter 4

[77]

Package Chart type Visual example

corechart SteppedAreaChart

imagechart ImageChart

Depreciated, but available
until April 20, 2015

imagechart ImageCandlestickChart

Depreciated, but available
until April 20, 2015

imagechart ImageBarChart

Depreciated, but available
until April 20, 2015

http:///

Basic Charts

[78]

Package Chart type Visual example

imageareachart ImageAreaChart

Depreciated, but available
until April 20, 2015

imagelinechart ImageLineChart

Depreciated, but available
until April 20, 2015

imagepiechart ImagePieChart

Depreciated, but available
until April 20, 2015

annotatedtimeline AnnotatedTimeLine

http:///

Chapter 4

[79]

Package Chart type Visual example

charteditor ChartEditor

gauge Gauge

geochart GeoChart

geomap GeoMap

intensitymap IntensityMap

motionchart MotionChart

http:///

Basic Charts

[80]

Package Chart type Visual example

orgchart OrgChart

imagesparkline ImageSparkLine

Depreciated, but available
until April 20, 2015

table Table

treemap TreeMap

The preceding images can be found at http://code.google.com/
apis/ajax/playground/.

Apps Script Wrapper
Just as HTML requires information regarding the location of the API objects,
Apps Script requires its own wrapper to encapsulate API code. Depending on the
integration with other Google Apps or as a stand-alone entity, the Apps Script
wrapper can take several similar yet slightly different forms.

http:///

Chapter 4

[81]

For Google Apps integration, especially with Google Spreadsheets, additional
functionality in the GUI is often required. A typical need is an additional drop-down
menu item from which the visualization of data is launched. To create a custom menu
item in Google Spreadsheets, the Google UI (user interface) service must be used.

Using the Google UI service in Apps Script allows for building a user display,
control interface, or an information capture method. The following image illustrates
a realization of a custom menu item in the Spreadsheet menu bar.

To create the custom Script Menu item, the following function must be included in
the Apps Script attached to the desired Google Spreadsheet ile:

functiononOpen() {

 /* Retrieves the active spreadsheet as a source */

 var sheet = SpreadsheetApp.getActiveSpreadsheet();

 /* Create the menu entry for a function */

 var entries = [{

 /* Name of the dropdown list item */

 name : "Launch App",

functionName : "doGet"

}];

 /* Create the Spreadsheet Menu tab named "Script Menu" */

sheet.addMenu("Script Menu", entries);

};

Another common need is to have the resulting visualization display as a web
page. In Apps Script, the designated function name doGet must be used in order
to display the visualization on a web page. This is a speciic requirement for the
doGet function, is tied to Apps Script method of handling requests, and is a special,
reserved function. Finally, if the visualization is to be rendered as a web page but
as a standalone script in Google Drive, the two lines containing reference to the
Spreadsheet application can be removed.

functiondoGet() {

 .

http:///

Basic Charts

[82]

 .

 .

 // Use the UI service to create a UI for the app

 var ui = UiApp.createApplication();

 ui.add(chart);

 // Retreive information from the open spreadsheet

 var spreadsheet = SpreadsheetApp.getActiveSpreadsheet();

 // Show the UI in the spreadsheet application

 spreadsheet.show(ui);

}

or,

Var ui = UiApp.createApplication();

// No spreadsheet app here so show UI as a web app

ui.add(chart);

Apps Script Ui Service documentation is available at
https://developers.google.com/apps-script/uiapp.

Information on displaying a User Interface from a Spreadsheet is
available at https://developers.google.com/apps-script/
uiapp#DisplayingSpreadsheet.

A basic visualization
With the general structure of visualization application established for both
HTML-based and App Script apps, data and rendering code can now be added.
For now, the data used in each sample is created within the script for purposes of
illustration. In Chapter 6, Data Manipulation and Sources, data source connectivity
outside the API script will be addressed. However, the following high-level logic
for creating a visualization remains the same.

Logical steps to create a visualization are as follows:

1. Create/import/connect to the data.

2. Set the parameters, and perform calculations.

3. Render the Chart.

For the majority of developers, the most recognizable method of development is
in a HTML context. For HTML, the Google Code Playground is perhaps the best
development platform for newcomers.

http:///

Chapter 4

[83]

Code Playground
Using the Google Code Playground, the following code renders the 2010 Chicago
Census data used in the previous chapter examples.

function drawVisualization() {
 // Create and populate the data table.
 var data = google.visualization.arrayToDataTable([
 ['Age', 'Male', 'Female', 'Both Sexes'],

 ['Under 5 years', 94100, 91787, 185887],

 ['5 to 9 years', 84122, 81955, 166077],

 ['10 to 14 years', 83274, 81192, 164466],

 ['15 to 19 years', 91528, 91405, 182933],

 ['20 to 24 years', 108407, 114620, 223027],

 ['25 to 29 years', 134931, 141208, 276139],

 ['30 to 34 years', 119828, 119584, 239412],

 ['35 to 39 years', 100651, 99857, 200508],

 ['40 to 44 years', 89957, 87674, 177631],

 ['45 to 49 years', 85645, 86217, 171862],

 ['50 to 54 years', 80838, 86037, 166875],

 ['55 to 59 years', 68441, 76170, 144611],

 ['60 to 64 years', 54592, 63646, 118238],

 ['65 to 69 years', 37704, 47366, 85070],

 ['70 to 74 years', 27787, 38238, 66025],

 ['75 to 79 years', 20448, 30252, 50700],

 ['80 to 84 years', 14637, 24467, 39104],

 ['85 to 89 years', 7842, 16548, 24390],

 ['90 years and over',3340, 9303, 12643]

]);

 // Create and draw the visualization.

 new google.visualization.AreaChart(document.getElementById('visuali
zation')).

 draw(data, {curveType: "function",

 width: 600, height: 400,

 vAxis: {title: 'Population'},

 hAxis: {title: 'Age Groups'}

);

}

http:///

Basic Charts

[84]

First, in the drawVisualization function, a data variable is created to house the
census data. Next, the data variable is passed to the chart.draw() method and is
rendered via the API. With the call to draw the visualization, additional formatting
parameters are included at the same time.

Finally, in its HTML form entirety, the Area Chart visualization of the 2010 Chicago
Census data looks like the following code:

<!--
You are free to copy and use this sample in accordance with the terms
of the
Apache license (http://www.apache.org/licenses/LICENSE-2.0.html)
-->

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="content-type" content="text/html;
charset=utf-8"/>

 <title>

 Google Visualization API Sample

 </title>

 <script type="text/javascript" src="http://www.google.com/
jsapi"></script>

 <script type="text/javascript">

 google.load('visualization', '1', {packages: ['corechart']});

 </script>

 <script type="text/javascript">

 function drawVisualization() {

 // Create and populate the data table.

 var data = google.visualization.arrayToDataTable([

 ['Age', 'Male', 'Female', 'Both Sexes'],

 ['Under 5 years', 94100, 91787, 185887],

 ['5 to 9 years', 84122, 81955, 166077],

http:///

Chapter 4

[85]

 ['10 to 14 years', 83274, 81192, 164466],

 ['15 to 19 years', 91528, 91405, 182933],

 ['20 to 24 years', 108407, 114620, 223027],

 ['25 to 29 years', 134931, 141208, 276139],

 ['30 to 34 years', 119828, 119584, 239412],

 ['35 to 39 years', 100651, 99857, 200508],

 ['40 to 44 years', 89957, 87674, 177631],

 ['45 to 49 years', 85645, 86217, 171862],

 ['50 to 54 years', 80838, 86037, 166875],

 ['55 to 59 years', 68441, 76170, 144611],

 ['60 to 64 years', 54592, 63646, 118238],

 ['65 to 69 years', 37704, 47366, 85070],

 ['70 to 74 years', 27787, 38238, 66025],

 ['75 to 79 years', 20448, 30252, 50700],

 ['80 to 84 years', 14637, 24467, 39104],

 ['85 to 89 years', 7842, 16548, 24390],

 ['90 years and over',3340, 9303, 12643]

]);

 // Create and draw the visualization.

 new google.visualization.AreaChart(document.getElementById('vi
sualization')).

 draw(data, {curveType: "function",

 width: 600, height: 400,

 title:'Chicago Population by Age and Sex - 2010 Census',

 vAxis: {title: 'Population'},

 hAxis: {title: 'Age Groups'}

 }

);

 }

 google.setOnLoadCallback(drawVisualization);

 </script>

 </head>

 <body style="font-family: Arial;border: 0 none;">

 <div id="visualization" style="width: 500px;
height: 400px;"></div>

 </body>

</html>

http:///

Basic Charts

[86]

For additional chart.draw() coniguration options using AreaChart, check the
following link:

https://developers.google.com/chart/interactive/docs/gallery/

areachart#Configuration_Options

If the documentation style used by Google is unfamiliar, refer to the following image
as an aid.

The Visualization API and Google APIs in general follow the preceding
documentation convention.

For experienced JavaScript users, Chart.draw()
options follow standard JavaScript object literal syntax.

Apps Script
For an Apps Script visualization of the same 2010 Census data, similar but equivalent
API calls are used to create a data variable and then render the data as an area chart.

functiondoGet() {

var data = Charts.newDataTable()

 .addColumn(Charts.ColumnType.STRING, "Age")

http:///

Chapter 4

[87]

 .addColumn(Charts.ColumnType.NUMBER, "Male")

 .addColumn(Charts.ColumnType.NUMBER, "Female")

 .addColumn(Charts.ColumnType.NUMBER, "Both Sexes")

 .addRow(['Under 5 years', 94100, 91787, 185887])

 .addRow(['5 to 9 years', 84122, 81955, 166077])

 .addRow(['10 to 14 years', 83274, 81192, 164466])

 .addRow(['15 to 19 years', 91528, 91405, 182933])

 .addRow(['20 to 24 years', 108407, 114620, 223027])

 .addRow(['25 to 29 years', 134931, 141208, 276139])

 .addRow(['30 to 34 years', 119828, 119584, 239412])

 .addRow(['35 to 39 years', 100651, 99857, 200508])

 .addRow(['40 to 44 years', 89957, 87674, 177631])

 .addRow(['45 to 49 years', 85645, 86217, 171862])

 .addRow(['50 to 54 years', 80838, 86037, 166875])

 .addRow(['55 to 59 years', 68441, 76170, 144611])

 .addRow(['60 to 64 years', 54592, 63646 118238])

 .addRow(['65 to 69 years', 37704, 47366, 85070])

 .addRow(['70 to 74 years', 27787, 38238, 66025])

 .addRow(['75 to 79 years', 20448, 30252, 50700])

 .addRow(['80 to 84 years', 14637, 24467, 39104])

 .addRow(['85 to 89 years', 7842, 16548, 24390])

 .addRow(['90 years and over', 3340, 9303, 12643])

 .build();

var chart = Charts.newAreaChart()

 .setDataTable(data)

 .setDimensions(600, 400)

 .setXAxisTitle("Age Groups")

 .setYAxisTitle("Population")

 .setTitle("Chicago Population by Age and Sex - 2010 Census")

 .build();

varui = UiApp.createApplication();

ui.add(chart);

returnui;

}

The purpose of illustrating equivalent methods through both the HTML and
Apps Script example is to demonstrate that there is no single method of coding
a visualization. Instead, there are multiple options available. Choosing an option
becomes dependent on the overall application purpose.

http:///

Basic Charts

[88]

Summary
In general, learning the structure of the Google API environment is just as valuable
as viewing speciic examples of code. With the knowledge of how an API application
its within other Google Applications and also HTML, a developer is able to
capitalize on the integrated nature of Google products. Furthermore, familiarity with
the general Google API structure beneits not only Visualization API application
work, but also any other Google API use.

This chapter presented the basic information required to code a simple visualization
with the Google API, in particular the Visualization API. Limitations of chart
creation that have not yet been addressed are more eloquent data retrieval,
interactive abilities, and customized formatting of the charts themselves. So far,
relatively little code has been required to create visualizations presentations. This
trend continues as the style formatting issue is addressed in the next chapter.

http:///

Formatting Charts
Customization of visualization colors, fonts, views, and other visual attributes add
readability and meaning to data displays. In both Spreadsheets and Fusion Tables,
the Chart Editor is available in a GUI format, allowing non-programmers to set
style choices. The Visualization API presents a larger set of customization options,
including style options available through GUI methods. API-based style options
include color and font styling, but also include the ability to graphically represent
changes in data values through animated transitions. Finally, any style options
conigured through the Chart Editor in Spreadsheets or Fusion Tables can be set
by individual end users by embedding the API Chart Editor component within the
visualization itself.

Topics covered in this chapter are as follows:

• Spreadsheets and Fusion Tables customization

 ° Colors and fonts

 ° Filters

• Visualization API

 ° Colors, fonts, and labels

 ° Axis options

 ° DataTable formatters

• Animated transitions

• Chart Editor

Regardless of the method used, style options can largely be divided into categories
based on the nature of user interaction when viewing the inal chart. These style
categories are both static and dynamic/interactive.

http:///

Formatting Charts

[90]

Static
Static style options are those that are generally not intended for end-user interaction.
Fonts, axis labels, colors, and ilters fall under the static category. However, many of
these options can become interactive as user controls and dashboards are added to
the chart.

Spreadsheets
Customizable formatting options for Spreadsheets can be found in the Chart
Editor. Instructions on using the built-in Spreadsheets Chart Editor was discussed in
Chapter 3, Spreadsheets, Charts, and Fusion Tables. Options to customize the look of the
data table itself are found under the Format menu tab. Additionally, the Conditional
formatting… option under the Format tab includes conditional logic options similar
to those found in any basic spreadsheet application. (Example logic: Color the cell
green if value is above 10.)

For Spreadsheets, non-API styling capability does not extend beyond basic
spreadsheet logic and Chart Editor options. It is possible to use the Visualization API
inside an Apps Script attached to a spreadsheet, but this option is an extension of
Spreadsheets and not considered built-in as it is not a GUI capability.

Fusion Tables
Through data ilters and views, Fusion Tables offers a slightly more robust
formatting option than Spreadsheets. For font and color styling, the Chart Editor is
used. Fusion Tables Chart Editor in fact is the same underlying Chart Editor object
that also appears as a built-in function to Spreadsheets. Yet in Fusion Tables, the
new look version of the application affords additional usability beyond just the
Chart Editor. In the newer version, charts are created as tabs and can be kept as a
collection. This arranging ability allows for a variety of ilters, charts, and views of
the same data set to be displayed in one location. Although still in transition at the
time of publication, it is expected the new look for Fusion Tables will quickly become
the default interface.

The following example is a pie chart created in Fusion Tables using the Chicago
2010 Census data. This chart is a visualization of the male population only, with
the slices in hue color representing a subset of larger age groupings. According
to the data, Chicago appears to be a young city, with a little over half of its male
population under the age of 40 in 2010. Color formatting is a particularly useful
added dimension to a chart. Due to this, in the following example, it can be easily
determined that 75 percent of the Chicago male population is under 50 years of age,
given how the blue and green hues visually represent this population segment.

http:///

Chapter 5

[91]

When creating a chart in Fusion tables, it is possible that by default the chart settings
may or may not match the expected display for the particular visualization. For
example, in order for all segments to be displayed, the preceding pie chart required
the slice count to be set from the default to 19, which is the number of age categories
in the data set.

Best practice tip

It is always worthwhile to double-check the constraints of the chart type
in order to be sure all desired data is accounted for in the graphic.

http:///

Formatting Charts

[92]

Chart Editor
To alter the style settings of a visualization in Fusion Tables (New Look), click on the
Change appearance… button in the top-right corner of the chart.

In Fusion Tables, the Change appearance… button is simply an instance of the Chart
Editor, with functions described in Chapter 3, Spreadsheets, Charts, and Fusion Tables.

Filters
To create a visualization of a subset of data, Fusion Tables is capable of creating
ilters. Select the blue Filter drop-down button in the top-left corner of the chart.
The drop-down menu will contain the options for the data which can be iltered and
displayed. Options available should match the columns in the table. In the following
screenshot, the male population of Chicago has been iltered to view only the male
population under 50 years of age. It can be noted that the age distribution of the
subgroup under 50 years of age is fairly evenly distributed, with the 25 to 29 age
group being a few percentages higher than the rest.

http:///

Chapter 5

[93]

You can ind the live example at https://www.google.
com/fusiontables/DataSource?docid=1Olo92KwNin8
wB4PK_dBDS9eghe80_4kjMzOTSu0#chartnew:id=8.

API
The Visualization API offers a signiicant number of options for style customization.
Fine-grained control of color, font, size, and view are possible through the chart.
draw() or table.draw() options, as well as through Cascading Style Sheet
declaration methods. Special icon graphics are included in tables, in addition to the
expected chart color and font styling. These special graphics are called formatters
and are provided as an API function.

Colors and fonts: Inline
To provide the style lexibility when setting a table or chart color scheme, the draw()
method is used. Both the table and chart draw calls require the data set variable and
list of options to be set.

chart.draw(data_variable, options)

Or

table.draw(data_variable, options)

The list of options can be included directly in the draw() line of code, or passed to
the call as a variable. The inline option for draw() follows this format:

table.draw(data, {option_name: value})

Where passing a list of options to the draw() method would be as follows:

var options = {

 width: 400,

 height: 240,

 title: 'Title of Graph',

 colors: ['#hex_color1', '#hex_color2', '#hex_color3'] };

chart.draw(data, options);

To include additional options in the list, simply use a comma between each option.
Regarding option availability, the type of chart determines each chart's options.
Documentation for option formatting can be found with the corresponding chart
type documentation on the Google Chart Tools Developers web page.

http:///

Formatting Charts

[94]

You can ind more information about Google Chart Developers
at https://developers.google.com/chart/.

Finally, to recreate the pie chart of Chicago's 2010 male population shown earlier
in this chapter using the API, the following formatting information would be used.
Note the DataTable has been omitted, as it remains identical to previous examples
but would be required for a complete recreation of the chart rendering.

new google.visualization.PieChart(document.getElementById('visualizat
ion')).

 draw(data, {

 title:"Chicago Male Population by Age - 2010 Census",

 titleTextStyle:

 {color: #635A5E, fontName: 'cursive', fontSize: 25},

 colors:

['#84160C', '#CC0000', '#E06666', '#E69138', '#F6B26B', '#F1C232',
'#FFD966', '#A64D79', '#C27BA0', '#674EA7', '#8E7CC3', '#3C78D8',
'#6D9EEB', '#3D85C6', '#6FA8DC', '#6AA84F', '#93C47D', '#B6D7A8',
'#A2C4C9'],

is3D:true,

reverseCategories:true

});

http:///

Chapter 5

[95]

Colors and fonts: Cascading Style Sheets
Style options for a table can also be set using Cascading Style Sheets. The style
deinitions using CSS within the API script follow the same conventions as with
HTML. The deined CSS styles are then grouped together by creating a variable
that holds the information matching a CSS style to a speciic table component.

<style type='text/css'>

 .table-color {

 color: #635A5E;

 }

 .big-font {

 font-size: 25px;

 }

 .header-font {

 font-style: cursive;

 }

</style>

. . .

var cssClassNames = {

 'headerRow': 'big-font header-font',

 'tableRow': 'table-color'

 };

var options = {'cssClassNames': cssClassNames};

Finally, the table.draw() call uses the options variable by effectively passing the
CSS information along to the visualization draw() method.

You can ind a CSS example at https://developers.google.com/
chart/interactive/docs/examples.

Note that it also follows that charts are theoretically able to inherit styles from CSS
iles given their adherence to framework standards, of course assuming the chart
itself allows the coniguration.

http:///

Formatting Charts

[96]

Views
Regardless of the size of a dataset, it may be desirable to only show a portion
of the data in a particular chart. The Visualization API offers a method to create
data-targeted charts by using the DataView class. Additionally, Data Views are
nested and thus provide the ability to create views from other views. Through
the DataView class, it is also possible to create different styles of horizontal and
vertical axes.

Using DataView
DataView does not change data values, but instead designates which columns are to
be viewed in the chart. It is also possible to specify particular rows as viewable. Both
row and column views can be set manually by designating them directly in the view,
or programmatically through other decision processes. The following example is a
view intended to only show the age group categories and corresponding population
numbers for males from the 2010 Chicago Census data. The code for creating and
drawing the view itself is included here, but note in the live example the data in
DataTable does not change in order to create the view.

// Make a view of only age groups and males

var dataView = new google.visualization.DataView(data);

dataView.setColumns([0,1]);

// Draw a table with the new view

var table = new google.visualization.Table(document.
getElementById('table'));

table.draw(dataView, {width: 400, height: 200});

// Draw a chart with the new view

var chart = new google.visualization.ColumnChart(document.
getElementById('chart'));

chart.draw(dataView, {width: 400, height: 200});

Here we designated the columns to be viewed by using the setColumns function of
DataView and set the coniguration to a variable. Next, the new variable containing
the view information is used to create a chart. In the preceding code snippet, the new
view, dataView, is used to create a table in addition to a chart. The titles of the new
view are deined as ordinary HTML. The resulting visualization is as follows:

http:///

Chapter 5

[97]

You can ind a live example at http://gvisapi-packt.
appspot.com/ch5-examples/ch5-dataview.html.

Axes options
For both horizontal and vertical chart axes, there are several basic customization
options. Just as with other chart customizations, the axes are modiied through the
chart.draw() function. To modify the horizontal axis, the hAxis option of chart.
draw() is used. Similarly, to format the vertical axis, vAxis of chart.draw() is
implemented. For example, in order to set the horizontal axis title to "Age Groups"
on the Census Area Chart, the following option would be listed in the AreaChart.
draw() function:

hAxis: {title: 'Age Groups'}

http:///

Formatting Charts

[98]

To discuss advanced axis options, it is important to irst understand several terms
associated with axes. Firstly, axes can be deined as discrete or continuous. A discrete
axis is one that has values that are deined into categories or groups. These groups are
also evenly spaced. The Chicago Census data has a column of a series of age groups,
which is interpreted as a discrete axis. A continuous axis has an ininite number of
values. The population number axis of the Chicago Census is considered a type of
continuous axis in this case, even though its values (population) are not truly ininite.

In addition to being either discrete or continuous, an axis can be either major
or minor. A major axis is the natural interpretation of the chart. In the Chicago
Census example, the age groups make up the major axis because the age groups
are the intended primary focus relative to the population count. A minor axis
is the secondary element in the graph, in this case being the population per age
category. Finally, while the major axis is more likely to be the horizontal axis, this
is not necessarily always the case. Other rules to know regarding major/minor and
discrete/continuous axes are as follows:

• The major axis can be horizontal or vertical

• The major axis can be discrete or continuous

• The minor axis is always continuous

Most axis settings will conform to the type of chart and data represented. However,
it is possible to control the type of major axis through the dataView.SetColumns
attribute, which was previously used in this chapter to set views. To make an axis
discrete, set the type to string inside the dataView.SetColumns attribute.

// Set column 1 to be string

dataView.SetColumns([1, type: 'string']);

To convert a discrete axis to continuous, set the type to number, date, datetime, or
timeofday.

The Axes Options documentation is available at https://developers.
google.com/chart/interactive/docs/customizing_axes.

http:///

Chapter 5

[99]

DataTable formatters
Formatters are special functions provided by the API that insert graphic
representations into a table visualization. There is a handful of formatters available:

• Arrow

• Bar

• Color

• Date

• Number

• Pattern

All formatters follow the same method as other API calls, with the formatter name
followed by its options. The following line creates the formatter object:

google.visualization.formatter_name(options)

Formatters only affect one column at a time. To format multiple columns, use
multiple formatter calls. The following line applies the formatter to the second
column in the data table (irst column is 0):

Formatter_name.format(data, 1);

In addition, formatters require that the AllowHTML option from table.draw() is set
to true. This requirement is due to the fact that formatters are rendered as HTML,
and thus HTML must be allowed in the table in order to be viewed properly.

In summary, the process for using a formatter is as follows:

1. Create the data table.

2. Create formatter(s).

3. Apply formatter(s) to a column(s).

4. Draw the table.

Formatters can only be used with DataTable and not DataView
as DataView is read-only.

http:///

Formatting Charts

[100]

Arrow
The arrow formatter creates arrow icons next to values in the table. The arrow is
green and points upward when the value in the table cell is above a certain value.
Similarly, the arrow is red and points downward when the cell value is below a
certain threshold. If the value is equal to the threshold value, no arrow is displayed.

In the following example, the threshold value is set to 0, which is also the default.

To change the threshold value, use the base option available for TableArrowFormat.
The following line sets the threshold for comparison to a value 12.

var formatter = new google.visualization.TableArrowFormat({base: 12});

A live example is available at http://gvisapi-packt.
appspot.com/ch5-examples/ch5-arrowformatter.html.

Bar
The bar formatter creates a bar-shaped visualization of the value in an adjacent
column in the table. Just as with arrow formatters, bar formatters are also able to
receive options at the time the formatter object is created. In the following example,
a bar formatter is created for the male, female, and total population columns of the
Chicago Census 2010 data. A new formatter must be created for each column. The
bar colors, size, and maximum value are set using the formatter options available
through the API.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <meta http-equiv="content-type" content="text/html;

 charset=utf-8" />

 <title>Google Visualization API Sample</title>

 <script type="text/javascript"

 src="http://www.google.com/jsapi"></script>

 <script type="text/javascript">

 google.load('visualization', '1', {packages: ['table']});

 function drawVisualization() {

http:///

Chapter 5

[101]

 // Create and populate the data table.

 var data = google.visualization.arrayToDataTable([

 ['Age', 'Male', 'Female', 'Both Sexes'],

 ['Under 5 years', 94100, 91787, 185887],

 ['5 to 9 years', 84122, 81955, 166077],

 ['10 to 14 years', 83274, 81192, 164466],

 ['15 to 19 years', 91528, 91405, 182933],

 ['20 to 24 years', 108407, 114620, 223027],

 ['25 to 29 years', 134931, 141208, 276139],

 ['30 to 34 years', 119828, 119584, 239412],

 ['35 to 39 years', 100651, 99857, 200508],

 ['40 to 44 years', 89957, 87674, 177631],

 ['45 to 49 years', 85645, 86217, 171862],

 ['50 to 54 years', 80838, 86037, 166875],

 ['55 to 59 years', 68441, 76170, 144611],

 ['60 to 64 years', 54592, 63646, 118238],

 ['65 to 69 years', 37704, 47366, 85070],

 ['70 to 74 years', 27787, 38238, 66025],

 ['75 to 79 years', 20448, 30252, 50700],

 ['80 to 84 years', 14637, 24467, 39104],

 ['85 to 89 years', 7842, 16548, 24390],

 ['90 years and over', 3340, 9303, 12643]

]);

 // Create and draw the visualization.

 var table = new

 google.visualization.Table(document.getElementById

 ('visualization'));

 // Create formatters for each column

 var formatter_male = new

 google.visualization.TableBarFormat({width: 200,

 colorPositive: 'blue', max: 276139});

 var formatter_female = new

 google.visualization.TableBarFormat({width: 200,

 colorPositive: 'blue', max: 276139});

 var formatter_both = new

 google.visualization.TableBarFormat({width: 200,

 colorPositive: 'green', max: 276139});

 // Apply formatter to male, female, & both sexes columns
 formatter_male.format(data, 1);

http:///

Formatting Charts

[102]

 formatter_female.format(data, 2);

 formatter_both.format(data, 3);

 table.draw(data, {allowHtml: true,

 alternatingRowStyle: true});

 }

 google.setOnLoadCallback(drawVisualization);

 </script>

</head>

<body style="font-family: Arial;border: 0 none;">

<div id="visualization" style="width: 1200px; height: 500px;"></div>

</body>

</html>

The following is the resulting visualization from the preceding example code:

A live example is available at http://gvisapi-packt.
appspot.com/ch5-examples/ch5-barformatter.html.

http:///

Chapter 5

[103]

Color
The color formatter allows the developer to programmatically set color values for cells
in a table visualization. Similar to the capabilities of general spreadsheet applications,
cells can also be set to vary in color depending on an assigned mathematical condition.
For example, in the following snippet of a table containing the Chicago Census 2010
data, the color of the cell is red with a white font if the number of individuals in that
particular group is between 0 and 10000. The same cell is formatted orange with a
white font if the number of individuals is between 10001 and 99999.

A live example is available at http://gvisapi-packt.
appspot.com/ch5-examples/ch5-colorformatter.html.

Date
To display a date in a table, use the DateFormat formatter. The DateFormat
Formatter has three options: short, medium, and long. The format option type
is set at the time of the creation of the formatter.

var formatter = new google.visualization.DateFormat({formatType:'medi
um'});

The short, medium, and long types refer to the style in which the date is displayed.
The short format is represented only with numbers and the year is truncated to two
digits. The medium format uses all four digits of the year and provides the name of
the month in its abbreviated form. The long format is the same as the medium format,
but the name of the month is spelled out in its entirety.

A live example is available at http://gvisapi-packt.
appspot.com/ch5-examples/ch5-dateformatter.html.

http:///

Formatting Charts

[104]

Number
To indicate special formatting for numbers, the number formatter is used. In the
following example, the font color is set based on a positive or negative numerical value.

The number formatter can also be set to indicate a preix or sufix symbol and
provide parentheses for negative values. Formatting is set in a similar manner
to other formatters using the options method.

var formatter =

new google.visualization.TableNumberFormat(

 {prefix: "$", negativeColor: 'red', negativeParens: true});

A live example is available at http://gvisapi-packt.appspot.
com/ch5-examples/ch5-numberformatter.html.

Pattern
The purpose of a pattern formatter is to condense two columns of information into
a single column for display. This method is particularly useful when creating a table
of URL links or mailto links. To create a table with a pattern formatter, select two
columns to condense as a display. In the following example, the website name's
column and corresponding URL's column are condensed to produce a live link for
each site.

http:///

Chapter 5

[105]

The previous sample was created from the following code:

// Create and populate the data table.

var data = google.visualization.arrayToDataTable([

 ['US Census Bureau Links', 'URL'],

 ['Home Page', 'www.census.gov/'],

 ['Research Matters Blog',

 'researchmatters.blogs.census.gov'],

 ['Random Samplings Blog', 'blogs.census.gov'],

]);

// Create and draw the visualization.

var table = new google.visualization.Table(document.getElementById('vi
sualization'));

var formatter = new google.visualization.TablePatternFormat('{0}');

formatter.format(data, [0, 1]); // Apply formatter and set the
formatted value of the first column.

var view = new google.visualization.DataView(data);

view.setColumns([0]); // Create a view with the first column only.

table.draw(view, {allowHtml: true});

A live example is available at http://gvisapi-packt.appspot.
com/ch5-examples/ch5-pattern.html.

You can ind more information about Formatter Documentation at
https://developers.google.com/chart/interactive/docs/
reference#formatters.

Paging
Formatting a table into pages is a common practice when a long list of data needs
to be presented in a small amount of space. The DataTable object allows for the
enabling and customization of paging on table renderings. To convert a basic table
into a paged table, add the following option to the table.draw() call.

page: true

Paging conigurations may also be further customized. The full API request with the
option to restrict the number of items per page to 5 is as follows:

table.draw(data, {allowHtml: true, page: 'enable', pageSize: 5});

http:///

Formatting Charts

[106]

Additional format settings can also be included in the options list, including
how many rows to display per page (pageSize), the page to display by default
(startPage), and paging icons or text to replace the default arrow buttons
(pagingSymbols).

A live example is available at http://gvisapi-packt.
appspot.com/ch5-examples/ch5-paging.html.

Dynamic or interactive
Animated transitions, the Chart Editor options, and dashboards can all be considered
as either dynamic or interactive visualizations.

Animated transitions
The purpose of animated transitions with Chart Tools is to maintain a smooth
transition between two different but very similar sets of data. For animations,
two data sets must be supplied in order to make the before/after transition. The
animation of the transition is triggered by an event, which is most often a user
button-click. Animated transitions are a type of event control and are discussed
further in Chapter 7, Dashboards, Controls, and Events.

The Animated Transitions documentation is available at https://
developers.google.com/chart/interactive/docs/animation.

http:///

Chapter 5

[107]

Dashboards and controls
Although the topic of dashboards and controls has an entire chapter dedicated to
its many applications, the concept of using a control mechanism to view data can be
categorized as dynamic/interactive formatting. A dashboard is simply one or more
real-time ilter control(s) made available to the end user. In Chapter 7, Dashboards,
Controls, and Events, the various aspects of end-user chart manipulation are covered
in depth.

Chart Editor for users
It is possible to evoke the same Chart Editor used in Spreadsheets and Fusion Tables
in an API-driven visualization. Unfortunately, the Chart Editor option only allows
the Chart Wrapper (wrapper.draw()) method to be used to render the chart. If
speciic customization only available through chart.draw() is required, the Chart
Wrapper limitations may become an issue. This topic is covered in additional detail
in Chapter 7, Dashboards, Controls, and Events.

Summary
Formatting a chart can range from simple style choices of color to interactive
displays manipulating the data view. In this chapter, relatively static formatting
options were discussed. Interactive methods for formatting views of the data set
were also introduced but not explored in detail. Additionally, the intertwined
relationship of a dataset and formatting options became evident.

In the following chapters, both data resource management techniques and
end-user interactive interfaces are explored in detail. The overall goal of the
upcoming chapters is to present a comprehensive picture of the relationship
between data, interactive interfaces, and style as a vehicle to convey meaning
in a visualization.

http:///

http:///

Data Manipulation

and Sources
Until now, data rendered in this book's examples have been deined within the code
itself. Given this is a fairly limited method of storing data it naturally follows that
a connection to external data sources must be developed. This chapter is dedicated
to the topic of data accessibility for use in the Visualization API, including the
following topics:

• Preparing/cleaning data

• Manipulating data with the Visualization API

• Coniguring the following to be consumed as a data source:
 ° Spreadsheets

 ° Fusion Tables

• Manipulating data with their native APIs

• Apps Script equivalent functionality

• Creating your own data source

Data management is a topic that ranges well beyond the pages of this book, and
the survey of methods presented in this chapter give only a handful of technical
methods for working with data. This chapter is also not an exhaustive description of
all Google data capabilities. For example, during the writing of this book, the Google
Big Query (no SQL) and Prediction APIs are available as experimental options from
the Apps Script development platform. It is very likely that as Google continues to
further integrate API accessibility, additional data-focused APIs will emerge and
become integrated as well. Also, beyond the tools provided by Google, traditional
methods of database management are equally valid methods of data maintenance.

http:///

Data Manipulation and Sources

[110]

Preparing data
In general, it can be reasonably assumed that most collections of data are not as
pristine as one would like them to be. Inconsistencies, poorly designed structures,
and even mysterious extra whitespaces can be a nightmare for an average developer
attempting to mine even the smallest amount of useful information. While not
required, a best practice for data visualization is to irst verify that the data to be
visualized is formatted as expected.

Best practice

Before visualizing data, be sure it is arranged as expected and is
free from inconsistencies.

The Google answer to the prevailing issue of dirty data is the free software tool,
Google Reine. At the time of publication, Google Reine was in the process of
transitioning from a Google Code hosted project to a GitHub hosted project called
Open Reine. In either case, the capabilities and intentions of the tool remain the
same. The application is a downloadable installation for Mac, Windows, and Linux
operating systems. The stand-alone application is intentionally not a web service
by design, as users with sensitive or private data can also use the tool without
exposing their data on the Web. The intention of Google Reine is to provide the big
picture of data, clean up messy raw data, and to discover and ix inconsistencies. It is
particularly suited for public data, but can be used with any desired dataset.

The Google Reine documentation is available at
https://code.google.com/p/google-refine/.

The Open Reine documentation is available at
http://openrefine.org/.

Google Reine – importing data
Google Reine allows data of various formats and origins to be imported. The import
wizard lists the formats Google Reine will accept. The application also allows for
import from various locations, including Google Drive. The 2010 Chicago Census
data that has been the subject of examples in the previous chapters can be imported
into Reine from Google Drive by selecting Google Data | Chicago_Census_2010_
Ages when signed into the Google Drive account used for previous examples.

https://code.google.com/p/google-refine/
https://code.google.com/p/google-refine/
http:///

Chapter 6

[111]

Google Reine – Facets
In Google Reine, a Facet is a feature or element of data. The primary capabilities of
a Facet are two-fold. First, a Facet on a column of data allows the user to view the
big picture of that column's data. Second, Facets are useful when a bulk change is to
be performed on a subset of dataset values. To apply a Facet to a column, select the
down arrow button to view general options for the column. Select Facet from the
drop-down menu options, and then select whichever type of Facet is desired.

http:///

Data Manipulation and Sources

[112]

Google Reine contains a variety of Facets, but standard Facets can be described
as similar to numeric or text-style ilters. For users with unique requirements,
custom Facets can be deined by using Google Reine Expression Language (GREL),
Jython, and Clojure query languages. Selecting the Customized facets menu option
opens up the dialog in which a custom query can be entered. References for the
aforementioned query languages have been included at the end of this section, but
their use is beyond the scope of this chapter.

Once a Facet has been selected or deined, it will appear as a window in the panel to
the left of the primary application window. Facets are interactive in nature, and can
be manipulated and deleted from the side panel location. The behavior of Facets is
cumulative, which implies that the manipulation of one Facet applied to a section
of data will also be relected in other current Facets. This is the case in the following
example where the U.S. 2010 Chicago Census data has been imported from Google
Spreadsheets. Text and numeric Facets have been applied to the Age and Male
columns, respectively. When the slider bars are adjusted to only select the two
groups to the far right of the graph, the change is relected in the Age Facet and
two age categories are currently selected.

Google Reine – clean and supplement
Standard bulk operations to clean up messy data are fairly intuitive with Google
Reine. For single cell edits, select the Edit button while hovering over a cell. The
Edit button opens a dialog that allows editing of that cell. Options for bulk replace,
changing the type of data in the cell, and editing the cell value itself are possible
through the Edit option. Additional cell editing options are also available through
the column's drop-down arrow menu under the Edit cells option.

http:///

Chapter 6

[113]

To make broader changes to a column's data, again select the down arrow in the
column's label cell, this time choosing the Edit column option. In addition to the
more standard column manipulations reminiscent of a Spreadsheet function,
Edit column options can be used to collect additional information based on an
existing column's values. A common use of this feature is the collection of latitude
and longitude, also known as geocoding, information from an existing column of
addresses. A third party service, such as Open Street Map's Nominatum, can be used
by Google Reine to retrieve and store corresponding geocode information for each
address in the data column. The Google Reine project home page hosts a how-to
video on this and other Reine uses.

Finally, for anyone making sweeping changes to a dataset, the fear of making a
change without the ability to retract is very real. It is also desirable to keep a record
of operations performed on the data, just in case data transformations must be
recreated. Google Reine provides an interactive history with redo/undo capability
to address these concerns. To view the operation history, select the Undo/Redo tab,
which can be found next to the Facet/Filter tab. The history actions are interactive,
and simply selecting an operation in the history list will revert the dataset back to the
speciied state.

http:///

Data Manipulation and Sources

[114]

Google Reine – export options
Once a dataset has been modiied as desired, Google Reine provides a variety of
export options to deliver the newly cleaned data. Select the Export button to choose
an export format.

Alternatively, Google Reine is closely aligned with the Freebase open data
repository, which is also an option for data export. To upload to Freebase, select
the drop-down menu from the Freebase button directly below the Export button.

The Google Reine documentation is available at
http://code.google.com/p/google-refine/.

The Open Reine documentation is available at
http://openrefine.org/.

The Open Street Map Nominatim Service documentation is available
at http://wiki.openstreetmap.org/wiki/Nominatim.

The Jython Language documentation is available at
http://www.jython.org/.

The Clojure Language documentation is available at
http://clojure.org/.

The Freebase Open Data Repository documentation is available at
http://www.freebase.org.

http:///

Chapter 6

[115]

Architecture and data modiication
Before an external data source can be visualized in a chart, a translation from the
data source format to a Visualization API-compatible format must be performed.
The Visualization API does not directly handle the modiication of the values stored
in the dataset itself. The intention is not to be a data management tool, instead, the
API environment provides a handful of programmatic methods to load selected
data into the application. Once in a format it can understand, the Visualization
API can manipulate any aspect of the data structure and content. In this way, the
Visualization API is able to store initial data and any permutations for visualization
purposes, but not become a tool for data source management.

Protocol
To translate between data sources and Visualization API applications, the data
source must be "Visualization API-aware". There are several data source options
already prepared to work with the Visualization API requests. These data sources
may also have alternative methods of modiication, such as manual entry or an API,
but include the integrated ability to accept requests from the Visualization API.

Visualization API-ready data sources are as follows:

• Google Spreadsheets

• Google Fusion Tables

At irst the idea of primarily using Spreadsheets and Fusion Tables as data sources
appears very limiting. However, the additional feature of API integration makes
these two applications fundamental for Google API-based applications. This is
ampliied by the fact that Google Apps are scalable, and performance enhancements
are an inevitable aspect of the future. It is also very likely to be higher-powered
data instances such as Google's SQL and Big Query which will eventually become
Visualization API compatible by default. To strengthen this prediction, although
efforts are still in experimental mode, API integration into the Apps Script
environment is already available.

http:///

Data Manipulation and Sources

[116]

In the meantime, however, it is of course not realistic to assume that data can be
conined to either Spreadsheets or Fusion Tables. Being able to directly query
alternate sources from a Visualization API application is very desirable. To query
datasets beyond Spreadsheets and Fusion Tables, the Visualization API provides
a set of development libraries for the purpose of creating custom "Visualization-
friendly" data sources. These libraries give developers the ability to integrate their
own data source with the Visualization API protocol.

The process of retrieving information from a data source follows three general steps
regardless of the data source type. First, the Visualization application must make
a request for data from the data source. This operation occurs in the Visualization
API command format. Next, the data source must interpret the application's request
and assemble a response the Visualization code is able to understand, which is:
DataTable(). The application receives the familiar DataTable() type as a response
from the data source and can then use the response as usual.

The Visualization API can also interpret JSON objects, but this
method requires slightly more handling by the developer than
a returned DataTable().

Datasource

Receive &

Interpret

Visualization

API QuerySend Data

Query with

Visualization

API

Receive Data

as a

DataTable

Application

http:///

Chapter 6

[117]

Visualization API data capabilities
As mentioned previously, retrieved data, in any format, is staged for visualization
by the DataTable() class. In this book, DataTable() has so far been a necessary
component of a visualization but has not been explicitly discussed. In simple
examples for which data is a part of the application code, DataTable() is often
observed in its arrayDataTable() helper function form, such as the case with
simple area chart examples discussed in Chapter 4, Basic Charts.

 var data = google.visualization.arrayToDataTable([

 ['Age', 'Male', 'Female', 'Both Sexes'],

 ['Under 5 years', 94100, 91787, 185887],

 ['5 to 9 years', 84122, 81955, 166077],

DataTable() also takes the form of newDataTable(), speciically in Google Apps
Script applications, as illustrated in the following code snippet:

var data = Charts.newDataTable()

 .addColumn(Charts.ColumnType.STRING, "Age")

 .addColumn(Charts.ColumnType.NUMBER, "Male")

 .addColumn(Charts.ColumnType.NUMBER, "Female")

 .addColumn(Charts.ColumnType.NUMBER, "Both Sexes")

 .addRow(['Under 5 years', 94100, 91787, 185887])

 .addRow(['5 to 9 years', 84122, 81955, 166077])

DataTable() may seem like a simple component of a Visualization API script when
presenting data from within the API script itself. Yet as data sources external to the
script are introduced, the big picture role of DataTable() becomes increasingly
important given its role as a data intermediary for external dataset query.

Data Table reference is available at https://developers.google.
com/chart/interactive/docs/reference#DataTable.

http:///

Data Manipulation and Sources

[118]

Group and join
Beyond simple database add/remove functionality, DataTable() also allows for
table grouping and joining capabilities. This functionality can be applied with a
DataTable() or between two separate DataTable() functions The group operation
sorts a DataTable() function's rows and then groups them together by column
value. In the following table, the 2010 Chicago Census data has several columns
that are in duplicate.

http:///

Chapter 6

[119]

The DataTable().group operation consolidates multiple rows in the table, and also
sums the values of the rows that were combined. To do this, group needs to know on
which column the consolidations should be deined. In this example, the irst column
(column [0]) is the key, or deining column for grouping. The group operation
can also perform select other manipulations on a column when a consolidation of
rows occurs. The example displays the sum of column three for the rows grouped
together, and the existing value in the cell of column three if there is no grouping
needed. The group option follows this syntax:

varmy_table = google.visualization.data.group(data_table, keys,
columns)

Here, keys is the column to group by, and columns provides additional parameters
for which columns to display or perform a manipulation.

function drawGroup() {
 var data_table = google.visualization.arrayToDataTable([

 ['Age', 'Male', 'Female', 'Both Sexes'],

 ['Under 5 years', 94100, 91787, 185887],

 ['5 to 9 years', 84122, 81955, 166077],

 ['5 to 9 years', 0, 0, 0],

 ['10 to 14 years', 83274, 81192, 164466],

 ['15 to 19 years', 91528, 91405, 182933],

 ['20 to 24 years', 108407, 114620, 223027],

 ['25 to 29 years', 134931, 0, 0],

 ['25 to 29 years', 0, 141208, 276139],

 ['30 to 34 years', 119828, 119584, 239412],

 ['35 to 39 years', 100651, 99857, 200508],

 ['40 to 44 years', 89957, 87674, 177631],

 ['45 to 49 years', 85645, 86217, 85931],

 ['45 to 49 years', 85645, 86217, 85931],

 ['50 to 54 years', 80838, 86037, 166875],

 ['55 to 59 years', 68441, 76170, 144611]

]);

// Group data_table by column 0, and show column 3 aggregated by sum.

var grouped_dt = google.visualization.data.group(

 data_table, [0], [{'column': 3, 'aggregation':
 google.visualization.data.sum, 'type': 'number'}]);

 var table = new google.visualization.Table(document.
 getElementById('table'));

http:///

Data Manipulation and Sources

[120]

 table.draw(data_table, null);

 var grouped_table = new google.visualization.Table(document.
 getElementById('grouped_table'));

 grouped_table.draw(grouped_dt, null);

}

A join is another DataTable() operation that joins two separately deined
DataTables() together. This type of manipulation is particularly useful when
two datasets are available, each containing similar elements of the same item. For
example, a table of census data with only male age groups could be combined with
a similar table of the complementary female population by age group.

http:///

Chapter 6

[121]

The preceding separate but complementary tables are joined to create a single
combined table.

The syntax for a DataTable().join is as follows:

Var my_talble = google.visualization.data.join(table1, table2,
joinMethod, keys, table1Columns, table2Columns)

Here, table1 and table2 are the tables to be joined. The joinMethod function uses
one of four possible parameters: full/inner/left/right.

• full: The output table includes all rows from both the tables, regardless of
whether the keys match or not. Unmatched rows will have null cell entries;
matched rows are joined.

• inner: This is a full join, but only includes rows where the keys match.

• left: The output table includes all rows from data_table1, whether or not
there are any matching rows from data_table2.

• right: The output table includes all rows from data_table2, whether or not
there are any matching rows from data_table1.

http:///

Data Manipulation and Sources

[122]

Keys is a set of deinitions, which tells the join operation which columns to join as
well as in what order the joins are to be performed. The syntax for keys is an array.
table1Columns and table2Columns indicate which columns are to be displayed
from each original table in the resulting joined table. These two conigurations are
also expressed as arrays. For example, the following code illustrates that the join
operation is to be based on the comparison of the irst column's values ([0,0] where
one zero represents table1 table's irst column and the other represents table2
table's irst column). The second two bracketed 1's represent the original data table
columns to be displayed along with the inal joined table.

function drawJoin() {
var data_table1 = google.visualization.arrayToDataTable([

 ['Age', 'Male'],

 ['Under 5 years', 94100],

 ['5 to 9 years', 84122],

 ['10 to 14 years', 83274],

 ['15 to 19 years', 91528],

 ['20 to 24 years', 108407],

 ['25 to 29 years', 134931],

 ['30 to 34 years', 119828],

 ['35 to 39 years', 100651],

 ['40 to 44 years', 89957],

 ['45 to 49 years', 85645],

 ['50 to 54 years', 80838],

 ['55 to 59 years', 68441],

 ['60 to 64 years', 54592],

 ['65 to 69 years', 37704],

 ['70 to 74 years', 27787],

 ['75 to 79 years', 20448],

 ['80 to 84 years', 14637],

 ['85 to 89 years', 7842],

 ['90 years and over',3340]

]);

var data_table2 = google.visualization.arrayToDataTable([

 ['Age', 'Female'],

 ['Under 5 years', 91787],

 ['5 to 9 years', 81955],

 ['10 to 14 years', 81192],

 ['15 to 19 years', 91405],

 ['20 to 24 years', 114620],

 ['25 to 29 years', 141208],

 ['30 to 34 years', 119584],

 ['35 to 39 years', 99857],

http:///

Chapter 6

[123]

 ['40 to 44 years', 87674],

 ['45 to 49 years', 86217],

 ['50 to 54 years', 86037],

 ['55 to 59 years', 76170],

 ['60 to 64 years', 63646],

 ['65 to 69 years', 47366],

 ['70 to 74 years', 38238],

 ['75 to 79 years', 30252],

 ['80 to 84 years', 24467],

 ['85 to 89 years', 16548],

 ['90 years and over',9303]

]);

// Create an full join of data_table1 and data_table2, using columns 0
as the key, include column 1 from both data tables

 var joined_dt = google.visualization.data.join(data_table2,
 data_table1, 'full', [[0,0]], [1], [1]);

 var table1 = new google.visualization.Table(document.
 getElementById('table1'));

 table1.draw(data_table1, null);

 var table2 = new google.visualization.Table(document.
 getElementById('table2'));

 table2.draw(data_table2, null);

 var joined_table = new google.visualization.Table(document.
 getElementById('joined_table'));

 joined_table.draw(joined_dt, null);

}

Information on Data Manipulation methods is available at
https://developers.google.com/chart/interactive/
docs/reference#google_visualization_data.

Live examples on Group is available at http://gvisapi-packt.
appspot.com/ch6-examples/ch6-group.html.

Live examples on Join is available at http://gvisapi-packt.
appspot.com/ch6-examples/ch6-join.html.

https://developers.google.com/chart/interactive/docs/reference#google_visualization_data
https://developers.google.com/chart/interactive/docs/reference#google_visualization_data
https://developers.google.com/chart/interactive/docs/reference#google_visualization_data
http://gvisapi-packt.appspot.com/ch6-examples/ch6-group.html
http://gvisapi-packt.appspot.com/ch6-examples/ch6-group.html
http:///

Data Manipulation and Sources

[124]

Spreadsheets
The primary method for manipulating data housed in the Spreadsheets application
is through the application GUI itself. Since the Visualization API is not a data
management editing interface, it is wrong to assume that an application will
have adequate control over the data through DataTable() functionality. Rather,
changes to the data stored in Spreadsheets must be accomplished through the GUI,
Spreadsheets API, and forms.

Forms
Google Spreadsheets contains a form creation tool, which can be published to
various destinations directly from the Spreadsheets application. Forms does not
contain all of the advanced features of enterprise-class survey software, but is an
easy-to-use data input method. To create a Spreadsheets Form, select Tools | Create
a form from the menu bar.

In the form document that is created, use the Add Item button, found in-line with
the form questions, to add additional questions to the form. Alternatively, select the
Insert option from the menu bar to insert form questions.

http:///

Chapter 6

[125]

After adding the desired questions, publish the form to start collecting data. From
the File menu, select an option for publication or sharing. The form can be published
on the Google social networking site, Google+, emailed, embedded in a web page, or
linked to form a web page.

To view the form live in a browser, locate the View live form button and click on it.

Forms can be edited after publication, and can be set to accept or reject new entries
without damaging the existing data collected. Although remedial, forms are a
powerful way to input data into a Visualization API-friendly data source.

API
The Spreadsheets API is accessible through the HTTP protocol, with client libraries
available for Java and .NET. The HTTP methods consist primarily of GET and POST
methods (RESTful), where data is structured with Google's custom XML namespace
tags (<gsx>). For example, adding a row to the 2010 Census data, the xmlns entry
would look something like the following code:

<entry xmlns="http://www.w3.org/2005/Atom"

 xmlns:gsx="http://schemas.google.com/spreadsheets/2006/extended">

 <gsx:age>30 to 32 years</gsx:age>

 <gsx:male>49</gsx:male>

 <gsx:female>51</gsx:female>

 <gsx:both_sexes>100</gsx:both_sexes>

</entry>

The preceding row entry would then be inserted via a POST message to the
appropriate location in the Spreadsheet.

The manipulation of the Spreadsheets API is beyond the scope of this book, but more
information can be found on Google's Spreadsheets API developer resource.

Spreadsheets API reference is available at https://developers.
google.com/google-apps/spreadsheets/?hl=en.

http:///

Data Manipulation and Sources

[126]

Fusion Tables – API
The Fusion Tables API is invoked through SQL-like queries. SQL is a special-purpose
programming language designed for managing relational database systems. The
Chart Tools Query Language discussed later in this chapter is intentionally very
similar to SQL as SQL is a widely used standard language for data management.

Fusion Tables API SQL Query reference is available at
https://developers.google.com/fusiontables/
docs/v1/sql-reference.

Data sources for Charts
The integrated nature of Spreadsheets and Fusion Tables as data sources make
the coding of Charts with these external data sources for the Visualization API
quite straightforward.

Spreadsheets
In Spreadsheets, two preparation steps must be addressed in order to use a
Spreadsheet as a data source with the Visualization API. The irst is to identify
the URL location of the Spreadsheet ile for the API code. The second step is to set
appropriate access to the data held in the Spreadsheet ile.

Preparation
The primary method of access for a Spreadsheet behaving as a data source is through
a JavaScript-based URL query. The query itself is constructed with the Google Query
Language (described in more detail later in this chapter). If the URL request does
not include a query, all data source columns and rows are returned in their default
order. To query a Spreadsheet also requires that the Spreadsheet ile and the API
application security settings are conigured appropriately. Proper preparation of a
Spreadsheet as a data source involves both setting the appropriate access as well as
locating the ile's query URL.

http:///

Chapter 6

[127]

Permissions
In order for a Spreadsheet to return data to the Visualization API properly, access
settings on the Spreadsheets ile itself must allow view access to users. For a
Spreadsheet that allows for edits, including form-based additions, permissions must
be set to Edit. To set permissions on the Spreadsheet, select the Share button to open
up the Sharing settings dialog. To be sure the data is accessible to the Visualization
API, access levels for both the Visualization application and Spreadsheet must be the
same. For instance, if a user has access to the Visualization application and does not
have view access to the Spreadsheet, the user will not be able to run the visualization
as the data is more restrictive to that user than the application. The opposite scenario
is true as well, but less likely to cause confusion as a user unable to access the API
application is a fairly self-described problem.

Application Datasource
= +

Application Datasource
= +

All Google applications handle access and permissions similarly. More information
on this topic can be found on the Google Apps Support pages.

Google Permissions overview is available at http://support.google.
com/drive/bin/answer.py?hl=en&answer=2494886&rd=1.

http:///

Data Manipulation and Sources

[128]

Get the URL path
At present, acquiring a query-capable URL for a Spreadsheet is not as
straightforward a task as one might think. There are several methods for which a
URL is generated for sharing purposes, but the URL format needed for a data source
query can only be found by creating a gadget in the Spreadsheet. A Google Gadget
is simply dynamic, HTML or JavaScript-based web content that can be embedded in
a web page. Google Gadgets also have their own API, and have capabilities beyond
Spreadsheets applications.

Information on Google Gadget API is available at
https://developers.google.com/gadgets/.

Initiate gadget creation by selecting the Gadget... option from the Insert item on the
menu bar. When the Gadget Settings window appears, select Apply & close from
the Gadget Settings dialog.

Choose any gadget from the selection window. The purpose of this procedure is
simply to retrieve the correct URL for querying. In fact, deleting the gadget as soon
as the URL is copied is completely acceptable. In other words, the speciic gadget
chosen is of no consequence.

Once the gadget has been created, select Get query data source url… from the newly
created gadget's drop-down menu.

http:///

Chapter 6

[129]

Next, determine and select the range of the Spreadsheet to query. Either the
previously selected range when the gadget was created, or the entire sheet is
acceptable, depending on the needs of the Visualization application being built.
The URL listed under Paste this as a gadget data source url in the Table query
data source window is the correct URL to use with the API code requiring query
capabilities. Be sure to select the desired cell range, as the URL will change with
various options.

Important note

Google Gadgets are to be retired in 2013, but the query URL is still
part of the gadget object at the time of publication. Look for the
method of inding the query URL to change as Gadgets are retired.

Query
Use the URL retrieved from the Spreadsheet Gadget to build the query. The
following query statement is set to query the entire Spreadsheet of the key indicated:

var query =

new google.visualization.Query(

'https://docs.google.com/spreadsheet/tq?key=0AhnmGz1SteeGdEVsNlNWWkoxU
3ZRQjlmbDdTTjF2dHc&headers=-1');

http:///

Data Manipulation and Sources

[130]

Once the query is built, it can then be sent. Since an external data source is by
deinition not always under explicit control of the developer, a valid response to a
query is not necessarily guaranteed. In order to prevent hard-to-detect data-related
issues, it is best to include a method of handling erroneous returns from the data
source. The following query.send function also informs the application how to
handle information returned from the data source, regardless of quality.

query.send(handleQueryResponse);

The handleQueryResponse function sent along with the query acts as a ilter,
catching and handling errors from the data source. If an error was detected, the
handleQueryResponse function displays an alert message. If the response from
the data source is valid, the function proceeds and draws the visualization.

function handleQueryResponse(response) {

 if (response.isError()) {

alert('Error in query: ' + response.getMessage() + ' ' + response.
getDetailedMessage());

 return;

 }

 var data = response.getDataTable();

 visualization = new google.visualization.Table
 (documnt.getElementById('visualization'));

 visualization.draw(data, null);

}

Best practice

Be prepared for potential errors by planning for how to handle them.

For reference, the previous example is given in its complete HTML form:

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

<meta http-equiv="content-type" content="text/html; charset=utf-8"/>

 <title>

 Google Visualization API Sample

 </title>

 <script type="text/javascript" src="http://www.google.com/jsapi">
 </script>

<script type="text/javascript">

 google.load('visualization', '1', {packages: ['table']});

 </script>

 <script type="text/javascript">

var visualization;

function drawVisualization() {

http:///

Chapter 6

[131]

 // To see the data that this visualization uses, browse to

 // https://docs.google.com/spreadsheet/ccc?key=0AhnmGz1SteeGdEVsNlN
 WWkoxU3ZRQjlmbDdTTjF2dHc&usp=sharing

 var query = new google.visualization.Query(

 'https://docs.google.com/spreadsheet/tq?key=0AhnmGz1SteeGdEV
 sNlNWWkoxU3ZRQjlmbDdTTjF2dHc&headers=-1');

 // Send the query with a callback function.

 query.send(handleQueryResponse);

 }

function handleQueryResponse(response) {

 if (response.isError()) {

 alert('Error in query: ' + response.getMessage() + ' ' +
 response.getDetailedMessage());

 return;

 }

 var data = response.getDataTable();

 visualization = new google.visualization.Table(document.getEleme
 ntById('visualization'));

 visualization.draw(data, null);

}

 google.setOnLoadCallback(drawVisualization);

</script>

</head>

<body style="font-family: Arial;border: 0 none;">

 <div id="visualization" style="height: 400px; width: 400px;">
 </div>

 </body>

</html>

View live examples for Spreadsheets at http://gvisapi-packt.
appspot.com/ch6-examples/ch6-datasource.html.

http:///

Data Manipulation and Sources

[132]

Apps Script method
Just as the Visualization API can be used from within an Apps Script, external
data sources can also be requested from the script. In the Apps Script Spreadsheet
example presented earlier in this book, the DataTable() creation was performed
within the script. In the following example, the create data table element has
been removed and a .setDataSourceUrl option has been added to Charts.
newAreaChart(). The script otherwise remains the same.

functiondoGet() {

var chart = Charts.newAreaChart()

.setDataSourceUrl("https://docs.google.com/spreadsheet/tq?key=0AhnmGz1
SteeGdEVsNlNWWkoxU3ZRQjlmbDdTTjF2dHc&headers=-1")

.setDimensions(600, 400)

 .setXAxisTitle("Age Groups")

 .setYAxisTitle("Population")

 .setTitle("Chicago Population by Age and Gender - 2010 Census")

 .build();

varui = UiApp.createApplication();

ui.add(chart);

returnui;

}

View live examples in Apps Script at https://script.
google.com/d/1Q2R72rGBnqPsgtOxUUME5zZy5Kul5
3r_lHIM2qaE45vZcTlFNXhTDqrr/edit.

Fusion Tables
Fusion Tables are another viable data source ready for use by Visualization
API. Fusion Tables offer beneit over Spreadsheets beyond just the Google Map
functionality. Tables API also allows for easier data source modiication than is
available in Spreadsheets.

Preparation
Preparing a Fusion Table to be used as a source is similar in procedure to preparing
a Spreadsheet as a data source. The Fusion Table must be shared to the intended
audience, and a unique identiier must be gathered from the Fusion Tables application.

http:///

Chapter 6

[133]

Permissions
Just as with Spreadsheets, Fusion Tables must allow a user a minimum of view
permissions in order for an application using the Visualization API to work properly.
From the Sharing settings window in Fusion Tables, give the appropriate users view
access as a minimum.

Get the URL path
Referencing a Fusion Table is very similar in method to Spreadsheets. Luckily, the
appropriate URL ID information is slightly easier to ind in Fusion Tables than in
Spreadsheets. With the Sharing settings window open, there is a ield at the top of
the page containing the Link to share. At the end portion of the link, following the
characters dcid= is the Table's ID. The ID will look something like the following:

1Olo92KwNin8wB4PK_dBDS9eghe80_4kjMzOTSu0

This ID is the unique identiier for the table.

Query
Google Fusion Tables API includes SQL-like queries for the modiication of
Fusion Tables data from outside the GUI interface. Queries take the form of HTTP
POST and GET requests and are constructed using the Fusion Tables API query
capabilities. Data manipulation using Fusion Tables API is beyond the scope of this
book, but a simple example is offered here as a basic illustration of functionality.
Fusion Table query requests the use of the API SELECT option, formatted as:

SELECT Column_name FROM Table_ID

http:///

Data Manipulation and Sources

[134]

Here Column_name is the name of the Fusion Table column and Table_ID is the
table's ID extracted from the Sharing settings window.

If the SELECT call is successful, the requested information is returned to the
application in the JSON format. The Visualization API drawChart() is able to take
the SELECT statement and the corresponding data source URL as options for the
chart rendering. The male and female data from the Fusion Tables 2010 Chicago
Census ile have been visualized using the drawChart() technique.

function drawVisualization() {

 google.visualization.drawChart({

 containerId: 'visualization',

 dataSourceUrl: 'http://www.google.com/fusiontables/
 gvizdata?tq=',

 query: 'SELECT Age, Male, Female FROM 1Olo92KwNin8wB4PK_
 dBDS9eghe80_4kjMzOTSu0',

 chartType: 'AreaChart',

 options: {

 title: 'Chicago Population by Age and Sex - 2010 Census',

 vAxis: {

 title: 'Population'

 },

 hAxis: {

 title: 'Age Groups'

 }

 }

 });

}

The preceding code results in the following visualization:

http:///

Chapter 6

[135]

Live examples are available at http://gvisapi-packt.
appspot.com/ch6-examples/ch6-queryfusion.html.

Important note

Fusion Table query responses are limited to 500 rows. See Fusion
Tables API documentation for other resource parameters.

API Explorer
With so many APIs available to developers using the Google platform, testing
individual API functionality can be time consuming. The same issue arises for GUI
applications used as a data source. Fortunately, Google provides API methods for
its graphical applications as well. The ability to test API requests against Google's
infrastructure is a desirable practice for all API programing efforts. To support this
need, Google maintains the APIs Explorer service. This service is a console-based,
web application that allows queries to be submitted to APIs directly, without an
application to frame them.

This is helpful functionality when attempting to verify whether a data source is
properly conigured. To check if the Fusion Tables 2010 U.S. Census data instance
is conigured properly, a query can be sent to list all columns, which informs which
columns are actually exposed to the Visualization API application.

http:///

Data Manipulation and Sources

[136]

Best practice

Use the Google API Explorer service to test if API queries work
as intended.

To use the API Explorer for Fusion Tables, select Fusion Tables API from the list of
API services. API functions available for testing are listed on the Fusion Tables API
page. Troubleshooting a Chart with a Fusion Tables data source usually involves
irst verifying all columns are available to the visualization code. If a column
is not available, or is not formatted as expected, a visualization issue related to
data problems may be dificult to troubleshoot from inside the Visualization API
environment. The API call that best performs a simple check on column information
is the fusiontables.column.list item.

Selecting fusiontables.column.list opens up a form-based interface. The only
required information is the Table ID (collected from the Share settings window in
the Fusion Tables ile). Click on the Execute button to run the query.

http:///

Chapter 6

[137]

The API Explorer tool will then show the GET query sent to the Fusion Table in
addition to the results it returned. For the fusiontables.column.list query,
columns are returned in bracketed sections. Each section contains attributes of
that column. The following queried attributes should look familiar, as it is the
fusiontables.column.list result of a query to the 2010 Chicago Census data
Fusion Table.

http:///

Data Manipulation and Sources

[138]

Best practice

The Column List Tool is helpful when troubleshooting Fusion Table
to API code connectivity. If the Table is able to return coherent values
through the tool, it can generally be assumed that access settings are
appropriate and the code itself may be the source of connection issues.

Fusion Tables—row and query reference is available at https://
developers.google.com/fusiontables/docs/v1/sql-
reference.

Information on API Explorer—column list is available at https://
developers.google.com/fusiontables/docs/v1/
reference/column/list#try-it.

Chart Tools Query Language
The Visualization API query language (Chart Tools Query Language) is intended to
provide developers with a method for mapping data from an external source to the
various visualization data coniguration requirements.

Just as with Spreadsheets and Fusion Tables data queries, the Chart Tools Query
Language follows a SQL-like structure. An alternative to the URL query method
is to set the query from within JavaScript, but the more common SQL method is
represented by the following example. Set the query in JavaScript as follows:

var query = new google.visualization.Query(DATA_SOURCE_URL);
query.setQuery('select D where B > 50000);
query.send(handleQueryResponse);

The preceding query selects the item in column D only if the value in column B is
greater than 50000. The same query can also be sent as part of the data source URL.
There are four segments to a complete query formed as a URL. In the URL query:

• The http preix:
 ° http://spreadsheets.google.com/a/google.com/tq?key=

• Your:

 ° DATA_SOURCE_KEY

• Segment to indicate a select statement is next:

 ° &tq=

• The encoded select statement:

 ° select%20D%20where%20B%20%3E%2050000

http:///

Chapter 6

[139]

This results in the following query URL:

http://spreadsheets.google.com/a/google.com/tq?key=DATA_SOURCE _
KEY&tq=select%20D%20where%20B%20%3E%2050000

Use the web tool found in the Chart Tools Query Language
documentation to encode or decode a query string.

Information on Query language reference and encode/decode tool
is available at https://developers.google.com/chart/
interactive/docs/querylanguage#Setting_the_Query_
in_the_Data_Source_URL.

Build your own data source
Enabling a data source to work with the Visualization API requires some amount
of programming experience. Java or Python development experience is ideal as
the helper libraries available are written in these languages. However, it is also
possible to create a data source from scratch. To create a reliable Visualization
API-friendly data source, the prospective data source should meet several
minimum requirements.

The data source should:

• Be available to clients

• Accept HTTP GET requests

• Handle unknown properties sent as part of requests (does not fail)

• Take proper security precautions regarding:

 ° Unknown clients

 ° Parsing expectations

• Make request and response strings UTF-8 encoded

• Support JSON irst
• Document requirements for use

To make the addition of API compatibility easier, Google provides helper libraries
in both Java and Python languages. The resulting task for the developer is then to be
sure that the data source accurately relays its data to the helper library functions. The
library functions will then relay the data, in an API-friendly format, to the application.

http:///

Data Manipulation and Sources

[140]

Spreadsheets as a data source reference is available at https://
developers.google.com/chart/interactive/docs/
spreadsheets.

Fusion Tables as a data source reference is available at https://
developers.google.com/chart/interactive/docs/
fusiontables.

Query Language reference is available at https://developers.
google.com/chart/interactive/docs/querylanguage.

Chart Tools Data Source Protocol documentation is available at
https://developers.google.com/chart/interactive/docs/
dev/implementing_data_source.

Chart Tools data source library (Java) is available at https://
developers.google.com/chart/interactive/docs/dev/dsl_
about.

Chart Tools data source library (Python) is available at https://
developers.google.com/chart/interactive/docs/dev/gviz_
api_lib.

Summary
One of the biggest technology challenges of this decade is how to gain insight from
seemingly unwieldy data collections. Often times the best method of enabling insight
is the visualization of data. While the Visualization API does not modify data source
values, it is capable of creating new elements from existing data. The visualization
of both original and new data side-by-side, which is possible with the Visualization
API, is a notable advantage. Another strength on which data analysts can capitalize
is that the Visualization API includes both ready-to-use data source options as well
as the necessary tools to retroit your own data source.

Increasing the depth of data exploration through visualization also increases the
need for interactive tools. The capability to ilter data views on the ly also is a
proven method of discovery that was not possible with static representations. The
next chapter focuses on the interactive capabilities of the Visualization API through
the use of the Dashboard option, viewing controls, and event triggers.

https://developers.google.com/chart/interactive/docs/dev/implementing_data_source
https://developers.google.com/chart/interactive/docs/dev/implementing_data_source
https://developers.google.com/chart/interactive/docs/dev/implementing_data_source
https://developers.google.com/chart/interactive/docs/dev/dsl_about
https://developers.google.com/chart/interactive/docs/dev/dsl_about
http:///

Dashboards, Controls,

and Events
The previous chapter was dedicated to increasing the data capabilities of a
visualization. This chapter discusses how to make customizable viewing options,
allowing viewers to explore the visualization of data. Given that visualizations
are such powerful tools, an increasing amount of scientiic discovery is being
attributed to data presented in exploratory visual environments. Even though the
examples presented in this chapter are basic, it is feasible to extend Visualization
API capabilities to more robust and complicated data models.

In this chapter we will cover:

• Architecture of a Visualization with a Dashboard

• Dashboard controls

• Event-based visualizations

• Transitioning between Visualizations with animation

• Chart editor for users

http:///

Dashboards, Controls, and Events

[142]

Architecture
The overall structure of a visualization with controls has slight but deinitive
differences from a chart without controls. For charts with controls, the HTML
framework encasing the visualization is slightly modiied, as is the method of
drawing the visualization with the API. The modiied HTML framework is a good
starting point to describe the architecture of a visualization with control components.

HTML framework
The HTML structure of a visualization with controls is similar to the standard HTML
visualization framework, with a few distinct alterations. Dashboards require a few
small changes to the HTML <body> section of the page. As with visualizations
themselves, a <div id> must be designated for not only the chart, but also each of
the Dashboard and control elements. An advantage to separately assigned <div id>
tags is the Dashboard, control, and chart components that can be placed as desired in
a page stylized with conventional HTML methods.

To start with, in the <head> section, a small change must be made to the line indicating
which chart library is to be loaded. In any standard visualization using the chart.
draw() method, a Google library must always be identiied in the code in order for the
appropriate visualization components to be loaded. The key difference for a chart with
controls is that the visualization uses the ChartWrapper class, rather than the chart.
draw() method, to package the controls and chart together. This means the library
declaration that is used not only loads the mechanisms to create and link control
elements, but also loads the mechanisms to draw the charts themselves. The controls
library packaged is loaded using the google.load command.

google.load('visualization', '1.0',{'packages':['controls']});

http:///

Chapter 7

[143]

API framework
Along with an alternative library load requirement, there are also several changes
in the API execution of the visualization with chart controls. When creating one or
more controls for a chart, the controllers and data must be logically linked together in
order to alter the view of the chart on the ly. This bundling function is accomplished
through the use of the Dashboard component. Dashboards are the encapsulation that
holds the controls, data, and chart together as a single visualization. The encapsulation
of all of these elements requires a slightly different method of chart creation as well.
The ChartWrapper class, introduced briely in Chapter 2, Anatomy of a Visualization,
is the prescribed method when drawing charts with controls. The ChartWrapper
class is analogous to chart.draw(), but is intended as a helper or bundling method
to simplify drawing chart components. It packages together the handling of the data
source, chart libraries, and drawing for the visualization. This simpliication does
potentially limit chart drawing customization options when compared to chart.
draw(), but is the Google recommended method for including Dashboards and
controls in a visualization, given the increased simplicity of deployment.

Additionally, to perform the bundling task for the Dashboard, the bind function
is used to designate the link from charts and controls to the Dashboard. Once the
controls and chart visualization variables have been created, bind is used to bundle
each of the objects together prior to the Dashboard's draw process.

google.visualization.ControlWrapper

google.visualization.ControlWrapper

google.visualization.ChartWrapper

google.visualization.dashboard

draw(dataTable)

b
in

d
(C

o
n
tro

lW
ra

p
p
e
r,..., C

h
a
rtW

ra
p
p
e
r)

.

.

.

http:///

Dashboards, Controls, and Events

[144]

ControlWrapper
In the preceding igure, the ChartWrapper and ControlWrapper classes both
have their own declaration in the Visualization API environment. The result of
ChartWrapper is, of course, a chart. In a similar manner a ControlWrapper class
equates to a handful of possible user controls: StringFilter, NumberRangeFilter,
ChartRangeFilter, and CategoryFilter.

Details regarding functionality for each of these control ilter options are discussed in
the Dashboard—controls section of this chapter.

ChartWrapper
ChartWrapper handles tasks associated with the chart creation itself. These tasks are
as follows:

• Load

• Draw

• Data source

• Events

http:///

Chapter 7

[145]

In particular, the ChartWrapper class has its own methods for setting chart attributes
and values. It also does not require a callback function to be declared, as would
be the case with chart.draw. Instead ChartWrapper handles the callback as part
of the data source query. For larger visualizations with a variety of charts, the
ChartWrapper helper class dynamically loads chart libraries, rather than requiring
each individual library to be declared in the code.

Load
As mentioned in the HTML framework section of this chapter, the google.load
command with the 'controls' package is required in the HTML portion of
the visualization code. The following two lines load the JavaScript API into the
visualization. The next line is the google.load declaration for the Visualization
controls library. Both the JavaScript API library and subsequent controls library
must be present in order for visualizations with controls to function.

<script type="text/javascript" src="http://www.google.com/jsapi"></
script>

<script type="text/javascript">

google.load('visualization', '1.1', {packages: ['controls']});

Important

In general, an alternative to loading the appropriate libraries manually
for ChartWrapper is to load them dynamically. The dynamic method
does NOT replace the loading of the control library for charts with
controls and dashboards. This method is intended for ChartWrapper
charts that do not include dashboards or controls at this time.

For reference only, to dynamically load chart libraries for a visualization with no
controls or dashboard, use the following code:

<script type="text/javascript"src='https://www.google.com/jsapi?autolo
ad={"modules":[{"name":"visualization","version":"1"}]}'>

</script>

Use the previous code in replacement of the jsapi and google.load lines of a
ChartWrapper chart without controls. Once again note this information has been
provided for reference only in this section, and will not work properly with charts
using dashboards and controls.

http:///

Dashboards, Controls, and Events

[146]

Data source
As mentioned in Chapter 6, Data Manipulation and Sources, Google Visualizations
can accept a variety of data sources. The tradeoff to this lexibility is a translation
step that is required when loading data from a data source to a chart. Sometimes
the translation is easy yet some must be built, as is the case with using the API
DataTable object. Other cases require some additional programming to properly
align the data source and the visualization's formatting expectations. A beneit of
the ChartWrapper helper function is the built-in streamlined access to several data
sources. In particular, ChartWrapper has the ability to handle JSON strings directly.
There is also a small assortment of data-related commands in ChartWrapper that
can simplify initiating and then querying a data source. The most frequently used
commands are as follows:

• setQuery(query_string)

• setDataSourceUrl(url)

• getDataTable()

• setDataTable(table)

Draw
The declaration and drawing method for ChartWrapper is very similar to the chart.
draw() function. In fact, on the surface, the primary difference between the two is
simply the organization of the declaration. For example, both chart.draw() and
ChartWrapper are set to a variable such that additional methods may be invoked
using the variable. In more detail, the difference becomes apparent in the execution
of the two methods. The chart.draw() method returns a chart and uses the variable
as a reference, where ChartWrapper only uses the variable as a reference to the
Chart Wrapper function.

Using chart.draw():

varmychart = new google.visualization.LineChart(document.getElementByI
D('visualization').
 draw(data, {curveType: "function",
 width: 500, height: 400}

or, using ChartWrapper:

 var wrapper = new google.visualization.ChartWrapper({
 chartType: 'LineChart',
 options: {'curveType': 'function',
 'width': 500, 'height': 400},
 containerId: 'visualization'
 });
 wrapper.draw();

http:///

Chapter 7

[147]

Both methods produce identical charts. To break down the ChartWrapper
declaration even further, the key components of the ChartWrapper declaration are
listed as follows:

The setup process for the draw function is:

• setChartType(type)

 ° set a chart type (example: line, bar, or area)

• setOption(key, value)

 ° set chart options that are specific to the type of chart chosen

• getContainerId(id)

 ° tell ChartWrapper where to draw the chart through retrieving the
ContainerId

• draw(opt_container_ref)

 ° draw the chart using the draw() attribute

Events
As an added feature of the ChartWrapper class method, developers are given in-built
control to a standard set of messages outputted from ChartWrapper. The message
availability is provided in order to enable additional functionality to a visualization
application. When working with events, it is important to keep in mind that, in order
for any event to occur, the draw() function must have occurred irst, as it generates
the event messages.

The three types of messages generated by ChartWrapper are:

• Error

• Ready

• Select

Error
An error event is a message that results from an issue occurring during the rendering
of the chart visualization itself.

Ready
The ready event primarily functions as a method for acknowledging user input
from a visualized chart. When an input function occurs, such as a mouse click, the
application reacts to the click and performs the designated section of code. This type
of event must be declared prior to calling the ChartWrapperdraw() function.

http:///

Dashboards, Controls, and Events

[148]

Select
Using the select event is not completely intuitive as its purpose is to return the
location of the user's selection in the visualization chart itself. That is, HTML selection
events outside the visualization are not detected and returned as a select event.
Instead, the purpose of a select event is to return a notiication to the application
when a user selects a bar or legend of the visualization.

Troubleshooting

The ready event must be declared prior to the execution
of draw().

All events (error/ready/select) use the same method for declaration. The following
is the function that sets up a speciic event. The chart being drawn, type of event
(error/ready/select), and subsequent action to take, are deined as options in the
declaration. The following code creates an event that listens for event_type to occur.
When the event occurs, the code then instructs to execute the run_on_event function.

Google.visualization.events.addListener(wrapper, 'event_type', run_on_
event);

The anatomy of the function run when the event is triggered, run_on_event,
is strikingly similar to the general anatomy of a visualization function, or any
other JavaScript function. Just as with a visualization, the event handling code is
encapsulated entirely in a function of its own. Event functions are not included in the
visualization function, but are standalone entities between the <script> tags in the
application code. The run_on_event function here sends an alert to the user that the
chart failed to draw.

// Run this when the 'error' event occurs!

function run_on_event() {

alert("Chart failed to draw!"); }

}

It is helpful to think of functions that call other functions as a call and response
process. The purpose of the event listener inside the visualization function is
to literally listen for the speciied event to occur. When it does occur, the listener
calls to the responder function outside of the visualization code section. The
responder function then executes its code, which concludes the call and then
the response. Events are a useful tool in particular when designing visualizations
to respond to user selections.

http:///

Chapter 7

[149]

Dashboards
Dashboards are the backdrops on which all controls and charts are bundled
together. Since they act as the unifying component of the visualization and controls,
dashboards can also be intentionally linked to create dependencies between controls.
Controls may also be used to set a visualization to a predeined state, or act as a
trigger point for ChartWrapper events.

In general, a visualization with dashboard, controls, and events will always follow a
pattern similar to the following outline:

<html>

<head>

<script>

function visualization{

// Listen for an error event to happen

google.visualization.events.addListener(chart/dashboard, 'error/ready/
select',run_on_error);

// Load the Wrapper libraries

google.load

// Data creation, linking methods don't change

var data = google.visualization.DataTable

// Create some controls

var ctrl = new google.visualization.ControlWrapper

// Create a chart

var chart = new google.visualization.ChartWrapper

// Bundle controls and charts together on a dashboard. Draw the
visualization.

google.visualization.Dashboard

bind()

draw(data)

http:///

Dashboards, Controls, and Events

[150]

}

// Run this function when addListener "hears" the event
function run_on_error{

}

</script>

</head>

.

.

.

</html>

Now that it's possible to create "triggers" to listen for events in the dashboard,
it is useful to harness the triggering ability through the user interface. With the
Visualization API, the API controls as well as standard JavaScript interactivity,
such as onload and onclick, are accepted methods to initiate chart events from
the user interface.

Controls
The purpose of ControlWrapper controls is to allow the viewer to manipulate the
chart data into their own desired visualization using on-screen graphical methods.
Controls do not alter the dataset itself, but instead provide a iltered view only. This
method is desirable to both developer and user as it presents anyone viewing the
chart to customize the visualization to their needs sans concern of damaging the
visualization or data by doing so.

There are several kinds of ilters available:

• StringFilter

• NumberRangeFilter

• CategoryFilter

• ChartRangeFilter

StringFilter
StringFilter control is essentially a search ilter for the data table. The user enters
strings of characters as search queries into a ield, and the visualization dynamically
displays the results of the search. The StringFilter control is deined using the
ControlWrapper method:

varMyFilter = google.visualization.ControlWrapper({

 'controlType': 'StringFilter',

http:///

Chapter 7

[151]

 'containerId': 'control1',

 'options': {

 'filterColumnLabel': 'your_column_name'

 }

 });

The following chart example presents the same 2010 Chicago Census data that has
been a continuing resource throughout this book. However, in this case, only the
data for the male population is used. In the example, users may enter a sequence
of numbers in the search ield, and the chart view is reduced to only those entries
where the sequence of numbers exists in the Male column.

The preceding data for age groups of males is loaded into the visualization with the
arrayToDataTable function. Of course, an alternative method would be to use a
data source method as described in Chapter 6, Data Manipulation and Sources, such as
a Spreadsheet URL or JSON feed. If a data source method is chosen, remember that
the ChartWrapper function used for charts with controls provides the data source
linkage methods within ChartWrapper. The following data array is created in the
example chart's script.

 ['Age', 'Male'],

 ['Under 5 years', 94100],

 ['5 to 9 years', 84122],

 ['10 to 14 years', 83274],

 ['15 to 19 years', 91528],

 ['20 to 24 years', 108407],

 ['25 to 29 years', 134931],

 ['30 to 34 years', 119828],

 ['35 to 39 years', 100651],

 ['40 to 44 years', 89957],

 ['45 to 49 years', 85645],

 ['50 to 54 years', 80838],

 ['55 to 59 years', 68441]

http:///

Dashboards, Controls, and Events

[152]

As mentioned earlier in the chapter, when building dashboards, the control elements
and chart must be deined irst. To deine the control for the StringFilter, use the
ControlWrapper class to create the object with the StringFilter control being the
controlType. Also, deine which <div id> element you wish to use as a container.
The containerID option sets the <div id>, anchoring the control to the HTML
page. Control has a variety of variables that can be set at the time of declaration, most
of them being optional. However, for the StringFilter control in this instance, a
column index or label is required in order for the control to know on which column
to apply the search. This is accomplished by the addition of the filterColumnLabel
option which provides the the ilter's deinition. In the example, the ilter is set to
search on the Male column.

 // Define a StringFilter control for the 'Male Population' column

 var stringFilter = new google.visualization.ControlWrapper({

 'controlType': 'StringFilter',

 'containerId': 'control1',

 'options': {

 'filterColumnLabel': 'Male'

 }

 });

Now that the search ilter has been deined, the chart itself must be conigured. In
this example, a table visualization is the end result. To build the table and make
it compatible with the controls just deined, use the ChartWrapper class. When
deining ChartWrapper, conigure chartType, the <div id> container HTML
element, in addition to other formatting.

 // Define a table visualization

 var table = new google.visualization.ChartWrapper({

 'chartType': 'Table',

 'containerId': 'mydivid',

 'options': {'height': '13em', 'width': '20em'}

 });

http:///

Chapter 7

[153]

To complete the dashboard, the ControlWrapper and ChartWrapper components
must be assigned to the dashboard component. This is accomplished through the
bind function. The semantics for bind are to irst state the control to be bound in
parentheses; with the data object it is to be bound to as the second input variable.
The bind function may also be used in series to create dependent controls that
manipulate the same visualization. Dependent controls are a topic covered later in
this chapter.

 // Create the dashboard.

 var dashboard = new google.visualization.Dashboard(document.
 getElementById('dashboard')).

 // Configure the string filter to affect the table contents

 bind(stringFilter, table).

 // Draw the dashboard

 draw(data);

For reference, the following code example for a StringFilter control is presented in
its entirety, including the HTML framework.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="content-type" content="text/html; charset=utf-8"/>

 <title>

 Google Visualization API Sample

 </title>

 <script type="text/javascript" src="http://www.google.com/jsapi">
 </script>

 <script type="text/javascript">

 google.load('visualization', '1.1', {packages: ['controls']});

 </script>

 <script type="text/javascript">

 function drawVisualization() {

 // Prepare the data.

 var data = google.visualization.arrayToDataTable([

 ['Age', 'Male'],

 ['Under 5 years', 94100],

 ['5 to 9 years', 84122],

 ['10 to 14 years', 83274],

 ['15 to 19 years', 91528],

 ['20 to 24 years', 108407],

 ['25 to 29 years', 134931],

 ['30 to 34 years', 119828],

http:///

Dashboards, Controls, and Events

[154]

 ['35 to 39 years', 100651],

 ['40 to 44 years', 89957],

 ['45 to 49 years', 85645],

 ['50 to 54 years', 80838],

 ['55 to 59 years', 68441]

]);

 // Define a StringFilter control for the 'Male Population'
 column

 var stringFilter = new google.visualization.ControlWrapper({

 'controlType': 'StringFilter',

 'containerId': 'control1',

 'options': {

 'filterColumnLabel': 'Male'

 }

 });

 // Define a table visualization

 var table = new google.visualization.ChartWrapper({

 'chartType': 'Table',

 'containerId': 'chart1',

 'options': {'height': '13em', 'width': '20em'}

 });

 // Create the dashboard.

 var dashboard = new google.visualization.Dashboard(document.
 getElementById('dashboard')).

 // Configure the string filter to affect the table contents

 bind(stringFilter, table).

 // Draw the dashboard

 draw(data);

 }

 google.setOnLoadCallback(drawVisualization);

 </script>

 </head>

 <body style="font-family: Arial;border: 0 none;">

 <div id="dashboard">

 <table>

 <tr style='vertical-align: top'>

 <td style='width: 300px; font-size: 0.9em;'>

http:///

Chapter 7

[155]

 <div id="control1"></div>

 <div id="control2"></div>

 <div id="control3"></div>

 </td>

 <td style='width: 600px'>

 <div style="float: left;" id="chart1"></div>

 </td>

 </tr>

 </table>

 </div>

 </body>

</html>

Predictability of a control
Before publishing a visualization with controls, it is important to understand how
the control actually affects the data view. This may be common sense, but can be an
easily overlooked step. Often it may be assumed a ilter will behave a certain way,
when in reality the actual behavior is quite different. In the following example, the
number "1" is entered into the search ield. The resulting ilter of data returns all
entries in the Male column that begins with the integer 1. An incorrect interpretation
of this ilter functionality may have been to search the column for the number 1 as it
appears anywhere, even numerous times, in the entry.

Similarly, searching for 10 returns only the population numbers that start with 10.
Entries that contain other sequences or alternative string locations, such as 180 or
2010 are not among the results.

http:///

Dashboards, Controls, and Events

[156]

At this point, it can be assumed searching for the string 108 will only return the exact
sequence of the integer one, followed by the integer zero, followed by the integer
eight, which is in fact, the result.

At the time of this publication, the Visualization API does not support using the
generally accepted notation of language processing searches, such as wildcards and
ranges that do not improve results. At this time, it can then be deduced that the
StringFilter is literally just that, a simple string ilter. In this case, the ilter may
sometimes behave as a search-style control, but is actually not designed for typical
search functionality.

Live examples can be found at http://gvisapi-packt.
appspot.com/ch7-examples/ch7-stringfilter.html.

Overall, adding controls to a chart is fairly simple. Issues primarily arise when
expectations of a certain functionality do not coincide with actual functionality.

Know how ControlWrapper controls interact with speciic charts
and data. Test control functionality to be sure that the visualization
result is as expected and intended.

NumberRangeFilter
A NumberRangeFilter control is a bar-shaped slider with handles at each end of the
bar. The individual viewing the chart is able to manipulate the handles in order to
dynamically view a speciic range of data on the visualization.

http:///

Chapter 7

[157]

A NumberRangeFilter is built in the same manner as a StringFilter. First, the
control object for the ilter is deined. Notice much of the code is exactly the same,
with the exception of the controlType setting. To create a NumberRangeFilter,
create the same object as with StringFilter but substitute NumberRangeFilter as
the controlType.

// Define a slider control for the 'Male Population' column

 var slider = new google.visualization.ControlWrapper({

 'controlType': 'NumberRangeFilter',

 'containerId': 'control1',

 'options': {

 'filterColumnLabel': 'Male',

 'ui': {'labelStacking': 'vertical'}

 }

 });

Once again, as with StringFilter, create the chart component for the
NumberRangeFilter.

var piechart = new google.visualization.ChartWrapper({

'chartType': 'PieChart',

 'containerId': 'chart1',

 'options': {

 'width': 700,

 'height': 300,

 'legend': 'bottom',

'chartArea': {'left': 15, 'top': 15, 'right': 0, 'bottom': 0},

 'pieSliceText': 'value'

 }

});

Finally, inalize the drawing of the chart by attaching the control to the visualization
dashboard component with bind.

// Create the dashboard.

new google.visualization.Dashboard(document.
getElementById('dashboard')).

 // Configure the slider to affect the piechart

 bind(slider, piechart).

 // Draw the dashboard

 draw(data);

Live examples are available at http://gvisapi-packt.
appspot.com/ch7-examples/ch7-numrange.html.

http:///

Dashboards, Controls, and Events

[158]

CategoryFilter
A CategoryFilter control is a drop-down menu where selecting an item from
the drop-down ilters the view of the visualization based on that selected item.
CategoryFilter has several customization options, such as allowing multiple
selections at a time, or user-typed selections. The following example shows a
category ilter that sets the chart view by selected age group.

To illustrate the power of visualization when using a category ilter, note in the
preceding igure, the Under 5 years and 20 to 24 years categories make chart data
appear relatively close in value. However, when a third, 25 to 29 years category is
added, values of data are not as close as irst suggested.

http:///

Chapter 7

[159]

Using CategoryFilter controls allow users to target speciic regions of data without
losing the perspective of the entire dataset. The CategoryFilter control is created in
a similar manner to other controls. As with any other visualization, create or import
data irst.

function drawVisualization() {

 // Prepare the data.

 var data = google.visualization.arrayToDataTable([

 ['Age Group', 'Male', 'Female'],

 ['Under 5 years', 94100, 91787],

 ['10 to 14 years', 84122, 81955],

 ['15 to 19 years', 83274, 81192],

 ['20 to 24 years', 91528, 91405],

 ['25 to 29 years', 108407, 114620],

 ['30 to 24 years', 134931, 141208]

]);

Then, a variable is deined to provide the age selector control. The control creation
also deines an initial state for the chart.

 // Define a category picker for the Age Group column.

 var agePicker = new google.visualization.ControlWrapper({

 'controlType': 'CategoryFilter',

 'containerId': 'control1',

 'options': {

 'filterColumnLabel': 'Age Group',

 'ui': {

 'allowTyping': false,

 'allowMultiple': true,

 'selectedValuesLayout': 'belowStacked'

 }

 },

 // Define an initial state, i.e. a set of age groups to be
 initially selected.

 'state': {'selectedValues': ['Under 5 years', '20 to 24 years']}

 });

Following the control creation, the bar chart visualization must be deined. The label
options for the chart are included as part of the options deinitions.

 // Define a bar chart with ChartWrapper.

 var barChart = new google.visualization.ChartWrapper({

 'chartType': 'BarChart',

 'containerId': 'chart1',

 'options': {

 'colors': ['orange', 'purple'],

http:///

Dashboards, Controls, and Events

[160]

 'title': ['2010 Chicago Census by Gender & Age Group'],

 'hAxis':{'title': "Population"},

 'vAxis':{'title': "Age Group"},

 'width': 550,

 'height': 350

 }

 });

Finally, the dashboard is created and the bind function links the selection control
and chart together.

 // Create the dashboard.

 var dashboard = new google.visualization.Dashboard(document.
 getElementById('dashboard')).

 // Configure the age picker to affect the chart

 bind(agePicker, barChart).

 // Draw the dashboard

 draw(data);

}

Live examples are available at http://gvisapi-packt.
appspot.com/ch7-examples/ch7-catfilter.html.

ChartRangeFilter
Similar to the NumberRangeFilter control that ilters a data view based on a
column's range of values, the ChartRangeFilter control ilters a view based
on a time period.

ChartRangeFilter involves time-based data, which requires extra discussion. Given
this need, it is better categorized as part of the Time-based charts section in Chapter 8,
Advanced Charts. The following graphic is a ChartRangeFilter control iltering the
main chart view data that is linked to a time period in roughly February 2012.

http:///

Chapter 7

[161]

Controls with dependencies
A series of controls may be linked together, such that the subsequent control relies on
the previous control's value. Outside of the Visualization API, this is often referred
to as a cascading list of values. This technique is particularly useful with charts that
require a selection of data to be systematically pared down from larger categories. A
control that ilters by country may then become a dependency of another control that
ilters by state, city, or county. The state ilter will automatically receive the iltered
results of the country control as its selection options. In this way, it is possible to
view data at various levels of granularity by using multiple controls in conjunction.

To illustrate, this is a simple bar graph that has been created from the age group
population data of Chicago from 2000, 2005, and 2010. One of the controls on the
far-left side has a dependency on the other. When the Year is selected, the graph is
populated with that particular year's population for the selected year. To further
ilter the display, one or more Age Groups may be selected for the given year.

To change the selected data to another year, simply select the Year drop-down and
pick a different option. The data displayed will automatically adjust to the Age
Group ilters already selected. The following dependency example is in its entirety.
On initial load, the Year option has been preset to 2010. Setting of the initial state
takes place as part of the control declaration itself.

function drawVisualization() {

 // Prepare the data

 var data = google.visualization.arrayToDataTable([

 ['Year', 'Age Group', 'Population'],

 ['2000', 'Under 5 yrs', 776733],

 ['2005', 'Under 5 yrs', 8175173],

 ['2010', 'Under 5 yrs', 21372],

 ['2000', '5 to 9 yrs', 3694820],

 ['2005', '5 to 9 yrs', 70708],

 ['2010', '5 to 9 yrs', 857592],

 ['2000', '6 to 10 yrs', 2193031],

 ['2005', '6 to 10 yrs', 852395],

http:///

Dashboards, Controls, and Events

[162]

 ['2010', '6 to 10 yrs', 348556]

]);

 var yearPicker = new google.visualization.ControlWrapper({

 'controlType': 'CategoryFilter',

 'containerId': 'control2',

 'options': {

 'filterColumnLabel': 'Year',

 'ui': {

 'labelStacking': 'vertical',

 'allowTyping': false,

 'allowMultiple': false

 }

 },

 'state': {'selectedValues': ['2010']}

 });

 var agePicker = new google.visualization.ControlWrapper({

 'controlType': 'CategoryFilter',

 'containerId': 'control3',

 'options': {

 'filterColumnLabel': 'Age Group',

 'ui': {

 'labelStacking': 'vertical',

 'allowTyping': false,

 'allowMultiple': true

 }

 }

 });

 // Define a bar chart to show 'Population' data

 var barChart = new google.visualization.ChartWrapper({

 'chartType': 'BarChart',

 'containerId': 'chart1',

 'options': {

 'title': ['2000 & 2010 Chicago Census by Gender & Age Group
 (incl. 2005 estimate)'],

 'width': 800,

 'height': 300,

 'chartArea': {top: 50, right: 50, bottom: 50}

 },

 // Configure the barchart to use columns 1 (age group) and 2
 (population)

 'view': {'columns': [1, 2]}

http:///

Chapter 7

[163]

 });

 // Create the dashboard.

 new google.visualization.Dashboard(document.
 getElementById('dashboard')).

 // Configure the controls so that:

 // - the 'Year' selection drives the 'Age Group' one,

 // - and the 'Age Group' output drives the chart

 bind(yearPicker, agePicker).

 bind(agePicker, barChart).

 // Draw the dashboard

 draw(data);

}

Live examples can be found at http://gvisapi-packt.
appspot.com/ch7-examples/ch7-dependentctrl.html.

Working with dependent controls may take some trial and error to make them
function as desired.

Troubleshooting

When using the ChartArea option in deining a chart, be careful
to not make area values too small so that title and axis labels are
accidentally cropped out of the viewable area. If titles or axis labels
do not appear as expected, try increasing the chart area values.

Programmatic control
The purpose of providing programmatic control through the Visualization API is
to allow the developer to dynamically set chart attributes through various external
sources. Programmatic control is therefore nothing more than the assignment of
available chart attributes through the user interface, or other mechanism capable
of triggering an event. Just as the Google Visualization API uses events to enable
dynamic activity within itself, JavaScript events such as onclick() or onload() also
allow web page events to trigger Visualization API customization.

http:///

Dashboards, Controls, and Events

[164]

The following example illustrates the combination of event triggers designed
as buttons, which then set visualization option conigurations. The buttons are
ultimately just presets for the visualized chart. To ilter the pie chart to a view of
only the 50 to 54 and 55 to 59 years age group ranges, the user would select the
Select 50 to 54 + 55 to 59 years button.

The resulting visualization not only alters the pie chart view, but is also programmed
so that the slider coniguration changes as well. The button press event is in
actuality, linked only to the slider control. In turn, the chart depends on the slider
coniguration. In this manner, a chain of dependencies is achieved, although the
slider can still be manipulated independently of the preset button.

http:///

Chapter 7

[165]

Similarly, when the Select 90K – 12K population button is pressed, the slider values
are set, which subsequently alters the chart visualization itself.

Global variables
To code the preceding example, there is one key difference to recognize as part of
creating a programmatic control for a chart. As with previous examples, the function
to execute upon triggering the event is organized as a function outside of the main
visualization function. The slider and pie chart variables happen to be used in both
the functions. However, if these variables are only known to the main visualization
function, the execution of the dashboardReady code will result in an error when
the button event is triggered. This occurrence results in the following Uncaught
ReferenceError: slider is not deined error message when debugging the code:

http:///

Dashboards, Controls, and Events

[166]

The slider in the error is referring to the use of the slider object in the
dashboardReady function, not the main drawVisualization function. The slider
object is known to the drawVisualization function, but not to the dashboardReady
function, as they are completely separate functions and slider is deined in
drawVisualization only. To solve this issue and introduce consistency of variables,
a variable that is known to the entire scripted application is required. This type of
variable is called a Global variable. To create a global variable, simply create it
outside of either function.

<script>

var slider;

varpiechart;

functiondrawVisualization () { … }

…

</script>

The declaration of the variable must still be inside the <script> tags, but outside of
all JavaScript functions in order to be considered global to the application. The slider
example declares the global variables, slider and piechart, at the very beginning
of the API script. In this way, both slider and piechart can be referenced in any
function in the API script. The entire HTML code for the programmatic control
example is explained by section here. The irst section loads the appropriate libraries.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="content-type" content="text/html;
 charset=utf-8"/>

 <title>

 Google Visualization API Sample

 </title>

 <script type="text/javascript" src="http://www.google.com/
 jsapi"></script>

 <script type="text/javascript">

 google.load('visualization', '1.1', {packages: ['controls']});

 </script>

 <script type="text/javascript">

http:///

Chapter 7

[167]

Next, the global slider and piechart variables are declared. The dataset is created
as a DataTable, and the slider and piechart variables are conigured.

 // Define the slider and pie chart variables as global
 variables.

 var slider;

 var piechart;

 function drawVisualization() {

 // Prepare the data

 var data = google.visualization.arrayToDataTable([

 ['Age', 'Male'],

 ['Under 5 years', 94100],

 ['5 to 9 years', 84122],

 ['10 to 14 years', 83274],

 ['15 to 19 years', 91528],

 ['20 to 24 years', 108407],

 ['25 to 29 years', 134931],

 ['30 to 34 years', 119828],

 ['35 to 39 years', 100651],

 ['40 to 44 years', 89957],

 ['45 to 49 years', 85645],

 ['50 to 54 years', 80838],

 ['55 to 59 years', 68441]

]);

 // Define a slider control for the 'Male Population' column

 slider = new google.visualization.ControlWrapper({

 'controlType': 'NumberRangeFilter',

 'containerId': 'control1',

 'options': {

 'filterColumnLabel': 'Male',

 'ui': {'labelStacking': 'vertical'}

 }

 });

 // Define a pie chart

 piechart = new google.visualization.ChartWrapper({

 'chartType': 'PieChart',

 'containerId': 'chart1',

 'options': {

 'width': 700,

 'height': 400,

 'legend': 'side',

http:///

Dashboards, Controls, and Events

[168]

 'chartArea': {'left': 15, 'top': 15, 'right': 0,
 'bottom': 10},

 'pieSliceText': 'value'

 }

 });

At this point, the dashboard is deined. Also, the event that listens for the chart
to inish rendering is created. The inal step is to bind the slider and piechart
controls to the dashboard and draw the chart.

 // Create the dashboard

 var dashboard = new google.visualization.Dashboard(document.
 getElementById('dashboard'));

 // Register a listener to be notified once the dashboard is ready
 to accept presets.

 google.visualization.events.addListener(dashboard, 'ready',
 dashboardReady);

 // Configure the slider to affect the piechart, bind to the
 // dashboard

 dashboard.bind(slider, piechart).draw(data);

 }

Outside of the visualization function, the dashboardReady function sets the state
values for the range slider and preset buttons.

function dashboardReady() {

 // The dashboard is ready to accept interaction. Configure the
 buttons to programmatically affect the dashboard when clicked.

 // This button selects the range that happens to be the 50-54 and
 55-59 year age groups

 document.getElementById('rangeButton').onclick = function() {

 slider.setState({'lowValue': 68441, 'highValue': 80838});

 slider.draw();

 };

 // This button selects population numbers between 90K to 120K

 document.getElementById('rangeButton2').onclick = function() {

 slider.setState({'lowValue': 90000, 'highValue': 120000});

 slider.draw();

 };

}

http:///

Chapter 7

[169]

The inal section of code sets the containers for the slider, buttons, and chart.

 google.setOnLoadCallback(drawVisualization);

 </script>

 </head>

 <body style="font-family: Arial;border: 0 none;">

 <div id="dashboard">

 <table>

 <tr style='vertical-align: top'>

 <td style='width: 300px; font-size: 0.9em;'>

 <div id="control1"></div>

 <div id="buttons">

 <button style="margin: 2em" id="rangeButton">Select 50
 to 54 + 55 to 59 years</button>

 <button style="margin: 2em" id="rangeButton2">Select
 90K - 120K population</button>

 </div>

 </td>

 <td style='width: 600px'>

 <div style="float: left;" id="chart1"></div>

 </td>

 </tr>

 </table>

 </div>

 </body>

</html>

Live examples are available at http://gvisapi-packt.
appspot.com/ch7-examples/ch7-progctrl.html.

Dashboards and controls can at irst appear to be complicated given the length
of code required. However, breaking down the code into functional components
reveals the methodical, but simple approach to dashboard construction.

Dashboard and control documentation is available at https://
developers.google.com/chart/interactive/docs/
gallery/controls.

http:///

Dashboards, Controls, and Events

[170]

Transition animation
Sometimes it is helpful to display two sets of data in animated sequence to illustrate
the dynamics of the change in data values. The transition animation option in the
Visualization API is intended for that purpose.

Controls for triggering a transition animation utilize standard HTML methods.
Common elements, such as a simple button-click using the JavaScript onclick()
method, can be used to initiate animation sequences. The following diagram is
of the two states of a visualization. In one state, the total population of Chicago
taken in the 2000 Census is shown. In the other state, the 2010 Chicago population
is visualized. To toggle between the two bar graphs, the user is provided with a
button in the upper-right hand corner of the chart. Pressing the button will toggle
the visualization between the 2000 and 2010 population chart. Once the button is
pressed, the Visualization API will smoothly transition the bar graph to the selected
data representation.

http:///

Chapter 7

[171]

The code for the preceding animation requires both basic HTML and Visualization
API methods. The HTML method used in this example is button creation via the
<form> tag. The behavior of the animation is controlled through Visualization API
methods, with the event listener method being particularly useful. At the core, a
transition animation must contain the following components:

• A switching method to switch the current dataset being viewed

• A user interface mechanism to trigger the switching between datasets

The animated transition code is as follows, with explanations of these key
components afterwards.

<!DOCTYPE html>

<html>

 <head>

 <title>Transition Animation Example</title>

 </head>

 <body class="docs framebox_body">

<script type="text/javascript" src="https://www.google.com/jsapi"></
script>

<script type="text/javascript">

google.load('visualization', '1.1', {packages:['corechart']});

google.setOnLoadCallback(total_population);

function total_population() {

 // 2000 and 2010 Chicago Census Data

 var c2000 = [['Year', 'Total Population'],

 ['2000', 2895964]];

 var c2010 = [['Year', 'Total Population'],

 ['2010', 2695598]];

 // Create and populate the data tables.

 var data = [];

 data[0] = google.visualization.arrayToDataTable(c2000);

 data[1] = google.visualization.arrayToDataTable(c2010);

 var options = {

http:///

Dashboards, Controls, and Events

[172]

 width: 550,

 height: 350,

 vAxis: {title: "Population"},

 hAxis: {title: "Year"},

 seriesType: "bars",

 animation:{

 duration: 2000,

 easing: 'out'

 }

 };

 // initialize current state

 var current = 0;

 // Create and draw the visualization.

 var chart = new google.visualization.ComboChart(document.
 getElementById('census-visualization'));

 var button = document.getElementById('switch_button');

 function drawChart() {

 // Disabling the button while the chart is drawing.

 button.disabled = true;

 google.visualization.events.addListener(chart, 'ready',

 function() {

 button.disabled = false;

 button.value = 'Switch to ' + (current ? '2000' : '2010');

 });

 options['title'] = 'Chicago ' + (current ? '2010' : '2000') +
 ' Census - Total Population';

 chart.draw(data[current], options);

 }

 drawChart();

 button.onclick = function() {

 current = 1 - current;

 drawChart();

 }

}

</script>

<form><input id="switch_button" type="button" value=""></input></form>

<div id="census-visualization"></div>

</body>

</html>

http:///

Chapter 7

[173]

Programmatic switch
Note that in the preceding code, several distinct features are present which are
not found in the general use of the Visualization API. For instance, there are two
datasets that are kept in a multi-dimensional table, which is an extension of the
array programming method discussed in Chapter 4, Basic Charts.

 var data = [];

 data[0] = google.visualization.arrayToDataTable(c2000);

 data[1] = google.visualization.arrayToDataTable(c2010);

The preceding technique of creating a collection of tables in a single variable
simpliies the job of referencing multiple data tables in a single application. Rather
than giving each table a variable name, the tables can easily be referenced by
indicating their location in the bigger array. For example, to use the Census dataset
from 2000 (c2000), simply use the following notation:

data[0]

It is also helpful to note where the c2000 variable came from. In the preceding code,
c2000 and c2010 are variables that contain the total population for each respective
Census year. Instead of referencing c2000 and c2010 individually, the tables are
encapsulated into a more manageable, single array denoted as data[]. The nested
array is called a multi-dimensional array.

Best practice

Use variables to compact datasets into manageable collections,
which are called multi-dimensional arrays.

In practice, the technique of creating switchable arrays is useful when having to
toggle between drawings using chart.draw(). In the preceding example, current is
the variable that tells the chart which dataset to draw.

chart.draw(data[current], options);

The next step is to determine how the current variable is set by user clicks, which
behaves as a button toggle.

User interface toggle
The current variable selects the dataset to be visualized. The Visualization API
does not provide other interface tools other than special use buttons, so an HTML
button must be created for the user interface. Still, beyond the HTML creation, all
functionality of the button is handled through Visualization API methods.

http:///

Dashboards, Controls, and Events

[174]

Create button
The irst task is to create an HTML button with an id tag, similar to how a
visualization requires an id for rendering in an HTML framework.

<form>

<input id="switch_button" type="button" value=""></input>

</form>

In the visualization function, create a variable and assign it to the <div id> from the
<form> section.

var button = document.getElementById('switch_button');

This creates a direct link from the HTML button to the visualization code. From this
point forward, all button behavior that is related to the chart is deined through the
Visualization API.

Button behavior
Given that the button is intended to act as a toggle between Census populations, it is
desirable to know the initial state of the button. The current variable is the behavior
trigger for the button. For example, if current = 2010, the population for 2010
will be drawn by the visualization. Ideally, the button text Switch to 2000/2010 and
visualization never become mismatched. There are several best practices to prevent
this issue. The irst is to initialize the state of the button to a known value when the
application starts. To initialize current, it is assigned an initial value of 0.

// initialize current state

var current = 0;

To prevent mismatched states between the button text and visualized data, the use of
a single variable to set the state of the visualization and the button is suggested.

button.value = 'Switch to ' + (current ? '2000' : '2010');

 });

Note the title is set with the same method so as to keep labeling current for the chart.

 options['title'] = 'Chicago' + (current ? '2010' : '2000') + ' Census
- Total Population';

http:///

Chapter 7

[175]

You also have to control button pushes while the chart is drawing. When it is done
drawing, it will send out a ready message. An event listener for this message lets the
application know when it is ok to accept another button push.

// Disabling the button while the chart is drawing.

 button.disabled = true;

google.visualization.events.addListener(chart, 'ready',

 function() {

 button.disabled = false;

Best practice

As is the case with programming in general, avoid bugs by properly
managing variables. For variables that hold a state, initialize them
when the application starts. To prevent mismatched states, try
to use only one "variable of truth" to set multiple aspects of the
visualization.

Another example of the transition advantages can be viewed when the 2000 and 2010
Census data are placed side by side for one sex. The transition illustrates the difference
in growth (or decline) for each of the sexes during each of the Census years.

http:///

Dashboards, Controls, and Events

[176]

Live examples are available at http://gvisapi-packt.
appspot.com/ch7-examples/ch7-transanimate0.html.

http://gvisapi-packt.appspot.com/ch7-examples/ch7-
transanimate.html

For the preceding example, the data may be more detailed, but the framework design
for the animation remains the same.

Chart transition animation documentation is available
at https://developers.google.com/chart/
interactive/docs/animation.

Chart editor for users
The chart editor, as seen in Spreadsheet visualizations, can become part of a coded
visualization. With the chart editor option, users can set their own style and chart
type preferences. The editor is the same editor used by Spreadsheets and Fusion
Tables. To make chart editor an option, a button to open the editor must be created
in the standard HTML form method.

 <input type='button' onclick='openEditor()' value='Open Editor'>

The remaining methods to implement the editor are primarily the same as with other
button-controlled charts.

http:///

Chapter 7

[177]

However, one small programming requirement in addition to the editor-speciic button
itself, is to include the chartedit library package to be loaded by google.load.

google.load('visualization', '1', {packages:['charteditor']});

To create the chart itself, the ChartWrapper class is used. Finally, to alert the
application when the editor button has been pushed, an event listener is used.
The creation of the listener is in the same form as other event handlers. The
listener is created with the addListener code, and is encapsulated in its own
function, openEditor().Since the Open Editor button has been deined as equal to
'openEditor()' and its onclick event in the <body> tag, pressing the Open Editor
button will trigger addListener to execute the openEditor() function.

 function openEditor() {

 // Handler for the "Open Editor" button.

 var editor = new google.visualization.ChartEditor();

 google.visualization.events.addListener(editor, 'ok',

 function() {

 wrapper = editor.getChartWrapper();

 wrapper.draw(document.getElementById('visualization'));

 });

 editor.openDialog(wrapper);

 }

The following is the complete HTML for a chart with editor capabilities. The data for
this example is imported from a Google Spreadsheet.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="content-type" content="text/html;
 charset=utf-8"/>

 <title>

 Google Visualization with Editor

 </title>

 <script type="text/javascript" src="http://www.google.com/
 jsapi"></script>

 <script type="text/javascript">

 google.load('visualization', '1', {packages: ['charteditor']});

 </script>

 <script type="text/javascript">

 var wrapper;

 //Use ChartWrapper to create chart

 function init() {

http:///

Dashboards, Controls, and Events

[178]

 wrapper = new google.visualization.ChartWrapper({

 dataSourceUrl: 'https://docs.google.com/spreadsheet/tq?key=0Ah
 nmGz1SteeGdEVsNlNWWkoxU3ZRQjlmbDdTTjF2dHc&range=A1%3AD20&head
 ers=-1',

 containerId: 'visualization',

 chartType: 'SteppedAreaChart'

 });

 wrapper.draw();

 }

 function openEditor() {

 // Handler for the "Open Editor" button.

 var editor = new google.visualization.ChartEditor();

 google.visualization.events.addListener(editor, 'ok',

 function() {

 wrapper = editor.getChartWrapper();

 wrapper.draw(document.getElementById('visualization'));

 });

 editor.openDialog(wrapper);

 }

 google.setOnLoadCallback(init);

 </script>

 </head>

 <body style="font-family: Arial;border: 0 none;">

 <input type='button' onclick='openEditor()' value='Open Editor'>

 <div id='visualization' style="width:600px;height:400px">

 </body>

</html>

You can have a look at the live example at http://gvisapi-packt.
appspot.com/ch7-examples/ch7-editor.html.

You will have the chart editor documentation at https://
developers.google.com/chart/interactive/docs/
reference#google_visualization_charteditor.

http:///

Chapter 7

[179]

Summary
Beyond chart creation, the Google Visualization API provides methods for
user interaction. Data presented in a chart may be conigured to allow a user to
manipulate views, ranges, and even styles of the chart itself. Visualizations may
also be presented in various sequences, with transition animation to illustrate the
change in data values. In this chapter, visualization customization is focused on
pre-deined controls used as enhancements to fairly basic charts. Similarly,
animation and editor capabilities are somewhat static with controls being added to
enhance user experience. In the next chapter, advanced visualization customization
and complex methods of chart creation are introduced. Topics are expanded to charts
able to interactively display additional data dimensions. Additionally, the irst steps
to developing a custom visualization from scratch are introduced.

http:///

http:///

Advanced Charts
This chapter covers several advanced topics concerning the Google Visualization
API. Some examples may have multiple approaches, while others are bound to a
speciic method. In fact, more than one of the complex charts presented can also
be created using either spreadsheets or code. Although the charts themselves may
require very little code, they do require various types of data to be formatted as per
speciications. Additionally, advanced charts often require a handful of settings to
be conigured in order to render the chart drawing at all. Good examples of chart
requiring particular care with data organization are time-based charts and intensity
maps. Often these types of charts appear complex, but most of the complexity has
been encapsulated in the visualization code itself. The result is then a collection of
interconnected coniguration requirements. The interplay between more complex
requirements and increasingly advanced charts is the topic of the inal section of this
chapter, Your own visualization.

In this chapter we will cover the following topics:

• Time-based charts

• Intensity/marker maps

• Writing your own visualization

Time-based charts
When data value is dependent on the passing of time, a representation of the element
of time must be included in the visualization. Time-based charts are the charts that
animate a change in data values over a time period. Through this animation, the
chart is able to graphically represent movement in values over time.

There are several time-reliant charts available through the Google Visualization API.
At this time, they are the motion chart and the annotated timeline chart.

http:///

Advanced Charts

[182]

Motion chart
A motion chart is a visualization that animates the change in data over time. The
data representation and animation of this chart can be displayed as three different
chart types, bubble, bar, and line. The Size of the data point bubbles can also be set to
represent additional data attributes. Colors, highlighted items, and motion tracking
are also available as user control options on the chart.

Possibly the most important control of the Motion Chart is the button.

This button is self-explanatory in that the graphic on it is recognizable as a generic
"play" button. It is intended to set the chart in motion and also pause it. Directly to
the right of the "play" button is the motion speed control. The speed at which the
animation progresses is controlled by the smaller arrow set on top of a column of
horizontal lines. Dragging this control upwards or downwards dynamically changes
the animation speed.

http:///

Chapter 8

[183]

The Color setting on the motion chart example is conigured to display blue for
female and lime green for the male age groups. Selecting the tab below the Color
label allows the user to change the color setting to several other options. These
options include a default where all bubbles are of the same color, reliant on a data
column, or the same color for all items. As additional columns are added to the
dataset, they will become available as a variable in the Color drop-down menu.

You can ind the Size setting just below Color. This setting determines the diameter
of the motion bubbles, and can be conigured to relect a number value associated
with a category or item. In this example, the diameter of the dots is related to the
sizes of the 2000 and 2010 populations of male and female age groups in Chicago.

The Select setting is used to highlight one or more of the data category dots on
the graph. Selected dots will appear solid in opacity, whereas unselected dots
are opaque.

After the chart has been set into motion, the current point in time for the chart is
available along the bottom of the chart.

http:///

Advanced Charts

[184]

When the data has completed displaying the timeline's data, the data circles will
come to a stop at the end of the graph.

The motion chart offers two other types of charts to view animated data. The second
tab shows data as an animated bar chart. The timeline player functions the same in
this version, with bars changing in height.

http:///

Chapter 8

[185]

Depending on the order of the data in the data source, the bars of the
chart may switch places graphically as one value becomes higher than
another. To prevent this behavior, select the down arrow to change the
Order option of the horizontal axis. Generally the switching behavior
occurs when Alphabetical is the selected order.

The third type of viewing available is a simple line graph. This view is not animated,
but a static representation of the data.

Another useful feature available on the motion chart user interface is the Trails
option. When this option is selected, the chart draws a trail behind the data point as
it traverses the graph over time. This feature is useful for examining the paths of a
data point in relation to other data points as they move through time.

http:///

Advanced Charts

[186]

Finally, a small but useful display control option on a motion chart is the linear or
logarithmic toggle. Found in the left-right corner of the chart, this control allows
the viewer to change how the animation is interpreted between values. Selecting
the Log option prepares the chart for the data values according to logarithmic scale.
Alternatively, selecting the Lin option sets the data scale to linear.

Spreadsheets
Inserting a motion chart into a Google Spreadsheet is as simple as selecting Insert
| Chart from the spreadsheet menu bar. The Chart Editor lists the options for
visualizations, with the motion chart being categorized under Trend. As with all
other Google Spreadsheet charts, the organization of data in the spreadsheet is
extremely important.

The irst column should contain the names of the items to be tracked on the chart.
The second column consists of the sequence of dates the timeline will contain. The
remaining columns can be either text or number values. In our example, the age
groups of the 2000 and 2010 Chicago Census population transition from their 2000
and 2010 values.

http:///

Chapter 8

[187]

Data for the United States Census 2000 can be found at http://www.factfinder2.
census.gov. From this page, search for the desired region, which in this case is
Chicago, Illinois.

http:///

Advanced Charts

[188]

The live example is available at https://docs.google.com/
spreadsheet/ccc?key=0AhnmGz1SteeGdHlKQUJzWmxWdj
Z5NjhORDBSMnpZVFE.

Code
The same motion chart created in Spreadsheets can also be realized using Google
Visualization API code.

As with other charts, the same process of creating a chart from the library package
load to the end visualization consists of several key components:

• Loading the appropriate library:
google.load('visualization', '1', {packages:['motionchart']});

• Creating or loading data into a DataTable() method:
var data = new google.visualization.DataTable();

• Drawing the chart:
var motionchart = new google.visualization.MotionChart();

The only noticeable difference between any basic visualization and a motion chart
visualization is the inclusion of a date column. When describing a date for the
Google Visualization API, the following format must be used:

new date(year, day, month)

The API will then interpret the column of dates and display them as points on the
timeline. The complete code for the Motion Chart visualization is as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <meta http-equiv="content-type" content="text/html;

 charset=utf-8" />

 <title>Google Visualization API Sample</title>

 <script type="text/javascript"

 src="http://www.google.com/jsapi"></script>

 <script type="text/javascript">

 google.load('visualization', '1',

 {packages: ['motionchart']});

 function drawVisualization() {

http:///

Chapter 8

[189]

 var data = new google.visualization.DataTable();

 data.addColumn('string', 'Age Group');

 data.addColumn('date', 'Date');

 data.addColumn('number', 'Population');

 data.addColumn('string', 'Sex');

 data.addRows([

 ['Under 5 years (M)', new Date(2000,0,1), 111253, 'Male'],

 ['Under 5 years (F)', new Date(2000,0,1),

 105730, 'Female'],

 ['5 to 9 years (M)', new Date(2000,0,1), 113265, 'Male'],

 ['5 to 9 years (F)', new Date(2000,0,1),

 108738, 'Female'],

 ['Under 5 years (M)', new Date(2010,1,1), 94100, 'Male'],

 ['Under 5 years (F)', new Date(2010,1,1),

 91787, 'Female'],

 ['5 to 9 years (M)', new Date(2010,1,1), 84122, 'Male'],

 ['5 to 9 years (F)', new Date(2010,1,1), 81955, 'Female']

]);

 var motionchart = new google.visualization.MotionChart(

 document.getElementById('visualization'));

 motionchart.draw(data, {'width': 800, 'height': 400});

 }

 google.setOnLoadCallback(drawVisualization);

 </script>

</head>

<body style="font-family: Arial;border: 0 none;">

<div id="visualization" style="width: 800px; height: 400px;"></div>

</body>

</html>

The live example is avaialable at http://gvisapi-packt.
appspot.com/ch8-examples/ch8-motion.html.

Additional information regarding motion charts can be found on the Google
Developers website.

The Motion Chart documentation is available at https://developers.
google.com/chart/interactive/docs/gallery/motionchart.

http:///

Advanced Charts

[190]

The lesson to be learned from motion charts is primarily how to manage time-based
data. It is also worth noting that the code implementation of the motion chart is
similar to basic charts, with only a few minor adjustments. The motion chart itself is a
complex visualization, with many possible input and output variations. The reduction
of complexity for developers using a visualization in their code is a desirable outcome
when developing custom visualization types. This is especially true for visualizations
that are easy to implement, but provide many options to developers or users as to the
coniguration and formatting of their data set.

Annotated timeline
The annotated timeline provides the ability to zoom in or out on a set of data, in
addition to tagging speciic points with additional descriptions. The annotated
timeline is available in Spreadsheets as well as in code form.

Data source: factfinder2.census.gov

This chart requires limited amounts of data to create, but has the ability to include
a signiicant amount of description data as well. Unlike the motion chart, the
annotated timeline chart gives the user a zoom feature through the ability to focus
on speciic segments of the overall timeline using the adjustable window along the
bottom of the chart. In addition to zooming capabilities, it is possible to lag speciic
data points and give these points additional descriptive values.

http:///

Chapter 8

[191]

In the preceding example, the total populations of males and females in the various
Census for actual and estimate years between 2000 and 2010 are visualized. With the
estimates included, it is possible to see the decrease in population over the 10-year
period was not linear. The 2005 and 2006 estimate values for both male and female
populations have also been graphed and noted. The notations help provide insight
for changes in the linearity of the population decline.

Spreadsheets
Visualizing an annotated timeline in Google Spreadsheets follows the same
procedure as motion charts. The package (annotated timeline) is loaded, data
is put into a DataTable(), and the visualization is drawn. However, there is a
small but distinct difference between other charts and the annotated timeline in the
particular importance of empty data ields.

Event lags and descriptions
For annotated timeline charts, blank (or null) values in the data set are just as important
as other data. The formatting for this type of chart starts with the irst column
containing timeline dates. The second column contains data values to be displayed,
with the third and fourth columns being the event lag title and descriptions.

http:///

Advanced Charts

[192]

For data points that do not have associated event lags, the cell is left empty.
Additionally, if more than one category of data is to be displayed, the column patterns
of data values, event lags, and title descriptions are repeated as necessary after the
irst set. As this is true with individual event lag information, if a lag or description is
not needed at a speciic data point, the corresponding cells are left empty.

The live example is available at https://docs.google.com/
spreadsheet/ccc?key=0AhnmGz1SteeGdHN0Qi1NeUo5UlZ
KVnVkcEFEeUtpZUE.

Code
The coded version of the annotated timeline is very similar to other visualizations,
with a minor change required in how data is passed or deined in DataTable(). For
annotated timelines, data values that do not require an event tag or description must
be illed with the value null in the DataTable().

var data = new google.visualization.DataTable();

 data.addColumn('date', 'Date');

 data.addColumn('number', 'Male');

 data.addColumn('string', 'Event');

 data.addColumn('string', 'Description');

 data.addColumn('number', 'Female');

 data.addColumn('string', 'Event');

 data.addColumn('string', 'Description');

 data.addRows([

 [new Date(2000, 1 ,1), 1405107,

 null, null, 1490909, null, null],

 [new Date(2005, 1 ,1), 1299933,

 '2005 Estimate', 'Male', 1401993, '2005 Estimate', 'Female'],

 [new Date(2006, 1 ,1), 1343629,

 '2006 Estimate', 'Male', 1405654, '2006 Estimate', 'Female'],

 [new Date(2010, 1 ,1), 1308072,

 null, null, 1387526, null, null]

]);

Notice that the previous table is constructed in the same manner as other tables, with
empty values of the array being replaced with null.

http:///

Chapter 8

[193]

The following code is entirely an annotated timeline example. Optional settings,
such as maximum, minimum, opacity, and colors are conigured with the options
array. In the Spreadsheet form, these are the conigurations that can be found under
Customize Tab in the Chart Editor:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <meta http-equiv="content-type" content="text/html;

 charset=utf-8" />

 <title>Google Visualization API Sample</title>

 <script type="text/javascript"

 src="http://www.google.com/jsapi"></script>

 <script type="text/javascript">

 google.load('visualization', '1',

 {packages: ['annotatedtimeline']});

 function drawVisualization() {
 var data = new google.visualization.DataTable();

 data.addColumn('date', 'Date');

 data.addColumn('number', 'Male');

 data.addColumn('string', 'Event');

 data.addColumn('string', 'Description');

 data.addColumn('number', 'Female');

 data.addColumn('string', 'Event');

 data.addColumn('string', 'Description');

 data.addRows([

 [new Date(2000, 1 ,1), 1405107, null, null,

 1490909, null, null],

 [new Date(2005, 1 ,1), 1299933, '2005 Estimate', 'Male',

 1401993, '2005 Estimate', 'Female'],

 [new Date(2006, 1 ,1), 1343629, '2006 Estimate', 'Male',

 1405654, '2006 Estimate', 'Female'],

 [new Date(2010, 1 ,1), 1308072, null, null,

 1387526, null, null]

]);

 var annotatedtimeline = new

 google.visualization.AnnotatedTimeLine(

 document.getElementById('visualization'));

 annotatedtimeline.draw(data, {

 'colors': ['green', 'orange'], // The colors to be used

 'displayAnnotations': true,

 'displayExactValues': true, // Do not truncate values

http:///

Advanced Charts

[194]

 'displayRangeSelector' : true, // Show the range selector

 'displayZoomButtons': true, // Display the zoom buttons

 'fill': 30, // Fill area below the lines with 20% opacity

 'legendPosition': 'newRow', // Can be sameRow

 'max': 1500000, // Override the automatic default

 'min': 1200000, // Override the automatic default

 'scaleColumns': [0, 1], // 2 scales, by 1st& 2nd lines

 'scaleType': 'allmaximized', // Fixed or maximized.

 'thickness': 2, // Make the lines thicker

 'zoomStartTime': new Date(2000, 1 ,1),

 'zoomEndTime': new Date(2010, 1 ,1)

 });

 }

 google.setOnLoadCallback(drawVisualization);

 </script>

</head>

<body style="font-family: Arial;border: 0 none;">

<div id="visualization" style="width: 800px; height: 400px;"></div>

</body>

</html>

Here's an important pointer to take care of.

Make sure the ranges of cells in view are as expected as you
add, delete or reorganize the spreadsheet.

The annotated timeline is most useful when a series of time-related data points
require occasional notation at various instances. As demonstrated in the example
code, the annotated timeline also allows for a reasonable amount of customization in
the format.

The live example is available at http://gvisapi-packt.
appspot.com/ch8-examples/ch8-timeline.html.

Additional information regarding annotated timelines can be found on the Google
Developers website.

The annotated timeline documentation is available
at https://developers.google.com/chart/
interactive/docs/gallery/annotatedtimeline.

http:///

Chapter 8

[195]

Maps
For any data that can be tied to a geographic location, map visualizations are often
very desirable. However, unlike simple bar graphs and line charts, it would be very
dificult to redraw entire geographic regions of the world every time a visualization
were needed. So, it would seem a basic template of geographic regions at varying
scope would be helpful for developers. Rather than requiring all map visualizations
to be created with the Google Maps API, the Visualization API provides several basic
geographic data maps. These basic charts are the geochart and geomap visualizations.
Both geomap and geochart are methods of representing intensity or quantity across
geographical spaces, from provinces or states to worldwide.

geochart versus geomap
The only key difference between geomap and geochart visualizations is the
method used to render the actual drawing of the map. Any other differences stem
from the difference in rendering techniques. geomap uses Adobe Flash, which is
quick to implement but lacks certain coniguration options. geochart is rendered
in VML (Vector Markup Language) or SVG (Scalable Vector Graphics), which
allows for more detailed conigurations. Finally, geochart (but not geomap) is also
available as a chart option in Google Spreadsheets. These differences are generally
due to the fact that geochart is the newer version although geomap has not yet been
depreciated. Regardless, HTML5 or CSS3 geochart is the preferred choice over the
older Flash version.

The frameworks of both geochart and geomap are also very similar to each other.
Both visualizations have two modes of display, regions and markers. (The auto
setting will select which of the two is the best it for the data.) The regions setting
displays data associated with cities, states, or countries as a color gradient in the
shape of the state. The selection of the color for each state or country is determined
by the value of the associated data. In the following example, higher data numbers
correspond to darker blue states, while lighter blue indicates lower numbers.

http:///

Advanced Charts

[196]

The region option

The marker mode displays the same quantitative data as the region option.
However, quantity is visualized through the diameter of each marker point in
addition to data-related color variations. For a geochart with a number of marker
points in a small geographical area, enable the magnifyingGlass option as part of
the draw method's options.

The marker option

http:///

Chapter 8

[197]

Both the region and marker versions of the map are interactive. Hovering over an
item on either chart will activate a pop-up window with detailed information.

geochart
Basic geochart data formatting consists of two columns. The irst column lists
geographical locations and the second associates a data value with the corresponding
location in each row. In the column of locations, each location should be of the same
type. For example, United States and France are countries and are thus of the same
type. A mismatch of type would be a data column that lists North America and
Mexico City, as one is a continent and the other is a city. To deine the geographic
scope of a geochart, there are several coniguration requirements that must be set.

Setting requirements for geochart:

• Deine a region
• Deine a resolution

The region option will set the overall scope for the map. Regions are the larger of
the two settings, and will have a value of world, or a speciic continent, country,
state, or province as identiied by the ISO 3166 global naming standard. The
resolution setting then deines the granularity of the speciied region. The available
options for the resolution setting are countries, provinces, or metros. Note that,
depending on the region selected, certain options may not be available as resolutions.
However, resolutions follow the same ISO 3166 global naming standard as regions.

Resolution options may vary depending on the
region selected.

The ISO 3166 standard
ISO 3166 is an internationally standardized list that deines two or three digit codes
for countries, territories, and other subdivisions around the world. The ISO 3166 is
published and maintained by the International Standards Organization (ISO). The
Google Visualization API complies with this standard when specifying the scope and
granularity of geographic areas.

http:///

Advanced Charts

[198]

Spreadsheets
The geochart visualization is available as a chart option in the Google Spreadsheets
Chart Editor. To use geochart, the irst column in the spreadsheet must contain
geographical information, such as the names of countries or states. The second
column must contain numerical values related to the geographic names listed in the
irst column.

geochart in Spreadsheets – limitation

The Spreadsheets version of geochart only allows for a
single column of data (beyond the region column). To use
more columns in the visualization, create geochart using
the code method.

http:///

Chapter 8

[199]

Source: factfinder2.census.gov

In the preceding example, the second column holds the combined population of two
familiar Chicago Census age groups, 20-24 years and 25-29 years. The additional
functionality of the spreadsheet is used here to convert raw numbers into the desired
values to be displayed. In this case, the desired metric is the total population of
people between ages 20 and 30 years who reside in a selected group of U.S. The chart
range is set to only visualize the irst two columns, which results in the visualization
of the combination of the raw values.

Code
The overall framework for geochart is not much different from other chart
frameworks. The only difference is the required coniguration of the region and
resolution options as seen in the Chart Editor of the Spreadsheet version.

// Set to: auto / regions / markers

displayMode: 'regions',

// Set to: countries / provinces / metros

resolution: 'provinces',

The following code snippet is the complete example of geochart:

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <meta http-equiv="content-type" content="text/html;

 charset=utf-8" />

 <title>Google Visualization API Sample</title>

 <script type="text/javascript"

 src="http://www.google.com/jsapi"></script>

 <script type="text/javascript">

 google.load('visualization', '1', {packages: ['geochart']});

 function drawVisualization() {

 // Import data from the Spreadsheets example of Geochart

 var query = new google.visualization.Query(

 'https://docs.google.com/spreadsheet/

 pub?key=0AhnmGz1SteeGdHFQOUx5amozd1NxeGM4MXhwQ1BMdGc&single=

 true&gid=0&range=Sheet1!A2%3AB12&output=html');

 // Send the query with a callback function.

 query.send(handleQueryResponse);

http:///

Advanced Charts

[200]

 }

 // Query handling for the Spreadsheet data

 function handleQueryResponse(response) {

 if (response.isError()) {

 alert('Error in query: ' + response.getMessage() + ' ' +

 response.getDetailedMessage());

 return;

 }

 // Put the data from the Spreadsheet in the 'data' variable

 var data = response.getDataTable();

 options = {region: 'US',

 displayMode: 'regions',

 // Note 'provinces' means states for USA
 resolution: 'provinces',

 // Set color gradient
 colorAxis: {colors: ['#ADC2EB','#000046']},
 width: 556, height: 347,

 // Set mouseover tooltip color
 tooltip: {textStyle: {color: '#FF6633'},

 showColorCode: true},

 };

 var geochart = new google.visualization.GeoChart(

 document.getElementById('visualization'));

 geochart.draw(data, options);

 }

 google.setOnLoadCallback(drawVisualization);

 </script>

</head>

<body style="font-family: Arial;border: 0 none;">

<div id="visualization"></div>

</body>

</html>

http:///

Chapter 8

[201]

geomap
As the predecessor to geochart, geomap inherently has fewer opportunities for
customization. This is largely due to the fact that the graphic rendering process is
handled by Adobe Flash. The geomap visualization, however, has its usages. For
example, as a Flash ile, geomap is compatible with any browser that supports Flash. If
for some reason a browser does not support or has trouble reconciling VML or SVG,
the visualization cannot run. The Flash format also requires fewer variables to be set,
as the resolution variable is automatically conigured based on the region setting.

The following screenshot shows the geomap visualization in the marker mode:

http:///

Advanced Charts

[202]

Code
The code for a geomap visualization is very similar to the geochart. In fact, the
only difference between the two types is the visualization name and formatting
of the options.

var options = {

 dataMode: 'markers', region: 'US',

 colors: ['0xADC2EB','0x000046']

};

 var geomap = new google.visualization.GeoMap(

 document.getElementById('visualization'));

 geomap.draw(data, options);

Given that geomap is considered as the earlier version of geochart, it would come as
no surprise if Google decided to depreciate the older geomap. Also, the inclusion of
geochart and not geomap in Spreadsheets indicates a possible slow depreciation to
come for geomap.

Google technology and tools are constantly improving and
changing. Often this means a product has come to the end of its
life and is no longer developed. Another possibility is for a tool or
feature to be combined with other Google products. To keep abreast
of changes, there is really one general rule of thumb to follow when
evaluating the lifespan of a Google technology.

From this observation the following question arises: Is the tool or technology being
actively integrated with key Google products?

It's true; the documentation is not being regularly updated or even the
word "depreciated" is appearing in the documentation, but it seems a
tool or technology is expected to be around for a while if it is actively
being integrated with stable Google offerings. Regardless, it is still
wise to regularly check the status of tools, technology, or applications
provided by Google, especially if they are in a beta phase.

A live example of geochart is available at http://gvisapi-packt.
appspot.com/ch8-examples/ch8-geochart.html.

A live example of geomap is available at http://gvisapi-packt.
appspot.com/ch8-examples/ch8-geomap.html.

http:///

Chapter 8

[203]

For more information on geomap, geochart, ISO 3166, and the aforementioned
graphics standard, visit the following links:

• geomap visualization: https://developers.google.com/chart/
interactive/docs/gallery/geomap

• geochart visualization: https://developers.google.com/chart/
interactive/docs/gallery/geochart

• Scalable Vector Graphics (SVG): http://www.w3.org/Graphics/SVG/

• Vector Markup Language (VML): http://www.w3.org/TR/NOTE-VML

• ISO 3166 Documentation: http://www.iso.org/iso/home/standards/
country_codes.htm

Map API
geochart and geomap are not intended to be overly sophisticated visualizations, and
do not therefore provide the detail of control available in the Google Map API. In the
Map API, layers are introduced as a method for creating heat maps, outlined areas,
elevation visualizations, overlays, and other data-rich options for maps. An in-depth
exploration of the Map API is out of the scope of this book, but it is mentioned here to
highlight the importance of knowing the strengths and weaknesses between similar
functionality in different APIs. The Visualization API can also be thought of as a
jumping off point for learning the Maps API, as frameworks' elements such as getID,
listeners, button on-click messages, and other features are often the same between the
Google APIs.

The Map API documentation is available at
https://developers.google.com/maps/.

Your own visualization
In many ways, authoring a custom visualization is out of the scope of this book.
However, it is worthwhile to be aware of the basic steps required to create a
visualization from scratch, just in case a requirement for such a chart arises in the
future. The general method of creating new visualizations involves knowledge of
the HTML DOM (Document Object Model) and a reasonable amount of comfort
working with programming abstraction.

http:///

Advanced Charts

[204]

To start, it is best to know some basic terminology that will be encountered when
attempting to build a custom chart. As mentioned in Chapter 4, Basic Charts, the
Google Visualization API is structured as an inheritance-based model. Classes of
functions are realized through programming instances. The Visualization API charts,
for example, barchart, geochart, areachart, and so on, become instances of a
bundle of code when they are used in a program. In programming, the creation of
an instance is taken care of by an element of code called the constructor. In order to
build a custom visualization, a constructor, as well as a draw method of the chart
must be deined. To build these elements and then translate them into something
that an HTML page can understand, the HTML DOM is used. The HTML DOM is
an agreed-upon standard for programmatically retrieving, modifying, adding, and
deleting HTML elements.

At its simplest deinition, a visualization chart is nothing more than a method
for telling the HTML page what to do. The API is then just pre-conigured
with HTML-compatible rules for drawing graphics from data, which are
given to the Chart app.

HTML DOMHTML Page
DOM

myvis

{}

My Google

Visualization myvis.draw()

This section is not intended as an in-depth tutorial for HTML DOM object writing. It
simply discusses the framework that can be used to manipulate the HTML DOM and
encapsulate the functionality as a Google Visualization. This section discusses the
ability to create custom chart types.

The custom visualization documentation is available at https://
developers.google.com/chart/interactive/docs/dev/.

JavaScript and HTML DOM references are available at http://
www.w3schools.com/jsref/default.asp.

http:///

Chapter 8

[205]

Building custom visualizations requires additional expertise with the JavaScript
HTML DOM. W3Schools provides a nice introduction to working with the DOM.

JavaScript and HTML DOM examples are available at
http://www.w3schools.com/js/js_ex_dom.asp.

A custom visualization example is available at http://gvisapi-
packt.appspot.com/ch8-examples/ch8-custom.html.

Summary
Continuing to create basic and experimental visualizations using the Google Chart
API will increase a developer's ability to use the toolset in new and creative ways. As
demonstrated in this chapter, the complexity of a visualization may be deceiving in
regards to the expertise needed to implement. Often it is the case that visualization
complexity has been intentionally encapsulated within the visualization object itself,
allowing developers the luxury of less programming during implementation.

Building visualizations from scratch is beyond the scope of this book, but an
overview of the process has been presented as a starting point. This book, in
combination with the live tutorials, gives a basic foundation of a single API from
which advanced use of this API or exploration of other Google APIs can begin.
In the next chapter, the various ways in which a visualization can be published
are examined.

http:///

http:///

Publishing Options
An advantageous feature of applications written with the Google Visualization
API is the diversity of publishing options. Visualizations can be published as an
integrated part of a Spreadsheet or Fusion Tables application or, at the other extreme,
as a standalone web application. Being scripted applications, Visualization API apps
can go just about anywhere HTML can go.

In this chapter we will cover:

• Sharing with Google

• Publishing from Spreadsheets and Fusion Tables

• Embedding in web pages (including App Engine apps)

It is worth noting at this time that Google Gadgets have not been
included in this chapter as an option for publishing visualizations. At the
time of this book's publication the future support of gadgets was unclear,
with several Google applications depreciating their support of gadgets.
That being said, Google Gadgets itself is a publishing option but will not
be discussed in detail in this chapter. For more information on the topic
of gadgets, informative links are provided at the end of the chapter.

Sharing
For visualizations integrated into Spreadsheets or Fusion Tables, it is possible to
share work with others by using the built-in Google Apps ile sharing method. With
Google ile sharing, visualizations can be private to one or more users, or publicly
available on the Web. When sharing a visualization as part of a Google application
ile, the entire ile, and not just the visualization is shared to other users.

http:///

Publishing Options

[208]

In any Google application that allows sharing, the button can be found in
the upper right-hand corner of an open ile or document. To share, click on this blue
Share button in either a Spreadsheets or Fusion Tables ile.

Private sharing
Sharing with Google applications can be public or private. This section details how
to share a Spreadsheet or Fusion Table privately. In this scenario, to share privately
means sharing to only a select group of individuals. Additionally, it is worth noting
this information is universal across Google applications and thus can also be used to
share iles other than Spreadsheet or Fusion Tables documents.

Clicking on the blue Share button opens the Share settings window. The Who
has access section indicates the overall privacy setting for the document as well
as individual user access.

http:///

Chapter 9

[209]

The global privacy setting has three options:

• Public on the Web

• Anyone with the link

• Private

To view or change the overall privacy setting, click on the Change… link. The
Sharing settings window will appear. For allowing access to individuals, choose
either the Anyone with the link or Private option to keep the ile from being openly
public on the Web. The Anyone with the link setting is technically publically
accessible as there is no sign-in required. However the concept of "security through
obscurity" is exercised here, as the link being shared will be somewhat random, not
searchable, and assumedly not published on a separate publicly viewable website.

Google documents shared privately allow for individual user access control. From
the Sharing settings window, enter the e-mail address(es) of the collaborator(s) in
the Add people ield.

http:///

Publishing Options

[210]

Directly to the right of the Add people ield, select the level of permissions the
collaborator will have for the document from the drop-down menu.

Finally, decide if the newly added collaborator should be notiied by e-mail of their
new capabilities on the document. To notify the collaborator, select the Notify people
via email checkbox. Add a personalized message to the notiication e-mail if desired.
Click on the Share & save button to save the newly conigured share settings.

As a inal coniguration consideration, the collaborator's ability to freely add
additional collaborators as well as change visibility options must be explored.
On the main Sharing settings window, click on the [Change] link next to
Editors will be allowed to add people and change the permissions.

In the Sharing settings window that appears, click on the desired permissions level
for collaborators.

http:///

Chapter 9

[211]

Sharing in Google documents is simple but not necessarily the best method of
permanently publishing a visualization. This is particularly true when a standalone
web page or web-embedded visualization is the goal. Google Docs does offer the
option to open the document to all web users, but a speciic drawback to sharing in
this way is that the Google document itself is openly shared. Google Docs sharing is
primarily a method of collaborative sharing to a small group, where as publishing a
visualization as a web page is generally more desirable for wider audience viewing.

Public sharing
In general, Google documents can also be openly shared to everyone on the Web. A
Google Doc shared to everyone results in anyone on the internet being able to view,
comment on, or edit the ile, depending on the permissions set. When a Google Doc
is shared, anyone accessing the document is manipulating the actual Google ile.
This approach is useful for large collaborative document efforts, or when comments
are desired in Google Doc format. It may, however, not be ideal for sharing to large
audiences. Even though access can be limited to view only, an alternative method of
sharing the Google Doc ile itself is through publishing its content as a web page.

Publishing
Publishing a web version of a Visualization is distinctly different from sharing it via
a Google Doc in that the web publication is standalone and is no longer a Google
Doc ile type. Therefore, efforts to secure the Visualization to a limited audience of
viewers must be accomplished through the usual methods of security used on a
standard website. However, manipulating the visualization on the published web
page cannot modify the Google Doc, making it more appropriate for wider audience
viewing. Web versions of a visualization can be created using Spreadsheets, Fusion
Tables, or from scratch, and can be hosted by Google, or any web hosting service.

http:///

Publishing Options

[212]

Spreadsheets
To publish a Google Spreadsheet and subsequent visualization to a web page, select
from the menu, File | Publish to the web....

From the Publish to the web window, if desired, conigure the range of the
Spreadsheet to be published. To create the live web version of the Spreadsheet,
click on the button. Once pressed, the website version of the Spreadsheet
is available on the Web and can be reached by navigating a browser to the link given
in the Get a link to the published data ield. For a publication format other than a
web page, click on the drop-down menu at the top of the Get a link to the published
data. Alternative publication options available are as follows:

• Web page

• HTML to embed in a page

• CSV (comma-separated values)

http:///

Chapter 9

[213]

• TXT (Plain Text)

• PDF (Adobe PDF)

• ATOM

• RSS

The following screenshot is of the web page version of the Spreadsheet for 2010
Chicago Census data. Note the similarity in appearance to the Spreadsheet ile itself.
However, the web version cannot be edited by site visitors and maintains a fairly
static appearance in comparison to the Google Spreadsheets application.

While data manipulation is not inherently available in the web version, limited
mouse-over interactivity of the visualization is still available.

http:///

Publishing Options

[214]

Fusion Tables
Publishing a web page from Fusion Tables is similar in process to publishing a web
page from Spreadsheets. The primary difference is that each chart or component
of the Fusion Table ile is published individually. For example, a web page of table
data is distinct from a chart web page, even when the two components are from
the Fusion Tables document. To publish a component of a Fusion Table, select the
component's tab and navigate to Tools | Publish… in the menu bar.

The Publish window will appear. Options for the method of publishing are
displayed. The Send a link in email or IM produces a standalone, simple web
page representation of the tab contents. Alternatively, the Paste HTML to embed
in a website encapsulates the published component into an iFrame, allowing for
easy addition as part of another page.

Web publication of a Google Doc is similar to sharing, but with distinct differences.
Google provides additional information on the topic of sharing and web publishing
for Google Docs in its support documentation.

More information on Sharing versus Publish to Web Visibility is
available at https://support.google.com/drive/bin/
answer.py?hl=en&answer=183965.

http:///

Chapter 9

[215]

Apps Script
Methods of standalone web publication for Apps Script iles are also available. The
publication process for both standalone and Spreadsheet-embedded App Scripts is
mostly the same. The primary difference is that the Spreadsheet script may contain
Spreadsheet-speciic code, making it dependent on its respective Spreadsheet.

Publishing basics
The web publication of an Apps Script has two general steps. First, version
management must be established before the Apps Script environment allows a
script to be published. To initiate managed version control, click on File | Manage
Versions… from the menu bar. In the Manage Versions window, enter a description
of the version and click on Save New Version. The current script version will then be
saved as a snapshot in time, and can be called on by other script projects. It can also
be loaded as a particular instance of the published script.

When at least one version is available, the Apps Script environment will allow a web
instance to be published. From the menu bar, click on Publish | Deploy as web
app… to deploy the script as a web page.

http:///

Publishing Options

[216]

Alternatively, selecting the cloud arrow button from the menu bar also accesses the
Deploy as web app... window.

In the Deploy as web app window click on the script version that is to be deployed.
The versions available are the same versions as saved in the Manage Versions…
window. Next, select the level of access for the new web application. The Execute
this app as: option tells the application under which user permissions to run the
application. This setting is important because allowing a user to run as script
developer allows the user to perform the same actions for which the developer has
rights. However, certain normal actions in an application may require elevated
permissions, thus potentially prohibiting the functionality of the script.

http:///

Chapter 9

[217]

The Who has access to the app: setting is slightly more self-explanatory. This setting
simply determines if web users can view the script application or if it is private to
the developer.

More information on Security and Google Apps Script is available at
https://developers.google.com/apps-script/scripts_
google_accounts.

Embedded in a Spreadsheet
Recall that designing an Apps Script that creates a visualization in a Spreadsheet
requires programming speciic to the Spreadsheet interface itself (see Chapter 4, Basic
Charts). The result of this speciication generally means an Apps Script attached
to a Spreadsheet has a high chance of failing to translate into a standalone web
page. Apps Scripts attached to a Spreadsheet are still fully functional and have the
potential to stand alone as a web app, but any code referencing an interaction with
the Spreadsheet must irst be removed.

App Engine
There are various methods of launching applications on Google App Engine.
Development of a visualization API application can be accomplished in just about
any web development environment capable of handling HTML and JavaScript. The
popular open source platform, Eclipse, can be used in its web development version
with an added Google developer extension for seamless app deployment. Even
simple text editors can be used to edit code when using the App Engine Launcher
and Software Development Kit (SDK).

App Engine Launcher and SDK
The Google Development SDK provides the basic functionality needed to test and
launch an application in App Engine. It is intended for use by developers luent
in Java, Python, or Google's own programming language, Go. A consequence of
using the SDK method to publish API Visualizations is that there is some overhead
programming required to create a Java, Python, or Go framework to serve HTTP
pages. App Engine applications do however use the standard WAR structure for
bundling web applications, making it possible to manually create an application
folder structure.

http:///

Publishing Options

[218]

In this method, testing and deploying the application is accomplished through the
SDK command line or with the GoogleAppEngineLauncher tool.

Eclipse plugin
If developing in an environment such as Eclipse, use the Google plugin for Eclipse.
The plugin provides basic framework templates that are accessed as App Engine
projects directly from Eclipse. Deployment of an App Engine application in Eclipse
is as simple as with the Google plugin. After installing the plugin through the
Eclipse add software method, create or deploy an App Engine application in Eclipse,
and click on the icon in the menu bar. From the drop-down menu, select the
appropriate action desired.

http:///

Chapter 9

[219]

For a new web project, the project initialization and coniguration steps will look
very similar to all other Eclipse project creation wizards.

http:///

Publishing Options

[220]

For more information on Eclipse, Google App Engine, and the Google
Go programming language, visit the links listed here.

Eclipse development environment at http://www.eclipse.org/.

Google plugin for Eclipse at https://developers.google.com/
eclipse/.

App Engine Developer downloads—SDK, Launcher, and Plugins at
https://developers.google.com/appengine/downloads.

Google programming language: Go at http://golang.org/.

Integrated Development Environments in the Cloud
(IDEs)
Possibly the most intuitive method of App Engine development is to use a
cloud-based online development environment for which application deployment
to App Engine is integrated. This approach allows for template-based deployment
of App Engine apps as well as faster testing and update processes. Cloud 9 IDE
(Integrated Development Environment) and Codenvy IDE are two popular
cloud-hosted development environments available at the time of this book's
publication. The Codenvy IDE is used in the following visualization API
application example, with discussion of basic functionality as applied to
launching visualization API applications in App Engine.

The Codenvy development application is fairly straightforward in organization.
The menu bar is the primary access to environment functions. The folder structure
of the application is on the left-hand side of the screen, with the selected ile's
contents displayed for editing on the right. The lower window and tabs display
code previews and the output of environment operations, such as building and
launching an application.

http:///

Chapter 9

[221]

To create or update applications from the Codenvy IDE application, click on PaaS
| Google App Engine from the menu bar. Choose either Update Application or
Create Application… respectively.

http:///

Publishing Options

[222]

The Codenvy application will then guide the developer through the App Engine
creating an application process or automatically updating an existing application
on App Engine.

Much of the development and deployment process for App Engine is handled
through the IDE. However, independent of the development environment,
App Engine applications must be initially created in the App Engine console.
As mentioned earlier, the creation of the Application ID is required when
coniguring an application to deploy from any of the deployment.

More APIs
In addition to the Visualization and Google Docs APIs, Google provides a
selection of APIs for other Google services. While many of these APIs are available
at no charge when consumed below a certain user threshold, heavier use requires a
pay-for-what-you-use fee per API. To access additional APIs from Google, log in to
the API Console. From the console, APIs can be turned on or off for a speciic project.

http:///

Chapter 9

[223]

Publishing a Google Visualization as a web page allows for a variety of development
and deployment options. These options are also diverse across developer experience
levels and worklows, which makes visualizations easy to incorporate in existing
websites or as standalone pages.

Information on Codenvy IDE is available at https://codenvy.com/.

Information on Cloud 9 IDE is available at https://c9.io/.

Information on API Console is available at https://code.google.
com/apis/console/.

Project hosting on Google Code is available at http://code.google.
com/hosting/.

A word on security
Ultimately the developer is responsible for maintaining a level of security assurance
in visualized data. Google Visualizations, and any code that evokes the Google APIs
for that matter, must be aware of the potential security risk that the use of an API on
a data source creates. Google provides some guidance on this issue in their Terms of
Service and Program Policy.

Security and data privacy with charts

Developers are responsible for abiding by the Google Terms of Service
and Program Policy when publishing.

For more information please visit https://google-developers.
appspot.com/chart/interactive/docs/security_privacy.

http:///

Publishing Options

[224]

Summary
This chapter discussed the various methods of sharing and publishing a Google
Visualization API application. Not only are the methods presented here applicable to
Visualization API applications, but they can also be applied to other Google API-based
applications. The Google Gadget publishing option was intentionally not covered
in this chapter due to the uncertain future of the service. Additional information on
Google Gadgets and the Gadgets API can be found at the following link:

Information on Gadgets API is available at
https://developers.google.com/gadgets/.

Overall, the Google Visualization API can be thought of as a "gateway" to learning all
other Google APIs. It is simple enough for beginners, but can be used as part of more
complex application design. The intention of this book has been to teach the breadth
of possibilities of the Visualization API, while preparing the reader to engage more
deeply with the Google development environment. As is true with all technology,
particular details of visualization techniques may change. Yet, the methodology
of learning how to interpret and apply the programmatic methods on which the
Visualization API has been built is invaluable.

http:///

Index

Symbols
<form> tag 171

A

AllowHTML option 99
animated transitions 106
annotated timeline

about 190
charts 31
coded version 192, 194
event lags 191, 192
spreadsheets 191

AnnotatedTimeLine 78
Anyone with the link setting 209
API 7
API Explorer 135
API framework

about 143
ChartWrapper 144
ControlWrapper 144

API, static style option
Cascading Style Sheets 95
DataTable formatters 99, 100, 102
formatters 93
Inline 93
views 96

App Engine
about 217
App Engine Launcher 217
Eclipse plugin 218, 220
IDEs in cloud 220-222
more APIs 222, 223
SDK 217

Application Programming Interface. See
API

Apps Script
about 215
basics, publishing 215-217
embedding, in Spreadsheet 217
Framework 41, 42
scripting console 42
using 41

Apps Script Wrapper 80-82
AreaChart 75
array 68
array programming method 173
arrow formatter 100

B
BarChart 75
bar formatter 100, 102
bind function 160
Boolean 67
BubbleChart 75
Buckets tab 61

C

CandlestickChart 75
CategoryFilter control 159
cell formatting

about 60
info windows 62, 63
lines 60
markers 60
polygon 60, 61

chart.draw() 26

http:///

[226]

Chart Editor
about 38, 107, 176-178
Chart styles 40
Chart type function 38
Chart types 39
Conigure data function 38
reopening 40
Style customization function 38

ChartEditor 79
chart formatting

static style option 90
Charts

data sources 126
Chart Tools Query Language 138
ChartWrapper

about 26, 144
data source 146
draw 146, 147
events 147
load 145
tasks 144

ChartWrapper class 177
ChartWrapper function 151
Chart Wrapper (wrapper.draw())

method 107
classes 71
Clojure Language documentation 114
code conventions 73
Code Playground

about 13, 14
console 15, 16
debugging tools 15
Gadget Editor 16, 17
links 15

color formatter 103
ColumnChart 75
ComboChart 76
conditional logic 70
constant variable 66
controls

about 107, 150
CategoryFilter 158-160
ChartRangeFilter 160
NumberRangeFilter 156, 157
predictability 155, 156
StringFilter 150-155

ControlWrapper method 150

D

dashboard
about 107, 149, 150
controls 150
controls, with dependencies 161, 163
ilter by category 29
Filter by chart range 28
Filter by dependencies 29
Filter by number range 28
Filter by string 28
programmatic control 163
programmatic iltering 28

dashboardReady function 166, 168
data

cleaning up 112, 113
export options 114
Facet 111
importing 110
preparing 110

data management
about 48
columns, modifying 49
formula, adding 50
rows, editing 48
views 50, 51
visualization, creating 52

data sources, for Charts
building 139, 140
Chart Tools Query Language 138
spreadsheets 126

DataTable() class 117
DataTable formatters

about 99
arrow 100
bar 100, 102
color 103
data 103
number 104
paging 105, 106
pattern 104, 105

DataTable function 68, 118
date formatter 103

Document Object Model. See DOM
doGet function 81
DOM 203
DrawChart function 26, 73

http:///

[227]

draw function
setup process 147

drawVisualization function 84, 166

E

Eclipse 13
Edit button 112
Edit column option 113
equations

about 69
API call 69
attributes 69
conditional logic 70
loops 70

error event 147
events

about 29, 147
error 147
error handling 30
ready 147
ready for interaction 30
select 30, 148
sort 30

Event triggers 44
Execute this app as: option 216
experimental charts 54
Export button 114
export options 114

F

Facets 111, 112
feature mapping

about 55
cell formatting 60
geocoding 55

ilterColumnLabel option 152
Firebug Lite Settings window 16
formatters 93
Freebase button 114
functions 70
Fusion Tables

about 11, 46
creating 11, 12
data, creating 46, 47
data, importing 46, 47

data management 48
facts 11
features, mapping 55
merging 52
new look 51
non-map visualizations 53

Fusion Tables API 126
Fusion Tables, Chart data sources

API Explorer 135, 136, 138
permission 133
preparation 132
query 133-135
URL path, obtaining 133

Fusion Tables, static style option
Chart Editor 92
Filters 92, 93

G

Gadget Editor
about 16, 17
facts 18

Gauge 79
geochart

about 79, 195, 197
code 199
ISO 3166 standard 197
marker option 197
setting requirements 197
spreadsheets 198, 199

geocoding
about 55
address method 57
data sources 56
errors, recognizing 58, 59
manual method 56, 57
third-party tools method 58

geomap
about 79, 195, 201
code 202, 203
marker option 196, 197
region option 196

Google App Engine 13
GoogleAppEngineLauncher tool 218
Google Drive Create tab 11
google.load command 142
Google Reine documentation 114

http:///

[228]

Google Spreadsheets
about 124
API 125
forms 124, 125

Google Spreadsheets charts
about 9
creating 9, 10
facts 9

Google Visualization Tools
code playground 13
Fusion Tables 11
Google Spreadsheets charts 9
interacting with 8
knowledge, prerequisites 7
scripting code 12

Google Web Tools plugin for Eclipse 13
Gradient tab 61

Graphic User Interface. See GUI
group 118
GUI 7, 35

H

handleQueryResponse function 130
HTML Framework 25

I

IDEs 220
ImageAreaChart 78
ImageBarChart 77
ImageCandlestickChart 77
ImageChart 77
ImageLineChart 78
ImagePieChart 78
ImageSparkLine 80
info window 62, 63

Integrated Development Environments. See
IDEs

IntensityMap 79
interactive

dashboard 27
events 29
time-based charts 31

J

join 120

joinMethod function 121
Jython Language documentation 114

K

key 119

Keyhole Markup Language. See KML
KML 55
knowledge, prerequisites

about 7
programming skills 8
system requirements 8

L

libraries
about 71
commenting 72
spacing/ format 73

LineChart 76
lines 60
Load API modules, chart types

about 74
AnnotatedTimeLine 78
AreaChart 75
BarChart 75
BubbleChart 75
CandlestickChart 75
ChartEditor 79
ColumnChart 75
ComboChart 76
Gauge 79
GeoChart 79
GeoMap 79
ImageAreaChart 78
ImageBarChart 77
ImageCandlestickChart 77
ImageChart 77
ImageLineChart 78
ImagePieChart 78
ImageSparkLine 80
IntensityMap 79
LineChart 76
MotionChart 79
OrgChart 80
PieChart 76
ScatterChart 76
SteppedAreaChart 77

http:///

[229]

Table 80
TreeMap 80

loops 70

M

major axis 98
Map API 203
maps

about 195
geochart 195
geomap 195

Marathon route map 56
markers 60
medium format 103
minor axis 98
motion chart

about 182-186
code 188-190
spreadsheets 186, 187

MotionChart 32, 79
multi-dimensional array 173

N

Navigation window 13
non-map visualizations

about 53
experimental charts 54
simple line graph 53

null 68
number 67
number formatter 104

O
objects 71
Olympic Park map 56
onclick event 177
onclick() method 170
openEditor() function 177
OrgChart 80

P

PaaS | Google App Engine 221
packages 71
paging 105

pattern formatter 104
PieChart 76
polygon 60
programmatic control

about 163-165
global variables 165-169

programming concepts
about 66
classes 71
functions 70
libraries 71
objects 71
variables 66

publishing
about 211
App Engine 217
Apps Script 215
Fusion Tables 214
options 212
spreadsheet 212, 213

Publish window 214

R

ready event 147
responder function 148
run_on_event function 148

S

Scalable Vector Graphics. See SVG
ScatterChart 76
scripting code

about 12
facts 13

scripting code, Visualization API
about 24
chart.draw() 26
ChartWrapper 26
Draw.Chart() 26
HTML Framework 25
technique options 25

scripting console, Apps Script
about 42
App, publishing 44, 45
event triggers 44
function, testing 43

http:///

[230]

scripts, debugging 44
security

charts, using 223
more APIs 223

select event 148
Share settings window 208, 210
sharing

about 207, 208
private sharing 208-210
public sharing 211

simple line graph 53
spreadsheets

about 36
Apps Script, using 41
chart, creating 36, 37
Chart Editor 38

spreadsheets, Chart data sources
Apps Script method 132
permissions 127
preparation 126
query 129-131
URL path, obtaining 128, 129

static style option
about 90
API 93
Fusion Tables 90, 91
spreadsheets 90

SteppedAreaChart 77
string 67
SVG 195

T

Table chart 80
time-based charts

about 31, 181
annotated timeline 190
annotated timeline charts 31
motion chart 182-186
motion charts 32

transition animation
about 170, 171
components 171
programmatic switch 173
User interface toggle 173

TreeMap 80

U

User interface toggle
about 173
Button behavior 174-176
Create button 174

V

variables
about 66
array 68
Boolean 67
equations 69
number 67
String 67, 68

Vector Markup Language. See VML
Velodrome Information web page 56
views

about 50, 96
Axes options 97
DataView, using 96

visualization
Apps Script 86, 87
creating 203, 204
creating, steps 82
Google Code Playground, using 83-86

Visualization API
about 19
Apps Script 21
categories 26
common structure 19, 20
forms 21
framework 22
Fusion Tables 23
scripting code 24

Visualization API, categories
interactive 27
static 27

Visualization API common Framework
Apps Script Wrapper 80
Load API modules 73, 74, 77-79

Visualization API data capabilities
about 117
group operation 118
join 120-123

http:///

[231]

W

Westminster Abbey web page 56
Who has access to the app

 setting 217

Visualization API-ready data sources 115
Visualization API Reference 65
visualization architecture

API framework 143
HTML framework 142

Visualize | Line 52
VML 195

http:///

http:///

Thank you for buying

Google Visualization API

Essentials

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it irst before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

http:///

NumPy Beginner’s Guide
Second Edition
ISBN: 978-1-78216-608-5 Paperback: 284 pages

An action packed guide using real world examples of
the easy to use, high performance, free open source
NumPy mathematical library. Scientiic computation
with Python now made simpler.

1. Perform high performance calculations with
clean and eficient NumPy code

2. Analyze large data sets with statistical
functions

3. Execute complex linear algebra and
mathematical computations

Matplotlib for Python Developers
ISBN: 978-1-84719-790-0 Paperback: 308 pages

Build remarkable publication quality plots the easy
way

1. Create high quality 2D plots by using
Matplotlib productively

2. Incremental introduction to Matplotlib, from
the ground up to advanced levels

3. Embed Matplotlib in GTK+, Qt, and wxWidgets
applications as well as web sites to utilize them
in Python applications

4. Deploy Matplotlib in web applications and
expose it on the Web using popular web
frameworks such as Pylons and Django

Please check www.PacktPub.com for information on our titles

http:///

Sage Beginner's Guide
ISBN: 978-1-84951-446-0 Paperback: 364 pages

Unlock the full potential of Sage for simplifying and
automating mathematical computing

1. The best way to learn Sage which is a
open source alternative to Magma, Maple,
Mathematica, and Matlab

2. Learn to use symbolic and numerical
computation to simplify your work and
produce publication-quality graphics

3. Numerically solve systems of equations, ind
roots, and analyze data from experiments or
simulations

R Graphs Cookbook
ISBN: 978-1-84951-306-7 Paperback: 272 pages

Detailed hands-on recipes for creating the most useful
types of graphs in R—starting from the simplest
versions to more advanced applications

1. Learn to draw any type of graph or visual data
representation in R

2. Filled with practical tips and techniques for
creating any type of graph you need; not just
theoretical explanations

3. All examples are accompanied with the
corresponding graph images, so you know
what the results look like

4. Each recipe is independent and contains the
complete explanation and code to perform the
task as eficiently as possible

Please check www.PacktPub.com for information on our titles

http:///

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Tools and Setup
	Knowledge prerequisites
	Skill summary
	System requirements

	Interacting with Google Visualization Tools
	Charts for Google Spreadsheets
	Getting started – creating a new spreadsheet

	Fusion Tables
	Getting started – creating a new Fusion Table

	Scripting code
	Code Playground
	Debugging tools
	Console
	Gadget Editor

	Summary

	Chapter 2:
Anatomy of a Visualization
	Common structure
	Apps Script
	Forms
	Framework
	Fusion Tables
	Scripting code
	HTML Framework
	Technique options

	Categories of visualizations
	Static
	Interactive
	Dashboards
	Events
	Time-based charts

	Summary

	Chapter 3:
Spreadsheets, Charts, and Fusion Tables
	Spreadsheets
	Creating a chart
	The Chart Editor
	Chart types
	Reopening the Chart Editor
	Chart styles

	Using Apps Script
	Framework
	Scripting console

	Fusion Tables
	Importing or creating data
	Data management
	Editing rows
	Modifying columns
	Adding a formula
	Views
	New look in Fusion Tables
	Merging tables
	Creating a visualization

	Non-map visualizations
	A simple line graph
	Experimental charts

	Mapping features
	Geocoding
	Cell formatting

	Summary

	Chapter 4:
Basic Charts
	Programming concepts
	Variables
	Number
	Boolean
	String
	Array
	Equation

	Functions
	Classes (and objects)
	Libraries
	Commenting
	Spacing/format

	Visualization API common Framework
	Load API modules
	Apps Script Wrapper

	A basic visualization
	Code Playground
	Apps Script

	Summary

	Chapter 5:
Formatting Charts
	Static
	Spreadsheets
	Fusion Tables
	Chart Editor
	Filters

	API
	Colors and fonts: Inline
	Colors and fonts: Cascading Style Sheets
	Views
	DataTable formatters

	Dynamic or interactive
	Animated transitions
	Dashboards and controls
	Chart Editor for users

	Summary

	Chapter 6:
Data Manipulation
and Sources
	Preparing data
	Google Refine—importing data
	Google Refine—Facets
	Google Refine—clean and supplement
	Google Refine—export options

	Architecture and data modification
	Protocol
	Visualization API data capabilities
	Group and join

	Spreadsheets
	Forms
	API

	Fusion Tables—API

	Data sources for Charts
	Spreadsheets
	Preparation
	Query

	Fusion Tables
	Preparation
	Query

	Chart Tools Query Language
	Build your own data source

	Summary

	Chapter 7:
Dashboards, Controls,
and Events
	Architecture
	HTML framework
	API framework
	ControlWrapper
	ChartWrapper

	Dashboards
	Controls
	StringFilter
	NumberRangeFilter
	CategoryFilter
	ChartRangeFilter

	Controls with dependencies
	Programmatic control
	Global variables

	Transition animation
	Programmatic switch
	User interface toggle
	Create button
	Button behavior

	Chart editor for users
	Summary

	Chapter 8:
Advanced Charts
	Time-based charts
	Motion chart
	Spreadsheets
	Code

	Annotated timeline
	Spreadsheets
	Code

	Maps
	geochart versus geomap
	The region option
	The marker option

	geochart
	The ISO 3166 standard
	Spreadsheets
	Code

	geomap
	Code

	Map API

	Your own visualization
	Summary

	Chapter 9:
Publishing Options
	Sharing
	Private sharing
	Public sharing

	Publishing
	Spreadsheets
	Fusion Tables
	Apps Script
	Publishing basics
	Embedded in a Spreadsheet

	App Engine
	App Engine Launcher &SDK
	Eclipse plugin
	Integrated Development Environments in the Cloud (IDEs)
	More APIs

	A word on security
	Summary

	Index

