

THE EXPERT’S VOICE® IN WEB DEVELOPMENT

Beginning

Google Maps
API 3

Gabriel Svennerberg

Learn how to build lightning fast mapping
applications with the latest, totally remade,
version of the Google Maps API

   

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Beginning Google Maps
API 3

■ ■ ■

Gabriel Svennerberg

www.allitebooks.com

http://www.allitebooks.org

Beginning Google Maps API 3

Copyright © 2010 by Gabriel Svennerberg

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2802-8

ISBN-13 (electronic): 978-1-4302-2803-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images
only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Matt Wade
Technical Reviewer: Rob Drimmie
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke,

 Dominic Shakeshaft, Matt Wade, Tom Welsh
Coordinating Editors: Mary Tobin and Jennifer L. Blackwell
Copy Editor: Kim Wimpsett
Compositor: Mary Sudul
Indexer: John Collin
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

www.allitebooks.com

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com
http://www.allitebooks.org

To my son, Ludvig, who was born during the writing of this book.

www.allitebooks.com

http://www.allitebooks.org

iv

Contents at a Glance

Contents..v
About the Author ...xiii
About the Technical Reviewer ... xiv

Acknowledgments .. xv

Introduction ... xvi

■ Chapter 1: Introducing the Google Maps API ...1
■ Chapter 2: Transferring from Version 2 to 3 ..7

■ Chapter 3: Creating Your First Map ...23

■ Chapter 4: Taking the Map Further with MapOptions..45
■ Chapter 5: X Marks the Spot ..73
■ Chapter 6: Marker Icons ..101
■ Chapter 7: InfoWindow Tips and Tricks ...131
■ Chapter 8: Creating Polylines and Polygons ..157
■ Chapter 9: Dealing with Massive Numbers of Markers177
■ Chapter 10: Location, Location, Location...211
■ Appendix: API Reference..243

Index...281

www.allitebooks.com

http://www.allitebooks.org

v

Contents

Contents at a Glance.. iv
About the Author ...xiii
About the Technical Reviewer ... xiv
Acknowledgments .. xv
Introduction ... xvi

■ Chapter 1: Introducing the Google Maps API ...1
A Brief History..2
How It Works ...3
A New API ..3

Slimmed-Down Feature Set ...3

Focus on Performance..3

Mapping Fundamentals ...4
Coordinates ..4

Summary ...6

■ Chapter 2: Transferring from Version 2 to 3 ..7

What’s Different?...7
A New Namespace ...7

Extensive Use of Object Literals ...8

Asynchronous by Nature ..8

Converting from Version 2 to 3 ..9
Adding a Reference to the API..9

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

vi

Creating a Map ...10

Markers ..12

InfoWindows...14

Polylines ...16

Polygons ...17

Events...19

Summary ...21

■ Chapter 3: Creating Your First Map ...23

Setting the Scene ..23
The HTML Page...23

What Flavor of HTML to Use ...24

Validate Your Code ...24

Other Tools ...27

Laying the Foundation ..27

Time to Start Coding ..32
Debugging Tool: Firebug ..36

Setting Up the Map...37

Making the Code Run on Page Load...40

Creating Maps for Mobile Devices...43
Summary ...43

■ Chapter 4: Taking the Map Further with MapOptions..45
A Fresh Start..45
Controlling the User Interface..46

disableDefaultUI ...46

mapTypeControl ...47

mapTypeControlOption ...48

navigationControl ...53

navigationControlOptions ...54

scaleControl..57

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

vii

scaleControlOptions..58

keyboardShortcuts ...58

disableDoubleClickZoom ..58

draggable ...59

scrollwheel ...59

streetViewControl ...59

streetView...61

Controlling the Map Container ...61
noClear ...61

backgroundColor ..61

Controlling the Cursor..62
draggableCursor ...62

draggingCursor...63

Controlling the Map Settings with Methods ..63
setOptions...64

The Specific Methods ...64

Putting the Methods to Use ..65

Dynamically Changing the MapOptions Object...68

The Complete Code ..71

Summary ...72

■ Chapter 5: X Marks the Spot ..73
Setting a Starting Point..73
A Simple Marker ..74

Adding a Tooltip..75

Changing the Icon...76

The Complete Code So Far ...78

Adding an InfoWindow..79

The Complete Code ..82

More Markers ...83

Adding U.S. Cities to the Map ...85

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

viii

Automatically Adjusting the Viewport to Fit All Markers ...95
Introducing the LatLngBounds Object ..96

Let the API Do the Heavy Lifting ...97

The Complete Code..98
Summary ...100

■ Chapter 6: Marker Icons ..101
Setting a Starting Point..101
Changing the Marker Icon ...102

Introducing the MarkerImage Object..102

MarkerImage’s Five Properties...102

Adding a Custom Icon to a Marker ...103

Putting It Together ..103

Enabling and Disabling the Shadow ...106

Defining a Clickable Area ...107

The Complete Code ..109

Using Sprites ...109
Latency ...111

Sprite Support ..111

The Complete Code ..114

Where to Find Icons ...115
google-maps-icons...115

Google Maps: Colored Markers ..116

Mapito Map Marker Icons...116

Changing the Marker Icon According to Mouse Events ...117
Defining the MarkerImages ..118

Adding the Events...118

The Complete Code ..120

A Clever Way of Dealing with Lots of Different Marker Icons122
Adding Dynamic Data ...124

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

ix

Faking an Ajax Call ...124

The Complete Code ..126

Benefits ..128

Creating a Custom Marker Icon ...128
Online Tools ..128

Summary ...129

■ Chapter 7: InfoWindow Tips and Tricks ...131
Setting a Starting Point..131

Style Sheet ...132

JavaScript...133

Adding Rich Content to the InfoWindow ..133
Providing the HTML As a String ..134

The Complete Code ..137

Inserting a Video Using HTML5..139
Browser Support...139

Altering the HTML...140

Examining the <video> Element ..140

The Example ...141

The Complete Code for Adding a Video to an InfoWindow ...145

Creating a Detail Map ..146
Creating the InfoWindow ..148

The Complete Code ..149

Creating a Zoom-In Link ..150
Adding the Event Handler ...151

Opening the InfoWindow ..153

The Complete Code ..154

Further Refinements...155

Summary ...155

■ CONTENTS

x

■ Chapter 8: Creating Polylines and Polygons ..157
Creating Polylines . --157

Creating a Simple Polyline.---158

Polyline Arrays.---163

Plotting Your Own Path.--163

Creating Polygons. --166
Creating a Simple Polygon .--166

Creating Donuts .---170

Creating a Polygon with a Highlight Effect . ---173

The Bermuda Triangle .---173

Summary . ---176

■ Chapter 9: Dealing with Massive Numbers of Markers177
Too Many Markers? . ---177
Reducing the Number of Markers Being Displayed. ---179

Searching . --179

Filtering . ---180

Don’t Always Use Markers.---181

Clustering . --181

Some Practical Examples . --182
The Starting Point .--183

Calculating the Current Map Boundaries. --183

Adding the Markers .---185

The Final Code . ---187

Third-Party Libraries. --188
MarkerClusterer.---188

MarkerManager .---195

Summary . ---210

■ CONTENTS

xi

■ Chapter 10: Location, Location, Location...211
Geocoding..211

Restrictions...211

The Geocoder Object ..212

Building an Address Lookup Web Page ..212

Reverse Geocoding ..223
Building a Reverse Geocoding Map..223

The Complete Code for This Example...227

Finding the Location of the User..229
IP-Based Geocoding ...229

Creating a Location-Aware Map ...230

The Complete JavaScript Code for This Example ...234

Getting Better Accuracy..235

Summary ...242
■ Appendix: API Reference..243

How to Read the Reference ...243
Data Types..243

The Namespace ...244
The Reference..244

Map Class ...244

MapOptions Object ...248

MapTypeId Class ..249

MapTypeControlOptions Object ..250

MapTypeControlStyle Class ..250

NavigationControlOptions Object..251

NavigationControlStyle Class..251

ScaleControlOptions Object ..252

ScaleControlStyle Class..252

ControlPosition Class..252

MapPanes Object..254

■ CONTENTS

xii

MapCanvasProjection Object..254

Marker Class...255

MarkerOptions Object...258

MarkerImage Class...259

MarkerShape Object ...260

Polyline Class ...261

PolylineOptions Object..262

Polygon Class ...263

PolygonOptions Object..265

InfoWindow Class ...266

InfoWindowOptions Object ...267

Geocoder Class...268

GeocoderRequest Object ..269

GeocoderStatus Class...269

GeocoderResult Object ...270

GeocoderAddressComponent Object ..271

GeocoderGeometry Object..271

GeocoderLocationType Class..272

MapsEventListener Object..272

event Namespace...272

MouseEvent Object...273

LatLng Class ...274

LatLngBounds Class ...275

Point Class..276

Size Class ...277

MVCObject Class...278

MVCArray Class ..279

Index...281

xiii

About the Author

■ Gabriel Svennerberg is a usability-oriented web developer from Sweden.
He’s been working in the web industry for more than a decade and is known
in the web developer community for evangelizing usability and web
standards. He’s also known for spreading knowledge about the Google Maps
API through his website, In usability we trust, which features articles about
Google Maps, usability, and other things related to web development. It’s
found at www.svennerberg.com.

In his current job at Saab Security Solutions (www.saabgroup.com), Gabriel
is busy designing and building web applications for situation awareness and
crisis management. These applications always incorporate maps in some
way, and the Google Maps API is one of the mapping solutions being used.

Gabriel lives in Växjö, Sweden, with his fiancée, Petronella, and their son
Ludvig.

Photographer:
Kristin Horn Sellström

http://www.svennerberg.com
http://www.saabgroup.com

xiv

About the Technical Reviewer

■ Rob Drimmie is a software developer with a bias toward web-based
applications. The best things about him are his wife and children. He likes pho
and hamburgers but has never eaten both at the same sitting.

xv

Acknowledgments

First of all, I would like to thank my beloved fiancée, Petronella Frisk, for putting up with me spending
evenings and weekends writing this book. Thank you for your patience and support! I couldn’t have
done it without you!

Many thanks to Tom Skinner for helping me with the initial reviews of the chapters and with
testing the examples. Your help has been immensly valuable to me. If not for you, the book would have
been a lot poorer. I would also like to thank you for your words of encouragement at the times when I
needed it the most. Also thanks to Charlie Irish, who helped proofread Chapter 5, before I used it as a
beta chapter.

My former college Chris Jangelöv has been a source of inspiration over the years. I probably owe it
to him that I entered into the world of web standards, usability, and blogging in the first place. Thank
you, Chris, for always having new ideas and being encouraging.

I would also like to extend a thanks to my employer, Saab Security Solutions in Växjö, for letting me
take some time off to work on the book. This was very much needed since a day has only 24 hours—
something that I’ve been acutely aware of since becoming a parent.

The people at Apress also deserve thanks for guiding me through the process of writing this, my
first book.

Last but not least, I would like to thank the readers of my blog, In usability we trust, whose feedback,
words of encouragement, and questions have been invaluble for writing this book. They motivated me
to undertake this endeavor and encouraged me during times of despair. They also gave me plenty of
ideas of what to write about and what problems to address. Thanks a lot!

xvi

Introduction

This book started out as an idea in spring 2009. I had written quite a few articles and tutorials about the
Google Maps API v2 and thought that I could reuse them to write a book. That shouldn’t take too long, I
thought. Shortly after, during Google I/O 2009, Google announced that it was releasing version 3 of the
API. This release was a total remake of the old one, and I soon realized that I now had to write a book
about this version instead. This rendered my intital plan to reuse my old articles completely useless. I
also had to learn the new API; it was, after all, a complete remake. In retrospect, I’m glad that I did. The
new API has a much cleanear programming interface and is more well structured than the old one. It
just feels better to program with. And now that the book is being published, version 2 is deprecated,
and version 3 is the recommended alternative for new map applications.

Writing this book became a bigger undertaking than I first anticipated, but it has also been a lot
more fun and interesting journey than I expected (even if I’ve despaired at times). Writing this, my
first book, has been a learning experience. When I started the project, I had no clue how to go about it. I
didn’t now how to get it published or how to structure it. But it all somehow unfolded as the work
progressed, and here I am now, with a finished book.

My journey with Google Maps started in 2007, when I created my very first map. It was a map
showing the location of a restaurant. It not only let you see the location of the restaurant but also
allowed you to enter an address in a text field to get driving directions. Very cool stuff. Since then, I’ve
created a lot of maps using the API, not the least as part of my job as a web developer and interaction
designer at Saab Security Solutions.

My hope for this book is that you as a reader will be able to quickly grasp the concepts of the
Google Maps API so that you can create your own map solutions. In fact, after reading this book, I hope
that you’re not only able to create your own maps but that you’re also able to deal with many of the
common pitfalls most developers encounter when building Google Maps solutions.

Who This Book Is For
This book is primarily for web designers/developers who want to learn how to use the Google Maps
API on their own web sites. But even if you’re not in the field, you should be able to learn the concepts
since they’re thoroughly described. It certainly helps if you have a basic understanding of how to
create a web page and how the Web works, but other than that, you should be able to learn how to use
the API from just this book.

This book is also for those of you who have been using version 2 of the API. I’ve dedicated a whole
chapter for you, Chapter 2, where I explain the differences between the two versions so that you can
easily transfer your old maps to the new API.

Downloading the Code
You can download all the code for the examples from the book’s web site at
http://www.svennerberg.com/bgma3. It’s also available on the Apress website at
http://apress.com/book/view/1430228024

http://www.svennerberg.com/bgma3
http://apress.com/book/view/1430228024

C H A P T E R 1

■ ■ ■

1

Introducing the Google Maps API

On today’s Web, mapping solutions are a natural ingredient. We use them to see the location of things,
to search for the position of an address, to get driving directions, and to do numerous other things. Most
information has a location, and if something has a location, it can be displayed on a map.

There are several mapping solutions including Yahoo! Maps and Bing Maps, but the most popular
one is Google Maps. In fact, according to Programmableweb.com, it’s the most popular API on the
Internet. According to the site’s May 2010 statistics, 43 percent of all mashups use the Google Maps API
(www.programmableweb.com/apis). In comparison, the second most popular API was Flickr with 11
percent, and the second most popular mapping API was VirtualEarth (Bing Maps) with 3 percent.

Applications and web sites that are combining data or functionality from two or more sources are
commonly referred to as mashups. Mashups are becoming increasingly popular and have revolutionized
the way information is being used and visualized.

Mapping solutions are one important ingredient in a lot of these mashups. The Google Maps API
lets you harness the power of Google Maps to use in your own applications to display your own (or
others’) data in an efficient and usable manner.

An example of a mashup using the Google Maps API is the coverage of the Deepwater Horizon oil
spill in the Gulf of Mexico. It combines data of the extent of the oil spill with Google Maps to visualize its
massive impact (Figure 1-1); see http://mw1.google.com/mw-earth-vectordb/disaster/gulf_oil_spill/
gulf_oil_map.html.

http://www.programmableweb.com/apis
http://mw1.google.com/mw-earth-vectordb/disaster/gulf_oil_spill

CHAPTER 1 ■ INTRODUCING THE GOOGLE MAPS API

2

Figure 1-1. The impact of the Deepwater Horizon oil spill visualized in Google Maps

This book is about the Google Maps JavaScript API. Other APIs are available, such as the Maps API
for Flash and the Static Maps API. These are both great additions but are not covered in this book.

A Brief History
Google Maps was introduced in a blog post on Google in February 2005. It revolutionized the way maps
on web pages work by letting the user drag the map to navigate it. This was new at the time. The map
solutions used then were expensive and required special map servers, yet they didn’t deliver the same
level of interactivity.

Google Maps was originally developed by two Danish brothers, Lars and Jens Rasmussen. They
cofounded Where 2 Technologies, a company dedicated to creating mapping solutions. The company
was acquired by Google in October 2004, and the two brothers then created Google Maps. (They are also
the men behind Google Wave.)

Before there was a public API, some developers figured out how to hack Google Maps to incorporate
maps on their own web sites. This led Google to the conclusion that there was a need for a public API,
and in June 2005 it was publically released. The first mashup on the Internet is often considered to be

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCING THE GOOGLE MAPS API

3

Housingmaps.com, a combination of Google Maps with realty listings from Craiglist.org plotted on it. It
was in fact created before the public API was released and was hacked together by developer Paul
Rademacher. At the time, this was pretty revolutionary and started a new era of mashing information
from different sources.

During the Google I/O conference in May 2009, version 3 of the API, which this book is about, was
announced. And in May 2010 (incidentally also during the Google I/O conference and during the making
of this book), it was announced as graduated from beta. It’s now the recommended choice for new
Google Maps applications and the next step in the history of Google Maps.

How It Works
When seeing the dynamic nature of Google Maps, you might think there is something magical going on
under the hood. But there’s really nothing magical about it. It’s just HTML, CSS, and JavaScript working
together. The map tiles are images that are loaded in the background with Ajax calls and then inserted
into a <div> in the HTML page. As you navigate the map, the API sends information about the new
coordinates and zoom levels of the map in Ajax calls that return new images. And that’s it! No magic
involved whatsoever.

The API itself basically consists of JavaScript files that contain classes with methods and properties
that you can use to tell the map how to behave. Exactly what those classes are and how to use them is the
subject of this book.

A New API
The new API is a complete remake. It not only features a brand new is also completely rewritten under
the hood. Why did the Google Maps team take such a drastic measure?

Slimmed-Down Feature Set
Back when the Google Maps API was first API but built, other JavaScript libraries such as Prototype,
MooTools, and jQuery weren’t available. That’s the reason the Maps API contains methods for making
Ajax calls and other things that we now rely on other third-party libraries to do for us.

Nowadays, we also rely on debugging tools such as the Firefox extension Firebug and the built-in
tools in IE8 and Chrome/Safari for debugging our code. These haven’t been available that long either, so
the old Maps API contains classes for writing debug information in a console window.

Apart from that, the old API was originally created for serving Google’s own mapping solution found
at www.google.com/maps. This service contains a lot of features that most mappers don’t need, making the
API even more bloated.

Since 2005, an explosion in mobile use of web content has occurred. The old API wasn’t intended to
be used on these devices and is therefore slower than necessary. Attempts to make the old API faster on
these devices have been made, but because of its architecture, developers have been limited in what
they’ve been able to accomplish. For this reason, Google decided to build the new API from scratch.

Focus on Performance
The second item on Google’s UX guidelines states that “Every millisecond counts”
(www.google.com/corporate/ux.html). This is something the API team has embraced, and therefore a
main focus for the new API was to increase performance on both mobile and desktop platforms.

http://www.google.com/maps
http://www.google.com/corporate/ux.html

CHAPTER 1 ■ INTRODUCING THE GOOGLE MAPS API

4

The main legacy pitfall was the architecture of the old API. It was built using a synchronous model.
Because of this, the browser had to download and run a lot of scripts sequentially before it could actually
display the map. A major goal with the new API was to modularize it so that the necessary code is loaded
first, displaying the map, and everything else is loaded later.

The result of the efforts of the API team is an API that is significantly faster on mobile platforms such
as iPhone and Android and also a lot faster on desktop platforms.

■ Tip If you want to know more about how the new API was built and what led to those decisions, I recommend
you watch the first part of the talk, Performance Tips for Geo API Mashups, from the 2009 Google I/O developer
conference where Marcelo Camelo explains it all. See http://code.google.com/intl/sv-SE/events/io/2009/

sessions/PerformanceTipsGeoApiMashups.html.

Mapping Fundamentals
In the next chapter, you’ll get your hands dirty and start creating your very first map. But before you do
that, a basic understanding of how mapping works will make it easier to learn the API. Actually, you
don’t need to worry that much about how maps work since the Google Maps API takes care of most of it
for you. You do, however, need to understand how coordinates work.

Coordinates
Coordinates are used to express locations in the world. There are several different coordinate systems.
The one being used in Google Maps is the Word Geodetic System 84 (WGS 84), which is the same system
the Global Positioning System (GPS) uses. The coordinates are expressed using latitude and longitude.
You can think of these as the y and x values in a grid.

■ Note A source of confusion is the order the values are presented. Although the values in a grid are normally
presented with the x value first and the y value second, latitude and longitude do the opposite. They are presented

with the latitude value (the equivalent of y) first and the longitude value (the equivalent of x) second.

Latitude measures from south to north, and longitude measures from west to east. At the equator,
the latitude is 0. This means that everything below the equator (the south hemisphere) has a negative
number, and everything above it (the north hemisphere) has a positive number. Similarly, there’s a zero
line for the longitude too. It’s called the prime meridian, and for historical reasons it runs through
Greenwich, England. Every position that is located east of this line has a positive number, and everything
west has a negative number (Figure 1-2).

http://code.google.com/intl/sv-SE/events/io/2009

CHAPTER 1 ■ INTRODUCING THE GOOGLE MAPS API

5

Figure 1-2. The center of the world at latitude 0 and longitude 0 lays somewhere outside the west coast
of Africa

The coordinates are expressed using decimal numbers separated with a comma. The latitude always
precedes the longitude value (latitude, longitude). The position for New York City, for example, is 40.714,
-74.005. The positive value for the latitude is because it resides north of the equator, and the negative
value for longitude is because it’s positioned west of the prime meridian.

■ Note On physical maps, coordinates are expressed in degrees, so the position for New York City would be 40°
42' 50" N, 74° 00' 17" W. This isn’t something you need to worry about since the Google Maps API uses the

decimal degree form only.

In Figure 1-3, several major cities in the world are marked. Check out their coordinates, and think
about why they are positive or negative.

CHAPTER 1 ■ INTRODUCING THE GOOGLE MAPS API

6

Figure 1-3. The coordinates for some major cities in the world. Notice when the values are negative and
when they are positive.

Summary
This chapter gave you a little bit of information about what the Google Maps API is and how it can be
used. It also gave you a primer on how coordinates work. This knowledge will come in handy in the next
chapter, where you will start to create your very first map.

C H A P T E R 2

■ ■ ■

7

Transferring from Version 2 to 3

Version 3 of the Google Maps API is a complete remake. This means that in order to transfer your
existing code from v2 to v3, you will need to rewrite most of it. This chapter is meant primarily for
readers who are already familiar with v2. It will show the main differences between the old and new
APIs and how to perform common tasks. It’s not a complete reference, but it will provide you with
pointers to other parts of the book where you can learn more about how to use specific features. This
chapter assumes that you have a pretty good understanding of JavaScript in general and of v2 of the
API in particular.

If you haven’t used the Google Maps API at all before and plan to only use v3, I recommend that you
skip this chapter and go straight to Chapter 3, where I will introduce v3 from scratch.

What’s Different?
The new API is a lot different from the old one. In this section, I will outline the most notable differences.

A New Namespace
In v2 of the API, all objects reside in the global namespace and are identified by a naming convention
that says that all Google-related objects will start with a capital G.

In v3, a much better approach is used. Instead of cluttering the global namespace with lots and lots
of global variables and objects, they now all reside in the namespace google.map. There are lots of
reasons why this is a better approach, but the most important one is that it mitigates the potential
problem with collisions with other JavaScript code.

What does this mean? Simply put, it means that you will, for example, refer to the Marker object with
google.maps.Marker in v3, whereas you referred to it as GMarker in v2.

GLOBAL VARIABLES ARE EVIL

Douglas Crockford, JavaScript guru and author of JavaScript: The Good Parts, claims that global variables
are evil. In the blog post “Global Domination” at the YAHOO! User Interface Blog, he writes the following:

“Global variables are a source of unreliability and insecurity.... Reducing our dependency on
globals increases the likelihood that collisions are avoided and that the program components
work harmoniously.”

Read more on his thoughts on this at www.yuiblog.com/blog/2006/06/01/global-domination/.

http://www.yuiblog.com/blog/2006/06/01/global-domination

CHAPTER 2 ■ TRANSFERRING FROM VERSION 2 TO 3

8

Extensive Use of Object Literals
Another difference is that in v3 object literals are almost exclusively used to pass parameters. I think that
this is brilliant since it makes the API consistent and makes it really easy to extend. Version 2 also used
objects and object literals to pass parameters but to a lesser extent and less consistently.

For example, when creating a new marker, all parameters are passed as an object literal, including
the position:

var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.756, -73.986),
 map: map,
 title: 'A marker'
});

This makes the API both more consistent and more easily extendable. Imagine, for example, that in
the future a need arises for a parameter that adds a marker at several locations on the same map.
Extending the API with this would then be as simple as adding a positions property to the options object
that would take an array of google.maps.LatLng objects as its value. This addition would feel natural and
wouldn’t break any other functionality.

■ Warning When creating an object literal, be sure not to have a comma after the last property since it will make

Internet Explorer choke.

Asynchronous by Nature
The v2 API relied heavily on synchronous method calls. This made it hard to modularize the API and was
probably the biggest reason for the total remake. The new API is asynchronous by nature, which allows it
to be modularized.

What’s the point of modularizing the API? The answer is simply performance. The old API had to
load big parts of the API before displaying a simple map, even parts of the API that weren’t used.
The new API being modularized only needs to load the necessary parts before initializing the map.
Therefore, the perceived performance is much better; in other words, the map shows up on the web
page much faster.

Synchronous vs. Asynchronous
When using the synchronous method, everything happens in a sequence. If you call methodA, it must
finish running before methodB is invoked. If the methods instead are asynchronous, you can call methodA
and methodB, and they can run parallel to each other.

Consider this example where you invoke two methods after one another:

methodA();
methodB();

methodA takes longer than methodB to run. Figure 2-1 shows how they would execute using
synchronous vs. asynchronous method calls.

CHAPTER 2 ■ TRANSFERRING FROM VERSION 2 TO 3

9

Figure 2-1. The difference between synchronous and asynchronous method calls

In the asynchronous method call, methodB doesn’t have to wait for methodA to finish. This is great
because you get better performance, but it also means that you can’t rely on a method call to be finished
when you invoke another method later in the code. This behavior has consequences in how you use v3.
In some cases, you need to check whether an object is properly initialized before you can interact with it,
whereas in v2 you didn’t have to do this because it all happened sequentially.

One example of this is when you need to access the bounds of the map. You can’t just call the
getBounds() method of the Map object after you’ve initialized the map, because at that point the map
isn’t ready and it doesn’t have any bounds. Instead, you have to listen to the bounds_changed event
before trying to grab it. The bounds_changed event fires whenever the bounds of the map have changed.
One of those occurrences is when the map has loaded. It also occurs whenever you pan or zoom
the map.

google.maps.event.addListener(map, 'bounds_changed', function() {
 var bounds = map.getBounds();
});

Converting from Version 2 to 3
In this section, you will learn how to perform basic tasks such as creating a map and adding markers and
also compare how these tasks are done in v2 vs. v3.

Adding a Reference to the API
The most significant change here is that you no longer need an API key. This is really convenient since
you don’t have to create a new API key for every domain that you want to use Google Maps on.

Synchronous method calls

methodB is executed

Asynchronous method calls

Time for code to run

methodA is executed

methodA is executed methodB is executed

CHAPTER 2 ■ TRANSFERRING FROM VERSION 2 TO 3

10

Although you can add parameters in the query string at the end of URL, the only required parameter
is sensor. This parameter indicates whether the application uses a sensor such as GPS to determine the
user’s location and can be set to either true or false. If the application determines the user’s location
using some kind of sensor, this parameter needs to be set to true. It’s important to understand that
setting it to true doesn’t actually do anything with the map; it’s purely for statistical use since Google
needs to report the usage of sensors to its data providers.

<script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=false"></script>

You can also determine which version of the API to load by adding the v parameter to the query
string. This works the same way as in v2. If you want the latest version, you just add v=3, and if you want
a specific version, you add, for example, v=3.12. For development, it can be nice to always have the latest
release, but for live applications, I recommend you use a specific version number to avoid unpleasant
surprises with functionality breaking.

Creating a Map
To create a map in v2, you first need to create a new GMap2 and pass to it a reference to the <div> in the
HTML document where you want the map to appear. You then need to call the Map object’s setCenter()
method before the map can appear on the page. To get the default user controls, like the zoom/pan
control and the map type chooser, you also need to call the setUIToDefault() method.

Version 3 works a bit differently, and it’s no longer called GMap2 but google.maps.Map. Its immediate
appearance is very similar to v2. It takes a reference to a <div> as its first argument and a MapOptions
object as its second argument. The main difference is what you define inside MapOptions (Figure 2-2).

MapOptions has three required properties: zoom, center, and mapTypeId. The zoom property
determines the initial zoom level, center determines the initial position, and mapTypeId determines the
initial map type. After defining these three properties, the map is fully initialized and instantly visible on
the web page.

Another difference is that the default UI is enabled by default, so there’s no need to explicitly add it.
If, on the other hand, you don’t want it to appear, you can disable it by setting the property
disableDefaultUI to true in MapOptions.

When it comes to the map type, in v2 the map defaulted to road maps. In v3 you must explicitly tell
the map which map type to use in order for it to initialize.

Version 2

//Creating a new map
var map = new GMap2(document.getElementById('map'));

// Setting the center of the map which will display it on the web page
map.setCenter(new GLatLng(54, 12));

// Adding navigation and map type controls to the map
map.addControl(new GLargeMapControl());
map.addControl(new GMapTypeControl());

Version 3

// Create a new map that is immediately displayed on the web page
var map = new google.maps.Map(document.getElementById('map'), {

http://maps.google.com/maps/api/js?sensor=false

CHAPTER 2 ■ TRANSFERRING FROM VERSION 2 TO 3

11

 zoom: 6,
 center: new google.maps.LatLng(54, 12);
 mapTypeId: google.maps.MapTypeId.ROADMAP,
});

You might have noticed that creating a LatLng is a bit different too. It’s actually created the same

way as in v2 but now uses the google.maps.LatLng object instead of GLatLng.

Figure 2-2. v2 vs. v3. The biggest difference in appearance is the look of the navigation bar, but it also
groups the map type options a bit differently.

In v2 you typically checked to see whether the browser was compatible using the
GBrowserIsCompatible() method before initializing the map. What it does is to see whether the browser
is in the list of supported browsers and then returns true. If it can’t recognize the browser, it checks to
see whether it supports the native DOM method document.getElementId(). If it does, it returns true.
Otherwise, it returns false.

There’s no equivalent to this method in v2, so you have to check this in some other way, possibly by
checking whether the browser supports getElementById().

// Check if the browser support document.getElementById
If (document.getElementById) {
 // Init the API
}

■ Tip An excellent JavaScript library for testing browser capabilities is EnhanceJS, which is an open source library
provided by the filament group. With this library, not only can you check which JavaScript function the browser
supports, but you can also check how well it handles CSS. You can learn about it and download it at

http://code.google.com/p/enhancejs/.

http://code.google.com/p/enhancejs

CHAPTER 2 ■ TRANSFERRING FROM VERSION 2 TO 3

12

Another method that has been dropped in v3 is the GUnload() method. It‘s run when the user leaves
the page, typically when window.onunload triggers. It’s used to free up browser resources caused by
memory leaks, particularly in Internet Explorer 6 and older. This method has no equivalent in v3,
probably because Internet Explorer 6 is not a supported browser in v3.

Further Reading
To learn more about how to create a map, check out Chapter 3. To learn more about the MapOptions
object and how all of its properties work, read Chapter 4. That chapter will explain all the
options available.

Markers
How markers work in v3 is a bit different from v2. First, the Marker object is called Marker instead of
GMarker and resides in the google.maps namespace. Second, instead of several parameters, it takes only
one, which is a MarkerOptions object.

Another difference is that in v2 you first had to create a marker and then add it to the map using the
addOverlay() method of the Map object. In v3 you can instantly add the marker to the map by passing a
reference to the Map object in the MarkerOptions object.

Version 2

// Create a marker
var marker = new GMarker(new GLatLng(54, 12));

// and add it to a map
map.addOverlay(marker);

Version 3

// Create a marker and instantly add it to a map
var marker = new google.maps.Marker({
 position: new google.maps.LatLng(54, 12),
 map: map
});

Of course, you don’t have to instantly add the marker to the map. By omitting the map property, you

just create the marker and can then add it to the map later by using its setMap() method.

// Create the marker
var marker = new google.maps.Marker({
 position: new google.maps.LatLng(54, 12)
});

// And add it to a map
marker.setMap(map);

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ TRANSFERRING FROM VERSION 2 TO 3

13

Marker Icons
In v2, to change the default icon of a marker, you had to create a GIcon object and assign it to the marker
by using the icon property of the GMarkerOptions object. Alternatively, you could use the setImage()
method of the Marker object and pass a URL to an image as its parameter.

In v3 you have a few more options. You can set the icon directly using the icon property of the
MarkerOptions object, or you can set it later using the setIcon() method of the Marker object. In
both cases, you can choose whether to use a full-fledged MarkerImage object or simply to use a URL
to an image.

In v2 the GIcon object included everything about the marker icon, such as its shadow, its printImage,
and so on. In v3 this is handled differently. For example, the icon shadow is handled as a separate
property in the MarkerOptions object. It’s called shadow and also takes either a MarkerImage object or a
URL to an image as its value.

All the alternative icons you could define in v2, such as printImage, mozPrintImage, and transparent
are dropped, so you only need to worry about providing one image for the icon and one for its shadow.

In its simplest form, changing the marker icon requires that you only provide it with a URL for the
icon and one for the shadow. Well, you could actually omit the shadow property if you like. When
changing the default icon, the default shadow is also removed.

Version 2

// Create a custom icon
var myIcon = new GIcon(G_DEFAULT_ICON, 'icon.png');

// Create a marker and add it to the map
var marker = new GMarker(new GLatLng(54, 12), {
 icon: myIcon
});

map.addOverlay(marker);

Version 3

var marker = new google.maps.Marker({
 position: new google.maps.LatLng(54, 12),
 map: map,
 icon: 'icon.png',
 shadow: 'shadow.png'
});

In v2 the GIcon object has a property called imageMap. It’s used to define the clickable part of the icon

and takes an array of integers as its value. In v3 this is defined by using the shape property of the
MarkerOptions object, which takes a MarkerShape object as its value. This object has two properties, type
and coord. The type property defines the kind of shape you would like to use, such as a polygon, circle, or
rectangle. The coord property takes an array of integers defining the points in the shape. It works just like
an ordinary HTML ImageMap.

Version 2

// Create a custom icon
var myIcon = new GIcon(G_DEFAULT_ICON, 'icon.png');
myIcon.imageMap = [4,4, 29,4, 29,29, 22,29, 17,35, 16,35, 10,29, 4,29, 4,4]

CHAPTER 2 ■ TRANSFERRING FROM VERSION 2 TO 3

14

// Create a marker and add it to the map
var marker = new GMarker(new GLatLng(54, 12), {
 icon: myIcon
});

map.addOverlay(marker);

Version 3

var marker = new google.maps.Marker({
 position: new google.maps.LatLng(54, 12),
 map: map,
 icon: 'icon.png',
 shape: {
 type: 'poly',
 coord: [4,4, 29,4, 29,29, 22,29, 17,35, 16,35, 10,29, 4,29, 4,4]
 }
});

Another new feature in v3 is the ability to use sprites as marker icons. Sprites are an excellent way of
speeding up your map (and web page) since it reduces the number of files that need to be downloaded.
How to use them are a bit tricky but is covered in detail in Chapter 6.

Further Reading
How to use markers is extensively covered in Chapter 5 and in Chapter 9. How to use the MarkerImage
object and sprites is explained in full detail in Chapter 6.

InfoWindows
The handling of InfoWindow objects has changed quite a bit in v3. First, let me just say that InfoWindow
objects in v3 do not have all the capabilities of InfoWindow objects in v2. One of the most missed features
is probably tabbed windows, but they also lack support for maximizing the InfoWindow. Maybe these
features will be introduced in v3 at a later time, but as of the time of writing, that’s unknown.

Another big difference from v2 is that you now can have several InfoWindow objects open at the same
time. In v2 the InfoWindow wasn’t really an overlay object like markers and polygons; it was something
that was attached to the map and reused each time it was opened. You didn’t have to worry about
creating one because the API did that in the background for you.

Now, in v3, InfoWindow objects are essentially an overlay. This means you have to treat them the
same way you treat other overlays such as, for example, markers (Figure 2-3). This leads to new
problems that you need to take care of. One of those problems is how to restrict the use of InfoWindow
objects so that you have only one at a time on the map. The solution to this is to create one InfoWindow
object that you reuse each time you need to open one. How to do this is described in detail in Chapter 5.

CHAPTER 2 ■ TRANSFERRING FROM VERSION 2 TO 3

15

Figure 2-3. In v3 it’s possible to have several InfoWindow objects open at the same time, something that was
impossible in v2.

In some ways, InfoWindow objects were easier to use in v2, but in v3 they are more powerful and
conform better to how the other overlay objects work.

Here’s an example of how to tie an InfoWindow to a marker and open it on the marker’s click event.
In v2 you can just call the openInfoWindowHtml() method of the Marker object. In v3 you need to first
create an InfoWindow object and then open it using its open() method.

Version 2

// Add a click event to a marker that will open an InfoWindow
GEvent.addListener(marker, 'click', function() {
 marker.openInfoWindowHtml('Some text');
});

Version 3

// Create a new InfoWindow object
var infoWindow = new google.maps.InfoWindow({
 content: 'Some text'
});

// Add a click event to a marker
google.maps.addListener(marker, 'click', function() {
 // Add the InfoWindow to the map
 infoWindow.open(map, marker);

});

CHAPTER 2 ■ TRANSFERRING FROM VERSION 2 TO 3

16

Passing the Map object and the Marker object to the open() method adds the InfoWindow to the
specified map and positions it correctly in relation to the marker.

Of course, you don’t have to associate the InfoWindow with a marker. You can associate it with a
polyline or a polygon or just provide it with a position of its own and attach it to the map. Here’s how to
create an InfoWindow that is positioned at a certain location on a map:

Version 2

// Open an InfoWindow at a specific position
map.openInfoWindowHtml(new GLatLng(54, 12), 'Some text');

Version 3

// Create a new InfoWindow object that will be positioned at a specific location
var infoWindow = new google.maps.InfoWindow({
 content: 'Some text',
 position: new google.maps.LatLng(54, 12)
});

// Add the infoWindow to the map
infoWindow.open(map);

Further Reading
To learn more about how InfoWindow objects work in v3 and how to handle several of them, refer to
Chapter 5. To learn even more about InfoWindow objects and a few tips and tricks, read Chapter 7.

Polylines
Polylines conform to the same principles as the other objects. They reside in the google.maps
namespace, and their constructors take only one argument, a PolylineOptions object. This is in contrast
to v2, where you specify the polyline style using arguments to the constructor. These arguments are
baked in as properties of the PolylineOptions object.

As with the Marker object, you can instantly add the polyline to the map by providing
PolylineOptions with the map property.

Version 2

// Create an array with points
var points = [
 new GLatLng(37.7671, -122.4206),
 new GLatLng(36.1131, -115.1763),
 new GLatLng(34.0485, -118.2568)
];

// Create a new polyline
var polyline = new GPolyline(points, '#ff0000', 5, 0.7);

// Add the polyline to the map using map.addOverlay()
map.addOverlay(polyline);

CHAPTER 2 ■ TRANSFERRING FROM VERSION 2 TO 3

17

Version 3

// Create an array with points
var points = [
 new google.maps.LatLng(37.7671, -122.4206),
 new google.maps.LatLng(36.1131, -115.1763),
 new google.maps.LatLng(34.0485, -118.2568),
];

// Create a new polyline and instantly add it to the map
var polyline = new google.maps.Polyline({
 path: points,
 strokeColor: '#ff0000',
 strokeWeight: 5
 strokeOpacity: 0.7,
 map: map
});

Encoded Polylines
Apart from the syntax changes, polylines work just about the same in v3 as in v2 with one major
difference. In v2 there’s the possibility to encode the polylines to get better performance. This is
done with the fromEncoded() method. This reduces the complexity (the number of points) of a polyline
at different zoom levels. So if you zoom out, you will see polylines with fewer points, and as you
zoom in, the number of displayed points increases. This make sense since while zoomed out, you don’t
benefit from detailed polylines, and vice versa. But to be honest, using encoded polylines in version 2 is
rather awkward.

The possibility to pre-encode a polyline is currently not available in version 3 of the API. That’s
mostly a good thing because now all that stuff is done internally in the API, so you don’t have to worry
about it. This is really good since you get all this functionality without having to do anything. On the
other hand, it’s also potentially bad since you have no control over how it works. If, for example, you
pre-encode your polylines on the server, you have to first decode them before you can add them to the
map. If you’re interested in digging deeper into this matter, there’s an interesting discussion on the
subject in the Google Maps JavaScript API v3 group. Check it out at http://tinyurl.com/32q7kff.

Further Reading
To learn more about how to use polylines in v3, including how to let the user dynamically add polylines
by clicking in the map, check out Chapter 8.

Polygons
The code for creating polygons works very much the same way as for polylines. The differences between
v3 and v2 are basically the same as for polylines. Polygons in v3 have a PolygonOptions object that
contains all the properties for styling them. In v2 this is done by passing them as individual arguments to
the GPolygon object’s constructor.

Here’s how to add a simple polygon with a red border and red semi-transparent background to
a map:

http://tinyurl.com/32q7kff

CHAPTER 2 ■ TRANSFERRING FROM VERSION 2 TO 3

18

Version 2

// Create an array with points
var points = [
 new GLatLng(37.7671, -122.4206),
 new GLatLng(36.1131, -115.1763),
 new GLatLng(34.0485, -118.2568)
];

// Create a new polygon
var polygon = new GPolygon(points, '#ff0000', 5, 0.7, '#ff0000', 0.3);

// Add the polygon to the map using map.addOverlay()
map.addOverlay(polygon);

Version 3

// Create an array with points
var points = [
 new google.maps.LatLng(37.7671, -122.4206),
 new google.maps.LatLng(36.1131, -115.1763),
 new google.maps.LatLng(34.0485, -118.2568),
];

// Create a new polygon and instantly add it to the map
var polyline = new google.maps.Polyline({
 path: points,
 strokeColor: '#ff0000',
 strokeWeight: 5
 strokeOpacity: 0.7,
 fillColor: '#ff0000',
 fillOpacity: 0.3,
 map: map
});

A new feature in v3 is the ability to create donuts, which are polygons with holes in them. This

provides you with a lot more flexibility when marking out certain areas in a map. In Figure 2-4, the
Pentagon is marked using a polygon donut.

CHAPTER 2 ■ TRANSFERRING FROM VERSION 2 TO 3

19

Figure 2-4. Polygon donuts used to mark the Pentagon. Screenshot from http://gmaps-samples-v3.
googlecode.com/svn/trunk/poly/pentagon.html.

As with polylines, the reduction of polygon detail at different zoom levels is now automatically
handled by the API. This also means that it’s no longer possible to create encoded polygons using the
fromEncoded() method.

Further Reading
To learn more about how to create polygons and use polygons, check out Chapter 8.

Events
Whereas the event methods were found in GEvent in v2, all the event methods in v3 reside in
google.maps.event. Other than that, the methods themselves look the same, but there are a
few differences.

As an example of the similarities between the old and the new API, here’s how to add a click event to
a marker in v2 and v3, respectively:

Version 2

var handle = GEvent.addListener(marker, 'click', function(e) {
 // Do something
});

http://gmaps-samples-v3

CHAPTER 2 ■ TRANSFERRING FROM VERSION 2 TO 3

20

Version 3

var handle = google.maps.event.addListener(marker, 'click', function(e) {
 // Do something
});

An interesting difference, though, is what is passed to the event listener, which in this example is the

variable e. In v2 this varies widely depending on the object and the kind of event being captured. In v3
the behavior is a bit more coherent. When it comes to events triggered by some kind of mouse event
(click, dragstart, and so on), most of the time a MouseEvent object is returned. As of this writing, this
object has only one property, latLng, but it’s a much more consistent way of handling mouse events.

Version 3

var handle = google.maps.event.addListener(polyline, 'click', function(e) {
 var positionClicked = e.latLng;
});

All the overlay objects work like this, except for one unfortunate exception, the Marker object. It

returns a MouseEvent object for drag, dragend, and dragstart, but not for the other mouse events. These
instead return a browser-specific object. Therefore, when you need to grab the LatLng being clicked, you
have to get it from the marker itself.

Version 3

var handle = google.maps.event.addListener(marker, 'click', function(e) {
 var positionClicked = marker.getPosition();
});

A New Method
A nice addition in v3 is the addListenerOnce() method. It removes itself once it has run. This is very
useful in cases where you need to check that an object is fully initialized before interacting with it. In the
case of checking for the bounds of the map to be available before trying to grab it, you need to listen for
the event only once (as the map is loading). In that case, this method is perfect since it will run once and
then remove itself.

Version 3

google.maps.event.addListenerOnce(map, 'bounds_changed', function() {
 var bounds = map.getBounds();
});

Further Reading
To read more about the available methods in google.maps.event, check out the API reference in
Appendix A.

CHAPTER 2 ■ TRANSFERRING FROM VERSION 2 TO 3

21

Summary
This chapter provided a head start for those readers already familiar with v2 of the API. Ideally it will get
you started converting your existing applications to v3, but since this is only an overview of the most
important changes, you will probably want to read some of the other chapters for a more in-depth
description on how to use different parts of the API. I also encourage you to check out the API reference
in Appendix A, which will give you even more tools for solving your immediate problems.

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 3

■ ■ ■

23

Creating Your First Map

A Google map resides in a web page. So, the first thing you need to do is to set up that page. This
includes creating an HTML page and a style sheet for it. Once you have everything set up, you can insert
the actual map. In this chapter, I will guide you through all the necessary steps to create your very first
Google Maps page.

Setting the Scene
Before you start creating a map, you need to set up the web page for it. This includes creating an HTML
file and a style sheet.

The HTML Page
The core of every web page is the HTML file. It’s important to code it properly since it forms the
foundation for everything else. Without a solid foundation, the stuff you build upon it will easily break.

Web browsers are very forgiving and will often render a page correctly even if the HTML is
slightly faulty. I do, however, recommend that you make sure the HTML is coded properly, for a number
of reasons:

• Debugging
If you don’t have the HTML right, strange errors may occur in your CSS or
JavaScript that are really hard to find. Both the CSS and a lot of the JavaScript code
relies on the HTML being correct, so to make it easier for yourself, make sure that
your HTML is correct by validating it frequently. This will save you a lot of time
and grief.

• Performance
In addition, correct HTML code renders faster than incorrect HTML. If done
properly, the browser will interpret the HTML in strict mode, in which it assumes
that you know what you are doing. Incorrectly done, and it will switch to quirks
mode, in which it’s a lot more forgiving in its interpretation of the code. This
means that you can get away with sloppy code, but since the browser has to guess
what you mean, the page takes longer to render.

CHAPTER 3 ■ CREATING YOUR FIRST MAP

24

• Quality
Naturally, you want to look professional, and you just don’t look good with HTML
that doesn’t validate. Invalid code is the sign of a developer who doesn’t know
what he’s doing.

What Flavor of HTML to Use
Several flavors of HTML are in use today. The most common ones are HTML 4.01 and XHTML 1.0, but
there are others such as XHTML 1.1 and HTML 5.

I tend to use XHTML 1.0 Strict in my work. I like that it’s more structured than regular HTML, so all
the examples throughout this book will be in this version. You could, of course, use HTML 4.01, but if
you do, I recommend that you use the strict version of it.

Right now there’s a lot of buzz around HTML 5. It looks really promising but is still in a draft version,
and there will be some time before you can actually start using it in live applications. For test purposes
or for personal projects, on the other hand, it’s entirely possible to start using it right away. In modern
browsers such as Firefox 3.5 and Safari 4, there’s already some support for it, and they degrade gracefully
for elements not yet supported. Check out these articles for more information on how to start using
HTML 5 right now:

• http://articles.sitepoint.com/article/html-5-snapshot-2009

• www.alistapart.com/articles/previewofhtml5

Validate Your Code
So, how do you know that your HTML is correct? The best way is to check your code with W3C’s HTML
validator. It validates all flavors of HTML. You validate your file by entering the URL to the web page you
want validated. If your HTML file is on your computer or on a closed server, you can either upload the
file or paste the code into a text field.

If your code validates, you will get a nice green notification that the document has been successfully
checked (Figure 3-1).

http://articles.sitepoint.com/article/html-5-snapshot-2009
http://www.alistapart.com/articles/previewofhtml5

CHAPTER 3 ■ CREATING YOUR FIRST MAP

25

Figure 3-1. A successfully checked web page, incidentally being the home page of my blog

If, on the other hand, the page doesn’t validate, you will get an angry red message that tells you so
(Figure 3-2). Don’t be intimidated by the number of errors. Often several errors depend on a single error,
so it probably looks worse than it is. The good news is that you will get pointers to where the problems
are, so it’s easy to find and correct them.

CHAPTER 3 ■ CREATING YOUR FIRST MAP

26

Figure 3-2. It looks like Digg.com has some problems with its XHTML.

Unfortunately, a lot of sites don’t validate. It’s probably a lot easier to find sites that don’t validate
than ones that do. I still don’t think that this justifies being sloppy about it. Code that validates will
always be better than code that doesn’t.

You’ll find this validator at http://validator.w3.org.

http://validator.w3.org

CHAPTER 3 ■ CREATING YOUR FIRST MAP

27

Other Tools
If you’re using Firefox, there are several extensions that you can use to validate your code without having
to visit W3C’s web site. The following are three very useful extensions that I use.

Page Validator
The Page Validator extension was created by Michael Langely. It adds a menu option in your Tools
menu. When you select the menu item, it sends the page you’re currently on to the W3C validator page.

https://addons.mozilla.org/en-US/firefox/addon/2250

Html Validator
The Html Validator extension, which was created by Marc Gueury, is specifically used for validating web
pages. It puts a small icon in the lower-right part of the browser window, which immediately tells you
whether the page validates. When you double-click it, a View Source window opens with a list of errors. I
find this feature extremely useful since it enables me to quickly find errors and correct them.

Unfortunately, this extension is not available for Mac OS, but if you’re a Windows user, I highly
recommend it.

https://addons.mozilla.org/en-US/firefox/addon/249

Web Developer Toolbar
Validating HTML is just one of the things you can do with the Web Developer Toolbar extension. The
Web Developer Toolbar, created by Chris Pederick, is an indispensable tool for all web developers
since it’s chock-full of useful tools. The validate page function provides you with a shortcut to the
W3C validator.

https://addons.mozilla.org/en-US/firefox/addon/60

With these tools at your disposal, you are more than ready to get started.

Laying the Foundation
OK, so I’ve decided to use XHTML 1.0 Strict. Now let’s start coding. You’ll start by creating a file called
index.html. Initially it will look like Listing 3-1.

Listing 3-1. The Initial XHTML Code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>My first Google Map</title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 </head>

https://addons.mozilla.org/en-US/firefox/addon/2250
https://addons.mozilla.org/en-US/firefox/addon/249
https://addons.mozilla.org/en-US/firefox/addon/60
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 3 ■ CREATING YOUR FIRST MAP

28

 <body>
 <h1>My first map</h1>
 <div id="map"></div>
 </body>
</html>

The Doctype
At the very top of the web page there’s a doctype declaration:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

This is used to tell the browser how to interpret the page. If you don’t have a correct doctype, the
browser will immediately go into quirks mode. Be sure to get this right! I’ve never been able to learn it by
heart, so I usually copy and paste it from existing pages. The good news if you’re using HTML 5 is that
the doctype is simply as follows:

<!DOCTYPE html>

I’m pretty sure that I’ll be able to completely memorize this one.

The <head>
The <head> section of the page contains a few important elements. First there’s the title, which sets the
title of the page, and then there’s a meta element, which tells what kind of character encoding you’re
using. This element is necessary for the document to be valid! I recommend using UTF-8 since it
includes special characters for all languages.

<head>
 <title>My first Google Map</title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>

■ Tip To learn more about character encoding, which is a whole science in itself, read the article “The Absolute
Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No

Excuses!)” by Joel Spolsky at www.joelonsoftware.com/articles/Unicode.html.

The <body>
Finally, the <body> element contains the elements that will be visible on the web page. In this example
case, you’re not going to have a lot of stuff here. But you will have a heading (<h1>) and a <div> element.
The <div> element will eventually contain the map and will have the attribute id="map". This is
important, because it’s through this ID that you will target this element, both from your style sheet and
from your JavaScript. You’ll learn more about this later in the chapter.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.joelonsoftware.com/articles/Unicode.html

CHAPTER 3 ■ CREATING YOUR FIRST MAP

29

<body>
 <h1>My first map</h1>
 <div id="map"></div>
</body>

■ Tip You can get standard compliant HTML templates from the Web Standards Project. These will provide you

with a good starting point for your web pages. See www.webstandards.org/learn/reference/templates/.

The Style Sheet
To set the size of the map, you need to style the <div> that will contain the map. The size of this
container defines the size of the map.

It’s good practice to keep the HTML and CSS separated; therefore, you will put the CSS in a separate
file called style.css. To have a neat structure, you will organize the files in a folder structure where the
style sheets go in a folder called css.

style.css will contain only a couple of definitions, including some basic styling for the body and
more importantly styling for the map container. Since you’ve set the id attribute on the <div> to map
(<div id="map">), you can target it with the selector #map in the CSS.

First you need to define the dimensions of the <div> with the attributes width and height. The width
attribute is set to 100% so that it will span the whole page from side to side, and the height is set to 500
pixels. Additionally, you will add a black 1-pixel border to the <div> with the help of the attribute border.

#map {
 width: 100%;
 height: 500px;
 border: 1px solid #000;
}

When I create CSS files, I normally include a header section that explains what the CSS is for,

who made it, and when it was created. Comments in CSS start with /* and end with */ and can span
multiple lines.

With the header and some additional styling, the whole CSS file will look like Listing 3-2.

Listing 3-2. The Complete CSS File

/*--------------------------------------
 Author: Gabriel Svennerberg
 Email: gabriel@svennerberg.com
 Created: 2010-03-17
 Description: Stylesheet for example 1
--*/
body {
 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
 font-size: small;
 background: #fff;
}
#map {
 width: 100%;

http://www.webstandards.org/learn/reference/templates
mailto:gabriel@svennerberg.com

CHAPTER 3 ■ CREATING YOUR FIRST MAP

30

 height: 500px;
 border: 1px solid #000;
}

You also need to make a reference in the HMTL that points to the CSS file. It’s done with the <link>

element that resides inside the <head> section of the page. Since you’ve put style.css in a folder called
css, the reference to it will look like href="css/style.css". The other attributes of the <link> element are
type, rel, and media. What they do is basically to let the browser know that the file it’s pointing to is a
CSS file and that it will be used for all media types.

<link type="text/css" href="css/style.css" rel="stylesheet" media="all" />

■ Warning It’s really important to set at least the height of the map container because if you don’t, the map will
have a height of 0 and will therefore be invisible. This is something a lot of people miss and spend a lot of time

trying to figure out.

Inserting a Reference to the Google Maps API
Now that you have a web page set up, you’re ready to load the Google Maps API. The API is a JavaScript
file that is hosted on Google’s servers. It’s loaded with a <script> element in the <head> section of the
page. The <script> element can be used to add remote scripts into a web page, and that’s exactly what
you want to do here.

The <script> element has two attributes that you need to use. The first one is type, which you want
to set to text/javascript, and the other one is src, which you want to set to the URL pointing to the API.

<script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=false"></script>

The URL points to the location of the API, but you also need to pass a query string with the key
sensor. It’s used to tell whether the device using the map has a device for determining the geolocation,
like for example a GPS. It must explicitly be set to either true or false: true if the device has a sensor and
false if it does not. Devices with a sensor are usually mobile phones or other handheld devices.

As far as I know, the reason you need to tell whether the device has a sensor or not is for licensing
reasons. Google needs to give its map data providers statistics for the usage of the maps. It has absolutely
nothing to do with enabling a geolocation service, so don’t confuse it with that.

<script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=false"></script>

Determining Whether the Device Has a Sensor

There are ways to determine whether a device has a sensor, but I will not dwell on that at the moment.
Your best bet is to set the sensor to false, unless you’re absolutely certain that the devices that will use
your map have some kind of sensor.

http://maps.google.com/maps/api/js?sensor=false
http://maps.google.com/maps/api/js?sensor=false

CHAPTER 3 ■ CREATING YOUR FIRST MAP

31

Localizing

The Google Maps API will automatically try to determine in which language to display its user interface.
If you explicitly want to set a certain language for your map, you can do so by using an optional
parameter in the query string. By adding &language=sv at the end of the query string, for example, you
force the user interface to use Swedish as its language.

<script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=false&language=sv"></script>

Initializing the Map
Now that you have the Google Maps API linked in, you need to write some JavaScript code to do
something with it. The first thing you need to is to somehow initialize the map. This is done with
JavaScript. Like with the style sheet, it’s best practice to keep it separated from the HTML. Therefore,
create an external JavaScript file called map.js, and for the sake of good structure, you should place it in a
folder called js.

You now have a file structure that looks like Figure 3-3.

Figure 3-3. A nice and tidy file structure

To include the JavaScript file in the web page, you create a <script> element in the <head> section of
the page. It’s important that it’s inserted after the <script> element that includes the Google Maps API
in order to make sure that the API is loaded before trying to use it.

<script type="text/javascript" src="js/map.js"></script>

■ Note The correct way to mark up a <script> tag is to use the attributes src and type. You sometimes see the
attribute language="JavaScript" being used, but that’s a deprecated attribute that was introduced during the

browser wars, and it should be avoided at all costs.

Now the HTML file is complete and looks like Listing 3-3.

http://maps.google.com/maps/api/js?sensor=false&language=sv

CHAPTER 3 ■ CREATING YOUR FIRST MAP

32

Listing 3-3. The Complete XHTML Code

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=UTF-8" />
 <title>My first map</title>
 <link type="text/css" href="css/style.css" rel="stylesheet"
 media="all" />
 <script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=false"></script>
 <script type="text/javascript" src="js/map.js"></script>
 </head>
 <body>
 <h1>My first map</h1>
 <div id="map"></div>
 </body>
</html>

Time to Start Coding
You’ve set the scene, you have your files in an ordered structure, and you’ve inserted the Google Maps
API. This means that you’re all good to go. It’s time to start coding. But before you do that, I will tell you a
little about a few core concepts of the JavaScript language.

Variables in JavaScript
A variable is a container with a specific name. This container can store a lot of things such as strings,
numbers, and objects. To create a variable, or declare it as it’s called in programming, JavaScript uses the
keyword var. To create a variable called numberOfApples and assign it the value 3, the code is as follows:

var numberOfApples = 3;

You can now use this variable to access its value. To bring up an alert that will display the
numberOfApples value, you can write this:

alert(numberOfApples);

We can also change its value.

numberOfApples = 5;

Some programming languages such as C# and Java have strongly typed variables, which mean that

when a variable is declared, its type must also be determined and can never be changed. So, if you
decide that a variable can store only numbers, it’s impossible to store a string of text in it. In JavaScript,
which is a loosely typed language, you don’t need to think about this. You can store whatever you like in
its variables.

There are some rules about how a variable is named. The names can contain both letters and
numbers, but they can’t start with a number. They can also contain certain characters such as, for
example, underscores, but they can’t have spaces. So, to make a variable more readable, you can use

www.allitebooks.com

http://www.w3.org/1999/xhtml
http://maps.google.com/maps/api/js?sensor=false
http://www.allitebooks.org

CHAPTER 3 ■ CREATING YOUR FIRST MAP

33

underscores instead of spaces. Another technique is to use camelCasing, which means that each new
word (except the first one) in the variable name starts with an uppercase letter.

var variable name;
var variableName;

Also note that variable names are case sensitive, so variableName and variablename will refer to two

different variables.

■ Warning Always use the var keyword when defining variables. It’s possible to omit it, but doing so
automatically makes the variable global, which means that it will be available everywhere. This might sound

convenient but is in fact the source of many errors and problems, so always try to avoid it. To read more about
why this is bad, read Douglas Crockford’s excellent article “Global Domination” at www.yuiblog.com/blog/

2006/06/01/global-domination/.

Common Data Types
Even if JavaScript is a loosely typed language, it still has different data types. I will briefly describe the
three most basic ones.

Strings

Strings are text. When you define a string, you can use either single or double quote marks around it. I
tend to use single quote marks, but that’s just a matter of personal preference.

var fruit = 'apple';
var fruit = "apple";

But what if you need to have a single or double quote in the string? In these cases, you can use
something called escaping. What this means is that a backslash (\) is inserted before the character being
escaped. The JavaScript interpreter will then know that the character that follows it is part of the string
and discard any other meaning it might have.

var text = 'I\'m hungry';
var myScreen = "I have a 22\" screen";

Worth mentioning also is that to escape a backslash, you put a backslash in front of it.

Numbers

Numbers aren’t enclosed inside quote marks but are simply assigned. All kinds of numbers can be used.

var myAge = 37;
var temperature = -3;
var processorSpeed = 2.66;

http://www.yuiblog.com/blog

CHAPTER 3 ■ CREATING YOUR FIRST MAP

34

Booleans

Booleans can have only two values, true or false. This might not seem much, but it’s actually the logic
on which computers are constructed—you know, ones and zeros. You can actually use 1 instead of true
and 0 instead of false since they mean the same thing. Actually, any numbers except 0 will return true,
so all you’ll need to remember is that 0 is false.

var male = true;
var female = 0; // false

■ Tip You might have noticed that I always include a semicolon at the end of each line of code. This is actually
optional in JavaScript, but I strongly suggest that you always use semicolons since omitting them makes
the JavaScript interpreter guess where they should be. This leads to slower performance and potentially hard-

to-find bugs.

Functions
Functions are one of the core features of a programming language. They are perfect for reusing code. A
simple function that will throw an alert with the classic phrase “Hello world” looks like this:

function message() {
 alert('Hello world!');
}

To execute it, you call it by its name, including its parentheses:

message();

This will result in the alert shown in Figure 3-4 being thrown.

Figure 3-4. Hello world!

All it does right now is to throw the alert “Hello world” each time you call it, but if you want it to be a
bit more useful, such as throwing an alert with a phrase of your choice, then you need to provide it with
arguments. Arguments are used to pass values to the function.

CHAPTER 3 ■ CREATING YOUR FIRST MAP

35

function shout(phrase) {
 alert(phrase);
}

shout('Hello world again!');

Since you now can pass values to the function, you can reuse it for different scenarios. Consider the
following example:

function add(val1, val2) {
 alert(val1 + val2);
}

add(4, 6);

You now have a function that adds two numbers. Calling it and passing 4 and 6 as its arguments will

produce an alert box with “10” (see Figure 3-5).

Figure 3-5. 4+6=10

Functions can also be stored inside variables:

var add = function(val1, val2) {
 alert(val1 + val2);
}

add(4, 6);

For all practical use, there’s actually no difference between this function and the one you created
before. It’s just another way of constructing it.

■ Note Functions in JavaScript are first-class objects. What that means is that functions are a kind of object that
can do all the things that other objects can do. This is one of the reasons that JavaScript is so powerful. The article
“Functions Are First-Class Objects in JavaScript” by Helen Emerson explains this concept very nicely. See

http://helephant.com/2008/08/functions-are-first-class-objects-in-javascript/.

http://helephant.com/2008/08/functions-are-first-class-objects-in-javascript

CHAPTER 3 ■ CREATING YOUR FIRST MAP

36

Objects
JavaScript is an object-oriented language, which means that it has objects. In fact, the entire Google
Maps API is built around objects. An object can be described as a container of functions and variables.
When functions and variables are part of an object, they are called methods and properties. To use
a method or property of an object, dot notation is used. This means that first you write the name
of the object, then you write a dot (.), and finally you write the name of the method or property you
want to use.

myObj.calculate(); // Calling the calculate object
myObj.name // Accessing the name property

Object Literals

Object literals are a convenient way of creating objects. The syntax for creating an object literal is
as follows:

var author = {
 name: 'Gabriel Svennerberg',
 age: 37
}

This creates an object with the properties name and age. Here’s how to access these properties:

alert(author.name); // Will bring up an alert with the text "Gabriel Svennerberg"
alert(author.age); // Will bring up an alert with “37”

You could provide it with methods by adding functions to it as well:

var author = {
 name: 'Gabriel Svennerberg',
 age: 37,
 tellName: function() {
 alert(author.name);
 }
}

To invoke the method, you call it by its object and method name:

author.tellName() // will display an alert with the text "Gabriel Svennerberg"

Debugging Tool: Firebug
An extremely useful tool for debugging your JavaScript code is a Firefox extension called Firebug. It was
originally created by Joe Hewitt but is now maintained and being further developed by the people in the
Firebug Working Group. I actually don’t know how I coped before using Firebug. It has completely
revolutionized how you’re able to debug your JavaScript code (and HTML/CSS code).

I strongly suggest that you install it and learn how to use it, because it will be of enormous help
when you start coding. Read more about it, and install it at http://getfirebug.com/.

http://getfirebug.com

CHAPTER 3 ■ CREATING YOUR FIRST MAP

37

Setting Up the Map
OK, so now that you know a bit about variables and functions, you will start doing actual coding against
the Google Maps API. You will write your code in the file map.js, which you created earlier.

To create a map and insert it on the web page, you need to initialize it. This is done by creating a
new instance of the object google.maps.Map (Table 3-1). It takes two arguments:

• A reference to the HTML element that the map will reside inside. In this case, you
need the <div> with the id attribute map.

• An object literal called MapOptions that contains the initial settings for the map like
the starting zoom level, where the center of the map should be, and what kind of
map should be displayed.

Table 3-1. Definition of the Map Constructor

Constructor Description

Map(mapDiv:node, opts?MapOptions) Creates a map object and inserts it inside the mapDiv

THE GOOGLE.MAPS NAMESPACE

As you might have noticed, the classes and methods of the Google Maps API v3 is always prefixed with
google.maps. That’s something called a namespace. It’s very convenient since it minimizes the risk of
name collisions, which is when methods and variables have the same name. This risk increases as the
project gets more complex and as the number of external JavaScript libraries being used increases.
Therefore, it’s good practice to keep code in a namespace.

So, whenever you need to use a class or call a method in the Google Maps API v3, they are always prefixed
with google.maps.

The Map Container
Do you remember that you inserted a <div> with the attribute id="map" in the web page? Now it will
come to good use since you want to insert the map inside it. To do this, you need to make a reference to
it in your script and pass it to the map object. You’re going to use the native DOM method
getElementById() for this (Table 3-2). This method takes the ID of an HTML element as its argument and
returns a reference to the targeted HTML element. Note that the same ID can be used only once in each
HTML document. Therefore, getElementById() always return either a reference to a single HTML
element or, if it can’t find a matching element, the value null. So, what is null? It’s essentially nothing!
Therefore, when getElementById() can’t find a matching element, it will return null; in other words, it
returns nothing.

CHAPTER 3 ■ CREATING YOUR FIRST MAP

38

Table 3-2. Definition of document.getElementById

Method Return value Description

document.getElementById(id:string) A reference to an HTML
element or null

This method searches the
document for an element with
the correct ID.

You create a variable called mapDiv and by using the getElementById() method assign it a reference
to <div id="map">.

var mapDiv = document.getElementById('map');

MapOptions
MapOptions resides in an object that is passed to the map. It contains information about how you want
your map to look and behave. This object is in the form of an object literal. As you’ve already seen, an
object literal is an object that is created on the fly, which means that at the same time you create it, you
also provide it with its values.

Using this feature of the JavaScript language, you create a variable called options with the three
properties that are required to make the map work:

• center
Defines the center of the map with a coordinate. The coordinate must be of type
google.maps.LatLng (Table 3-3).

• zoom
Defines the initial zoom level of the map. It must be a number between 1 and 23,
where 1 is zoomed all the way out and 23 is zoomed all the way in. (The deepest
zoom level can actually vary depending on the available map data.)

• mapTypeId
Defines what type of map you initially want to display. All map types are found in
the google.maps.MapTypeId object. To get a regular map, you need to set this to
google.maps.MapTypeId.ROADMAP. If you instead wanted a satellite image, you
would set it to google.maps.MapTypeId.SATELLITE.

Before you create the object literal, you will prepare the value for the center property since it must
be an object of the type google.maps.LatLng.

Table 3-3. Definition of the LatLng Constructor

Method Description

LatLng(lat: number, lng:number,
noWrap?boolean)

The arguments are passed in the order latitude, longitude. If
noWrap is set to true, it will use the numbers as they are
passed; otherwise, it will force latitude to lie within the -90 to
+90 degrees range and longitude to be in the -180 to +180
degree range.

CHAPTER 3 ■ CREATING YOUR FIRST MAP

39

var mapDiv = document.getElementById('map');
var latlng = new google.maps.LatLng(37.09, -95.71);

Notice the use of the new keyword. It’s used to initialize an object, which means that it creates a new

instance of the object LatLng. LatLng must be initialized with two arguments, which are the latitude and
the longitude that defines the position. In this case, it’s a position at the center of the United States.
Without these arguments, LatLng cannot be created, because LatLng must always have a position.

Let’s create the object literal options and feed its properties with the proper values:

var mapDiv = document.getElementById('map');
var latlng = new google.maps.LatLng(37.09, -95.71);

var options = {
 center: latlng,
 zoom: 4,
 mapTypeId: google.maps.MapTypeId.ROADMAP
};

Now you have all the components necessary for creating a map. You have a reference to the <div>

(mapDiv), and you have an map options object (options). Let’s put them to good use and pass them to the
map object:

var mapDiv = document.getElementById('map');
var latlng = new google.maps.LatLng(37.09, -95.71);
var options = {
 center: latlng,
 zoom: 4,
 mapTypeId: google.maps.MapTypeId.ROADMAP
};

var map = new google.maps.Map(mapDiv, options);

OBJECT LITERALS AND JSON

Maybe you recognize the object literal as similar to JSON? If that’s the case, you are absolutely right. JSON
is a subset of the object literal with the difference that object literals can contain functions, something that
JSON cannot.

To read more about object literals and JSON, check out these articles:

“Show Love to the Object Literal”
www.wait-till-i.com/2006/02/16/show-love-to-the-object-literal/

“JSON in JavaScript”
www.json.org/js.html

“JSON Is a Subset of the Object Literal”
http://snook.ca/archives/javascript/json_is_a_subse/

http://www.wait-till-i.com/2006/02/16/show-love-to-the-object-literal
http://www.json.org/js.html
http://snook.ca/archives/javascript/json_is_a_subse

CHAPTER 3 ■ CREATING YOUR FIRST MAP

40

Making the Code Run on Page Load
You want this code to run once the web page has loaded. If you tried to use your code as it is now, the
map won’t load, and you will get an error deep inside the Google Maps API. That’s because the <div> has
not yet been loaded in the browser when your JavaScript is loaded. What this means is that
document.getElmentById('map') won’t find anything and will return null. This happens because when it
runs, the <div> doesn’t exist in the browser. Because you now pass a null value to the Google Maps API
instead of a container, it will have nowhere to insert the map, and an error will occur.

To get around this, you need to wait for the document to load before you run the script. This is done
by utilizing something called event listeners. The window object, which is the “mother” object of a web
page, has an event listener called onload that is triggered when the entire web page has finished loading.
By using it, you make sure that your map <div> exists before running the script.

The basic construction of it looks like this:

window.onload = function() {
 // Code we want to run
}

What you do is that you assign an anonymous function to the onload event of the window object. So

when the onload event is triggered, the code inside the anonymous function is executed. Anonymous
functions are functions without names. Since they don’t have names, they can’t be reused, but they are
still very useful for containing code that will be run on situations like these.

window.onload = function() {
 alert('This pops ups when the entire web page has finished loading');
}

To put this to use in your code, you simply put the code you have written so far inside the

anonymous function (see Listing 3-4).

Listing 3-4. Almost There

window.onload = function() {
 var mapDiv = document.getElementById('map');
 var latlng = new google.maps.LatLng(37.09, -95.71);
 var options = {
 center: latlng,
 zoom: 4,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 var map = new google.maps.Map(mapDiv, options);
}

You finally have something usable! This code will create a map that’ll look like Figure 3-6. It will

have all the basic functionality of a regular Google map, such as being able to zoom in and out, to pan
the map, and to change the map type.

CHAPTER 3 ■ CREATING YOUR FIRST MAP

41

Figure 3-6. Your first map

Encapsulating the Code
Although you now have a functioning map, you’re not quite done. You are currently cluttering the global
namespace with all your variables. This might not be a big deal in a simple web page like the one you’re
currently working on. But if you’re constructing a map that will be part of a bigger project, using global
variables can turn out to be a big problem. The problem that can arise is that naming collisions between
conflicting code occur. It’s therefore important to contain your code so that you isolate it from the
outside world.

To make sure that your code doesn’t clutter the global namespace, you will encapsulate it inside a
self-executing anonymous function. The pattern looks like this:

(function() {
 // The code
})();

CHAPTER 3 ■ CREATING YOUR FIRST MAP

42

It might look a bit odd, but it’s really quite clever. First, an anonymous function looks like function() {
}. By encapsulating it inside a set of parentheses, you return the function to the rest of the code. The
parentheses at the end immediately execute the function, which means that the code inside will run
immediately but will be invisible to all code outside it.

It might be easier to understand if you add an argument to the function:

(function(message) {
 alert(message);
})('Hello Google Maps lovers');

This code will immediately execute the anonymous function, passing the text string to it, which will
result in an alert being thrown with the text “Hello Google Maps lovers” (see Figure 3-7).

Figure 3-7. An alert box being thrown

This construction is one way of encapsulating code. That said, you can use other patterns to
accomplish the same thing, but this is how I prefer to do it. You can use whatever pattern suits you;
what’s important is to somehow encapsulate the code.

■ Tip To read about other JavaScript programming patterns, check out the article “JavaScript Programming

Patterns” by Klaus Komenda at www.klauskomenda.com/code/javascript-programming-patterns/.

 Applying this pattern to the example, the final code will look like Listing 3-5.

Listing 3-5. The Final JavaScript Code

(function() {
 window.onload = function() {
 var mapDiv = document.getElementById('map');
 var latlng = new google.maps.LatLng(37.09, -95.71);
 var options = {
 center: latlng,
 zoom: 4,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 var map = new google.maps.Map(mapDiv, options);
 }
})();

www.allitebooks.com

http://www.klauskomenda.com/code/javascript-programming-patterns
http://www.allitebooks.org

CHAPTER 3 ■ CREATING YOUR FIRST MAP

43

The map will look and work the same way, but your variables will no longer be available for outside
code, thereby not cluttering the global namespace.

Creating Maps for Mobile Devices
Better support for mobile devices was one of the main goals for Google Maps API v3. It is specifically
adapted to work well on advanced mobile devices such as the iPhone and mobile phones using the
Android OS. Creating maps for these devices is done the same way as for desktop browsers, but since
they have smaller screens and have other ways of interacting with the items on the screen, such as the
zoom-to-pinch gesture on the iPhone, there are some considerations that need to be made.

Since the screens are smaller, you probably want the map to fill the entire screen. You do this by
setting the height and width of the <div> containing the map to 100 percent.

For the iPhone, there’s a special <meta> element that can be used for disabling the zoom-to-pinch
behavior for the browser. The <meta> element must be positioned within the <head> section of the web
page; it looks like this:

<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />

You should also be aware that there’s no such thing as hover (mouseover) on mobile devices, so you
shouldn’t build functionality that relies solely on that being available.

You can find more information on how to develop web pages specifically for these devices here:

• Safari Dev Center (iPhone)
http://developer.apple.com/safari/

• Android Developers
http://developer.android.com/index.html

Summary
In this chapter, you learned how to set up a web page and how to insert a fully functional Google map in
it. The map has all the basic functionality, which means that you can pan it, zoom in and out of it, and
change the map type. You now have a solid map to build from. You also learned about some of the basic
features of the JavaScript language.

With the knowledge gained from this chapter, you’re ready to examine how you can tweak the map
to look and behave the way you want, and that’s exactly what you’re going to do in the next chapter
where you will examine all the properties of the MapOptions object.

http://developer.apple.com/safari
http://developer.android.com/index.html

C H A P T E R 4

■ ■ ■

45

Taking the Map Further with
MapOptions

In the previous chapter, you learned how to create a simple map using a minimum number of settings.
You also learned about the MapOptions object, which holds all the settings for the map. You learned that
the required MapOptions properties are center, zoom, and mapTypeId. But there are other properties as well
that you can use to make the map behave and look the way you want.

In this chapter, you will look at all the properties of the MapOptions object and learn what to do
with them.

The properties available can roughly be divided into three categories: properties that control the
user interface, properties that control the map container, and properties that control the cursor. You will
examine each category and see how you can utilize the available properties.

A Fresh Start
Before diving into the different properties of the MapOptions object, let’s start fresh with a new map (see
Listing 4-1).

Listing 4-1. The Starting JavaScript Code for This Chapter

(function() {

 window.onload = function() {

 // Creating an object literal containing the properties
 // you want to pass to the map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 // Creating the map
 var map = new google.maps.Map(document.getElementById('map'), options);

 };

})();

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

46

Controlling the User Interface
In this category, you’ll find all the properties for controlling the user interface. The user interface
consists of several user controls for controlling or monitoring the map, such as the zoom control or the
scale. In the following sections, each property is described in detail.

disableDefaultUI
By setting this property to true, you will disable the default user interface. This means the default zoom
control and the map type chooser will not be displayed. Even if you disable the default user interface,
you can still enable or disable these controls individually. The default value is false.

Listing 4-2 shows an example of how to disable the default user interface. Figure 4-1 shows a map
with the default UI turned on, and Figure 4-2 shows a map with the default UI turned off.

Listing 4-2. The disableDefaultUI Property

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 disableDefaultUI: true
};

Figure 4-1. A map with the default UI turned on

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

47

Figure 4-2. A map with the default UI turned off

mapTypeControl
With this property, you control whether the mapTypeControl will be displayed. The mapTypeControl is
positioned in the upper-right corner of the map (Figure 4-3). You use it to choose what map type to
show. Set it to true to display it and to false to hide it. The default value is true.

Figure 4-3. A map with the mapTypeControl enabled

To hide the map type, set mapTypeControl to false (Listing 4-3).

Listing 4-3. The mapTypeControl Property

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 mapTypeControl: true
};

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

48

mapTypeControlOption
If you decide to have the map type control visible, this property controls how it will be displayed. It can
look different depending on the circumstances or because you want to position it in a certain way. You
can also define what map types that will be available to choose from.

This property takes an object of type google.maps.MapTypeControlOptions as its value. This object
has three properties:

• style

• position

• mapTypeIds

When using mapTypeControlOptions, you should always make sure to set the property
mapTypeControl to true.

style
This property determines the appearance of the control. The values you can choose from reside in the
google.maps.MapTypeControlStyle object.

• DEFAULT: The DEFAULT value will vary the look of the mapTypeControl depending on
the size of the window and possibly other factors. As of the time of writing, this
means that the horizontal bar will be displayed if the map is big enough;
otherwise, the drop-down will be used.

• HORIZONTAL_BAR: This option will display the standard bar.

• DROPDOWN_MENU: This option will display the control as a drop-down list. It’s great
when the map is small or you want it to use up as little space as possible for some
other reason.

If, for example, you want this control to display like a drop-down menu, you define it as a
google.maps.MapTypeControlStyle.DROPDOWN_MENU, as shown in Listing 4-4.

Listing 4-4. The mapTypeControlOptions Property

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 mapTypeControl: true,
 mapTypeControlOptions: {
 style: google.maps.MapTypeControlStyle.DROPDOWN_MENU
 }
};

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

49

■ Note The mapTypeControlOptions value is an object literal with different properties instead of just a single
value. This construction might seem a little cumbersome at first, but it’s actually really clever. Having it
constructed this way, it’s easy to add more properties as the API evolves. Right now, it has three properties:

style, position, and mapTypeIds. When I started experimenting with the API, it had only one property, style.

position
The default position of this control is in the upper-right corner. But you can actively define it to be
positioned somewhere else (Figure 4-4). To do this, you will have to use the
google.maps.ControlPosition class. This class has several predefined positions:

• BOTTOM

• BOTTOM_LEFT

• BOTTOM_RIGHT

• LEFT

• RIGHT

• TOP

• TOP_LEFT

• TOP_RIGHT

Figure 4-4. All positions for a control

In theory, this is a no-brainer, but in reality all positions don’t work quite the way you would expect.
Figure 4-5 shows where each position using the mapControlType control will end up.

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

50

Figure 4-5. All control positions in the map

As you can see, the control doesn’t display properly in all positions. The bottom-right corner doesn’t
work at all, and LEFT and RIGHT will display at the same position as TOP_LEFT and TOP_RIGHT. The control
set to BOTTOM_LEFT displays it a bit right of the Google logo. That’s because of the rule that controls added
first to the map are displayed closer to the edge.

So, let’s say you want to position this control at the bottom of the map (Figure 4-6). Then you will
need to write the code shown in Listing 4-5.

Listing 4-5. The mapTypeControlOptions Position Property

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 mapTypeControl: true,
 mapTypeControlOptions: {
 position: google.maps.ControlPosition.BOTTOM
 }
};

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

51

Figure 4-6. The mapTypeControl positioned at the bottom

These positions are relative to the other controls in the map. So, if you have two controls at the same
position, the one added first will be the one closest to the edge of the map.

mapTypeIds
The map type control displays the different map types available for the user. You can control which map
types will appear with the help of the property mapTypeIds. It takes an array containing the different
MapType controls you want to use.

Listing 4-6 shows how to add ROADMAP and SATELLITE as possible choices for the mapControlType
control. Don’t worry if you find the syntax confusing. I will explain how arrays work in more detail in
Chapter 5.

Listing 4-6. The mapTypeControlOptions mapTypeIDs Property

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 mapTypeControl: true,
 mapTypeControlOptions: {
 mapTypeIds: [
 google.maps.MapTypeId.ROADMAP,
 google.maps.MapTypeId.SATELLITE
]
 }
};

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

52

This will create a map type control with only the two options that you defined, Map and Satellite,
available (Figure 4-7).

Figure 4-7. The mapTypeControl contains the options Map and Satellite only.

Using Them All Together

As the examples have shown, you can use any of these properties independent from the others. But let’s
wrap it all up by trying an example that includes all of them.

For this example, I want the map type control to be displayed in the upper part of the map and be in
the form of a drop-down list with only the Map and Satellite map types to choose from (see Listing 4-7
and Figure 4-8).

Listing 4-7. Using All the Properties of mapTypeControlOptions

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 mapTypeControl: true,
 mapTypeControlOptions: {
 style: google.maps.MapTypeControlStyle.DROPDOWN_MENU,
 position: google.maps.ControlPosition.TOP,
 mapTypeIds: [
 google.maps.MapTypeId.ROADMAP,
 google.maps.MapTypeId.SATELLITE
]
 }
};

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

53

Figure 4-8. Using all the properties of mapTypeControlOptions, you get a mapTypeControl that is positioned
at the top as a drop-down list with only two available choices.

navigationControl
This property displays or hides the navigation control. That is the control that typically resides in the
upper-left part of the map with which you can zoom and sometimes pan the map (Figure 4-9). Its
appearance has changed a bit since the old version of the API, but it essentially works the same way.

Figure 4-9. The default appearance of the navigation control. To the left is the big version and to the right
the small one.

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

54

Listing 4-8 shows the code for enabling the navigationControl.

Listing 4-8. The navigationControl Property

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 disableDefaultUI: true,
 navigationControl: true
};

navigationControlOptions
With the navigationControlOptions property, you determine the look of the navigation control. It works
very much the same as the mapTypeControlOptions property in that it takes an object as its value. The
object in question is an object of the type google.maps.NavigationControlOptions. It has two properties
that you will recognize from the mapTypeControlOptions object, namely, position and style.

position
This property is of type google.maps.ControlPosition and works exactly the same way as the MapType
control. Listing 4-9 shows the code for positioning the navigation control in the upper-left part of
the map.

Listing 4-9. navigationControlOptions Position Property

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 disableDefaultUI: true,
 navigationControl: true,
 navigationControlOptions: {
 position: google.maps.ControlPosition.TOP_RIGHT
 }
};

This code will result in Figure 4-10.

3

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

55

Figure 4-10. Notice the navigation control in the top-right corner. Depending on the size of the map, the
API will either render this small version or render the big one.

style
The style of the navgationControl comes in four flavors that all reside in the
google.maps.NavigationControlStyle class:

• DEFAULT: If set to this value, the control will vary according the map size and other
factors. As of now, that means it will display either the small or large control, but
that might change in future releases.

• SMALL: This is the small control. It only enables you to zoom the map.

• ANDROID: This control is specially tailored for Android smart phones. It differs not
only in look from the other controls but also in position since its default position is
at the bottom center of the map.

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

56

• ZOOM_PAN: This is the large control that lets you to both zoom and pan the map.

Listing 4-10 shows some example code on how to display the large control (zoom_pan); also see
Figure 4-11.

Listing 4-10. The navigationControl Property

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 navigationControl: true,
 navigationControlOptions: {
 style: google.maps.NavigationControlStyle.ZOOM_PAN
 }
};

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

57

Figure 4-11. You’ve forced the API to display the large mapNavigationControl even though it would
normally display the small control for a map this size.

Note that if you want to use this property, you should also explicitly set the property
navigationControl to true.

scaleControl
This property determines whether the scale control will be displayed. Set it to true to display the control
and false to hide it. This control is not displayed by default, so if you want it to show, you have to
explicitly set this property to true.

The scale control is typically positioned in the lower-left corner of the map and is used to get a sense
of the scale of the map. It looks like Figure 4-12.

Figure 4-12. The scale control

Listing 4-11 shows the code to enable the scale control.

Listing 4-11. The scaleControl Property

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

58

 mapTypeId: google.maps.MapTypeId.ROADMAP,
 scaleControl: true
};

scaleControlOptions
With this property, you control how the scale control will be displayed. It takes an object of type
google.maps.ScaleControlOptions as its value.

Just like the NavigationControlOptions, ScaleControlOptions has two properties, position and
style. The position property works the same way it does for the other controls. The style property
currently has only one value, and that is the default, so it doesn’t make sense to use it at all right now.
This might change in future releases, though.

Note that if you want to use the scaleControlOptions, you should also use the scaleControl
property and set it to true.

keyboardShortcuts
This property enables or disables the ability to use the keyboard to navigate the map. The keyboard
shortcuts that are available are the arrow keys for panning and +/- for zooming.

Set this property to true for the keyboard shortcuts to be active or false to disable them. The default
value is true.

Listing 4-12 shows how to disable the keyboard.

Listing 4-12. The keyboardShortcuts Property

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 keyboardShortcuts: false
};

disableDoubleClickZoom
Normally when you double-click in a map, it zooms in. To disable this behavior, set the
disableDoubleClickZoom property to true like in Listing 4-13.

Listing 4-13. The disableDoubleClickZoom Property

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 disableDoubleClickZoom: true
};

The default value of this property is false.

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

59

draggable
The default behavior is that you can pan the map by dragging it. If you for some reason would like to
disable it, you’ll have to set the draggable property to false, as shown in Listing 4-14.

Listing 4-14. The draggable Property

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 draggable: false
};

The default value of this property is true.

scrollwheel
Normally you can use the scroll wheel of the mouse to zoom in and out of the map. If you want to
disable this, you’ll have to set the scrollwheel property to false (Listing 4-15).

Listing 4-15. The scrollwheel Property

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 scrollwheel: false
};

The default value of this property is true.

streetViewControl
This property shows or hides the Street View control, popularly called the pegman. The default value of
this property is false, which means that Street View is not available. If you set it to true, the map will
display an orange pegman right above the zoom control (Listing 4-16).

Listing 4-16. The disableDoubleClickZoom Property

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 streetViewControl: true
};

When you start to drag the pegman, the streets that you can drop it to will be highlighted in blue
(Figure 4-13).

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

60

Figure 4-13. Drag the pegman to the desired street to enter Street View mode

Once you drop the pegman on a valid street, you will enter Street View mode (Figure 4-14). To go
back to the map, you have to click the X in the upper-right corner of the view.

Figure 4-14. Street View mode

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

61

■ Note Not all places have street view available. To see what regions that are covered, check out

www.google.com/intl/en_us/help/maps/streetview/where-is-street-view.html.

streetView
You can create a separate StreetViewPanorama to display the Street View in. You then pass it as the value
for the streetView property. If you don’t, Street View will use the map’s <div> to do this. Exactly how
Street View works is not covered in this book, but you can safely skip this property and set
streetViewControl to true if you are content with the default Street View.

Controlling the Map Container
The map container is the HTML element that contains the map. Typically it’s a <div> with id="map"
or something similar. The MapOptions object contains some properties that control the behavior of
this container.

noClear
Normally when the map loads, it automatically clears the map container (<div>) of any content, before
inserting the map into it. If for some reason you want to override that behavior, you’ll find this property
useful. If you set noClear to false, it will preserve the content of the map container when adding the
map to it.

There could be situations when you want to have your own elements positioned over the map and
want them to be in the map container. I would probably put them outside the map container and
position them on top of the map anyway, but at least now you know that it’s possible to keep them on
the inside.

Here’s the code for preserving the content of the map container when the map is added to it:

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 noClear: true
};

The default value of noClear is false.

backgroundColor
This property also affects the map container. It sets the color of the container’s background. This is
typically visible when you pan the map and before the map tiles have been loaded.

Either you can use a hexadecimal value code for setting the color or you can use the standard
keywords for color in HTML and CSS like red, blue, and yellow.

Hexadecimal RGB values starts with a # character followed by six hexadecimal digits. The digits are
divided in three pairs where the first one represents the color red, the second green, and the last one
blue. The values range from 00 to FF, where 00 means nothing of that particular color and FF means
maximum. The color red is #FF0000 (R=FF, G=00, B=00). If you convert this into normal numbers, it
would be (R=255, G=0, B=0).

http://www.google.com/intl/en_us/help/maps/streetview/where-is-street-view.html

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

62

Here’s how to set the background color to red using hexadecimal values:

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 backgroundColor: '#ff0000'
};

■ Tip To learn more about how the color values work and what keywords you can use, check out the Wikipedia

article on web colors at http://en.wikipedia.org/wiki/Web_colors.

Controlling the Cursor
This is the final category of properties, and it consists of properties that control how the cursor will look
in different situations.

draggableCursor
With this property, you can control what cursor to use when it’s hovering over a draggable object in the
map. You can set this either by providing it with the name of a cursor such as “pointer” or “move” or by
providing it with a URL to an image that you would like to use. The default cursors are the same that you
can use using the CSS property cursor. Table 4-1 lists the more useful ones. Note that they can vary in
appearance depending on which OS and browser you’re running. For a complete list of cursors
available, check out http://reference.sitepoint.com/css/cursor.

Table 4-1. Some of the Standard Cursors Available

Cursor Name Comment

 crosshair Could be good for marking a position with great accuracy.

default The default cursor.

help Indicates that help can be found.

move Could be used for indicating that something is movable.

pointer Standard cursor for indicating that something is clickable.

 text Great for hinting that the user can write here.

wait Hinting the user that the system is working. This is often an hourglass.

http://en.wikipedia.org/wiki/Web_colors
http://reference.sitepoint.com/css/cursor

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

63

The move cursor is, in my opinion, the only one of the standard cursors that is suitable for hinting
that something is draggable. Here’s how to set the map to use the move cursor over draggable objects:

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 draggableCursor: 'move'
};

If you find the standard cursors too limiting for your needs, you can use your own images instead.

Be aware, though, that there are benefits of using the standard ones and potential drawbacks with using
custom ones. The standard cursors look slightly different in different operating systems but will be
familiar to the user. On the contrary, custom cursors, if not carefully selected, can be unfamiliar to the
user and become yet another thing that the user needs to learn. If you still decide to go with custom
images, this is how it’s done.

To use an image, you provide the draggableCursor property with a URL instead of a keyword. Using
an image called myCursor.png that resides in a folder on the server called img would will in the following:

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 draggableCursor: 'img/myCursor.png'
};

draggingCursor
This property works the same way as draggableCursor. The only difference is that it controls the cursor
being used while dragging an object in the map.

var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP,
 draggingCursor: 'move'
};

Controlling the Map Settings with Methods
So far, we’ve set the maps settings directly on the MapOptions object. This is certainly a good way to do it
when you’re setting up the map. But what if you want to change one of the properties after the map has
been initialized? You can’t do it by manipulating the MapOptions object directly, so you have to do it
some other way! Fortunately, the map object provides a number of methods to help you.

There are two kinds of methods: the generic setOptions() method and specific methods for each of
the properties. Let’s start by examining the setOptions() method.

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

64

setOptions
This is a method of the map object, and it takes a MapOptions object as its sole attribute. To use it, you
create an object literal, just as you did when you were creating a map, and you pass it to this method.

So, to change the zoom level of the map, you could do this:

var options = {
 zoom: 12
};
map.setOptions(options);

A more compact way of doing it is to create the object literal inside the setOptions() method:

map.setOptions({
 zoom: 12
});

Now you changed only one value, but it’s when you need to change several properties at the same
time that this method is especially useful. Say, for example, that you want to change the zoom level and
the map type:

map.setOptions({
 zoom: 12,
 mapTypeId: google.maps.MapTypeId.SATELLITE
});

With this method, you can change almost all the properties of the MapOptions object. But there are a
few properties that can’t be changed:

• backgroundColor

• disableDefaultUI

• noClear

When it comes to these, you have to be careful to define them right away when initializing the map.

The Specific Methods
Specific methods are available both for setting the value of a property and for getting its current value.
These methods are available only for the required properties of the MapOptions object: center, zoom, and
mapTypeId.

Getting and Setting the Zoom Level
To get the current zoom level, there’s a method called getZoom(). It returns a number that indicates the
current zoom level. This means that if the zoom level of the map is 6, this method will return “6.” To set
the zoom level, use setZoom(). It takes a number, indicating the desired zoom level, as its only argument.

• getZoom(): Returns a number indicating the current zoom level of the map

• setZoom(zoomlevel:number): Sets the zoom level of the map

var zoomLevel = map.getZoom();
map.setZoom(12);

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

65

Changing the Center of the Map
It’s important to be able to center the map on a certain point. With these methods, you can both get it
and set it:

• getCenter(): Returns a number indicating the current zoom level of the map

• setCenter(latlng:LatLng): Sets the center of the map using a LatLng.

Getting and Setting the mapType
These methods enable you to examine the current map type as well as change it to another type:

• getMapTypeId(): Returns a string indicating the current mapTypeId

• setMapTypeId(mapTypeId:MapTypeId): Sets the mapTypeId using one of the values in
google.maps.MapTypeId

Putting the Methods to Use
You’re going to build an example where you’re going to put these methods to good use. In this example,
you’ll going to start with a basic map and then add a few buttons that will execute these methods when
you push them.

To set a good starting point, you start with the code in Listing 4-17. It will create a basic map with a
zoomed-out view of the United States.

Listing 4-17. A Starting Point

(function() {
 window.onload = function() {

 // Creating a MapOtions object with the required properties
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 // Creating the map
 var map = new google.maps.Map(document.getElementById('map'), options);

 // New code will go here

 };
})();

The HTML between <body> and </body> will look like this:

<input type="button" value="getValues" id="getValues" />
<input type="button" value="changeValues" id="changeValues" />

<div id="map"></div>

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

66

This will provide you with a page that looks something like Figure 4-15.

Figure 4-15. The example map

The page has two buttons with the IDs getValues and changeValues. Right now these buttons do
absolutely nothing when they’re clicked, but you’re going to use their IDs to attach click events to them.
By using the JavaScript method document.getElementById(), you create a reference to them. After you’ve
pinpointed the buttons, you’re going to add a little something extra, a click event with the help of the
onclick event listener. Let’s start with the getValues button. Insert this code right after the creation of
the map:

document.getElementById('getValues').onclick = function() {
 // put code here
}

An anonymous function is attached to the onclick event, and it’s inside this function that you will

put the code to retrieve values from the map.
The first value that you will get is the zoom level of the map. To do this, you’re going to use the

getZoom() method. To display the value that this method returns, you’re going to use an alert, and you’re
also going to add some text that explains what this value is:

document.getElementById('getValues').onclick = function() {
 alert('Current Zoom level is ' + map.getZoom());
}

If you run the page now and click the getValue button, the alert shown in Figure 4-16 will trigger.

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

67

Figure 4-16. An alert with the current zoom level

Next you’re going to add an alert that will display the current center of the map. To do this, you will
need to use the getCenter() method.

document.getElementById('getValues').onclick = function() {
 alert('Current Zoom level is ' + map.getZoom());
 alert('Current center is ' + map.getCenter());
}

Now when you reload the page and click the button, two alerts will trigger. The second one will

display the current center of the map (Figure 4-17).

Figure 4-17. An alert with the current center

If you haven’t panned the map, the value that will be displayed is the one you provided in the
MapOptions object. But if you try panning the map and click the button again, you will notice that the
value has been updated with the value for the new center of the map.

Lastly you’re going to add an alert that will display the current mapType:

document.getElementById('getValues').onclick = function() {
 alert('Current Zoom level is ' + map.getZoom());
 alert('Current center is ' + map.getCenter());
 alert('The current mapType is ' + map.getMapTypeId());
}

Now when you click the button, a third alert is triggered that will display the current map type (see

Figure 4-18).

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

68

Figure 4-18. An alert that displays the current mapType

If you change the mapType and click the getValues button again, you will notice that it displays the
new value.

Dynamically Changing the MapOptions Object
OK, now you’ve built the functionality to retrieve the values, and that’s good. But even better is to be
able to change the values. It’s time to build the functionality for this. You’re going to make the following
things happen when you click the button:

• Set the center of the map on the Statue of Liberty in New York City.

• Zoom in to zoom level 17.

• Change the map type to satellite.

You’re going to do this both by utilizing the generic setOptions() method and by using the specific
“setter” methods. But first you need to attach a click event to the changeValues button. Insert this code
right after the event handler for getValues:

document.getElementById('changeValues').onclick = function() {
 // Insert code
}

Changing the Center
You’re going to use the setCenter() method to change the center of the map. Since this method takes a
LatLng object as its argument, you first need to find out what coordinates to use. You’re going to set the
center on the Statue of Liberty, and its position is at latitude 40.6891 and longitude -74.0445. Let’s use
those values to create a LatLng object:

document.getElementById('changeValues').onclick = function() {
 var latLng = new google.maps.LatLng(40.6891, -74.0445);
}

With the LatLng object ready, all you need to do is to pass it as the argument to the

setCenter() method.

document.getElementById('changeValues').onclick = function() {
 var latLng = new google.maps.LatLng(40.6891, -74.0445);
 map.setCenter(latLng);
}

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

69

There! The functionality for setting the correct center is in place. But let’s make the code a bit more
compact by moving the creation of the LatLng object inside the setCenter() method.

document.getElementById('changeValues').onclick = function() {
 map.setCenter(new google.maps.LatLng(40.6891, -74.0445));
}

That’s better! Now that this functionality is in place, let’s add the zoom-in functionality.

COORDINATE PRECISION

How many decimals should be used for the coordinates? First, even though the Google Maps API can
handle more than six decimals, it can’t render positions more precise than that. So, using more than six
decimals is just a waste of numbers. If you’re using the toUrlValue() method of the LatLng object, you
will notice that it returns the coordinates with only six decimals, and now you know the reason why. But
when is a certain precision enough? Esa Sijainti, a Finnish Google Maps developer, has made a test page
to see what precision that is sufficient in different circumstances. The test is done in Google Maps API v2,
but the same applies for API v3. In this test he comes to the following conclusions:

• Five to six decimals are the most decimals you should use ever.

• Four decimals are appropriate for detail maps.

• Three decimals are good enough for centering on cities.

• Two decimals are appropriate for countries.

Check out the test yourself at http://koti.mbnet.fi/ojalesa/exam/decimal.html.

Zooming in
This one is very straightforward. You want to set the zoom level to 17. To do that, all you need to do is to
call the setZoom() method and pass 17 as its argument:

document.getElementById('changeValues').onclick = function() {
 map.setCenter(new google.maps.LatLng(40.6891, -74.0445));
 map.setZoom(17);
}

That was easy! Now let’s change the map type. This is done by using the setMapTypeId() method

and passing a mapTypeId to it. You want the mapType to be satellite, which means that you need to use
google.maps.MapTypeId.SATELLITE as an argument.

document.getElementById('changeValues').onclick = function() {
 map.setCenter(new google.maps.LatLng(40.6891, -74.0445));
 map.setZoom(17);
 map.setMapTypeId(google.maps.MapTypeId.SATELLITE);
}

All the functionality is in place! When you click the changeValues button, the map zooms in on the

Statue of Liberty and changes the map type to satellite view (see Figure 4-19).

http://koti.mbnet.fi/ojalesa/exam/decimal.html

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

70

Figure 4-19. When the changeValues button is clicked, the map zooms in on the Statue of Liberty.

You have working functionality, and that’s good, but I still don’t feel completely satisfied. You’re
doing three separate API calls. What if you could do just one? Remember the setOptions() method? It
enables you to change several of the map settings at the same time. Let’s use that to reduce the number
of calls to the API.

Remove the three method calls you’ve already done, and replace them with the setOptions()
methods. You then create an object literal with the properties center, zoom, and mapTypeID and pass the
appropriate values to them.

document.getElementById('changeValues').onclick = function() {
 map.setOptions({
 center: new google.maps.LatLng(40.6891, -74.0445),
 zoom: 17,
 mapTypeId: google.maps.MapTypeId.SATELLITE
 });
}

The map behaves exactly the same way as before, but you need to make only one API call to make it

happen. Although there’s nothing wrong with making several calls, this is a pretty convenient way of
changing several properties of the MapOptions object at once.

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

71

The Complete Code
Here’s the complete code for this example.

HTML
Listing 4-18 shows the HTML.

Listing 4-18. The Complete HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Chapter 4 - Google Maps API 3</title>
 <link rel="stylesheet" href="css/style.css" type="text/css" media="all" />
 <script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=false"></script>
 <script type="text/javascript" src="js/map.js"></script>
 </head>
 <body>

 <input type="button" value="getValues" id="getValues" />
 <input type="button" value="changeValues" id="changeValues" />

 <div id="map"></div>

 </body>
</html>

CSS
Listing 4-19 shows the CSS.

Listing 4-19. The Complete CSS

#map {
 width: 100%;
 height: 500px;
 border: 1px solid #000;
}

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://maps.google.com/maps/api/js?sensor=false

CHAPTER 4 ■ TAKING THE MAP FURTHER WITH MAPOPTIONS

72

JavaScript
Listing 4-20 shows the JavaScript.

Listing 4-20. The Complete JavaScript

(function() {
 window.onload = function() {

 // Creating a MapOptions object with the required properties
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 // Creating the map
 var map = new google.maps.Map(document.getElementById('map'), options);

 // Attaching click events to the buttons

 // Getting values
 document.getElementById('getValues').onclick = function() {
 alert('Current Zoom level is ' + map.getZoom());
 alert('Current center is ' + map.getCenter());
 alert('The current mapType is ' + map.getMapTypeId());
 }

 // Changing values
 document.getElementById('changeValues').onclick = function() {
 map.setOptions({
 center: new google.maps.LatLng(40.6891, -74.0445),
 zoom: 17,
 mapTypeId: google.maps.MapTypeId.SATELLITE
 });
 }

 };
})();

Summary
In this chapter, you examined all the available map settings. They provide simple means to tweak the
map to meet your requirements. You also examined the setOptions() method and the specific methods
and looked at how they provide a convenient way to retrieve or change most of the map settings after the
map has been created.

With this knowledge, you are ready for bigger challenges, namely, to put the map to use by plotting
locations on it.

C H A P T E R 5

■ ■ ■

73

X Marks the Spot

The most common use of maps on the Internet is to visualize the geographic position of something. The
Google Maps marker is the perfect tool for doing this.

A marker is basically a small image that is positioned at a specific place on a map. Its most
frequent incarnation is the familiar drop-shaped marker that is the default marker in Google Maps
(Figure 5-1).

Figure 5-1. The default map marker

Setting a Starting Point
Before you start learning how to use markers, let’s set a starting point for this example. It contains
nothing new. It’s just a plain map that’s centered on Manhattan in New York City (Listing 5-1).

Listing 5-1. A Starting Point

 (function() {
 window.onload = function() {

 // Creating an object literal containing the properties
 // we want to pass to the map
 var options = {
 zoom: 12,
 center: new google.maps.LatLng(40.7257, -74.0047),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 // Creating the map
 var map = new google.maps.Map(document.getElementById('map'), options);

 };
})();

Figure 5-2 shows what this map will look like.

CHAPTER 5 ■ X MARKS THE SPOT

74

Figure 5-2. An empty map

A Simple Marker
If you want to put a marker on your map with the default look, it’s easily achieved with only a few lines
of code.

To create a marker, you need to use the google.maps.Marker object. It takes only one parameter,
which is an object of type google.maps.MarkerOptions. MarkerOptions has several properties that you
can use to make the marker look and behave in different ways. For now, let’s settle on the only two
required properties: position and map.

• position
This property defines the coordinates where the marker will be placed. It takes
an argument in the form of a google.maps.LatLng object.

• map
The map property is a reference to the map to which you want to add your marker.

OK, so now that you know how to create a marker, let’s put that knowledge to good use. Add the
code in Listing 5-2 right after the code that creates the map.

Listing 5-2. Creating a Marker and Adding It to the Map

// Adding a marker to the map
var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.7257, -74.0047),
 map: map
});

CHAPTER 5 ■ X MARKS THE SPOT

75

This little snippet of code will put a marker on the map. It has the look of the default Google Maps
marker, and you can’t do anything with it really, but it dutifully marks a spot on the map, as shown in
Figure 5-3.

Figure 5-3. A simple marker

Adding a Tooltip
The first thing you might want to do is to add a tooltip to the marker. A tooltip is a yellow box with some
text in it that appears when you hold the mouse pointer over an object. To add a tooltip to a marker,
you’ll use the property title. It’s as simple as setting the title property of the MarkerOptions object
(Listing 5-3).

Listing 5-3. Adding a Title to the Marker

// Adding a marker to the map
var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.7257, -74.0047),
 map: map,
 title: 'Click me'
});

Doing this will add a nice little tooltip to the marker when you hold the mouse pointer over it, as
shown in Figure 5-4.

CHAPTER 5 ■ X MARKS THE SPOT

76

Figure 5-4. A marker with a tooltip

Changing the Icon
If you’re not satisfied with the default icon, you can change it to a custom one. The easiest way to do
this is to set the icon property of MarkerOptions to an URL of a suitable image.

Google hosts a number of images that you are free to use. If you go to http://gmaps-
samples.googlecode.com/svn/trunk/markers/blue/blank.png with your web browser, you will find the
image shown in Figure 5-5. And that’s the one you’re going to use for this example (Listing 5-4).

Figure 5-5. A custom marker

Listing 5-4. Changing the Icon

var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.761137, -73.97674),
 map: map,
 title: 'Click me',
 icon: 'http://gmaps-samples.googlecode.com/svn/trunk/markers/blue/blank.png'
});

Doing this will change the look of the marker, as shown in Figure 5-6.

http://gmaps-samples.googlecode.com/svn/trunk/markers/blue/blank.png
http://gmaps-samples.googlecode.com/svn/trunk/markers/blue/blank.png
http://gmaps-samples.googlecode.com/svn/trunk/markers/blue/blank.png
http://gmaps-samples.googlecode.com/svn/trunk/markers/blue/blank.png

CHAPTER 5 ■ X MARKS THE SPOT

77

Figure 5-6. A simple custom icon

In this example, I’ve been using an icon that resides at Google’s servers, and that’s OK since
Google is also the one providing the API. Generally, though, you should not link to images that reside
at servers belonging to others; rather, you should keep them on your own server and feed them from
there. One of the reasons is that it’s just plain wrong to steal other people’s bandwidth without
permission. Another reason is that if the people running the server move the files, your application
will break.

Icons Supplied by Google
Google has a collection of standard icons that you can use on your map. Most of them use a similar URL
that looks like this:

http://gmaps-samples.googlecode.com/svn/trunk/markers/color/markerx.png

where color is one of the following values:

• blue

• green

• orange

• pink

• red

and x is a number between 1 and 99. If you want a marker with no number, use the filename blank.png.

Consider Listing 5-5.

http://gmaps-samples.googlecode.com/svn/trunk/markers/color/markerx.png

CHAPTER 5 ■ X MARKS THE SPOT

78

Listing 5-5. Changing the Icon

// Adding a marker to the map
var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.7257, -74.0047),
 map: map,
 title: 'Click me',
 icon: 'http://gmaps-samples.googlecode.com/svn/trunk/markers/green/marker1.png'
});

Notice that this example uses the URL http://gmaps-
samples.googlecode.com/svn/trunk/markers/green/marker1.png. This will display a green icon with the
number 1 in it on your screen (Figure 5-7 gives you an idea of how it will look).

Figure 5-7. One of the markers that Google provides

This is an easy way to construct a custom icon, but if you look at it closely, you will notice that it
doesn’t have a shadow. In Chapter 6, you will look at how to create a more complex icon with a shadow,
a custom shape, and a defined clickable area. You will also learn about a really clever way to deal with
scenarios where you need lots of different marker icons.

The Complete Code So Far
At this point, before you start adding more functionality to the map, I think it’s best to stop for a minute
and review the complete code of this example so far (Listing 5-6).

What you’ve done is to add a marker to the map and add a tooltip to it. You’ve also changed the
default icon.

http://gmaps-samples.googlecode.com/svn/trunk/markers/green/marker1.png
http://gmaps-samples.googlecode.com/svn/trunk/markers/green/marker1.png
http://gmaps-samples.googlecode.com/svn/trunk/markers/green/marker1.png
http://gmaps-samples.googlecode.com/svn/trunk/markers/green/marker1.png

CHAPTER 5 ■ X MARKS THE SPOT

79

Listing 5-6. The Complete Code for Example 5-1

(function() {
 window.onload = function() {

 // Creating an object literal containing the properties
 // we want to pass to the map
 var options = {
 zoom: 12,
 center: new google.maps.LatLng(40.7257, -74.0047),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 // Creating the map
 var map = new google.maps.Map(document.getElementById('map'), options);

 // Adding a marker to the map
 var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.7257, -74.0047),
 map: map,
 title: 'Click me',
 icon: 'http://gmaps-samples.googlecode.com/svn/trunk/markers/blue/blank.png'
 });

 };
})();

■ Tip Remember that the code is available for download from the book’s web site at

www.svennerberg.com/bgma3. The name of the example is always mentioned in the code caption.

Adding an InfoWindow
Often when marking places on a map, you will want to show additional information related to that
place. The Google Maps API offers a perfect tool for this, and that’s the InfoWindow. It looks like a speech
bubble and typically appears over a marker when you click it (Figure 5-8).

Figure 5-8. An InfoWindow

http://gmaps-samples.googlecode.com/svn/trunk/markers/blue/blank.png
http://www.svennerberg.com/bgma3

CHAPTER 5 ■ X MARKS THE SPOT

80

A Simple InfoWindow
Much like the Marker object, the InfoWindow object resides in the google.maps namespace and takes
only one argument, and that argument is an object called InfoWindowOptions.

Like the MarkerOptions object, the InfoWindowOptions object has several properties, but the most
important one is content. This property controls what will show inside the InfoWindow. It can be plain
text, HTML, or a reference to an HTML node. For now, you will stick with plain text, but do note that you
can use full HTML if you like (Listing 5-7). That also means that you can include any HTML element,
image, or video and then style it any way you want.

Listing 5-7. Creating an InfoWindow with the Text “Hello World”

// Creating an InfoWindow with the content text: "Hello World"
var infowindow = new google.maps.InfoWindow({
 content:'Hello world'
});

Now you’ve created an InfoWindow object that will contain the text “Hello world,” but it doesn’t

automatically appear on the map. What you want to do is to connect it with the marker so that when you
click the marker, the InfoWindow appears. To do this, you need to attach a click event to the marker.

CONTROLLING THE SIZE OF THE WINDOW

To control the size of the InfoWindow, you can add an HTML element with a specific class attribute as its
content. This way, you can control its size in your CSS.

Here’s the JavaScript:

var infowindow = new google.maps.InfoWindow({
content:'<div class="info">Hello world</div>'
});

Here’s the CSS:

.info {
 width: 250px;
}

A Word or Two About Events
Every time you interact with something on a web page, an event is triggered. For example, when
you click a link, a click event is triggered. When you press a button on the keyboard, a keypress event
is triggered.

These are all active events that are triggered by the user. But there are also other types of events,
such as passive events, that is, events that happen in the background. You’ve already looked at the load
event of the window object. It’s triggered when the web page in a browser window has finished loading.
Another example is the focus event, which triggers when an object gets focus. In the Google Maps API,
there are lots of these passive events, such as tilesloaded, bounds_changed, and center_changed, which
are all events of the Maps object.

CHAPTER 5 ■ X MARKS THE SPOT

81

■ Note Actually, when you click something, three events happen. They are click, mousedown, and mouseup. You
can choose which one of these you want to capture. What you should know is that mousedown happens first, right
when you hold down the mouse button. The mouseup event happens when you release the depressed mouse

button, and click happens after mouseup and mousedown both have occurred. Similarly, when you press a key on
the keyboard, three events happen. These are besides keypress, keydown, and keyup. Of these, keydown happens

first, then keyup, and lastly keypress.

Listen for the Events

What these events have in common is that you can catch them in your code and do stuff when they are
triggered. To do this, you need to add listeners. A listener is connected to an object and a certain event.
It just sits quietly and waits for the event to happen. When the event does happen, the listener pops
into action and runs some code. In the Google Maps API, there’s a method for adding a listener that’s
called google.maps.events.addListener(). It takes three arguments:

• The object it’s attached to.

• The event it should listen for.

• A function that is executed when the event is triggered. This function is called an
event handler.

Adding a Click Event to the Marker
To add a click event to your marker, you need to extend the code with an event listener (Listing 5-8).

Listing 5-8. Adding an Event Listener

// Creating an InfoWindow with the content text: "Hello World"
var infowindow = new google.maps.InfoWindow({
 content: 'Hello world'
});

// Adding a click event to the marker
google.maps.event.addListener(marker, 'click', function() {
 // Code to be run...
});

This code will attach a click event to the marker that will run some code when it’s being triggered.
Now all you have left to do is to write some code that will open the InfoWindow.

The InfoWindow object has a method called open() that will open the InfoWindow and make it visible
on the map. The open() method takes two arguments. The first argument is a reference to the map
object that it will be added to (in case you have more than one map on the page). The second argument
is the object that the InfoWindow will attach itself to. In our case, you want to attach it to the marker
being clicked. The reason you need to do this is that you want the InfoWindow to know where it should
position itself on the map. If you provide it with an object, it will automatically position itself so that the
tip of the stem of the speech bubble will point at the object. This argument is actually optional. You

CHAPTER 5 ■ X MARKS THE SPOT

82

could, if you wanted, skip this and instead set the position property of the InfoWindowOptions object to
the correct position, but that’s not what you’re going to do here (Listing 5-9).

Listing 5-9. Opening an InfoWindow

// Creating an InfoWindow with the content text: "Hello World"
var infowindow = new google.maps.InfoWindow({
 content: 'Hello world'
});

// Adding a click event to the marker
google.maps.event.addListener(marker, 'click', function() {
 // Calling the open method of the infoWindow
 infowindow.open(map, marker);
});

Now you have all the components in place, and if you try this code, the map will initially display
your marker. When you click the marker, the InfoWindow will display (Figure 5-9). Notice how it points
at the marker.

Figure 5-9. An InfoWindow associated with the marker

The Complete Code
Listing 5-10 shows the complete code so far in the process. What it does is to create a map, put a marker
on it, and attach a click event to the marker that will open an InfoWindow.

CHAPTER 5 ■ X MARKS THE SPOT

83

Listing 5-10. The Complete Code for Example 5-2

(function() {
 window.onload = function() {

 // Creating an object literal containing the properties
 // we want to pass to the map
 var options = {
 zoom: 12,
 center: new google.maps.LatLng(40.7257, -74.0047),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 // Creating the map
 var map = new google.maps.Map(document.getElementById('map'), options);

 // Adding a marker to the map
 var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.7257, -74.0047),
 map: map,
 title: 'Click me'
 });

 // Creating an InfoWindow with the content text: "Hello World"
 var infowindow = new google.maps.InfoWindow({
 content: 'Hello world'
 });

 // Adding a click event to the marker
 google.maps.event.addListener(marker, 'click', function() {
 // Calling the open method of the infoWindow
 infowindow.open(map, marker);
 });

 };
})();

More Markers
Now you know how to put a single marker on the map. You also have some rudimentary knowledge of
how to tweak the marker a little bit and how to attach an InfoWindow to it. But what if you want to put
more markers on the map? You could of course add them one by one, but eventually that’s going to add
up to a whole lot of code. A much smarter thing to do is to use arrays and loops.

JavaScript Arrays
A JavaScript array is basically a collection of variables. It can contain whatever you want to put in it.

There are two ways of creating an array in JavaScript. The first one is to call the constructor of the
Array object:

var myArray = new Array();

CHAPTER 5 ■ X MARKS THE SPOT

84

The other way is to create an array literal:

var myArray = [];

These two do exactly the same thing, but the second one is the preferred method these days and is
also the method that I will stick to throughout this book.

With the array literal method, you can easily instantly fill the array with different things, such as,
for example, a list of fruit.

var myArray = ['apple', 'orange', 'banana'];

Each of the items in the array list gets an individual index number. The first item gets number 0,
the second item gets number 1, and so on. So to retrieve an item from an array, you simply use its
index number.

myArray[0] // returns apple
myArray[1] // returns orange
myArray[2] // returns banana

Another way of adding items to an array is with the array’s native method push(). What push()
does is take the passed value and add it to the end of the array. So, creating the same array as used
earlier with this technique would look like this:

// First we create the array object
var myArray = [];

//Then we add items to it
myArray.push('apple');
myArray.push('orange');
myArray.push('banana');

This will produce exactly the same array as previously. This method is handy when you don’t have
all the values up front and instead need to add them as you go along.

Arrays also have a native length property that returns the number of items that it contains. In our
case, length will return the value 3 since myArray contains three items:

myArray.length // returns 3

Knowing this, you can loop through the array to extract its items.

ARRAY CONFUSION

The index of each array item and the array’s length are a source of confusion for most novice
programmers. When counting the items in an array, you start from 1; therefore, an array that contains
three items has a length of 3. Nothing confusing about that! The confusion starts when you start looking at
each item’s index number. The index number of the last item is not 3, but 2. But why is that? It’s because
the index always starts at 0; thus, if you have three items, that last one will have the index 2 (0, 1, 2).

CHAPTER 5 ■ X MARKS THE SPOT

85

Introducing Loops
There are two kinds of loops in JavaScript. There are ones that execute a specified number of times
called for loops, and there are ones that execute while a specific condition is true called while loops.
We’re going to focus on for loops.

Loops are good for executing the same code several times. This is very handy when you, for
example, want to put lots of markers on a map. You then want to run the same code over and over but
insert different data each time. For this task, a for loop is perfect.

The basic construction of a for loop looks like this:

for (var i = 0; i < 3; i++) {
 document.writeln(i + ',');
}

This loop will produce the following result:

0, 1, 2,

This is what happens:

1. The first statement (var i = 0) defines the variable i and assigns it the value
0. This will be done only before the first iteration.

2. Before each iteration, the loop will check the second statement (i < 3) and
see if it’s true. If it’s true, it will run one more time and then check it again.
This will go on until it eventually isn’t true anymore, and then the loop will
stop.

3. The third statement will add 1 to i at the end of each iteration. So, eventually
i will be 3, and when it is, the second statement will no longer be true, and
the loop will stop.

Now that you understand the mechanics of the for loop, you can get started using them to add
markers to the map.

Adding U.S. Cities to the Map
In this example, you’re going to put a few U.S. cities on the map. First you’re going to store the
coordinates for the cities in an array. Then you’re going to loop through that array to put each one of
those on a map.

Before you start learning how to do this, let’s start with a clean plate. I’m going to use the code in
Listing 5-11 as a starting point for this example.

Listing 5-11. A Fresh Start

(function() {
 window.onload = function() {

 // Creating an object literal containing the properties
 // we want to pass to the map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),

CHAPTER 5 ■ X MARKS THE SPOT

86

 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 // Creating the map
 var map = new google.maps.Map(document.getElementById('map'), options);

 };
})();

Since you’re going to put U.S. cities on the map, you need it to be zoomed out and to display all of
the United States (Figure 5-10).

Figure 5-10. A clean plate

OK, let’s get started! First you have to create an array containing the coordinates. Since you can
store any object you want to in an array, let’s store a google.maps.LatLng object containing the
coordinates for each city in each spot in the array. This way, you can use the array items right away
when you create the markers (Listing 5-12).

Listing 5-12. Creating the places Array

// Creating an array that will contain the coordinates
// for New York, San Francisco, and Seattle
var places = [];

// Adding a LatLng object for each city
places.push(new google.maps.LatLng(40.756, -73.986));
places.push(new google.maps.LatLng(37.775, -122.419));
places.push(new google.maps.LatLng(47.620, -122.347));

CHAPTER 5 ■ X MARKS THE SPOT

87

You now have an array containing all the data you need to put markers on the map. The next step
is to loop through the array to extract this data (Listing 5-13).

Listing 5-13. Looping Through the places Array

// Looping through the places array
for (var i = 0; i < places.length; i++) {

 // Creating a new marker
 var marker = new google.maps.Marker({
 position: places[i],
 map: map,
 title: 'Place number ' + i
 });

}

This code loops through the array, and each iteration creates a new marker. Notice when you set
the value for the property position, you call the array by its index number, places[i]. Also notice that
you set a tooltip for each marker with the property title. It will get the text “Place number” followed by
the current number of the iteration. The marker in the first iteration will get the tooltip “Place number
0,” the marker in the second iteration will get the tooltip “Place number 1,” and so on (Figure 5-11).

Figure 5-11. Displaying several markers at the same time

CHAPTER 5 ■ X MARKS THE SPOT

88

Adding InfoWindows
Next you want to add InfoWindow objects to the marker so that when you click them, an InfoWindow
pops up. You do this by adding the code in Listing 5-14inside your loop, just beneath the code that
creates the marker.

Listing 5-14. Adding an Event Listener

// Looping through the places array
for (var i = 0; i < places.length; i++) {

 // Creating a new marker
 var marker = new google.maps.Marker({
 position: places[i],
 map: map,
 title: 'Place number ' + i
 });

 // Adding an event-listener
 google.maps.event.addListener(marker, 'click', function() {
 // Creating a new infowindow
 var infowindow = new google.maps.InfoWindow({
 content: 'Place number ' + i
 });

 infowindow.open(map, marker);

 });
}

What happens here is that a click event is attached to the marker so that when you click it, a new
InfoWindow with the content “Place number,” and the number of the current iteration is created. The
last line of the code opens the InfoWindow.

Problem

When you run this code, you will immediately spot a problem. No matter which marker you click, the
InfoWindow will open for the marker that was created last, and the text displayed in it will be “Place
number 3” (Figure 5-12).

CHAPTER 5 ■ X MARKS THE SPOT

89

Figure 5-12. Even though place number 0 is clicked, place number 2 is opened with the text “Place
number 3”

This is a problem that is common when dealing with event listeners. Instead of passing the values
of the variables to the event handler of the event listener, you pass the variables themselves. Since the
variable marker, after the code has run, contains the last marker created, that’s the marker you’re
going to get, and that’s why the InfoWindow is attached to it. This happens because event listeners are
invoked at a later time than the time of their creation. In this case, it happens when a marker is clicked.

Also notice that the text in the InfoWindow shows “Place number 3” even though it’s place number 2.
That’s because 3 is the last value assigned to i before the loop exits.

To solve this problem, you need to use something called closure. I think Douglas Crockford is the
one defining it best in his article “Private Members in JavaScript” at
http://www.crockford.com/javascript/private.html:

“This pattern of public, private, and privileged members is possible because JavaScript
has closures. What this means is that an inner function always has access to the vars
and parameters of its outer function, even after the outer function has returned. This
is an extremely powerful property of the language…”

What he says is that the inner function has access to the variables and parameters of outer
functions. But if you look at it from the other end, you see that outer functions do not have access to the
parameters and variables of its inner functions.

And that’s exactly what happens here. The inner function, in this case the event handler, has
access to the outer variables, but you want it to have its own persistent variables. So, how are you going
to find a way around this?

http://www.crockford.com/javascript/private.html:

CHAPTER 5 ■ X MARKS THE SPOT

90

Nesting the Event Listener Inside a Function
To fix your problem, you need to put the event listener inside a function. You could put it inside a
named function, but a more elegant solution is to create an anonymous function to wrap around it. You
will immediately invoke this function, passing the variables of the loop, i and marker, as its
parameters. This way, you ensure that the event handler has access to the values of the variables
instead of the variables themselves.

You do this by creating an anonymous function that’s immediately invoked. The function will be
wrapped around the event listener and takes two parameters, i and marker (Listing 5-15).

Listing 5-15. Adding an Self-invoking Anonymous Function That Takes i and marker as Its Parameter

(function(i, marker) {

 // Creating the event listener. It now has access to the values of
 // i and marker as they were during its creation
 google.maps.event.addListener(marker, 'click', function() {
 var infowindow = new google.maps.InfoWindow({
 content: 'Place number ' + i
 });
 infowindow.open(map, marker);
 });

})(i, marker);

You probably recognize this pattern since it’s the Module pattern you’ve been using all along to

wrap your code in. The difference here is that instead of merely invoking it at the end using (), you
now also pass parameters to it (i, marker).

As you can probably see, the code for creating the event listener is identical to what you had
before. The difference is that it now has access to the values of the outer variables i and marker, in its
own inner variables i and marker.

This takes care of the previous problem! Now when you click the markers, the correct InfoWindow
objects are displayed (Figure 5-13).

CHAPTER 5 ■ X MARKS THE SPOT

91

Figure 5-13. Clicking the first marker now displays the correct InfoWindow.

Listing 5-16 shows the complete code so far.

Listing 5-16. The Complete Code for Example 5-3

(function() {
 window.onload = function() {

 // Creating an object literal containing the properties
 // we want to pass to the map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 // Creating the map
 var map = new google.maps.Map(document.getElementById('map'), options);

 // Creating an array that will contain the coordinates
 // for New York, San Francisco, and Seattle
 var places = [];

 // Adding a LatLng object for each city
 places.push(new google.maps.LatLng(40.756, -73.986));
 places.push(new google.maps.LatLng(37.775, -122.419));
 places.push(new google.maps.LatLng(47.620, -122.347));

 // Looping through the places array

CHAPTER 5 ■ X MARKS THE SPOT

92

 for (var i = 0; i < places.length; i++) {

 // Adding the marker as usual
 var marker = new google.maps.Marker({
 position: places[i],
 map: map,
 title: 'Place number ' + i
 });

 // Wrapping the event listener inside an anonymous function
 // that we immediately invoke and passes the variable i to.
 (function(i, marker) {

 // Creating the event listener. It now has access to the values of
 // i and marker as they were during its creation
 google.maps.event.addListener(marker, 'click', function() {

 var infowindow = new google.maps.InfoWindow({
 content: 'Place number ' + i
 });

 infowindow.open(map, marker);

 });

 })(i, marker);

 }

 }
})();

Did you get all that? Don’t worry if you didn’t. Closure is an advanced topic and is pretty hard to
really wrap your head around. Just remember this pattern when creating event listeners in loops, and
you’ll be fine.

If you want to learn more about how closures work, here are a couple of articles to get you started:

• Closure article on Wikipedia
http://en.wikipedia.org/wiki/Closure_(computer_science)

• “Closures, finally explained!”
http://reprog.wordpress.com/2010/02/27/closures-finally-explained/

• “A Graphical Explanation of JavaScript Closures in a jQuery Context”
http://www.bennadel.com/blog/1482-A-Graphical-Explanation-Of-Javascript-
Closures-In-A-jQuery-Context.htm

Dealing with Several Windows
In Google Maps API 2, only one InfoWindow could be displayed at a time. The default behavior was that
every time you opened an InfoWindow, if another InfoWindow was open, it would close. This is not the
case in version 3 of the API where you instead can open an infinite number of them. In some
situations, that’s great, but most of the time you’ll probably want to have only one InfoWindow open at a
time (Figure 5-14). An easy way to fix that is to simply have one InfoWindow that you reuse over and
over again.

http://en.wikipedia.org/wiki/Closure_
http://reprog.wordpress.com/2010/02/27/closures-finally-explained
http://www.bennadel.com/blog/1482-A-Graphical-Explanation-Of-Javascript-Closures-In-A-jQuery-Context.htm
http://www.bennadel.com/blog/1482-A-Graphical-Explanation-Of-Javascript-Closures-In-A-jQuery-Context.htm

CHAPTER 5 ■ X MARKS THE SPOT

93

Figure 5-14. Several InfoWindow objects

To do this, you first need to declare a global variable that will hold the InfoWindow object (Listing 5-
17). This will be your reusable object. Be sure to create this outside of the loop so that it’s readily
available. (If you declare it inside the loop, it would be re-created each time the loop iterates.)

Listing 5-17. Declaring the infowindow Variable

// Declare infowindow as a global variable This will be at placed
// outside the for-loop just above it
var infowindow;

Next you need to add a check to see whether your variable already contains an InfoWindow object.
If it does, you just use it; if it doesn’t, you create it (Listing 5-18).

Listing 5-18. Checking for the InfoWindow

// Add a click event to the marker
google.maps.event.addListener(marker, 'click', function() {

 // Check to see if the infowindow already exists
 if (!infowindow) {
 // Create a new InfoWindow object
 infowindow = new google.maps.InfoWindow();
 }

});

CHAPTER 5 ■ X MARKS THE SPOT

94

What happens here is that instead of creating a new InfoWindow every time the user clicks a
marker, you just move the existing one around and at the same time change its content. It’s easy to
check whether the variable infowindow is carrying an object with an if statement. An empty variable
will return undefined, which means false in JavaScript. If it, on the other hand, carries an object, it will
return the object, which in JavaScript is the same thing as true.

Before, you defined the content of the InfoWindow upon its creation. Since you now reuse the same
InfoWindow object over and over again, you need to set the content in some other way. Fortunately, the
InfoWindow object has a method called setContent() that will do exactly that. This method takes plain
text, HTML, or a reference to an HTML node as its value, much like the content property of the
InfoWindowOptions object did. You’re going to give it the exact same value as you gave the content
property early.

With that in place, all you need to do is to open the InfoWindow (Listing 5-19).

Listing 5-19. Finalizing the Event Handler

// Add click event to the marker
google.maps.event.addListener(marker, 'click', function() {

 // Check to see if the infowindow already exists and is not null
 if (!infowindow) {
 // if the infowindow doesn't exist, create an
 // empty InfoWindow object
 infowindow = new google.maps.InfoWindow();
 }

 // Setting the content of the InfoWindow
 infowindow.setContent('Place number ' + i);

 // Tying the InfoWindow to the marker
 infowindow.open(map, marker);
});

Now the code will produce a map that will display only one InfoWindow at a time. Listing 5-20
shows the complete code.

Listing 5-20. The Complete Code for Example 5-4

(function() {
 window.onload = function() {

 // Creating an object literal containing the properties
 // you want to pass to the map
 var options = {
 zoom:3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 // Creating the map
 var map = new google.maps.Map(document.getElementById('map'), options);

 // Creating an array which will contain the coordinates

CHAPTER 5 ■ X MARKS THE SPOT

95

 // for New York, San Francisco and Seattle
 var places = [];

 // Adding a LatLng object for each city
 places.push(new google.maps.LatLng(40.756, -73.986));
 places.push(new google.maps.LatLng(37.775, -122.419));
 places.push(new google.maps.LatLng(47.620, -122.347));

 // Creating a variable that will hold the InfoWindow object
 var infowindow;

 // Looping through the places array
 for (var i = 0; i < places.length; i++) {

 // Adding the markers
 var marker = new google.maps.Marker({
 position: places[i],
 map: map,
 title: 'Place number ' + i
 });

 // Wrapping the event listener inside an anonymous function
 // that we immediately invoke and passes the variable i to.
 (function(i, marker) {

 // Creating the event listener. It now has access to the values of
 // i and marker as they were during its creation
 google.maps.event.addListener(marker, 'click', function() {

 if (!infowindow) {
 infowindow = new google.maps.InfoWindow();
 }

 // Setting the content of the InfoWindow
 infowindow.setContent('Place number ' + i);

 // Tying the InfoWindow to the marker
 infowindow.open(map, marker);

 });

 })(i, marker);

 }

 };
})();

CHAPTER 5 ■ X MARKS THE SPOT

96

Automatically Adjusting the Viewport to Fit All Markers
Sometimes you know beforehand which markers are going to be added to the map and can easily
adjust the position and zoom level of the map to fit all the markers inside the viewport. But more than
often, you’re dealing with dynamic data and don’t know exactly where the markers are going to be
positioned. You could, of course, have the map zoomed out so far out that you’re certain that all the
marker will fit, but a better solution is to have the map automatically adjust to the markers added.
There’s when the LatLngBounds object will come in handy.

Introducing the LatLngBounds Object
A bounding box is a rectangle defining an area. Its corners consist of geographical coordinates, and
everything that’s inside it is within its bounds. It can be used to calculate the viewport of the map, but
it’s also useful for calculating whether an object is in a certain area.

The bounding box in Google Maps is represented by the google.maps.LatLngBounds object. It takes
two optional arguments, which are the southwest and the northeast corners of the rectangle. Those
arguments are of the type LatLng.

To manually create a LagLngBounds object to fit the markers, you have to first determine the
coordinates for its corners and then create it. This code is typically inserted just after the code that
creates the map (Listing 5-21 and Figure 5-15).

Listing 5-21. Creating a LatLngBounds Object

var bounds = new google.maps.LatLngBounds(
 new google.maps.LatLng(37.775,-122.419),
 new google.maps.LatLng(47.620,-73.986)
);

Figure 5-15. A bounding box is made up of the southwest and northeast corners of the rectangle fitting all
of the markers inside it

CHAPTER 5 ■ X MARKS THE SPOT

97

Let the API Do the Heavy Lifting
To extend the example to automatically adjust the viewport to fit the markers inside it, you need to add
a LatLngBounds object to it.

First you create an empty LatLangBounds object (Listing 5-22). It needs to be placed somewhere
outside the for loop.

Listing 5-22. Creating an Empty LatLngBounds Object

// Creating a LatLngBounds object
var bounds = new google.maps.LatLngBounds();

Then you’re going to extend the bounds with each marker added to the map (Listing 5-23). This
will automatically give you a bounding box of the correct dimensions.

Listing 5-23. Extending the bounds Object

// Looping through the places array
for (var i = 0; i < places.length; i += 1) {

 […]

 // Extending the bounds object with each LatLng
 bounds.extend(places[i]);

}

Lastly, when you’ve iterated through all the markers, you’re going to adjust the map using the
fitBounds() method of the map object (Listing 5-24). It takes a LatLngBounds object as its argument and
then uses it to determine the correct center and zoom level of the map.

Listing 5-24. Adjusting the Map According to the Bounds

// Looping through the places array
for (var i = 0; i < places.length; i += 1) {

 […]

 // Extending the bounds object with each LatLng
 bounds.extend(places[i]);

}

// Adjusting the map to new bounding box
map.fitBounds(bounds)

Ta-da! You now have a map that perfectly fits all the markers inside the viewport. If you were to
add additional cities to the map, they would automatically be taken into account when calculating
the viewport.

Now if you add Rio de Janeiro in Brazil to your array of cities and run the map (Listing 5-25), you
will see that it automatically adjusts to the new bounding box (Figure 5-16).

CHAPTER 5 ■ X MARKS THE SPOT

98

Listing 5-25. Adding Rio de Janeiro to the places Array

places.push(new google.maps.LatLng(-22.933, -43.184));

Figure 5-16. Now that Rio de Janeiro is added to the map, you can see that the map adjusts the viewport to
fit it as well.

The Complete Code
You’ve done quite a lot in this chapter and kept adding more and more functionality to your map. You
now have a pretty capable map that utilizes a lot of the built-in functionality in the Google Maps API.
Listing 5-26 shows the complete code.

Listing 5-26. The Complete Code for Example 5-5

(function() {

 // Creating a variable that will hold the InfoWindow object
 var infowindow;

 window.onload = function() {

 // Creating an object literal containing the properties
 // we want to pass to the map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),

CHAPTER 5 ■ X MARKS THE SPOT

99

 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 // Creating the map
 var map = new google.maps.Map(document.getElementById('map'), options);

 // Creating a LatLngBounds object
 var bounds = new google.maps.LatLngBounds();

 // Creating an array that will contain the coordinates
 // for New York, San Francisco, and Seattle
 var places = [];

 // Adding a LatLng object for each city
 places.push(new google.maps.LatLng(40.756, -73.986));
 places.push(new google.maps.LatLng(37.775, -122.419));
 places.push(new google.maps.LatLng(47.620, -122.347));
 places.push(new google.maps.LatLng(-22.933, -43.184));

 // Creating a variable that will hold
 // the InfoWindow object
 var infowindow;

 // Looping through the places array
 for (var i = 0; i < places.length; i++) {

 // Adding the markers
 var marker = new google.maps.Marker({
 position: places[i],
 map: map,
 title: 'Place number ' + i
 });

 // Wrapping the event listener inside an anonymous function
 // that we immediately invoke and passes the variable i to.
 (function(i, marker) {

 // Creating the event listener. It now has access to the values of
 // i and marker as they were during its creation
 google.maps.event.addListener(marker, 'click', function() {

 // Check to see if we already have an InfoWindow
 if (!infowindow) {
 infowindow = new google.maps.InfoWindow();
 }

 // Setting the content of the InfoWindow
 infowindow.setContent('Place number ' + i);

 // Tying the InfoWindow to the marker
 infowindow.open(map, marker);

 });

CHAPTER 5 ■ X MARKS THE SPOT

100

 })(i, marker);

 // Extending the bounds object with each LatLng
 bounds.extend(places[i]);

 }

 // Adjusting the map to new bounding box
 map.fitBounds(bounds)

 };

})();

Summary
In this chapter, you examined markers and what you can do with them. You also looked at some basic
usage of InfoWindow objects. These are some of the things you learned:

• How to put a marker on the map

• How to change the marker icon

• How to associate an InfoWindow with a marker

• How to attach events to objects

• How to put several markers on the map

• How to automatically adjust the viewport to fit the markers

With this knowledge you will be able to cope with most of the challenges of designing maps with a
reasonable amount of markers. However, when the markers start adding up to hundreds or maybe
even thousands, you will run into problems. But don’t worry; in Chapter 9, you will take a look at
different strategies for dealing with a lot of markers. But first you will examine how to create better
marker icons, which is the topic for the next chapter.

C H A P T E R 6

■ ■ ■

101

Marker Icons

Sometimes the default icon is just not good enough, and you want something else. A carefully selected
icon can convey lots of information and can make your maps more appealing and more usable. In the
previous chapter, you looked at one way to change the appearance of a marker, but it was a basic
approach, enabling you only to use a simple image that has no shadow. In this chapter, you will examine
how to use custom icons and how to create an advanced marker that not only has a shadow but other
useful enhancements such as different states and improved performance.

Setting a Starting Point
Before you start looking at how to use marker icons, it’s a good idea to create a clean new map to start
from. The code that you’ll be adding later in the chapter will be placed right below the code that creates
a new map (see Listing 6-1).

Listing 6-1. A Starting Point

(function() {
 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 var map = new google.maps.Map(document.getElementById('map'), options);

 // Put new code here

 }
})();

CHAPTER 6 ■ MARKER ICONS

102

Changing the Marker Icon
You’ve already examined how to change the default marker icon to a simple image without a shadow.
That’s as simple as setting the icon property of MarkerOptions to a URL pointing to a suitable image.
Now, if you want to have a little more sophisticated icon with a shadow, give icon a MarkerImage object
as its value instead of setting it to a URL.

Introducing the MarkerImage Object
MarkerImage is an object that contains information about the image and shadow being used for the
marker’s icon (see Table 6-1). That means you need to define one MarkerImage object for the main image
and one for the shadow. Then why, you might ask, not simply use a URL to an image like you did before?
That, my friend, is because using a MarkerImage object will enable you to define not only the image file
being used but also its size, its visible area, and which part of the image will be positioned at a certain
location of the map. The latter is very useful for getting the icon positioned at the exact right position of
the map. Having these settings at your disposal also enables you to use something called sprites. I will
explain sprites thoroughly later in this chapter, but for now you only need to know that using sprites is a
useful technique for enhancing the performance of your map.

Table 6-1. Definition of MarkerImage

Constructor Description

MarkerImage(url:string, size?:Size,
origin?:Point, anchor?:Point, scaledSize?:Size)

Defines an image that is to be used as the icon
or shadow for a marker

MarkerImage’s Five Properties
Although MarkerImage has five properties, only the first one is required.

• url
A URL pointing to an image. This property is required.

• size
The size of the marker icon. This takes a Size object.

• origin
The part of the image being used. (Does that sound cryptic? Don’t worry, I’ll
explain it a little later when I talk about sprites.) This takes a Point object.

• anchor
The part of the icon that is pointing at a location in the map. For the default
marker it’s the tip of the stem. If you don’t set this value, it will be at the center at
the bottom of the image. This takes a Point object.

• scaledSize
This argument lets you display the image smaller or bigger than its original size.
Note that if you use this property, you need to adjust the anchor to the scaled size
of the image.

CHAPTER 6 ■ MARKER ICONS

103

■ Note After a MarkerImage object has been created, it can’t be changed. Therefore, if you need to change it, you

have to discard it and create a new one.

Adding a Custom Icon to a Marker
Although the MarkerImage object contains properties that let you tweak it in different ways, in its
simplest form, you need to provide only the first property, url. Let’s call this variable recycle since it will
have a recycle icon.

var recycle = new google.maps.MarkerImage('img/recycle.png');

What you get is a plain icon (Figure 6-1). It’s nothing fancy, but you have a custom image.

Figure 6-1. A plain icon

Adding a Shadow
MarkerOptions has an additional property called shadow that works like icon. It also takes a MarkerImage
object as its value. You will add a link to an image of a shadow to the url property. The image looks like
Figure 6-2.

Figure 6-2. The shadow

It looks like it will fit nicely beneath the new marker icon. Let’s name this variable shadow and point
it to the image of the shadow:

var shadow = new google.maps.MarkerImage('img/shadow.png');

Putting It Together
Now that you’ve created objects for the marker and the shadow images, you can put it all together by
using them as values for the icon and shadow properties of the Marker object. This will create a marker
with a nice shadow that gives a 3D feel to the map (Figure 6-3).

var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.756054, -73.986951),
 map: map,
 icon: recycle,
 shadow: shadow
});

CHAPTER 6 ■ MARKER ICONS

104

Figure 6-3. The shadow doesn’t align nicely with the icon.

But wait, there’s something wrong with how this looks. The shadow doesn’t fit nicely beneath the
icon at all. It looks like it’s too far to the left.

Adjusting the Shadow
Let’s examine the recycle marker more closely (Figure 6-4).

Figure 6-4. The dimensions of the icon

This icon is pretty symmetrical. Its anchor point, the point that will be anchored at a certain location
in the map, is located at the bottom center. This position also happens to be the default anchor position
of the MarkerImage object. This means that you don’t need to give it special treatment for its anchor point
to be at the right position.

Let’s examine the shadow a bit closer (Figure 6-5).

Figure 6-5. The dimensions of the shadow

The dimensions of this image are a bit different from the icons. It’s wider and higher, but more
importantly, the “tip” of the shadow is not in the center of the image but rather to the left. Since the
default position of the anchor point is at the bottom center of the image, 26 pixels from the left, and the
tip is positioned 16 pixels from the left, it will be positioned slightly (10 pixels) to the left (Figure 6-6).

CHAPTER 6 ■ MARKER ICONS

105

Figure 6-6. The center point of the shadow

You could fix this by changing the image so that the shadow’s “tip” is in fact at the center and
thereby at the same place as the default anchor position (Figure 6-7).

Figure 6-7. Fixing the shadow image

That’s one way of doing it, but a better way is to use the property anchor of the “shadow”
MarkerImage object. You know that the anchor point of the recycle icon is 16 pixels from the left and 37
pixels from the top. With this knowledge, you’re set to make the appropriate adjustment.

What you need to do is to tell the MarkerImage object for the shadow to align its anchor point with
the anchor point of the MarkerImage object of the marker icon. This is where the magic happens. By
setting it to the same as the marker icon, it automatically positions the shadow at the correct position.

While you’re at it, also move the shadow 2 pixels lower by setting the anchor point at 35 pixels from
the top instead of 37 pixels (Figure 6-8).

Figure 6-8. Aligning the shadow

CHAPTER 6 ■ MARKER ICONS

106

■ Note The anchor point of the marker image and the anchor point of the shadow will always align.

Setting the Anchor Point
The anchor property takes a Point as its value. A Point is defined with an x and y value, which represents
a two-dimensional plane (see Table 6-2). These values are in pixels. So if you give it a value x of 16, that
means it will set the anchor at 16 pixels from the left edge of the image. Consequently, setting the value y
to 35 will set the anchor point to 35 pixels down from the top of the image.

Table 6-2. Definition of Point

Constructor Description

Point(x:number, y:number) Defines a point in pixels where x is number of pixels from the left and
y is number of pixels from the top

Now, how can you use the anchor property, which is the fourth property of MarkerImage, without
using the preceding two properties, size and origin? Well, that’s easily solved by providing them with
the value null, which essentially means “nothing” in programming languages. When you provide them
with that value, it’s like they don’t exist, but it enables you to set that last property.

Enough said. Let’s take a look at the code for this:

// Creating a shadow
var shadow = new google.maps.MarkerImage(
 'img/shadow.png',
 null,
 null,
 new google.maps.Point(16, 35)
);

There! You’ve now defined the anchor point properly. And if you look at how the icon is displayed

the shadow sits beautifully underneath the marker icon right where it should be (Figure 6-9).

Figure 6-9. The shadow is perfectly aligned with the icon.

Enabling and Disabling the Shadow
To enable or disable the shadow of the marker, the property flat of MarkerOptions can be used. If you
set it to true, no shadow will be displayed. It’s set to false by default, so use it only if you explicitly want
to disable any use of a shadow.

CHAPTER 6 ■ MARKER ICONS

107

Defining a Clickable Area
Sometimes the whole icon shouldn’t be clickable. Often this is true when it has an irregular shape. Take,
for example, the icons in Figure 6-10. The transparent parts of them shouldn’t be clickable.

Figure 6-10. Examples of irregular-shaped icons

MarkerOptions has a property called shape. It is used to define which area of the icon is clickable
and/or draggable. This is an optional attribute, and if it’s not set, the API presumes that all parts of the
marker image are clickable. It can, however, be used to explicitly define an area of the marker that is
clickable/draggable (Figure 6-11).

Figure 6-11. The clickable area of the icon

shape takes an object literal with two properties: type and coord. The first one, type, defines what
kind of shape is being used, and the second one, coord, is an array of points marking out the shape. The
shape property actually works the same way as the attributes type and coord of the <area> element that
are used to create clickable areas in an HTML image map. So if you familiar with them, you already know
how to use this property. There are three shapes to choose from, and each one is provided to the type
property as a string value. Depending on which one you choose, the coord property works a bit
differently.

• Rectangles (rect)
Rectangles are defined with the string value 'rect'. If you choose this one, you’ll
need to provide the coord property with two points, which marks the top-left and
bottom-right corners of the rectangle.

• Circlular (circ)
Circles are defined with the value 'circ'. Choosing this shape requires the coord
property to have three values: x, y, and r where x and y marks the center of the
circle and r defines its radius.

• Polygons (poly)
Polygons are defined with the value 'poly' and consist of several points
connected with lines, just like one of those connect-the-dots figures from a child’s
painting book. If you choose this shape, you’ll have to provide the coord property
with a series of x and y values that define each “dot.” You can use as many as you
like, and since polygons are a closed figure, the last point you define will be
connected with the first.

The most useful of these shapes are probably the polygon, and in this example you’re going to use
just that. To define a polygon, you need a number of points that are defined with coordinate pairs of x
and y values. They are in pixels and correspond to points in the image of the visible area of the icon.
They are calculated in relation to the top-left corner of the image, which is always defined with 0,0.

A point located 4 pixels down and 4 pixels to the left is defined with 4,4. A point located 29 pixels to
the left and 4 pixels down is defined with 29,4 and so on. Now you just plot each point in a comma-
separated sequence of numbers until you have plotted the whole image, as shown in Figure 6-12.

CHAPTER 6 ■ MARKER ICONS

108

Figure 6-12. Some of the points for the shape

var shape = {
 type: 'poly',
 coord: [4,4, 29,4, 29,29, 22,29, 17,35, 16,35, 10,29, 4,29, 4,4]
}

Now you’ve defined the shape. To apply it to the custom marker, you add it using the shape property
of the MarkerImage object:

// Adding a marker to the map
var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.756054, -73.986951),
 map: map,
 icon: wifi,
 shadow: shadow,
 shape: shape
});

Looking at the result that this code produces, you now have a map with a complex marker that has
both a shadow and a defined clickable area (Figure 6-13).

Figure 6-13. A complex marker icon with a shadow and a defined clickable area

CHAPTER 6 ■ MARKER ICONS

109

The Complete Code
Listing 6-2 shows the complete code for this example.

Listing 6-2. Complete JavaScript Code for Example 6-1

(function() {
 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 var map = new google.maps.Map(document.getElementById('map'), options);

 // Creating the recycle icon
 var recycle = new google.maps.MarkerImage('img/recycle.png');

 // Creating the shadow
 var shadow = new google.maps.MarkerImage(
 'img/shadow.png',
 null,
 null,
 new google.maps.Point(16, 35)
);

 // Creating a shape
 var shape = {
 type: 'poly',
 coord: [4,4, 29,4, 29,29, 22,29, 17,35, 16,35, 10,29, 4,29, 4,4]
 }

 // Creating the marker
 var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.756054, -73.986951),
 map: map,
 icon: recycle,
 shadow: shadow,
 shape: shape
 });

 }
})();

CHAPTER 6 ■ MARKER ICONS

110

Using Sprites
Using sprites is a technique that originally came from the early computer games. It’s the practice of
using one image that contains several small images. You display only part of the whole image at a time,
which gives the illusion that it is actually just one image (Figure 6-14). This technique was first
introduced in a web context by Dave Shea in the A list apart article “CSS Sprites: Image Slicing’s Kiss of
Death” (www.alistapart.com/articles/sprites).

Figure 6-14. A sprite. Only part of the image is displayed at a time.

This is a practice that is pretty common on the Web these days, and the Google Maps API uses it
extensively (Figure 6-15). All the images for the standard controls that are used in the map are in sprites.

Figure 6-15. A sprite containing the control elements of a standard Google map

http://www.alistapart.com/articles/sprites

CHAPTER 6 ■ MARKER ICONS

111

One of the biggest reasons for using sprites is something called latency.

Latency
It takes longer to download several small files than one big one. There are several reasons for this. The
first reason is that it takes the browser a while from requesting a file to actually start downloading it. So if
it has to do that only once, time is saved. The second reason is that browsers have a built-in limitation in
how many files they can download simultaneously from the same domain. Most browsers are limited to
three simultaneous downloads. What this means is that it can’t start downloading new files until one of
those slots gets freed up. Therefore, a great way to enhance performance is to reduce the number of files
it has to download.

Sprite Support
MarkerImage objects supports the use of sprites, so instead of using one icon for each marker icon, you
can use one sprite image containing several icons. You do this by using the second argument of
MarkerImage, size, in conjunction with the third argument, origin.

The size argument defines how big the visible part of the image should be. When you used a regular
image for the marker icon, this property wasn’t necessary since you wanted to use the entire image. But
now when you just want to use part of the entire image, it becomes really important. It’s defined by
using an object of type Size.

■ Note Actually, it’s a good idea to always define the size property since it provides a small performance boost.

The reason for this is that the browser doesn’t need to calculate the size of the image.

A Size object is always a rectangle, and a rectangle has two dimensions, a width and a height (see
Table 6-3). Consequently, the Size object has two properties, width and height. Width defines the x-axis
of the rectangle, and height defines the y-axis. By default these values are measured in pixels, but you
could use other units if you like. To construct a Size object, you have to provide it with the two required
arguments, width and height, but you could also provide it with two optional arguments, which are the
units you want to use for each axis.

Table 6-3. Definition of Size

Constructor Description

Size(width:number, height:number, widthUnit?:string,
heightUnit?:string)

Defines a size

7

CHAPTER 6 ■ MARKER ICONS

112

Origin takes a google.maps.Point as its value, and it defines where the starting point of the “hole” in
the sprite that will be displayed is located. Did that make sense to you? Well, consider this example.

If you have one image per marker icon, you probably want to set origin to 0,0, since that is the top-
left corner of the image. But if you have a sprite, like the one shown in Figure 6-14 earlier, and want to
display a green Wi-Fi icon, which is the one in the middle, you want to set it to something else.

First you need to define the size of the image. This defines a box. Then you need to define where to
position that box inside the sprite, which is done with origin. In this case, it’s 34 pixels from the left edge
of the image and 0 pixels from the top (Figure 6-16).

Figure 6-16. The position in the sprite for the green Wi-Fi icon

var image = new google.maps.MarkerImage(
 'img/markers.png',
 new google.maps.Size(32, 37), // The size
 new google.maps.Point(34, 0), // The origin
 new google.maps.Point(16, 35) // The anchor
);

You also need to change the value for the icon property in the code that creates the marker to image:

// Creating the marker
 var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.756054, -73.986951),
 map: map,
 icon: image,
 shadow: shadow
});

This code will just take the part with the middle Wi-Fi icon and use it as the marker icon, as shown

in Figure 6-17.

CHAPTER 6 ■ MARKER ICONS

113

Figure 6-17. A sprite being used as a marker icon

If you change the origin parameter to a square that starts at 65 pixels from the left, you will get the
right-most icon instead (Figure 6-18).

var image = new google.maps.MarkerImage(
 'img/markers.png',
 new google.maps.Size(32, 37), // The Size
 new google.maps.Point(65, 0), // The origin
 new google.maps.Point(16, 35) // The anchor
);

CHAPTER 6 ■ MARKER ICONS

114

Figure 6-18. A different Wi-Fi icon in the sprite is visible.

■ Note Shape objects (if used) have to be created separately for each sprite position.

The Complete Code
Listing 6-3 shows the complete code for the example using sprites.

Listing 6-3. Complete JavaScript Code for Example 6-2

(function() {
 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 var map = new google.maps.Map(document.getElementById('map'), options);

 // Creating the icon using a sprite
 var image = new google.maps.MarkerImage(

CHAPTER 6 ■ MARKER ICONS

115

 'img/markers.png',
 new google.maps.Size(32, 37), // The Size
 new google.maps.Point(65, 0), // The origin
 new google.maps.Point(16, 35) // The anchor
);

 // Creating the shadow
 var shadow = new google.maps.MarkerImage(
 'img/shadow.png',
 null,
 null,
 new google.maps.Point(16, 35)
);

 // Creating the marker
 var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.756054, -73.986951),
 map: map,
 icon: image,
 shadow: shadow
 });

 }
})();

Where to Find Icons
There are several resources on the Web for finding icons. Here’s a few that I’ve found useful, but there
are many more out there.

google-maps-icons
This is a collection of more than 900 map icons to use as markers for points of interests. The creator of
this collection is Nico Mollet. Most of the icons used in this chapter are taken from this collection
(Figure 6-19).

http://code.google.com/p/google-maps-icons/

Figure 6-19. A few of the icons found in the Tourism & Nature set of google-maps-icons

http://code.google.com/p/google-maps-icons

CHAPTER 6 ■ MARKER ICONS

116

Google Maps: Colored Markers
This is a collection of Google Maps marker like icons but in different colors and with letters and numbers
in them (Figure 6-20).

http://www.benjaminkeen.com/?p=105

Figure 6-20. Some of the icons found in the Colored Markers collection

Mapito Map Marker Icons
This collection features a very compact marker icon with a number in it ranging from 1 to 99 (Figure
6-21). They come in two shades of blue and can be used freely if you provide a link to its page
somewhere on your web site.

http://www.mapito.net/map-marker-icons.html

Figure 6-21. One of the two icon sets provided by Mapito

http://www.benjaminkeen.com/?p=105
http://www.mapito.net/map-marker-icons.html

CHAPTER 6 ■ MARKER ICONS

117

Changing the Marker Icon According to Mouse Events
Changing the look of something when the user hovers with the mouse over it is a great way to provide
the user with additional feedback. It enhances the feeling of a responsive user interface and gives the
user nice little clues that he can interact with an object.

With the help of mouse events, you can alter the state of the marker. This can be used to change
how the marker looks by changing its icon.

As already mentioned, a marker can have different states. The most common are the following:

• Normal
This is its normal look.

• Hover
This happens when the user holds the mouse pointer over the marker. This is
actually two events, mouseover and mouseout. Mouseover happens when the mouse
pointer enters the area above the marker, and mouseout happens when it leaves.

• Click
This is when the user presses the left mouse button while holding the pointer over
the marker and is fetched with the mousedown event.

• Selected
This typically happens when the user has clicked the marker. It’s fetched with the
mouseup event. As the name implies, mouseup happens when the user releases the
mouse button while still holding the pointer over the marker and always happens
after a mousedown event.

To change the look of the marker according to its current state, you need to use events. But first you
need to define how the marker will look in its different states (see Table 6-4). I’m going to change the
color of the marker. So, its normal color will be orange. When the user hovers with the mouse pointer
over it, it will be green, and on a click it will turn blue.

Table 6-4. States of the Marker

Icon State Event

Normal (mouseout)

Hover mouseover

Click mousedown

You will start by defining the icons. Since a MarkerImage cannot be changed once it’s been created,

you will have to make three different ones, one for each state.

CHAPTER 6 ■ MARKER ICONS

118

Defining the MarkerImages
You’re going to use the same sprite that you created a few pages ago for this example too.

Normal state
This is the way the marker will normally look. Since this part of the sprite is in the top-left corner, you’re
going to set the origin parameter to google.maps.Point(0, 0).

var wifi = new google.maps.MarkerImage(
 'img/markers.png',
 new google.maps.Size(32, 37),
 new google.maps.Point(0, 0),
 new google.maps.Point(16, 35)
);

Hover State
This is the MarkerImage that will be used when the user holds the mouse pointer over the marker. Name
it wifiHover so that it’s clear what it’s for. It will be the green part of the sprite. The only difference from
the normal state is that you’re changing the origin parameter to google.maps.Point(33, 0).

var wifiHover = new google.maps.MarkerImage(
 'img/markers.png',
 new google.maps.Size(32, 37),
 new google.maps.Point(33, 0),
 new google.maps.Point(16, 35)
);

Click State
Call this MarkerImage wifiClick. The only difference from the others is the origin parameter, which you
will set to google.maps.Point(66, 0).

var wifiClick = new google.maps.MarkerImage(
 'img/markers.png',
 new google.maps.Size(32, 37),
 new google.maps.Point(66, 0),
 new google.maps.Point(16, 35)
);

Adding the Events
There, you’ve defined three MarkerImage objects for the different states of the marker. The next step is to
add the events.

CHAPTER 6 ■ MARKER ICONS

119

Hover
To add the hover state to the marker, you need to use two events, mouseover and mouseout. Mouseover is
activated when the user moves the mouse pointer over the clickable area of the marker. It’s added with
the google.maps.event.addListener() method. What it does is to run some code when it’s activated.

The code you will run is to call the markers setIcon() method. It changes the icon of the marker,
and you will pass wifiHover as its parameter.

google.maps.event.addListener(marker, 'mouseover', function() {
 this.setIcon(wifiHover);
});

This will change the look of the marker to the green Wi-Fi icon. The problem is that it will stay that way
even if the user moves the mouse pointer away from the marker. To remedy this, you need to add
another event, the mouseout event:

google.maps.event.addListener(marker, 'mouseout', function() {
 this.setIcon(wifi);
});

This pretty much does the same thing as the mouseover event; the main difference is that it changes

the MarkerImage back to the original one. With that in place, the hover state is working and provides the
user with a subtle signal that this is a marker that he can interact with.

Click
The next thing you want to do is to add a click event to the marker. The purpose is to provide the user
with feedback that he actually clicked the marker. It’s done by using the mousedown event.

google.maps.event.addListener(marker, 'mousedown', function() {
 this.setIcon(wifiClick);
});

After the user has released the mouse button (mouseup), you want to the marker to return to its

original state that in this case is mouseover state.

google.maps.event.addListener(marker, 'mouseup', function() {
 this.setIcon(wifiHover);
});

And that’s it! You now have a marker that provides visual feedback while the user is interacting with

it (Figure 6-22).

CHAPTER 6 ■ MARKER ICONS

120

Figure 6-22. The different states of the marker

The Complete Code
Listing 6-4 shows the complete code for doing this.

Listing 6-4. Complete JavaScript Code for Example 6-3

(function() {
 window.onload = function() {
 // Creating a LatLng object containing the coordinate for the center of the map
 var latlng = new google.maps.LatLng(37.09, -95.71);

 // Creating an object literal containing the properties you want to pass to the map
 var options = {
 zoom: 3,
 center: latlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 // Calling the constructor, thereby initializing the map
 var map = new google.maps.Map(document.getElementById('map'), options);

 // Defining different MarkerImages for different states
 var wifi = new google.maps.MarkerImage(
 'img/markers.png',
 new google.maps.Size(32, 37),
 new google.maps.Point(0, 0),
 new google.maps.Point(16, 35)
);

 var wifiHover = new google.maps.MarkerImage(
 'img/markers.png',
 new google.maps.Size(32, 37),
 new google.maps.Point(33, 0),
 new google.maps.Point(16, 35)
);

CHAPTER 6 ■ MARKER ICONS

121

 var wifiClick = new google.maps.MarkerImage(
 'img/markers.png',
 new google.maps.Size(32, 37),
 new google.maps.Point(66, 0),
 new google.maps.Point(16, 35)
);

 // Defining the shadow image for the marker
 var shadow = new google.maps.MarkerImage(
 'img/shadow.png',
 new google.maps.Size(51, 37),
 new google.maps.Point(0, 0),
 new google.maps.Point(16, 35)
);

 // Adding a marker to the map
 var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.756054, -73.986951),
 map: map,
 icon: wifi,
 shadow: shadow
 });

 // Adding events that will alter the look of the marker

 // Hover
 google.maps.event.addListener(marker, 'mouseover', function() {
 this.setIcon(wifiHover);
 });

 google.maps.event.addListener(marker, 'mouseout', function() {
 this.setIcon(wifi);
 });

 // Click
 google.maps.event.addListener(marker, 'mousedown', function() {
 this.setIcon(wifiClick);
 });

 google.maps.event.addListener(marker, 'mouseup', function() {
 this.setIcon(wifiHover);
 });

 }
})();

CHAPTER 6 ■ MARKER ICONS

122

A Clever Way of Dealing with Lots of Different Marker Icons
In some applications that use a lot of different marker icons on the map, managing these icons can be a
problem. You have to define a new MarkerImage for each different marker type, and you will have a
massive if clause to handle which MarkerImage to use in each particular case.

One technique to make all of this more manageable is to store all your MarkerImage objects in
an array.

You previously learned that each item in an array has an index. In JavaScript it’s possible to use a
more descriptive label than an index to mark each item. This is called an associative array. What it means
is that instead of getting an array item by its index number, you can get it by its label.

var fruit = [];
fruit['apples'] = 20;
fruit['oranges'] = 10;
fruit['bananas'] = 15;

To access the number of oranges, you simply call the array with the label oranges.

fruit['oranges']; // returns 10

You’ll utilize this to manage your MarkerImage objects. In this example, you’re going to plot weather

onto a map. To do this, you’ll need several different icons that indicate what the weather is like (see
Table 6-5). You’re just going to use three different weather types for the brevity of the example, but as
you can imagine, if this were a real weather map, you would need a lot more.

Table 6-5. Weather Icons

Icon Weather Filename

Cloudy weather clouds.png

Rainy weather rain.png

Sunny weather sun.png

These are just a few of the icons available in the Tango Weather Icon pack, which is free for

commercial use. You can download it from http://darkobra.deviantart.com/art/Tango-Weather-Icon-
Pack-98024429.

You start by defining the array that will contain the icons:

var weatherIcons = [];

Now that you have an array, you will start adding MarkerImage objects to it. Let’s start with the
clouds icon:

http://darkobra.deviantart.com/art/Tango-Weather-Icon-Pack-98024429
http://darkobra.deviantart.com/art/Tango-Weather-Icon-Pack-98024429

CHAPTER 6 ■ MARKER ICONS

123

// Adding the clouds icon
weatherIcons['clouds'] = new google.maps.MarkerImage(
 'img/clouds.png',
 new google.maps.Size(48, 48),
 null,
 new google.maps.Point(24, 24)
);

Notice how you create a new MarkerImage at the same time as you pass it to the array. The value of
this particular array item is now a fully fledged MarkerImage object.

Creating the MarkerImage contains no surprises. You pass the four parameters to the constructor of
the MarkerImage object just like you did in the previous examples. To recap what they are, the first
parameter is the URL to the image file. The second parameter is the size of the icon, which in this case is
48 × 48 pixels. The third parameter is the origin, which is used only with sprites, so you pass a null value
to it since you don’t need it here. The fourth parameter sets the anchor, and you want to set it to the
center of the icon so that it centers nicely over the correct point in the map.

Let’s add the other two weather icons as well:

// Adding the rain icon
weatherIcons['rain'] = new google.maps.MarkerImage(
 'img/rain.png',
 new google.maps.Size(48, 48),
 null,
 new google.maps.Point(24, 24)
);

// Adding the sun icon
weatherIcons['sun'] = new google.maps.MarkerImage(
 'img/sun.png',
 new google.maps.Size(48, 48),
 null,
 new google.maps.Point(24, 24)
);

You now have all three marker types set up and ready to use. To create a marker and add it to the

map, you call the constructor of the Marker object as normal and define the properties position and map.
The interesting part is how you pass the value for the icon property. In this case, you want to use the
MarkerImage that represents cloudy weather.

// Adding a "cloud" marker over New York
var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.756054, -73.986951),
 map: map,
 icon: weatherIcons['clouds']
});

Look how you simply call the weatherIcons array and use the “clouds” label for it to return the right
MarkerImage.

CHAPTER 6 ■ MARKER ICONS

124

Adding Dynamic Data
This type of data is probably dynamic. Let’s say that the weather data is fetched from a weather web
service that returns that data in JSON format. Since it will provide different kinds of weather, it will most
likely have a property containing the weather type. If you make sure to have the same labels in your
arrays as the values for the data object’s weatherType, you can automatically get the correct MarkerImage
by passing that value directly to the array.

Did that sound confusing? Let me show you what I mean. Assume that you make an Ajax call to a
weather service that will return the following data:

{'weather': [
 {
 'lat': 40.756054,
 'lng': -73.986951,
 'weatherType': 'clouds'
 },
 {
 'lat': 47.620973,
 'lng': -122.347276,
 'weatherType': 'rain'
 },
 {
 'lat': 37.775206,
 'lng': -122.419209,
 'weatherType': 'sun'
 }
]};

As you can see, this is an object that contains a property called weather. The value of weather is an
array that contains a list of weather objects. These weather objects each have three properties: lat, lng,
and weatherType. lat and lng define the center for the weather observation, and weatherType defines
what kind of weather it is. Notice its values: clouds, rain, and sun. It’s the same names that you used as
labels in the associative array. Since they are the same, you can use these values straightaway to
determine which MarkerImage to use.

■ Note If you want to learn more about JSON, http://json.org is a great starting point.

Faking an Ajax Call
You’re going to fake the Ajax call that fetches the weather data. You’re going to do this by defining it

directly it in the code instead of grabbing it from a web service. Create a variable called weatherData that
will hold the data. (Imagine that you make an Ajax call to a weather service that returns this data.)

// Creating a JSON object with weather data
var weatherData = {'weather': [
 {
 'lat': 40.756054,
 'lng': -73.986951,
 'weatherType': 'clouds'
 },

http://json.org

CHAPTER 6 ■ MARKER ICONS

125

 {
 'lat': 47.620973,
 'lng': -122.347276,
 'weatherType': 'rain'
 },
 {
 'lat': 37.775206,
 'lng': -122.419209,
 'weatherType': 'sun'
 }
]};

With this data available, you now need to create a loop that iterates through all the weather objects
and adds them to the map. Let’s do this by creating a for loop that will iterate through all the weather
objects in the weatherData array. For convenience, you’re going to create a variable called weather at the
top of the loop that will hold the current weather object.

for (var i = 0; i < weatherData.weather.length; i++) {
 // creating a variable that will hold the current weather object
 var weather = weatherData.weather[i];
}

This isn’t strictly necessary, but by creating the variable weather, the code will be a little tidier.

Instead of having to write weatherData.weather[i] for each place you want to use its properties, you can
now simply write weather.

The next step is to actually create the marker.

for (var i = 0; i < weatherData.weather.length; i++) {
 // creating a variable that will hold the current weather object
 var weather = weatherData.weather[i];

 // Creating marker
 var marker = new google.maps.Marker({
 position: new google.maps.LatLng(weather.lat, weather.lng),
 map: map,
 icon: weatherIcons[weather.weatherType]
 });
}

Pay particular attention to the value of the icon property. By simply inserting weather.weatherType

as the label to weatherIcons, it automatically returns the correct MarkerImage object. There’s no need for
lengthy if statements to determine what MarkerImage to use. It makes the code both more succinct and
in my opinion more beautiful.

Figure 6-23 shows what the map will look like.

CHAPTER 6 ■ MARKER ICONS

126

Figure 6-23. The weather map

The Complete Code
Listing 6-5 shows the complete code for this example.

Listing 6-5. Complete JavaScript Code for Example 6-4

 (function() {

 // Creating an array that will contain all of our weather icons
 var weatherIcons = [];

 weatherIcons['clouds'] = new google.maps.MarkerImage(
 'img/clouds.png',
 new google.maps.Size(48, 48),
 null,
 new google.maps.Point(24, 24)
);

 weatherIcons['rain'] = new google.maps.MarkerImage(
 'img/rain.png',
 new google.maps.Size(48, 48),
 null,
 new google.maps.Point(24, 24)
);

 weatherIcons['sun'] = new google.maps.MarkerImage(

CHAPTER 6 ■ MARKER ICONS

127

 'img/sun.png',
 new google.maps.Size(48, 48),
 null,
 new google.maps.Point(24, 24)
);

 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById('map'), options);

 // Creating a JSON object with weather data
 var weatherData = {'weather': [
 {
 'lat': 40.756054,
 'lng': -73.986951,
 'weatherType': 'clouds'
 },
 {
 'lat': 47.620973,
 'lng': -122.347276,
 'weatherType': 'rain'
 },
 {
 'lat': 37.775206,
 'lng': -122.419209,
 'weatherType': 'sun'
 }
]};

 // Looping through the weather array in weatherData
 for (var i = 0; i < weatherData.weather.length; i++) {

 // creating a variable that will hold the current weather object
 var weather = weatherData.weather[i];

 // Creating marker
 var marker = new google.maps.Marker({
 position: new google.maps.LatLng(weather.lat, weather.lng),
 map: map,
 icon: weatherIcons[weather.weatherType]
 });

 }

 }
})();

CHAPTER 6 ■ MARKER ICONS

128

Benefits
By taking this approach, you gain two things:

• You need to define each MarkerImage in one place. Imagine that you have a web
application that has maps on different pages that uses the same icons. To change
an icon, you need to do it in only one place.

• Instead of using a big if clause to determine which MarkerImage to use, you can
pass the type name to the array and automatically get the right MarkerImage back.

Since the example contained only three weather observations and three different kinds of
weathers, it would have been pretty easy to write even without using this approach. But imagine having
hundreds of weather observations and 20 different weather types; then the true value of this approach
becomes apparent.

Creating a Custom Marker Icon
If you can’t find suitable premade icons, you can create your own. Several tools are available online to
create marker icons or for creating shadows for your icons, or you could create one all by yourself using
some image-editing software, such as Adobe Photoshop.

If you do decide to create your own icons, you should keep two things in mind:

• The icon should be a 24-bit PNG image with alpha transparency.

• The shadow should be in a 45-degree direction leaning up to the right.

Online Tools
If you don’t want to create your own icons from scratch, there are several online tools available. A few of
them are listed next.

Google Map Custom Marker Maker
This tool is for Google Maps API v2, but it can still be used to create marker shadows for your icons.
It also generates some other Google Maps API v2–specific images and example code. By using
common sense, I’m sure you’ll be able to use this information to incorporate in your Google Maps
API v3 solutions.

http://www.powerhut.co.uk/googlemaps/custom_markers.php

Google Maps Icon Shadowmaker
This is a great tool that automatically creates a shadow for your images. You upload your image, and it
creates a shadow and previews of how it will look. Do note, however, that the example code it generates
for adding the MarkerImage is code for Google Maps API v2. But you can easily extract the information to
use in your Google Maps API v3 code.

http://www.cycloloco.com/shadowmaker/shadowmaker.htm

http://www.powerhut.co.uk/googlemaps/custom_markers.php
http://www.cycloloco.com/shadowmaker/shadowmaker.htm

CHAPTER 6 ■ MARKER ICONS

129

mapicon Factory
With this tool you can create a wide variety of marker icons. To get access to all features, you have to pay
an annual fee, but if you can get by using only the basic features, it’s free of charge.

http://www.cartosoft.com/mapicons/

Summary
In this chapter, you learned how to use complex icons. You also looked at how to use sprites to increase
performance and to add a greater level of interactivity to your maps. Toward the end of the chapter, you
also examined a technique for managing lots of different map icons.

Markers are great for marking locations on a map. But when you need to provide more information
about that location, InfoWindow objects are an invaluable tool. In Chapter 5, you looked at how to create
basic InfoWindow objects. In the next chapter, you will dig deeper into the API to see what’s possible
with them.

http://www.cartosoft.com/mapicons

C H A P T E R 7

■ ■ ■

131

InfoWindow Tips and Tricks

In the old Google Maps API (version 2), you could do all sorts of things with InfoWindows. It has features
such as tabbed windows, showing a detail map of the place you clicked, a maximize function, and so on.
In Google Maps API 3 you basically have only the absolute minimum feature set, such as opening an
InfoWindow and filling it with content. In this chapter, I will, however, show you how to build some of the
functionality that the old API has. But first you’ll look at how to fill the InfoWindow with rich content
using HTML.

Setting a Starting Point
Before getting into the actual examples, you will set a starting point for all of them. This is the code that
all the examples will start with. It will provide you with a page that contains a basic map with a marker
on it.

No surprises here. It’s a plain ol’ HTML page, just like the ones you’ve been using in the previous
chapters (Listing 7-1).

Listing 7-1. The HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Chapter 7 - InfoWindows Tips and Tricks</title>
 <link rel="stylesheet" href="css/style.css" type="text/css" media="all" />
 <script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=false"></script>
 <script type="text/javascript" src="js/7-x.js"></script>
 </head>
 <body>
 <div id="map"></div>
 </body>
</html>

The map will be filling the entire page (Figure 7-1).

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://maps.google.com/maps/api/js?sensor=false

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

132

Figure 7-1. The base map as it will look in Google Chrome

Style Sheet
The style sheet provides some basic styling (Listing 7-2). What’s different from the previous examples is
that the map will span the whole page. Worth mentioning is that to make this work across most
browsers, the height must be set to 100 percent for the HTML, body, and map.

Listing 7-2. The CSS

html, body {
 height: 100%;
 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
 font-size: small;
 margin: 0;
}
#map {
 width: 100%;
 height: 100%;
}

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

133

JavaScript
The JavaScript creates a map and adds a marker with a click event to it (Listing 7-3).

Listing 7-3. The Initial JavaScript

(function() {

 // Defining variables that need to be available to some functions
 var map, infoWindow;

 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 map = new google.maps.Map(document.getElementById('map'), options);

 // Adding a marker
 var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.756054, -73.986951),
 map: map,
 title: 'Click me'
 });

 google.maps.event.addListener(marker, 'click', function() {
 // Code that happens after click
 });

 };

})();

With the base set, you can move on to the examples.

Adding Rich Content to the InfoWindow
In Chapter 5, you looked at some basic usage of InfoWindows. You looked at how to create them and how
to fill them with basic text. Now you’re going to take this one step further by adding full HTML to them.

There’s nothing magical about InfoWindows; they’re really just HTML containers. Think of them as
just another part of the web page. And just like all other parts of a web page, you can fill this part with
whatever content you like.

There are two ways of adding content to an InfoWindow. The first, and perhaps most straightforward
way, is to provide an InfoWindow with a string that contains all the HTML. The other way is to provide it
with a reference to an existing HTML node. This HTML node can either already exist in the document or
be one that you create with JavaScript.

In this first example, you’re going to add content to an InfoWindow using a string.

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

134

Providing the HTML As a String
In this example, you will create an InfoWindow that will contain an image a heading, some text, and a link.
The image you will use is of a squirrel with the dimensions 100 × 100 pixels. It’s included in the code that
comes with the book. The final HTML will look like this:

<div id="info">

 <h2>Maps are awesome</h2>
 <p>Some sample text</p>
 <p>A sample link</p>
</div>

Notice that the HTML elements are enclosed inside <div id="info">. You’re doing this because you
want to be able to pinpoint this content from the style sheet.

The end result will look like Figure 7-2.

Figure 7-2. An InfoWindow with styled HTML in it

Before you create the content, you will have to make sure that you have a InfoWindow object. You will
use the same approach as described in Chapter 5 where you define a global variable called infoWindow
that you reuse for each window that is opened. Each time the user clicks a marker, you check whether
the variable infoWindow contains an InfoWindow object. If it doesn’t contain one, you create it. You’ve
already defined the infoWindow variable at the top of the code. You now need to check whether it exists:

// Check to see if an InfoWindow already exists
if (!infoWindow) {
 infoWindow = new google.maps.InfoWindow();
}

http://www.svennerberg.com

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

135

Now that you have an InfoWindow object in place, you can create the content for it. First you create a
string that will contain all the HTML. Store this string in a variable called content:

var content = '<div id="info">' +
 '' +
 '<h2>Maps are awesome</h2>' +
 '<p>Some sample text</p>' +
 '<p>A sample link</p>' +
 '</div>';

■ Note Notice how you add the different string fragments using +. This is called concatenation and is an easy

way of connecting strings with each other.

Next you will set the content of the InfoWindow to the variable content and open it. This is done by
using its setContent() method. Finally, you will open it using the open() method.

// Setting the content of the InfoWindow
infoWindow.setContent(content);

// Opening the InfoWindow
infoWindow.open(map, marker);

The final event listener code will look like this:

google.maps.event.addListener(marker, 'click', function() {

 // Check to see if an InfoWindow already exists
 if (!infoWindow) {
 infoWindow = new google.maps.InfoWindow();
 }

 // Creating the content
 var content = '<div id="info">' +
 '' +
 '<h2>Maps are awesome</h2>' +
 '<p>Some sample text</p>' +
 '<p>A sample link</p>' +
 '</div>';

 // Setting the content of the InfoWindow
 infoWindow.setContent(content);

 // Opening the InfoWindow
 infoWindow.open(map, marker);

});

http://www.svennerberg.com
http://www.svennerberg.com

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

136

Styling the Content
You need to do some styling to make the content look a bit nicer. You will do this by modifying
style.css that resides in the css folder.

First you want the image to float to the left of the other content. You also want to add some
whitespace to the right of the image:

#info img {
 float: left;
 margin-right: 10px;
}

This will float the image to the left just as expected, but it will also break the heading. See Figure 7-3.

Figure 7-3. The image is floated to the left, but the heading breaks.

To fix this, you need to increase the width of the InfoWindow. You’re going to do that by setting the
width of <div id="info"> to 350 pixels. While you’re at it, you also going to make sure that the heading
sits at the top of the InfoWindow by setting its upper margin to 0.

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

137

#info {
 width: 350px;
}

#info h2 {
 margin-top: 0;
}

This will fix the issues and make the InfoWindow look just the way you want it to look.

■ Note The size of the InfoWindow is determined with a combination of your styled size, the content of the
InfoWindow, and the size of the map. So, for example, if the map is too small to fit the InfoWindow nicely, the API
will reduce the size of it. The consequence of this is that the InfoWindow now might have scrollbars because the

content no longer fits inside it.

Triggering Events
Even though the InfoWindow now looks the way you want it, let’s add one extra thing: the InfoWindow will
open automatically as the page loads.

It’s possible to trigger events by using the google.maps.event.trigger() method. It takes two
required arguments; the first argument is the object you want to trigger, and the second argument is the
event type (see Table 7-1). To trigger your marker’s click event, you’ll need to pass the marker variable
and the string 'click' to the method.

google.maps.event.trigger(marker, 'click');

This will cause the InfoWindow to open when the page is loaded.

Table 7-1. Definition of the trigger() Method

Method Return value Description

trigger(target:Object,
eventName:string, args?:*)

None Triggers an event at the targeted object. All
arguments passed after the eventName are passed to
the listeners. These are all optional.

The Complete Code
The following sections show the complete code.

The JavaScript Code
Listing 7-4 shows the JavaScript.

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

138

Listing 7-4. The Complete JavaScript Code for Example 7-1

 (function() {

 // Defining variables that need to be available to some functions
 var map, infoWindow;

 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 map = new google.maps.Map(document.getElementById('map'), options);

 // Adding a marker
 var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.756054, -73.986951),
 map: map,
 title: 'Click me'
 });

 google.maps.event.addListener(marker, 'click', function() {

 // Check to see if an InfoWindow already exists
 if (!infoWindow) {
 infoWindow = new google.maps.InfoWindow();
 }

 // Creating the content
 var content = '<div id="info">' +
 '' +
 '<h2>Maps are awesome</h2>' +
 '<p>Some sample text</p>' +
 '<p>A sample link</p>' +
 '</div>';

 // Setting the content of the InfoWindow
 infoWindow.setContent(content);

 // Opening the InfoWindow
 infoWindow.open(map, marker);

 });

 // Triggering the click event
 google.maps.event.trigger(marker, 'click');

 };

})();

http://www.svennerberg.com

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

139

The Complete CSS for the InfoWindow
Listing 7-5 shows the CSS.

Listing 7-5. The Complete CSS for the InfoWindow

#info {
 width: 350px;
}

#info h2 {
 margin-top: 0;
}

#info img {
 float: left;
 margin-right: 10px;
}

Inserting a Video Using HTML5
With HTML 5 you will be able to do a lot of things that you need third-party plug-ins for now. One of
these things is video playback. Today the dominant technique is to use Flash or Silverlight. But because
HTML5 has native support for video, there’s no need for that. It’s no harder inserting a video than it is
inserting an image.

Browser Support
It’s important to note that the HTML 5 specification is still in draft form, so it can’t be used as a full-
fledged alternative yet. There is, however, surprisingly widespread support for it in most modern web
browsers. Because of this, you can use it right now. You must be aware, though, that it will only work in
browsers that support it.

As of the time of writing, which is summer 2010, the web browsers that support HTML video are
Google Chrome 4 and 5, Firefox 3.6, Opera 10.5, and Safari 4. Not surprisingly, the current versions of
Internet Explorer do not support this, but it looks like IE9 will have support for it.

The site findmebyIP features a great page for checking browser support for HTML5 (and CSS3). It
can be found at www.findmebyip.com/litmus (see Figure 7-4).

http://www.findmebyip.com/litmus

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

140

Figure 7-4. Browser support for HTML5 video, taken from http://findmebyip.com/litmus

■ Tip The site findmebyip.com is great for checking browser support for all the HTML 5 features.

Altering the HTML
For this example, you’re going to do a slight adjustment of the HTML file. You will need to change the
doctype declaration from XHTML 1.0 to HTML5. At the top of the HTML file, exchange the existing
doctype for the following:

<!DOCTYPE html>

Having done that, you’re done editing the HTML file. This is one of the beauties of HTML5. The
XHTML 1.0 code run as HTML5 is perfectly valid, so you don’t have to redo anything. Still, you get a
whole lot of new elements and capabilities to play around with. Let’s check out the <video> element.

Examining the <video> Element
The <video> element works a lot like the element but has a few extra attributes. The minimum you
have to define is the src attribute.

<video src="movie.ogv"></video>

This will insert a video in the web page, but the user will have to right-click it and choose Play from

the context menu. If you want the video to start playing right away and provide the user with a better
control panel, you can use the attributes autoplay and controls.

<video src="movie.ogv" autoplay="autoplay" controls="controls"></video>

Now you have a video that starts right away and has a control panel. The control panel will look

different in different browsers depending on how they’ve implemented it. Figure 7-5 shows how it will
look in Google Chrome.

http://findmebyip.com/litmus

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

141

Figure 7-5. The HTML5 video player in Google Chrome on Windows

Two other useful attributes are width and height. With these you control the size of the video. If you
omit them, the video player will default to the size of the video being played.

Supported Video Formats
You might have noticed the name of the video file being used. It’s of the type Ogg Theora video codec,
which is why it has the suffix .ogv, for Ogg Vorbis Video. It’s an open source format.

 “Theora is a free and open video compression format from the Xiph.org Foundation.
Like all our multimedia technology it can be used to distribute film and video online
and on disc without the licensing and royalty fees or vendor lock-in associated with
other formats.”

—From http://theora.org/

http://theora.org

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

142

This file format is supported by Firefox, Chrome, and Opera but unfortunately not by Safari, which
instead supports the H.264 codec. This means that this example will not work in Safari unless you
provide it with an alternative video source that has been encoded with the H.264 codec. There’s a rather
elegant way of handling this with the <video> element, but I will not bother doing that for this example.

If you’re interested in learning more about how to do this and other things with the <video>
element, I recommend that you read the excellent article “Introduction to HTML5 Video,” which is
found at http://dev.opera.com/articles/view/introduction-html5-video/.

The Example
Now that you know a little about HTML5 <video>, it’s time that you use that knowledge to insert a video
in an InfoWindow. This time, you will not insert the HTML as a string but instead use the other way of
adding content by inserting a reference to an HTML node. You will create the HTML nodes with
JavaScript and inject them as content in the InfoWindow.

Like in the previous example, the magic will happen inside the event handler for the marker’s click
event. You already have some code in place:

google.maps.event.addListener(marker, 'click', function() {

 // Check to see if an InfoWindow already exists
 if (!infoWindow) {
 infoWindow = new google.maps.InfoWindow();
 }

 // Here’s where the magic will happen

});

First you’re going to create the HTML node for <video>. This is done by using the native DOM

method document.createElement() (see Table 7-2).

Table 7-2. Definition of document.createElement()

Method Return Value Description

document.createElement
(tagName:string)

A reference to the new element Creates an HTML element and returns it

google.maps.event.addListener(marker, 'click', function() {

 // Check to see if an InfoWindow already exists
 if (!infoWindow) {
 infoWindow = new google.maps.InfoWindow();
 }

 // Creating a video element and setting its attributes
 var video = document.createElement('video');

});

http://dev.opera.com/articles/view/introduction-html5-video

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

143

Next you need to add the src attribute. You will do this by using the setAttribute() method. The
video file you’re going to use is one featuring a siren. It’s supplied by Wikimedia and is found at
http://en.wikipedia.org/wiki/File:ACA_Allertor_125_video.ogv.

google.maps.event.addListener(marker, 'click', function() {

 // Check to see if an InfoWindow already exists
 if (!infoWindow) {
 infoWindow = new google.maps.InfoWindow();
 }

 // Creating a video element and setting its attributes
 var video = document.createElement('video');

 // Setting the attributes for the <video> element
 video.setAttribute('src',
 'http://upload.wikimedia.org/wikipedia/commons/3/3f/ACA_Allertor_125_video.ogv');

});

That’s the least you will have to provide to create the <video> element, but let’s add a few more

attributes. First let’s set the size of the video so that it fits inside the InfoWindow. This is done by using the
width and height properties. Second, let’s automatically start the video as the InfoWindow is being
opened and add a control bar so that the user can easily control it.

google.maps.event.addListener(marker, 'click', function() {

 // Check to see if an InfoWindow already exists
 if (!infoWindow) {
 infoWindow = new google.maps.InfoWindow();
 }

 // Creating a video element and setting its attributes
 var video = document.createElement('video');
 video.setAttribute('src',
 'http://upload.wikimedia.org/wikipedia/commons/3/3f/ACA_Allertor_125_video.ogv');
 video.setAttribute('width', '300');
 video.setAttribute('height', '200');
 video.setAttribute('controls', 'controls');
 video.setAttribute('autoplay', 'autoplay');

});

Now the video is ready. All that’s left to do is to add the video as the InfoWindow content and to open

the InfoWindow. Adding the video as content is simply done by passing the video variable as the
parameter for the setContent() method of the InfoWindow object. Opening the InfoWindow is done the
same way as before, by calling its open() method.

google.maps.event.addListener(marker, 'click', function() {

 // Check to see if an InfoWindow already exists
 if (!infoWindow) {

http://en.wikipedia.org/wiki/File:ACA_Allertor_125_video.ogv
http://upload.wikimedia.org/wikipedia/commons/3/3f/ACA_Allertor_125_video.ogv
http://upload.wikimedia.org/wikipedia/commons/3/3f/ACA_Allertor_125_video.ogv

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

144

 infoWindow = new google.maps.InfoWindow();
 }

 // Creating a video element and setting its attributes
 var video = document.createElement('video');
 video.setAttribute('src',
 'http://upload.wikimedia.org/wikipedia/commons/3/3f/ACA_Allertor_125_video.ogv');
 video.setAttribute('width', '300');
 video.setAttribute('height', '200');
 video.setAttribute('controls', 'controls');
 video.setAttribute('autoplay', 'autoplay');

 // Passing the video variable as the content for the InfoWindow
 infoWindow.setContent(video);

 // Opening the InfoWindow
 infoWindow.open(map, marker);

});

That’s it! You now have a map that, when you click the marker, opens an InfoWindow with the video
playing in it. It will look something like Figure 7-6.

Figure 7-6. Showing video in an InfoWindow

http://upload.wikimedia.org/wikipedia/commons/3/3f/ACA_Allertor_125_video.ogv

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

145

For good measure, you’re going to do one last thing and that’s to create a trigger for the marker’s
click event when the map loads. This is placed right after the code for the marker event listener.

google.maps.event.trigger(marker, 'click');

The Complete Code for Adding a Video to an InfoWindow
Listing 7-6 shows the complete JavaScript code for this example.

Listing 7-6. The Complete JavaScript Code for Example 7-2

 (function() {

 // Defining variables that need to be available to some functions
 var map, infoWindow;

 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 map = new google.maps.Map(document.getElementById('map'), options);

 // Adding a marker to the map
 var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.756054, -73.986951),
 map: map,
 title: 'Click me'
 });

 // Adding a click-event to the marker
 google.maps.event.addListener(marker, 'click', function() {

 // Check to see if an InfoWindow already exists
 if (!infoWindow) {
 infoWindow = new google.maps.InfoWindow();
 }

 // Creating a video element and setting its attributes
 var video = document.createElement('video');
 video.setAttribute('src',
 'http://upload.wikimedia.org/wikipedia/commons/3/3f/ACA_Allertor_125_video.ogv');
 video.setAttribute('width', '300');
 video.setAttribute('height', '200');
 video.setAttribute('controls', 'controls');
 video.setAttribute('autoplay', 'autoplay');

 // Passing the video variable as the content for the InfoWindow

http://upload.wikimedia.org/wikipedia/commons/3/3f/ACA_Allertor_125_video.ogv

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

146

 infoWindow.setContent(video);

 // Opening the InfoWindow
 infoWindow.open(map, marker);

 });

 // Opening the InfoWindow when the map loads
 google.maps.event.trigger(marker, 'click');

 };
})();

Creating a Detail Map
In some circumstances, the possibility of displaying a detail map will greatly enhance the user
experience. In the old API, it was just a simple function call, but in the new API you have to do a little
more than that. The final result will look something like Figure 7-7.

Figure 7-7. An InfoWindow with a detail map

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

147

So, how is this done? It’s quite simple really. All you need to do is to create a second map and,
instead of putting it directly on the web page, put it inside the InfoWindow. I will guide you through the
code of doing this.

You start with a map that already has a marker in it and then add a click event for the marker. You
can, for example, use the code that you set as a starting point at the beginning of this chapter:

google.maps.event.addListener(marker, 'click', function() {
 // Code that will run on click
});

Now you have a click event attached to the marker so that when it’s clicked, some code will run.
The first thing you need to do is to create a container for the new map. This is done by using the

generic DOM method document.createElement().
You also need to define the size of the container since it will determine the size of the map. This can

be done either by setting its style properties directly or by giving it a class and putting the definition of its
size in an external style sheet. Generally, it’s best practice to keep style and behavior separated, but for
the sake of simplicity in this example, I will set the size directly on the element.

// Create the div that will act as a container for the detail map
var detailDiv = document.createElement('div');

// Set the size of the div
detailDiv.style.width = '200px';
detailDiv.style.height = '200px';

Having created the detailDiv, you need to somehow add it to the document. This is done by using
the DOM method appendChild(), which does exactly that (see Table 7-3). It adds a child element to a
parent element.

You can actually add the detailDiv to any part of the document, but in this case you’re going to add
it to the map container.

// Appending the detailDiv to the map container
document.getElementById('map').appendChild(detailDiv);

Table 7-3. Definition of appendChild()

Method Return value Description

appendChild(childNode:DOMnode) A reference to the child node This method appends a child
node to a DOM node

The next step is to create the new map. You start by defining the options for the new map. First you

need to set the zoom property. Since you want the detail map to be fairly zoomed in, you set it to 14. It is,
after all, a detail map.

Next you need to set the center of the map. Since the map will show a detailed view of the area
where the marker is placed, you want it to center on the location of it. This is done by calling the
getPosition() method of the marker. It will return a LatLng that you can use to define the center of
the map.

You set the mapTypeId to the same as the surrounding map. You could do this by setting it explicitly
with google.maps.MapTypeId.ROADMAP, but a more clever thing to do is to set it the same as the big map
using its getMapTypeId() method. This way, if the user changes the map type, you will still get the same
map type in the detail map.

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

148

That’s the three required properties that you always have to set. In this case, however, you’ll want to
set one more property. Since this will be a very small map, I don’t want it cluttered by the zoom and pan
control or by any other control. To get rid of those, you set the disableDefaultUI property to true. This
way, there will be no controls obscuring the view on the map.

var overviewOpts = {
 zoom: 14,
 center: marker.getPosition(),
 mapTypeId: map.getMapTypeId(),
 disableDefaultUI: true
};

Now you’re all set to initialize the detail map. You have a container for it, and you have defined its
properties. All that’s left to do is to create it.

var detailMap = new google.maps.Map(detailDiv, overviewOpts);

Now the map is created, but you also want a marker in it marking the spot.
First you set the position. Now, you can do this in one of two ways. You could get it from your newly

created detail map or from the clicked marker. In this example, I’ve chosen to get it from the latter.
Next you need to define what map the marker should be added to. In this case, it’s the newly created

detail map.
That’s it for the required properties, but I’m going to add one more property. Since you don’t want

this marker to be clickable, you want to somehow disable that. You can do this by setting the property
clickable to false. This way, the cursor won’t change when the user hovers with the mouse over it, and
the user can’t interact with it.

OK, you’re set to create the marker. Here’s the code to do that:

var detailMarker = new google.maps.Marker({
 position: marker.getPosition(),
 map: detailMap,
 clickable: false
});

That’s it for the map. It has been created, and the marker has been added to it. But you still

can’t see anything if you try to click the marker. That’s because a crucial part is still missing, creating
the InfoWindow.

Creating the InfoWindow
First you check to see whether you already have an InfoWindow. If not, you create one.

if (!infoWindow) {
 infoWindow = new google.maps.InfoWindow();
}

Next you’re going to set its content and then add it to the map. You probably know how to do this by
now, but I’ll explain it anyway. First you’ll set the content by using its setContent() method. Then you
call its open() method and pass a map object and a marker to it. The only thing you have to keep in mind
is to pass it the right map and the right marker. In this case, it’s the big map and the clicked marker.

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

149

// Setting the content of the InfoWindow
infoWindow.setContent(detailDiv);

// Adding the InfoWindow to the map
infoWindow.open(map, marker);

That’s it! You now have a map with a detail map inside an InfoWindow. To recap, you’ve just done
the following:

1. Added a click event to the marker on the map

2. Created a detail map by first creating a <div> and then putting a map in it

3. Added a nonclickable marker in the detail map’s center

4. Created or reused an InfoWindow and added the detail map to it

The Complete Code
Listing 7-7 shows the complete code.

Listing 7-7. The Complete JavaScript Code for Example 7-3

 (function() {

 // Defining variables that need to be available to some functions
 var map, infoWindow;

 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 map = new google.maps.Map(document.getElementById('map'), options);

 // Adding a marker to the map
 var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.756054, -73.986951),
 map: map,
 title: 'Click me'
 });

 google.maps.event.addListener(marker, 'click', function() {

 // Creating the div that will contain the detail map
 var detailDiv = document.createElement('div');
 detailDiv.style.width = '200px';
 detailDiv.style.height = '200px';
 document.getElementById('map').appendChild(detailDiv);

 // Creating MapOptions for the overview map

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

150

 var overviewOpts = {
 zoom: 14,
 center: marker.getPosition(),
 mapTypeId: map.getMapTypeId(),
 disableDefaultUI: true
 };

 var detailMap = new google.maps.Map(detailDiv, overviewOpts);

 // Create a marker that will show in the detail map
 var detailMarker = new google.maps.Marker({
 position: marker.getPosition(),
 map: detailMap,
 clickable: false
 });

 // Check to see if an InfoWindow already exists
 if (!infoWindow) {
 infoWindow = new google.maps.InfoWindow();
 }

 // Setting the content of the InfoWindow to the detail map
 infoWindow.setContent(detailDiv);

 // Opening the InfoWindow
 infoWindow.open(map, marker);

 });

 };
})();

Creating a Zoom-In Link
Sometimes you can provide users with shortcuts to make the user experience more pleasurable. One
simple shortcut is to provide a zoom-in link in the InfoWindow. This way, the user can easily zoom in on
an object without having to use the zoom controls.

In this example, you will use the marker centered on Manhattan. Initially the map is zoomed out so
all the United States is visible. When the zoom-in link in the InfoWindow is clicked, the map zooms in on
the marker. See Figure 7-8.

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

151

Figure 7-8. The map before and after the “Zoom in” link has been clicked

Adding the Event Handler
You start this example by reverting to the starting code in the beginning of this chapter. The first thing
you need to do next is to add an event handler to the marker that will open the InfoWindow.

google.maps.event.addListener(marker, 'click', function(e) {
 // Insert code for InfoWindow
}

Now that you have the event handler in place, you need to add the logic to it that will do the

following things:

• Create the content of the InfoWindow

• Create the InfoWindow

• Open the InfoWindow

You start with the content, which will consist of some text and a link that when clicked will center
the map on the marker and zoom in. You will use a slightly different approach than the one that you
used in the first example when you added HTML to the InfoWindow. Then you just created a string that
contained the entire HTML and inserted it into the InfoWindow. Now you will create the HTML elements
using native DOM methods.

Let’s start by creating a <div> that will contain the content and two <p> elements that will contain
the text and the link.

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

152

// First we create the container for the content
// of the InfoWindow
var content = document.createElement('div');

// We then create a paragraph element that will contain
// some text
var p = document.createElement('p');
p.innerHTML = 'This marker is positioned on Manhattan.';

// We then create a second paragraph element that will contain
// the clickable link
var p2 = document.createElement('p');

Now you need to create the link. You start by creating a <a> element and give it a text and a value to
its href attribute.

// Creating the clickable link
var a = document.createElement('a');
a.innerHTML = 'Zoom in';
a.href = '#';

■ Note The standard way of assigning values to HTML elements is the DOM method setAttribute(). But since
there are some differences in implementation in different browsers (mainly IE), I stick with the attributes
innerHTML and href since they are supported by all browsers. Another approach could be to use a JavaScript

framework such as jQuery or prototype to do this. They will take care of the browser inconsistencies for you.

OK, so now that the <a> element is created, it’s time to add the magic that will zoom the map. You
will do this by assigning an anonymous function to its onclick event. In the anonymous function, you
will add the code that will do the heavy work in this example.

a.onclick = function() {
 // Code goes here
}

You probably recognize this syntax since it’s the same as the one you’ve been using all along when

attaching an onload event to the windows object.

■ Note There are other ways of attaching click events to an element than using the onclick property. The benefit
of using onlick is that it’s cross-browser compatible. The standard way of doing it, using the method
addEventListener(), involves having to provide a separate method for IE called attachEvent() since it doesn’t

support it.

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

153

Next you need to add some functionality inside the event handler. You will use the setCenter()
and setZoom() method of the map object. You might recall them from Chapter 4, where I discussed them
in detail.

Let’s start with the setCenter() method; it takes a LatLng object as its argument and centers the map
on that location. You want the map to center on the position of the marker and will therefore use the
marker object’s getPosition() method. This method returns a LatLng that represents the markers
position, so it’s perfect for this scenario.

a.onclick = function() {
 map.setCenter(marker.getPosition());
};

Now the map centers on the marker, but you also want the map to zoom in. Let’s do it by using the

setZoom() method. setZoom() takes a number representing the desired zoom level as its argument. In
this case, I think the zoom level 15 is an appropriate, so let’s set it to that.

a.onclick = function() {
 map.setCenter(marker.getPosition());
 map.setZoom(15);
};

Now there’s just one more thing you’ll want to do, and that is to cancel out the default behavior of

the link being clicked. If you don’t do this, the browser will try to follow the link. It’s easily canceled by
returning false.

a.onclick = function() {
 map.setCenter(marker.getPosition());
 map.setZoom(15);
 return false;
};

Now all the elements of the content are created, and you want to assemble them all inside the

content <div>. You’re going to do this by using the appendChild() method.

// Appending the link to the second paragraph element
p2.appendChild(a);

// Appending the two paragraphs to the content container
content.appendChild(p);
content.appendChild(p2);

Opening the InfoWindow
Lastly, you want to create the InfoWindow object if it’s not already created and open it. This code should
be familiar to you by now.

// Check to see if infoWindow already exists
// if not we create a new
if (!infoWindow) {
 infoWindow = new google.maps.InfoWindow();
}

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

154

// We set the content of the InfoWindow to our content container
infoWindow.setContent(content);

// Finally we open the InfoWindow
infoWindow.open(map, marker);

The Complete Code
Listing 7-8 shows the complete code for this example.

Listing 7-8. The Complete JavaScript Code for Example 7-4

(function() {

 // Defining variables that need to be available to some functions
 var map, infoWindow;

 window.onload = function() {
 // Creating a map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 var map = new google.maps.Map(document.getElementById('map'), options);

 // Adding a marker
 var marker = new google.maps.Marker({
 position: new google.maps.LatLng(40.756054, -73.986951),
 map: map,
 title: 'Click me'
 });

 // Add event handler for the markers click event
 google.maps.event.addListener(marker, 'click', function() {

 // First we create the container for the content of the InfoWindow
 var content = document.createElement('div');

 // We then create a paragraph element that will contain some text
 var p = document.createElement('p');
 p.innerHTML = 'This marker is positioned on Manhattan.';

 // We then create a second paragraph element that will contain the clickable link
 var p2 = document.createElement('p');

 // Creating the clickable link
 var a = document.createElement('a');
 a.innerHTML = 'Zoom in';
 a.href = '#';

CHAPTER 7 ■ INFOWINDOW TIPS AND TRICKS

155

 // Adding a click event to the link that performs
 // the zoom in, and cancels its default action
 a.onclick = function() {

 // Setting the center of the map to the same as the clicked marker
 map.setCenter(marker.getPosition());

 // Setting the zoom level to 15
 map.setZoom(15);

 // Canceling the default action
 return false;
 };

 // Appending the link to the second paragraph element
 p2.appendChild(a);

 // Appending the two paragraphs to the content container
 content.appendChild(p);
 content.appendChild(p2);

 // Check to see if infoWindow already exists, if not we create a new
 if (!infoWindow) {
 infoWindow = new google.maps.InfoWindow();
 }
 // We set the content of the InfoWindow to our content container
 infoWindow.setContent(content);

 // Lastly we open the InfoWindow
 infoWindow.open(map, marker);

 });

 };
})();

Further Refinements
You now have a working example for zooming in on a spot on the map. A suggestion for further
refinement is to change the link in the InfoWindow to a “Zoom out” link once it’s been clicked. I will,
however, leave it up to you to work out how to implement it.

Summary
In this chapter, you examined a few things that can be accomplished with InfoWindows. First, you learned
how to add full HTML as the content of an InfoWindow. Then you looked at how to add video to it using
HTML5. Lastly you looked at how to create a detail map and a “Zoom in” link in the InfoWindow.

Knowing these concepts, you’re equipped with the knowledge to create a lot of functionality. Your
own imagination sets the limit.

C H A P T E R 8

■ ■ ■

157

Creating Polylines and Polygons

The Google Maps API has two classes for dealing with geometric shapes. These are polylines and
polygons. These shapes provide you with the necessary tools for marking roads, borders, and other areas.
One area where polylines are particularly useful is to track different paths, such as creating driving
directions or tracking a jogging path. Polygons, on the other hand, are very useful when you want to
highlight a certain geographic area, such as a state or a country.

In this chapter, you’ll learn how to harness the power of polylines and polygons and how to do some
pretty amazing stuff with them.

Creating Polylines
Polylines are made up of several connected lines. A line consists of two points: a starting point and an
end point. These points are made up of coordinates. Therefore, at its core, a polyline is a collection of
points with lines between them, much like a connect-the-dots sketch (Figure 8-1).

Figure 8-1. A polyline is essentially dots connected with lines.

When using the Google Maps Driving Directions service, which calculates a route for you to drive (or

walk), a polyline is being used to display the route on the map (Figure 8-2). This polyline is very complex
since it consists of a large number of points, probably thousands of them. The polylines that you’re
going to create in this chapter are a lot simpler and will consist of a very few points. The principles are
still the same, though, regardless of how many points you use.

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

158

Figure 8-2. The Google Maps Driving Directions uses polylines to show the suggested route.

Creating a Simple Polyline
You’re going to start easy and create the smallest possible polyline. It will consist of only a single line.
Specifically, you will draw a line from San Francisco to Los Angeles. To do this, you need to know the
coordinates for the starting point (San Francisco) and for the end point (Los Angeles).

To set a starting point for this example, you will use the JavaScript code shown in Listing 8-1.

Listing 8-1. The Starting JavaScript Code

(function() {
 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 5,
 center: new google.maps.LatLng(36.1834, -117.4960),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

159

 var map = new google.maps.Map(document.getElementById('map'), options);

 };

})();

There’s nothing new in this code at all. All it does is create a blank Google map that is centered
somewhere on the West Coast of the United States.

Preparing the Coordinates
As you now know, a polyline consists of several coordinates (points on the map). In this case, you’re
going to create a very small polyline with just two points. To get started, you need to find out what these
coordinates are.

Fortunately, I have already found out the correct coordinates (see Table 8-1).

Table 8-1. The Coordinates for San Francisco and Los Angeles

City Latitude Longitude

San Francisco 37.7671 -122.4206

Los Angeles 34.0485 -118.2568

To use these coordinates, you need to convert them to objects of the type google.maps.LatLng and

add them to an array. Create an array called route to store them in:

var route = [
 new google.maps.LatLng(37.7671, -122.4206),
 new google.maps.LatLng(34.0485, -118.2568)
];

That’s really all the information you need to create a polyline. Now all you have to do is call the
constructor for the Polyline class, add the route arrays to it, and then add the polyline to the map. Let’s
take it step-by-step and start with creating the Polyline object (see Table 8-2).

Table 8-2. Definition of the Polyline Constructor

Constructor Description

Polyline(options?:PolylineOptions) Creates a Polyline object

The Polyline object takes one argument, and that is an object of type PolylineOptions.
PolylineOptions has several properties, but only one is required. That’s the property path. The path
property takes an array of google.maps.LatLng objects. That’s exactly what you have in the route array
that you just prepared.

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

160

var polylineOptions = {
 path: route
};

With the option object prepared, you add it as an argument to the Polyline object constructor
like this:

var polyline = new google.maps.Polyline(polylineOptions);

You now have a Polyline object in place, so there’s really only one thing left to do, and that is to add
it to the map. But before you do that, I want you to change the code slightly. For brevity, I usually don’t
bother creating a variable to hold the polylineOptions object. Instead, I just add the object on the fly to
the constructor.

The code will look like this:

var polyline = new google.maps.Polyline({
 path: route
});

It does the exact the same thing, but you save a few lines of code. The only drawback is if you want
to reuse the PolylineOptions object for another polyline. To do that, you’ll need to have it stored in a
variable. I rarely find that to be the case, though.

Let’s get back on track. You’ve created the polyline but haven’t yet added it to the map. The
Polyline object has a method called setMap(), which is used to add the polyline to the map. This method
takes one argument, which is the Map object to which you want to add the polyline.

polyline.setMap(map);

As soon as the method is called, the polyline is added to the map. When you look at the result, you
see a black line connecting San Francisco with Los Angeles (Figure 8-3).

Figure 8-3. A simple polyline connecting San Francisco with Los Angeles

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

161

Another Way of Adding the Polyline
There is another way of adding the polyline to the map, and that is to use the map property of the
PolylineOptions object. It takes a reference to the map that the polyline is being added to as its value.

var polyline = new google.maps.Polyline({
 path: route,
 map: map
});

If you use that code, the polyline will be instantly added to the map, and there’s no need to use the

setMap() method. It’s mostly a matter of preference which way you do it. One case where the setMap()
method is useful is for removing a polyline from the map. It’s done by passing null as its parameter:

polyline.setMap(null);

Adding a Bit More Flare to the Line
Although your newly created polyline does the job, it looks a bit boring. Fortunately, you can easily add a
bit more flare to it by using the other properties of the PolylineOptions object. These properties control
the color, opacity, and size of the line.

• strokeColor
This property defines the color of the line. The value used is a string in hex format,
so the color red will be #ff0000. The default value is #000000, which is black.

• strokeOpacity
This property is a number that defines the opacity of the line. 1.0 means that it’s
100 percent opaque, and 0 means that it’s 0 percent opaque, in other words,
completely transparent. Anything in between, such as 0.5, will render a semi-
transparent line. The default value is 1.0.

• strokeWeight
This property is a number and defines the width of the line in pixels. To create a 5
pixel wide line, pass it the value 5. The default value is 3.

Let’s make the line a bit wider, color it red, and make it semi-transparent. To do this, you have to
add these properties to the PolylineOptions object and assign them the appropriate values. Having done
that, the code will look like this:

var polyline = new google.maps.Polyline({
 path: route,
 strokeColor: "#ff0000",
 strokeWeight: 5,
 strokeOpacity: 0.6
});

Now you have a nice semi-transparent red line instead of the boring black line you had before
(Figure 8-4 gives you the idea). The line being semi-transparent is a nice touch since it makes it easier to
read the map underneath it, thereby enhancing the usability of the map.

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

162

Figure 8-4. A nice semi-transparent line now connects the two cities.

The Complete Code
Listing 8-2 shows the complete code for this example.

Listing 8-2. The Complete JavaScript for Example 8-1

(function() {
 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 5,
 center: new google.maps.LatLng(36.1834, -117.4960),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById('map'), options);

 // Creating an array that will contain the points for the polyline
 var route = [
 new google.maps.LatLng(37.7671, -122.4206),
 new google.maps.LatLng(34.0485, -118.2568)
];

 // Creating the polyline object
 var polyline = new google.maps.Polyline({
 path: route,

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

163

 strokeColor: "#ff0000",
 strokeOpacity: 0.6,
 strokeWeight: 5
 });

 // Adding the polyline to the map
 polyline.setMap(map);

 };
})();

■ Note Don’t forget that you can download the example code from the book’s web site at

http://svennerberg.com/bgma3.

Polyline Arrays
As you probably remember, the path property of the PolylineOptions object was the one you fed with
the route array. This property plays a dual role since it can also take another kind of array called an
MVCArray. This is an object in the Google Maps API that is an array in the sense that it can contain
objects. It differs from a regular array by having some special methods to retrieve, remove, and insert
new objects on the fly.

Why use this special array instead of a regular one? I mean, a regular array also has methods to
retrieve, remove, and add new objects on the fly, right?

The reason is that if you use an MVCArray, the map instantly updates with the changes you make to it.
For instance, if you use an MVCArray to feed the path property, it behaves just as normal, and the polyline
is displayed properly on the map. But if you then, after the map is initialized and the polyline has been
rendered, add a new point to the MVCArray, the polyline on the map will instantly extend to that point.

Let’s try this by building a simple map that by clicking it dynamically adds points to a polyline.

■ Note When we’re using a regular array to store the coordinates, it’s actually being converted to an MVCArray

internally in the API.

Plotting Your Own Path
In this example, you will build upon the previous example. You will modify it slightly by replacing the
array holding the points with an empty MVCArray. You will also add a click event to the map that will add
a point to the MVCArray each time it’s being triggered.

Let’s start by replacing the existing route array with an empty MVCArray:

var route = new google.maps.MVCArray();

You now have an MVCArray object that will enable you to dynamically add points to the polyline.
Now let’s add the code that creates the Polyline object and then call the setMap() method on it. This
code will look exactly as in the previous example:

http://svennerberg.com/bgma3

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

164

// Creating the Polyline object
var polyline = new google.maps.Polyline({
 path: route,
 strokeColor: "#ff0000",
 strokeOpacity: 0.6,
 strokeWeight: 5
});

// Adding the polyline to the map
polyline.setMap(map);

With this code, the polyline is in place and is attached to the map. But since the MVCArray doesn’t yet
contain any points, the polyline will not be visible.

What you need to do now is to create a click event and attach it to the map. The click event
returns an object of type google.maps.MouseEvent, which contains a property called latLng, which
contains a google.maps.LatLng object that represents the position clicked. In other words, the click
returns the position in the map that’s being clicked, and you can use that information to create a point
for the polyline.

First you attach a click event to the map object using the addListener() method of the
google.maps.event object. You will pass three arguments to it; the first one is the map, and the second
one is the type of event you want to catch, in this case the click event. The last argument is an
anonymous function that will execute when the event is being triggered. You will pass a reference to the
event (e) to this function. It is that reference that is the MouseEvent object.

// Adding a click event to the map object
google.maps.event.addListener(map, 'click', function(e) {
 // Code that will be executed once the event is triggered
});

Now you have the event listener in place. The next step is to actually do something when it’s
being triggered.

So, you need to get a reference to the MVCArray. This is done by calling the getPath() method of the
polyline. Once you have that reference, you can call its methods. The method you want to use is the
push() method, which inserts a new item in the end of the array. You pass the LatLng object as an
argument to this method, and once that’s done, a new point is added to the polyline.

// Adding a click event to the map object
google.maps.event.addListener(map, 'click', function(e) {

 // Getting the MVCArray
 var path = polyline.getPath();

 // Adding the position clicked which is in fact
 // a google.maps.LatLng object to the MVCArray
 path.push(e.latLng);

});

There! Everything is in place, and you now have a dynamic polyline (Figure 8-5). Each click in the
map will extend the polyline to the point being clicked. Since a polyline must contain at least two points
to show, it will not be visible until after the second click in the map.

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

165

Figure 8-5. A dynamic polyline. Each click in the map adds a point to it.

The Complete Code
Listing 8-3 shows the complete code for this example:

Listing 8-3. The Complete JavaScript Code for Example 8-2

(function() {
 window.onload = function(){

 // Creating a map
 var options = {
 zoom: 5,
 center: new google.maps.LatLng(36.1834, -117.4960),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById('map'), options);

 // Creating an empty MVCArray
 var route = new google.maps.MVCArray();

 // Creating the Polyline object
 var polyline = new google.maps.Polyline({
 path: route,
 strokeColor: "#ff0000",
 strokeOpacity: 0.6,
 strokeWeight: 5

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

166

 });

 // Adding the polyline to the map
 polyline.setMap(map);

 // Adding a click event to the map object
 google.maps.event.addListener(map, 'click', function(e) {

 // Getting a reference to the MVCArray
 var path = polyline.getPath();

 // Adding the position clicked which is in fact
 // a google.maps.LatLng object to the MVCArray
 path.push(e.latLng);

 });

 };
})();

Creating Polygons
Polygons are very similar to polylines. The main difference is that in a polygon the starting point and the
end point are always connected, making it into a closed figure (Figure 8-6). So ,where polylines mark
routes, polygons mark areas. This makes them the perfect choice for marking areas such as countries or
other geographic regions in a map.

Figure 8-6. In a polygon, the end point is always connected to the starting point.

Creating a Simple Polygon
Let’s start by creating a very simple polygon. It will consist of only three points, making it a triangle. Just
like the Polyline object, it has a constructor that takes an options object as its only argument. For
polygons, this is a PolygonOptions object. It’s very similar to the PolyLine object but introduces some
differences. Table 8-3 shows the definition of its constructor.

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

167

Table 8-3. Definition of the Polygon Constructor

Constructor Description

Polygon(options?:PolygonOptions) Creates a Polygon object

To create a very simple polygon, you need to use two of its properties, paths and map. The paths

property takes the points of the polygons as its value, and the map property takes the map that it’s being
added to as its value.

Creating a Triangle
You’re going to create a triangle that connects San Francisco, Las Vegas, and Los Angeles. Let’s start by
creating an array called points that will contain the coordinates for the cities:

var points = [
 new google.maps.LatLng(37.7671, -122.4206),
 new google.maps.LatLng(36.1131, -115.1763),
 new google.maps.LatLng(34.0485, -118.2568),
];

These points will each mark a corner of the triangle. Do you remember that in polygons the starting
point and end point are always connected? Because of this, you don’t need to explicitly provide the end
point, since it will be the first point in the array.

The next step is to create the polygon:

var polygon = new google.maps.Polygon({
 paths: points,
 map: map
});

Now the polygon is created and added to the map. It will look like the polygon shown in Figure 8-7.

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

168

Figure 8-7. A basic polygon connecting San Francisco, Las Vegas, and Los Angeles

This is how a basic polygon looks, but the polygonOptions object also provides a number of
properties to style it with. The properties are the same as for the polylineOptions object, but there are
two additional properties, which are fillColor and fillOpacity.

• fillColor
Defines the color of the area inside the polygon. The value used is a string in
hex format, so the color red will be #ff0000. The default value is #000000, which
is black.

• fillOpacity
This property is a number that defines the opacity of the filled area. 1.0 means that
it’s 100 percent opaque, and 0 means that it’s 0 percent opaque. The default value
is 1.0.

Let’s use these properties to style the polygon. We’ll make it have a blue semi-transparent look with
a very thin border.

var polygon = new google.maps.Polygon({
 paths: points,
 map: map,
 strokeColor: '#0000ff',
 strokeOpacity: 0.6,
 strokeWeight: 1,
 fillColor: '#0000ff',
 fillOpacity: 0.35
});

The polygon will now look like the polygon in Figure 8-8.

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

169

Figure 8-8. A styled polygon

Controlling the Stack Order
The polygonOptions object actually has one additional property that you haven’t used, and that is zIndex.
This property is useful only if you have several polygons on the map since it controls their stack order.
The higher zIndex is, the further up in the stack the polygon is rendered. So, a polygon with zIndex of 2
will be rendered on top of a polygon with the zIndex 1.

If you don’t use zIndex, they will be stacked in the order they’re being added to the map. The first
one added will be at the bottom, and the last one will be at the top.

The Complete Code
Listing 8-4 shows the complete JavaScript code for this example.

Listing 8-4.The Complete JavaScript Code for Example 8-3

(function() {
 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 5,
 center: new google.maps.LatLng(36.6, -118.1),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById('map'), options);

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

170

 // Creating an array with the points for the polygon
 var points = [
 new google.maps.LatLng(37.7671, -122.4206),
 new google.maps.LatLng(36.1131, -115.1763),
 new google.maps.LatLng(34.0485, -118.2568),
];

 // Creating the polygon
 var polygon = new google.maps.Polygon({
 paths: points,
 map: map,
 strokeColor: '#0000ff',
 strokeOpacity: 0.6,
 strokeWeight: 1,
 fillColor: '#0000ff',
 fillOpacity: 0.35
 });

 };

})();

Creating Donuts
Polygons that contain other polygons are often called donuts. The name comes from the idea that a
donut has a hole in it, and that’s exactly what a donut polygon has.

The paths property of the PolygonOptions object differs from the PolylineOptions object’s path
property by being able to take more than one array of points as its value. To create a donut, you will have
to create a wrapper array that contains other arrays that contain the actual points.

Let’s start by creating two arrays. The first one polyOuter will contain the outline of the polygon, and
the other one, polyInner, will contain the “hole” in the polygon.

// Creating an array with the points for the outer polygon
var polyOuter = [
 new google.maps.LatLng(37.303, -81.256),
 new google.maps.LatLng(37.303, -78.333),
 new google.maps.LatLng(35.392, -78.333),
 new google.maps.LatLng(35.392, -81.256)
];

// Creating an array with the points for the inner polygon
var polyInner = [
 new google.maps.LatLng(36.705, -80.459),
 new google.maps.LatLng(36.705, -79),
 new google.maps.LatLng(35.9, -79),
 new google.maps.LatLng(35.9, -80.459)
];

Having done that, you need to create one additional array that will contain both of these arrays.
Let’s call it points:

var points = [polyOuter, polyInner];

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

171

Now you have all you need to create the donut. You’ll provide the points array as the value for the
paths property. You’ll also provide the map property with the map object as its value.

var polygon = new google.maps.Polygon({
 paths: points,
 map: map
});

This will provide you with a donut polygon with the default look. To add some final touches, you’ll

also style it a bit.

var polygon = new google.maps.Polygon({
 paths: points,
 map: map,
 strokeColor: '#ff0000',
 strokeOpacity: 0.6,
 strokeWeight: 3,
 fillColor: '#ff0000',
 fillOpacity: 0.35
});

This will provide you with a polygon that looks like the one in Figure 8-9. Note that the map center is

changed in this example to be centered on (36.6, -118.1); otherwise, the donut will not be visible when
the map loads. You’ll see this change in the section “The Complete Code.”

Figure 8-9. A so-called donut, a polygon with a hole in it

In this example, the polygon has only one hole in it, but it’s entirely possible to have several
holes in it.

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

172

The Complete Code
Listing 8-5 shows the complete JavaScript code for this example.

Listing 8-5. The Complete JavaScript Code for Example 8-4

(function() {

 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 6,
 center: new google.maps.LatLng(36.5, -79.8),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById('map'), options);

 // Creating an array with the points for the outer polygon
 var polyOuter = [
 new google.maps.LatLng(37.303, -81.256),
 new google.maps.LatLng(37.303, -78.333),
 new google.maps.LatLng(35.392, -78.333),
 new google.maps.LatLng(35.392, -81.256)
];

 // Creating an array with the points for the inner polygon
 var polyInner = [
 new google.maps.LatLng(36.705, -80.459),
 new google.maps.LatLng(36.705, -79),
 new google.maps.LatLng(35.9, -79),
 new google.maps.LatLng(35.9, -80.459)
];

 var points = [polyOuter, polyInner];

 // Creating the polygon
 var polygon = new google.maps.Polygon({
 paths: points,
 map: map,
 strokeColor: '#ff0000',
 strokeOpacity: 0.6,
 strokeWeight: 3,
 fillColor: '#FF0000',
 fillOpacity: 0.35
 });

 };

})();

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

173

Creating a Polygon with a Highlight Effect
In this example, you’ll create a polygon that features a highlight effect when the user moves the mouse
over it.

A Starting Point
Listing 8-6 shows the JavaScript code that you will start this example from. It creates a map that is
centered over part of the Atlantic Ocean.

Listing 8-6. The Starting Point for Example 8-5

(function() {

 window.onload = function(){

 // Creating a map
 var options = {
 zoom: 4,
 center: new google.maps.LatLng(25.5, -71.0),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById('map'), options);

 };

})();

The Bermuda Triangle
The first thing you will do is to create a polygon that will mark the infamous Bermuda Triangle. The
Bermuda Triangle stretches from Miami to Bermuda and Puerto Rico. You’ll find the coordinates for
these locations in Table 8-4.

Table 8-4. The Coordinates for the Bermuda Triangle

City Latitude Longitude

Miami 25.7516 -80.1670

Bermuda 32.2553 -64.8493

Puerto Rico 18.4049 -66.0578

Having these coordinates available, you can start creating the polygon. You start by creating an
array called bermudaTrianglePoints that will contain the coordinates:

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

174

var bermudaTrianglePoints = [
 new google.maps.LatLng(25.7516, -80.1670),
 new google.maps.LatLng(32.2553, -64.8493),
 new google.maps.LatLng(18.4049, -66.0578)
];

Next you create the polygon. Style it to have a semi-transparent red color.

var bermudaTriangle = new google.maps.Polygon({
 paths: bermudaTrianglePoints,
 map: map,
 strokeColor: '#ff0000',
 strokeOpacity: 0.6,
 strokeWeight: 1,
 fillColor: '#ff0000',
 fillOpacity: 0.35
});

You now have a map that clearly marks the Bermuda Triangle, as shown in Figure 8-10.

Figure 8-10. The Bermuda Triangle

Adding a Highlight Effect
The next step is to add a highlight effect to the triangle. This is done by changing the color of the polygon
when the user moves the mouse over it. To detect when the user does this, you’ll use the Polygon object’s
mouseover event.

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

175

google.maps.event.addListener(bermudaTriangle, 'mouseover', function() {
 // Add code that will run on mouseover
});

Now you are listening for the mouseover event. The next thing you need to do is to change the color

of the polygon when that event triggers. To do this, you will use the Polygon object’s setOptions()
method. With this method, you can change any of the properties of the PolygonOptions object. It takes a
PolygonOptions object as its parameter.

What you want to do is to change the color of the polygon. Therefore, you will create a
PolygonOptions object that will change the values for fillColor and strokeColor. Let’s set them to
#0000ff, which will give the polygon a blue color.

google.maps.event.addListener(bermudaTriangle, 'mouseover', function() {
 bermudaTriangle.setOptions({
 fillColor: '#0000ff',
 strokeColor: '#0000ff'
 });
});

Now when you try the map, the polygon will switch color to blue when you move the mouse pointer

over it.
This works fine, but when you move the mouse away from the polygon, it doesn’t switch back to the

original color. To fix this, you need to listen for the mouseout event. When that event triggers, you’ll set
the color back to red.

google.maps.event.addListener(bermudaTriangle, 'mouseout', function(e) {
 bermudaTriangle.setOptions({
 fillColor: '#ff0000',
 strokeColor: '#ff0000'
 });
});

Now you have a working example that features a nice hover effect.

The Complete Code
Listing 8-7 shows the complete JavaScript code for this example.

Listing 8-7. The Complete JavaScript Code for Example 8.5

(function() {

 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 4,
 center: new google.maps.LatLng(25.5, -71.0),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById('map'), options);

CHAPTER 8 ■ CREATING POLYLINES AND POLYGONS

176

 // Creating an array with the points for the Bermuda Triangle
 var bermudaTrianglePoints = [
 new google.maps.LatLng(25.7516, -80.1670),
 new google.maps.LatLng(32.2553, -64.8493),
 new google.maps.LatLng(18.4049, -66.0578)
];

 // Creating the polygon
 var bermudaTriangle = new google.maps.Polygon({
 paths: bermudaTrianglePoints,
 map: map,
 strokeColor: '#ff0000',
 strokeOpacity: 0.6,
 strokeWeight: 1,
 fillColor: '#ff0000',
 fillOpacity: 0.35
 });

 // Adding mouseover event to the polygon
 google.maps.event.addListener(bermudaTriangle, 'mouseover', function(e) {

 // Setting the color of the polygon to blue
 bermudaTriangle.setOptions({
 fillColor: '#0000ff',
 strokeColor: '#0000ff'
 });

 });

 // Adding a mouseout event for the polygon
 google.maps.event.addListener(bermudaTriangle, 'mouseout', function(e) {

 // Setting the color of the polygon to red
 bermudaTriangle.setOptions({
 fillColor: '#ff0000',
 strokeColor: '#ff0000'
 });

 });

 };

})();

Summary
In this chapter, you looked at polylines and polygons. They provide the means to mark different things in
a map such as roads and areas. With the things you learned in this chapter, you’ll be able to create maps
that incorporate these effects in different ways, including dynamic behavior such as plotting your own
paths or adding hover effects.

C H A P T E R 9

■ ■ ■

177

Dealing with Massive Numbers of
Markers

A common problem that most maps developers run into sooner or later is that they need to add a large
number of markers to a map. There are a few problems related to this. The first problem that becomes
painfully apparent as soon as you start adding a lot of markers is that the performance of the map
quickly degrades. A second big problem is with the usability of the map. It can be hard to make sense of
a map that is crammed with markers.

In the first part of this chapter, I will discuss different approaches for dealing with these problems.
In the second part, you will do some coding using third-party libraries.

Too Many Markers?
First of all the question is, how many markers are too many? Well, that depends on several things.
First, there’s the performance issue. The more markers you add, the slower the map will be. Exactly at
what point the number of markers makes the map too slow is hard to say since it depends on which
browser is used to view the map and on the speed of the computer being used. A map that performs
really fast in Google Chrome could, for example, be painfully slow in Internet Explorer.

Another issue is the usability aspect. The more markers you use, the harder it is for the user to
make sense of them and find the relevant ones (see Figures 9-1 and 9-2). The ideal number depends
on different factors. For example, are the markers positioned very close to each other, or are they
scattered over a larger area? If they are scattered over a large area, you can probably get away with
using a lot more markers than if they are close together.

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

178

Figure 9-1. Ten markers is no problem, but even when we increase the number to 50, there's a risk
of overlap.

Figure 9-2. Probably 100 markers is really unusable...not to mention 1,000 markers.

Generally speaking, if you’re using fewer than 100 markers, you rarely have a problem. But if you
have more, you have to ask yourself these questions:

• Is the map slow?

• Is it hard to get an overview of the map because of all markers?

• Is it hard to make sense of the data being shown on the map?

If the answer is no to all of these questions, you probably don’t have a problem. But if the
answer is yes to any of them, you probably have to think about how to improve the way you’re
visualizing the data.

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

179

Reducing the Number of Markers Being Displayed
One obvious way of to get around this problem is to not display all the markers all the time. Before
getting into how to code actual solutions to this problem, I’ll explain some possible approaches for
reducing the number of markers being shown. Since v3 is still in beta at the time of writing this book,
I’ve had problems finding relevant examples implemented with v3. So, the examples shown here are
implemented using Google Maps API v2. These concepts can, however, just as well be implemented
using v3. Also, since most of these solutions involve server-side coding, which is beyond the scope of
this book, I’m not going to get into how to actually implement them. Let these first examples just serve
as inspiration for how you can approach the too-many-markers problem.

Searching
One way of reducing the number of markers being displayed is to provide a search function. This way,
even if you have thousands of locations, only the ones that match the search criteria are visible. One
example of this is the search function in Google Maps. If you search for Starbucks, it will only display
the Starbucks available in the visible map (see Figure 9-3).

Figure 9-3. maps.google.com features a search function that searches the visible map and adds markers of
the locations found.

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

180

Also notice that the markers are displayed with labels that correspond to the search result to the
left of the map. This is a great way to enhance the maps usability since it makes it possible to
understand which marker is which.

Filtering
Another way of reducing the number of markers displayed on the map is by offering a filtering
function. STF (which is a Swedish Tourist Association with more than 400 hostels, mountain stations,
and alpine huts) offers a map where you can find all of their accommodations as well as other things to
see and do (see Figure 9-4). To make the map easier to use, they provide a filter function with which
you can filter the map. This is done by marking options in the filter area to the left of the map.

Figure 9-4. STF offers a map that enables you to filter what is shown on the map by marking items in the
filter area to the left of the map. The map is found at http://tinyurl.com/36ug6jw.

STF is also utilizing another great way of increasing the usability of the map, and that is by having
different marker icons for different types of locations. This technique alone makes scanning the map
a lot easier.

http://tinyurl.com/36ug6jw

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

181

Don’t Always Use Markers
This might sound like a no-brainer, but sometimes we get so focused on using markers for everything
that we forget that we have other tools at our disposal. Don’t forget that we also have polylines and
polygons in our toolbox. If the thing you want to mark in the map is a road stretch or an area, use
polylines or polygons instead. They are much better suited for the job.

Clustering
A common solution for handling the lots-of-markers-problem is to cluster them. What this means is
that instead of displaying each individual marker at each time, clusters of markers are displayed.
When you zoom in on a cluster, it will break up into smaller clusters or in individual markers.

Using a cluster will significantly increase the performance of the map as well as making it easier
to understand (see Figure 9-5).

Figure 9-5. The difference between displaying 1,000 markers on a small map and using clusters to do it

Grid-Based Clustering
Grid-based clustering is probably the most common approach for clustering markers. It will divide the
map into a grid and group all markers within each square into a cluster. Although an efficient
technique, it has some obvious limitations since it can lead to unwanted results. Two markers that are
really close together but in separate squares will, for example, not be grouped into the same cluster.
See Figure 9-6.

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

182

Figure 9-6. These two markers will not be clustered since they reside in different squares of the grid

Distance-Based Clustering
This technique looks at each individual marker and checks whether it’s nearby other markers. If it’s
close enough to another marker, the two of them will be grouped into a cluster.

Distance-based clustering also has its drawbacks. Since the clusters will appear at random
locations depending on where a cluster is formed they may not make sense for the user.

Regional Clustering
A third technique is regional clustering. What this means is that you define different geographical
regions, such as counties or states. All markers in each region will be grouped into a cluster. You also
define at which zoom level the cluster will break up into separate markers (or smaller clusters).

The advantage of this technique is that you can create clusters that make more sense to the
user. The drawback is that it requires more effort and can’t as easily be automated as the other
clustering techniques.

Some Practical Examples
We will soon take a look at some solutions for dealing with too many markers. But before you do that,
you will create a map that features a lot of markers so that you have a problem to fix. Therefore, you
will write some code that will auto generate markers at random locations.

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

183

The Starting Point
As usual the starting point will be a regular map of the United States (Listing 9-1).

Listing 9-1. The Starting JavaScript Code

(function() {

 window.onload = function(){

 // Creating a map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById('map'), options);

 };

})();

OK, so now that we have a starting point, let’s add some functionality. What you want to do is to

generate markers within the current viewport. The first thing you need to do is to find out the
boundaries of the map so you know where to put the markers. The boundaries indicate what part of the
map that’s visible to the user, that is, what part of the map that’s in the viewport.

Calculating the Current Map Boundaries
To get the current boundaries you execute the getBounds() method of the map object. It returns a
LatLngBounds object. I discussed this object in greater detail in Chapter 5, but in short, it’s a rectangle.

var bounds = map.getBounds();

You would think that running this line of code would return the boundaries of the map, but it

doesn’t. If you examine the bounds variable, you will see that it’s undefined. The reason is the
asynchronous nature of the Google Maps API. When you call the getBounds() method, the bounds
don’t yet exist. This means that you need to wait for the bounds to get ready. To do this, you need to
listen for the map objects bounds_changed event. Once that event has fired, you can be certain that it’s
available for you.

So to make your code work, you need to add that event listener and put your code inside the event
handler. Since you want this code to run only once, just when the map has finished loading, you’re
going to use a special method to add the event listener. It’s called addListenerOnce(), and the good
thing about it is that it removes itself once its event has triggered (see Table 9-1). Other than that, it
works exactly as the addListener() method that you’ve used before.

google.maps.event.addListenerOnce(map, 'bounds_changed', function() {

 var bounds = map.getBounds();

});

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

184

Table 9-1. Definition of addListenerOnce()

Method Return Value Description

google.maps.event.addListenerOnce
(instance:Ojbect, eventName:string,
handler:Function)

MapsEventListener Adds an event listener that will be
removed after it have been triggered

Now if you examine the bounds variable, it will contain a LatLngBounds object that indicates the
current map boundaries. Next you’ll need to find out the southwest and northeast corners of the
boundaries. You get these by calling the getSouthWest() and getNorthEast() methods for the
LatLngBounds object. These methods return a LatLng object.

google.maps.event.addListenerOnce(map, 'bounds_changed', function() {

 var bounds = map.getBounds();

 var southWest = bounds.getSouthWest();
 var northEast = bounds.getNorthEast();

});

Maybe you’re starting to wonder where I’m going with all of this. Just remember that you want to
calculate a rectangle in the map so that you know where to create the random markers. You now know
the lower-left corner of the viewport (southWest) and the upper-right corner (northEast). Next you need
to find out the distance between the left and right side of the map as well as the distance between the
upper and lower sides. These values will be stored in the variables latSpan and lngSpan. To get the
values you need for each calculation, you will use the methods lat() and lng() of the LatLng object.

google.maps.event.addListenerOnce(map, 'bounds_changed', function() {

 var bounds = map.getBounds();

 var southWest = bounds.getSouthWest();
 var northEast = bounds.getNorthEast();
 var latSpan = northEast.lat() - southWest.lat();
 var lngSpan = northEast.lng() - southWest.lng();

});

Note that this code is not completely foolproof. If the map is zoomed out far enough so both the
prime meridian and the international date line are visible, it will put the markers on the other side of
the globe (Figure 9-7).

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

185

Figure 9-7. latSpan measures the distance from the top to the bottom of the map, and lngSpan measures
the distance between the sides.

Now you know the distance from the lower part of the map to the upper part as well as the distance
from side to side. In other words, you now know the playing field onto which you will add the markers.

Adding the Markers
You will create a loop that on each iteration will add a marker to the map at a random location within
our boundaries. You will use the information that you’ve already calculated in combination with a
random number to create the LatLng for each marker.

Let’s start by creating a for loop that will iterate 100 times. The code for the loop will reside inside
the event handler, but for brevity, I will display only the code for the loop here. You’ll find the complete
code at the end of this section.

Inside the loop you’re going to calculate the LatLng for each marker. You create a variable called
lat that will store the latitude and a variable called lng that will store the longitude. The latitude is
calculated by taking the latitude for the lower part of the map and adding the distance from the bottom
to the top multiplied by a random number between 0 and 1. To get the random number, you will use
the JavaScript Math object. It has a method called random() that will return a random number between 0
and 1 each time you call it (see Table 9-2). This will provide you with a random latitude that will reside
within your boundaries.

You’re doing the same thing with the longitude only that you’re using the longitude for the left
part of the map added with the distance from side to side multiplied by a random number.

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

186

for (var i = 0; i < 100; i++) {

 var lat = southWest.lat() + latSpan * Math.random();
 var lng = southWest.lng() + lngSpan * Math.random();

}

Table 9-2. Definition of Math.random()

Method Return value Description

Math.random() A number between 0 and 1 Returns a random number between 0 and 1 each
time it’s called. It never actually returns 1 but a
number that is slightly lower.

Next you’ll use the lat and the lng value to create a LatLng object. We will store this object in a

variable called latlng.

for (var i = 0; i < 100; i++) {

 var lat = southWest.lat() + latSpan * Math.random();
 var lng = southWest.lng() + lngSpan * Math.random();
 var latlng = new google.maps.LatLng(lat, lng);

}

■ Note The Math object is a native JavaScript object that has several useful methods for performing mathematical
tasks. Creating random numbers with the random() method is one, and round() to round numbers and max() to
find out which of two numbers is the biggest are a couple of others. For a complete reference, check out the page

about the Math object at w3school.com http://www.w3schools.com/js/js_obj_math.asp.

Now all that’s left to do is to create a marker. You’ll use the latlng variable as the position for the
marker and add the marker to your map.

for (var i = 0; i < 100; i++) {

 var lat = southWest.lat() + latSpan * Math.random();
 var lng = southWest.lng() + lngSpan * Math.random();
 var latlng = new google.maps.LatLng(lat, lng);

 new google.maps.Marker({
 position: latlng,
 map: map
 });

}

http://www.w3schools.com/js/js_obj_math.asp

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

187

The Final Code
Listing 9-2 shows the complete code. When you run this page, it will add 100 markers at random
locations at the visible part of the map. If you want to try adding a different number of markers, just
change the number in the for loop.

Listing 9-2. The Complete Code for Example 9-1

(function() {

 window.onload = function(){

 // Creating a map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById('map'), options);

 google.maps.event.addListenerOnce(map, 'bounds_changed', function() {

 // Getting the boundaries of the map
 var bounds = map.getBounds();

 // Getting the corners of the map
 var southWest = bounds.getSouthWest();
 var northEast = bounds.getNorthEast();

 // Calculating the distance from the top to the bottom of the map
 var latSpan = northEast.lat() - southWest.lat();

 // Calculating the distance from side to side
 var lngSpan = northEast.lng() - southWest.lng();

 // Creating a loop
 for (var i = 0; i < 100; i++) {

 // Creating a random position
 var lat = southWest.lat() + latSpan * Math.random();
 var lng = southWest.lng() + lngSpan * Math.random();
 var latlng = new google.maps.LatLng(lat, lng);

 // Adding a marker to the map
 new google.maps.Marker({
 position: latlng,
 map: map
 });

 }

 });

 };

})();

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

188

Running this code will result in a map that looks something like Figure 9-8.

Figure 9-8. 100 markers at random locations

Third-Party Libraries
Although the Google Maps API has a lot of features in itself, there are external utility libraries
available that add functionality to the API. A utility library is basically a collection of JavaScript files
that extends the Google Maps API to include more functionality. You use them by including the
JavaScript file in your HTML file, just the way you include the Google Maps API. And once you have
done that, you get access to the library’s objects and functionality.

Since version 3 of the Google Maps API is still so new there are not yet many of them. At the time
of writing, there are two official libraries available for marker management. These are
MarkerClusterer and MarkerManager.

These and all the other official libraries are found at the google-maps-utility-library-v3
repository at http://code.google.com/p/google-maps-utility-library-v3/wiki/Libraries. The
number of available utility libraries is likely to grow as people are transferring from v2 to v3 of the
Google Maps API.

MarkerClusterer
As the name implies, this library is used for clustering markers. It uses a grid-based clustering method,
which makes it ideal for a fast solution to the many-markers problem.

http://code.google.com/p/google-maps-utility-library-v3/wiki/Libraries

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

189

The original MarkerClusterer for v2 of the Google Maps API was written by Xiaoxi Wu, but the v3
implementation was done by Luke Mahe. It’s released under the Apache License version 2.0, which
means that it’s open source and that you can use it freely in your projects.

This library is available at its file repository at http://google-maps-utility-library-
v3.googlecode.com/svn/tags/markerclusterer/1.0/. If you browse to it, you will find a page with a list
of folders (Figure 9-9).

Figure 9-9. The MarkerClusterer file repository

The docs folder contains documentation and a complete reference on the library. The examples
folder contains several examples that you can review. The images folder contains images for the
examples as well as images for the clusters. Finally, the src folder contains the actual library file, which
is a regular JavaScript file that you can download and put on your own server.

The original library file is called markerclusterer.js. You can examine this file to see how the
library is built. There’s also compressed versions of the library that is a lot smaller in file size but
impossible to read (see Table 9-3). For production, I strongly suggest that you use either
markerclusterer_compiled.js or markerclusterer_packed.js. Since these are much smaller they will
load faster. The uncompressed version can be nice to use during development since it’s possible to see
what it actually contains and what the code does. Also, if you would like to extend the library, you could
do that with this version.

Table 9-3. The Different File Versions of MarkerClusterer

Filename File Size Uses

markercluster.js 26KB Use this during development since you can review
and debug the code. Also useful if you want to extend
the library with more functionality.

markerclusterer_compiled.js 7KB Use for production site. Its smaller file size makes it
faster to download.

markerclusterer_packed.js 7KB Same as for the compiled version, only a different
compression method.

http://google-maps-utility-library-v3.googlecode.com/svn/tags/markerclusterer/1.0
http://google-maps-utility-library-v3.googlecode.com/svn/tags/markerclusterer/1.0
http://google-maps-utility-library-v3.googlecode.com/svn/tags/markerclusterer/1.0

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

190

Applying MarkerClusterer to the Example
The first thing you need to do when applying MarkerClusterer is to link in the library. To do this, you
need to add a new <script> element to the HTML document. I have downloaded the library to my
computer and placed it in the js folder, so the src attribute will point to js/markerclusterer.js. See
Listing 9-3.

Listing 9-3. The HTML Code for Example 9-2

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Dealing with massive amounts of markers - Example 9-2</title>
 <link rel="stylesheet" href="css/style.css" type="text/css" media="all" />
 <script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=false&language=en"></script>
 <script type="text/javascript" src="js/markerclusterer.js"></script>
 <script type="text/javascript" src="js/9-2.js"></script>
 </head>
 <body>

 <div id="map"></div>

 </body>
</html>

Now that you have the library linked in, it’s available to use. You will start from the code you wrote

in the first example of this chapter and extend it to use the MarkerClusterer library.

Reconstructing the Loop
The first thing you’re going to do is to change the loop a bit. Instead of creating a marker at each
iteration, you’re going to add the markers to an array. Let’s call the array markers and add it just above
the for loop in the code.

var markers = [];

Inside the for loop, you’re changing the creation of the marker so that it’s not instantly added to

the map. This is done by omitting the map property. You’re also going to store the marker inside a
variable called marker.

var marker = new google.maps.Marker({
 position: latlng
});

Finally, you’re adding the marker to the markers array by using the push() method.

markers.push(marker);

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://maps.google.com/maps/api/js?sensor=false&language=en

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

191

Having made these adjustments to the code, the for loop should look like this:

// Creating an array that will store the markers
var markers = [];

for (var i = 0; i < 100; i++) {

 // Creating a random position
 var lat = southWest.lat() + latSpan * Math.random();
 var lng = southWest.lng() + lngSpan * Math.random();
 var latlng = new google.maps.LatLng(lat, lng);

 // Creating a marker. Note that we don't add it to the map
 var marker = new google.maps.Marker({
 position: latlng
 });

 // Adding the marker to the markers array
 markers.push(marker);

}

After the loop has run the markers array will be filled with 100 marker objects that have not yet

been added to the map.

Creating a MarkerClusterer Object
In its most basic use, all you have to do to create a MarkerClusterer object is to tell it which map to use
and what markers to add.

Table 9-4. Definition of the MarkerClusterer Constructor

Constructor Description

MarkerClusterer(map:Map, markers?:Array,
options?:Object)

Creates a MarkerClusterer that will cluster the
markers and add them to the map.

Since you’ve already prepared an array with markers, all you have to do is to add one line of code.

This is added right after the loop.

var markerclusterer = new MarkerClusterer(map, markers);

Doing this the markers are automatically grouped in clusters and being added to the map. If you
run the code, the map should look something like Figure 9-10.

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

192

Figure 9-10. The markers are now grouped in clusters of various size.

Notice that the size of the clusters is indicated by both color and number (see Table 9-5). The
number in the middle indicates the number of markers that the cluster contains. There’s also a single
marker on the map that has not been clustered. That’s because it was too far away from other markers
to be included.

Table 9-5. Cluster Sizes

Color Size of Cluster Comment

Blue < 10 Clusters with less than 10 markers will look like this.

Yellow < 100 Clusters with 10 to 100 markers will look like this.

Red < 1000 In most cases this will be the biggest cluster you’ll ever have. At this
point performance is starting to degrade.

Purple < 10.000 10.000 is a lot of markers. Probably too many to use even with
clusters.

Dark purple 10.000+ This cluster will probably never be used. Using this amount of
markers will be painfully slow in all browsers and will probably
make IE crash.

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

193

As you probably noticed, this is a really fast and easy way to create clusters. This makes it perfect
for fast solutions to the many-markers problem.

The Complete Code for This Example
Listing 9-4 shows the complete JavaScript code for this example.

Listing 9-4. The Complete JavaScript Code for Example 9-2

(function() {

 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById('map'), options);

 google.maps.event.addListenerOnce(map, 'bounds_changed', function() {

 // Getting the boundaries of the map
 var bounds = map.getBounds();

 // Getting the corners of the map
 var southWest = bounds.getSouthWest();
 var northEast = bounds.getNorthEast();

 // Calculating the distance from the top to the bottom of the map
 var latSpan = northEast.lat() - southWest.lat();

 // Calculating the distance from side to side
 var lngSpan = northEast.lng() - southWest.lng();

 // Creating an array that will store the markers
 var markers = [];

 // Creating a loop
 for (var i = 0; i < 1000; i++) {

 // Creating a random position
 var lat = southWest.lat() + latSpan * Math.random();
 var lng = southWest.lng() + lngSpan * Math.random();
 var latlng = new google.maps.LatLng(lat, lng);

 // Creating a marker. Note that we don't add it to the map
 var marker = new google.maps.Marker({
 position: latlng
 });

 // Adding the marker to the markers array
 markers.push(marker);

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

194

 }

 // Creating a MarkerClusterer object and adding the markers array to it
 var markerclusterer = new MarkerClusterer(map, markers);

 });

 };

})();

Tweaking the Clustering with Options
When constructing a MarkerClusterer object, there’s a third argument called options that you can pass
along to change some of the behaviors of the object. It has four properties:

• gridSize
The MarkerClusterer object divides the map into a grid. All markers within a grid
are grouped into a cluster. With this property you can change the size of the grid.
It takes a number representing the size in pixels as its value. The default value
is 60.

• maxZoom
This property determines the maximum zoom level at which a marker can be
part of a cluster. It takes a number as its value, and if you don’t explicitly set it, it
will default to the maximum zoom level of the map.

• zoomOnClick
You can control whether clicking a cluster will zoom the map in or not by using
this property. It takes a Boolean as its value, and the default value is true.

• styles
With this property, you can apply different styles to the clusters. It takes an
array of MarkerStyleOptions objects as its value. The objects in the array should
be ordered by cluster size. So, the first object should be the one styling the
smallest cluster, and the last object should be the one styling the largest cluster.
To learn more about how to set this, check out the reference documentation in
the file repository.

To use the options object, you simply create an object literal and pass it as the third argument to
the constructor of the MarkerManager object. If you would like to set the gridSize to 100 and zoomOnClick
to false, you would write the following:

var markerclusterer = new MarkerClusterer(map, markers, {
 'gridSize': 100,
 'zoomOnClick': false
});

Further Resources
The MarkerClusterer object has more methods and features than I have described here. For more
information, check out the reference documentation at the file repository at http://google-maps-
utility-library-v3.googlecode.com/svn/tags/markerclusterer/1.0/docs/reference.html. It will
provide you with a full overview of all of the features of the MarkerClusterer library.

http://google-maps-utility-library-v3.googlecode.com/svn/tags/markerclusterer/1.0/docs/reference.html
http://google-maps-utility-library-v3.googlecode.com/svn/tags/markerclusterer/1.0/docs/reference.html
http://google-maps-utility-library-v3.googlecode.com/svn/tags/markerclusterer/1.0/docs/reference.html

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

195

MarkerManager
MarkerManager is another utility library for Google Maps. It’s not primarily a clustering solution
(although it can be used for this as you will see later in this chapter). Its primary job is to reduce the
number of markers on the map by only rendering the ones that are inside the current viewport. This
way, the browser isn’t bogged down with markers that wouldn’t be visible anyway. When the user pans
or zooms the map, the MarkerManager library will recalculate which markers to render and adds those
that are now inside the viewport and removes those that are outside.

The file repository for MarkerManager is found at http://google-maps-utility-library-
v3.googlecode.com/svn/tags/markerclusterer/1.0/. There you will find both the source files, examples,
and documentation.

Adding a Reference to the Library
First you need to add a reference in the HTML file that points to the MarkerManager library. It is
inserted in the <head> section of the document, right under the reference to the Google Maps API.

<script type="text/javascript" src="js/markermanager_packed.js"></script>

In this case I’ve chosen to add a reference to the packed version of the library in order to reduce
the file size the browser needs to download. You could of course add a reference to the unpacked
version, markermanager.js, during development. Table 9-6 describes the versions of MarkerManager.

Table 9-6. The Different File Versions of MarkerManager

Filename File Size Uses

markermanager.js 29KB Use this during development since you can review and
debug the code. Also useful if you want to extend the
library with more functionality.

markermanager_packed.js 6KB Use for production site. Its smaller file size makes it
faster to download.

The complete HTML for this example will look like Listing 9-5.

Listing 9-5. The HTML Code for Example 9-3

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Dealing with massive amounts of markers - Example 9-3</title>
 <link rel="stylesheet" href="css/style.css" type="text/css" media="all" />
 <script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=false&language=en"></script>
 <script type="text/javascript" src="js/markermanager_packed.js"></script>
 <script type="text/javascript" src="js/9-2.js"></script>
 </head>

http://google-maps-utility-library-v3.googlecode.com/svn/tags/markerclusterer/1.0
http://google-maps-utility-library-v3.googlecode.com/svn/tags/markerclusterer/1.0
http://google-maps-utility-library-v3.googlecode.com/svn/tags/markerclusterer/1.0
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://maps.google.com/maps/api/js?sensor=false&language=en

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

196

 <body>

 <div id="map"></div>

 </body>
</html>

The JavaScript
Start this example from the JavaScript code shown in Listing 9-6. It will create a map that’s zoomed
down somewhere in the middle of the United States.

Listing 9-6. The Starting JavaScript Code for Example 9-3

(function() {

 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 5,
 center: new google.maps.LatLng(37.99, -93.77),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById('map'), options);

 };

})();

Creating a MarkerManager Object
In the JavaScript file you’re now going to add code to create a MarkerManager object. You are then going
to create several markers at random locations and add these to the object.

Let’s start by creating a new MarkerManager object. In its simplest form, all you need to do is to pass
a reference to the map to it. You will insert this code right below the code that creates the map.

var mgr = new MarkerManager(map);

The MarkerManager constructor does have an optional second argument, which is an object literal

containing options for tweaking its default settings (see Table 9-7). For now, you will omit this and
settle with the default settings, but you will come back to the options object later in this chapter.

Table 9-7. Definition of the MarkerManager Constructor

Constructor Description

MarkerManager(map:Map, options?:Object) Creates an empty MarkerManager object

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

197

Creating the Markers
The next step is to create all of the markers. You’ll start by creating an array that will contain

them. Let’s call the array markers.

var mgr = new MarkerManager(map);
var markers = [];

You will use the same code as in the two previous examples for creating random markers but

change it a little bit. Instead of creating markers inside the current viewport, you’ll define the
boundaries within which the markers will be created as a square covering most of the United States.
Since you already know the boundaries, you don’t have to listen for the maps bounds_changed event but
can go straight to defining the boundaries and creating the markers (Figure 9-11).

var mgr = new MarkerManager(map);
var markers = [];

var southWest = new google.maps.LatLng(24, -126);
var northEast = new google.maps.LatLng(50, -60);
var lngSpan = northEast.lng() - southWest.lng();
var latSpan = northEast.lat() - southWest.lat();

Figure 9-11. The markers will be created within these boundaries covering most of the United States.

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

198

Having done that, you’re ready to create the loop that will create the markers. This code is
identical to the code used in the previous example. It creates 100 markers at random locations within
our bounds and adds them to the markers array.

for (var i = 0; i < 100; i++) {

 // Calculating a random location
 var lat = southWest.lat() + latSpan * Math.random();
 var lng = southWest.lng() + lngSpan * Math.random();
 var latlng = new google.maps.LatLng(lat, lng);

 // Creating a marker
 var marker = new google.maps.Marker({
 position: latlng
 });

 // Adding the marker to the array
 markers.push(marker);

}

Adding the Markers to the MarkerManager
Now you have an array full of random markers. It’s time to put them to use by adding them to the
MarkerManager object.

The MarkerManager object has a method called addMarkers(), which takes an array of markers and a
minimum zoom level at which they will appear as its arguments. The minimum zoom level can be used
if you don’t want the markers to be visible when you go beyond it. In this case, you want them to
always be visible, so you set it to 1, which is when the map is zoomed out all the way. If you have set it to
10, you would have to zoom in to zoom level 10 of the map before the markers would appear.

So, let’s add the markers to the MarkerManager object. This code will appear right under the loop
that you just created.

mgr.addMarkers(markers, 1);

Table 9-8. Definition of the addMarkers() Method of MarkerManager

Method Return value Description

addMarkers(markers:Array,
minZoom:Number,
maxZoom?:Number)

None Adds an array of markers. Note that it only
adds them to the MarkerManager object, not
to the map.

The addMarkers() method doesn’t actually add the markers to the map. It only adds them to

the MarkerManager object. To add the markers to the map, you need to call a second method
called refresh().

The refresh() method serves a dual purpose. If no markers are yet added to the map, it adds them.
But if the MarkerManager object has already added markers to the map, the refresh() method will
remove and reinsert them.

mgr.addMarkers(markers, 1);
mgr.refresh();

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

199

Now it looks like we’re done, but if you try this code, it won’t work. The reason for this is that just
like the Google Maps API, the MarkerManager library works asynchronously. This means that you
have to make sure that it has loaded before you try to use it. This is done by listening to the loaded
event of the MarkerManager object.

google.maps.event.addListener(mgr, 'loaded', function() {
 mgr.addMarkers(markers, 1);
 mgr.refresh();
});

Now you’re all set and the markers are properly added to the map. If you try to pan the map,

perhaps you will notice that new markers are loaded. I say perhaps because if you’re using a really fast
browser like Google Chrome, this happens so fast that you might not even notice.

This behavior is the whole point of using the MarkerManager library. It makes sure that only the
markers that matter are visible at one time, thereby providing a better overall performance of the map
(Figure 9-12).

■ Note The MarkerManager object also has a method called addMarker() that takes a single marker and a
minimum zoom level as its arguments. It instantly adds the marker to the map. The reason I’m not using it here is

because the addMarkers() method provides better performance when inserting several markers at once.

Figure 9-12. 100 markers are added to the map. The MarkerManager library only displays those that are
within the current viewport.

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

200

The Final Code for This Example
Listing 9-7 shows the final JavaScript code for this example.

Listing 9-7. The Final JavaScript Code for Example 9-3

(function() {

 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 5,
 center: new google.maps.LatLng(37.99, -93.77),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById('map'), options);

 // Creating a new MarkerManager object
 var mgr = new MarkerManager(map);

 // Creating an array that will contain all of the markers
 var markers = [];

 // Setting the boundaries within where the markers will be created
 var southWest = new google.maps.LatLng(24, -126);
 var northEast = new google.maps.LatLng(50, -60);
 var lngSpan = northEast.lng() - southWest.lng();
 var latSpan = northEast.lat() - southWest.lat();

 // Creating markers at random locations
 for (var i = 0; i < 100; i++) {

 // Calculating a random location
 var lat = southWest.lat() + latSpan * Math.random();
 var lng = southWest.lng() + lngSpan * Math.random();
 var latlng = new google.maps.LatLng(lat, lng);

 // Creating a marker
 var marker = new google.maps.Marker({
 position: latlng
 });

 // Adding the marker to the array
 markers.push(marker);
 }

 // Making sure the MarkerManager is properly loaded before we use it
 google.maps.event.addListener(mgr, 'loaded', function() {

 // Adding the markers to the MarkerManager
 mgr.addMarkers(markers, 1);

 // Adding the markers to the map

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

201

 mgr.refresh();

 });

 };

})();

Getting in Charge of the Zoom Levels
Another way that the MarkerManager can be used is to control at which zoom level different markers
are visible. This way, you can use it to create clusters. The main difference creating clusters this way
instead of using a library like MarkerClusterer is that the clusters are not automatically created. You
have to manually define which clusters to have and which markers will reside in them. Even though it
requires more work on your part to create this kind of cluster, it also enables you to create clusters that
make more sense to the user. We could for example create regional clusters, something that you will
explore in the next example.

Regional Clustering with MarkerManager
Because of MarkerManager’s ability to define the zoom levels at which certain markers will appear,
you can use it to create regional clusters. Actually, these will not be proper clusters in the sense that
you create a specific cluster and add markers to it. But for the user, it will appear that these are real
clusters.

What you will do is to create “cluster markers” that will appear at a high zoom level. As you zoom
in on the map, you will remove the cluster markers and replace them with specific markers.

In this particular example, you will create two clusters, one for Utah and one for Colorado. You will
also create markers for some of the cities in these states. The Utah and Colorado markers will only
appear on a high zoom-level. And the city markers will only appear at a lower zoom level.

The Starting Code
Listing 9-8 shows the starting JavaScript code for this example. It will create a map centered over the
United States that is zoomed out to a pretty low zoom level.

Listing 9-8. The Starting JavaScript for Example 9-4

(function() {

 window.onload = function(){

 // Creating a map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.99, -93.77),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById('map'), options);

 };

})();

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

202

Creating the Clusters
Before you create the clusters, you will create a new MarkerManager object. You do this the exact same
way as in the former example by passing a reference to the map to it. This code goes just below the
code that creates the map.

var mgr = new MarkerManager(map);

Having done that, it’s time to create the cluster markers. You will create one marker that
represents Utah and one that represents Colorado and add them to an array called states. To
distinguish the cluster markers from regular markers, you will give them a different look. You will do
this by setting the icon property to a URL to an image called cluster.png (see Figure 9-13).

Figure 9-13. The cluster icon. It’s from the map icons collection found at
http://code.google.com/p/google-maps-icons/.

var states = [
 new google.maps.Marker({
 position: new google.maps.LatLng(39.4698, -111.5962),
 icon: 'img/cluster.png'
 }),
 new google.maps.Marker({
 position: new google.maps.LatLng(38.9933, -105.6196),
 icon: 'img/cluster.png'
 })
];

Next you will create another array called cities. This array will contain all the city markers.

These will all have the default marker icon look, so all you need to do is to define the position
property.

var cities = [
 // Colorado Springs
 new google.maps.Marker({position: new google.maps.LatLng(38.8338, -104.8213)}),
 // Denver
 new google.maps.Marker({position: new google.maps.LatLng(39.7391, -104.9847)}),
 // Glenwood Springs
 new google.maps.Marker({position: new google.maps.LatLng(39.5505, -107.3247)}),
 // Salt Lake City
 new google.maps.Marker({position: new google.maps.LatLng(40.7607, -111.8910)}),
 // Fillmore
 new google.maps.Marker({position: new google.maps.LatLng(38.9688, -112.3235)}),
 // Spanish Fork
 new google.maps.Marker({position: new google.maps.LatLng(40.1149, -111.6549)})
];

Adding the Markers to the MarkerManager
With the arrays in place, you need to add them to the MarkerManager object. But first you have to set up
an event listener to listen for the loaded event of the MarkerManager object.

http://code.google.com/p/google-maps-icons

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

203

google.maps.event.addListener(mgr, 'loaded', function() {
 // Code goes here
};

Now you can start adding the arrays to the MarkerManager object, and you will do this by using the

addMarkers() method. In the former example, you only set the minimum zoom level for when a marker
would appear, but now you will also set the maximum zoom level.

Let’s start by adding the overview array that contains the cluster markers. You want these two
markers to appear only on a fairly high zoom level, so you set the minimum zoom level to 1 (maxed
zoomed out) and the maximum zoom level to 5.

google.maps.event.addListener(mgr, 'loaded', function() {

 // These markers will only be visible between zoom level 1 and 5
 mgr.addMarkers(states, 1, 5);

});

Next you’ll add the cities array to the MarkerManager object. You want these markers to appear at a
zoom level that’s below the zoom level that the state markers will appear. So, you set the minimum
zoom level to 6. There’s no need to set the maximum zoom level because if you omit it, it will default to
the deepest zoom level of the map.

google.maps.event.addListener(mgr, 'loaded', function() {

 // These markers will only be visible between zoom level 1 and 5
 mgr.addMarkers(states, 1, 5);

 // These markers will be visible at zoom level 6 and deeper
 mgr.addMarkers(cities, 6);

});

Now all the markers are added to the MarkerManager object. All that’s left to do is to refresh it so that

the markers are added to the map.

google.maps.event.addListener(mgr, 'loaded', function() {

 // These markers will only be visible between zoom level 1 and 5
 mgr.addMarkers(states, 1, 5);

 // These markers will be visible at zoom level 6 and deeper
 mgr.addMarkers(cities, 6);

 // Making the MarkerManager add the markers to the map
 mgr.refresh();

});

You now have a map that appears to have regional clustering. When you load it, only the two
cluster markers will be visible. As you zoom in, the cluster markers will disappear, and the city
markers will become visible (Figures 9-14 and 9-15).

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

204

Figure 9-14. At a high zoom level, only the two cluster markers are visible.

Figure 9-15. As you zoom down past zoom level 6, only the city markers are visible.

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

205

The Complete Code So Far
Listing 9-9 shows the complete code.

Listing 9-9. The Complete Code for Example 9-4

(function() {

 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.99, -93.77),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById('map'), options);

 // Initializing the MarkerManager
 var mgr = new MarkerManager(map);

 // Creating an array that will contain one marker for Colorado
 // and one for Utah
 var states = [
 new google.maps.Marker({
 position: new google.maps.LatLng(39.4698, -111.5962),
 icon: 'img/cluster.png'
 }),
 new google.maps.Marker({
 position: new google.maps.LatLng(38.9933, -105.6196),
 icon: 'img/cluster.png'
 })
];

 // Creating an array that will contain markers that is positioned
 // at cities in Colorado and Utah
 var cities = [
 // Colorado Springs
 new google.maps.Marker({position: new google.maps.LatLng(38.8338, -104.8213)}),
 // Denver
 new google.maps.Marker({position: new google.maps.LatLng(39.7391, -104.9847)}),
 // Glenwood Springs
 new google.maps.Marker({position: new google.maps.LatLng(39.5505, -107.3247)}),
 // Salt Lake City
 new google.maps.Marker({position: new google.maps.LatLng(40.7607, -111.8910)}),
 // Fillmore
 new google.maps.Marker({position: new google.maps.LatLng(38.9688, -112.3235)}),
 // Spanish Fork
 new google.maps.Marker({position: new google.maps.LatLng(40.1149, -111.6549)})
];

 // Making sure the MarkerManager is properly loaded before we use it
 google.maps.event.addListener(mgr, 'loaded', function() {

 // These markers will only be visible between zoom level 1 and 5

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

206

 mgr.addMarkers(states, 1, 5);

 // These markers will be visible at zoom level 6 and deeper
 mgr.addMarkers(cities, 6);

 // Making the MarkerManager add the markers to the map
 mgr.refresh();

 });

 };

})();

Adding Clickable Clusters
To make the clusters even more usable, you will add some additional functionality. You’re going to
extend the previous example by adding a click event to the cluster markers so that when they’re
clicked, the map will zoom in on it, revealing the city icons.

To do this, you need to change how you’re adding the cluster markers to the states array. You will
change this functionality, storing the markers inside an individual variable. You’re then going to add
the click behavior to it and finally add the variables to the states array. Let’s start by creating the
marker that represents Colorado.

var colorado = new google.maps.Marker({
 position: new google.maps.LatLng(39.4568, -105.8532),
 icon: 'img/cluster.png'
});

Next you want to add a click event to the marker.

google.maps.event.addListener(colorado, 'click', function() {
 // Code goes here
});

In the event handler, you will add code that will set the zoom level of the map to 7. At this zoom
level, the cluster markers will be removed, and the city markers will be visible. You will also add code
to center the map on the position of the clicked marker. You will recognize the methods for doing this
from Chapter 4.

google.maps.event.addListener(colorado, 'click', function() {

 // Setting the zoom level of the map to 7
 map.setZoom(7);

 // Setting the center of the map to the clicked markers position
 map.setCenter(colorado.getPosition());

});

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

207

Next you’ll do the same thing for the marker that represents Utah:

var utah = new google.maps.Marker({
 position: new google.maps.LatLng(40.0059, -111.9176),
 icon: 'img/cluster.png'
});

google.maps.event.addListener(utah, 'click', function() {
 map.setZoom(7);
 map.setCenter(utah.getPosition());
});

With the cluster markers all set up, it’s time to create the states array and add the markers to it.

var states = [colorado, utah];

Now all the necessary changes are made, and you now have a map with clickable cluster markers.

If you try it, you find that clicking one of the cluster markers will zoom the map in, revealing the city
markers (Figure 9-16).

Figure 9-16. Clicking one of the clusters will zoom the map in and reveal the city clusters.

The Final Code
Listing 9-10 shows the final code for this example.

Listing 9-10. The Complete Code for Example 9-5

(function() {

 window.onload = function(){

 // Creating a map

s

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

208

 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.99, -93.77),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById('map'), options);

 // Initializing MarkerManager
 var mgr = new MarkerManager(map);

 // Creating a marker that represents Colorado
 var colorado = new google.maps.Marker({
 position: new google.maps.LatLng(39.4568, -105.8532),
 icon: 'img/cluster.png'
 });

 // Adding a click event to the Colorado marker
 google.maps.event.addListener(colorado, 'click', function() {

 // Setting the zoom level of the map to 7
 map.setZoom(7);

 // Setting the center of the map to the clicked markers position
 map.setCenter(colorado.getPosition());

 });

 // Creating a marker that represents Utah
 var utah = new google.maps.Marker({
 position: new google.maps.LatLng(40.0059, -111.9176),
 icon: 'img/cluster.png'
 });

 // Adding a click event to the Utah marker
 google.maps.event.addListener(utah, 'click', function() {
 map.setZoom(7);
 map.setCenter(utah.getPosition());
 });

 // Creating an array that will contain the markers forColorado and Utah
 var states = [colorado, utah];

 // Creating an array that will contain markers that is positioned
 // at cities in Colorado and Utah
 var cities = [
 // Colorado Springs
 new google.maps.Marker({position: new google.maps.LatLng(38.8338, -104.8213)}),
 // Denver
 new google.maps.Marker({position: new google.maps.LatLng(39.7391, -104.9847)}),
 // Glenwood Springs
 new google.maps.Marker({position: new google.maps.LatLng(39.5505, -107.3247)}),
 // Salt Lake City
 new google.maps.Marker({position: new google.maps.LatLng(40.7607, -111.8910)}),
 // Fillmore

i

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

209

 new google.maps.Marker({position: new google.maps.LatLng(38.9688, -112.3235)}),
 // Spanish Fork
 new google.maps.Marker({position: new google.maps.LatLng(40.1149, -111.6549)})
];

 // Making sure the MarkerManager is properly loaded before we use it
 google.maps.event.addListener(mgr, 'loaded', function() {

 // These markers will only be visible between zoom level 1 and 5
 mgr.addMarkers(states, 1, 5);

 // These markers will be visible at zoom level 6 and deeper
 mgr.addMarkers(cities, 6);

 // Making the MarkerManager add the markers to the map
 mgr.refresh();

 });

 };

})();

Tweaking the MarkerManager with Options
When creating a new MarkerManager object, you can pass a long an options object. These options tweak
the way the MarkerManager object works. I’m just going to tell you which options are available and what
they do:

• maxZoom
This property takes a number as its value and sets the maximum zoom-level at
which a marker can be part of a cluster. When you use the addMarkers() method to
add markers and don’t pass along a value for the maxZoom attribute, it will use this
value instead. The default value is the map’s maximum zoom level.

• borderPadding
The MarkerManager object just renders the markers that are inside the current
viewport, but it has a buffer zone just outside the viewport where markers also
will appear. The reason for this is that when you pan the map shorter distances,
you will get a better user experience since the nearest markers are already
loaded. By default, this buffer zone is set to 100 pixels, but you can set it to
something different using this property. As you probably already guessed, this
property takes a number as its value.

• trackMarkers
If you change the position of markers after you’ve added them to the MarkerManager
object, you should set this property to true. If you don’t, the MarkerManager object
will not keep track of your markers, and if you move one, it will appear at two
places simultaneously. Setting this option to true provides poorer performance, so
you might not want to use it if you’re sure you’re not going to change the positions
of the markers. The default value of trackMarkers is false.

CHAPTER 9 ■ DEALING WITH MASSIVE NUMBERS OF MARKERS

210

The options object is an object literal that you just pass along when creating a new MarkerManager
object. So if you want to set the maxZoom to 15, the borderPadding to 0, and the trackMarkers to true, you
do it like this:

var mgr = new MarkerManager(map, {
 'maxZoom': 15,
 'borderPadding': 0,
 'trackMarkers': true
});

In this example, I changed all the properties, but you don’t have to do that. You can just define those

that you want to change. For example, if I only want to change the trackMarkers property to true, I write
it like this:

var mgr = new MarkerManager(map, {
 'trackMarkers': true
});

Further Resources
We’ve been looking at some of the features of MarkerManager library, but there’s even more to it. The
library features a number of methods that you can use to show and hide markers, clear markers, and
other useful things. For a full description of all the methods available, check out the reference
documentation at the file repository at http://google-maps-utility-library-
v3.googlecode.com/svn/tags/markermanager/1.0/docs/reference.html.

Summary
In this chapter, you learned about different ways of dealing with a lot of markers. The best solution is
often to not show all markers at the same time. You can do this by adding filtering, searching or
clustering capabilities. Sometimes even not using markers at all is a solution. If none of these
approaches is a viable solution to the problem, then at least you can resort to using the utility library
MarkerManager, which will increase the overall performance of the map by only adding those
markers that are currently within the viewport.

http://google-maps-utility-library-v3.googlecode.com/svn/tags/markermanager/1.0/docs/reference.html
http://google-maps-utility-library-v3.googlecode.com/svn/tags/markermanager/1.0/docs/reference.html
http://google-maps-utility-library-v3.googlecode.com/svn/tags/markermanager/1.0/docs/reference.html

C H A P T E R 10

■ ■ ■

211

Location, Location, Location

Often you need to find out where a location is. Maybe you have an address but don’t know exactly
where that address is located. Then you can turn to geocoding to get that position. This chapter will
explain how geocoding and reverse geocoding work. You will learn how to look up addresses and how
to show them on a map.

You will also learn about geolocation, which is different ways of getting the position of the person
using a map.

Geocoding
Geocoding is an integrated part of the Google Maps API. When you send in an address, you get the
coordinates for that address back. It’s that simple! This is very handy in circumstances where you only
have an address, but you still somehow want to automatically plot it on a map.

Restrictions
The Geocoding service if freely available, but it does have some limitations, since it’s a fairly
processor-intensive request. It’s currently limited to 2,500 geocode requests every 24 hours from a
single IP address. That’s not an insignificant amount of requests, so in most cases, this will more than
suffice. It’s not the end of the world if you exceed that limit once or twice, but repeated abuse can result
in a permanent ban.

■ Note The Geocoding service integrated in the Google Maps API is meant for dynamically geocoding addresses
from user input. If you instead have a static list of addresses that you want to look up, you should use the
Geocoding web service, which is better suited for that particular task. You can find it at

http://code.google.com/apis/maps/documentation/geocoding/index.html.

http://code.google.com/apis/maps/documentation/geocoding/index.html

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

212

The Geocoder Object
All the functionality for doing geocoding lookups is found in the Geocoder object. It doesn’t take any
arguments upon initialization and has only one method: gecode(). This makes it one of the smallest
objects in the Google Maps API. To initialize the Geocoder object, simply call its constructor:

var geocoder = new google.maps.Geocoder();

Building an Address Lookup Web Page
In the following sections, I will take you through the steps of building a web page with which you can
look up the location of addresses. The web page will consist of a simple form and a map. The form will
contain a text input for entering an address and a button for submitting the form. The map will place a
marker where the address is located and add an InfoWindow, which will contain information about the
address and its coordinates. Figure 10-1 shows how the finished web page will look.

Figure 10-1. A web page for address lookups

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

213

Adding the HTML
Let’s start by adding the HTML for this web page. It will look almost identical to the HTML you’ve used
in the other examples throughout the book with an additional HTML form (Listing 10-1).

Listing 10-1. The HTML for Example 10-1

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Geocoding- Google Maps API 3</title>
 <link rel="stylesheet" href="css/style.css" type="text/css" media="all" />
 <script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=false&language=en"></script>
 <script type="text/javascript" src="js/10-1.js"></script>
</head>
<body>

 <form id="addressForm">
 <div>
 <label for="address">Address:</label>
 <input type="text" name="address" id="address" />
 <input type="submit" id="addressButton" value="Get Coordinates" />
 </div>
 </form>

 <div id="map"></div>

</body>
</html>

The form has the id="addressForm". You’re going to use this ID to catch the submit event from the

JavaScript. Other than that, it’s a form with a text input with a label and a submit button.

The CSS
You’re going to do some light styling to the web page (Listing 10-2). First you’ll set the font of the page.
Then you’ll give the form a bottom margin of 10 pixels to leave some whitespace between it and the
map. Last, you’ll add the dimensions of the map container and add a black 1-pixel border to it. This
code will be located in the file style.css.

Listing 10-2. The CSS for Example 10-1

body {
 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
 font-size: small;
}
form {

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://maps.google.com/maps/api/js?sensor=false&language=en

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

214

 margin-bottom: 10px;
}
#map {
 width: 500px;
 height: 300px;
 border: 1px solid black;
}

The Starting JavaScript
With the HTML and CSS in place, you get to the interesting part, the JavaScript code (Listing 10-3). You
start by laying a foundation. This code will create a regular map centered over the United States.

Listing 10-3. The Starting JavaScript for Example 10-1

(function() {

 // Defining some global variables
 var map, geocoder, marker, infowindow;

 window.onload = function() {

 // Creating a new map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 map = new google.maps.Map(document.getElementById('map'), options);

 // Code for catching the form submit event goes here

 }

 // Function stub
 function getCoordinates() {

 }

})();

Notice that you define some variables at the top of the code. They are defined there since you need
to have access to them from a function that you will create later.

Now that you have the foundation laid out, it’s time to start building the functionality for finding
the position of an address.

Setting Up the Event Handler
The first thing you will do is to set up the event handler for the form. You do this by catching the form’s
submit event. On submit, you take the address from the text input and use it as a parameter for the
function getCoordinates() that you’re going to create in a minute.

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

215

This code will go just after the code that creates the map, right where there’s a comment that says,
“Code for catching the form submit event goes here”:

// Getting a reference to the HTML form
var form = document.getElementById('addressForm');

// Catching the forms submit event
form.onsubmit = function() {

 // Getting the address from the text input
 var address = document.getElementById('address').value;

 // Making the Geocoder call
 getCoordinates(address);

 // Preventing the form from doing a page submit
 return false;

}

With that in place, you have the form set up. When you enter something into the text input and click
the submit button, the getCoordinate() function will be invoked. The next step is to create the
functionality for that function.

Looking Up an Address
You will put this functionality in the function getCoordinates(). It will take one argument, and that is
the address. It will then use the Geocoder object to look up the position of the address. You already have
the stub for this function set up. It’s located almost at the end of the code, right under the comment
“Function stub”:

function getCoordinates(address) {

 // Check to see if we already have a geocoded object. If not we create one
 if(!geocoder) {
 geocoder = new google.maps.Geocoder();
 }

}

Doing this, you now have a Geocoder object that you can use to make lookups. The Geocoder object

has only one method: geocode(). It takes two arguments. The first argument is a GeocoderRequest
object, and the second one is a callback function. The GeocoderRequest object is an object literal with
five properties. For now we’re going to stick with only the most important one, the address property.
This property takes a string containing the address you want to look up. So if, for example, you want to
look up where Regent Street 4 in London is located, you just define that as its value.

var geocoderRequest = {
 address: 'Regent Street 4, London'
};

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

216

In our case, since you want to do lookups based on user input, you can’t have the value for the
address property hard-coded. Instead, you want to pass the address argument in your function as the
value for the property:

function getCoordinates(address) {

 // Check to see if we already have a geocoded object. If not we create one
 if(!geocoder) {
 geocoder = new google.maps.Geocoder();
 }

 // Creating a GeocoderRequest object
 var geocoderRequest = {
 address: address
 }

}

The second argument of geocode() is a callback function that takes care of its response. The

geocode() method return two values that need to be passed to the callback function: results and status.

function getCoordinates(address) {

 // Check to see if we already have a geocoded object. If not we create one
 if(!geocoder) {
 geocoder = new google.maps.Geocoder();
 }

 // Creating a GeocoderRequest object
 var geocoderRequest = {
 address: address
 }

 // Making the Geocode request
 geocoder.geocode(geocoderRequest, function(results, status) {

 // Code that will handle the response

 });

}

Taking Care of the Response
The geocode method passes two values along with its response, results and status. First let’s take a
look at status.

You can use the status code to see how the request went. It will basically tell you whether the
request was successful. All the statuses are of the type google.maps.GeocoderStatus. One status is, for
example, OK, and it will look like this: google.maps.GeocoderStatus.OK.

Here’s a list of all the possible status codes:

• OK
This code indicates that everything went all right and that a result is returned.

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

217

• ZERO_RESULTS
If you get this status code, the request went all right but didn’t return any results.
Maybe the address you looked for doesn’t exist.

• OVER_QUERY_LIMIT
This status indicates that you’ve used up your quota. Remember that there’s a
limit of 2,500 requests a day.

• REQUEST_DENIED
This indicates exactly what it says. The request was denied for some reason. The
most common reason for this is that the sensor parameter is missing.

• INVALID_REQUEST
This status indicates that something was wrong with your request. Maybe you
didn’t define an address (or latLng).

When you take care of the response, you should always check the status code to see that the request
was successful before doing anything with it. If something went wrong, you should also provide the
users with some feedback of this.

For now you will only check to see that the request was successful, so you extend the callback
function with a check of that:

function getCoordinates(address) {

 // Check to see if we already have a geocoded object. If not we create one
 if(!geocoder) {
 geocoder = new google.maps.Geocoder();
 }

 // Creating a GeocoderRequest object
 var geocoderRequest = {
 address: address
 }

 // Making the Geocode request
 geocoder.geocode(geocoderRequest, function(results, status) {

 // Check if status is OK before proceeding
 if (status == google.maps.GeocoderStatus.OK) {

 // Do something with the response

 }

 });

}

Interpreting the Result
Now that you’ve checked the status of the request to make sure that it was successful, you can start
looking at the results parameter. It contains the actual geocoding information. It’s a JSON object that
can contain more than one result for an address. After all, there can be addresses with the same name
at different locations. Therefore, the results come as an array. This array contains a number of fields:

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

218

• types
This is an array that contains what type of location the returned result is. It could,
for example, be a country or a locality, which indicates that it’s a city or town.

• formatted_address
This is a string that contains the address in a readable format. If you, for
example, search for Boston, this will return “Boston, MA, USA.” As you can see, it
actually contains several facts about the address. In this case, it’s the name of the
city, the name of the state, and the name of the country.

• address_components
This is an array containing the different facts about the location. Each of the
parts listed in formatted_address is an object in this array with a long_name a
short_name and the types.

• geometry
This field is an object with several properties. The most interesting one is
location, which contains the position of the address as a LatLng object. It also has
other properties such as viewport, bounds, and location_type.

You are now going to use the returned JSON object to create a marker and put it at the correct
position in the map.

Even if the Gecoder returns more than one result, you’re going to trust that it returns the most
relevant one first. So, instead of showing them all on the map, you’re going to just show the first one.
The first thing you’re going to do is center the map on the returned location. You do this by using the
map object’s setCenter() method and pass the returned location as its value. You’re also going to check
whether you already have a marker; if you don’t, you’re going to create one and then position it at the
returned location. Note that I’ve shortened the code for brevity.

function getCoordinates(address) {

 […]

 // Making the Geocode request
 geocoder.geocode(geocoderRequest, function(results, status) {

 // Check if status is OK before proceeding
 if (status == google.maps.GeocoderStatus.OK) {

 // Center the map on the returned location
 map.setCenter(results[0].geometry.location);

 // Check to see if we've already got a Marker object
 if (!marker) {

 // Creating a new marker and adding it to the map
 marker = new google.maps.Marker({
 map: map
 });

 }

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

219

 // Setting the position of the marker to the returned location
 marker.setPosition(results[0].geometry.location);

 }
 });

}

Adding an InfoWindow
The next step is to create an InfoWindow, which will contain a description of the address and its
coordinates. You start by checking whether you already have an InfoWindow object; if you don’t, you
create one. You then create the content for the InfoWindow and add it using its setContent() method.
Finally, you open the InfoWindow.

function getCoordinates(address) {

 […]

 // Making the Geocode request
 geocoder.geocode(geocoderRequest, function(results, status) {

 // Check if status is OK before proceeding
 if (status == google.maps.GeocoderStatus.OK) {

 // Center the map on the returned location
 map.setCenter(results[0].geometry.location);

 // Check to see if we've already got a Marker object
 if (!marker) {

 // Creating a new marker and adding it to the map
 marker = new google.maps.Marker({
 map: map
 });

 }

 // Setting the position of the marker to the returned location
 marker.setPosition(results[0].geometry.location);

 // Check to see if we've already got an InfoWindow object
 if (!infowindow) {
 // Creating a new InfoWindow
 infowindow = new google.maps.InfoWindow();
 }

 // Creating the content of the InfoWindow to the address
 // and the returned position
 var content = '' + results[0].formatted_address + '
';
 content += 'Lat: ' + results[0].geometry.location.lat() + '
';
 content += 'Lng: ' + results[0].geometry.location.lng();

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

220

 // Adding the content to the InfoWindow
 infowindow.setContent(content);

 // Opening the InfoWindow
 infowindow.open(map, marker);

 }

 });

}

Now you have a working example. If you try it and look for an address, it will put a marker on the
map at its location, accompanied by an InfoWindow that indicates the name of the place and its
coordinates (Figure 10-2).

Figure 10-2. The result you get when searching for Boston

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

221

The Complete JavaScript Code for This Example
Listing 10-4 shows the complete JavaScript code for this example.

Listing 10-4. The Complete JavaScript Code for Example 10-1

 (function() {

 // Defining some global variables
 var map, geocoder, marker, infowindow;

 window.onload = function() {

 // Creating a new map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 map = new google.maps.Map(document.getElementById('map'), options);

 // Getting a reference to the HTML form
 var form = document.getElementById('addressForm');

 // Catching the forms submit event
 form.onsubmit = function() {
 // Getting the address from the text input
 var address = document.getElementById('address').value;

 // Making the Geocoder call
 getCoordinates(address);

 // Preventing the form from doing a page submit
 return false;

 }

 }

 // Create a function the will return the coordinates for the address
 function getCoordinates(address) {
 // Check to see if we already have a geocoded object. If not we create one
 if(!geocoder) {
 geocoder = new google.maps.Geocoder();
 }

 // Creating a GeocoderRequest object
 var geocoderRequest = {
 address: address
 }

 // Making the Geocode request

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

222

 geocoder.geocode(geocoderRequest, function(results, status) {

 // Check if status is OK before proceeding
 if (status == google.maps.GeocoderStatus.OK) {

 // Center the map on the returned location
 map.setCenter(results[0].geometry.location);

 // Check to see if we've already got a Marker object
 if (!marker) {
 // Creating a new marker and adding it to the map
 marker = new google.maps.Marker({
 map: map
 });
 }

 // Setting the position of the marker to the returned location
 marker.setPosition(results[0].geometry.location);

 // Check to see if we've already got an InfoWindow object
 if (!infowindow) {
 // Creating a new InfoWindow
 infowindow = new google.maps.InfoWindow();
 }

 // Creating the content of the InfoWindow to the address
 // and the returned position
 var content = '' + results[0].formatted_address + '
';
 content += 'Lat: ' + results[0].geometry.location.lat() + '
';
 content += 'Lng: ' + results[0].geometry.location.lng();

 // Adding the content to the InfoWindow
 infowindow.setContent(content);

 // Opening the InfoWindow
 infowindow.open(map, marker);

 }

 });

 }

})();

Extending the Example
You can do several things to improve this example. First, you should include better error handling so
when something goes wrong, you can let the user know what happened. Second, you could take care of
all the results instead of just the first one in the results array. This is done by looping through the
results array and adding each location as a marker to the map.

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

223

Reverse Geocoding
Reverse geocoding is the exact opposite of geocoding. Instead of looking up a position from an address,
you look up an address from a position.

The nice thing about reverse geocoding is that it’s done the same way as geocoding. The only
difference is that instead of providing the service with the property address, you provide it with the
property latLng.

Building a Reverse Geocoding Map
You’re going to build a map that, when you click in it, returns the address information for the location
being clicked. The information will be shown in an InfoWindow (Figure 10-3).

Figure 10-3. The address returned for the location of the Space Needle in Seattle

You will start by creating a map and adding an event listener to it that will listen for clicks in it
(Listing 10-5). When the map is being clicked, the position for the point in the map where the click
occurred will be passed to a function called getAddress(). This function doesn’t yet exist, but you will
create it in a moment.

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

224

Listing 10-5. Starting Code for Example 10-2

(function() {
 var map, geocoder, infoWindow;

 window.onload = function() {

 // Creating a new map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 map = new google.maps.Map(document.getElementById('map'), options);

 // Attaching a click event to the map
 google.maps.event.addListener(map, 'click', function(e) {

 // Getting the address for the position being clicked
 getAddress(e.latLng);

 });

 }

 // Insert getAddress() function here

})();

Creating the getAddress() Function
Now to the code that actually performs the reverse geocoding. You need the getAddress() function to
accept a latLng object as its argument. You will use this position for two things. First, you will use it as
input to the Geocoding service. Second, you will also use it when creating the InfoWindow since you
want the InfoWindow to point at the position that was clicked.

The first thing you will do inside the function is to check whether you already have a Geocoder
object. If you already have one (that is, a request has already been made), you reuse it. Otherwise (that
is, this is the first click in the map), you create a new one.

You will insert the code for the function almost at the end of the starting code, right at the
comment: “Insert getAddress() function here”:

function getAddress(latLng) {

 // Check to see if a geocoder object already exists
 if (!geocoder) {
 geocoder = new google.maps.Geocoder();
 }

}

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

225

Now that you’ve made sure that you have a Geocoder object, you use it to make your request. But
before doing that, you will create a GeocoderRequest object with the input parameters for the call. It’s
the same object that you used in the previous example with one big difference. Instead of inputting
an address to its address property, you use its latLng property and provide your latLng parameter as
its value.

The call to the Geocoder service will look exactly the same as in the previous example. You will use
its geocode() method to make your call, inputting the GeocoderRequest object and an anonymous
function that will take care of the response.

function getAddress(latLng) {

 // Check to see if a geocoder object already exists
 if (!geocoder) {
 geocoder = new google.maps.Geocoder();
 }

 // Creating a GeocoderRequest object
 var geocoderRequest = {
 latLng: latLng
 }

 geocoder.geocode(geocoderRequest, function(results, status) {

 // Code that will take care of the returned result

 });

}

Now that the call to the geocoder is made, you need to handle the response. First you will make
sure that you have an InfoWindow object to display the result in. If you don’t have one, you create it.
Then you set the position of the InfoWindow to the same as the latLng parameter to make sure that it’ll
point at the right spot.

function getAddress(latLng) {

 […]

 geocoder.geocode(geocoderRequest, function(results, status) {

 // If the infoWindow hasn't yet been created we create it
 if (!infoWindow) {
 infoWindow = new google.maps.InfoWindow();
 }

 // Setting the position for the InfoWindow
 infoWindow.setPosition(latLng);

 });

}

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

226

With the InfoWindow set up, you will start creating the content to fill it with. You do this by defining
a variable called content. The heading in the InfoWindow will be the LatLng for the clicked position. You
know that you have this information, so you add it right away to content.

As for the result of the Geocoder request, you’re not so sure that you get something back, so you
need to check the status variable for this. If the status is OK, you will proceed to add all the returned
addresses to it. If it’s not OK, you will instead add a message that no address was returned. The most
common case when you don’t get an address back is that the Geocoder service simply couldn’t find an
address. It will then return ZERO_RESULTS. If, for example, you click in the middle of the ocean, this will
be the case (Figure 10-4).

Figure 10-4. If you click in the middle of the ocean, you won’t get an address back.

In the case where the call was successful, you probably have several addresses to display. They
are the same address but expressed in different levels of detail. They typically go from very specific to
more general, where the most specific one is probably the street address, and the most general one is
the country that the address is found in. These values are all found in the results parameter, which
actually is an array. You will loop through this array and use its formatted_address property to add to
the content variable.

The last thing you will do is to add the content to the InfoWindow by using its setContent() method
and open it using its open() method:

function getAddress(latLng) {

 […]

 geocoder.geocode(geocoderRequest, function(results, status) {

 // If the infoWindow hasn't yet been created we create it

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

227

 if (!infoWindow) {
 infoWindow = new google.maps.InfoWindow();
 }

 // Setting the position for the InfoWindow
 infoWindow.setPosition(latLng);

 // Creating content for the InfoWindow
 var content = '<h3>Position: ' + latLng.toUrlValue() + '</h3>';

 // Check to see if the request went allright
 if (status == google.maps.GeocoderStatus.OK) {

 // Looping through the results
 for (var i = 0; i < results.length; i++) {
 if (results[0].formatted_address) {
 content += i + '. ' + results[i].formatted_address + '
';
 }
 }

 } else {
 content += '<p>No address could be found. Status = ' + status + '</p>';
 }

 // Adding the content to the InfoWindow
 infoWindow.setContent(content);

 // Opening the InfoWindow
 infoWindow.open(map);

 });

}

That’s it; you now have a reverse geocoding map that will display the address of the location

being clicked.

The Complete Code for This Example
Listing 10-6 shows the complete JavaScript code for this example.

Listing 10-6. The Complete JavaScript Code for Example 10-2

(function() {
 var map, geocoder, infoWindow;

 window.onload = function() {

 // Creating a new map
 var options = {
 zoom: 3,
 center: new google.maps.LatLng(37.09, -95.71),
 mapTypeId: google.maps.MapTypeId.ROADMAP

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

228

 };
 map = new google.maps.Map(document.getElementById('map'), options);

 // Attaching a click event to the map
 google.maps.event.addListener(map, 'click', function(e) {

 // Getting the address for the position being clicked
 getAddress(e.latLng);

 });

 }

 function getAddress(latLng) {

 // Check to see if a geocoder object already exists
 if (!geocoder) {
 geocoder = new google.maps.Geocoder();
 }

 // Creating a GeocoderRequest object
 var geocoderRequest = {
 latLng: latLng
 }

 geocoder.geocode(geocoderRequest, function(results, status) {

 // If the infoWindow hasn't yet been created we create it
 if (!infoWindow) {
 infoWindow = new google.maps.InfoWindow();
 }

 // Setting the position for the InfoWindow
 infoWindow.setPosition(latLng);

 // Creating content for the InfoWindow
 var content = '<h3>Position: ' + latLng.toUrlValue() + '</h3>';

 // Check to see if the request went allright
 if (status == google.maps.GeocoderStatus.OK) {

 // Looping through the result
 for (var i = 0; i < results.length; i++) {
 if (results[0].formatted_address) {
 content += i + '. ' + results[i].formatted_address + '
';

 }
 }

 } else {
 content += '<p>No address could be found. Status = ' + status + '</p>';
 }

 // Adding the content to the InfoWindow

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

229

 infoWindow.setContent(content);

 // Opening the InfoWindow
 infoWindow.open(map);

 });

 }

})();

Finding the Location of the User
As more people are using advanced mobile devices such as the iPhone and Android phones, location-
aware applications are getting more and more common. There are several ways of finding the
location of the user. The best and most accurate one is if the device using the application has a GPS, but
even if it doesn’t, there are ways of locating it, although not with the same precision.

Desktop browsers normally don’t have access to a GPS, but the computer is connected to a network
and has an IP address, which can reveal the approximate location of the user.

IP-Based Geocoding
One way of finding the location of the user is through IP-based geocoding. So far in the book, you’ve
been loading the Google Maps API by simply referring to it in a <script> element. There is another
way of loading it, and that’s through google.load, which is part of the Google AJAX API. If you use it to
load the Maps API, you get the additional benefit of the location of the user.

To use the Google AJAX API, you need to load it into the page using a <script> element and then
utilize its google.load() method to load additional APIs. You include the Google AJAX API like this in
the <head> section of the web page:

<script type="text/javascript" src="http://www.google.com/jsapi"></script>

Once the Google AJAX API is loaded, its load() method is available, and you can use to load

additional APIs from your JavaScript code. Here’s how to load v3 of the Google Maps API:

google.load('maps', 3, {'other_params': 'sensor=false'});

The parameters passed are the name of the API (maps), the version of the API (3), and an option

object containing additional settings. In this case, you want to add the sensor parameter to the query
string of the URL to the API, and this is done with the other_params property.

■ Note Just like with the old Google Maps API v2, it’s possible to use an API key when inserting the Google AJAX
API. This is, however, optional. The reason you might want to use it is that it enables Google to contact you if it

detects a problem that involves your application. The API key is free and can be obtained at

http://code.google.com//apis/ajaxsearch/signup.html.

http://www.google.com/jsapi
http://code.google.com//apis/ajaxsearch/signup.html

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

230

Getting the Position
The interesting part of using google.load is that you now have access to an approximate location of the
user. This information is found in google.loader.ClientLocation. Note that the location determined
from IP is not very accurate, so the greatest level of detail is the metro level, which is a city or a town.
Sometimes the location is not even available at all, so you need to take this into account when building
your map by providing a fallback.

The ClientLocation object has several properties that are of interest:

• latitude
Returns a number representing the latitude for the location

• longitude
Returns a number representing the longitude for the location

• address.city
Returns the name of the city associated with the location

• address.country
Returns the name of the country associated with the location

• address.country_code
Specifies the ISO 3166-1 country code associated with the location, for example
US for the United States, JP for Japan, and SE for Sweden

• address.region
Returns the country-specific region name associated with the location

■ Note To learn more about the Google AJAX APIs, check out the documentation at http://code.google.com/

apis/ajax/documentation/.

Creating a Location-Aware Map
You will now build a map that will try to determine the location of the user, put a marker on that
location, and add an InfoWindow, which will contain the name of the location. If you’re not able to
determine the location of the user, you will default to center the map on (0, 0).

Creating the HTML
You start by creating the HTML file for this example (Listing 10-7). What makes this HTML file different
from the other examples in the book is that instead of adding the Google Maps API directly using a
<script> element in the head section of the page, you add the Google AJAX API.

Listing 10-7. The HTML Code for Example 10-3

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">

http://code.google.com
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

231

 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Chapter 10 - Example 10-3</title>
 <link rel="stylesheet" href="css/style.css" type="text/css" media="all" />
 <script type="text/javascript"
 src="http://www.google.com/jsapi"></script>
 <script type="text/javascript" src="js/10-3.js"></script>
</head>
<body>
 <div id="map"></div>
</body>
</html>

As you can see in the previous HTML code, you also add a reference to an external JavaScript file

called 10-3.js. That’s where you will write your code.

Creating the JavaScript Code
You start the code by loading the Google Maps API. Then you create a handler for the window.onload
event (Listing 10-8).

Listing 10-8. The Starting JavaScript Code for Example 10-3

(function() {

 // Loading the Google Maps API
 google.load('maps', 3, {
 'other_params': 'sensor=false&language=en'
 });

 window.onload = function() {

 // The rest of the code will go here

 }

})();

Now you’re ready to try to get the position of the user by using the google.loader.ClientLocation

object. You will first check to see that you really have a location before proceeding. As a fallback, you
provide a default location at (0, 0). You will also create the content for the InfoWindow, which will consist
of the name of the city and country of the location.

 window.onload = function() {

 // Getting the position
 if (google.loader.ClientLocation.latitude && google.loader.ClientLocation.longitude) {

 // Defining the position
 var latLng = new google.maps.LatLng(google.loader.ClientLocation.latitude,
 google.loader.ClientLocation.longitude);

http://www.google.com/jsapi

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

232

 // Creating the content for the InfoWindow
 var location = 'You are located in '
 location += google.loader.ClientLocation.address.city + ', ';
 location += google.loader.ClientLocation.address.country;

 } else {

 // Providing default values as a fallback
 var latLng = new google.maps.LatLng(0, 0);
 var location = 'Your location is unknown';

 }

 }

Having done that, you have all the information you need to create the map and add a marker and

an InfoWindow to it. You will use the latLng for both the map and the marker.

window.onload = function() {

 // Getting the position
 […]

 // Creating a map
 var options = {
 zoom: 2,
 center: latLng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 map = new google.maps.Map(document.getElementById('map'), options);

 // Adding a marker to the map
 var marker = new google.maps.Marker({
 position: latLng,
 map: map
 });

 // Creating a InfoWindow
 var infoWindow = new google.maps.InfoWindow({
 content: location
 });

 // Adding the InfoWindow to the map
 infoWindow.open(map, marker);

 }

Now if you use your map, it will try to determine your location. In my case, the location is

Stockholm, Sweden, which is a bit weird since I’m actually sitting in Växjö (Figure 10-5). IP-based
geolocating is unfortunately not an exact science. A lot of times it gets it right, but then again,
sometimes it doesn’t. But hey, at least it got the country right!

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

233

Figure 10-5. My location is determined to be Stockholm, Sweden.

If the map is entirely unable to detect your location, it will default to position (0, 0) and let you
know that your location is unknown (Figure 10-6).

Figure 10-6. If the map is unable to determine the location, the default location is being used as a fallback.

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

234

The Complete JavaScript Code for This Example
Listing 10-9 shows complete JavaScript code for this example.

Listing 10-9. The Complete JavaScript Code for Example 10-3

 (function() {

 // Loading the Google Maps API
 google.load('maps', 3, {
 'other_params': 'sensor=false&language=en'
 });

 window.onload = function() {

 // Getting the position
 if (google.loader.ClientLocation.latitude && google.loader.ClientLocation.longitude) {

 // Defining the position
 var latLng = new google.maps.LatLng(google.loader.ClientLocation.latitude,
 google.loader.ClientLocation.longitude);

 // Creating the content for the InfoWindow
 var location = 'You are located in '
 location += google.loader.ClientLocation.address.city + ', ';
 location += google.loader.ClientLocation.address.country;

 } else {

 // Providing default values as a fallback
 var latLng = new google.maps.LatLng(0, 0);
 var location = 'Your location is unknown';

 }

 // Creating a map
 var options = {
 zoom: 2,
 center: latLng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 map = new google.maps.Map(document.getElementById('map'), options);

 // Adding a marker to the map
 var marker = new google.maps.Marker({
 position: latLng,
 map: map
 });

 // Creating a InfoWindow
 var infoWindow = new google.maps.InfoWindow({

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

235

 content: location
 });

 // Adding the InfoWindow to the map
 infoWindow.open(map, marker);

 }

})();

Getting Better Accuracy
As you noticed with IP-based geolocation, it’s not very accurate and can actually be completely wrong
about the user’s whereabouts, as the case was for me. Fortunately, better options for getting the
location of the user are starting to emerge. Several browsers are already supporting the Geolocation
API, which is an emerging W3C standard for finding the location of a device.

Right now, Firefox 3.5+, Chrome 5.0+, iPhone 3.0+, and Android 2.0+ support this standard. This
means that you can use it to get a more accurate position.

■ Tip The Geolocation API specification is found at www.w3.org/TR/geolocation-API/.

Different Levels of Accuracy
There are several levels of accuracy when trying to determine the user’s location. You’ve already
looked at the least accurate one, IP-based. Mobile devices such as the iPhone and Android phones have
a few other methods. The first and fastest one is to calculate the position by triangulating the relative
distance to different cellular towers. This method, depending on the number of nearby cell towers,
gives you accuracy from a few hundred meters to a kilometer. The second and most accurate method is
by using GPS. It takes a bit longer to find the location but can provide an accuracy of a few meters.

Privacy Concerns
Does this sound a bit scary to you, that a remote web server is able to know your location? Don’t worry;
sharing your location is always something that you have to give your consent for—well, except for IP-
based geolocating, as you’ve already looked at, but it gives such a rough estimate of where you are, so
it’s not really a concern.

A browser will always ask for your permission to use your location. Exactly how it’s implemented
is different in different browsers. In Firefox, for example, an info bar will appear at the top of the page
asking whether you want to share your location (Figure 10-7).

Figure 10-7. An info bar at the top of the page is how Firefox asks your permission to use your location.

http://www.w3.org/TR/geolocation-API

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

236

Different Implementations
If the browser doesn’t support the Geolocation API, there are two more options. First there’s Google
Gears, which is an open source browser plug-in. If the browser doesn’t support the Geolocation API,
Google Gears will provide a similar API. Some mobile devices also have their own proprietary
Geolocation APIs. Some of these devices are Blackberry, Nokia, and Palm.

Unfortunately, all these APIs are implemented differently, which means that if you would like to
use them, you have to provide different solutions for each API.

Fortunately, someone has already done this for you. geo.js is an open source JavaScript library
that will do all the hard work for you and provide you with a unified API.

■ Tip You’ll find geo.js at http://code.google.com/p/geo-location-javascript/.

Building a More Accurate Map
In the following section, you will use geo.js to build a web page that will detect the location of the user
and show it on a map. This location will be a lot more accurate than the one that you built in the
previous example. What it will do is to first load a map that is zoomed out to show the whole world.
Once the location of the user is detected, it will use that location to add a marker and an InfoWindow to
the map.

Creating the HTML
You will need to add three JavaScript libraries to the web page in order for this to work (Listing 10-10).
The first one is the Google Maps API. You will go back to adding it with a <script> element. The second
one is a script called gears_init.js. It will initialize Google Gears if it’s installed. The third script is
geo.js, which contains the unified API that you’re going to use. Lastly, you will of course also add a
reference to an external JavaScript file where you will add your own code; in this case, it’s called
10-4.js.

Listing 10-10. The HTML Code for Example 10-4

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Chapter 10 - Example 10-4</title>
 <link rel="stylesheet" href="css/style.css" type="text/css" media="all" />
 <script type="text/javascript"
 src="http://maps.google.com/maps/api/js?sensor=false"></script>
 <script type="text/javascript"
 src="http://code.google.com/apis/gears/gears init.js"></script>
 <script type="text/javascript" src="js/geo.js"></script>
 <script type="text/javascript" src="js/10-4.js"></script>
</head>

http://code.google.com/p/geo-location-javascript
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://maps.google.com/maps/api/js?sensor=false
http://code.google.com/apis/gears/gears_init.js

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

237

<body>
 <div id="map"></div>
</body>
</html>

The Starting JavaScript
You’ll start with a script (Listing 10-11) that creates a map on page load (Figure 10-8) that will display
the entire world. Note that you define the variable map at the top so that you’ll have access to it in
functions that you will create later.

Listing 10-11. The Starting JavaScript Code for Example 10-4

 (function() {

 var map;

 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 1,
 center: new google.maps.LatLng(31.35, 3.51),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 map = new google.maps.Map(document.getElementById('map'), options);

 // Call to geo.js goes here

 }

 // Function stubs
 function handleError() {

 }

 function setPosition() {

 }

})();

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

238

Figure 10-8. The inital map

Now, the next step is to try to determine the location of the user. All the methods of geo.js reside in
the geo_position_js object. First you need to initialize the geo_position_js object. This is done with its
method init(). It’ll return true if the initialization went well and geofunctionality is available.
Because of this, you can make the call to that method inside an if statement. If it returns true, you
proceed; otherwise, you throw an alert with an error message. Put this code right below the creation of
the map where a comment says “Call to geo.js goes here”:

// Checking if geo positioning is available
if (geo_position_js.init()) {

 // Try to determine the location of the device

} else {

 alert('Geo functionality is not available');

}

If the initialization went well, you use the getCurrentPosition() method to determine the location

of the device. This method takes three arguments. The first one is a callback function that will be
invoked if the API was able to determine the location. The second argument is a callback function that
will be invoked if an error was thrown, and the last argument is a settings object.

You’re going to use just one setting, and that is enableHighAccuracy. By setting it to true, the
detection might be slower, but you’re going to get as accurate a position as possible.

// Checking if geo positioning is available
if (geo_position_js.init()) {

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

239

 // Creating a settings object
 var settings = {
 enableHighAccuracy: true
 };

 // Trying to determine the location of the device
 geo_position_js.getCurrentPosition(setPosition, handleError, settings);

} else {

 alert('Geo functionality is not available');

}

Now you need to create the two callback functions, setPosition() and handleError(). You already

have stubs for these set up, and now it’s time to fill them with functionality. The latter function,
handleError(), is the easiest one. All it will do is to catch the error being thrown and show it in an alert.
The object being passed to it contains a message property with the error message. You’ll find the stub
for this function almost at the end of the code, right below the comment “Function stubs”:

function handleError(error) {
 alert('Error = ' + error.message);
}

The setPosition() method does a bit more. It will use the position being passed to it to create a

marker and an InfoWindow. The object that’s being passed to it contains the property coords, which
contains the latitude and the longitude that you need to create a LatLng object. The function stub for
this is found right after the handleError() function.

function setPosition(position) {

 // Creating a LatLng from the position info
 var latLng = new google.maps.LatLng(position.coords.latitude, position.coords.longitude);

 // Adding a marker to the map
 var marker = new google.maps.Marker({
 position: latLng,
 map: map
 });

 // Creating an InfoWindow
 var infoWindow = new google.maps.InfoWindow({
 content: 'You are here!'
 });

 // Adding the InfoWindow to the map
 infoWindow.open(map, marker);

 // Zooming in on the map
 map.setZoom(6);

}

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

240

That’s it. You should now have a working example. If you run the web page, it will first show you a
page with a map on it. If the browser has support for geolocation, it will then ask you whether you want
to share your location (Figure 10-9).

Figure 10-9. Firefox will ask whether you want to share your location.

If you allow the browser to share your location, your script will try to grab your current location
and then put a marker and an InfoWindow there (Figure 10-10). Note that it can take a while for the API
to get your location, so be patient.

Figure 10-10. The map puts a marker at your current location.

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

241

This time, the script managed to get a more correct location for me, proving that this technique is a
lot more reliable and accurate than just using the IP address.

Extending the Example
You could do several things to enhance this example. First, you should add a check to make sure that the
map is loaded before trying to put a marker on it. You should also have better error handling. Since
geolocating is still a very immature technique, there’s a high probability that the browser won’t
support it, even if you’re using geo.js. There’s also a big risk that the user won’t allow you to use their
current location. In both of these cases, you should provide fallbacks and don’t have the code relying
on being able to detect the location.

■ Tip To learn more about how to determine the user’s location, read the excellent article “You Are Here (and So

Is Everybody Else)” on http://diveintohtml5.org/geolocation.html.

The Complete JavaScript Code for This Example
Listing 10-12 shows the complete JavaScript code for this example.

Listing 10-12. The Complete JavaScript Code for Example 10-4

(function() {

 var map;

 window.onload = function() {

 // Creating a map
 var options = {
 zoom: 1,
 center: new google.maps.LatLng(31.35, 3.51),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 map = new google.maps.Map(document.getElementById('map'), options);

 // Checking if geo positioning is available
 if (geo_position_js.init()) {

 // Creating a settings object
 var settings = {
 enableHighAccuracy: true
 };

 // Trying to determine the location of the user
 geo_position_js.getCurrentPosition(setPosition, handleError, settings);

http://diveintohtml5.org/geolocation.html

CHAPTER 10 ■ LOCATION, LOCATION, LOCATION

242

 } else {

 alert('Geo functionality is not available');

 }

 };

 function handleError(error) {
 alert('Error = ' + error.message);
 }

 function setPosition(position) {

 // Creating a LatLng from the position info
 var latLng = new google.maps.LatLng(position.coords.latitude,
 position.coords.longitude);

 // Adding a marker to the map
 var marker = new google.maps.Marker({
 position: latLng,
 map: map
 });

 // Creating an InfoWindow
 var infoWindow = new google.maps.InfoWindow({
 content: 'You are here!'
 });

 // Adding the InfoWindow to the map
 infoWindow.open(map, marker);

 // Zooming in on the map
 map.setZoom(6);

 }

})();

Summary
In this chapter, you learned how to do address lookups using the Geocoder service. This is very useful
for finding the right addresses and the right locations for addresses. You also looked at different ways
of determining the location of the user. This is something increasingly important because we’re
moving toward a context-driven mobile web.

This is also the end of the last chapter of the book. I hope that you’ve enjoyed the book and found it
useful. I also hope that you’re now able to build your own mapping solutions with the Google Maps API.
And remember anything is possible; only your own imagination sets the limit.

A P P E N D I X

■ ■ ■

243

API Reference

Use this appendix to look up specific classes, objects, methods, and properties that are available in the
API. Note, however, that this is not a complete reference; it contains only the classes and objects that
are covered in this book. The API also changes over time, mostly with new additions, but sometimes
with changed functionality. The complete and most up-to-date API reference is therefore always found
at http://code.google.com/apis/maps/documentation/javascript/reference.html.

How to Read the Reference
The way the constructors and methods are described is as follows:

Map(mapDiv:Node, opts?:MapOptions)

First you see the name of the method and then within the parentheses is its arguments. The
arguments are described as follows:

variableName:variableType

Before the colon is a descriptive variable name, and after the colon is the type of the variable. If
there’s a question mark after the variable name, it means that it’s an optional argument.

Data Types
For both methods and properties, the data type is described. These data types can be either primitive,
like string, number, and boolean, or custom like MouseEvent and StreetviewPanorama. The primitive ones
are self-explained, and the custom ones refer to classes and objects within the Maps API. The notation
for describing arrays and MVCArrays look a bit different, though. The type for the mapTypeIds property of
the MapTypeControlOptions object, for example, looks like this:

Array.<MapTypeId>

What this means is that the type is an array that contains MapTypeId objects. MVCArrays are a special
kind of array, so the notation for them looks the same. Here’s what the overlayMapTypes property of the
Map object looks like:

MVCArray.<MapType>

In this case, it means that the value for this property is an MVCArray that contains MapType objects.

http://code.google.com/apis/maps/documentation/javascript/reference.html

APPENDIX ■ API REFERENCE

244

The Namespace
All the classes of the Google Maps API reside in the namespace google.maps. That means whatever
class or method you want to call always starts with google.maps. Here’s, for example, how to call the
constructor for the Marker class:

new google.maps.Marker();

So, whenever you need to use a class or object, make sure to always insert the namespace name in
front of it.

The Reference
Use the following sections as reference.

Map Class
This class contains all the method and properties for creating a map. It extends MVCObject (described
later).

Constructor
Table A-1 shows the constructor of the Map class.

Table A-1. Constructor of the Map Class

Constructor Description

Map(mapDiv:Node, opts?:MapOptions) This is the constructor for the entire Map object. It creates a
new map inside mapDiv, which is typically a reference to a
<div> in the HTML. This is of type MapOptions.

APPENDIX ■ API REFERENCE

245

Methods
Table A-2 shows the methods of the Map object.

Table A-2. The Methods of the Map Object

Method Return Value Description

fitBounds(bounds:LatLngBounds) None Adjusts the map so that it fits inside
the bounds being passed to it.

getBounds() LatLngBounds Returns the bounds of the map. If the
map hasn’t been initialized, it returns
null.

getCenter() LatLng Returns the coordinates for the center
of the map as a LatLng.

getDiv() Node Returns a reference to the <div>
containing the map.

getMapTypeId() MapTypeId Gets the current MapTypeId.

getProjection() Projection Returns the current projection.
Returns null if the map is not set.

getStreetView() StreetViewPanorama Gets the default StreetViewPanorama
that is bound to the map. It may be
either the default panorama or a
panorama that’s been set with the
setStreetView() method or the
streetView property.

getZoom() Number Gets the current zoom level.

panBy(x:number, y:number) None Pans the map in the direction
indicated by the numbers in pixels.
The transition will be animated.

panTo(latLng:LatLng) None Pans the map to set its center at the
given LatLng. The transition will be
animated if the distance is less than
the width and height of the map.

panToBounds
(latLngBounds:LatLngBounds)

None Pans the map to contain the given
LatLngBounds. If the changes are
smaller than the width and height of
the map, it will be animated.

APPENDIX ■ API REFERENCE

246

Method Return Value Description

setCenter(latLng:LatLng) None Sets the center of the map.

setMapTypeId(mapTypeId:MapTypeId) None Sets the current mapTypeId

setOptions(options:MapOptions) None Sets the options of the map according
to the properties being set in the
MapOptions object.

setStreetView(panorama:streetView
Panorama)

None Changes the default
StreetViewPanorama to a custom one
that can be outside the map. By
passing null to this method, the
default StreetViewPanorama is again
bound to the map.

setZoom(zoom:number) None Sets the current zoom level.

Properties
Table A-3 gives the properties of the Map object.

Table A-3. The Properties of the Map Object

Property Type Description

controls Array.<MVCArray.<Node>> Additional controls to attach to the map. To add
a control to the map, add the control's <div> to
the MVCArray corresponding to the
ControlPosition where it should be rendered.

mapTypes MapTypeRegistry A registry of MapType instances by string ID.

overlayMapTypes MVCArray.<MapType> Contains more map types that will be used as
overlays.

APPENDIX ■ API REFERENCE

247

Events
Table A-4 gives the events of the Map object.

Table A-4. The Events of the Map Object

Event Argument Description

bounds_changed None Is fired when bounds of the viewport is changed.

center_changed None Is fired when the center of the map changes.

click MouseEvent Is fired when the user clicks the map. Note that it will not fire
when the user clicks a marker or on an InfoWindow.

dblclick MouseEvent Is fired when the user double-clicks the map. Note that this
will also trigger the click event, which will fire right before
the dblclick event fires.

drag None Is fired over and over again as when the user is dragging the
map.

dragend None Is fired when the user stops dragging the map.

dragstart None Is fired when the user starts dragging the map.

idle None Is fired when the map becomes idle after panning and
zooming.

maptypeid_changed None Is fired when the mapTypeId property has changed.

mousemove MouseEvent Is fired over and over again as the user moves the mouse
pointer over the map.

mouseout MouseEvent Is fired when the mouse pointer leaves the map container.

mouseover MouseEvent Is fired when the mouse pointer enters the map.

projection_changed None Is fired when the projection is changed.

resize None Is fired when the map <div> changes size. It should be
triggered manually with this:

google.maps.event.trigger(map, 'resize ')

rightclick MouseEvent Is fired when the user right-clicks the map.

tilesloaded None Is fired when the visible map tiles have loaded.

zoom_changed None Is fired when the zoom property of the map is changed.

APPENDIX ■ API REFERENCE

248

MapOptions Object
The following sections relate to the MapOptions object.

Properties
Table A-5 gives the properties of the MapOptions object. They are ordered with the required properties
first and then the optional properties in alphabetic order.

Table A-5. The Properties of the MapOptions Object

Property Type Description

center LatLng Determines the initial center of the
map. Required.

mapTypeId MapTypeId Determines the initial map type.
Required.

zoom number Determines the initial zoom level of
the map. Required.

backgroundColor string Sets the color being used for the
background of the <div> containing the
map. It can be set only when the map is
initialized.

disableDefaultUI boolean Enables or disables the default UI,
which is the navigation control and the
map type chooser.

disableDoubleClickZoom boolean Enables or disables zoom-in by double-
clicking the map. The default value is
false.

draggable boolean Sets the map to be draggable or not.
The default value is true.

draggableCursor string The name of a standard cursor or the
URL to an image that will be used as a
cursor indicating that an object is
draggable.

draggingCursor string The name of a standard cursor or the
URL to an image that will be used as a
cursor when an object is being dragged.

keyboardShortcuts boolean Enables or disables keyboard shortcuts.
The default value is true.

APPENDIX ■ API REFERENCE

249

Property Type Description

mapTypeControl boolean Enables or disable the mapTypeControl.
The default value is true.

mapTypeControlOptions MapTypeControlOptions The initial display options for the map
type control.

navigationControl boolean Enables or disables the navigation
control. The default value is true.

navigationControlOptions NavigationControlOptions Sets the options for the navigation
control.

noClear boolean Prevents the map <div> to be cleared
when the map loads. The default value
is false.

scaleControl boolean Enables or disables the scale control.

scaleControlOptions ScaleControlOptions Sets the options for the scale control.

scrollwheel boolean Disables or enables scroll wheel
zooming. The default value is true.

streetView StreetViewPanorama The StreetViewPanorama to be used by
Street view. The map container will be
used by default.

streetViewControl boolean Enables or disables the Street view
control, aka the pegman.

MapTypeId Class
This class contains the default map types.

Constants
Table A-6 gives the constants in the MapTypeId class.

Table A-6. Constants in the MapTypeId Class

Constant Description

HYBRID This map type shows major streets on satellite images.

ROADMAP This is the default map type. It shows a street map.

APPENDIX ■ API REFERENCE

250

Constant Description

SATELLITE This map type shows satellite images.

TERRAIN This map type shows terrain and vegetation.

MapTypeControlOptions Object
These are the options available for rendering the map type control.

Properties
Table A-7 gives the properties of the MapTypeControlOptions object.

Table A-7. The Properties of the MapOptions Object

Property Type Description

mapTypeIds Array.<MapTypeId>|Array.<string> An array containing the map types that will
be available in the control

position ControlPosition Specifies the position for the control. The
default position is TOP_RIGHT

style MapTypeControlStyle Determines what style the control will have

MapTypeControlStyle Class
The following sections related to the MapTypeControlStyle class.

Constants
Table A-8 gives the constants in the MapTypeControlStyle class.

Table A-8. Constants in the MapTypeControlStyle class

Constant Description

DEFAULT Displays the default MapTypeControl. Exactly what
this is varies depending on the map size and
other factors.

DROPDOWN_MENU Displays a compact drop-down menu.

HORIZONTAL_BAR Displays the standard horizontal map control.

APPENDIX ■ API REFERENCE

251

NavigationControlOptions Object
The NavigationControlOptions object contains the options for displaying the navigation control.

Properties
Table A-9 gives the properties of the NavigationControlOptions object.

Table A-9. The Properties of the NavigationControlOptions Object

Property Type Description

position ControlPosition Specifies the position for the control. The default
position is TOP_LEFT.

style NavigationControlStyle Determines what style the control will have.

NavigationControlStyle Class
The NavigationControlStyle class contains the constants for the different types of navigation controls.

Constants
Table A-10 gives the constants for the NavigationControlStyle class.

Table A-10. The Constants for the NavigationControlStyle Class

Constant Description

ANDROID A zoom control similar to the ones used by the native Google Maps application on
Android.

DEFAULT Displays the default control. Exactly what this is varies depending on the map size
and other factors.

SMALL The small control that only lets you zoom the map.

ZOOM_PAN The large control that lets you both zoom and pan.

APPENDIX ■ API REFERENCE

252

ScaleControlOptions Object
The ScaleControlOptions object contains options for displaying the scale control.

Properties
Table A-11 gives the properties of the ScaleControlOptions object.

Table A-11. The Properties of the ScaleControlOptions Object

Property Type Description

position ControlPosition Specifies the position for the control. The default position is
BOTTOM_LEFT.

style ScaleControlStyle Determines what style the control will have.

ScaleControlStyle Class
The ScaleControlStyle class contains constants for the scale control. Well, it actually has one constant.

Constants
Table A-12 gives the constants for the ScaleControlStyle class.

Table A-12. The Constants for the ScaleControlStyle Class

Constant Description

DEFAULT The default control

ControlPosition Class
This class contains the different positions possible for a control.

Constants
Table A-13 gives the constants for the ControlPosition class (see also Figure A-1).

APPENDIX ■ API REFERENCE

253

Table A-13. The Constants for the ControlPosition Class

Constant Description

BOTTOM The center of the bottom

BOTTOM_LEFT The bottom left. They will be positioned to the right of the Google logo.

BOTTOM_RIGHT The bottom left. They will be positioned to the left of the copyrights.

LEFT They will be positioned to the left, under the controls positioned to the top left.

RIGHT They will be positioned to the right, under the controls positioned to the top right.

TOP The center of the top.

TOP_LEFT The top left.

TOP_RIGHT The top right.

Figure A-1. The possible positions for a control

APPENDIX ■ API REFERENCE

254

MapPanes Object
All the DOM elements in which the overlays are rendered reside in this object. They are listed in the
order of their z-index, where the first one will appear at the top and the last one will appear at the
bottom of the stack.

Properties
Table A-14 gives the properties of the MapPanes object.

Table A-14. The Properties of the MapPanes Object

Property Type Description

floatPane Node Contains the InfoWindows. It’s at the top of the stack. (Pane 6.)

overlayMouseTarget Node Contains transparent element whose sole purpose is to receive
the DOM mouse events for the markers. It sits above the
floatShadow making the markers clickable. (Pane 5.)

floatShadow Node Contains the InfoWindows shadow. It is above the overlayImage so
that markers can be in the shadow of the InfoWindows. (Pane 4.)

overlayImage Node Contains the marker foreground images. (Pane 3.)

overlayShadow Node Contains the marker shadows. (Pane 2.)

overlayLayer Node Contains polylines, polygons, ground overlays, and tile layer
overlays. (Pane 1.)

mapPane Node The pane at the bottom of the stack. It sits just above the map
tiles. (Pane 0.)

MapCanvasProjection Object
The following sections relate to the MapCanvasProjection object.

Methods
Table A-15 give the methods of the MapCanvasProjection object.

APPENDIX ■ API REFERENCE

255

Table A-15. The Methods of the MapCanvasProjection Object

Method Return Value Description

fromContainerPixelToLatLng
(pixel:Point)

LatLng Converts a pixel coordinate to a
geographical coordinate in the map
container

fromDivPixelToLatLng(pixel:Point) LatLng Converts a pixel coordinate to a
geographical coordinate in the <div> that
holds the draggable map

fromLatLngToContainerPixel
(latLng:LatLng)

Point Calculates the pixel coordinate in the map
container from a geographical coordinate

fromLatLngToDivPixel
(latLng:LatLng)

Point Calculates the pixel coordinate in the DOM
element that holds the draggable map from
a geographical coordinate

getWorldWidth() number The width of the world in pixels in the
current zoom level

Marker Class
This class is used to create markers. It extends MVCObject.

Constructor
Table A-16 gives the constructor of the Marker class.

Table A-16. The Constructor of the Marker Class

Constructor Description

Marker(opts?:MarkerOptions) Creates a new marker. Passing the MarkerOption is optional, but if
you do pass it with its map and position properties defined, the
marker is instantly added to the map.

Methods
Table A-17 gives the methods of the Marker class.

APPENDIX ■ API REFERENCE

256

Table A-17. The Methods of the Marker Class

Method Return Value Description

getClickable() boolean Returns true if the marker is clickable
and false if it’s not.

getCursor() string Returns the current cursor that’s being
used when the user holds the mouse
pointer over the marker.

getDraggable() boolean Returns true if the marker is draggable
and false if it’s not.

getFlat() boolean Returns true if the marker shadow is
disabled (using the flat property) and
false if it’s not.

getIcon() string|Marker
Image

Returns the icon of the marker.

getMap() Map|StreetView
Panorama

Returns a reference to the map or
panorama that the marker is attached to.

getPosition() LatLng Returns the position of the marker.

getShadow() string|Marker
Image

Returns the shadow of the marker.

getShape() MarkerShape Returns the shape of the marker.

getTitle() string Returns the title of the marker.

getVisible() boolean Returns true if the marker is visible and
false if it’s not.

getZIndex() number Returns the zIndex of the marker.

setClickable(flag:boolean) None Sets the marker to be clickable or not.

setCursor(cursor:string) None Sets the cursor that will be used when the
user holds the mouse pointer over the
marker.

setDraggable(flag:boolean) None Sets the marker to be draggable or not.

setFlat(flag:boolean) None Sets the marker to be able to have a
shadow or not.

x

APPENDIX ■ API REFERENCE

257

Method Return Value Description

setIcon(icon:string|MarkerImage) None Sets the icon of the marker.

setMap(map:Map|StreetViewPanorama) None Add the marker to the specified map or
panorama. To remove the marker, set
map to null.

setOptions(options:MarkerOptions) None Changes the features of the marker to
the properties set in the passed
MarkerOptions object.

setPosition(latlng:LatLng) None Sets the position of the marker.

setShadow(shadow:string|MarkerImage) None Sets the shadow of the marker icon.

setShape(shape:MarkerShape) None Sets the shape of the marker.

setTitle(title:string) None Sets the title of the marker. It will be
displayed as a tooltip when the user
holds the mouse cursor over it.

setVisible(visible:boolean) None Sets the visibility of the marker.

setZIndex(zIndex:number) None Sets the order of the marker in the stack
of markers.

Events
Table A-18 gives the events of the Marker class.

Table A-18. The Events of the Marker Class

Event Argument Description

click Event Fires when the marker is clicked

clickable_changed None Fires when the clickable property is changed

cursor_changed None Fires when the cursor property is changed

dblclick Event Fires when the marker is double-clicked

drag MouseEvent Fires over and over again while the marker is being
dragged

dragend MouseEvent Fires when the marker stops being dragged

APPENDIX ■ API REFERENCE

258

Event Argument Description

draggable_changed None Fires when the draggable property is changed

dragstart MouseEvent Fires when the user starts dragging the marker

flat_changed None Fires when the flat property is changed

icon_changed None Fires when the icon property is changed

mousedown Event Fires when the user presses the left mouse button on the
marker

mouseout Event Fires when the mouse cursor leaves the marker

mouseover Event Fires when the mouse cursors enters over the marker

mouseup Event Fires when the user releases the left mouse button on the
marker

position_changed None Fires when the position property is changed

rightclick Event Fires when the user right-clicks the marker

shadow_changed None Fires when the shadow property is changed

shape_changed None Fires when the shape property is changed

title_changed None Fires when the title property is changed

visible_changed None Fires when the visible property is changed

zindex_changed None Fires when the zIndex property is changed

MarkerOptions Object
The following sections relate to the MarkerOptions object.

Properties
Table A-19 gives the properties of the MarkerOptions object.

APPENDIX ■ API REFERENCE

259

Table A-19. The Properties of the MarkerOptions Object

Property Type Description

clickable boolean Enables and disables if the marker should respond to
mouse and touch events. The default value is true.

cursor string The name of a standard cursor or the URL to an image
that will be used as a cursor when the user holds the
mouse over the marker.

draggable boolean Enable or disables the marker to be draggable. The
default value is false.

flat boolean Enables or disable the marker shadow. If set to true, the
shadow will be disabled, and vice versa. The default
value is false.

icon string|MarkerImage The marker icon.

map Map|StreetViewPanorama The map on which the marker will appear.

position LatLng The position of the marker.

shadow string|MarkerImage The marker’s shadow.

shape MarkerShape The clickable area of the marker.

title string The title of the marker. It will be displayed as a tooltip
when the user holds the mouse over it.

visible boolean Shows or hides the marker. The default value is true.

zIndex number The order of the marker in the stack of markers.

MarkerImage Class
The following sections relate to the MarkerImage class.

Constructor
Table A-20 gives the constructor of the MarkerImage class.

APPENDIX ■ API REFERENCE

260

Table A-20. The Constructor of the MarkerImage Class

Constructor Description

MarkerImage(url:string,
size?:Size,
origin?:Point,
anchor?:Point,
scaledSize?:Size)

Creates an image that can be used either as the icon or as the shadow
for a marker. url defines the image to use, size defines the size of the
image, and origin is used to select which part of the image will be used
if you are using sprites. anchor sets the point of the marker that will
point at its position in the map. scaledSize is used to scale the image.
Note that once the MarkerImage is created, it can’t be changed.

MarkerShape Object
This object defines what part of the marker to use. It works like an HTML image map, which means that
you can define the shape as a circle, a poly, or a rectangle.

Properties
Table A-21 gives the properties of the MarkerShape object.

Table A-21. The Properties of the MarkerShape Object

Property Type Description

type string What type of shape to use. The available shapes are circle, poly,
and rectangle.

coord Array.<number> Depending of what type you’ve chosen, this property works a
little bit different. It basically works the same way as the <area>
element in HTML.

If the type is set to circle, coord will consist of [x, y, r] where x
and y represent the center of the circle and r represents its
radius.

If the type is set to poly, coord will consist of [x1,y1,x2,y2,x3,y3…
and so on] where each coordinate pair represents a point in the
polygon.

For rectangle, coord will look like [x1, y1, x2, y2] where x1, y1
represents the upper-left corner of the rectangle and x2,y2
represents the lower-right corner.

APPENDIX ■ API REFERENCE

261

Polyline Class
Polylines are a series of points connected with lines. They are, for example, very useful for marking
roads. This class extends MVCObject.

Constructor
Table A-22 gives the constructor of the Polyline class.

Table A-22. The Constructor of the Polyline Class

Constructor Description

Polyline(opts?:PolylineOptions) Creates a polyline. The passed PolylineOptions object defines
how the polyline will appear. If you provide the polyline with a
PolylineOptions object with the property LatLng and map
specified, it will instantly be added to the map.

Methods
Table A-23 gives the methods of the Polyline class.

Table A-23. The Methods of the Polyline Class

Method Return Value Description

getMap() Map Returns a reference to the map that the
polyline is attached to.

getPath() MVCArray.<LatLng> Returns the first path.

setMap(map:Map) None Adds the polyline to a map. To remove the
polyline, pass null to it.

setOptions(options:Polyline
Options)

None Sets the options of the polyline.

setPath(path:MVCArray.<LatLng>|
Array.<LatLng>)

None Sets the first path.

Events
Table A-24 gives the events of the Polyline class.

APPENDIX ■ API REFERENCE

262

Table A-24. The Events of the Polyline class

Event Argument Description

click MouseEvent Fires when the polyline is being clicked

dblclick MouseEvent Fires when the polyline is being double-clicked

mousedown MouseEvent Fires when the user press down the left mouse key on the polyline

mousemove MouseEvent Fires when the DOM mouse move event is triggered on the polyline

mouseout MouseEvent Fires when the mouse leaves the area over the polyline

mouseover MouseEvent Fires when the mouse enters the area over the polyline

mouseup MouseEvent Fires when the user releases the left mouse key over the polyline

rightclick MouseEvent Fires when the user right-clicks the polyline

PolylineOptions Object
The following sections relate to the PolylineOptions object.

Properties
Table A-25 gives the properties of the PolylineOptions object.

Table A-25. The Properties of the PolylineOptions Object

Property Type Description

clickable boolean Enables or disables if the polyline will be clickable. The
default value is true.

geodesic boolean Enables or disables geodesic rendering of the polyline.

map Map The map that the polyline will be added to.

path MVCArray.<LatLng>|
Array.<LatLng>

The coordinates that make up the points in the polyline. It
can be either an MVCArray of LatLngs or a regular array of
LatLngs. The benefit of using an MVCArray is that if you add
or remove LatLngs in it, the polyline will immediately be
updated with the changes.

APPENDIX ■ API REFERENCE

263

Property Type Description

strokeColor string The color of the polyline. The value used is as string in hex
format, so the color red will be #ff0000. The default value is
#000000, which is the color black.

strokeOpacity number This property is a number that defines the opacity of the
line. 1.0 means that it’s 100 percent opaque, and 0 means
that it’s 0 percent opaque, in other words, completely
transparent. Anything in between such as 0.5 will render a
semi-transparent line. The default value is 1.0.

strokeWeight number This property is a number and defines the width of the line
in pixels. To create a 5-pixel-wide line, pass it the value 5.
The default value is 3.

zIndex number The order in which the polyline will appear in the stack of
polylines.

Polygon Class
A polygon is very similar to a polyline. The difference is that it’s always closed and has a filled region.
This class extends MVCObject.

Constructor
Table A-26 gives the constructor of the Polygon class.

Table A-26. The Constructor of the Polygon Class

Constructor Description

Polygon(opts?:PolygonOptions) Creates a polygon. The passed PolygonOptions object defines how
the polygon will appear. If you provide the polygon with a
PolygonOptions object with the property LatLng and map specified, it
will instantly be added to the map.

Methods
Table A-27 gives the methods of the Polygon class.

APPENDIX ■ API REFERENCE

264

Table A-27. The Methods of the Polygon Class

Method Return Value Description

getMap() Map Returns a reference to the map the
polygon is attached to.

getPath() MVCArray.<LatLng> Returns the first path.

getPaths() MVCArray.
<MVCArray.
<LatLng>>

Returns all the paths for the polygon.

setMap(map:Map) None Adds the polygon to a map. To remove
the polygon from a map, pass null as
the value.

setOptions(options:PolygonOptions) None Sets the features of the polyline by
passing a PolygonOptions object.

setPath(path:MVCArray.<LatLng>|
Array.<LatLng>)

None Sets the first path of the polygon.

setPaths(paths:
MVCArray.<MVCArray.<LatLng>>|
MVCArray.<LatLng>|
Array.<Array.<LatLng>>|
Array.<LatLng>)

None Sets all the paths for the polygon.

Events
Table A-28 gives the events of the Polygon class.

Table A-28. The Events of the Polygon Class

Event Argument Description

click MouseEvent Fires when the polygon is being clicked

dblclick MouseEvent Fires when the polygon is being double-clicked

mousedown MouseEvent Fires when the user press down the left mouse key on the polygon

mousemove MouseEvent Fires when the DOM mouse move event is triggered on the
polygon

mouseout MouseEvent Fires when the mouse leaves the area over the polygon

mouseover MouseEvent Fires when the mouse enters the area over the polygon

APPENDIX ■ API REFERENCE

265

Event Argument Description

mouseup MouseEvent Fires when the user releases the left mouse key over the polygon

rightclick MouseEvent Fires when the user right-clicks the polygon

PolygonOptions Object
The following sections relate to the PolygonOptions object.

Properties
Table A-29 gives the properties of the PolygonOptions object.

Table A-29. The Properties of the PolygonOptions Object

Property Type Description

clickable boolean Enables or disables if the polygon will be
clickable. The default value is true.

fillColor string The color of the “inside” of the polygon. The
value used is as string in hex format, so the
color red will be #ff0000. The default value is
#000000, which is the color black.

fillOpacity number The opacity of the “inside” fill. This is a
decimal number between 0 and 1. The value
0.5 will make the fill 50 percent opaque.

geodesic boolean Enables or disables geodesic rendering of the
polygon.

map Map The map that the polygon will be added to.

paths MVCArray .<MVCArray.<LatLng>>|
MVCArray.<LatLng>|
Array.<Array.<LatLng>
Array.<LatLng>

The coordinates that make up the points in the
polygon. It can be either an MVCArray of
LatLngs or a regular array of LatLngs. The
benefit of using an MVCArray is that if you add
or remove LatLngs in it, the polygon will
immediately be updated with the changes.

strokeColor string The color of the border of the polygon. The
value used is as string in hex format, so the
color red will be #ff0000. The default value is
#000000, which is the color black.

APPENDIX ■ API REFERENCE

266

Property Type Description

strokeOpacity number This property is a decimal number that
defines the opacity of the border as a number
between 0 and 1. The value 0.5 will make the
border 50 percent opaque. The default value is
1.

strokeWeight number This property is a number and defines the
width of the border in pixels. The default value
is 3.

zIndex number The order in which the polygon will appear in
the stack of polygons.

InfoWindow Class
This is a kind of overlay that looks like a speech balloon. It’s perfect for displaying information about a
location. It extends MVCObject.

Constructor
Table A-30 gives the constructor of the InfoWindow class.

Table A-30. The Constructor of the InfoWindow Class

Constructor Description

InfoWindow(opts?:InfoWindowOptions) Creates a new InfoWindow object.

Methods
Table A-31 gives the methods of the InfoWindow class.

Table A-31. The Methods of the InfoWindow Class

Method Return Value Description

close() None Closes the InfoWindow.

getContent() string|Node Returns the content of the InfoWindow.

getPosition() LatLng Returns the position of the InfoWindow.

getZIndex() number Returns the z-index of the InfoWindow.

APPENDIX ■ API REFERENCE

267

Method Return Value Description

open(map:Map|StreetViewPanorama,
anchor?:MVCObject)

None Opens a InfoWindow on the passed map or
panorama. If an MVCObject such as an marker
is passed as an anchor, the tip of the
InfoWindow will point at it.

setContent(content:string|Node) None Sets the content of the InfoWindow.

setOptions(options:InfoWindow
Options)

None Sets the options of the InfoWindow.

setPosition(position:LatLng) None Sets the position of the InfoWindow.

setZIndex(zIndex:number) None Sets the z-index of the InfoWindow.

Events
Table A-32 lists the events of the InfoWindow class.

Table A-32. The Events of the InfoWindow Class

Event Argument Description

closeclick None Fires when the close button in the InfoWindow is clicked.

content_changed None Fires when the content of the InfoWindow is changed.

domready None Fires when the <div> that contains the InfoWindow is added
to the DOM.

position_changed None Fires when the position of the InfoWindow is changed.

zindex_changed None Fires when the z-index of the InfoWindow is changed.

InfoWindowOptions Object
The following sections relate to the InfoWindowOptions object.

Properties
Table A-33 gives the properties of the InfoWindowOptions object.

APPENDIX ■ API REFERENCE

268

Table A-33. The Properties of the InfoWindowOptions Object

Property Type Description

content string|Node The content that will be displayed in the InfoWindow. It can be
either plain HTML or a reference to a DOM node.

disableAutoPan boolean Disables the autopan behavior of the InfoWindow. Normally
when it opens, the map will be panned to fit the InfoWindow.
The default value is false.

maxWidth number The maximum width of the InfoWindow. It’s considered only if
defined before the InfoWindow is opened.

pixelOffset Size Defines the offset from the tip of the InfoWindow and the point
it’s pointing at.

position LatLng The position at which the tip of the InfoWindow should point.

zIndex number The order in the stack of InfoWindows where the InfoWindow
will appear.

Geocoder Class
This is a service with which you can look up the geographic coordinates of an address known as
geocoding. It can also return addresses from a geographical coordinate, a process known as
reverse geocoding.

Constructor
Table A-34 gives the constructor of the Geocoder class.

Table A-34. The Constructor of the Geocoder Class

Constructor Description

Geocoder() Creates a Geocoder object that you can use to perform geocode requests

Methods
Table A-35 gives the methods of the Geocoder class.

APPENDIX ■ API REFERENCE

269

Table A-35. The Methods of the Geocoder Class

Method Return Value Description

geocode(
request:GeocoderRequest,
callback:function(Array.<GeocoderResult>,
GeocoderStatus)))

None Performs a geocode request based on
the information in the
GeocoderRequest object being passed
to it

GeocoderRequest Object
This object contains the information needed to perform a geocoder request. If you define the address,
property positions will be returned, and if you define the location property, addresses will be returned.

Properties
Table A-36 gives the properties of the GeocoderRequest object.

Table A-36. The Properties of the GeocoderRequest Object

Property Type Description

address string The address to look up. Optional.

bounds LatLngBounds The LatLngBounds within the search shall be performed. Optional.

language string The preferred language that the result will be returned in.

location LatLng The LatLng to look up. Optional.

region string The country in which the search shall be performed. The value
must be in country code format. Optional.

GeocoderStatus Class
This class contains the possible statuses that will be returned when performing a geocoder request.

Constants
Table A-37 gives the constants in the GeocoderStatus class.

APPENDIX ■ API REFERENCE

270

Table A-37. Constants in the GeocoderStatus Class

Constant Description

ERROR The Geocoder object couldn’t contact the Google servers.

INVALID_REQUEST The GeocoderRequest was not valid.

OK The request succeeded.

OVER_QUERY_LIMIT The request limit has been reached.

REQUEST_DENIED The web page is not allowed to use the Geocoder object.

UNKNOWN_ERROR A server error occurred.

ZERO_RESULTS No result could be found for the request.

GeocoderResult Object
When performing a successful geocoder request, a result in JSON format is returned. The result can
contain several result objects.

Properties
Table A-38 gives the properties of the GeocoderResult object.

Table A-38. The Properties of the GeocoderResult Object

Property Type Description

address_components Array.
<GeocoderAddressComponent>

An array containing the different facts about
the location.

geometry GeocoderGeometry An object with several properties. The most
interesting one is location, which contains
the position of the address as a LatLng object.
It also has other properties such as viewport,
bounds, and location_type.

types Array.<string> An array that contains what type of location
the returned result is. It could, for example,
be a country or a locality, which indicates
that it’s a city or town.

APPENDIX ■ API REFERENCE

271

GeocoderAddressComponent Object
This object contains information about the address of the result returned from a geocoder request.

Table A-39 gives the properties of the GeocoderAddressComponent object.

Table A-39. The Properties of the GeocoderAddressComponent Object

Property Type Description

long_name string The full address.

short_name string The address in a shorter format.

types Array.<string> Contains what type of location the returned result is. It could, for
example, be a country or a locality that indicates that it’s a city
or town.

GeocoderGeometry Object
This object contains information about the location of the result returned from a geocoder request.

Properties
Table A-40 gives the properties of the GeocoderGeometry object.

Table A-40. The Properties of the GeocoderGeometry Object

Property Type Description

bounds LatLngBounds The bounds of the result

location LatLng The position of the result

location_type GeocoderLocationType The type of location

viewport LatLngBounds A recommended bounds for the viewport for
displaying the returned result

APPENDIX ■ API REFERENCE

272

GeocoderLocationType Class
This class contains the different types of locations that can be returned from a geocode request.

Constants
Table A-41 gives the constants in the GeocoderLocationType class.

Table A-41. Constants in the GeocoderLocationType Class

Constant Description

APPROXIMATE An approximate location

GEOMETRIC_CENTER A center of a result such as a line or a polygon

RANGE_INTERPOLATED An approximated location between two precise points

ROOFTOP A precise geocode

MapsEventListener Object
This class does not have any methods and has no constructor. Its instance is returned from
addListener() and addDomListener() and is passed back to removeListener().

event Namespace
The following sections relate to the event namespace.

Static Methods
Table A-42 gives the static methods of the event namespace.

Table A-42. The Static Methods of the event Namespace

Static Method Return Value Description

addDomListener(instance:Object,
eventName:string, handler:Function)

MapsEventListener Provides a cross-browser event
handler registration.

addDomListenerOnce(instance:Object,
eventName:string, handler:Function)

MapsEventListener Provides a cross-browser event
handler registration that is
automatically removed once it has
been triggered.

APPENDIX ■ API REFERENCE

273

Static Method Return Value Description

addListener(instance:Object,
eventName:string, handler:Function)

MapsEventListener Adds an event listener to a certain
object and a certain event.

addListenerOnce(instance:Object,
eventName:string, handler:Function)

MapsEventListener Adds an event listener to a certain
object and a certain event. Removes
itself once it’s been triggered.

clearInstanceListeners(
instance:Object)

None Removes all event listeners that are
bound to an object.

clearListeners(instance:Object,
eventName:string)

None Removes all event listeners of a
certain type that are bound to an
object.

removeListener(
listener:MapsEventListener)

None Removes a specific event listener.

trigger(instance:Object,
eventName:string, var_args:*)

None Triggers an event on a particular
object. All the arguments passed
after the eventName are passed as
arguments to the event listener.

MouseEvent Object
The MouseEvent object is returned from almost all mouse events on almost all the different objects. The
Marker object is the exception. It returns a MouseEvent object only on some of its mouse events.

Properties
Table A-43 gives the properties of the MouseEvent object.

Table A-43. The Properties of the MouseEvent Object

Property Type Description

latLng LatLng The position of the mouse pointer at the time of the event

APPENDIX ■ API REFERENCE

274

LatLng Class
This class represents a geographical location consisting of a latitude and a longitude.

Constructor
Table A-44 shows the constructor of the LatLng class.

Table A-44. The Constructor of the LatLng Class

Constructor Description

LatLng(lat:number,
lng:number, noWrap?:boolean)

Creates a LatLng object. The order of latitude and longitude is
always latitude first and longitude second. If noWrap is set to true, it
will take the passed coordinates as is; otherwise, it will force the
latitude to lie between -90 and +90 degrees and longitude between
-180 and +180 degrees.

Methods
Table A-45 gives the methods of the LatLng class.

Table A-45. The Methods of the LatLng Class

Method Return Value Description

equals(other:LatLng) boolean Compares a LatLng with another LatLng. If they
are equal, true is returned.

lat() number Returns the latitude.

lng() number Returns the longitude.

toString() string Returns a string representation of the object.

toUrlValue(precision?:number) string Returns a string with the latitude and longitude
rounded to six decimals.

APPENDIX ■ API REFERENCE

275

LatLngBounds Class
This represents a rectangle in geographical coordinates.

Constructor
Table A-46 gives the constructor of the LatLngBounds class.

Table A-46. The Constructor of the LatLngBounds Class

Constructor Description

LatLngBounds(sw?:LatLng,
ne?:LatLng)

Creates a LatLngBounds object that is a rectangle with the inputted
points as its southwest and northeast corners.

Methods
Table A-47 gives the methods of the LatLngBounds class.

Table A-47. The Methods of the LatLngBounds Class

Method Return Value Description

contains(latLng:LatLng) boolean Checks whether a LatLng is within the bounds.
If it does, it returns true.

equals(other:LatLngBounds) boolean Compares the bounds with another bounds.
Returns true if they are approximately equal.

extend(point:LatLng) LatLngBounds Extends the bounds to include the inputted
LatLng.

getCenter() LatLng Returns the center of the bounds.

getNorthEast() LatLng Returns the northeast corner of the bounds.

getSouthWest() LatLng Returns the southwest corner of the bounds.

intersects(other:LatLngBounds) boolean Checks whether another bounds shares any
points with this bounds.

isEmpty() boolean Returns true if the bounds is empty.

toSpan() LatLng Converts the bounds to a latitude/longitude
span.

APPENDIX ■ API REFERENCE

276

Method Return Value Description

toString() string Converts the bounds to a string.

toUrlValue(precision?:number) string Returns the bounds as a string in the format
“lat_lo,lng_lo,lat_hi,lnghi” where “lo” is the
southwest corner and “hi” is the northeast
corner of the bounds.

union(other:LatLngBounds) LatLngBounds Extends the bounds with the passed bounds.

Point Class
This represents a point on a two-dimensional plane expressed in pixels.

Constructor
Table A-48 gives the constructor of the Point class.

Table A-48. The Constructor of the Point Class

Constructor Description

Point(x:number, y:number) Creates a new point from the given numbers. The numbers represent
pixels.

Methods
Table A-49 gives the methods of the Point class.

Table A-49. The Methods of the Point Class

Method Return Value Description

equals(other:Point) Boolean Compares this point with another point. Returns true if
they are the same.

toString() string Converts the point to a string.

Properties
Table A-50 gives the properties of the Point class.

APPENDIX ■ API REFERENCE

277

Table A-50. The Properties of the Point Class

Property Type Description

x number The X coordinate

y number The Y coordinate

Size Class
This represents a two-dimensional size. Width is the distance on the x-axis, and height is the distance
on the y-axis.

Table A-51 gives the constructor of the Size class.

Table A-51. The Constructor of the Size Class

Constructor Description

Size(width:number,
 height:number,
 widthUnit?:string,
 heightUnit?:string)

Creates a new Size from the passed width, height, and units. The default
unit is pixels.

Methods
Table A-52 gives the methods of the Size class.

Table A-52. The Methods of the Size Class

Method Return Value Description

equals(other:Size) boolean Compares this size with another size. Returns true if they
are the same.

toString() string Converts the size to a string.

Properties
Table A-53 gives the properties of the Size class.

Table A-53. The Properties of the Size Class

Property Type Description

height number The height in pixels

width number The width in pixels

APPENDIX ■ API REFERENCE

278

MVCObject Class
Table A-54 gives the constructor of the MVCObject class.

Table A-54. The Constructor of the MVCObject Class

Constructor Description

MVCObject() The base class implementing KVO

Methods
Table A-55 gives the methods of the MVCObject class.

Table A-55. The Methods of the MVCObject Class

Method Return Value Description

bindTo(key:string, target:MVCObject,
targetKey?:string, noNotify?:boolean)

None Binds a view to a model.

changed(key:string) None Generic handler for state changes.
Override this in derived classes to
handle arbitrary state changes.

get(key:string) * Gets a value.

notify(key:string) None Notify all observers of a change on this
property. This notifies both objects that
are bound to the object's property as
well as the object that it is bound to.

set(key:string, value:*) None Sets a value.

setValues(values:Object|undefined) None Sets a collection of key-value pairs.

unbind(key:string) None Removes a binding. Unbinding will set
the unbound property to the current
value. The object will not be notified,
because the value has not changed.

unbindAll() None Removes all bindings.

APPENDIX ■ API REFERENCE

279

MVCArray Class
This is a mutable MVCArray. This class extends MVCObject. See Table A-56 for the constructor.

Table A-56. The Constructor of the MVCArray Class

Constructor Description

MVCArray(array?:Array) Creates a new MVC array

Methods
Table A-57 gives the methods of the MVCArray class.

Table A-57. The Methods of the MVCArray Class

Method ReturnV Description

forEach(callback:function(*, number)) None Iterates over each element, calling the
provided callback. The callback is called
for each element, like so:
callback(element, index).

getAt(i:number) * Gets an element at the specified index.

getLength() number Returns the number of elements in this
array.

insertAt(i:number, elem:*) None Inserts an element at the specified index.

pop() * Removes the last element of the array and
returns that element.

push(elem:*) number Adds one element to the end of the array
and returns the new length of the array.

removeAt(i:number) * Removes an element from the specified
index.

setAt(i:number, elem:*) None Sets an element at the specified index.

� � �

281

Index

�A
addDomListener method, 272
addDomListenerOnce method, 272
addEventListener method, 152
addListener method, 81, 272

adding markers to MarkerManager, 203
changing marker icon according to

mouse events, 119
changing PolygonOptions property

values, 174
plotting custom paths, 164

addListenerOnce method, 20, 183, 184, 273
addMarker method, 199
addMarkers method, 198, 203
addOverlay method, 12
address lookup web page, building, 212—

222
CSS, 213
event handlers, 214—215
HTML, 213
InfoWindow, 219—220
JavaScript, 214, 221—222
looking up addresses, 215—216
response to geocode method, 216—219

address property
ClientLocation object, 230
GeocoderRequest object, 215, 269

address_components property

GeocoderResult object, 270
results parameter, geocode method,

218
Ajax

dealing with multiple marker icons, 124
faking Ajax call, 124

alert function, JavaScript, 34
anchor point, marker icons, 104, 106
anchor property, MarkerImage, 102

dealing with multiple marker icons, 123
setting anchor point, 106

Android
improving geolocation accuracy, 235

ANDROID constant
NavigationControlStyle class, 55, 251

anonymous functions
attaching click events to buttons, 66
creating zoom-in link in InfoWindow,

152
encapsulating code, 41—43
making code run on Page Load, 40
nesting event listener inside function,

90
API key

adding reference to API, 9—10

�INDEX

282

API reference see Google Maps API
reference

appendChild method
creating detail map in InfoWindow, 147
creating zoom-in link in InfoWindow,

153
APPROXIMATE constant

GeocoderLocationType class, 272
areas, polygons, 166—175
arguments, method

syntax described, 243
arrays

Google Maps API reference, 243
MVCArray, 163, 279
polyline arrays, 163

arrays, JavaScript, 83—84
associative array, 122
coordinates, polylines, 159
counting items in, 84
creating array of coordinates, 86
creating donuts, 170
creating triangles, 167
extracting coordinates from, 87
index numbers (start at 0), 84
length property, 84
push method, 84

associative array, JavaScript, 122
asynchronous method calls, 8—9
attachEvent method, 152
attributes, HTML elements

targeting attributes with selectors, 29
autoplay attribute, video element

inserting video using HTML5, 140

�B
backgroundColor property, MapOptions,

61, 64, 248
Bermuda Triangle example

creating polygon with highlight effect,
173—175

binding
unbind method, 278
unbindAll method, 278

bindTo method, MVCObject, 278
body element, HTML, 28
booleans, JavaScript, 33
border attribute, div element

targeting attributes with CSS selectors,
29

borderPadding property, MarkerManager,
209

BOTTOM constant
ControlPosition class, 253

BOTTOM_LEFT constant, 253
BOTTOM_RIGHT constant, 253
boundaries

calculating current map boundaries,
183—185

bounding box
LatLngBounds object, 96

bounds
fitBounds method, Map, 245
getBounds method, Map, 245
LatLngBounds class, 275—276
panToBounds method, Map, 245

bounds property
GeocoderGeometry object, 271
GeocoderRequest object, 269

bounds_changed event, Map, 247
asynchronous method calls, 9
calculating current map boundaries,

183
browsers

checking support for HTML5 and CSS3,
139

improving geolocation accuracy, 235
inserting video using HTML5, 139

�INDEX

283

latency, 111
limits on downloading files, 111
testing capabilities, 11

�C
callback function

geocode method, 216
camelCasing, 32
center property, MapOptions, 38, 248

changing center of map, 64, 68
creating detail map in InfoWindow, 147
creating maps, 10

center_changed event, Map, 247
changed method, MVCObject, 278
character encoding, 28
charset attribute, meta element, 28
Chrome

improving geolocation accuracy, 235
inserting video using HTML5, 139
supported video formats, 142

circles
shape property, MarkerOptions, 107

class attribute, div element
controlling size of InfoWindow, 80

classes
Google Maps API reference, 244—279

clearInstanceListeners method, 273
clearListeners method, 273
click events, 80

adding clickable clusters, 206
adding InfoWindow, 88
adding to marker, 19, 81—82
attaching to buttons, 66
attaching to elements, 152
defining clickable area, icons, 107—108
dynamically changing MapOptions

object, 68
Map object, 247
Marker class, 257

mouse events, 81
changing marker icon according to,

117, 118, 119
plotting custom paths, 164
Polygon class, 264
Polyline class, 262
stopping marker being clickable, 148

clickable property
Marker object, 148
MarkerOptions object, 259
PolygonOptions object, 265
PolylineOptions object, 262

clickable_changed event, Marker, 257
clicking

closeclick event, InfoWindow, 267
dblclick event

Map object, 247
Marker class, 257
Polygon class, 264
Polyline class, 262

disableDoubleClickZoom property, 248
getClickable method, Marker, 256
rightclick event

Map object, 247
Marker class, 258
Polygon class, 265
Polyline class, 262

setClickable method, Marker, 256
ClientLocation object

creating location-aware map, 231
IP-based geocoding, 230

close method, InfoWindow, 266
closeclick event, InfoWindow, 267
closure, 89, 92
cluster icon, 202
cluster sizes

MarkerClusterer object, 192
clustering markers, 181—182

distance-based clustering, 182

�INDEX

284

grid-based clustering, 181
MarkerClusterer library, 188—194
MarkerManager object, 201, 202

adding clickable clusters, 206—207
regional clustering, 182

code
validating HTML, 24—27

color
backgroundColor property, 61, 248
fillColor property, 168, 265
hexadecimal RGB values, 61
strokeColor property

PolygonOptions, 265
PolylineOptions, 161, 262

Wikipedia article on web colors, 62
colored markers

Google Maps icons, 116
comments, CSS files, 29
concatenation, strings, 135
constants

GeocoderLocationType class, 272
GeocoderStatus class, 269
MapTypeControlStyle class, 250
MapTypeId class, 249
NavigationControlStyle class, 251
ScaleControlStyle class, 252

constructors
Geocoder class, 268
InfoWindow class, 266
LatLng object, 38, 274
LatLngBounds class, 275
Map object, 37, 244
Marker class, 255
MarkerClusterer object, 191
MarkerImage object, 102, 259
MarkerManager object, 196
MVCArray class, 279
MVCObject class, 278
Point object, 106, 276

Polygon object, 166, 263
Polyline object, 159, 261
Size object, 111, 277
syntax described, 243

containers, map, 37—38
InfoWindows, 133
setting height of, 30
setting size of map, 29

contains method, LatLngBounds, 275
content, InfoWindow

getContent method, 266
setContent method, 267

content property, InfoWindowOptions, 80,
268

content_changed event, InfoWindow, 267
ControlPosition class, 49, 54, 252—253

constants, 252—253
controls

NavigationControlStyle class, 251
ScaleControlOptions object, 252
ScaleControlStyle class, 252

controls attribute, video element
inserting video using HTML5, 140

controls property, Map, 246
coord property, MarkerShape, 13, 260
coordinate systems

Word Geodetic System 84 (WGS 84), 4
coordinates

creating array of, 86
decimals and coordinate precision, 69
defining center of map, 38
extracting from array, 87
getCoordinates function, 214, 215
latitude, 4
longitude, 4
mapping fundamentals, 4—6
path property, PolylineOptions, 262
physical maps, 5
polylines, 159—160

�INDEX

285

prime meridian, 4
x property, Point, 277
y property, Point, 277

createElement method
creating detail map in InfoWindow, 147
inserting video in InfoWindow, 142

Crockford, Douglas, 7
crosshair cursor, 62
CSS

see also style sheets
adding rich content to InfoWindow,

136—137, 139
building address lookup web page, 213
checking browser support for CSS3, 139
complete code for map settings

example, 71
separating HTML and, 29
style.css file, 29
targeting attributes with selectors, 29

CSS files
comments, 29
creating, 29
href attribute, link element, 30
linking HTML to, 30

css folder, 29
cursor property, MarkerOptions, 259
cursor_changed event, Marker, 257
cursors

draggableCursor property, 62—63, 248
draggingCursor property, 63, 248
getCursor method, 256
list of available cursors, 62
MapOptions properties controlling, 62—

63
setCursor method, 256

�D
data types

Google Maps API reference, 243

JavaScript, 33—34
dblclick event

Map object, 247
Marker class, 257
Polygon class, 264
Polyline class, 262

debugging
Firebug tool, 36
HTML file, web page, 23

DEFAULT constant
ControlPosition class, 252
MapTypeControlStyle class, 48, 250
NavigationControlStyle class, 55, 251
ScaleControlStyle class, 252

default cursor, 62
detail map

creating in InfoWindow, 146—149
devices

creating maps for mobile devices, 43
determining if device has sensor, 30
finding location of user, 229—241

disableAutoPan property, 268
disableDefaultUI property, 46—47, 64, 248

creating detail map in InfoWindow, 148
creating maps, 10

disableDoubleClickZoom property, 58, 248
distance-based clustering, markers, 182
div element, HTML, 28

initializing map, 37
making code run on Page Load, 40
map container, 37—38
setting size of map, 29

docs folder
MarkerClusterer library, 189

doctype declaration
inserting video using HTML5, 140
web pages, 28

document.createElement() see
createElement method

�INDEX

286

document.getElementById() see
getElementById method

domready event, InfoWindow, 267
donuts, 18

creating, 170—172
dot notation, JavaScript, 36
double-clicking

disableDoubleClickZoom property, 58
downloading files, browser limits on, 111
drag/dragend events

Map object, 247
Marker class, 257

draggable property
MapOptions object, 58, 248
MarkerOptions object, 259

draggable_changed event, Marker, 257
draggableCursor property, MapOptions,

62—63, 248
dragging

getDraggable method, 256
setDraggable method, 256

draggingCursor property, MapOptions, 63,
248

dragstart event
Map object, 247
Marker class, 258

DROPDOWN_MENU constant
MapTypeControlStyle class, 48, 250

�E
effects

creating polygon with highlight effect,
173

Bermuda Triangle, 173—175
encapsulating code, 41—43
encoded polygons, 19
encoded polylines, 17
encoding, character, 28
EnhanceJS

testing browser capabilities, 11
equals method

LatLng class, 274
LatLngBounds class, 275
Point class, 276
Size class, 277

ERROR constant
GeocoderStatus class, 270

errors
UNKNOWN_ERROR constant, 270

escaping characters, JavaScript, 33
event handlers, 81

adding to marker to open InfoWindow,
151

building address lookup web page, 214—
215

calculating current map boundaries,
183

creating zoom-in link in InfoWindow,
151—153

event listeners, 81
adding click event to marker, 81—82
adding InfoWindow, 88

nesting event listener inside
function, 90—92

to multiple markers, 89
adding listener in Google Maps API, 81
adding markers to MarkerManager, 202
calculating current map boundaries,

183
event namespace, 272
making code run on Page Load, 40
MapsEventListener object, 272
v2/v3 compared, 20

event methods
v2/v3 compared, 19

event namespace, 272—273
methods, 272—273

event object, 19

�INDEX

287

addListener() see addListener method
addListenerOnce() see

addListenerOnce method
trigger() see trigger method

events, 80—81
active events, 80
click events, 80

adding to marker, 19, 81—82
attaching to buttons, 66

focus event, 80
InfoWindow class, 267
keydown/keypress/keyup events, 81
keypress events, 80
load event, window object, 80
Map object, 247
Maps object, 80
Marker class, 257
mouse events, 81

changing marker icon, 117—120
handling, 20

MouseEvent object, 273
opening InfoWindow automatically as

page loads, 137
passive events, 80
Polygon class, 264
Polyline class, 261
v2/v3 compared, 19—20

examples folder
MarkerClusterer library, 189

executing functions, JavaScript, 34
extend method, LatLngBounds, 275

�F
fillColor property, PolygonOptions, 168,

175, 265
fillOpacity property, PolygonOptions, 168,

265
filtering by type, markers, 180
findmebyip.com

checking browser support for HTML5
and CSS3, 139

Firebug debugging tool
JavaScript, 36

Firefox
Firebug debugging tool, 36
Html Validator tool, 27
improving geolocation accuracy, 235
inserting video using HTML5, 139
Page Validator tool, 27
supported video formats, 142
Web Developer Toolbar tool, 27

fitBounds method, Map object, 97, 245
flat property, MarkerOptions, 259
flat_changed event, Marker, 258
floatPane property, MapPanes, 254
floatShadow property, MapPanes, 254
focus event, 80
for loops, JavaScript, 85

creating array of markers, 191
extracting coordinates from array, 87
generating markers within current

viewport, 185
forEach method, MVCArray, 279
form element, HTML

building address lookup web page, 213
formatted_address string

results parameter, geocode method,
217

fromContainerPixelToLatLng method, 255
fromDivPixelToLatLng method, 255
fromEncoded method

encoded polygons, 19
encoded polylines, 17

fromLatLngToContainerPixel method, 255
fromLatLngToDivPixel method, 255
functions, JavaScript, 34—35

adding InfoWindow to multiple
markers, 90—92

�INDEX

288

alert function, 34
anonymous functions, 40
encapsulating code, 41—43
executing functions, 34
storing functions inside variables, 35
when functions are called methods, 36

�G
GBrowserIsCompatible method, 11
gears_init.js script

building more accurate map, 236
geocode method, Geocoder, 211, 215

callback function, 216
response to, 216—219

interpreting results, 217—219
status codes, 216

geo.js script
building more accurate map, 236—241
improving geolocation accuracy, 236

geo_position_js object
building more accurate map, 238

geocode method, Geocoder, 269
Geocoder object, 211, 268—269

building reverse geocoding map, 224
constructor, 268
geocode method, 211, 215, 269
looking up addresses, 215—216
methods, 268

GeocoderAddressComponent object, 270—
271

GeocoderGeometry object, 271
GeocoderLocationType class, 272
GeocoderRequest object, 215, 269

building reverse geocoding map, 224
properties, 269

GeocoderResult object, 270
GeocoderStatus class, 269—270

constants, 269—270
response to geocode method, 216

geocoding, 211—222
building address lookup web page, 212—

222
IP-based geocoding, 229—230
limits on geocode requests, 211
reverse geocoding, 223—227

Geocoding web service, 211
geodesic property

PolygonOptions object, 265
PolylineOptions object, 262

geolocation
building more accurate map, 236—241
determining if device has sensor, 30
improving accuracy, 235—241
privacy, 235

Geolocation API, 235
geometric shapes

polygons, 166—175
GEOMETRIC_CENTER constant

GeocoderLocationType class, 272
geometry field

results parameter, geocode method,
218

geometry property, GeocoderResult, 270
get method, MVCObject, 278
getAddress function

building reverse geocoding map, 223,
224—227

getAt method, MVCArray, 279
getBounds method, Map object, 245

asynchronous method calls, 9
calculating current map boundaries,

183—185
getCenter method

LatLngBounds class, 275
Map object, 64, 67, 245

getClickable method, Marker, 256
getContent method, InfoWindow, 266
getCoordinates function

�INDEX

289

building address lookup web page, 214,
215

getCurrentPosition method, 238
getCursor method, Marker, 256
getDiv method, Map, 245
getDraggable method, Marker, 256
getElementById method, 37

attaching click events to buttons, 66
making code run on Page Load, 40

getFlat method, Marker, 256
getIcon method, Marker, 256
getLength method, MVCArray, 279
getMap method

Marker class, 256
Polygon class, 264
Polyline class, 261

getMapTypeId method, Map, 65, 67, 147,
245

getNorthEast method, LatLngBounds, 275
calculating current map boundaries,

184
getPath method

Polygon class, 264
Polyline class, 164, 261

getPaths method, Polygon, 264
getPosition method

InfoWindow class, 266
Marker class, 147, 256

getProjection method, Map, 245
getShadow method, Marker, 256
getShape method, Marker, 256
getSouthWest method, LatLngBounds, 275

calculating current map boundaries,
184

getStreetView method, Map, 245
getTitle method, Marker, 256
getVisible method, Marker, 256
getWorldWidth method,

MapCanvasProjection, 255

getZIndex method
InfoWindow class, 266
Marker class, 256

getZoom method, Map object, 64, 66, 245
GEvent object, 19
GIcon object, 12, 13
GLatLng object, 11
global namespace

differences between versions 2 and 3, 7
encapsulating code, 41—43

Global Positioning System see GPS
global variables, 7

minimizing risk of name collisions, 41
restricting to single InfoWindow, 93

GMap2 object, 10
GMarker object, 12
Google

icons supplied by, 77
Google AJAX API

IP-based geocoding, 229
Google Chrome see Chrome
Google Gears

building more accurate map, geo.js, 236
improving geolocation accuracy, 235

Google Maps API
adding InfoWindow, 79—82
adding listener in, 81
adding tooltip to marker, 75
automatically adjusting viewport to fit

all markers, 95—98
background and history, 2
changing marker icons, 102—109
controlling map settings with methods,

63—72
converting from v2 to v3, 9—20

adding reference to API, 9—10
creating maps, 10—12
events, 19—20
InfoWindow objects, 14—16

�INDEX

290

markers, 12—14
polygons, 17—19
polylines, 16—17

creating custom marker icon, 128
creating Google Maps page, 23
creating maps for mobile devices, 43
defining coordinate center of map, 38
defining type of map, 38
defining zoom level of map, 38
description, 30
determining language to display user

interface, 31
determining version of API to load, 10
differences between v2 and v3, 7—9
encapsulating code, 41—43
geocoding, 211—222
global namespace, 7
harnessing power of Google Maps, 1
how it works, 3
icon shadowmaker, 128
initializing map, 31
inserting reference in HTML to, 30
making code run on Page Load, 40—41
markers, 73
multiple markers, 83—94
object literals, 8
performance focus, 3
pointing HTML file to API, 30
positioning elements over maps, 61
putting marker onto map, 74
restricting to single InfoWindow, 92—94
setting up Google Map, 37—39
slimmed-down feature set, 3
transferring from Version 2 to 3, 7
usage statistics, 1
using third-party JavaScript, 188

MarkerClusterer library, 188—194
MarkerManager library, 195—210

where to find icons, 116

Google Maps API reference, 243—279
how to read the reference, 243
web site for, 243

Google Maps Driving Directions service,
157

google.load method
IP-based geocoding, 229, 230

google.maps namespace, 37, 244
ControlPosition class, 49, 54, 252—253
differences between versions 2 and 3, 7
event object, 19

addListener() see addListener
method

addListenerOnce() see
addListenerOnce method

trigger() see trigger method
InfoWindow object see InfoWindow

object
LatLng object see LatLng object
LatLngBounds object see

LatLngBounds object
Map object see Map object
MapTypeControlOptions object see

MapTypeControlOptions object
MapTypeControlStyle object, 48, 250
Marker object see Marker object
NavigationControlOptions object, 54,

55, 250—251
NavigationControlStyle class, 55, 251

google-maps-icons, 115
GPolygon object, 17
GPS (Global Positioning System), 4

determining if device has sensor, 30
finding location of user, 229

grid-based clustering, markers, 181
gridSize property, MarkerClusterer, 194
GUnload method, 11

�H
H.264 codec, 142

�INDEX

291

handleError function
building more accurate map, 239

head section, HTML
link element, 30
meta element, 28
script element, 30, 31
title element, 28
web pages, 28

height attribute, div element
invisible map if set at 0, 30
targeting attributes with CSS selectors,

29
height property, Size class, 277
help cursor, 62
hexadecimal RGB values, 61
highlights

creating polygon with highlight effect,
173

Bermuda Triangle, 173—175
HORIZONTAL_BAR constant

MapTypeControlStyle class, 48, 250
hover events

changing marker icon according to
mouse events, 117, 118, 119

creating maps for mobile devices, 43
href attribute, link element, 30

creating zoom-in link in InfoWindow,
152

HTML
assigning values to HTML elements,

152
building address lookup web page, 213
building more accurate map, 236
compliant HTML templates, 29
controlling size of InfoWindow, 80
creating location-aware map, 230
getElementById method, 37
linking to CSS file, 30
selecting flavor of, 24

using third-party JavaScript, 188
HTML file

body element, 28
complete code for map settings

example, 71
completed index.html file, 31
div element, 28
doctype declaration, 28
head section, 28
inserting reference to Google Maps API,

30
link element, 30
outline index.html file, 27
script element, 30, 31
separating HTML and CSS, 29
setting size of map, 29
setting up web page, 23
targeting attributes with CSS selectors,

29
validating code, 24—27

Html Validator tool, 27
HTML validator, W3C, 24—26
HTML5, 24

checking browser support for, 139
doctype declaration, 28
inserting video in InfoWindow, 142—145
inserting video using, 139—142
video element, 140—141

HYBRID constant
MapTypeId class, 249

�I
icon property

GMarkerOptions object, 12
MarkerOptions object, 12, 76, 259

icon shadowmaker, Google Maps, 128
icon_changed event, Marker, 258
icons

adding custom icon to marker, 103—109

�INDEX

292

cluster icon, 202
getIcon method, Marker, 256
GIcon object, 12
Google Maps, 116
google-maps-icons, 115
icons supplied by Google, 77
limits on browsers downloading files,

111
Mapito map marker icons, 116
marker icons

creating custom, 128—129
dealing with multiple, 122—128
v2/v3 compared, 12—14

marker icons, changing, 76, 102—109
according to mouse events, 117—120

setIcon method, Marker, 257
sprites, 110—114
where to find icons, 115—116

id attribute, div element
body section, index.html file, 28
getElementById method, 38
initializing map, 37
targeting attributes with selectors, 28,

29
idle event, Map object, 247
imageMap property, GIcon, 13
images

adding rich content to InfoWindow,
136

overlayImage property, MapPanes, 254
images folder

MarkerClusterer library, 189
index.html file

body element, 28
complete code for map settings

example, 71
completed file, 31
creating good file structure, 31
div element, 28

doctype declaration, 28
head section, 28
inserting reference to Google Maps API,

30
link element, 30
outline structure of file, 27
script element, 30, 31
targeting attributes with CSS selectors,

29
InfoWindow object, 266—267

adding click event to marker, 81
adding event handler to marker to

open, 151
adding rich content to, 133—137

providing HTML as string, 134—137
adding to maps, 79—82
adding to multiple markers, 88—89

nesting event listener inside
function, 90—92

building address lookup web page, 219—
220

building more accurate map, 240
building reverse geocoding map, 223,

225, 226
checking for, 93
controlling size of, 80
creating detail map in, 146—149
creating, 80
creating location-aware map, 231
creating zoom-in link in, 150—155
declaring infowindow variable, 93
events, 267
inserting video in, 142—145
methods, 266—267
open method, 15, 81, 266
opening automatically as page loads,

137
opening, 82
restricting to single InfoWindow, 92—94
setContent method, 94, 135, 267

�INDEX

293

size of, 137
v2/v3 compared, 14—16

InfoWindowOptions object, 80, 267—268
content property, 80, 268
position property, 82, 268
properties, 267, 268

innerHTML attribute
creating zoom-in link in InfoWindow,

152
insertAt method, MVCArray, 279
intersects method, LatLngBounds, 275
INVALID_REQUEST constant

GeocoderStatus class, 217, 270
invisible map

setting height of map container, 30
IP-based geocoding

finding location of user, 229—230
iPhone

improving geolocation accuracy, 235
isEmpty method, LatLngBounds, 275

�J
JavaScript, 32—43

adding 100 markers at random
locations, 187

adding marker with click event to map,
133

adding markers to MarkerManager, 200
adding polyline to map, 162
adding rich content to InfoWindow,

137
arrays, 83—84
booleans, 33
building address lookup web page, 214,

221—222
building more accurate map, 237, 241
building reverse geocoding map, 227
clustering markers with

MarkerClusterer, 193

code with InfoWindow added to map,
82

code with marker and tooltip added to
map, 78

complete code for map settings
example, 72

creating array of markers, 190, 197
creating Bermuda Triangle polygon

with highlight effect, 175
creating detail map in InfoWindow, 149
creating donuts, 172
creating location-aware map, 231
creating polygon with highlight effect,

173
creating polygons, 169
creating polylines, 165
creating zoom-in link in InfoWindow,

154
data types, 33—34
dot notation, 36
encapsulating code, 41—43
escaping characters, 33
finding location of user, 234, 241
Firebug debugging tool, 36
functions, 34—35
including JavaScript file in web page, 31
initializing map, 31
inserting video in InfoWindow, 142, 145
loops, 85
making code run on Page Load, 40—41
map container, 37—38
map of United states, 183
MapOptions object, 38—39
Math object, 186
new keyword, 39
numbers, 33
object literals, 36
objects, 36
programming patterns, 42

�INDEX

294

semicolons ending lines of code, 34
setting up Google Map, 37—39
storing functions inside variables, 35
strings, 33
using third-party libraries, 188

MarkerClusterer library, 188—194
MarkerManager library, 195—210

var keyword, 32, 33
variables, 32—33
when functions are called methods, 36
when variables are called properties, 36

JavaScript library
testing browser capabilities, 11

JSON
dealing with multiple marker icons, 124
learning more about, 124
object literals and, 39
results parameter, geocode method,

217, 218

�K
keyboardShortcuts property, MapOptions,

58, 248
keypress events, 80

keydown/keypress/keyup, 81

�L
language attribute, script element, 31
language property, GeocoderRequest, 269
lat method, LatLng object, 274

calculating current map boundaries,
184

latency, sprites, 111
latitude, 4
latitude argument, LatLng object, 38

generating markers within current
viewport, 185

latitude property, ClientLocation, 230
LatLng object, 274

building reverse geocoding map, 224
constructor, 38, 274
coordinates, polylines, 159
creating array of coordinates, 86
creating location-aware map, 232
creating maps, 11
dynamically changing MapOptions

object, 68
generating markers within current

viewport, 185
methods, 274
plotting custom paths, 164

latLng property, MouseEvent, 20, 273
LatLngBounds object, 96, 275—276

automatically adjusting viewport to fit
all markers, 97—98

calculating current map boundaries,
183, 184

constructor, 275
creating, 97
extending, 97
methods, 275, 276
northeast argument, 96
southwest argument, 96

layers
overlayLayer property, MapPanes, 254

LEFT constant
ControlPosition class, 253

length property
arrays, JavaScript, 84

libraries
MarkerClusterer, 188—194
MarkerManager, 195—210
using third-party JavaScript, 188

lines
polygons, 166—175
polylines, 157—165

link element, HTML, 30
links

�INDEX

295

creating zoom-in link in InfoWindow,
150—155

listeners
adding in Google Maps API, 81
addListenerOnce method, 20
changing PolygonOptions property

values, 174
event listeners, 81
event namespace, 272

literals, object see object literals
lng method, LatLng object, 274

calculating current map boundaries,
184

load event, window object, 80, 137
making code run on Page Load, 40—41

load method, google
IP-based geocoding, 229, 230

localizing
determining language to display user

interface, 31
location

ClientLocation object, 230
creating location-aware map, 230—233
finding location of user, 229—241

IP-based geocoding, 229—230
GeocoderLocationType class, 272
geocoding, 211—222
reverse geocoding, 223—227

location property
GeocoderGeometry object, 271
GeocoderRequest object, 269

location_type property
GeocoderGeometry object, 271

long_name property
GeocoderAddressComponent object,

271
longitude, 4
longitude property

ClientLocation object, 230

LatLng object, 38, 185
loops, JavaScript, 85

creating array of markers, 190, 198
extracting coordinates from array, 87
for loops, 85
generating markers within current

viewport, 185—186
while loops, 85

loose typing
variables, JavaScript, 32

�M
map container, 37—38

MapOptions properties controlling, 61—
62

Map object, 244—247
constructor, 37, 244
controlling map settings with methods,

63—72
controls property, 246
creating maps, 10
events, 80, 247
fitBounds method, 97, 245
getBounds method, 9, 245
getCenter method, 64, 245
getDiv method, 245
getMapTypeId method, 65, 245
getProjection method, 245
getStreetView method, 245
getZoom method, 64, 245
initializing map, 37
mapTypes property, 246
markers, 12
methods, 245, 246
overlayMapTypes property, 246
pan methods, 245
properties, 246
setCenter method, 10, 64, 68, 246
setMapTypeId method, 65, 69, 246

�INDEX

296

setOptions method, 63—64, 70, 246
setStreetView method, 246
setUIToDefault method, 10
setZoom method, 64, 69, 246

map property
MarkerOptions object, 74, 259
Polygon object, 167
PolygonOptions object, 265
PolylineOptions object, 161, 262

map type
displaying current mapType, 67
getMapTypeId method, 65, 245
MapTypeId class, 249
overlayMapTypes property, 246
setMapTypeId method, 65, 69, 246

map type chooser
disabling default user interface, 46

map.js script
creating good file structure, 31
setting up Google Map, 37—39

MapCanvasProjection object, 254—255
mapDiv variable

getElementById method, 38
Map constructor, 37

mapicon factory, 129
Mapito map marker icons, 116
MapOptions object, 38—39, 248—249

backgroundColor property, 61, 64, 248
center property, 38, 248
changing center of map, 64, 68
controlling map settings with methods,

63—72
creating maps, 10
disableDefaultUI property, 10, 46—47,

64, 248
disableDoubleClickZoom property, 58,

248
draggable property, 58, 248
draggableCursor property, 62—63, 248

draggingCursor property, 63, 248
dynamically changing, 68—70
getting/setting mapType, 65, 69
getting/setting zoom level, 64, 69
initializing map, 37
keyboardShortcuts property, 58, 248
mapTypeControl property, 47, 248
mapTypeControlOptions property, 48—

53, 249
mapTypeId property, 38, 248
markers, 12
navigationControl property, 53—54, 249
navigationControlOptions property,

54—57, 249
noClear property, 61, 64, 249
options variable, 38, 39
properties, 248

controlling cursor, 62—63
controlling map container, 61—62
controlling user interface, 46—61
that can’t be changed, 64

scaleControl property, 57, 249
scaleControlOptions property, 58, 249
scrollwheel property, 59, 249
setOptions() controlling map settings,

63—64, 70
streetView property, 61, 249
streetViewControl property, 59—61, 249
zoom property, 38, 248

mapPane property, MapPanes, 254
MapPanes object, 254
mapping fundamentals

coordinates, 4—6
mapping solutions

Google Maps, 2
mashups, 1
usage statistics, 1

maps
adding InfoWindow, 79—82

�INDEX

297

adding rich content to InfoWindow,
133—137

automatically adjusting viewport to fit
all markers, 95—98

building more accurate map, 236—241
building reverse geocoding map, 223—

227
calculating current boundaries, 183—

185
change zoom level of, 63
changing center of, 64, 68
changing marker icons, 102—109
controlling settings with methods, 63—

72
creating maps

detail map in InfoWindow, 146—149
for mobile devices, 43
Google Maps page, 23
location-aware map, 230—233
v2/v3 compared, 10—12

defining coordinate center of, 38
defining type of, 38
defining zoom level of, 38
dynamically changing MapOptions

object, 68—70
generating markers within current

viewport, 183, 185—186
getMap method

Marker class, 256
Polygon class, 264
Polyline class, 261

getting/setting mapType, 65, 69
getting/setting zoom level, 64, 69
how many markers is too many, 177—

178
initializing map, 31
invisible map, 30
Mapito map marker icons, 116
markers, 73
multiple markers, 83—94

positioning elements over, 61
putting marker onto, 74
reducing number of markers being

displayed, 179—182
restricting to single InfoWindow, 92—94
setMap method

Marker class, 257
Polygon class, 264
Polyline class, 261

setting height of map container, 30
setting size of map, 29
setting up Google Map, 37—39

maps namespace see
google.maps.namespace

maps.google.com
search function, 179

MapsEventListener object, 272
mapTypeControl property, 47, 48, 248
MapTypeControlOptions object, 48, 250

mapTypeIds property, 51—52, 250
position property, 49, 50, 250
properties, 250
style property, 48, 250
using all properties of, 52
value as object literal, 48

mapTypeControlOptions property, 48—53,
249

MapTypeControlStyle object, 48, 250
MapTypeId class, 249—250
mapTypeId property, MapOptions, 38, 248

creating detail map in InfoWindow, 147
creating maps, 10
getting/setting mapType, 65, 69

maptypeid_changed event, 247
mapTypeIds property,

MapTypeControlOptions, 51—52,
250

mapTypes property, Map object, 246
marker icons

�INDEX

298

adding custom icon to marker, 103—109
adding shadow to marker, 103—106
anchor point, 104

setting anchor point, 106
changing, 102—109

according to mouse events, 117—120
creating custom marker icon, 128—129
dealing with multiple marker icons,

122—128
defining clickable area, 107—108
enabling/disabling shadows, 106
MarkerImage object, 102—109
sprite used as, 113
sprites, 14
v2/v3 compared, 12—14

Marker object, 255—258
constructor, 255
creating markers, 74
differences between versions 2 and 3, 7
events, 257—258
methods, 255—257
openInfoWindowHtml method, 15
returning MouseEvent object, 20
setIcon method, 119
v2/v3 compared, 12

marker state
changing marker icon according to

mouse events, 117—118
MarkerClusterer library, 188—194

adding reference in HTML file, 190
clustering markers, 190—193
docs folder, 189
examples folder, 189
file repository, 189
further information, 194
images folder, 189
src folder, 189

MarkerClusterer object
cluster sizes, 192

constructor, 191
creating, 191—192
creating array of markers, 190—191
gridSize property, 194
maxZoom property, 194
options argument, 194
styles property, 194
zoomOnClick property, 194

markerclusterer.js script, 189
markerclusterer_compiled.js script, 189
markerclusterer_packed.js script, 189
MarkerImage object, 102—109, 259—260

adding custom icon to marker, 103—109
adding shadow to marker, 103—106
anchor property, 102, 106, 123
changing marker icon according to

mouse events, 117
constructor, 102, 259
dealing with multiple marker icons,

122—128
origin property, 102, 112, 113, 123
properties, 102
reason for using, 102
scaledSize property, 102
shadow property, 103
size property, 102, 111, 123
sprites, 111, 112, 113
url property, 102

MarkerManager library, 195—210
MarkerManager object

adding clickable clusters, 206—207
adding markers to, 198—199, 202—204
addMarker method, 199
addMarkers method, 198, 203
borderPadding property, 209
constructor, 196
creating, 196
creating array of markers, 197—198
creating clusters, 201, 202

�INDEX

299

maxZoom property, 209
minimum zoom level, 198
options object, 209
refresh method, 198
regional clustering, 201
trackMarkers property, 209
zoom levels, 201

markermanager.js script, 195
markermanager_packed.js script, 195
MarkerOptions object, 258—259

adding marker to map, 12
adding tooltip to marker, 75
changing marker icon, 76
clickable property, 259
creating markers, 74
cursor property, 259
defining clickable area, 107—108
draggable property, 259
flat property, 259
icon property, 76, 259
map property, 74, 259
position property, 74, 259
properties, 258
shadow property, 259
shape property, 107—108, 259
title property, 75, 259
visible property, 259
zIndex property, 259

markers
adding 100 markers at random

locations, 187
adding click event to, 19, 81—82, 88
adding custom icon to, 103—109
adding event handler to open

InfoWindow, 151
adding InfoWindow to maps, 79—82
adding rich content to InfoWindow,

133—137
adding shadow to, 103—106

adding to MarkerManager, 198—199,
202—204

adding tooltip to, 75
adjusting shadow for, 104—105
automatically adjusting viewport to fit

all, 95—98
calculating current map boundaries,

183—185
changing marker icon, 76
clustering, 181—182

MarkerClusterer library, 190—193
colored markers, 116
creating detail map in InfoWindow,

146—149
creating, 74
creating zoom-in link in InfoWindow,

150—155
default map marker, 73
defining clickable area, 107—108
description, 73
distance-based clustering, 182
generating within current viewport,

183, 185—186
grid-based clustering, 181
how many is too many, 177—178
icons supplied by Google, 77
Mapito map marker icons, 116
multiple markers, 83—94

adding InfoWindow, 88—89
creating array of coordinates, 86
extracting coordinates from array,

87
nesting event listener inside

function, 90—92
restricting to single InfoWindow,

92—94
performance if too many, 177
putting marker onto map, 74
reducing number being displayed, 179—

182

�INDEX

300

clustering markers, 181—182
filtering by type, 180
search function, 179—180

regional clustering, 182
rendering only markers within current

viewport, 195
sprite used as marker icon, 113
usability if too many, 177
v2/v3 compared, 12—14

MarkerShape object, 13, 260
mashups

Mapping solutions, 1
Math object

complete reference for, 186
max method, 186
random method, 185, 186
round method, 186

max method, Math object, 186
maxWidth property, InfoWindowOptions,

268
maxZoom property

MarkerClusterer, 194
MarkerManager, 209

media attribute, link element, 30
meta element, 28

creating maps for mobile devices, 43
methods

controlling map settings with, 63—72
creating objects, 36
event namespace, 272
Geocoder class, 268
InfoWindow class, 266
LatLng class, 274
LatLngBounds class, 275
Map object, 245
MapCanvasProjection object, 254
Marker class, 255
MVCArray class, 279
MVCObject class, 278

Point class, 276
Polyline class, 261
Size class, 277
syntax described, 243
when functions are called methods, 36

mobile devices
creating maps for, 43
developing web pages for, 43
finding location of user, 229—241

Module pattern, 90
mouse events, 81

changing marker icon according to,
117—120

changing PolygonOptions property
values, 174

overlayMouseTarget property, 254
mousedown event

changing marker icon, 117, 119
Marker class, 258
Polygon class, 264
Polyline class, 262

MouseEvent object, 20, 273
mousemove event

Map object, 247
Polygon class, 264
Polyline class, 262

mouseout event
changing marker icon, 117, 119
changing PolygonOptions property

values, 175
Map object, 247
Marker class, 258
Polygon class, 264
Polyline class, 262

mouseover event
changing marker icon, 117, 119
changing PolygonOptions property

values, 175
creating maps for mobile devices, 43

�INDEX

301

Map object, 247
Marker class, 258
Polygon class, 264
Polyline class, 262

mouseup event
changing marker icon, 117, 119
Marker class, 258
Polygon class, 264
Polyline class, 262

move cursor, 62
MVCArray class, 163, 279

constructor, 279
Google Maps API reference, 243
methods, 279

MVCObject class, 278

�N
namespaces

differences between versions 2 and 3, 7
event namespace, 272—273
google.maps, 37, 244
minimizing risk of name collisions, 37,

41
navigationControl property, MapOptions,

53—54, 57, 249
NavigationControlOptions object, 250, 251

position property, 54, 251
style property, 55, 251

navigationControlOptions property, 54—
57, 249

NavigationControlStyle class, 55, 251
new keyword, JavaScript, 39
noClear property, MapOptions, 61, 64, 249
northeast argument

getNorthEast method, 275
LatLngBounds object, 96

notify method, MVCObject, 278
noWrap argument, LatLng, 38
numbers, JavaScript, 33

�O
object literals

differences between versions 2 and 3, 8
JavaScript, 36
MapOptions object, 38
object literals and JSON, 39

objects
Google Maps API reference, 244—279
JavaScript, 36
MapOptions object, 38—39
minimizing risk of name collisions, 37,

41
MVCObject class, 278

offset
pixelOffset property, 268

Ogg Theora video codec, 141
OK constant

GeocoderStatus class, 216, 270
onclick event listener, 66
onclick property, 152
onload event listener, window object

making code run on Page Load, 40
onload event, window object

creating location-aware map, 231
opacity

fillOpacity property, 168, 265
strokeOpacity property, 161, 263, 265

open method, InfoWindow, 15, 266
adding click event to marker, 81
adding rich content to InfoWindow,

135
creating detail map in InfoWindow, 148
inserting video in InfoWindow, 143

openInfoWindowHtml method, Marker
object, 15

Opera
inserting video using HTML5, 139
supported video formats, 142

options argument, MarkerClusterer, 194

�INDEX

302

options object, MarkerManager, 209
options variable, MapOptions, 38, 39
origin property, MarkerImage, 102

changing marker icon according to
mouse events, 118

dealing with multiple marker icons, 123
sprites, 112, 113

OVER_QUERY_LIMIT constant
GeocoderStatus class, 216, 270

overlayImage property, MapPanes, 254
overlayLayer property, MapPanes, 254
overlayMapTypes property, Map, 246
overlayMouseTarget property, MapPanes,

254
overlays

InfoWindow objects, 14
overlayShadow property, MapPanes, 254

�P
Page Load

making code run on Page Load, 40—41
opening InfoWindow automatically,

137
Page Validator tool, 27
pages see web pages
panBy method, Map object, 245
panes

floatPane property, 254
mapPane property, 254
MapPanes object, 254

panning
disableAutoPan property, 268
keyboardShortcuts property, 58

panTo method, Map object, 245
panToBounds method, Map, 245
path property, PolylineOptions, 159, 262
paths

getPath method
Polygon class, 264

Polyline class, 261
getPaths method, 264
plotting custom paths, 163—165
polylines, 157—165
setPath method

Polygon class, 264
Polyline class, 261

setPaths method, 264
paths property

Polygon object, 167
PolygonOptions object, 265

pegman, 59
performance

asynchronous method calls, 8
HTML file, web page, 23
too many markers, 177

performance focus
Google Maps API, 3

pixelOffset property, InfoWindowOptions,
268

Point object, 106, 276—277
constructor, 106, 276
methods, 276
x property, 277
y property, 277

pointer cursor, 62
points

polygons, 166
polylines, 157—165
setting anchor point, 106

Polygon object, 263—265
constructor, 166, 263
events, 264, 265
map property, 167
methods, 264
paths property, 167

PolygonOptions object, 17, 166, 265—266
changing properties of, 175
clickable property, 265

�INDEX

303

creating donuts, 170
fillColor property, 168, 265
fillOpacity property, 168, 265
geodesic property, 265
map property, 265
paths property, 265
properties, 168, 265
strokeColor property, 265
strokeOpacity property, 265
strokeWeight property, 266
zIndex property, 169, 266

polygons, 166—175
controlling rendering order, 169
creating, 166—169

with highlight effect, 173
Bermuda Triangle, 173—175

creating donuts, 170—172
creating triangles, 167—169
encoded polygons, 19
points, 166
shape property, MarkerOptions, 107
v2/v3 compared, 17—19

polyline arrays, 163
Polyline object, 159, 261—262

constructor, 159, 261
events, 261, 262
getPath method, 261

plotting custom paths, 164
methods, 261
setMap method, 261

adding polyline to map, 160
plotting custom paths, 163
removing polyline from map, 161

PolylineOptions object, 16, 159, 262—263
clickable property, 262
geodesic property, 262
map property, 262

adding polyline to map, 161
path property, 159, 262

properties, 262
strokeColor property, 161, 262
strokeOpacity property, 161, 263
strokeWeight property, 161, 263
zIndex property, 263

polylines, 157—165
adding to map, 159—161
coordinates, 159—160
creating, 158—163
encoded polylines, 17
plotting custom paths, 163—165
v2/v3 compared, 16—17

pop method, MVCArray, 279
position

getPosition method, 266
setPosition method, 267

position property
InfoWindowOptions, 82, 268
MapTypeControlOptions, 49, 50, 250
MarkerOptions, 74, 259
NavigationControlOptions, 54, 251
ScaleControlOptions, 58, 252

position_changed event
InfoWindow class, 267
Marker class, 258

positions
getPosition method

Marker class, 256
setPosition method

Marker class, 257
prime meridian, 4
primitive data types, 243
privacy

improving geolocation accuracy, 235
private members

adding InfoWindow to multiple
markers, 89

programming patterns, JavaScript, 42
projection

�INDEX

304

getProjection method, 245
projection_changed event, Map, 247
properties

GeocoderAddressComponent object,
271

GeocoderGeometry object, 271
GeocoderRequest object, 269
GeocoderResult object, 270
InfoWindowOptions object, 267
JavaScript, 36
Map object, 246
MapOptions object, 248

controlling cursor, 62—63
controlling map container, 61—62
controlling user interface, 46—61

MapPanes object, 254
MapTypeControlOptions object, 250
MarkerOptions object, 258
MarkerShape object, 260
MouseEvent object, 273
NavigationControlOptions object, 251
Point class, 276
PolygonOptions object, 265
PolylineOptions object, 262
ScaleControlOptions object, 252
Size class, 277
when variables are called properties, 36

push method
arrays, JavaScript, 84

plotting custom paths, 164
MVCArray class, 279

�Q
question mark

method syntax, 243
quirks mode

doctype declaration, 28
setting up web page, 23

�R
random method, Math object, 186

generating markers within current
viewport, 185

RANGE_INTERPOLATED constant
GeocoderLocationType class, 272

Rasmussen, Lars and Jens, 2
rectangles

shape property, MarkerOptions, 107
reference

Google Maps API, 243—279
refresh method, MarkerManager, 198
region property, GeocoderRequest, 269
regional clustering

MarkerManager object, 201
markers, 182

rel attribute, link element, 30
removeAt method, MVCArray, 279
removeListener method, 273
REQUEST_DENIED constant

GeocoderStatus class, 217, 270
resize event, Map object, 247
results

GeocoderResult object, 270
ZERO_RESULTS constant, 270

results parameter
response to geocode method, 217—219

reverse geocoding, 223—227
building map, 223—227
getAddress function, 224—227

RGB values, hexadecimal, 61
RIGHT constant

ControlPosition class, 253
rightclick event

Map object, 247
Marker class, 258
Polygon class, 265
Polyline class, 262

ROADMAP constant

�INDEX

305

MapTypeId class, 51, 52, 249
ROOFTOP constant

GeocoderLocationType class, 272
round method, Math object, 186
routes, polylines, 157

�S
Safari

inserting video using HTML5, 139
supported video formats, 142

SATELLITE constant
MapTypeId class, 51, 52, 249

scaleControl property, MapOptions, 57,
249

using scaleControlOptions, 58
ScaleControlOptions object, 252

position property, 58, 252
style property, 58, 252

scaleControlOptions property,
MapOptions, 58, 249

ScaleControlStyle class, 252
scaledSize property, MarkerImage, 102
script element, HTML, 30

including JavaScript file in web page, 31
inserting reference to Google Maps API,

30
scrollwheel property, MapOptions, 59, 249
search function

maps.google.com, 179
reducing number of markers being

displayed, 179—180
selectors

targeting attributes with, 29
sensor parameter

determining if device has sensor, 9, 30
set method, MVCObject, 278
setAt method, MVCArray, 279
setAttribute method

assigning values to HTML elements,
152

inserting video in InfoWindow, 143
setCenter method, Map object, 64, 68, 246

building address lookup web page, 218
creating maps, 10
creating zoom-in link in InfoWindow,

153
setClickable method, Marker, 256
setContent method, InfoWindow, 94, 267

adding rich content to InfoWindow,
135

building address lookup web page, 219
building reverse geocoding map, 226
creating detail map in InfoWindow, 148
inserting video in InfoWindow, 143

setCursor method, Marker, 256
setDraggable method, Marker, 256
setFlat method, Marker, 256
setIcon method, Marker, 12, 119, 257
setImage method, Marker, 12
setMap method

adding marker to map, 12
Marker class, 257
Polygon class, 264
Polyline class, 261

adding polyline to map, 160
plotting custom paths, 163
removing polyline from map, 161

setMapTypeId method, Map object, 65, 69,
246

setOptions method
InfoWindow class, 267
Map object, 246

changing MapOptions object, 63—64,
70

Marker class, 257
Polygon class, 264

�INDEX

306

changing PolygonOptions object,
175

Polyline class, 261
setPath method

Polygon class, 264
Polyline class, 261

setPaths method, Polygon, 264
setPosition function

building more accurate map, 239
setPosition method

InfoWindow class, 267
Marker class, 257

setShadow method, Marker, 257
setShape method, Marker, 257
setStreetView method, Map, 246
setTitle method, Marker, 257
setUIToDefault method, 10
setValues method, MVCObject, 278
setVisible method, Marker, 257
setZIndex method

InfoWindow class, 267
Marker class, 257

setZoom method, Map, 64, 69, 246
creating zoom-in link in InfoWindow,

153
shadow property

Marker object, 13
MarkerImage object, 103
MarkerOptions object, 259

shadow_changed event, Marker, 258
shadowmaker, Google Maps, 128
shadows

adding shadow to marker, 103—106
adjusting shadow for marker, 104—105
creating custom marker icon, 128
enabling/disabling shadows, 106
flat property, MarkerOptions, 259
floatShadow property, 254
getFlat method, Marker, 256

getShadow method, 256
overlayShadow property, 254
setFlat method, Marker, 256
setShadow method, 257

Shape objects
using with sprites, 114

shape property, MarkerOptions, 13, 107—
108, 259

shape_changed event, Marker, 258
shapes

getShape method, 256
polygons, 166—175
setShape method, 257

short_name property,
GeocoderAddressComponent, 271

shortcuts
keyboardShortcuts property, 248

Size object, 111, 277
constructor, 111, 277
methods, 277
properties, 277

size property, MarkerImage, 102
dealing with multiple marker icons, 123
sprites, 111

SMALL constant
NavigationControlStyle class, 55, 251

southwest argument
getSouthWest method, 275
LatLngBounds object, 96

span
toSpan method, 275

sprites, 110—114
latency, 111
limits on browsers downloading files,

111
marker icons, 14
MarkerImage object, 111
used as marker icon, 113

src attribute, script element, 30, 31

�INDEX

307

src attribute, video element
inserting video in InfoWindow, 143
inserting video using HTML5, 140

src folder
MarkerClusterer library, 189

state, marker
changing marker icon according to

mouse events, 117—118
static methods, event namespace, 272
status codes

response to geocode method, 216
statuses

GeocoderStatus class, 269—270
street view

getStreetView method, 245
setStreetView method, 246

Street View mode, 60
streetView property, MapOptions, 61, 249
streetViewControl property, MapOptions,

59—61, 249
StreetViewPanorama, 61
strict mode

doctype declaration, 28
selecting flavor of HTML, 24
setting up web page, 23

strings
concatenation, 135
escaping characters, 33
JavaScript, 33
toString method

LatLng class, 274
LatLngBounds class, 275
Point class, 276
Size class, 277

strokeColor property
PolygonOptions, 175, 265
PolylineOptions, 161, 262

strokeOpacity property
PolygonOptions, 265

PolylineOptions, 161, 263
strokeWeight property

PolygonOptions, 266
PolylineOptions, 161, 263

style property
MapTypeControlOptions, 48, 250
NavigationControlOptions, 55, 251
ScaleControlOptions, 58, 252

style sheets, 29
see also CSS
map spanning whole page, 132
targeting attributes with selectors, 28,

29
style.css file, 29

adding rich content to InfoWindow,
136—137

creating good file structure, 31
linking HTML file to CSS, 30
setting height of map container, 30

styles property, MarkerClusterer, 194
synchronous method calls

asynchronous calls compared, 8—9
differences between versions 2 and 3,

8—9

�T
tabbed windows

v2/v3 compared, 14
TERRAIN constant

MapTypeId class, 250
text

strings, JavaScript, 33
text cursor, 62
Theora, 141
third-party libraries

MarkerClusterer, 188—194
linking to, 190

MarkerManager, 195—210
linking to, 195

�INDEX

308

using, 188
tilesloaded event, Map, 247
title element, web page, 28
title property, MarkerOptions, 259

adding tooltip to marker, 75
title_changed event, Marker, 258
titles

getTitle method, 256
setTitle method, 257

tooltips
adding to marker, 75
multiple markers on map, 87

TOP constant
ControlPosition class, 253

TOP_LEFT constant, 253
TOP_RIGHT constant, 253
toSpan method, LatLngBounds, 275
toString method

LatLng class, 274
LatLngBounds class, 275
Point class, 276
Size class, 277

toUrlValue method
LatLng class, 274
LatLngBounds class, 276

trackMarkers property, MarkerManager,
209

transparency see opacity
triangles, creating, 167—169
trigger method

event namespace, 273
opening InfoWindow automatically as

page loads, 137
triggers see event listeners
type attribute, link element, 30
type attribute, script element, 30, 31
type property, MarkerShape, 13, 260
types

MapTypeControlOptions object, 250

MapTypeControlStyle class, 250
MapTypeId class, 249—250

types array
results parameter, geocode method,

217
types property

GeocoderAddressComponent, 271
GeocoderResult, 270

�U
unbind method, MVCObject, 278
unbindAll method, MVCObject, 278
union method, LatLngBounds, 276
UNKNOWN_ERROR constant

GeocoderStatus class, 270
url property, MarkerImage, 102

adding shadow to marker, 103
URLs

toUrlValue method
LatLng class, 274
LatLngBounds class, 276

usability
too many markers, 177

user interface
disabling default user interface, 46
MapOptions properties controlling, 46—

61
disableDefaultUI, 46—47, 248
disableDoubleClickZoom, 58
draggable, 58
keyboardShortcuts, 58
mapTypeControl, 47
mapTypeControlOption, 48—53
navigationControl, 53—54
navigationControlOptions, 54—57
scaleControl, 57
scaleControlOptions, 58
scrollwheel, 59
streetView, 61

�INDEX

309

streetViewControl, 59—61
UTF-8 charset, 28

�V
v parameter, query string

determining version of API to load, 10
validation

Html Validator tool, 27
HTML validator, W3C, 24—26
Page Validator tool, 27
Web Developer Toolbar tool, 27

var keyword, JavaScript, 32, 33
variables, global, 7
variables, JavaScript, 32—33

booleans, 33
loose typing, 32
numbers, 33
storing functions inside variables, 35
strings, 33
when variables are called properties, 36

versions
converting from v2 to v3, 9—20

adding reference to API, 9—10
creating maps, 10—12
events, 19—20
InfoWindow objects, 14—16
markers, 12—14
polygons, 17—19
polylines, 16—17

determining version of API to load, 10
differences between v2 and v3, 7—9
transferring from v2 to v3, 7

video
inserting in InfoWindow, 142—145
inserting using HTML5, 139—142
supported formats, 141

video element, HTML5, 140—141
video formats, 141

viewport property, GeocoderGeometry,
271

viewports
automatically adjusting to fit all

markers, 95—98
generating markers within current

viewport, 183, 185—186
LatLngBounds object, 96
rendering only markers within current

viewport, 195
visibility

getVisible method, 256
setVisible method, 257

visible property, MarkerOptions, 259
visible_changed event, Marker, 258

�W
W3C HTML validator, 24—26
wait cursor, 62
web address for Google Maps API

reference, 243
web browsers

setting up web page, 23
Web Developer Toolbar tool, 27
web pages

body element, HTML, 28
building address lookup web page, 212—

222
compliant HTML templates, 29
creating Google Maps page, 23
div element, HTML, 28
doctype declaration, 28
head section, HTML, 28
including JavaScript file in, 31
index.html file, 27
inserting reference to Google Maps API,

30
making code run on Page Load, 40—41
setting up, 23

HTML file, 23

�INDEX

310

Html Validator tool, 27
Page Validator tool, 27
selecting flavor of HTML, 24
validating code, 24—27
Web Developer Toolbar tool, 27

web services
Geocoding web service, 211

while loops, JavaScript, 85
width attribute, div element

creating maps for mobile devices, 43
targeting attributes with CSS selectors,

29
width property, Size class, 277
window.onload event

creating location-aware map, 231
window.onload event listener

making code run on Page Load, 40
windows see viewports
Word Geodetic System 84 (WGS 84), 4

�X
x property, Point class, 277
XHTML

completed index.html file, 31
outline structure of index.html file, 27
selecting flavor of HTML, 24

�Y
y property, Point class, 277

�Z
ZERO_RESULTS constant

GeocoderStatus class, 216, 270
zIndex

getZIndex method
InfoWindow class, 266
Marker class, 256

setZIndex method
InfoWindow class, 267

Marker class, 257
zIndex property

InfoWindowOptions, 268
MarkerOptions, 259
PolygonOptions, 169, 266
PolylineOptions, 263

zindex_changed event
InfoWindow class, 267
Marker class, 258

zoom control
ANDROID constant, 251
disabling default user interface, 46
SMALL constant, 251

zoom levels
adding markers to MarkerManager, 203
getZoom method, 245
MarkerManager object, 201
setZoom method, 246

zoom property, MapOptions, 38, 248
creating detail map in InfoWindow, 147
creating maps, 10
getting/setting zoom level, 64, 69

zoom_changed event, Map, 247
ZOOM_PAN constant

NavigationControlStyle class, 56, 251
zooming

change zoom level of maps, 63
creating zoom-in link in InfoWindow,

150—155
disableDoubleClickZoom property, 58,

248
getZoom method, 64
keyboardShortcuts property, 58
setZoom method, 64, 69

zoomOnClick property, MarkerClusterer,
194

	Prelim
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Introducing the Google Maps API
	A Brief History
	How It Works
	A New API
	Slimmed-Down Feature Set
	Focus on Performance

	Mapping Fundamentals
	Coordinates

	Summary

	Transferring from Version 2 to 3
	What’s Different?
	A New Namespace
	Extensive Use of Object Literals
	Asynchronous by Nature
	Synchronous vs. Asynchronous

	Converting from Version 2 to 3
	Adding a Reference to the API
	Creating a Map
	Further Reading
	Markers
	Marker Icons
	Further Reading
	InfoWindows
	Further Reading
	Polylines
	Encoded Polylines
	Further Reading
	Polygons
	Further Reading
	Events
	A New Method
	Further Reading

	Summary

	Creating Your First Map
	Setting the Scene
	The HTML Page
	What Flavor of HTML to Use
	Validate Your Code
	Other Tools
	Page Validator
	Html Validator
	Web Developer Toolbar
	Laying the Foundation
	The Doctype
	The <head>
	The <body>
	The Style Sheet
	Inserting a Reference to the Google Maps API
	Initializing the Map

	Time to Start Coding
	Variables in JavaScript
	Common Data Types
	Functions
	Objects
	Debugging Tool: Firebug
	Setting Up the Map
	The Map Container
	MapOptions
	Making the Code Run on Page Load
	Encapsulating the Code

	Creating Maps for Mobile Devices
	Summary

	Taking the Map Further with MapOptions
	A Fresh Start
	Controlling the User Interface
	disableDefaultUI
	mapTypeControl
	mapTypeControlOption
	style
	position
	mapTypeIds
	navigationControl
	navigationControlOptions
	position
	style
	scaleControl
	scaleControlOptions
	keyboardShortcuts
	disableDoubleClickZoom
	draggable
	scrollwheel
	streetViewControl
	streetView

	Controlling the Map Container
	noClear
	backgroundColor

	Controlling the Cursor
	draggableCursor
	draggingCursor

	Controlling the Map Settings with Methods
	setOptions
	The Specific Methods
	Getting and Setting the Zoom Level
	Changing the Center of the Map
	Getting and Setting the mapType
	Putting the Methods to Use
	Dynamically Changing the MapOptions Object
	Changing the Center
	Zooming in
	The Complete Code
	HTML
	CSS
	JavaScript

	Summary

	X Marks the Spot
	Setting a Starting Point
	A Simple Marker
	Adding a Tooltip
	Changing the Icon
	Icons Supplied by Google
	The Complete Code So Far
	Adding an InfoWindow
	A Simple InfoWindow
	A Word or Two About Events
	Adding a Click Event to the Marker
	The Complete Code
	More Markers
	JavaScript Arrays
	Introducing Loops
	Adding U.S. Cities to the Map
	Adding InfoWindows
	Nesting the Event Listener Inside a Function
	Dealing with Several Windows

	Automatically Adjusting the Viewport to Fit All Markers
	Introducing the LatLngBounds Object
	Let the API Do the Heavy Lifting

	The Complete Code
	Summary

	Marker Icons
	Setting a Starting Point
	Changing the Marker Icon
	Introducing the MarkerImage Object
	MarkerImage’s Five Properties
	Adding a Custom Icon to a Marker
	Adding a Shadow
	Putting It Together
	Adjusting the Shadow
	Setting the Anchor Point
	Enabling and Disabling the Shadow
	Defining a Clickable Area
	The Complete Code

	Using Sprites
	Latency
	Sprite Support
	The Complete Code

	Where to Find Icons
	google-maps-icons
	Google Maps: Colored Markers
	Mapito Map Marker Icons

	Changing the Marker Icon According to Mouse Events
	Defining the MarkerImages
	Normal state
	Hover State
	Click State
	Adding the Events
	Hover
	Click
	The Complete Code

	A Clever Way of Dealing with Lots of Different Marker Icons
	Adding Dynamic Data
	Faking an Ajax Call
	The Complete Code
	Benefits

	Creating a Custom Marker Icon
	Online Tools
	Google Map Custom Marker Maker
	Google Maps Icon Shadowmaker
	mapicon Factory

	Summary

	InfoWindow Tips and Tricks
	Setting a Starting Point
	Style Sheet
	JavaScript

	Adding Rich Content to the InfoWindow
	Providing the HTML As a String
	Styling the Content
	Triggering Events
	The Complete Code
	The JavaScript Code
	The Complete CSS for the InfoWindow

	Inserting a Video Using HTML5
	Browser Support
	Altering the HTML
	Examining the <video> Element
	Supported Video Formats
	The Example
	The Complete Code for Adding a Video to an InfoWindow

	Creating a Detail Map
	Creating the InfoWindow
	The Complete Code

	Creating a Zoom-In Link
	Adding the Event Handler
	Opening the InfoWindow
	The Complete Code
	Further Refinements

	Summary

	Creating Polylines and Polygons
	Creating Polylines
	Creating a Simple Polyline
	Preparing the Coordinates
	Another Way of Adding the Polyline
	Adding a Bit More Flare to the Line
	The Complete Code
	Polyline Arrays
	Plotting Your Own Path
	The Complete Code

	Creating Polygons
	Creating a Simple Polygon
	Creating a Triangle
	Controlling the Stack Order
	The Complete Code
	Creating Donuts
	The Complete Code
	Creating a Polygon with a Highlight Effect
	A Starting Point
	The Bermuda Triangle
	Adding a Highlight Effect
	The Complete Code

	Summary

	Dealing with Massive Numbers of Markers
	Too Many Markers?
	Reducing the Number of Markers Being Displayed
	Searching
	Filtering
	Don’t Always Use Markers
	Clustering
	Grid-Based Clustering
	Distance-Based Clustering
	Regional Clustering

	Some Practical Examples
	The Starting Point
	Calculating the Current Map Boundaries
	Adding the Markers
	The Final Code

	Third-Party Libraries
	MarkerClusterer
	Applying MarkerClusterer to the Example
	Reconstructing the Loop
	Creating a MarkerClusterer Object
	The Complete Code for This Example
	Tweaking the Clustering with Options
	Further Resources
	MarkerManager
	Adding a Reference to the Library
	The JavaScript
	Creating a MarkerManager Object
	Creating the Markers
	Adding the Markers to the MarkerManager
	The Final Code for This Example
	Getting in Charge of the Zoom Levels
	Regional Clustering with MarkerManager
	The Starting Code
	Creating the Clusters
	Adding the Markers to the MarkerManager
	The Complete Code So Far
	Adding Clickable Clusters
	The Final Code
	Tweaking the MarkerManager with Options
	Further Resources

	Summary

	Location, Location, Location
	Geocoding
	Restrictions
	The Geocoder Object
	Building an Address Lookup Web Page
	Adding the HTML
	The CSS
	The Starting JavaScript
	Setting Up the Event Handler
	Looking Up an Address
	Taking Care of the Response
	Interpreting the Result
	Adding an InfoWindow
	The Complete JavaScript Code for This Example
	Extending the Example

	Reverse Geocoding
	Building a Reverse Geocoding Map
	Creating the getAddress() Function
	The Complete Code for This Example

	Finding the Location of the User
	IP-Based Geocoding
	Getting the Position
	Creating a Location-Aware Map
	Creating the HTML
	Creating the JavaScript Code
	The Complete JavaScript Code for This Example
	Getting Better Accuracy
	Different Levels of Accuracy
	Privacy Concerns
	Different Implementations
	Building a More Accurate Map
	Creating the HTML
	The Starting JavaScript
	Extending the Example
	The Complete JavaScript Code for This Example

	Summary

	API Reference
	How to Read the Reference
	Data Types

	The Namespace
	The Reference
	Map Class
	Constructor
	Methods
	Properties
	Events
	MapOptions Object
	Properties
	MapTypeId Class
	Constants
	MapTypeControlOptions Object
	Properties
	MapTypeControlStyle Class
	Constants
	NavigationControlOptions Object
	Properties
	NavigationControlStyle Class
	Constants
	ScaleControlOptions Object
	Properties
	ScaleControlStyle Class
	Constants
	ControlPosition Class
	Constants
	MapPanes Object
	Properties
	MapCanvasProjection Object
	Methods
	Marker Class
	Constructor
	Methods
	Events
	MarkerOptions Object
	Properties
	MarkerImage Class
	Constructor
	MarkerShape Object
	Properties
	Polyline Class
	Constructor
	Methods
	Events
	PolylineOptions Object
	Properties
	Polygon Class
	Constructor
	Methods
	Events
	PolygonOptions Object
	Properties
	InfoWindow Class
	Constructor
	Methods
	Events
	InfoWindowOptions Object
	Properties
	Geocoder Class
	Constructor
	Methods
	GeocoderRequest Object
	Properties
	GeocoderStatus Class
	Constants
	GeocoderResult Object
	Properties
	GeocoderAddressComponent Object
	GeocoderGeometry Object
	Properties
	GeocoderLocationType Class
	Constants
	MapsEventListener Object
	event Namespace
	Static Methods
	MouseEvent Object
	Properties
	LatLng Class
	Constructor
	Methods
	LatLngBounds Class
	Constructor
	Methods
	Point Class
	Constructor
	Methods
	Properties
	Size Class
	Methods
	Properties
	MVCObject Class
	Methods
	MVCArray Class
	Methods

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	O
	N
	P
	R
	Q
	S
	T
	U
	V
	W
	X
	Y
	Z

