Autonomous Economic Agents as a Second Layer
Technology for Blockchains:
Framework Introduction and Use-case Demonstration

David Minarsch*,Seyed Ali Hosseini*, Marco Favorito* and Jonathan Ward*
*Fetch.ai
Cambridge, UK
Email: {david.minarsch, ali.hosseini, marco.favorito, jonathan.ward} @fetch.ai

Abstract—The user experience of interacting with distributed
ledger technologies (DLT) is fraught with excessive complexity,
high risk and unintuitive processes. Moreover, smart contracts
deployed in these systems are restricted to being reactive. These
limitations have negative implications on user adoption and
prevent DLTs from being general purpose. We introduce a
framework for the development of Autonomous Economic Agents
(AEAs), software agents that act autonomously and pursue an
economic goal, and demonstrate how AEAs complement existing
decentralised ledgers as a second layer technology. In particular,
the framework enables a simplified user experience through
automation, supports modularisation and reuse of complex de-
cision making and machine learning capabilities, and allows for
proactive behaviour facilitating autonomy. We demonstrate these
gains in the context of a specific use-case, a multi-agent trading
system modelling a Walrasian Exchange Economy populated by
a number of agents trading a basket of tokens.

I. INTRODUCTION

a) Motivation: The rise of Web 3.0 [1] and distributed
ledger technologies (DLT) [2] has enabled trustless value
exchange and public execution of smart contracts. However,
one mass-adoption challenge these systems face today is that
their usage often involves excessively many steps to reach
the conclusion of an action or trade, thereby exacerbating the
requirements on the user to provide input.

Furthermore, utilising and interacting with today’s
blockchains and DLT-based applications is difficult for hu-
mans. Users find themselves having to go through a complex,
often unintuitive process and dealing with long alpha-numeric
values (e.g. addresses, keys) just to interact with a simple smart
contract.

Interactions with blockchains and smart contracts are typ-
ically of a high risk nature (e.g. financial) which if erroneous
will result in severely undesirable outcomes (e.g. loss of
assets). This makes the difficulty of interacting with these
technologies even more consequential.

This difficulty is magnified when we go beyond simple
transaction settlement scenarios and move towards environ-
ments involving frequent, fast, perhaps interdependent, transac-
tions.! The dynamic environment in which blockchains reside
implies that outcomes of individuals’ actions are affected by

I'This is further exacerbated by the fact that the user has to deal with two
concepts of time (i.e. block time and clock time), which can make it very
challenging for humans to time their actions correctly.

the actions taken by other individuals. For instance, pricing for
transactions is largely determined by congestion [3]. Individ-
uals are bound to make imperfect decisions due to the speed
at which the system operates and the information richness it
contains.

One technical limitation of smart contracts is their purely
reactive nature. Smart contracts enable the creation and ex-
ecution of potentially complex business logic. However, for
this logic to execute, the contract needs an external trigger.
In other words, an event outside of the logic that resides in a
contract must happen, in order for the contract to execute. This
significantly restricts the functionality provided by smart con-
tracts to reactive systems. As such, smart contract technology
alone cannot be employed to create applications with proactive
behaviour [4].

b) Contribution: In this paper, we propose a technol-
ogy, Autonomous Economic Agents (AEAs) which addresses
the above problems by creating a novel second layer of agency
on top of the existing benefits and functionalities provided by
blockchains and smart contracts. This technology is facilitated
by a framework that enables the development of AEAs. It
utilises the base layer and complements the base layer’s
shortcomings.

AEAs are defined as intelligent agents operating on an
owner’s behalf, with limited or no interference from its owner,
and whose goal is to generate economic value. This implies,
AEAs are not just any agents. They have an express purpose
to generate economic value and would usually be deployed in
adversarial and multi-stake holder scenarios with competing
incentives between the different actors. AEAs are not to
be equated with artificial general intelligence (AGI). They
can have a very narrow goal-directed focus involving some
economic gain and implemented via simple conditional logic.

The AEA framework allows for the creation of AEAs
that automate almost all interactions with blockchains and
smart contracts. A user (e.g. individual or company) can
be represented by an AEA which handles the low Ievel
interactions with blockchains and smart contracts at run-time.
This simplifies the user experience and such automation is
especially suited for applications where well-defined contin-
uous interactions with a blockchain over a long period of
time is expected. In addition, the AEA framework allows for
complex decision making and machine learning capabilities to
be modularised and re-used off-chain.

The many abstraction layers offered by AEAs along with
their automation of interactions with ledgers and smart con-
tracts enable the creation of large scale, complex applications.
An example of such an application is the trading agent
competition (TAC) which we developed, and through which
we demonstrate the main claims regarding the contributions
of the AEA framework.

¢) Related Work: One of the key value-driven aims of
the AEA framework is the integration of two very relevant
technologies with diverse backgrounds: multi-agent systems
[5] and distributed ledger technology [6].

Multi-agent systems have been the subject of development
in the research community for more than twenty years [7].
During this time, many frameworks have been proposed for
the creation of agents [8] and multi-agent systems [9]-[14].
However, these systems have seen little usage outside of the
research community and remained mostly as research projects.

The absence of a native digital financial system is a com-
mon characteristic amongst existing multi-agent frameworks,
a crucial feature which, arguably, could be the reason for their
lacklustre adoption in the industry, especially given the role
of economic activities in multi-agent systems [5]. This sets
the AEA framework apart and in fact is one of the main
motivations driving its conception.

d) Structure: The remainder of the paper is structured
as follows. In section II we provide a description of the frame-
work architecture as well as the developer tools to build AEAs.
In section III we follow with an introduction to a specific use
case, i.e. the TAC, which demonstrates the relevance of the
framework to real world problems and substantiates our claims
regarding the framework’s usefulness. We show the results of
the AEAs’ interaction in the specific use case and discuss it.
We conclude in section IV.

II. AEA FRAMEWORK

The AEA framework aims to enable rapid, scalable and
modular agent development and allows individuals and busi-
nesses to easily and quickly compose software that can create
economic value for them. The framework attempts to make
agent development as straightforward as it is to develop web
apps with popular web frameworks. To this end, we chose
the Python programming language for the development of the
first instantiation of the framework as it is arguably a popular
and accessible technology, with a vivid community around it.
All agent to agent communication is designed to be agnostic
to the language in which the framework is implemented. The
framework is open-source and published on GitHub [15] and
PyPI [16].

A. Introduction to the Framework

The framework is divided into two parts: a core developed
by the authors, and extensions (i.e. packages) developed by
other developers.? This allows for a modular and scalable agent
framework.

AEAs are aimed to inhabit environments which are ad-
versarial and multi-stakeholder in nature. Therefore, AEAS’

2We will publish, in due course, a companion paper which introduces the
core framework components and architecture in full detail.

interactions are message-based and asynchronous. Currently
there are four types of framework-specific packages which can
be added to an AEA: Connections, Protocols, Contracts, and
Skills. The framework places no restrictions on the usage of
readily available PyPI® packages.

1) Connections and Protocols: ~ Connections wrap
APIs/SDKSs to services, or entire services that are external to
the agent. As such they provide an interface to the outside
world. A connection in an AEA is responsible for providing
the translation between the message-based communication
language defined for use within the framework and an
external language or application protocol. An example is
the HTTP client connection. Once added to an AEA, the
connection accepts messages from the AEA, translates them
into HTTP requests and sends them as a HTTP client to a
target URL. The received response is then translated back
into a framework specific message and is handed over to
the AEA. Another important example of a Connection are
LedgerApis which allow AEAs to utilise different DTLs.

Every AEA is equipped with its own Multiplexer which
calls and manages the AEA’s Connections. A Multiplexer is
capable of handling several Connections at once, allowing
an AEA to connect to different environments. To be able
to communicate, AEAs use messages wrapped in Envelopes
which act as an “outer” Agent Communication Language
(ACL) [17] encapsulating other ACLs. An envelope references
a specific ACL, referred to as Protocol, and the message field
contains the serialised message that conforms to the protocol.
This setup guarantees that all AEAs can communicate with
each other on the envelope level via a standardised format.
However, they can only decode the content of a message if they
have an implementation of the protocol. By adopting this two-
layered approach to communication, we make the framework
compatible with any message based language format which
in turn increases interoperability. This enables any existing
message-based agent architecture to be connected to the AEA
framework via a simple translator - implemented in a Connec-
tion - that encodes and decodes message envelopes.

Envelopes are the core objects agents use to communicate.
An AEA receives Envelopes through its Connections. Connec-
tions deposit Envelopes in the Multiplexer’s InBox while an
AEA can deposit messages to be sent by Connections in the
Multiplexer’s OutBox. InBox and OutBox are simple thread-
safe queues managed by the Multiplexer. They allow for the
separation of the Multiplexer loop from the loop running the
main agent.

2) Skills: Skills deliver economic value to the AEA by
allowing agents to encapsulate and execute any arbitrarily
complex logic. As such, a skill could wrap simple conditional
logic or an advanced deep learning model. To help with Skill
development and make the framework scalable, the framework
provides a stable API and a number of abstract base classes
for developers to extend. The two most important of these are
Handler and Behaviour.

A Handler is registered against a particular protocol and
receives messages for this protocol. As such, handlers are a
reactive component of the agent. An example of code that

3https://pypi.org

might go into a handler is: an action that the agent directly
performs upon receiving a specific message (e.g. sending a
proposal in response to a call for proposal), or update to a
model that the agent is using (e.g. a price model) which is
drawn upon by the agent’s proactive component. A Behaviour
then embodies an agent’s proactiveness [5]. It is a scheduled
action that is triggered by the agent’s internal processes to fur-
ther its goals rather than by an external trigger (e.g. search for
a trading partner on a regular interval). The framework offers
several types of Behaviour classes that encapsulate popular
patterns of execution. Some of the examples include, Cyclic
behaviours that execute repeatedly, One-Shot behaviours which
are executed only once, Sequential behaviours composed of
sequentially executed sub-behaviours, and FSM behaviours
which execute their child behaviours according to a Finite State
Machine.

Note, it is required that message handling, internal state
updates, and behaviour executions are fast enough so they fit
into the agent’s execution cycle (more on this in Section II-A5).
This requirement is imposed to prevent skill components from
blocking each other.

For this reason, CPU bound long running tasks inside skills
must be implemented as Tasks which are executed by a task
manager in a separate thread. As such, Tasks differ from
behaviours primarily in their execution times. For instance,
machine learning and other long running CPU-bound tasks,
excluding I/0 bound logic, can be executed in the task manager
to avoid the reactiveness and proactiveness of the agent to be
compromised.

Lastly note that Skills act as black boxes to each other.
They can exchange state via a thread-safe key-value store
where required, otherwise no other interaction is intended
between them.

3) Contracts: Contract modules provide containers for
APIs to interact with smart contracts. For instance, an ERC20
contract bytecode and ABI (Application Binary Interface) can
be wrapped in a contract module and complemented by an API
to interact with the ABI. This API might implement common
business logic for interaction with the ERC20 contract, such as
deployment, creation and minting of tokens as well as transfer.
The contract module can then be defined as a dependency for
skills which require access to its high-level functionality.

4) Wallet and Decision Maker: The goals and preferences
of an agent, specified by the user, are managed by the Decision
Maker. It is the only object capable of updating the agent’s
ownership state by signing transactions, and hence provides
a final selection on the proposed transactions by the skills.
It is responsible for the crypto-economic safety and the only
object with access to the agent’s wallet. All AEAs must have
a Wallet which contains the private-public key pairs that the
agent holds.

The role of the decision maker is limited to the evaluation
of internal messages from skills. Thus, the decision maker does
not directly interact with other agents. This limitation in the
decision maker’s scope is intended to balance the need of a
mediator between competing skills with the risk of the decision
maker becoming a bottleneck.

5) Execution: Every AEA has a main execution thread
which is broken down into three stages/footnoteThe framework
implements multiple execution modes, here we present the
synchronous agent loop.:

1) Setup: sets up all registered resources (i.e. connec-
tions, protocols, contracts and skills) by calling their
associated setup () method.

2) The main loop then executes the following steps on
each tick:

e react (): calls the associated handler of
every Envelope waiting in the ‘InBox’ queue.

e act(): calls the act () function of every
registered Behaviour.

e update (): enqueues scheduled tasks for ex-
ecution with the Task Manager and executes
the decision maker.

3) Teardown: tears down all registered resources by
calling their associated teardown () method.

An AEA’s main loop and task loop run synchronously in
independent threads. Note the execution time of react () and
act () calls are limited to avoid individual skills blocking
each other indefinitely.

In addition to a main loop, an AEA’s Multiplexer has
an event loop running in a separate thread which processes
incoming and outgoing messages across several connections
asynchronously.

B. Developer Tools

The framework is readily installed from PyPI. A command
line interface is provided which can interact with the local
file system and a remote registry to compose AEA projects.
The user has the option to install the components of the AEA
step-by-step. The framework also comes with a test framework
allowing developers to write end-to-end tests for their AEAs.

III. AEA USE-CASE: TRADING AGENT COMPETITION
(TAC)

In this section, we introduce a Trading Agent Competition
(TAC), accompanied by its open source implementation as a
package in the AEA framework. The competition acts as a
testing ground for our claims regarding the contributions of
the framework, as described in Section I. As such, it serves
as a demonstration of the values that can be brought forward
by the framework in a fairly general, simple, and relevant use-
case.

After a brief introduction in Section III-A, we describe
key aspects of the competition in Section III-B, starting with a
formalisation of the competition’s underlying economic model,
followed up with explanations of the role of an ERC1155 smart
contract in transaction settlement via atomic swaps, the various
phases in a competition, the trustlessness property, and the
competition’s network environment.

Then in Section III-C, we introduce two specific types
of AEAs which have been developed by the authors.* In

40f course TAC being a framework allows for other agent strategies to be
designed and entered in a competition.

particular, we describe their trading strategies and how they
negotiate in a competition.

Next, in Section III-D, we present the result of the compe-
titions we ran with default settings involving AEAs of the two
types mentioned above. This is followed up in Section III-E
by a discussion of how claims we made in Section I about
the values of the framework as a second layer technology
over blockchains are highlighted in the TAC use-case and
corroborated in practice via the competitions ran.

A. Introduction

There is a rich history of trading agent competitions, often
under the TAC name (see [18]), but this has no direct affiliation
with any of those projects.

The scenario of the TAC in the AEA framework is focused
on one of the most fundamental forms of economic interac-
tions; bilateral trades. The competition involves a society of
agents, each starting with a number of goods, in which agents
could engage in one-to-one negotiations and trades using a
numeraire token, i.e. money, as their medium of exchange.

Each agent, in the real world, would represent an individual
or a group of people and is tasked with looking after their
interest by maximising their utility. In order to be able to
do that, the agents should be made aware of their owners’
preferences [19] and values [20]. In the competition, this is
simulated by explicitly giving each agent a representation
of their owners’ preferences over goods at the beginning of
each round. During the competition, the goal of each agent
is to maximise its owners’ interests by engaging in as many
profitable trades as possible, of course taking into account their
preferences.

The trading agents competition package has applicability
in multiple areas. It can be used as a multi-agent game, for
instance to trade crypto-tokens on the Ethereum blockchain
[21]. It can also serve as a tool to study the effects of different
types of agent strategies on trading performance [22].

B. Model

1) The economy: We describe our agent economy, a Wal-
rasian exchange economy [23].

(Agents) There exists a set A of agents. Section III-C
describes the agents in more detail. There is also a unique agent
c, called the controller agent, which initialises and manages
the registration for the competition, and due to its special role,
is not included in A.

(Goods) There is a tuple of n sets of goods X =
(X1,...,X,) where each i € {1,...,n} represents one type
of good (e.g. a fungible token) and each element of the set X;
is an instance of that good type (e.g. equivalent instances of
the same fungible token). In general, we may have | X;| # | X/
for any two i,j € {1,...,n} where i # j; that is, the number
of available good instances could be different for two different
goods. As a consequence, we may in general have differing
aggregate supply across goods.

(Money) There is a special type of good (e.g. another
fungible token), indexed by 0, the numeraire good or money. It
serves as a unit of account and medium of exchange to agents.

(Endowments) Agents are provided with endowments in
goods and money. That is, each agent a € A has a good
endowment e = (ef,...,e%), a tuple of length n, where the
set e C X; is the endowment of agent a in good ¢. Each

agent is given at least some base_amount > 0 of each good,

thus for any ¢ € {1,...,n}, we have base_amount < |e?| <
| Xi|. We assume that good endowments are allocated such
that for each i € {1,...,n} we have | J,.,ef = X;; that is,

all good endowments for a good sum to the total instances
of that good. Finally, every agent is endowed with the same
eg = money_amount > 0. Goods and money can only be
traded in integer amounts, that is they are indivisible.

(Current holdings) Each agent a’s current good holdings
are denoted by x* = (xf,...,2%) where for any i €
{1,...,n}, ¢ C X, is the set of instances of good ¢ that
agent a currently possesses. Therefore, |2¢| € {0,...,|X;|};
note how agents can have no instance of a good ¢ at some
point in time but trivially never a negative amount. That is,
there is no borrowing of goods. We further assume that for
each i € {1,...,n} we have (J,.,2{ = Xj; that is, all
agents’ current good holdings of a given good sum to the total
instances of that good available. At the beginning of a round in
the competition, before any trades take place, the good holding
of any agent is equivalent to its endowment. Furthermore, each
agent a’s current money holding is denoted by x§ and it must
always be the case that) _, 2§ = |A| x money_amount
and for each agent a, § > 0, that means there is also no
borrowing of money.

(Preferences) Agents are assigned preferences for goods
and money by the controller agent c. Specifically, each agent
a € A has a preference relation <, on goods which totally
ranks any possible combination of good bundles. Preferences
are assumed to be transitive, thus for any three arbitrary goods
z,y and 2z, * X, y and y <, 2z means = <, 2. In practical
terms, each agent a has a utility function «® which is quasi-
linear in goods and money:

ut(af,x?) = af +g(x?) =af +) st x flzf) (D)

ie{1,...,n}

such that s > 0 and

flat) = {07

Breaking down the utility function in Equation 1, z§ is
agent a’s money holding, s{ is the utility parameter agent a
assigns to good i, and f(|x¢|) parameterizes the number of
instances of good ¢ that agent a has. The logarithmic nature of
f(-) implies decreasing returns; i.e. the agent values acquiring
each additional instance of a good less than acquiring the

previous instance. L > 0 is a large constant.

if |22 >0
otherwise

@)

An agent a’s utility parameters for goods are represented
by s* = (s{,...,s%) where s¢ is the utility parameter agent
a assigns to good ¢. Equation 3 ensures the sum of the utility

parameters for all goods are the same for every agent a:

Yo osi=1 3)

With the specific design of the utility function in Equation
1, we are implementing the well studied Cobb-Douglas func-
tion [24] for g(x*) which has the gross-substitutes property.
This property means that an increase in the price of one good
causes agents to demand more of the other goods.

In the context of the competition, the utility function serves
as the metric which the agents have to maximise. The agent
which best achieves this goal becomes the winner of the
competition.

(Trade cost) Settling trades in DLT-based financial systems
is costly, in particular transactions incur transaction fees. As
transactions are settled against a blockchain in real time,
they incur variable transaction costs k(t) determined by the
blockchain.

2) ERCI1155 Smart Contract: Trading multiple goods (i.e.
tokens) on the same ledger can be implemented in multiple
ways. For efficiency and cost reasons, we run the TAC utilising
a smart contract [25]. In particular, we use the ERC1155
Smart Contract standard which allows for multiple ERC20
(fungible) and ERC720 (non-fungible) tokens to be maintained
in one smart contract. It furthermore makes atomic swaps
between two agents, involving sets of tokens feasible in a
single transaction. We represent goods as fungible tokens, as
different instances of the same good are considered identical
in the preferences of the agents. We represent money as a
separate fungible token.’

3) Trading game phases: The trading game has three
phases: a pre-trading phase, the trading phase and a post-
trading phase.

In the pre-trading phase, agents wanting to participate in
the competition register with the controller agent. Only if a
min_agent number of agents register, then the competition
moves to the trading phase. The controller agent uses the pre-
trading phase to deploy the ERC1155 smart contract, create
the fungible tokens (i.e. goods and money) for the competition
and mint the good and money endowments in tokens for the
registered trading agents.

The trading phase consists of k£ game instances g1, - . ., gk,
with pauses in between, where at each game instance g:

e For every participating agent, the controller agent
generates endowments in good e® and money e,
and preferences s, ensuring that they are somewhat
orthogonal. This is implemented through a generator
algorithm in the game controller which acts as the
random seed to each game instance. The controller
then sends these along with contract addresses to every
agent in the competition.

e Agents trade with each other. When a pair of agents
arrive at mutually beneficial terms of trade, they
conduct an atomic swap [27].° This means, the first
agent cryptographically signs the terms of trade and

5The native cryptocurrency [26] of the target blockchain - here Ethereum
- could be used as money. However, for the competition this implies the
controller needs access to a large amount of ETH funds which makes this
more restrictive in practice.

SNote the swaps between agents’ assets happen on the same chain and have
the atomicity property as defined in [28], [29].

the second agent then submits both the terms of trade
as well as its counter-party’s signature in the form
of a transaction to the smart contract. If the feasibility
constraints listed in current holdings in Section III-B1
are met and the signatures are referencing the submit-
ted terms, then the smart contract permits the atomic
swap and the goods change ownership. Transactions
with invalid signatures or incompatible terms of trade
are rejected.

e After some set period of time, the game instance
finishes and the controller agent constructs a league
table for this game instance from the on-chain data.

In the post-trading phase, the controller agent reports the
final league table by computing a (weighted) average across
all game instance league tables.

4) Trustlessness: The trading environment in this compe-
tition is designed to be trustless. This system allows agents to
trade with one another without being required to take trust into
consideration, as trust is guaranteed by the design of the system
itself. Specifically, the ERC1155 smart contract ensures that
every transaction sent to it is signed by all parties involved in
the transaction. Because the ERC1155 smart contract deployed
on a permissionless blockchain is the only entity with the
competition’s global state, this makes it impossible for agents
to submit invalid transactions according to current holdings,
e.g. submitting transactions in which they spend/give away
more money/good than what they actually have.

5) Network Environment: The agents participating in the
competition communicate over an overlay network utilising
the Internet. The overlay network consists of special OEF
node(s), a competition manager — implemented via a controller
agent — and a set of participating agents. The OEF nodes
come with specific functionalities. One such functionality is
message relaying. This means that through appropriate APIs,
agents send and receive messages to each other, and the
OEF handles the low level delivery of the messages over the
overlay network. Another functionality is service registration
and search. Agents can register services (e.g. goods to sell/buy)
and search for registered services.

The registration and search process of services works as
follows. An agent first generates a description of the services
it offers in terms of data models. It then registers the service
on the OEF search and discovery node. An agent can search
for the services of all agents who are registered on any OEF
search and discovery node. The agent does so by formulating
a query in a custom query language and sending this query to
the OEF search and discovery node. Once the service search
request has been submitted to the node, the node processes
it and returns a list of agents which match the query to the
requesting agent.

C. Agents

Agents in the competition focus on discovering how they
can arrive at an optimal bundle of goods and money - as
defined by their preferences - through successive trades. Em-
phasis for agents is placed on a) finding the right agents to
trade with, and b) doing the right trade with them. This might
involve identifying other agents’ needs to arrive at the optimal

trading sequence. However, a dummy agent which simply
selects random bargaining partners and trades if it is beneficial
to it, without any longer term plan is still able to improve its
score in the competition.

1) Strategy: Recall each agent a has a utility function
u®(x*, z¢), which given a good holding x® and money holding
x§, gives a number representing “how good agent a’s cur-
rent situation is”. The utility number is used by the agent
to compare different states and helps in decision making.
For instance, when deciding how much better off the agent
would be if it acquired another copy of a good i. This is
equivalent to comparing the utility values u® of the two
holdings (x§,...,z%,...,2%) and (z§,...,Z%,...,2%) where
&) =[] + L.

In general, an agent a compares two states with good
and money holdings of respectively x*,z§ and X%, 2%, by
calculating the marginal utility u®(Z% m®) - u*(x*,zd) =
9(2%) — g(x*) + 4o® — x®. This is the quantity by which the
agent assesses whether an exchange resulting in its good and
money holdings to change from x® to z¢, respectively z§ to
m®, pays off. In particular, for the exchange to pay off, the
change in the marginal utility has to be positive.

Each agent a trades as follows. For each good ¢ in her
current holding (x{,...,z%), the agent simultaneously offers
to buy an instance, and sell an instance if she has at least
two. The price p the agent is willing to sell the instance for
is equal or more than the agent’s marginal utility for ¢ in the
goods component only, i.e. p > g(x*)—g(X*), where Z¢ is the
current good holding x® minus the instance to be sold. On the
other hand, the price p’ the agent is willing to pay to acquire
an instance is equal or less than the agent’s marginal utility
for ¢ in the goods component only, i.e. p < g(Z%) — g(x?),
where X is the current good holding x® plus the instance of
the good to be bought.

With the above trading strategy, the agent will never make
any profit in negotiations where it proposes a price. It can only
make a profit in negotiations where is receives a proposal.

In a companion paper we compare the baseline strategy
with a model-based trading strategy. A model-based agent
uses information it gains from acceptances and declines of her
proposals to create a price model for each good. It then uses
the price model to offer the price it assumes has the highest
likelihood to becoming a successful trade. The comparison of
the results is beyond the scope of this paper.

2) Negotiation: The negotiation protocol agents use in
the competition is inspired by the FIPA ACL [30]. This
means, there is a multi-step dialogue during which agents send
messages of the form P(cy, ..., c,) where P, called a perfor-
mative, conveys the type of the message and cy,...,c, are
the contents (e.g. Request(resource), Propose(offer, price)).
Table I lists the allowed messages and for each message
specifies its valid replies.

An agent A initiates a negotiation by sending a CFP (call-
for-proposal) to their counter-party B. If B processes a CFP, it
replies with either a Propose or a Decline. Decline sent at any
point in the negotiation by anyone terminates the negotiation.

A Propose contains a list of offers, which partially or totally
match the query delivered in the CFP. Once agent A receives

TABLE 1. NEGOTIATION MESSAGES

Message Contents Replies
cfp(q) q : query propose(o, p)
decline()
propose (o, p) o : offer propose(o’,p’)
p : price accept()
accept() match — accept()
decline()

match-accept()

the offers, it will either Accept or Decline. Upon acceptance, A
will respond with an *Accept’ message to B which contains a
cryptographic signature of the terms of trade. The negotiation
is successfully terminated if B as the counter-party follows
with a matching Accept. This involves, first submitting a
signed transaction, containing the cryptographic signature of
A as well as the terms of trade to the ERC1155 smart contract
and second forwarding the transaction digest to agent A in
a Match-Accept message. However, B might also Decline at
this stage, which would be the case if its trading position
has changed between when it made the proposal and when
it receives A’s Accept. Both A and B can use the transaction
digest to verify if and when the transaction has been settled
on the ledger.

The second Accept is used, as without it, B would have
to sign the terms of each proposal it is making, which is
very limiting. This is because at this point there is a high
probability that the negotiation breaks down, because other
simultaneous trades/negotiations impacting this one might be
more beneficial. The reason for this is that any signed terms
of trade and transaction submitted to the ledger must be
considered in the forward looking state of the agent, i.e. the
state the agent finds itself in once all the trades it committed
to have been settled by the controller agent c.

D. Simulation Results

In this section we briefly discuss some simulation results.
We have run a simulation with 10 agents. Half of the agents
are baseline agents, the other half are model-based. We ran
the simulation 103 times, each time with a different seed and
otherwise identical configuration (details can be found in [31],
[32]).

We first compare the initial and final scores of baseline
agents. To avoid the initialisation from affecting the compar-
isons, we look at the difference of final and initial scores
relative to the theoretical equilibrium score (if agents behaved
as in the Walrasian Exchange economy). The null hypothesis
we test for is that mean of the difference between the final
scores less equilibrium scores (i.e. adjusted final score) is
weakly smaller than the mean of the difference between initial
scores less equilibrium scores (i.e. adjusted initial score). The
alternate hypothesis is that the baseline agents have a strictly
larger mean of the adjusted final scores than the mean of the
adjusted initial scores less equilibrium scores. A one-sided t-
test allows us to reject the null hypothesis at a significance
level a = 0.0001. Figure 1 shows the distribution of adjusted

Difference btw initial and equilibrium scores
Difference btw final and equilibrium scores

Fig. 1. The y-axis shows the count of observations in each bin, the x-axis
shows mean the difference (split into bins).

scores for the two groups of agents. The mean adjusted final
score is 8.251 whilst the mean adjusted initial score is —0.51.

The analysis shows that on average, agents significantly
(both statistically and economically) improve their score irre-
spective of their starting point.

We next look at the number of trades completed. The mean
number of seller transactions (transactions where the agent
is in the role of the seller) of the baseline agents is 10.72
whilst the mean number of buyer transactions of the baseline
agents is 10.80. Since the competition ran for a maximum
of 300 seconds in each instance, that implies that every agent
performed slightly more than one transaction every 15 seconds.

E. Discussion

In this section we highlight the main contributions of
the AEA technology in the context of the TAC. We discuss
how AEAs solve the problems, outlined in Section I, that
we currently face when using blockchain and smart contract
technologies.

The first challenge for humans is the difficulty in using
and interacting with these technologies, such as dealing with
private keys and multi-step processes. From TAC, it is easy to
see how automation of low level interactions with blockchains
and smart contracts offered by the AEA framework eliminates
these difficulties. The automation thus results in an increase
in accessibility and a decrease in the complexity of interacting
with DLTs.

Despite having very simple strategies, agents in the compe-
tition manage to perform an average of almost 20 transactions
in the span of 5 minutes (see Section III-D), without making
any of the mistakes a human might make under similar
conditions. Furthermore, the results presented in Section III-D
on the average score gains of agents participating in TAC
is witness to the effectiveness of the transactions that agents
execute in the competition.

The contrast in how humans and AEAs interact with DLT is
magnified in the TAC for two reasons. First, the competition
is larger in scale, both in time and number of transactions,

than most typical human interactions with blockchains. Sec-
ond, despite being trivial in construction, the competition is
complex in participation if we take into account the environ-
ment’s non-cooperative nature, the negotiation process, and the
inter-dependency of transactions. In particular, humans would
struggle to maintain multiple parallel negotiations and use
information conveyed in the proposals they receive to build a
model of aggregate demand and supply for individual goods.

The TAC scenario creates a high risk environment whereby
making any mistakes either in interacting with the ledger or
other higher level issues (e.g. pricing) would result in loss of
assets and thus ranking by the agents. In theory, a mistake in
only a single transaction could potentially result in the loss of
all tokens, having an especially detrimental effect on an agent’s
score if it had a favourable initial position. AEAs navigate this
risk well in the TAC and avoid erratic actions when interacting
with DLTs.

AEAs add a proactive layer on top of a purely reactive
environment offered by smart contracts. In particular, all of
the operations related to search, discovery and advertisements
that agents in a TAC perform cannot be achieve in a purely
smart contract based setup.

Moreover, even though most of the logic that goes into an
AEA’s reactive Handler component, in particular establishment
of the terms of trade, could in practice be implemented in a
smart contract, this:

a) would get complicated rapidly because of all the
layers of abstractions an AEA provides which would
be missing in a pure smart contract solution. In
particular, when the agent becomes more advanced
employing, say machine learning techniques, this
approach would reach its limits.

b) would be against the ethos of blockchains as we
would be dumping a lot of transient information (e.g.
states of whole negotiations) which are unnecessary
to keep in an immutable, integration preserving data
structure;

c) would be too expensive to maintain transient states
on a blockchain.

AEAs coupled with DLTs allow for the optimal allocation
of off-chain and on-chain tasks, thereby utilising the relative
strengths of each system. The efficiency and private execution
in AEAs can be coupled with public execution and trust-
minimising properties of smart contracts. This also has privacy
benefits [33] and naturally integrates well with state channel
concepts [34].

IV. CONCLUSION

In this work, we propose a framework for the development
of AEAs, a novel multi-agent based second layer technology,
that complements common limitations of DLT base layer
solutions. The main foci are on accessibility and complexity
reduction through automation, modularisation of the agent
software components, combining benefits of on-chain and off-
chain environments, and support for proactive capabilities on
top of smart contract functionality.

We have demonstrated the capabilities of the framework in
a multi-agent trading scenario. The benefits include automated

interactions with DLTs in a high-risk and complex environment
that is larger in scale than typical human interactions with
blockchains, reusable libraries to interact with blockchains and
smart contracts, search and discovery functionalities enabled
due to AEAS’ proactiveness, and the ability to move compu-
tation and transient data off-chain.

The framework is under active development. We have
developed AEAs targeting other interesting use cases, such
as, a data marketplace for training machine learning models,
automating supply chain interactions, as well as initial efforts
in constructing AEA-based solutions for the mobility sector.
As future work, we aim to develop more powerful preference
representation and elicitation methods for the Decision Maker
so that we get closer to our prescribed vision: AEAs represent-
ing humans and generating economic value on their behalf.

As for the TAC, we consider it both a suitable application
in which to evaluate the effectiveness of AEAs’ latest features
and demonstrate their full capabilities. But we also see TAC
as a standalone environment whereby the performance of
trading strategies within different market configurations could
be evaluated. There are many ways the competition could
be further developed. Below, are two of the most immediate
proposals we are considering:

e Richer strategies: we can develop strategies based
on a variety of techniques, including more advanced
reinforcement learning (RL) algorithms than the one
currently employed by TAC’s model-based agents and
evolutionary/genetic algorithms.

e Competing strategies: agents can use multiple skills
implementing different strategies simultaneously. Due
to the heterogeneity of the TAC environment, it is
likely that no single type of agent strategy is superior
against all types of opponents.

ACKNOWLEDGEMENT

We thank Fetch.ai for supporting this research work and
the release of the open-source implementation.

REFERENCES

[11 V. Kashyap, C. Bussler, and M. Moran, The Semantic Web: Semantics
for Data and Services on the Web, 1st ed. Springer Publishing
Company, Incorporated, 2008.

[2] R. Wattenhofer, Distributed Ledger Technology: The Science of the
Blockchain, 2nd ed. North Charleston, SC, USA: CreateSpace In-
dependent Publishing Platform, 2017.

[3] G. Huberman, J. Leshno, and C. C. Moallemi. The economics of the
bitcoin payment system. [Online]. Available: https://voxeu.org/article/
economics-bitcoin-payment-system

[4] S.D.Levi, A. B. Lipton, S. Arps, Slate, and M. . F. LLP. An introduction
to smart contracts and their potential and inherent limitations. [Online].
Available: https://corpgov.law.harvard.edu/2018/05/26/an-introduction-
to-smart-contracts-and- their-potential-and-inherent-limitations

[5] M. Wooldridge, An Introduction to MultiAgent Systems, 2nd ed. Wiley,
June 2009.

[6] R. Maull, P. Godsiff, C. Mulligan, A. Brown, and B. Kewell, “Dis-
tributed ledger technology: Applications and implications,” Strategic
Change, vol. 26, no. 5, pp. 481489, 2017.

[7] V. Lesser, Ed., First international Conference on Multiagent Systems.
The AAAI Press, 1995.

[8] K. Kravari and N. Bassiliades, “A survey of agent platforms,” Journal
of Artificial Societies and Social Simulation, vol. 18, 01 2015.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi, Jade — A
Java Agent Development Framework. Boston, MA: Springer US, 01
2005, pp. 125-147. [Online]. Available: https://doi.org/10.1007/0-387-
26350-0_5

F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent
Systems with JADE (Wiley Series in Agent Technology). Hoboken, NJ,
USA: John Wiley & Sons, Inc., 2007.

M. Gregori, J. Palanca, and G. Aranda, “A jabber-based multi-agent
system platform,” in Proceedings of the International Conference on
Autonomous Agents, vol. 2006, 01 2006, pp. 1282-1284.

O. Boissier, R. H. Bordini, J. F. Hiibner, A. Ricci, and A. Santi,
“Multi-agent oriented programming with jacamo,” Science of Computer
Programming, vol. 78, no. 6, pp. 747 — 761, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016764231100181X

R. Bordini, J. Hiibner, and M. Wooldridge, Programming Multi-Agent
Systems in AgentSpeak Using Jason. Hoboken, NJ, USA: John Wiley
& Sons, Inc., 10 2007, vol. 8.

A. Grignard, P. Taillandier, B. Gaudou, D. A. Vo, N. Q. Huynh, and
A. Drogoul, “Gama 1.6: Advancing the art of complex agent-based
modeling and simulation,” in PRIMA 2013: Principles and Practice
of Multi-Agent Systems, G. Boella, E. Elkind, B. T. R. Savarimuthu,
F. Dignum, and M. K. Purvis, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 117-131.

M. Favorito, D. Minarsch, A. Hosseini, A. Triantafyllidis, D. Campbell,
O. Panasevych, K. Chen, Y. Turchenkov, and L. Rahmani, “Autonomous
economic agent (aea) framework,” 2019. [Online]. Available: https:
//github.com/fetchai/agents-aea/

F. Limited, “Autonomous economic agent (aea) framework,” 2019.
[Online]. Available: https://pypi.org/project/aea/

S. Poslad, “Specitying protocols for multi-agent systems interaction,”
ACM Trans. Auton. Adapt. Syst., vol. 2, no. 4, p. 15-es, Nov. 2007.
[Online]. Available: https://doi.org/10.1145/1293731.1293735

M. P. Wellman, A. Greenwald, and P. Stone, Autonomous Bidding
Agents, Strategies and Lessons from the Trading Agent Competition,
ser. Intelligent Robotics and Autonomous Agents series. The MIT
Press, 2007.

J. von Neumann and O. Morgenstern, Theory of Games and Economic
Behavior, ser. Princeton Classic Editions. Princeton University Press,
1944.

K. Atkinson and T. Bench-Capon, “States, goals and values: Revisiting
practical reasoning,” Argument & Computation, vol. 7, no. 2 - 3, pp.
135 — 154, November 2016.

G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1-32, 2014.

G. Kendall and Y. Su, “The co-evolution of trading strategies in a multi-
agent based simulated stock market through the integration of individual
learning and social learning,” Proceedings of IEEE, pp. 2298-2305,
2003.

A. Marshall, Principles of economics: unabridged eighth edition.
Cosimo, Inc., 2009.

M. Brown, The New Palgrave Dictionary of Economics. Palgrave
Macmillan UK, 2017. [Online]. Available: https://link.springer.com/
referenceworkentry/10.1057/978-1-349-95121-5_480-2

C. Clack, V. Bakshi, and L. Braine, “Smart contract templates: foun-
dations, design landscape and research directions,” arxiv:1608.00771.
2016, 08 2016.

G. Hileman and M. Rauchs, “Global cryptocurrency benchmarking
study,” Cambridge Centre for Alternative Finance, vol. 33, 2017.

R. van der Meyden, “On the specification and verification of atomic
swap smart contracts,” 2018.

M. Herlihy, “Atomic cross-chain swaps,” in Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing, ser. PODC
’18. New York, NY, USA: Association for Computing Machinery,
2018, p. 245-254. [Online]. Available: https://doi.org/10.1145/3212734.
3212736

W. Radomski, A. Cooke, J. Castonguay, Philippe andTherien,
E. Binet, and R. Sandford, “Eip 1155: Erc-1155 multi token
standard,” Ethereum, Standard, June 2018. [Online]. Available:
https://eips.ethereum.org/EIPS/eip- 1155

[30]

[31]
[32]

[33]

[34]

I. F. S. Committee, “Communicative act library specification,” Founda-
tion for Intelligent Physical Agents, Tech. Rep., August 2001.

Fetch.ai, “Agents tac,” https://github.com/fetchai/agents-tac, 2019.

D. Minarsch, M. Favorito, A. Hosseini, and J. Ward, “Trading agent
competition with autonomous economic agents,” in Proceedings of the
19th International Conference on Autonomous Agents and MultiAgent
Systems, ser. AAMAS °20. Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems, 2020, p. 2107-2110.

G. Avarikioti, E. Kokoris-Kogias, and R. Wattenhofer, “Brick: Asyn-
chronous state channels,” 2019.

P. McCorry, C. Buckland, S. Bakshi, K. Wiist, and A. Miller, “You
sank my battleship! a case study to evaluate state channels as a scaling
solution for cryptocurrencies,” in Financial Cryptography and Data
Security, A. Bracciali, J. Clark, F. Pintore, P. B. Rgnne, and M. Sala,
Eds. Cham: Springer International Publishing, 2020, pp. 35-49.

