
CR Community Proposal Voting App
Ben - Shijun - 2021.10.21


2021.10.22 - v2: added project submission flow, financial terms

2021.10.21 - v1: initial content



Objective
• Request a pool of ELA from CR to vote for projects (ex: 100k ELA), by the 

community, not by CR members


• Proposals can be made and voted by the community


• Max 10k ELA allocated for a project


• Community votes for 1, or maybe max 2 projects per month, depending 
on projects


• 1 community member = 1 vote



Considerations

• This specification is for a Proof of Concept only, and the product will be 
improved after a first launch, in case the CR council agrees with it.


• In case of bug (vote cheats, etc), the centralized owners of the ELA can 
decide to not distribute project funds)



Definitions

• DID: Decentralized identity


• Credential: piece of data inside a user’s DID


• EE: Elastos Essentials


• TG: Telegram


• DB: Database



Use case: become a voter
• User sends his DID on TG manually to an admin


• Admin uses vote backend to save the TG/DID map -> saved to voting DB


• When the admin fills the TG+DID in the backend app, this generates a random 4 
digits ID, used to verify that the TG user really owns the DID.


• Admin gives the ID to the user on TG.


• User enters the voting app, signs in with DID. The first time, the web app will ask 
him to confirm the confirmation number.


• User should type the 4 digits. The backend can activate the DID for voting only 
after a matching 4 digits is entered.



Use case: submit a project
• Project owner opens the web apps and clicks a “manage projects” button


• On the manage project screen, he can see a list of previously created proposals


• He can click ‘submit new project’, or delete an on going project


• For new projects, he provides a title, a link to an existing CR suggestion page. Submitter must 
sign in with DID and must provide his name + email.


• After submission, an admin reviews the request, and can approve or reject from the back office.


• Once validated, a submitted project is open for voting until the next 15th of a month. Every 15th 
of each month, the project with the most votes gets the funds.


• If a submitted suggestion is transformed into a proposal on the CR website, it gets cancelled on 
the community voting app because there can’t be double funding.



Use case: vote
• User opens the web app in EE or in the desktop browser. Sign in with wallet 

connect or injected DID connector


• User sees the proposals and selects one


• User vote yes or no. and calls backend api


• Backend api checks that the DID is bound to a TG user and sends a DID sign 
challenge to EE


• User uses the DID sign screen in EE to sign server data, and data is returned


• Voting backend verifies the signed data and. saves the proposal id + user DID into 
DB



Financial items
• This project is for now a PoC. A proposal will be submitted to CR to get 100k ELA. 


• If the proposals passes, the 100k ELA are managed by a multi-signature wallet 
held by the 12 CR council members. The 100k ELA are send to this wallet at once 
once the proposal is passed.


• When projects are elected on this community voting app, a manual process 
initiated by the voting project admin starts, and 8 of 12 CR council members must 
send the funds.


• CR council members should not sign the payment transaction according to 
whether they support the project or not. They must sign because the decision is 
not theirs.



Back-office features
• Technology: React (front end) + NodeJS, MongoDB, DID JS SDK (back end)


• Authentication


• Harcoded list of admin DIDs in the backend


• Admins sign in with DID (connectivity SDK) and get an access token (JWT)


• Access token is used for all further API calls


• Screens - all screens and related apis protected by admin authentication token


• Members list


• Community members list (list of DID / TG name) + button to add a new member + button to delete each member


• Projects list


• List of all projects with status (to be review (by admin), active (votes open), finished (votes closed)) + ability to view 
project details + accept or reject a project that was just submitted.


• New member


• Input fields: TG ID + DID -> validate -> show a 4 digits confirmation code (pre-registration saved to DB)



Public features
• Technology: React


• Authentication 


• DID, connectivity SDK


• After sign in, user gets a session authentication token (JWT), used for other screens/apis


• Screens - all apis protected by user authentication token


• List of projectsthat can be voted for + start/end date, (number of votes yes/no) + “approved|rejected” status + 
buttons to vote yes or no


• When a user clicks a vote, if not signed in, this prompts the DID sign in first


• TG verification screen


• The first time after sign in, if the 4 digits TG confirmation code has not been validated, user must input the 4 
digits given by the TG admin. If the code matches the database code, then the DID becomes active and 
allowed to vote.



Testing

• All operations should work both from a desktop browser (through Wallet 
connect) and from inside EE (injected).



Ownership & Deployment

• As Trinity Tech is mandated to implement this first version of the system, 
the web app will be deployed to the trinity-tech.io server.

http://trinity-tech.io

