Insured Audit:
Code Review &
Protocol Security
Report

wefr

Protocol Date

WeFi 1st July 2023

This document is proprietary and confidential. No part of this document may be disclosed in any manner to a third party without the prior
written consent of UnoRe.

The UnoRe security research team has completed an initial time-boxed security review of the
WeFi (Previous Paxos Finance) Protocol contract code, with a focus on the security aspects of
the application's implementation.

Disclaimer

This report containing confidential information can be used internally by the Customer, or it can
be disclosed publicly after all the vulnerabilities are fixed - upon the decision of the Customer.

A smart contract security review can never verify the complete absence of vulnerabilities. This is
a time, resource, and expertise-bound effort where we try to find as many vulnerabilities as
possible. We can not guarantee 100% security after the review or even if the review will find any
problems with your smart contracts.

Document Changelog:

13th June 2023 Audit Kickoff and Scoping
20th June 2023 Active Monitoring Notes
1st July 2023 WeFi Post-Triage Insured Audit Report

Technical Overview

WeFi is a decentralized money market protocol that opens up investment loan options in DeFi
for global users to invest in digital assets via multi-pool borrowing. WeFi allows cryptocurrency
lenders to enjoy attractive, sustainable yields. Conversely, borrowers access predictable
investment loans empowering them to invest in the lucrative digital asset market. WeFi supports
lending borrowing and settling. You can read more about the protocol in the full documentation
at https://docs.wefi.xyz/

https://docs.wefi.xyz/

Threat Model

Internal Security QA

1.

Q: When adding new markets to the protocol, what precautionary steps are you taking to
ensure the supply never goes to zero? Are you guys minting a minimum amount of
tokens or potentially even burning it afterward - so the supply never goes to zero?

A: We mint some tokens as market goes live. We haven’t burn any will do that later

Q: Are you currently using any rate controllers to regulate the market, or are you
planning to use one anytime soon? Is it custom-built, or are you using a 3rd party service
provider?

A: Right now we are dependent on chain link price feeds. To align with your policy we
can work together to handle excessive rate fluctutations.

Q: What markets do you plan to include initially, and on which chains? Is it only the ones
at the front end (wmatic, weth, wbtc, etc.)? Are chainlink feeds available for all of them?

A: USDT, USDC, WMATIC, WETH, WTBC, AAVE, QUICKSWAP, CHAINLINK,
UNISWAP TOKENS. Yes chainlink feeds area available

Severity classification

Severity Impact: High Impact: Medium Impact: Low
Likelihood: High Critical High Medium
Likelihood: Medium High Medium Low
Likelihood: Low Medium Low Low

Impact - the technical, economic, and reputation damage of a successful attack
Likelihood - the chance that a particular vulnerability gets discovered and exploited
Severity - the overall criticality of the risk

Security Review Summary

Last Review commit hash WeFi - 70842cd2b30df121f496963bedfbd52a497542a8

Audit Scope

The following smart contracts were in scope of the audit:
Precommit hash: 268cec6acdade1da4f0911d125760f2195d8df12

e DexAggregator.sol

e PaxoPriceFeed.sol

e CErc20.sol

e (CToken.sol

e comptroller.sol

e ErrorReporter.sol

e Unitroller.sol

e \WhitePaperinterestRateModel.sol

e ComptrollerStorage.sol

e CarefulMath.sol

e ExponentialNoError.sol

e Exponential.sol

The following number of issues were found, categorized by their severity:
e Critical: 1 issue
e High: 2 issues

e Medium: 1 issue
e Low: 2issues

e Informational: 7 issues
e Gas Optimization: 10 issues

Note: The above summary of report findings at the Pre-Triage stage, most of these issues were
addressed/fixed in consecutive stages.

Summary Table of Our Findings

ID TITLE Severity Status

[C-01] claimComp() of Comptroller wont work Fixed
on actual mainnet, freezing user's yields

[H-01] accountAssets is not capped properly Fixed
and may lock user funds

[H-02] Incorrect assumption of USD price Fixed
feed being 8 decimals always, can
lead to loss of funds

[M-01] Chainlink's latestRoundData() can Medium Fixed
return stale or incorrect result

[L-01] Vulnerable versions of dependencies Low Fixed
are used

[L-02] Return value for doTransferln is Low Fixed
ignored for DexAggregator

[1-01] DexAggregator doesn't compile due to Informational Fixed

incorrect file extension for

QuickSwapRouter
[1-02] Multiple SPDX licenses used in the Informational Fixed
same contract
[1-03] Unsafe pragma statement Informational Fixed
[1-04] Unclear error messages Informational Fixed
[1-05] Unused import in multiple contracts Informational Fixed
[1-06] Unnecessary NonReentrant modifier Informational Fixed
[1-07] Open TODOs and Typos Informational Fixed
[G-01] Use unchecked in for loops Gas Optimization Fixed
[G-02] Cache array length outside of loop Gas Optimization Fixed
[G-03] Using private rather than public for Gas Optimization Fixed
constants, saves gas
[G-04] Use x != 0 instead of x > 0 for uint Gas Optimization Fixed
types
[G-05] Use require instead of assert Gas Optimization Fixed
[G-06] Splitting require() statements that use Gas Optimization Fixed
&& saves gas
[G-07] Constructors can be marked payable Gas Optimization Fixed
[G-09] Change all require across all contracts Gas Optimization Fixed

to Custom Errors

Triage Fix Comments

1. [C-01] claimComp() of Comptroller wont work on actual mainnet, freezing user's yields

This issue is known to us. Recently we had our token launch. We will upgrade the wefi token
contract address at getCompAddress(). We can't verify contracts on mainnet at this stage now.
Once audit and insurance is completed we can think of it.

2. [H-01] accountAssets is not capped properly and may lock user funds

Yes, the pools/markets will be keep on adding to the protocol with time.
Having a large array of assets will end up gas errors for user.
We will proceed with "maxAssets" implementation.

3. [M-01] Chainlink's latestRoundData() can return stale or incorrect result
| went through the recommendation. We can proceed implementing points below.

a. Sanity Check on latestRoundData() output.
b. Staleness Check. Suggest us what should be ideal timeout for it.
¢. Chainlink L2 Sequencer Uptime Feed and Grace Period.
It will revert if any of them fails, will prevent borrow, withdraw and liquidations.

4. [L-01] Vulnerable versions of dependencies are used

Yes, make sense to upgrade it to latest. Need to check dependency upgrade compatibility.

Centralization Risk Areas:

We have also identified several key areas within the protocol which contains centralization risks which
needs to be made aware to the community and have highlighted them below:

Price Feed (0xe696dD106ad4C0e541De30a7820409dB95d1e7cF)
e setpricefeed

Unitrolller (Ox1eDf64B621F17dc45c82a65E1312E8df988A94D3)
e setpendingadmin
e acceptAdmin
e setPendinglmplementation

Comptroller (0x303A22423B1B8CFA5fb00988ade50c2618D8721D)

_setpriceOracle

_setCloseFactor

_setCollateralFactor

_setLiquidationIncentive

_supportMarket

_setMarketBorrowCaps

_setBorrowCapGuardian

_setPauseGuardian

_setMintPaused

_setBorrowPaused

_setTransferPaused

_setSeizePaused

_become

_setCompSpeeds

_supportBuy

_setBuyFactor

_supportSettle

Dex Aggregator (0xA42e5d2A738F83a1e1a907eB3aE031e5A768C085)
e setDexRouter
POOLS/MARKETS
e Admin
changeAdmin
setDexAggregator
_setPendingAdmin
_acceptAdmin()
_setReserveFactorFresh
_reduceReservesFresh
_setinterestRateModelFresh

Listed Below are all the addresses for markets

USDT (Borrow Vault),0x78718e0cADA1CA39fA23FC710e4accfdOFF9a5E9

USDC (Borrow Vault),0x34Aa3Fb5F02df5FBD03545ED3b35b90ES51eEE88D

WETH (Borrow Vault),0x1e8Cd6843Db6286F4c7cF86EFDA572ECcC4DFF05
WMATTIC (Buy/Investment Vault),0x2588c9214376dDb524DCfa72859B522E745283Bf
WETH (Buy/Investment Vault),0xd5700c677Ddc823B0b6cC9a5Dc8415C07842E35
WBTC (Buy/Investment Vault),0x8f2DaDC86e7441B613ba1ab6A42193b1930E15ac

—~

USDC (Buy/Investment Vault),0xefOb81a38a3e61c94D1c3F9D24c22FAa9772Fa95

Aave (Buy/Investment Vault),0x6dC71aC27CEE3eaAE4765258C29C427687974002

Quickswap (Buy/Investment Vault),0x2a500d5707F8FbBaeD35b99867AF94DfE86F36D6
ChainLink Token (Buy/Investment Vault),0xDOB5A656Fb3Fa2B5CC61cB5F2aD7904C39D75D50
Uniswap (Buy/Investment Vault),0x12F38c40D605e5Add1D5b92359B3be8157ABDB6b

WerFi Token Vault (Buy/Investment Vault),0xB50FF38F0fB98Dd5f9FB76ea333927BeB8F 1920c

Active Monitoring and Realtime Tracking Scope:

1. PaxoPriceFeed.sol

a. setPriceFeed (function)
2. Unitroller.sol

a. newAdmin(event)

b. new Pendinglmplementation (event)

c. Newlmplementation (event)

3. Comptroller.sol

a. NewBorrowCap (event)

b. NewPriceOracle (event)

c. CompBorrowSpeedUpdated (event)

d. CompSupplySpeedUpdated (event)
4. DexAggregator.sol

a. setDexRouter
5. vaults/pools (all)

a. redeem(event)
SetDexAggregator(function)
NewReserveFactor(event)
NewMarketinterestRateModel (event)
Mint (function)

ProxyMint (function)

" p a0 o

Initial Report Detailed Findings

- claimComp() of Comptroller wont work
on actual mainnet, freezing user's yields

WeFi has forked CompoundV2, and has made some changes to supply and borrow speeds for
COMP token distribution, they have even added a fix for COMP distribution issue.
https://github.com/Uno-Re/unore-WeFi-audit#link-to-documentation

It was forked from some initial commit, enhancements below have been performed in the project

1. Solidity version upgrade

2. Upgradeable CErc20.s0l

3. Edits suggested in previous audit.

4. Separate supply and borrow speeds for comp token distribution.
5. Comp distribution bug fix.

6. Fixed precision bug on redeem/withdraw.

For Compound, COMP is their own token used to incentivize use, In the case of WeFl it
represents their own token.

However, none of this would work on the actual mainnet, due to the wrong configuration for the
COMP address.

As you can see on the following line, COMP address is not configured to deployed instance and
is kept address(0) only.

unore-WeFi-audit/contracts/Comptroller.sol

Line 1368 in f40d147

function getCompAddress() public pure returns (address) {

Hence whenever someone calls claimComp to claim their accused yield,

https://github.com/Uno-Re/unore-WeFi-audit#link-to-documentation
https://github.com/Uno-Re/unore-WeFi-audit#link-to-documentation
https://github.com/Uno-Re/unore-WeFi-audit#link-to-documentation
https://github.com/Uno-Re/unore-WeFi-audit/blob/f40d147efafacd5cc064f54347a04ed2b9aff751/contracts/Comptroller.sol#L1368
https://github.com/Uno-Re/unore-WeFi-audit/commit/f40d147efafacd5cc064f54347a04ed2b9aff751

claimComp > grantComplnternal > getCompAddress
it would revert inside grantComplnternal, denying users their yield forever.

unore-WeFi-audit/contracts/Comptroller.sol

Lines 1271 to 1280 in f40d147

function grantCompInternal(address user, uint amount) internal returns
(uint) {
user;
EIP2@Interface comp = EIP2@Interface(getCompAddress());
uint compRemaining = comp.balanceOf(address(this));
if (amount > © && amount <= compRemaining) {
comp.transfer(user, amount);
return 0;

}

return amount;

Recommendation to consider

Consider making comp address a constructor argument OR correct it in getCompAddress

https://github.com/Uno-Re/unore-WeFi-audit/blob/f40d147efafacd5cc064f54347a04ed2b9aff751/contracts/Comptroller.sol#L1271-L1280
https://github.com/Uno-Re/unore-WeFi-audit/commit/f40d147efafacd5cc064f54347a04ed2b9aff751

- accountAssets is not capped properly
and may lock user funds

Severity

Impact:
Likelihood:

In ComptrollerStorage.sol, two storage variables are created and documented as follows:

/**

* @notice Max number of assets a single account can participate in
(borrow or use as collateral)

*/
uint public maxAssets;

/**
* @notice Per-account mapping of "assets you are in", capped by maxAssets
*/

mapping(address => CToken[]) public accountAssets;

maxAssets is a variable that is supposed to be used to cap the max number of assets an
account can participate at some time.

However, this variable is never set and properly used for the intended purpose.

Currently, the protocol supports a limited number of markets, but as the supported markets
count increases, users of the protocol will be subjected to the risk of getting blocked from using
important features of the protocol.

The accountAssets mapping holds an array for each account that uses the protocol, and later
that array is iterated in various gas-intensive actions such as
swapAndSettleCalculateRepayAmount, redeemAllowed, borrowAllowed and exitMarket.

Not capping the number of assets in the accountAssets makes users vulnerable to possible
OOG (OUT OF GAS) errors.

When accounts that are active in a high number of markets, use the functions that iterate over
the array of accountAssets , their transactions will revert with OOG errors, blocking them from
using the most important features of the protocols. Since exitMarket also iterates over the same
array, it is possible to end up in a state where the user can not reduce number of the markets
they are involved in anymore, effectively bricking the user account without a remediation.

It is important to note here that compounds do have this implemented correctly and WeFI
doesn't.
https://github.com/compound-finance/compound-protocol/blob/db1df2b9722fbe4c793576a29fbd
dbe68205ae92/contracts/ComptrollerG2.sol#L923-L934
https://github.com/compound-finance/compound-protocol/blob/db1df2b9722fbe4c793576a29fbd
dbe68205ae92/contracts/ComptrollerG2.sol#L150

Even if you consider an onchain instance of the compound, max assets are set as 20 there.
https://etherscan.io/address/0x3d9819210A31b4961b30EF54bE2aeD79B9c9Cd3B#readProxy
Contract

Remediation:
Consider adding a function to set maxAssets and use it to cap the number of markets and
accounts that can be active simultaneously, similar to how compound does.

https://github.com/compound-finance/compound-protocol/blob/db1df2b9722fbe4c793576a29fbddbe68205ae92/contracts/ComptrollerG2.sol#L923-L934
https://github.com/compound-finance/compound-protocol/blob/db1df2b9722fbe4c793576a29fbddbe68205ae92/contracts/ComptrollerG2.sol#L923-L934
https://github.com/compound-finance/compound-protocol/blob/db1df2b9722fbe4c793576a29fbddbe68205ae92/contracts/ComptrollerG2.sol#L150
https://github.com/compound-finance/compound-protocol/blob/db1df2b9722fbe4c793576a29fbddbe68205ae92/contracts/ComptrollerG2.sol#L150
https://etherscan.io/address/0x3d9819210A31b4961b30EF54bE2aeD79B9c9Cd3B#readProxyContract
https://etherscan.io/address/0x3d9819210A31b4961b30EF54bE2aeD79B9c9Cd3B#readProxyContract

- Incorrect assumption of USD price feed
being 8 decimals always, can lead to loss of
funds

WeFI| makes an incorrect assumption of chainlink USD price feed always having decimals as 8,
inside their PaxosPriceFeed.

unore-WeFi-audit/contracts/oracle/PaxoPriceFeed.sol
Lines 45 to 54 in 955917

function getUnderlyingPrice(address pToken) external view returns (uint) {

int price = getPrice(pToken);

require(price >= @, "Price cannot be negative");

uint256 unsignedPrice = uint256(price);

// Comptroller needs prices in the format: ${raw price} * 1e36 /
baseUnit

// The baseUnit of an asset is the amount of the smallest denomination
of that asset per whole.

// For example, the baseUnit of ETH is 1el8.

// Since the prices from chainlink for token/usd feed will have 8
decimals, we must scale them by 1e(36 - 8)/baseUnit

return mul(1le28, unsignedPrice) / tokenConfigs[pToken].baseUnit;

}

There are some existing chainlink price feeds with different decimals than 8.
AMPL/USD with 18 decimals for example.
https://etherscan.io/address/0x492575FDD11a0fCf2C6C719867890a7648d526eB#readContract

3. decimals [

represents the number of decimals the aggregator responses represent.

It is true that protocol can choose consciously and not include AMPL as a supported asset,

however, it is also true that the decimals = 8 constraint may or may not hold true anymore for
price feeds, which can have a severe impact due to incorrect evaluation.

Recommendation to consider

Consider fetching decimals from the aggregator only inside setPriceFeed and then match
respective calculations, instead to keep them static .

https://github.com/Uno-Re/unore-WeFi-audit/blob/9559f174d20a889e8b9a0f9b27019dfe8a9fe011/contracts/oracle/PaxoPriceFeed.sol#L45-L54
https://github.com/Uno-Re/unore-WeFi-audit/commit/9559f174d20a889e8b9a0f9b27019dfe8a9fe011
https://etherscan.io/address/0x492575FDD11a0fCf2C6C719867890a7648d526eB#readContract

[M-01] Chainlink's latestRoundData() can
return stale or incorrect result

Severity

Impact:
Likelihood:

Description
For PaxoPriceFeed.sol.sol, you are using latestRoundData to fetch the current price from

chainlink, however, there is no check if the return value indicates stale data.

https://github.com/Uno-Re/unore-WeFi-audit/blob/f40d147efafacd5cc064f54347a04ed2b9aff751
/contracts/oracle/PaxoPriceFeed.sol#L59-#L72

In the past lending protocols have suffered in cases where chainlink failed to update price feed
either due to market volatility or incorrect configuration.
https://twitter.com/Oxngmi/status/1524894553068691456

Recommendation

Consider adding appropriate circuit breakers to handle these cases.
More details: https://0xmacro.com/blog/how-to-consume-chainlink-price-feeds-safely/

https://github.com/Uno-Re/unore-WeFi-audit/blob/f40d147efafacd5cc064f54347a04ed2b9aff751/contracts/oracle/PaxoPriceFeed.sol#L59-#L72
https://github.com/Uno-Re/unore-WeFi-audit/blob/f40d147efafacd5cc064f54347a04ed2b9aff751/contracts/oracle/PaxoPriceFeed.sol#L59-#L72
https://twitter.com/0xngmi/status/1524894553068691456
https://0xmacro.com/blog/how-to-consume-chainlink-price-feeds-safely/

[L-01] Vulnerable versions of dependencies are
used

As can be seen from the package.json file, the protocol is currently using an older version of
OpenZeppelin contracts:

"@openzeppelin/contracts": "~4.8.1",
"@openzeppelin/contracts-upgradeable”: "~4.8.0-rc.1",

The problem is that OpenZeppelin are continuously updating their contracts to fix any bugs. You
can find more detailed information about all the bugs related to specific versions here. As the
latest available version is 4.9.1, consider upgrading the dependencies.

[L-02] Return value for doTransferln is ignored
for DexAggregator

doTransferln returns a boolean value based on whether the transfer was successful or not.
unore-WeFi-audit/contracts/dex/DexAggregator.sol

Lines 93 to 95 in 9559117

}

return result ;

However its return value is not checked inside swapExactin, leading to a false assumption of all
token transfers being successful always.

https://security.snyk.io/package/npm/@openzeppelin%2Fcontracts
https://github.com/Uno-Re/unore-WeFi-audit/blob/9559f174d20a889e8b9a0f9b27019dfe8a9fe011/contracts/dex/DexAggregator.sol#L93-L95
https://github.com/Uno-Re/unore-WeFi-audit/commit/9559f174d20a889e8b9a0f9b27019dfe8a9fe011

unore-WeFi-audit/contracts/dex/DexAggregator.sol

Lines 36 to 42 in 9559117

function swapExactIn(SwapInput calldata params) override external
returns(uint256 outAmount) {

(DexData memory dexData) = abi.decode(params.dexData, (DexData));
if(dexData.dex == DEX _UNI_V3) {
doTransferIn(msg.sender, params.tokenIn, params.amountIn);
setMaxAllowanceIfRequired(params.tokenIn,
params.amountIn,dexRouter[DEX UNI V3]);

outAmount =
UniswapV3Router(dexRouter[DEX UNI V3]).exactInputSingle(UniswapV3Router.
ExactInputSingleParams(

The impact is not severe since DexAggregator is not designed to hold any funds, however,
consider correcting it.

Recommendation To Consider

Consider adding a revert if doTransferIn() returns false

[I-01] DexAggregator doesn't compile due to
incorrect file extension for QuickSwapRouter

QuickSwap router is defined as QuickSwap.Sol instead of the correct extension
"QuickSwap.sol" (.Sol to .sol)

https://github.com/Uno-Re/unore-WeFi-audit/blob/9559f174d20a889e8b9a0f9b27019dfe8a9fe011/contracts/dex/DexAggregator.sol#L36-L42
https://github.com/Uno-Re/unore-WeFi-audit/commit/9559f174d20a889e8b9a0f9b27019dfe8a9fe011

Hence no file importing QuickSwapRouter would be compilable.

Consider correcting the file extension.

[1-02] Multiple SPDX licenses used in the same
contract

In Migrations.sol, there are two SPDX license identifiers. However, there should be only a single
license identifier per contract.

[1-03] Unsafe pragma statement

Currently, all of the contracts are using a floatable 20.8.2; compiler version. It is a best practice
to always use a newer version as it comes with a lot of new features and bug optimizations.
Consider using a stable 0.8.19 version to make sure it is up to date and all of the contracts are
compiled with the same compiler version.

[1-04] Unclear error messages

There are a lot of require statements that return an error message "F:

require(markets[address(cToken)].isListed, "F");

As this error message is unclear and might be confusing for users, consider replacing it with a
more descriptive one. Furthermore, since version 0.8.4 of the compiler, custom errors can be
used. Using Solidity Custom Errors has the benefits of less gas spent in reverted transactions,
better interoperability of the protocol as clients of it can catch the errors easily on-chain, as well

as you can give descriptive names of the errors without having a bigger bytecode or transaction
gas spending, which will result in a better UX as well.

[1-05] Unused import in multiple contracts

import './CTokenUInterface.sol';

The above mentioned interface is imported in the following contracts and not used:

CErc20,

Comptroller,
MockPaxoPriceFeed,
PaxoPriceFeed

Consider removing the import from the contracts.

[1-06] Unnecessary NonReentrant modifier

borrowBalanceCurrent() can not be marked as view, it calls accruelnterest() which writes to
state.

[1-07] Open TODOs and Typos

There are couple of open TODOs in Comptroller and CToken. This implies changes that might
not be audited. Resolve it or remove it.

Also there are a lot of typos in CErc20.sol:

borow -> borrow

prtocol -> protocol

underllying -> underlying , also present in CToken.sol

taget -> target

selleing -> selling , also present in Comptroller.sol

reapy -> repay

[G-01] Use unchecked in for loops

Solidity version 0.8+ comes with implicit overflow and underflow checks on unsigned integers.
When an overflow or an underflow isn’t possible (as an example, when a comparison is made
before the arithmetic operation), some gas can be saved by using an unchecked block. This is
the case in for loops where unit256 are used. See resource here.

Consider implementing unchecked blocks:

for(uint256 i; i < 10;) {
// loop logic
unchecked { i++; }

}

This saves 40-50 gas per loop.

[G-02] Cache array length outside of loop

Caching the array length outside a loop saves reading it on each iteration, as long as the array's
length is not changed during the loop. The project has many instances of this issue. Cache the
array outside the loop.

With this optimization you can potentially save 20 gas units per loop iteration.

The issue is present in Comptroller, DataUtility, DexAggregator. Here is an example instance
from Comptroller:

function _addMarketInternal(address cToken) internal {

- for (uint i = 9; i < allMarkets.length; i ++) {

+ uint256 allMarketslLength = allMarkets.length;

+ for (uint i = 0; i < allMarketsLength; i ++) {
require(allMarkets[i] != CToken(cToken), "F");

https://github.com/ethereum/solidity/issues/10695

//market already added

}
allMarkets.push(CToken(cToken));

Cache all array length outside a loop instances in the above mentioned contracts.

[G-03] Using private rather than public for

constants, saves gas

If needed, the values can be read from the verified contract source code, or if there are multiple
values there can be a single getter function that returns a tuple of the values of all
currently-public constants. Saves 3406-3606 gas in deployment gas due to the compiler not
having to create non-payable getter functions for deployment calldata, not having to store the
bytes of the value outside of where it's used, and not adding another entry to the method ID
table.

Change all instances of public constant to private constant.

[G-04] Use x != 0 instead of x > 0 for uint types

The != operator costs less gas than > and for uint types you can use it to check for non-zero
values to save gas.

This change saves 6 gas per instance.

There are 20 instances of this issue. Change them to x |= 0, instead of x > 0.

[G-05] Use require instead of assert

The assert() and require() functions are a part of the error handling aspect in Solidity. Solidity
makes use of state-reverting error handling exceptions. This means all changes made to the
contract on that call or any sub-calls are undone if an error is thrown. It also flags an error.

6 instances of assert in the codebase. Use require instead.

[G-06] Splitting require() statements that use

& & saves gas

Instead of using the && operator in a single require statement to check multiple conditions,using
multiple require statements with 1 condition per require statement will save 3 GAS per &&:

There are two instances of this issue in Comptroller:

require(numMarkets != @ && numMarkets == numBorrowCaps, "F2");
//invalid input

require(numTokens == supplySpeeds.length && numTokens ==
borrowSpeeds.length, "F");

[G-07] Constructors can be marked payable

Payable functions cost less gas to execute, since the compiler does not have to add extra
checks to ensure that a payment wasn't provided. A constructor can safely be marked as
payable, since only the deployer would be able to pass funds, and the project itself would not
pass any funds.

Making the constructor payable eliminates the need for an initial check of msg.value == 0 and
saves 21 gas on deployment with no security risks.

[G-09] Change all require across all contracts
to Custom Errors

Custom errors are significantly cheaper than require statements in runtime.

Consider these two functions:

error Error();

function test(bool inp)

external

view
{

if (!inp) {

revert Error();

}
}
function test2(bool inp)

external

view

returns (uint256 redemptionFee)
{

require(inp, "Error");
}

Gas cost for test(): 440
Gas cost for test2(): 719

Gas Saved: >300 gas can be saved for each reverted calls from contract. In total 80
appearances = 24 000

This document is proprietary and confidential. No part of this document may be disclosed in any manner to a third party without the prior
written consent of UnoRe.

