
dss-charter Assessment

In the dates of 2021-09-05 to 2021-09-12 B.Protocol's devs,
led by Yaron Velner, were engaged by

MakerDAO's Protocol Engineering team to perform a security audit for the implementation of dss-

charter module.

UPDATE: On the 2021-09-14 the Protocol Engineering team addressed some of the comments.

Table of contents

Scope

Findings

1. Correctness

1.1 Wrong event logging

1.2 ERC20 function return values are ignored

1.3 Tokens with 19 or more decimals should be blocked

1.4 README typos

2. Styling

2.1 TokenLike

2.2 rely , deny and auth

2.3 Scattered event definitions

2.4 Redundant parameters in frob function

3. Gas optimization

3.1 UrnProxy

3.2 Duplicated external calls

3.3 Avoid validate logic execution when repaying debt

3.4 frob and flux can get ilk as input

3.5 draw function

3.6 mload op

4. Notes

4.1 The new Vault implementation is not compatible with DssCdpManager

4.2 Upgradable proxy Pattern

4.3 Immutable spotter and vow

4.4 CharterManager may call malicious GemJoin contracts

Scope

The dss-charter module implements three (potentially independent) features:

1. Origination fees: This feature enables the protocol to collect a (one-time) minting fee over the

DAI debt, in addition to the applicable stability fee.

2. Permissioned vaults: This allows only permissioned white-listed addresses to accrue DAI debt

for collateral types that use this module.

3. Initial margin: This feature make it possible for the protocol to define an initial margin

collateral ratio for the user, and users below that margin are not allowed to decrease their

collateral ratio. The initial margin could be potentially higher than the liquidation ratio (a.k.a

Maintenance margin).

We reviewed CharterManager.sol from commit hash

6ab5cd69323cf2686d863e337d9e4e635bf79ad1 and join-managed.sol from commit hash

74d2b020b3b3c76feaa24e13cbaef016eb10e528 .

UPDATE: On the 2021-09-14 the Protocol Engineering team submitted a new version with few fixes.

CharterManager.sol new commit hash is ab207e9d3e1a35c8b2923527153918b126639b92 (which is

identical to squashed commit hash b0e8443be7217c3c44d58d2e694162e8ba8990e8), and join-

managed.sol new commit hash is 244430936ccf58b70e6974525bb4f243cd1ae2d4 .

Findings

Overall the code is of high quality and only low severity issues were found.
In addition to the issues,

we also suggest some easy gas optimizations, and give few notes on the design for the team to

consider.

UPDATE: The team addressed the issues and comments.

1. Correctness

1.1 Wrong event logging

The Rely and Deny events log the msg.sender instead of the usr .

UPDATE: Issue was fixed.

1.2 ERC20 function return values are ignored

The implementation of CharterManager.sol ignores the return value of transferFrom and

approve .
We recommend to either check the return values, or implement a safeERC20 logic that

would be able to handle also with non compliant ERC20 implementation, such as USDT.

We also note that this is inconsistent with the implementation of join-managed.sol , where return

values are checked.

UPDATE: The issue was acknowledged by the team.

The token will be correctly handled as each adapter will take care of the tokens idiosyncrasies. We

prefer not to support only certain tokens or complicate the code.

1.3 Tokens with 19 or more decimals should be blocked

https://github.com/makerdao/dss-charter/blob/master/src/CharterManager.sol
https://github.com/makerdao/dss-gem-joins/blob/master/src/join-managed.sol
https://github.com/makerdao/dss-charter/blob/6ab5cd69323cf2686d863e337d9e4e635bf79ad1/src/CharterManager.sol#L76
https://github.com/makerdao/dss-charter/blob/6ab5cd69323cf2686d863e337d9e4e635bf79ad1/src/CharterManager.sol#L81

The ManagedGemJoin constructor does not validate that gem.decimals() <= 18 .
As a result,

overflows might occur here and here.

UPDATE: Issue was fixed.

1.4 README typos

1. The README file does not explicitly mentions the initial margin feature.

2. The README file explains that the dss-charter wraps the AuthJoin , however in practice it

wraps ManagedGemJoin .

UPDATE:

1. Some additional text was added at line 11 of the README file. We recommend to add a

description already at line 3.

2. Issue was fixed.

2. Styling

Overall the code is nicely organized and clean. There are few places where the style seems to be

inconsistent with the rest of the dss code.

2.1 TokenLike

Typically this is named GemLike .

UPDATE: Issue was fixed.

2.2 rely , deny and auth

These functions are usually implemented in a single line (e.g., here.
This is not the case for

CharterManager.sol .

UPDATE: The issue was acknowledged by the team.

Multiple expressions in each, split across lines is reasonable.

2.3 Scattered event definitions

Typically event definitions are grouped together. In CharterManager.sol they are scattered over

many places in the code.

UPDATE: Issue was fixed.

2.4 Redundant parameters in frob function

The frob function has 2 redundant parameters.
Indeed, the implementation forces u and v to be

the same, and forces w to be equal to msg.sender .
The current frob prototype is already different

than the one in the vat . Hence, it is not clear how these extra parameters contributes to the styling

of the code.

UPDATE: The issue was acknowledged by the team. In addition, following comment 3.4 the prototype

was changed and it is now identical to the one that is in the vat .

We left all the parameters so in the future (if needed) we can extend the functionality to a full frob

flexibility without having to change the abi.

3. Gas optimization

https://github.com/makerdao/dss-gem-joins/blob/74d2b020b3b3c76feaa24e13cbaef016eb10e528/src/join-managed.sol#L57
https://github.com/makerdao/dss-gem-joins/blob/74d2b020b3b3c76feaa24e13cbaef016eb10e528/src/join-managed.sol#L77
https://github.com/makerdao/dss-gem-joins/blob/74d2b020b3b3c76feaa24e13cbaef016eb10e528/src/join-managed.sol#L85
https://github.com/makerdao/dss-charter/blob/6ab5cd69323cf2686d863e337d9e4e635bf79ad1/src/CharterManager.sol#L47
https://github.com/makerdao/dss-gem-joins/blob/74d2b020b3b3c76feaa24e13cbaef016eb10e528/src/join-managed.sol#L45
https://github.com/makerdao/dss-charter/blob/6ab5cd69323cf2686d863e337d9e4e635bf79ad1/src/CharterManager.sol#L245

3.1 UrnProxy

1. Consider removing the usr field. Which is not used anywhere.

2. Consider calling selfdestruct after the vat.hope is executed.

UPDATE: The issue was acknowledged by the team.

proxy->usr retrieval needed in CropManager, sticking with same UrnProxy implementation for both

contracts.

3.2 Duplicated external calls

In the join function there are two external calls for gemJoin.gem() .
Consider storing the result of

the first call in a local variable, and avoid making the second call.
This can also mitigates malicious

gemJoin input which returns different result for the first and second call.

UPDATE: Issue was fixed.

3.3 Avoid validate logic execution when repaying debt

The validate function can check if dink >= 0 && dart <= 0 before calculating the tab , and in

particular before making an external call to vat.urns() .

UPDATE: Issue was fixed.

3.4 frob and flux can get ilk as input

Currently frob and flux get gemJoin as input, and it is only used to make an external call to

gemJoin.ilk() .
The extra calls can be avoided by having ilk as input instead of gemJoin .
This is

already done, e.g., in quit .

UPDATE: Issue was fixed.

3.5 draw function

Technically it is possible to replace this sequence of a single frob and two move s
with a sequence of

two frob s.
This will save an external contract call, and can also help towards simplifying the code,

however a simulation is required to determine if it will actually save gas, and it will have the

byproduct of effectively increasing the dust level.

UPDATE: The issue was acknowledged by the team.

Subjective, we think current implementation is elegant and the suggested optimization will not

necessarily save gas.

3.6 mload op

The mload operation is not needed, and one can just set ptr = 0 .
The saving is very small though,

so it is mostly a matter of taste.
New proxy implementations, e.g., Gnosis and OpenZepplin just set it

to 0.

UPDATE: The issue was acknowledged by the team.

Although free memory ptr is 0 (start of an external call), we will still use the ptr for safety.

4. Notes

This section contains general comments and thoughts about the implementation and design of the

code. Unlike the other sections, the findings here are not necessarily a recommendation for a change.

https://github.com/makerdao/dss-charter/blob/6ab5cd69323cf2686d863e337d9e4e635bf79ad1/src/CharterManager.sol#L53
https://github.com/makerdao/dss-charter/blob/6ab5cd69323cf2686d863e337d9e4e635bf79ad1/src/CharterManager.sol#L57
https://github.com/makerdao/dss-charter/blob/6ab5cd69323cf2686d863e337d9e4e635bf79ad1/src/CharterManager.sol#L204
https://github.com/makerdao/dss-charter/blob/6ab5cd69323cf2686d863e337d9e4e635bf79ad1/src/CharterManager.sol#L225
https://github.com/makerdao/dss-charter/blob/6ab5cd69323cf2686d863e337d9e4e635bf79ad1/src/CharterManager.sol#L245
https://github.com/makerdao/dss-charter/blob/6ab5cd69323cf2686d863e337d9e4e635bf79ad1/src/CharterManager.sol#L260
https://github.com/makerdao/dss-charter/blob/6ab5cd69323cf2686d863e337d9e4e635bf79ad1/src/CharterManager.sol#L271
https://github.com/makerdao/dss-charter/blob/6ab5cd69323cf2686d863e337d9e4e635bf79ad1/src/CharterManager.sol#L215
https://github.com/makerdao/dss-charter/blob/6ab5cd69323cf2686d863e337d9e4e635bf79ad1/src/CharterManager.sol#L99

4.1 The new Vault implementation is not compatible with DssCdpManager

In the new Vault, users will not be able to call vat functions directly. As a result DssCdpManager can

no longer be used.
As the Vault is new, it is does not have any affect on existing systems that are

integrated with MakerDAO, but moving forward it will require a new implementation from interfaces

such as Oasis.app, Instadapp and potentially also DeFiSaver.

UPDATE: The issue was acknowledged by the team.

4.2 Upgradable proxy Pattern

The CharterManager is implemented as an upgradable proxy.
If your implementation is expected to

have multiple upgrades during the product life-time, you might want to consider separating the

contract storage from its logic, e.g., have a v0, v1, v2, v3... storage, where v_{n+1} inherits from v_n,

and each impl inherits from storage_{v_n}.

On the other hand, MakerDAO code styling typically avoids inheritance patterns, and favors a flat

implementation. If the upgradability is only to mitigate unexpected events and bugs, then the current

implementation would suffice.

UPDATE: The issue was acknowledged by the team.

Makerdao preferences self contained code without inheritance if possible. No upgrades are

purposely planned. Added comments to emphasize storage layout.

4.3 Immutable spotter and vow

In the general dss system, the spotter and vow values could change over time.
In the current

implementation this will require to redeploy a new proxy for CharterManager .
This can be avoided if

you allow these values to be mutable and configurable via the file function.

UPDATE: The issue was acknowledged by the team.

Vow and Spot upgrades should be rare.

4.4 CharterManager may call malicious GemJoin contracts

Letting the contract call arbitrary gemJoin contract is not a best practice. In the current

implementation anyone can force the contract to give infinite allowance of any token to a malicious

contract. This on its own does not put funds at risk, however, as the contract is upgradable, and since

funds might get stuck in the contract due to user interaction errors, this might be an issue in the

future. I would suggest to have a configurable mapping of ilk to gemJoin to mitigate it.

Alternatively, a more light weight mitigation would be to call gemJoin.gem() only once at join

function.

UPDATE: The issue was mitigated by verifying that gemJoin is an authorized contract in the dss

system (specifically by the vat contract). The mitigation is satisfactory, and nicely balances

simplicity and gas costs concerns vs hypothetical future security concerns. A more comprehensive

solution would be to verify gemJoin is listed in the IlkRegistry contract, however it would entail

higher gas cost.

