
Josiah Dykstra

 Essential
 Cybersecurity
Science
BUILD, TEST, AND EVALUATE SECURE SYSTEMS

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Josiah Dykstra

Boston

Essential Cybersecurity Science
Build, Test, and Evaluate Secure Systems

www.allitebooks.com

http://www.allitebooks.org

978-1-491-92094-7

[LSI]

Essential Cybersecurity Science
by Josiah Dykstra

Copyright © 2016 Josiah Dykstra. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Rachel Roumeliotis and Heather Scherer
Production Editor: Melanie Yarbrough
Copyeditor: Gillian McGarvey
Proofreader: Susan Moritz

Indexer: Lucie Haskins
Interior Designer: David Futato
Cover Designer: Ellie Volkhausen
Illustrator: Rebecca Demarest

December 2015: First Edition

Revision History for the First Edition
2015-12-01: First Release

See http://oreilly.com/catalog/errata.csp?isbn=0636920037231 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Essential Cybersecurity Science, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights. This book is not intended as legal advice. Please consult
a qualified professional if you require legal advice.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=0636920037231
http://www.allitebooks.org

Table of Contents

Preface. vii

1. Introduction to Cybersecurity Science. 1
What Is Cybersecurity Science? 2
The Importance of Cybersecurity Science 5
The Scientific Method 7
Cybersecurity Theory and Practice 9

Pseudoscience 10
Human Factors 10

Roles Humans Play in Cybersecurity Science 10
Human Cognitive Biases 11

The Role of Metrics 12
Conclusion 12
References 13

2. Conducting Your Own Cybersecurity Experiments. 15
Asking Good Questions and Formulating Hypotheses 15

Creating a Hypothesis 15
Security and Testability 18

Designing a Fair Test 19
Analyzing Your Results 21
Putting Results to Work 25
A Checklist for Conducting Experimentation 26
Conclusion 28
References 29

3. Cybersecurity Experimentation and Test Environments. 31
Modeling and Simulation 32

iii

www.allitebooks.com

http://www.allitebooks.org

Open Datasets for Testing 34
Desktop Testing 35
Cloud Computing 36
Cybersecurity Testbeds 37
A Checklist for Selecting an Experimentation and Test Environment 38
Conclusion 39
References 39

4. Software Assurance. 41
An Example Scientific Experiment in Software Assurance 42
Fuzzing for Software Assurance 43
The Scientific Method and the Software Development Life Cycle 44
Adversarial Models 45
Case Study: The Risk of Software Exploitability 47

A New Experiment 48
How to Find More Information 51
Conclusion 51
References 51

5. Intrusion Detection and Incident Response. 53
An Example Scientific Experiment in Intrusion Detection 54
False Positives and False Negatives 55
Performance, Scalability, and Stress Testing 58
Case Study: Measuring Snort Detection Performance 60

Building on Previous Work 60
A New Experiment 61

How to Find More Information 64
Conclusion 64
References 64

6. Situational Awareness and Data Analytics. 65
An Example Scientific Experiment in Situational Awareness 66
Experimental Results to Assist Human Network Defenders 68
Machine Learning and Data Mining for Network Monitoring 70
Case Study: How Quickly Can You Find the Needle in the Haystack? 73

A New Experiment 74
How to Find More Information 75
Conclusion 75
References 75

7. Cryptography. 77
An Example Scientific Experiment in Cryptography 77

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Experimental Evaluation of Cryptographic Designs and Implementation 78
Provably Secure Cryptography and Security Assumptions 80
Cryptographic Security and the Internet of Things 83
Case Study: Evaluating Composable Security 85

Background 85
A New Experiment 86

How to Find More Information 87
Conclusion 87
References 88

8. Digital Forensics. 89
An Example Scientific Experiment in Digital Forensics 89
Scientific Validity and the Law 90
Scientific Reproducibility and Repeatability 93
Case Study: Scientific Comparison of Forensic Tool Performance 94
How to Find More Information 96
Conclusion 97
References 97

9. Malware Analysis. 99
An Example Scientific Experiment in Malware Analysis 100
Scientific Data Collection for Simulators and Sandboxes 100
Game Theory for Malware Analysis 103
Case Study: Identifying Malware Families with Science 106

Building on Previous Work 106
A New Experiment 107

How to Find More Information 108
Conclusion 108
References 108

10. System Security Engineering. 111
An Example Scientific Experiment in System Security Engineering 113
Regression Analysis 115
Moving Target Defense 118
Case Study: Defending Against Unintentional Insider Threats 120
How to Find More Information 122
Conclusion 122
References 122

11. Human-Computer Interaction and Usable Security. 125
An Example Scientific Experiment in Usable Security 126
Double-Blind Experimentation 128

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Usability Measures: Effectiveness, Efficiency, and Satisfaction 129
Methods for Gathering Usability Data 132

Testing Usability During Design 132
Testing Usability During Validation and Verification 134

Case Study: An Interface for User-Friendly Encrypted Email 135
A New Experiment 136

How to Find More Information 138
Conclusion 138
References 139

12. Visualization. 141
An Example Scientific Experiment in Cybersecurity Visualization 142
Graphical Representations of Cybersecurity Data 145
Experimental Evaluation of Security Visualization 148
Case Study: Is My Visualization Helping Users Work More Effectively? 152
How to Find More Information 154
Conclusion 154
References 154

A. Understanding Bad Science, Scientific Claims, and Marketing Hype. 157
Dangers of Manipulative Graphics and Visualizations 158
Recognizing and Understanding Scientific Claims 160
Vendor Marketing 163
Clarifying Questions for Salespeople, Researchers, and Developers 164
References 165

Index. 167

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

Who This Book Is For
Science applies to many areas of cybersecurity, and the target audience for this book
is broad and varied. This book is particularly for developers, engineers, and entrepre‐
neurs who are building and evaluating cybersecurity hardware and software solu‐
tions. Among that group, it is for infosec practitioners such as forensic investigators,
malware analysts, and other cybersecurity specialists who use, build, and test new
tools for their daily work. Some will have programming experience, others a working
knowledge of various security tools (EnCase for forensics, Wireshark for network
analysis, IDA Pro for reverse engineering, and so on). The scientific method can be
applied to all of these disciplines. Cybersecurity science can be applied to everyday
problems, including:

• Testing for bugs in your new smartphone game
• Defending corporate security choices given a limited budget
• Convincing people that your new security product is better than the competi‐

tion’s
• Balancing intrusion detection accuracy and performance

The core audience is information security professionals who have worked in the field
for 5−10 years, who are becoming experts in their craft and field, who are not for‐
mally trained in or exposed to scientific investigation in their daily lives, and who
desire to learn a new approach that supplements and improves their work. I want you
to walk away from this book knowing how to conduct scientific experiments on your
everyday tools and procedures, and knowing that after conducting such experiments,
you have done your job more securely, more accurately, and more effectively.

This book is not intended to turn you into a scientist, but it will introduce you to the
discipline of scientific thinking. For those new to the field, including students of
cybersecurity, this book will help you learn about the scientific method as it applies to

vii

www.allitebooks.com

http://www.allitebooks.org

cybersecurity and how you can conduct scientific experiments in your new profes‐
sion. For nondevelopers involved in cybersecurity, such as IT security administrators
who use, evaluate, buy, and recommend security solutions for the enterprise, this
book will help you conduct hands-on experiments and interpret the scientific claims
of others.

What This Book Contains
The first three chapters contain general information about the scientific method as it
applies across many domains of cybersecurity. They cover the basic tenets of science,
the need for science in cybersecurity, and the methodology for scientific investigation.
Chapter 1 covers the scientific method and the importance of science to cybersecur‐
ity. Chapter 2 discusses the prerequisites needed to conduct cybersecurity experi‐
ments, from asking good questions to putting the results to work. It also includes a
checklist to help you construct your own experiments. Chapter 3 includes practical
details about experimentation including test environments and open datasets.

The remaining chapters are organized into standalone, domain-specific topics. You
can read them individually, although new scientific topics and techniques in these
chapters are applicable to other domains. These chapters explore how the scientific
method can be applied to the specific topics and challenges of each domain. Each
topic chapter contains an overview of the scientific pursuits in that domain, one
instructive example of a scientific experiment in that field, introduction of an analysis
method (which can be applied to other domains), and a practical example of a simple,
introductory experiment in that field that walks through the application of the scien‐
tific method.

• Chapter 4 is about cybersecurity science for software assurance, including fuzz‐
ing and adversarial models.

• Chapter 5 covers intrusion detection and incident response, and introduces error
rates (false positives and false negatives) and performance/scalability/stress test‐
ing.

• Chapter 6 focuses on the application of science to cyber situational awareness,
especially using machine learning and big data.

• Chapter 7 covers cryptography and the benefits and limitations of provably
secure cybersecurity.

• Chapter 8 is about digital forensics including scientific reproducibility and
repeatability.

• Chapter 9, on malware analysis, introduces game theory and malware clustering.
• Chapter 10 discusses building and evaluating dependable systems with security

engineering.

viii | Preface

www.allitebooks.com

http://www.allitebooks.org

• Chapter 11 covers empirical experimentation for human-computer interaction
and security usability.

• Chapter 12 includes techniques for the experimental evaluation of security visu‐
alization.

Appendix A provides some additional information about evaluating scientific claims,
especially from vendors, and how people can be misled, manipulated, or deceived by
real or bogus science. There is also a list of clarifying questions that you can use with
salespeople, researchers, and product developers to probe the methodology they
used.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

Preface | ix

This element indicates a warning or caution.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both
book and video form from the world’s leading authors in tech‐
nology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
and education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/essential-cybersecurity-science.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

x | Preface

http://safaribooksonline.com
http://www.safaribooksonline.com/explore/
http://www.safaribooksonline.com/pricing/
http://www.safaribooksonline.com/enterprise/
http://www.safaribooksonline.com/government/
http://www.safaribooksonline.com/academic-public-library/
http://www.safaribooksonline.com/our-library/
http://www.safaribooksonline.com/
http://bit.ly/essential-cybersecurity-science
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Disclaimer
The views expressed in this book are those of the author alone. Reference to any spe‐
cific commercial products, process, or service by trade name, trademark, manufac‐
turer, or otherwise, do not necessarily constitute or imply endorsement,
recommendation, or favoring by the United States Government or the Department of
Defense.

Acknowledgments
My sincere thanks go to Rachel Roumeliotis, Heather Scherer, Nan Barber, and the
entire team at O’Reilly for helping me through the editing and publication process. I
am grateful to the brilliant and honest technical reviewers, Michael Collins and Matt
Georgy, who improved many facets of the book. Thank you to my friends and collea‐
gues who provided feedback and support on this project: Janelle Weidner Romano,
Tim Leschke, Celeste Lyn Paul, Greg Shannon, Brian Sherlock, Chris Toombs, Tom
Walcott, and Cathy Wu. I also wish to thank the community of friends, colleagues,
and strangers that I interacted with at conferences, meetings, and workshops on
cybersecurity science over the past few years, especially LASER, CSET, and HoTSoS.
These conversations helped influence and contribute to many of the ideas in this
book. Most importantly, thank you to my wife Alicia for her love and encouragement
in this project and in all things.

Preface | xi

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

1 Barriers to the Science of Security.

CHAPTER 1

Introduction to Cybersecurity Science

This chapter will introduce the concept—and importance—of cybersecurity science,
the scientific method, the relationship of cybersecurity theory and practice, and high-
level topics that relate to science, including human factors and metrics.

Whether you’re a student, software developer, forensic investigator, network adminis‐
trator, or have any other role in providing cybersecurity, this book will teach you the
relevant scientific principles and flexible methodologies for effective cybersecurity.
Essential Cybersecurity Science focuses on real-world applications of science to your
role in providing cybersecurity. You’ll learn how to conduct your own experiments
that can evaluate assurances of security.

Let me offer a few reasons why science is worth the trouble.

• Science is respected. A majority of the population sees value in scientific inquiry
and scientific results. Advertisers appeal to it all the time, even if the science is
nonsensical or made up. People will respect you and your work in cybersecurity
if you demonstrate good science. “In the past few years, there has been significant
interest in promoting the idea of applying scientific principles to information
security,” said one report.1 Scientific research can help convince your audience
about the value of a result.

• Science is sexy. In addition to respect, many nonscientists desire to understand
and be part of a field they admire. Once perceived as dry, boring, and geeky, sci‐
ence is becoming a thing of admiration, and more and more people want to be
identified with it.

1

http://nsf.gov/events/event_summ.jsp?cntn_id=123377

• Science provokes curiosity. Information security (infosec) professionals are
curious. They ask good questions and crave information, as evidenced by the
increasing value being placed on data science. Science is a vehicle for informa‐
tion, and answers stimulate more questions. Scientific inquiry brings a deeper
understanding about the cybersecurity domain.

• Science creates and improves products. In the commercial space, the market
drives cybersecurity. Scientific knowledge can improve existing products and
lead to groundbreaking innovation and applications. For infosec decision-
makers, the scientifc method can make product evaluations defensible and effi‐
cient.

• Science advances knowledge. Science is one of the primary ways that humans
unearth new knowledge about the world. Participants in science have the oppor‐
tunity to contribute to the body of human understanding and advance the state
of the art. In cybersecurity in particular, science will help prove practices and
techniques that work, moving us away from today’s practice of cybersecurity
“folk wisdom.”

Scientific experimentation and inquiry reveal opportunities to optimize and create
more secure cyber solutions. For instance, mathematics alone can help cryptogra‐
phers determine how to design more secure crypto algorithms, but mathematics does
not govern the process of how to design a useful network mapping visualization. Vis‐
ualization requires experimentation and repeatable user studies. Validation in this
context is more like justification for design choices. What is the optimal sampling rate
for NetFlow in my situation? Trying to answer that question and maximize the valid‐
ity of the answer is a scientific endeavor. Furthermore, you can learn and apply les‐
sons from what others have done in the past.

What Is Cybersecurity Science?
Cybersecurity science is an important aspect of the understanding, development, and
practice of cybersecurity. Cybersecurity is a broad category, covering the technology
and practices used to protect computer networks, computers, and data from harm.
People throughout industry, academia, and government all use formal and informal
science to create and expand cybersecurity knowledge. As a discipline, the field of
cybersecurity requires authentic knowledge to explore and reason about the “how
and why” we build or deploy security controls.

2 | Chapter 1: Introduction to Cybersecurity Science

When I talk about applying science and the scientific method to cybersecurity, I mean
leveraging the body of knowledge about cybersecurity (science) and a particular set of
techniques for testing a hypothesis against empirical reality (the scientific method).

The Many Ways to Obtain Knowledge
Scientific investigation is not the only way to obtain knowledge. Among the non-
scientific methods can be common sense, intuition, and deduction.

Common sense describes knowledge that most people have in common, often relat‐
ing to human experiences. Intuition is the acquisition of knowledge without con‐
scious reasoning. Deduction uses given premises to reach conclusions (e.g., All men
are mortal. Einstein is a man. Therefore, Einstein is mortal). Mathematics is deduc‐
tive, because axioms are assumed to be true without being tested.

In his book What Engineers Know and How They Know It, Walter Vincenti identified
six categories of engineering knowledge that seem to apply to cybersecurity:

• Fundamental design concepts
• Criteria and specifications
• Theoretical tools
• Quantitative data
• Practical considerations
• Design instrumentalities

Another naive, but sadly common, method of advancing cybersecurity science is by
uninformed and untested guessing. We guess about what users want tools to do. We
guess about what to buy and how to deploy cybersecurity solutions. Guessing is unin‐
formed and ineffective, and while it may appear to advance security, it is difficult to
defend and often fails miserably.

Unfortunately, science has a reputation for being stuffy and cold, and something that
only people in white lab coats are excited about. As a cybersecurity practitioner, think
of science as a way to explore your curiosity, an opportunity to discover something
unexpected, and a tool to improve your work.

You benefit every day from the experimentation and scientific investigation done by
people in cybersecurity. To cite a few examples:

• Microsoft Research provides key security advances for Microsoft products and
services, including algorithms to detect tens of millions of malicious Hotmail
accounts.

• Government and private researchers created Security-enhanced Linux.

What Is Cybersecurity Science? | 3

http://research.microsoft.com/en-us/about/techtransfer/product-development-contributions-2011.aspx
https://www.nsa.gov/research/selinux/contrib.shtml

2 Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and Dan Boneh. 2004. “On the
effectiveness of address-space randomization.” In Proceedings of the 11th ACM Conference on Computer and
Communications Security (CCS ’04). ACM, New York, NY, USA, 298-307.

• Research at Google helps improve products such as Chrome browser security
and YouTube video fingerprinting.

• Symantec Research Labs has contributed new algorithms, performance speedups,
and products for the company.

Cybersecurity is an applied science. That is, people in the field often apply known facts
and scientific discoveries to create useful applications, often in the form of technol‐
ogy. Other forms of science include natural science (e.g., biology), formal science
(e.g., statistics), and social science (e.g., economics). Cybersecurity overlaps and is
influenced by connections with social sciences such as economics, sociology, and
criminology.

What About the Art of Cybersecurity?
You might be asking yourself, “Science is great, but what about the art of cybersecur‐
ity?” The word art connotes skill in doing something, especially as the result of
knowledge or practice. There is art in becoming an expert at reverse engineering and
malware analysis because skill, practice, and experience make practitioners better at
those tasks.

Changing passwords every 30 or 90 days is an example of cybersecurity folk wisdom,
or something people consider a “best practice” to use as a default policy, particularly
people who lack the data or training for their own risk assessment. However, the art
and practice of password management leads to different conclusions. Password
strength is based on mathematical properties of the encryption algorithms used and
the strength of modern computers. There is debate even among the world’s infosec
experts about the benefits of website “password meters” and password expiration.

Art is one way to handle the ever-changing assumptions and landscape in cybersecur‐
ity. Take address space layout randomization (ASLR), for example. ASLR is a technique
of randomizing code in memory to prevent buffer overflow attacks. Researchers have
been studying the effectiveness and shortcomings of this technique for years. One fre‐
quently cited paper from 2004 experimentally showed a way to de-randomize mem‐
ory even under ASLR. This example illustrates the change in knowledge over time.2

Like applied science, cybersecurity science often takes the form of applied research—
the goal of the work is to discover how to meet a specific need. For example, if you
wanted to figure out how to tune your intrusion detection system, that could be an
applied research project.

4 | Chapter 1: Introduction to Cybersecurity Science

http://bit.ly/1SlAKxW
http://symc.ly/1SlAWNU

3 Science of Cyber Security, MITRE Report JSR-10-102, November 2010, http://fas.org/irp/agency/dod/jason/
cyber.pdf.

The Importance of Cybersecurity Science
Every day, you as developers and security practitioners deal with uncertainty,
unknowns, choices, and crises that could be informed by scientific methods. You
might also face very real adversaries who are hard to reason about. According to a
report on the science of cybersecurity, “There is every reason to believe that the tradi‐
tional domains of experimental and theoretical inquiry apply to the study of cyber-
security. The highest priority should be assigned to establishing research protocols to
enable reproducible experiments.”3

To get started, look at the following examples of how cybersecurity science could be
applied to practical cybersecurity situations:

• Your job is defending your corporate network and you have a limited budget.
You’ve been convinced by a new security concept called Moving Target Defense,
which says that controlling change across multiple system dimensions increases
uncertainty and complexity for attackers. Game theory is a scientific technique
well-suited to modeling the arms race between attackers and defenders, and
quantitatively evaluating dependability and security. So you could try setting up
an experiment to determine how often you’ll have to apply moving target defense
if you think the attacker will try to attack you 10 times a day.

• As a malware analyst, you are responsible for writing intrusion detection system
(IDS) signatures to identify and block malware from entering your network. You
want the signature to be accurate, but IDS performance is also important. If you
knew how to model the load, you could write a program to determine the num‐
ber of false negatives for a given load.

• You’ve written a new program that could revolutionize desktop security. You
want to convince people that it’s better than today’s antivirus. You decide to run
analysis to determine whether people will buy your software, by comparing the
number of compromises when using your product versus antivirus and also fac‐
toring in the cost of the two products. This is a classical statistical gotcha because
you’ve introduced two incompatible variables (compromises detected and dol‐
lars).

• You’ve developed a smartphone game that’s taking off in the marketplace. How‐
ever, users have started complaining about the app crashing randomly. You
would be wise to run an experiment with a random “monkey” that ran your app
over and over, pressing buttons in different sequences to help identify which
code path leads to the crash.

The Importance of Cybersecurity Science | 5

http://fas.org/irp/agency/dod/jason/cyber.pdf
http://fas.org/irp/agency/dod/jason/cyber.pdf

Cybersecurity requires defenders to think about worst-case behaviors and rare events,
and that can be challenging to model realistically. Cybersecurity comprises large,
complex, decentralized systems—and scientific inquiry dislikes complexity and
chaos. Cybersecurity must deal with inherently multiparty environments, with many
users and systems. Accordingly, it becomes difficult to pinpoint the important vari‐
able(s) in an experiment with these complex features.

Cybersecurity is complex because it is constantly changing. As soon as you think
you’ve addressed a problem, the problem or the environment changes. Amazon,
which has reportedly sold as many as 306 items per second, commissioned a study to
determine how many different shaped and sized boxes they needed. The mostly
mathematical study went on for over a year and the team produced a recommenda‐
tion. The following day, Amazon launched an identical study to re-examine the exact
same problem because buyers’ habits had changed and people were buying different
sized and shaped goods. Cybersecurity, like shopping habits, is a constantly changing
problem, as evidenced by dynamic Internet routing and the unpredictable demand
on Internet servers and services.

Science isn’t just about solving problems by confirming hypotheses; science is also
about falsifiability. Instead of proving a scientific hypothesis correct, the idea is to dis‐
prove a hypothesis. This scientific philosophy came in Karl Popper’s 1935 book The
Logic of Scientific Discovery. Popper used falsifiability as the demarcation criterion for
science but noted that science often proceeds based on claims or conjectures that can‐
not (easily) be verified. If something is falsifiable, that doesn’t mean that it is false. It
means that if the hypothesis were false, then you could demonstrate its falsehood. For
example, if a newspaper offers the hypothesis “China is the biggest cyber threat,” that
claim is nonfalsifiable because you can’t prove it wrong. Perhaps it is based on undis‐
closed evidence. If the statement is wrong, all you will ever find is an absence of evi‐
dence. There is no way to empirically test the hypothesis.

Central motivations for the scientific method are to uncover new truths and to root
out error, common goals shared with cybersecurity. Science has been revealing
insights into “what if ” questions for thousands of years. Businesses need new prod‐
ucts and innovations to stay alive, and science can produce amazing and sometimes
unexpected results to create and improve technology and cybersecurity. Science can
also provide validation for the work you do by showing—even proving—that your
ideas and solutions are better than others. If you choose to present your findings in
papers or at conferences, you also receive external validation from your peers and
contribute to the global body of knowledge.

Think about how much science plays a part at Google, even aside from security. The
1998 paper Google published on the PageRank algorithm described a novel idea that
launched a $380 billion company. Today, Google researchers publish dozens of papers
on security every year and those results inform security in their products and serv‐

6 | Chapter 1: Introduction to Cybersecurity Science

www.allitebooks.com

http://research.google.com/pubs/SecurityCryptographyandPrivacy.html
http://research.google.com/pubs/SecurityCryptographyandPrivacy.html
http://www.allitebooks.org

ices, from Android to Gmail. Scientific advances conducted inside and outside the
company undoubtedly save and make money for Google.

Lastly, learning science consists, in part, of learning the language of science. Once you
learn the language, you’ll be better equipped to understand scientific conversations
and papers. You will also have the ability to more clearly communicate your results to
others, and it’s more likely that other amateur and professional scientists will respect
your work.

The Scientific Method
The scientific method is a structured way of investigating the world. This group of
techniques can be used to gain knowledge, study the state of the world, correct errors
in current knowledge, and integrate facts. Importantly for us, the scientific method
contributes to a theoretical and practical understanding of cybersecurity.

Our modern understanding of the scientific method stems from Francis Bacon’s
Novum Organum (1620) and the work of Descartes, though others have refined the
process since then. The Oxford English Dictionary defines the scientific method as “a
method of observation or procedure based on scientific ideas or methods; specifically
an empirical method that has underlain the development of natural science since the
17th century.” An empirical method is one in which the steps are based on observa‐
tion, investigation, or experimentation.

At its heart, the scientific method contains only five essential elements:

1. Formulating a question from previous observations, measurements, or experi‐
ments

2. Induction and formulation of hypotheses
3. Making predictions from the hypotheses
4. Experimental testing of the predictions
5. Analysis and modification of the hypotheses

These steps are said to be systematic. That is to say, they are conducted according to a
plan or organized method. If you jump around the steps in an unplanned way, you
will have violated the scientific method. In Chapter 2 we will discuss how to do each
of these five steps.

There are also five governing principles of the scientific method. These principles are:

1. Objective. A fair, objective experiment is free from bias and considers all the data
(or a representative sample), not just data that validates your hypothesis.

2. Falsifiable. It must be possible to show that your hypothesis is false.

The Scientific Method | 7

4 Reproducibility is not the same as repeatability or replicability.

3. Reproducible. It must be possible for you or others to reproduce your results.4

4. Predictable. The results from the scientific method can be used to predict future
outcomes in other situations.

5. Verifiable. Nothing is accepted until verified through adequate observations or
experiments.

It’s interesting that the scientific method isn’t on the computer science curriculum in
graduate school or computer security professional certifications. Many students and
professionals haven’t considered the scientific method since grade school and no
longer remember how to apply it to their profession. However, the problem may be
systemic. Take performance, for example. Say you have a malware detection tool and
want to analyze 1,000 files. A theoretical computer scientist might look at your mal‐
ware detection algorithm and say, “the asymptotic bounds of this algorithm are O(n2)
time,” meaning it belongs to a group of algorithms whose performance corresponds
to the square of the size of the input. Informative, huh? It might be, but it masks
implementation details that actually matter to the amount of wall clock time the algo‐
rithm takes in practice.

There are many research designs to choose from in the scientific method. The one
you pick will be primarily based on the information you want to collect, but also on
other factors such as cost. This book mainly focuses on experimentation, but other
research methods are shown in Table 1-1.

Table 1-1. Types of output for various research methods

Research method Aim of the study

Case study Observe and describe

Survey Observe and describe

Natural environment observation Observe and describe

Longitudinal study Predict

Observation study Predict

Field experiment Determine causes

Double-blind experiment Determine causes

Literature review Explain

The way you approach cybersecurity science depends on you and your situation.
What if you don’t have the time or resources to do precise scientific experiments? Is
that OK? It probably depends on the circumstances. If you build software that is used
in hospitals or nuclear command and control, I hope that science is an important part

8 | Chapter 1: Introduction to Cybersecurity Science

5 Pascal: An Introduction to the Art and Science of Programming by Walter J. Savitch, 1984.

of the process. Scientists often talk about scientific rigor. Rigor is related to thorough‐
ness, carefulness, and accuracy. Rigor is a commitment to the scientific method, espe‐
cially in paying attention to detail and being unbiased in the work.

Cybersecurity Theory and Practice
“In theory, there is no difference between theory and practice. In practice, there is.”5

So goes a quote once overheard at a computer science conference. The contention of
theory versus practice long predates cybersecurity. The argument goes that practi‐
tioners don’t understand fundamentals, leading to suboptimal practices, and theorists
are out of touch with real-world practice.

Research and science often emerge following practical developments. “The steam
engine is a perfect example,” writes Dr. Henry Petroski. “It existed well before there
was a science of thermodynamics to explain what was happening from a theoretical
point of view. The Wright Brothers designed a plane before there was a theory of aer‐
odynamics.” Cybersecurity may follow a similar trajectory, with empiricists running a
bit ahead of theorists.

The application of theory into practice has direct impact on our lives. Consider
approaches to protecting a system from denial-of-service attacks. In theory, it is
impossible to distinguish between legitimate network traffic and malicious traffic
because malicious traffic can imitate legitimate traffic so effectively. In practice, an
administrator may find a pattern or fingerprint in attack traffic allowing her to block
only the malicious traffic.

One reason for the disconnect between theory and practice in cybersecurity is that
there are few axioms in security. Despite decades of work in cybersecurity, the com‐
munity has failed to uncover the building blocks that you might expect from a mature
field. In 2011, the US government published “Trustworthy Cyberspace: Strategic Plan
for the Federal Cybersecurity Research and Development Program”. As a result of
this strategy, the government created the Science of Security Virtual Organization
(SoS VO) to research “first principles and the fundamental building blocks for secu‐
rity and trustworthiness.” The NSA now funds academic research groups called “lab‐
lets” to conduct research aimed at “establishing scientific principles upon which to
base trust in security” and “to bring scientific rigor to research in the cybersecurity
domain.” This work aims to improve cybersecurity theory, which will hopefully in
turn translate into practical cybersecurity implementations.

Cybersecurity Theory and Practice | 9

http://1.usa.gov/1SlC4Rw
http://1.usa.gov/1SlC4Rw
http://cps-vo.org/group/SoS
http://cps-vo.org/group/SoS
https://www.nsa.gov/public_info/press_room/2014/lablets.shtml
https://www.nsa.gov/public_info/press_room/2014/lablets.shtml

Axioms are assumptions which are generally accepted as truth
without proof. The mathematical axiom of transitivity says if x=y
and y=z then x=z.

Pseudoscience
A word of caution: science can be used for good, but it can also be deceiving if mis‐
used, misapplied, or misunderstood. Pseudoscience, on the other hand, is a claim or
belief that is falsely presented or mistakenly regarded as science. Theories about the
Bermuda Triangle are pseudoscience because they are heavily dependent on assump‐
tions. Beware of misinterpretation and inflation of scientific findings. Popular culture
was largely misled by the media hype over the “Mozart effect,” which stemmed from a
paper showing increased test scores in students who listened to a Mozart sonata.

Michael Gordin, a Princeton historian of science, wrote in his book The Pseudoscience
Wars (University of Chicago Press, 2012), “No one in the history of the world has
ever self-identified as a pseudoscientist.” Pseudoscience is something that we recog‐
nize after the work has been done. You should learn to recognize the markers of pseu‐
doscience in other people’s work and in your own.

For more cautionary notes on scientific claims, especially in marketing, see Appen‐
dix A.

Human Factors
Science is a human pursuit. Even when humans are not the object of scientific investi‐
gation, as they often are in biology or psychology, humans are the ones conducting all
scientific inquiry including cybersecurity. The 2015 Verizon Data Breach Investiga‐
tions Report pointed out that “the common denominator across the top four [inci‐
dent] patterns—accounting for nearly 90% of all incidents—is people.” This section
introduces the high-level roles for humans in cybersecurity science and the important
concept of recognizing human bias in science.

Roles Humans Play in Cybersecurity Science
Humans play a role in cybersecurity science in at least four ways:

• Humans as developers and designers. We will be talking a lot about cybersecur‐
ity practitioners in their roles thinking and acting as scientists.

• Humans as users and consumers. Humans as users and consumers often throw
a wrench into cybersecurity. Users are commonly described as the weakest link in
cybersecurity.

10 | Chapter 1: Introduction to Cybersecurity Science

6 Enhancing the Effectiveness of Team Science, Nancy J. Cooke and Margaret L. Hilton (Eds.), http://
www.nap.edu/catalog/19007/enhancing-the-effectiveness-of-team-science, 2015.

• Humans as orchestrators and practitioners. Our goal is to defend a network,
data, or users, and we decide how to achieve the desired goal. Defenders must be
knowledgeable of the environment, the tools at their disposal, and the state of
security at a given time. Human defenders bring their own limitations to cyber
defense, including their incomplete picture of the environment and their human
biases.

• Humans as active adversaries. Human adversaries can be unpredictable, incon‐
sistent, and irrational. They are difficult to attribute definitively, and they mas‐
querade and hide easily online. Worse, the best human adversaries abandon
specific attacks more quickly than defenders like you can discover them. Scien‐
tific inquiry in chemistry and physics have no analogous opponent.

For a very long time, scientific inquiry was a solo activity. Experi‐
ments were done by individuals, and papers were published by a
single author. However, by 2015, 90% of all science publications
were written by two or more authors.6 Today there is too much
knowledge for one person to possess on his or her own. Collabora‐
tion and diversity of thought and skill make scientific results more
interesting and more useful. I strongly encourage you to collabo‐
rate in your pursuit of science, and especially with people of differ‐
ent skills.

Human Cognitive Biases
Cognitive errors and human cognitive biases have the potential to greatly affect
objective scientific study and results. Bias is an often misused term that when used
correctly, describes irrational, systematic errors that deviate from rational decisions
and cause inaccurate results. Bias is not the same as incompetence or corruption,
though those also interfere with neutral scientific inquiry. Below are three biases that
are especially useful to beware of as you think about science.

Confirmation bias is the human tendency toward searching for or interpreting infor‐
mation in a way that confirms one’s preconceptions, beliefs, or hypotheses, leading to
statistical errors. This bias is often unconscious and unintentional rather than the
result of deliberate deception. Remember that scientific thinking should seek and
consider evidence that supports a hypothesis as well as evidence that falsifies the
hypothesis. To avoid confirmation bias, try to keep an open mind and look into sur‐
prising results if they arise. Don’t be afraid to prove yourself wrong. Confirmation

Human Factors | 11

http://www.nap.edu/catalog/19007/enhancing-the-effectiveness-of-team-science
http://www.nap.edu/catalog/19007/enhancing-the-effectiveness-of-team-science

bias prevents us from finding unbiased scientific truths, and contributes to overconfi‐
dence.

Daniel Kahneman, author of Thinking Fast and Slow, uses the acronym WYSIATI, for
“what you see is all there is,” to describe overconfidence bias. Kahneman says that “we
often fail to allow for the possibility that evidence that should be critical to our judg‐
ment is missing—what we see is all there is.” Without conscious care, there is a natu‐
ral tendency to deal with the limited information you have as if it were all there is to
know.

Cybersecurity is shaped in many ways by our previous experiences and outcomes. For
example, looking back after a cybersecurity incident, our CEO might assign a higher
probability that we “should have known” compared to the choices made before the
incident occurred. Hindsight bias leads people to say “I knew that would happen” even
when new information distorts an original thought. Hindsight also causes us to
undervalue the element of surprise of scientific findings.

As you pursue science and scientific experimentation, keep biases in mind and con‐
tinually ask yourself whether or not you think a bias is affecting your scientific pro‐
cesses or outcomes.

The Role of Metrics
It’s easy to make a mental mistake by substituting metrics for science. Managers like
metrics—the analysis of measurements over time—because they think these numbers
alone allow them to determine whether the organization is secure or succeeding.
Sometimes metrics really are called for. However, counting the number of security
incidents at your company is not necessarily an indication of how secure or insecure
the company is. Determining the percentage of weak passwords for your users is a
metric but not also a scientific inquiry. As we will see in Chapter 2, hypotheses are
testable proposed explanations like “people take more risks online than in their phys‐
ical lives.”

Don’t get me wrong: most experiments measure something! Metrics can be part of
the scientific process if they are used to test a hypothesis. The topic of security met‐
rics may also be the foundation for scientific exploration. The point is not to be
fooled by believing that metrics alone can be substituted for science. To learn more
about the active field of security metrics, visit SecurityMetrics.org, which hosts an
active mailing list and annual conference.

Conclusion
The key concepts and takeaways about the scientific method presented in this chapter
and used throughout the book are:

12 | Chapter 1: Introduction to Cybersecurity Science

http://securitymetrics.org

• Cybersecurity science is an important aspect of the understanding, development,
and practice of cybersecurity.

• Scientific experimentation and inquiry reveal opportunities to optimize and cre‐
ate more secure cyber solutions.

• The scientific method contains five essential elements: ask a good question, for‐
mulate hypotheses, make predictions, experimentally test the predictions, analyze
the results.

• Experiments must be objective, falsifiable, reproducible, predictable, and verifia‐
ble.

• The human elements of cybersecurity science are critical to designing accurate
and unbiased experiments and to maximizing the practical usefulness of experi‐
ments.

References
• William I. B. Beveridge. The Art of Scientific Investigation (Caldwell, NJ: Black‐

burn Press, 2004)
• Lorraine Daston and Elizabeth Lunbeck (eds). Histories of Scientific Observation

(Chicago: University of Chicago Press, 2011)
• Richard Feynman. The Pleasure of Finding Things Out (2005)
• Hugh G. Gauch, Jr. Scientific Method in Brief (Cambridge: Cambridge University

Press, 2012)
• Richard Hamming. You and Your Research (1986)
• International Workshop on Foundations & Practice of Security
• Roy Maxion. Making Experiments Dependable, Dependable and Historic Com‐

puting, ser. Lecture Notes in Computer Science, vol. 6875, pp. 344–357 (Heidel‐
berg: Springer-Verlag, 2011)

References | 13

http://www.cs.virginia.edu/~robins/YouAndYourResearch.html
http://www.cs.virginia.edu/~robins/YouAndYourResearch.html

CHAPTER 2

Conducting Your Own Cybersecurity
Experiments

This chapter delves deeper into the specific steps of the scientific method. Recall that
there are five essential elements: asking a question, formulating a hypothesis, making
predictions, experimental testing, and analysis. These details will help as you think
about using the scientific method in your own situation. After seeing them described
here, you’ll apply these steps in practice in the subsequent chapters.

Asking Good Questions and Formulating Hypotheses
Formulating a good question might sound easy, but it can often be harder than it
sounds. Most infosec professionals see problems that need solving every day, even if
they don’t keep track of them. Trying to think of a problem on the spot can be espe‐
cially challenging. An economist friend of mine prefers to look for problems in prov‐
erbs. To create experimental questions, he asks when is it the case that “when the cat’s
away, the mice will play” or “don’t put the cart before the horse?” These can help get
you thinking about challenging the folk wisdom of cybersecurity.

Creating a Hypothesis
A hypothesis is a statement and suggested explanation. Based on this statement, you
will use scientific experimentation, investigation, or observation to show support or
rejection for the hypothesis. A hypothesis is temporary and unproven, but something
you believe to be true. The hypothesis must be testable, and experiments can help you
decide whether or not your hypothesis is true.

Consider the following example. You’re interested in building a scalable automated
malware analysis solution. In order to test scalability, you ask yourself, “how quickly

15

can my solution analyze 100 files to determine if they are malicious?” This is a rea‐
sonable question and one that will help you understand and improve your product.
However, it’s not a scientific hypothesis because the question isn’t a testable statement.
Assume you’ve been working on your product for a while and know that you can
analyze one or two files in less than 30 seconds.

Now try making the question testable. Here is a modified version of the question:
“Can my solution analyze 100 files in 10 minutes?” This is now a testable proposition.
It also has nice properties like the ability to prove it false, and the ability for other
people to reproduce the test. What this version lacks are independent and dependent
variables. The independent variable is the one single thing you change during the
experiment, and the dependent variable is the thing you monitor for impact depend‐
ing on changes to the independent variable. So, hypotheses can be written as if-then
statements in the form “If we change this independent variable, then this dependent
variable also changes.”

With this formula in mind, here is a better statement of our hypothesis: “If I use one
server, my solution can analyze 100 files in 10 minutes.” This is your educated guess
about how many files you can analyze based on previous observations. Not only is it
testable, reproducible, and falsifiable, but it has an independent variable (one server)
and a dependent variable (the number of files analyzed in 10 minutes). Now you have
a well-formulated hypothesis.

Don’t think of a hypothesis purely as a guess. A guess has no
knowledge or observation to back it up, whereas a hypothesis is
based on previous observations, measurements, or experiments.
You should also be careful about creating a hypothesis that you just
want to be true. This bias would threaten the impartiality of the sci‐
entific method.

When you read scientific papers, you may occasionally find references to the null
hypothesis. The null hypothesis, often written as H0, is the claim that there is no rela‐
tionship between two variables. When used, the null hypothesis is offered with an
alternative hypothesis called H1. The null hypothesis is assumed to be true, and you
must show evidence to prove a relationship that rejects or disproves the null hypothe‐
sis. For example, you may propose null and alternative hypotheses such as:

H0

Malware families exhibit no human-discernable visual similarities when visual‐
ized by our solution.

H1

Malware images belonging to the same family exhibit human-discernable visual
similarities in layout and texture.

16 | Chapter 2: Conducting Your Own Cybersecurity Experiments

www.allitebooks.com

http://www.allitebooks.org

Success in the scientific method is accepting or rejecting any
hypothesis.

Accepting the null hypothesis does not mean that your experiment failed! Accepting
(or rejecting) any hypothesis is a result.

Care is required when wording the null and alternative hypotheses.
Don’t be tempted to define your null hypothesis simply as the
opposite of the alternative hypothesis. Otherwise, you might create
a situation where you have to reject both the null hypothesis and
the alternative—you want to be able to accept one or the other. For
example, say you’re studying the performance gains of a new tool.
You define the null hypothesis as “there is no difference in perfor‐
mance” and the alternative hypothesis as “there is a performance
gain.” However, if the tool causes a decrease in performance, then
you’ve rejected both hypotheses.

Hypotheses can sometimes be obfuscated in scientific papers. You will often find that
the hypothesis is implied by the solution or contribution in the paper. In Table 2-1,
there are three quotes from papers in the left column, and the corresponding implied
hypothesis in the right column. It is not too difficult to infer what the hypothesis was,
but it is instructive as you think about how to form hypotheses. Finally, many readers
of these papers are ultimately more interested in the results and an explanation of
how and why those results occurred.

Table 2-1. Implied hypotheses from real papers

Paper text Implied hypothesis

“We found that inhibitive attractors significantly reduced the likelihood that
participants would (1) install software despite the presence of clues indicating
that the publisher of the software might not be legitimate, (2) grant
dangerously excessive permissions to an online game, and (3) fail to recognize
an instruction contained within a field of a dialog that they had been
habituated to ignore.“a

Inhibitive attractors will reduce the
likelihood that users will (1) install
dangerous software, (2) grant dangerously
excessive permissions to online games, and
(3) fail to recognize instructions contained
within dialogs that they have a habit of
ignoring.

“Is there any hope in mitigating the amplification problem? In this paper, we
aim to answer this question and tackle the problem from four different
angles…Lastly, we analyze the root cause for amplification attacks: networks
that allow IP address spoofing. We deploy a method to identify spoofing-
enabled networks from remote and reveal up to 2,692 Autonomous Systems
that lack egress filtering.”b

The root cause for amplification attacks is
networks that allow IP address spoofing.

Asking Good Questions and Formulating Hypotheses | 17

Paper text Implied hypothesis

“To discourage the creation of predictable passwords, vulnerable to guessing
attacks, we present Telepathwords. As a user creates a password, Telepathwords
makes realtime predictions for the next character that user will type… We
found that participants create far fewer weak passwords using the
Telepathwords-based policies than policies based only on character
composition. Participants using Telepathwords were also more likely to report
that the password feedback was helpful.”c

If shown a guess as to the next character of
a user’s password before he or she types it,
then users will create stronger passwords.

a Your Attention Please: Designing security-decision UIs to make genuine risks harder to ignore.
b Exit from Hell? Reducing the Impact of Amplification DDoS Attacks.
c Telepathwords: Preventing Weak Passwords by Reading Users’ Minds.

With a good question and well-formulated hypothesis in hand, you are ready to con‐
sider how you will test your hypothesis.

Security and Testability
How do you know if your system is secure, and what you can actually test? By now
you understand the need to scientifically test assurances of security, but system secu‐
rity is meaningless without a statement and specification of security. You and your
target audiences could misunderstand each other about what security means without
a defined context.

One way to describe security is with a specified security policy. The security policy
defines what it means to be secure for a specific system, and the goal of a policy is to
achieve some security properties. For example, a policy might say that after three
incorrect password attempts, the user is locked out of his or her account. For the
owner of this policy, this is one specification of security that, if followed, contributes
toward the security of the company. Your definition of security may differ. There are
many frameworks and policy-specification languages both for formalizing policies
and for formally evaluating the effects of policies.

Validation of a security policy can be accomplished with formal and experimental
methods. Formal validation is based on theories, such as the Bell-La Padula confiden‐
tiality policy, which are amenable to analysis and verification. On the other hand,
experimental testing can evaluate whether a security policy is needed and whether the
implementation achieves the desired security property. Say your organization
requires continuous monitoring of network traffic to implement a certain security
policy. In a series of experiments, you could show the computational and storage load
for full packet capture versus various sampling rates of NetFlow. The outcome of
these experiments would be actionable information about how to balance costs and
benefits in achieving the security policy.

18 | Chapter 2: Conducting Your Own Cybersecurity Experiments

http://bit.ly/1SlEH62
http://bit.ly/1SlEEal
http://bit.ly/1SlEFLa

1 One such sample-size calculator can be found at Creative Research Systems.

In later chapters we will provide a variety of experiments and examples that illustrate
more testable claims of security.

Designing a Fair Test
When conducting an experiment, you may do many tests. It is vital that for each test
you only change one variable at a time and keep all other conditions the same. The
variable in your test is the one changing factor in the experiment. This practice is key
to good science, and following this practice results in a fair test.

A fair test is different from a good experiment. People often use
“good” in a colloquial sense to mean interesting, clever, or impor‐
tant. Those are fine goals, too, but are distinct from the experi‐
ment’s fairness.

Imagine that you want to test the hypothesis that a particular cryptographic algo‐
rithm is faster in C than C++. If you implement the same algorithm in both languages
but run one on a laptop and one on a supercomputer, that would be an unfair test
because you gave an unfair advantage to the one running on the supercomputer. The
only thing that should change is the programming language, and every other part of
the test should be as identical as possible. Even comparing C to C++ implies different
compilers, different libraries, and other differences that you may not know about.
Instead, think about comparing the speed of two different crypto algorithms in a
given application.

One serious problem for fair tests is inadequate data sample sizes. This happens
because gathering data can be expensive (in time, money, labor, and so on) or because
the scientist just didn’t calculate how much data was needed. Consider an experiment
to determine the effectiveness of a cybersecurity education campaign at your com‐
pany. First, determine as best as possible the size of the total population. You may
have to guess or approximate. Second, decide on your confidence interval (margin of
error), such as ±5%. Third, decide on your desired confidence level, such as 95%.
Finally, use an online sample-size calculator to determine the recommended sample
size.1 Say your company has 1,000 employees and just did a cybersecurity awareness
campaign. You are asked to study whether or not the campaign was effective by sur‐
veying a sample of the employees. If you want a 5% margin of error and 95% confi‐
dence, you need a sample size of at least 278 employees.

Designing a Fair Test | 19

http://www.surveysystem.com/sscalc.htm

Statistics is a science whose scientists cannot, in general, be
replaced simply by an online tool.

Getting the sample size correct gives you statistical power, the ability of the test to
detect the relationship between the dependent and independent variables (if one
exists). When your sample size is too small, the danger is that your results could be
overestimates or exaggerations of the truth. On the contrary, if your sample size is
very large and you are looking for tiny effects, you’re always going to find the effect.
So, calculate the right sample size in advance. Don’t start with 10 employees in the
cybersecurity education campaign study and keep adding more subjects until you get
a statistically significant result. Also, document and publish the reasons for choosing
the sample size you used. In some fields and journals, sample size is so important that
it’s standard practice to publish the study protocol before doing the experiment so
that the scientific community can collectively validate it! Experimental protocol out‐
side of computer science and cybersecurity is generally well defined, but could be
incompatible with fast-paced developments in cybersecurity.

A problem with proper experimental construction is that you need to identify and
address challenges to validity. Validity refers to the truth of the experiment’s proposi‐
tions, inferences, and conclusions. Could the changes in the dependent variable be
caused by anything other than changes in the independent variable? This is a threat to
internal validity. Research with a high degree of internal validity has strong evidence
of causality. External validity, on the other hand, refers to how well your results can
be generalized and applied to other situations or groups. One must often balance
internal and external validity in experimental design. For some examples of threats to
the validity of cybersecurity studies, see Experimental Challenges in Cyber Security: A
Story of Provenance and Lineage for Malware by Dumitras and Neamtiu (CSET 2011).

One challenge with fair tests is that when you create a hypothesis, you make a lot of
assumptions. In reality, each assumption is another hypothesis in disguise. Consider a
case where university students have been the subject of a phishing attack. The IT
security team gives you demographic data about the students who fell for the attack,
and you want to find correlations. Were men more likely than women? Were students
under age 20 more likely than students over 20? Were chemistry majors more likely
than biology majors? You could conduct fair tests by measuring each variable inde‐
pendently. There is also a statistical method called regression which allows you to
measure the relative contribution of several independent variables. You’ll see this
method in action in Chapter 10.

20 | Chapter 2: Conducting Your Own Cybersecurity Experiments

Analyzing Your Results
The goal of analysis is to determine if you should accept or reject your hypothesis and
then to explain why. While we described analysis as the step after experimental test‐
ing, it is wise to do some analysis during experimentation and data collection. Doing
so will help save time when troubleshooting problems with the experiment.

The analysis step of the scientific method is very experiment-specific. There are a few
common techniques that may be applicable to your particular experiment. One tech‐
nique is to literally look at the data. Constructing graphs can draw your attention to
features in the data, identify unexpected results, or raise new questions. The graphs
shown in Figure 2-1 helped the authors of a paper on botnets observe that “by com‐
paring the IRC botnet submissions in the two graphs, we can observe that, in 2007,
most of IRC botnets were belonging to different clusters. In 2008 instead, we still
received an [sic] high number of IRC bots, but they were mostly polymorphic varia‐
tions of the same family.”

Figure 2-1. Graph of botnet submissions comparing samples to clusters (courtesy of Use‐
nix)

Statistics is probably the most commonly used general-analysis method. It is also a
rich and complex field, so we skim only the surface here to introduce general topics
of use to you. All scholastic disciplines need a logic. The logic of a discipline is the
methodology the discipline uses to say that something is correct, and statistics is one
such set of rules. Descriptive statistics describe the basic features of a collection of
data, such as the mean, median, mode, standard deviation (or variance), and fre‐
quency. Inferential statistics uses samples of a larger dataset to infer conclusions
about the larger population. Examples of inferential statistics are Bayesian inference,
comparison to specific distributions (such as a chi-square test), grouping by cate‐
gories (statistical classification), and regression (estimating relationships between
variables). Table 2-2 illustrates various distributions of data, and a corresponding
analysis method.

Analyzing Your Results | 21

http://bit.ly/1SlFsMl
http://bit.ly/1SlFsMl

Table 2-2. Correspondence between analytical goals, graphical data, and analytical methods

Analytical goal Data visualization Analytical
method to apply

Frequency of things in a group Mode

Measurements on a ranked scale Median

Measurements on a linear scale Mean

Visual inspection of chaotic, random, or
uncategorized data

None

22 | Chapter 2: Conducting Your Own Cybersecurity Experiments

Analytical goal Data visualization Analytical
method to apply

Membership in a group or cluster, such as malware
or spam

Classification

An independent variable influences a dependent
variable, such as trends like price over time

Linear regression

One other note about statistics. A statistically significant relationship between two
variables is determined from a value called the chi-squared statistic. This chi-squared
statistic is a number that quantifies the amount of disparity between the actual
observed values and the values that would be expected if there were no relationship in
the population. The relationship between two variables is considered statistically sig‐
nificant if its probability of occurring is large enough to rule out it occurring by
chance. A p-value is a probability that measures how likely it is to observe the rela‐
tionship if there’s really no relationship in the population. It is generally accepted that
if the p-value is less than or equal to .05, you can conclude that there is a statistically
significant relationship between the variables.

Outside of formal statistical modeling is a method known as exploratory data analysis,
which is often used as a first look at experimental data. It has been described as find‐
ing the “attitude” of the data, applied before choosing a probabilistic model. Used
during or soon after data collection, exploratory data analysis is a cursory look that
can reveal mistakes, relationships between variables, and the selection of an analytical
method. It is very common to use graphical techniques to explore the data, such as
histograms and scatterplots. Remember, however, that as mathematician John Tukey
wrote in Exploratory Data Analysis, “exploratory data analysis can never be the whole
story.”

Many people are familiar with the adage “correlation does not imply causation.” This
error in logic is easy to make if you assume that one event depends (causation) on
another for the two to be related (correlation). Correlated events offer scientists val‐

Analyzing Your Results | 23

2 Who Falls for Phish? A Demographic Analysis of Phishing Susceptibility and Effectiveness of Interventions.

uable insights about things to investigate. However, the legitimate scientist must work
to show the cause. Controlled studies can be used to increase confidence that a corre‐
lation is a valid indicator of causation. The control group helps show that there is no
effect when there should be no effect, as in people who receive a placebo in a drug
trial. Say you develop a web browser plug-in that warns people of dangerous web
pages. There might be a correlation between how many people use the plug-in and
the number of dangerous sites they visit, but you should also measure how many
dangerous sites a control group—one without your security plug-in—also visits.

To determine causation, first be sure that the effect happened after the cause (see
Figure 2-2). In an experiment to study the effects of fatigue on 10-hour shifts in a net‐
work operations center, researchers find that people who are tired make more mis‐
takes. Those researchers should have looked to be sure that mistakes happened after
people were tired. You should also be aware that it can be difficult to identify and rule
out other variables. In a 2010 study about victims of phishing attacks, the research
results suggested that women and participants between ages 18−25 were more sus‐
ceptible.2 They point out, however, that there were limitations to the study, including
the fact that participants might have been riskier in the study than in real life.

Figure 2-2. XKCD comic on correlation

I will introduce a variety of methodologies and considerations for scientific experi‐
mentation and analysis in subsequent chapters of this book. If you wish to skip to any
in particular, they can be found as shown in Table 2-3.

Table 2-3. Book chapters for experimentation and analysis topics

Experimentation/analysis topic Chapter

Fuzzing Chapter 4

False Positive and False Negatives Chapter 5

Machine Learning Chapter 6

Security Assumptions and Adversarial Models Chapter 7

24 | Chapter 2: Conducting Your Own Cybersecurity Experiments

http://lorrie.cranor.org/pubs/pap1162-sheng.pdf
http://xkcd.com/552/

3 In 2013, the White House issued a memo directing public access to research funded by the federal govern‐
ment. In 2014, the National Science Foundation, the funding source for a large portion of federal science and
engineering research, launched its own initiative for public access to data.

Experimentation/analysis topic Chapter

Reproducibility and Repeatability Chapter 8

Game Theory Chapter 9

Regression Chapter 10

Double-Blind Experimentation Chapter 11

Evaluating Visualizations Chapter 12

Putting Results to Work
After experimentation and analysis, you will often have useful new knowledge, infor‐
mation, or insights. The most obvious way to apply the knowledge gained from sci‐
ence is to improve the use of tools and improve the tools themselves. Take forensics,
for example. Your job is forensic analysis and you found a new open source forensic
tool. You designed a scientific evaluation and ran a quick experiment to see which
tool performs some forensic function faster or more accurately. Now with the knowl‐
edge you’ve gained, you have empirical data about which tool is better for your job.

Sharing your results is an important part of science. Sure, you may have selfish inten‐
tions to improve your proprietary product, or you might want to file for a patent.
Contributing your results to the public domain does not mean you won’t be rewar‐
ded. Google’s papers on the Google File System, MapReduce, and BigTable opened up
whole new fields of development, but they did not inhibit Google’s success.

Another way to put your experiment to work is to share the code and data you used.
This used to be very rare in computer science, but there is a growing movement
toward openness.3 The common repositories for source code are SourceForge and
GitHub. There are two common complaints against publishing code. The first con‐
cern is that it’s too much work to clean up unpolished or buggy code, and that other
users will demand support and bug fixes. I recommend spending a modest amount of
time to offer reasonably understandable and useful code, and then making it public
as is. The second concern is that your code is proprietary intellectual property. This
may be true, but the default decision should be to share, even if it’s only code snippets
rather than the whole program.

There are lots of ways to share your work and results. Here are some common
options, in order of increasing formality:

Putting Results to Work | 25

http://1.usa.gov/1WtXvWn
http://1.usa.gov/1WtXz8y

Blogs
Blogs offer an easy way to quickly share results with a broad online audience.
Individuals and companies are using this approach. See, for example, Light Blue
Touchpaper, Dell SecureWorks, Synack, and Brian Krebs.

Magazines
Magazines offer an opportunity to publish professionally without the formal pro‐
cess of an academic journal. Examples include SC Magazine and Security Maga‐
zine. IEEE Security and Privacy Magazine is a highly respected publication for
cybersecurity research but has a more substantial review and editing process.

Conferences
Presenting at a conference is an opportunity to share your work, get feedback
from an audience, and build a reputation. The list of conferences is extensive,
and each offers a different kind of audience. Some conferences receive a lot of
submissions and only accept a select few. There are a few workshops devoted to
cybersecurity science, including the LASER Workshop (Learning from Authori‐
tative Security Experiment Results), Workshop on Cyber Security Experimenta‐
tion and Test (CSET), and Symposium on the Science of Security (HotSoS). For
general cybersecurity research conferences, consider the ACM SIGSAC Confer‐
ence on Computer and Communications Security (CCS), Black Hat, IEEE Sym‐
posium on Security and Privacy, and RSA Security Conferences. So-called hacker
conferences, such as BSides, CanSecWest, DEF CON, and ShmooCon, offer an
informal venue to present security work and results.

Journals
Scientific cybersecurity journals are considered the most respected place to pub‐
lish research results. Journal articles have conventions for content and format: an
introduction and subject-matter background, methodology, results, related work,
and conclusions. Unfortunately, the acceptance rates are often low, and the time
between submission and publication can be many months. Respected journals
include Computers & Security and IEEE Transactions on Information Forensics
and Security.

A Checklist for Conducting Experimentation
Below is a general list of considerations for conducting scientific experimentation in
cybersecurity. It captures the major components of the scientific method, and other
important considerations and waypoints. Science is too broad to have a universal and
concrete, one-size-fits-all checklist and your experiment will almost certainly have
modified or expanded steps, but this serves to guide you and help ensure that the
important aspects aren’t overlooked.

1. Formulate a question to study, the purpose for doing experimentation.

26 | Chapter 2: Conducting Your Own Cybersecurity Experiments

www.allitebooks.com

https://www.lightbluetouchpaper.org
https://www.lightbluetouchpaper.org
http://bit.ly/1WtXPo8
http://bit.ly/1WtXQZf
http://bit.ly/1WtXRMK
http://www.allitebooks.org

2. Ensure that the topic is nontrivial and important to solve.
3. Conduct a literature review and background research to see what is already

known about the topic.
4. Form your hypothesis, ensuring that the statement is testable, reproducible, and

falsifiable with an independent and dependent variable.
5. Make some predictions about your hypothesis.
6. Assemble a team to help execute the experiment, if necessary.
7. If studying human subjects, seek institutional review board (IRB) approval.
8. Test your hypothesis. Collect data.

a. Make a list of data, equipment, and materials you will need.
b. Carefully determine the procedure you will use to conduct the experiments.
c. Identify the environment or test facility where you will conduct experimenta‐

tion (e.g., laboratory, cloud, real world).
d. Determine the scientific and study instruments you will use (e.g., packet ana‐

lyzer, oscilloscope, human survey).
e. Identify necessary sample size to have statistical power.
f. Conduct your experiments.

i. Change only one variable at a time to ensure a fair test.
ii. Record data and observations.

iii. Sanity check the data during collection to be sure data collection is work‐
ing properly.

9. Analyze and interpret your data and test results to determine whether you should
accept your hypothesis.

10. Check for experimental errors and outliers. Are the results reasonable?
11. Document your experiment.

a. Include a description of your procedures with enough detail for others to
reproduce.

b. Include details of the data, equipment, configurations, and other materials
used in the experiment.

c. Describe the analytical technique(s) you applied and their results.
d. Explain your conclusions, including why you did or did not accept your

hypothesis.
e. Honestly explain limitations of your data, approach, and conclusions.
f. Provide considerations for future experiments or impact of your results.

A Checklist for Conducting Experimentation | 27

12. Determine if you should modify your hypothesis and conduct further experi‐
mentation.

13. Put your results to work by publishing a paper, creating a product, or making a
recommendation.

14. Make code and data used in experimentation publicly accessible if possible.

Project Management
Project management for your experiments can be very important, especially for large
and complex projects. The scientific method in all projects benefits from careful doc‐
umentation and record keeping. Something as simple as a notebook might work fine
for you.

For an example of extreme project management, see the 89-
page document describing requirements for human life scien‐
tific experiments on the International Space Station.

Large projects are likely to have multiple people, schedules, and deadlines—even mul‐
tiple budgets. Project management for a modest digital forensics experiment involv‐
ing two or three people might involve multiple code reviews, and weekly meetings to
track progress and review of test results. Larger projects often involve collaboration
across departments, institutions, or countries and can become unwieldy without dis‐
ciplined project management.

There are plenty of options for managing projects, communication, development, and
documentation. Wikis offer basic collaboration and can be set up with minimal effort
and cost. Web-based tools specifically tailored for project management include Base‐
camp, Redmine, Trello, and Wrike.

Conclusion
This chapter discussed the execution of the scientific method and key points in
designing an experiment. The key takeaways are:

• A hypothesis is a testable statement you believe to be true.
• In a fair test, only one experimental variable changes at a time and all other con‐

ditions remain the same.
• Analysis helps you determine whether to accept or reject a hypothesis. Statistics

is commonly used for analysis, and sample size determines statistical power.

28 | Chapter 2: Conducting Your Own Cybersecurity Experiments

http://bit.ly/1WtY82e
http://bit.ly/1WtY82e

• You can put scientific results to work by building tools and sharing results in
blogs, conferences, and journals.

• The checklist in this chapter can help ensure that you’ve thought about important
components of the scientific method.

References
• Matt Bishop. Computer Security: Art and Science (Boston, MA: Addison-Wesley

Professional, 2002)
• David Freedman, Robert Pisani, Roger Purves. Statistics, 4th Edition (New York,

NY: W. W. Norton & Company, 2007)
• Learning from Authoritative Security Experiment Results (LASER) Workshops
• Dahlia K. Remler and Gregg G. Van Ryzin. Research Methods in Practice (Thou‐

sand Oaks, CA: SAGE Publications, Inc., 2010)
• David Salsburg. The Lady Tasting Tea: How Statistics Revolutionized Science in the

Twentieth Century (New York, NY: Holt Paperbacks, 2002)
• Dennis Shasha and Cathy Lazere. Out of Their Minds: The Lives and Discoveries of

15 Great Computer Scientists (New York, NY: Copernicus, 1998)
• Symposium and Bootcamp on the Science of Security (HotSoS)
• John W. Tukey. Exploratory Data Analysis (Reading, MA: Addison-Wesley, 1977)

References | 29

http://www.laser-workshop.org
http://hot-sos.org

CHAPTER 3

Cybersecurity Experimentation and
Test Environments

Scientific inquiry and experimentation require time, space, and materials. Depending
on type, scale, cost, and other factors, you may want to run an experiment on your
laptop, in a lab, on a cloud, or in the real world. In the checklist for experimentation
in Chapter 2, an early step in testing a hypothesis was to “identify the environment or
test facility where you will conduct experimentation.” This chapter explores that topic
and explains the trade-offs and choices for different types of experimentation.

One way to think about experimentation is in an ecosystem, in other words, the “liv‐
ing” environment and digital organisms. The most obvious ecosystem is the real
world. Knowledge about cybersecurity science is certainly gained by observing and
interacting with the real world, and some scientists firmly believe that experimenta‐
tion should start with the real world because it grounds science in reality.

Sometimes the real world is inappropriate or otherwise undesirable for testing and
evaluation. It would be unethical, dangerous, and probably illegal to study the effects
of malware by releasing it onto the Internet. It is also challenging to observe or meas‐
ure real-world systems without affecting them. This phenomenon is called the
observer effect. Studying the way that users make decisions about cybersecurity
choices is valuable, but once subjects know that a researcher is observing them, their
behavior changes.

Consider a noncyber analogy. When scientists want to learn about monkeys, some‐
times the scientists go into the jungle and observe the monkeys in the wild. The
advantage is an opportunity to learn about the monkeys in an undisturbed, natural
habitat. Disadvantages include the cost and inconvenience of going into the jungle,
and the inability to control all aspects of the experiment. Scientists also learn about
monkeys in zoos. A zoo provides more structure and control over the environment

31

while allowing the animals some freedom to exert their natural behavior. Finally, sci‐
entists learn about monkeys in cages. This is a highly restrictive ecosystem that ena‐
bles the scientist to closely monitor and control many variables but greatly inhibits
the free and natural behavior of the animal. Each environment is useful for different
purposes.

Scientists use the term ecological validity to indicate how well a study approximates
the real world. In a study of passwords generated by participants for fictitious
accounts versus their real passwords, the experimenters said “this is the first study
concerning the ecological validity of password creation in user studies.…” In many
cases, and especially in practical cybersecurity, test environments that reflect the pro‐
duction environment are preferred because you want the test results to mimic perfor‐
mance of the same solution in the wild. Unfortunately, there is no standard
measurement or test for ecological validity. It is the experimenter’s duty to address
challenges to validity.

This chapter will look at environments and test facilities for cybersecurity experimen‐
tation. The first section introduces modeling and simulation, one way to test hypoth‐
eses offline. Then we’ll look at desktop, cloud, and testbed options that offer choices
in cost and scale. Finally, we’ll discuss datasets that you can use for testing. Keep in
mind that there may be no single right answer for how to conduct your tests and
experiments. In fact, you might choose to use more than one. People who study bot‐
net behavior, for example, often start with a simulation, then run a controlled test on
a small network, and compare these results to real-world data.

Modeling and Simulation
Modeling and simulation are methods of scientific exploration that are carried out in
artificial environments. For the results to be useful in the real world, these techniques
require informed design and clear statement of assumptions, configurations, and
implementations. Modeling and simulation are especially useful in exploring large-
scale systems, complex systems, and new conceptual designs. For example, they
might be used to investigate an Internet of the future, or how malware spreads on an
Internet scale. Questions such as these might only be answered by modeling and sim‐
ulation, especially if an emergent behavior is not apparent until the experimental scale
is large enough.

While “modeling and simulation” are often used together as a single discipline, they
are individual concepts. Modeling is the creation of a conceptual object that can pre‐
dict the behavior of real systems under a set of assumptions and conditions. For
example, you could create a model to describe how smartphones move around inside
a city. Simulation is the process of applying the model to a particular use case in order
to predict the system’s behavior. The smartphone simulation could involve approxi‐

32 | Chapter 3: Cybersecurity Experimentation and Test Environments

mating an average workday by moving 100,000 hypothetical smartphones around a
city of a certain size.

Modeling and simulation can be done in small environments (like on your laptop)
and large environments (like supercomputers). Software like MATLAB and R can run
many kinds of prebuilt simulations, and contain powerful programming languages
with flexibility for new experiments. Simulations can be written in traditional pro‐
gramming languages, using special libraries devoted to those tasks. Some modeling
and simulation tools are tailored for specific purposes. For example, ns-3 is an open
source simulation environment for networking research. Figure 3-1 shows a basic
wireless topology that can be created in ns-3 for a functional network simulation; it
follows one online tutorial.

Figure 3-1. A simulated wireless network topology in ns-3

The usefulness of modeling and simulation is primarily limited by the ability to
define and create a realistic model. Figuring out how to model network traffic, system
performance, user behavior, and any other relevant variables is a challenging task.
Within the cybersecurity community there remain unsolved questions about how to
quantify and measure whether an experiment is realistic enough.

Simulating human behavior is strongly desirable in simulations. A simulated network
without any simulated user traffic or activity limits its value, and can make the simu‐
lation ineffective. It can be useful to simulate normal activity in some scenarios, and
malicious or anomalous activity in other experiments. One solution is to replay previ‐
ously recorded traffic from real users or networks. This requires access to such data‐
sets and limits your control over the type and tempo of activity. Another solution is to
use customizable software agents. Note that these agents are more advanced than net‐
work traffic generators because they attempt to simulate real human behavior. Exam‐
ples of software agents include NCRBot, built for the National Cyber Range, and
SIMPass, specifically designed to simulate human password behavior. DASH is an
agent-based platform for simulating human behavior that was designed specifically
for the DETER Testbed (see Table 3-4).

Modeling and Simulation | 33

https://www.nsnam.org
https://www.nsnam.org/docs/tutorial/

Open Datasets for Testing
Publicly available datasets are good for science. A dataset, or corpus, allows research‐
ers to reproduce experiments and compare the implementation and performance of
tools using the same data. Public datasets also save you from having to find relevant
and representative data, or worry about getting permission to use private or propriet‐
ary data. The Enron Corpus is one example of a public dataset, and contains over
600,000 real emails from the collapsed Enron Corporation. This collection has been a
valuable source of data for building and testing cybersecurity solutions. Additional
datasets are listed in Table 3-1.

The primary challenges with creating open datasets are realism and privacy. The
community has not yet discovered how to create sufficiently realistic artificial
laboratory-created cyber data.

Data from real, live networks and the Internet often contains sensi‐
tive and personal information, sensitive company details, or could
reveal security vulnerabilities of the data provider if publicly dis‐
tributed. Anonymization of IP addresses and personally identifia‐
ble information is one way to sanitize live data. Another is to
restrict a dataset to particular uses or users.

Table 3-1. Datasets available for cybersecurity science

Dataset Description

MIT Lincoln Laboratory IDS Datasets Examples of background and attacks traffic

NSA Cyber Defense Exercise Dataset Snort, DNS, web server, and Splunk logs

Internet-Wide Scan Data Repository Large collection of Internet-wide scanning data from Rapid7, the University of
Michigan, and others

Center for Applied Internet Data
Analysis (CAIDA) Datasets

Internet measurement with collaboration of numerous institutions, academics,
commercial and noncommercial contributors, including anonymized Internet traces,
Code Red worm propagation, passive traces on high-speed links

Protected Repository for the Defense
of Infrastructure Against Cyber
Threats (PREDICT)

Several levels of data datasets (unrestricted, quasi-restricted, and restricted),
including BGP routing data, blackhole data, IDS and firewall data, and unsolicited bulk
email data

Amazon Web Services Datasets Public datasets that can easily be attached to Amazon cloud-based applications,
including the Enron Corpus (email), Common Crawl corpus (millions of crawled web
pages), and geographical data

Because cybersecurity is inherently about human communication,
datasets might be protected as human subjects research (HSR).
When human beings are the research subjects, various institutional
and corporate policies help ensure that the humans are appropri‐
ately protected.

34 | Chapter 3: Cybersecurity Experimentation and Test Environments

http://www.ll.mit.edu/ideval/data
http://www.usma.edu/crc/SitePages/DataSets.aspx
https://scans.io
http://imdc.datcat.org
http://imdc.datcat.org
https://www.predict.org
https://www.predict.org
https://www.predict.org
http://aws.amazon.com/public-data-sets/

Desktop Testing
Desktop testing is perhaps the most common environment for cybersecurity science.
Commodity laptops and workstations often provide sufficient computing resources
for developers, administrators, and scientists to run scientific experiments. Using
one’s own computer is also convenient and cost-effective. Desktop virtualization solu‐
tions such as QEMU, VirtualBox, and VMware Workstation are widespread and offer
the additional benefits of snapshots and revertible virtual machines.

DARPA has built and released an open source operating system extension to Linux
called DECREE (DARPA Experimental Cybersecurity Research Evaluation Environ‐
ment) that is tailored especially for computer security research and experimentation.
The platform is intentionally simple (just seven system calls), safe (custom executable
format), and reproducible (from the kernel up). DECREE is available on GitHub as a
Vagrant box and also works in VirtualBox and VMware.

Scientific tests do not inherently require specialized hardware or software. Depending
on what you are studying, common desktop applications such as Microsoft Excel can
be used to analyze data. In other cases, it is convenient or necessary to use bench‐
marking or analysis software to collect performance metrics. Many users prefer virtu‐
alization to compartmentalize their experiments or to create a virtual machine pre-
loaded with useful tools. Table 3-2 is a brief list of free and open source software that
could be used for a science-oriented cybersecurity workstation.

Table 3-2. Free and open source software that may be useful for cybersecurity science

Software Function

R Statistical computing and graphics

gnuplot Function and data plotting

Latex Document preparation

Scilab Numerical computation

SciPy Python packages for mathematics, science, and engineering

iPython Shell for interactive computing

Pandas Python data manipulation and analysis library

KVM and QEMU Virtualization

Wireshark Network traffic capture and analysis

ns-3 Modeling and simulation

Scapy Packet manipulation

gcc GNU compiler collection

binutils GNU binary utilities

Valgrind Instrumentation framework for dynamic analysis

iperf TCP/UDP bandwidth measurement

Desktop Testing | 35

https://github.com/CyberGrandChallenge

Software Function

netperf Network performance benchmark

RAMspeed Cache and memory benchmark

IOzone Filesystem benchmark

LMbench Performance analysis

Peach Fuzzer Fuzzing platform

Desktop testing is mostly limited by the resources of the machine, including memory,
CPU, storage, and network speed. Comparing the performance and correctness of
one encryption algorithm against another can be done with desktop-quality resour‐
ces. An average workstation running ns-3 can easily handle thousands of simulated
hosts. However, the US Army Research Laboratory ran an ns-3 scaling experiment in
2012 and achieved 360,448,000 simulated nodes using 176 servers. Malware analysis,
forensics, software fuzzing, and many other scientific questions can be explored on
your desktop, and they can produce significant and meaningful scientific results.

Cloud Computing
If a desktop environment is too limiting for your experiment, cloud computing is
another option. Cloud computing offers one key set of advantages: cost and scale.
Inherent in the definition of cloud computing is metered service, paying only for
what you use. For experimentation, this is almost always cheaper than buying the
same number of servers on-site. Given the seemingly “unlimited” resources of major
cloud providers, you also benefit from very large-scale environments that are imprac‐
tical and cost-prohibitive on-site. Compared with desktop testing, which is slow with
limited resources, you can quickly provision a temporary cloud machine—or cluster
of machines—with very large CPU, memory, or networking resources. In cases where
your work can be parallelized, the cloud architecture can also help get your work
done faster. Password cracking is commonly used as an example of an embarrassingly
parallel workload, and cloud-based password cracking has garnered much media
attention.

Cloud environments provide several scientifically relevant attributes. First, reproduci‐
bility is enhanced because you can precisely describe the environment used for a test.
With Amazon Web Services, for example, virtual machines have a unique identifier
(AMI) that you can reference. To document the hardware and software setup for your
experiment, you might say, “I used ami-a0c7a6c8 running on an m1.large instance.”
Microsoft, Rackspace, and other cloud providers have similar constructs, as shown in
Table 3-3.

36 | Chapter 3: Cybersecurity Experimentation and Test Environments

www.allitebooks.com

http://www.allitebooks.org

Table 3-3. Several cloud providers that offer services for cybersecurity science

Cloud provider Description

Amazon Web
Services

One of the largest and most widely used cloud providers, including a free tier

PlanetLab Publicly available cloud-based global testbed aimed at network and distributed systems research

CloudLab A “scientific instrument” with instrumentation and transparency to see how the system is operating, and
the ability to publish hardware and software profiles for external repeatability

Many companies, universities, and organizations now have their own on-premise
cloud or cloudlike solution for internal use. This environment combines the
attributes and benefits of cloud computing with increased security, local administra‐
tion, and support. You may benefit from this kind of shared resource for conducting
tests and experiments.

Cybersecurity Testbeds
Cybersecurity testbeds, sometimes called ranges, have emerged in the past decade to
provide shared resources devoted to furthering cybersecurity research and experi‐
mentation. Testbeds can include physical and/or virtual components, and may be
general purpose or highly specialized for a specific focus area. In addition to the col‐
lection of hardware and software, most testbeds include support tools: testbed control
and provisioning, network or user emulators, instrumentation for data collection and
situational awareness. Table 3-4 lists some testbeds applicable to cybersecurity. While
some testbeds are completely open to the public, many are restricted to academia or
other limited communities. Every year, new testbeds and testbed research appears at
research workshops such as CSET and LASER.

For those committed to scientific experimentation in the long term, investing in pub‐
lic or private testbed infrastructure is advantageous. Your cybersecurity testbed could
be dual-purposed for nonscientific business processes as well, including training,
quality assurance, or testing and evaluation (see Table 3-4). Experiment facilities with
limited capacity or capabilities can unfortunately limit the research questions that a
researcher wishes to explore. Therefore, carefully consider what you will invest in
before committing.

Table 3-4. Testbeds for cybersecurity

Testbed Focus area

Anubis Malware analysis

Connected Vehicle Testbed Connected vehicles

DETER Cybersecurity experimentation and testing

DRAKVUF Virtualized, desktop dynamic malware analysis

Cybersecurity Testbeds | 37

http://aws.amazon.com
http://aws.amazon.com
https://www.planet-lab.org
http://www.cloudlab.us
https://anubis.iseclab.org
http://www.its.dot.gov/testbed.htm
http://deter-project.org
http://drakvuf.com

Testbed Focus area

EDURange Training and exercises

Emulab Network testbed

Future Internet of Things (FIT) Lab Wireless sensors and Internet of Things

Future Internet Research & Experimentation (FIRE) European federation of testbeds

GENI (Global Environment for Network Innovations) Networking and distributed systems

NITOS (Network Implementation Testbed using Open Source) Wireless

OFELIA (OpenFlow in Europe: Linking Infrastructure and Applications) OpenFlow software-defined networking

ORBIT (Open-Access Research Testbed for Next-Generation Wireless
Networks)

Wireless

PlanetLab Global-scale network research

StarBed Internet simulations

One testbed that you might not immediately think of is a human testbed. It can be
tricky to find environments with a large number of voluntary human subjects willing
to participate in your study or experiment. Amazon Mechanical Turk was designed as
a marketplace for crowdsourced human work, where volunteers are paid small
amounts for completing tasks. Researchers have found that results from Mechanical
Turk are scientifically valid and can rapidly produce inexpensive high-quality data.

A Checklist for Selecting an Experimentation and Test
Environment
Here is a 10-point checklist to use when deciding on an experimentation or test envi‐
ronment:

1. Identify the technical requirements for your test or experiment.
2. Establish what testbed(s) you may have access to based on your affiliation (e.g.,

business sector, public, academic, etc.).
3. Estimate how much money you want to spend.
4. Decide how much control and flexibility you want over the environment.
5. Determine how much realism, fidelity, and ecological validity you need in the

environment.
6. Establish how much time, expertise, and desire you have to spend configuring

the test environment.
7. Calculate the scale/size you plan the experiment to be.
8. Consider whether a domain-specific testbed (e.g., malware, wireless, etc.) is

appropriate.

38 | Chapter 3: Cybersecurity Experimentation and Test Environments

http://edurange.org
http://www.emulab.net
https://www.iot-lab.info
http://www.ict-fire.eu
http://www.geni.net
http://nitlab.inf.uth.gr
http://www.fp7-ofelia.eu
http://www.orbit-lab.org
http://www.orbit-lab.org
https://www.planet-lab.org
http://starbed.nict.go.jp/en/
https://www.mturk.com

9. Identify the dataset that you will use, if required.
10. Create a plan to document and describe the environment to others in a repeata‐

ble way.

Conclusion
This chapter described important considerations for choosing the environment or
test facility for experimentation. The key takeaways were:

• Cybersecurity experiments vary in their ecological validity, which is how well
they approximate the real world.

• Modeling and simulation are useful in exploring large-scale systems, complex
systems, and new conceptual designs. Modeling and simulation are primarily
limited by the ability to define and create a realistic model.

• There are a variety of open datasets available for tool testing and scientific experi‐
mentation. Public datasets allow researchers to reproduce experiments and com‐
pare tools using common data.

• Cybersecurity experimentation can be done on desktop computers, cloud com‐
puting environments, and cybersecurity testbeds. Each brings a different amount
of computational resources and cost.

References
• David Balenson, Laura Tinnel, and Terry Benzel. Cybersecurity Experimentation

of the Future (CEF): Catalyzing a New Generation of Experimental Cybersecurity
Research.

• Michael Gregg. The Network Security Test Lab (Indianapolis, IN: Wiley, 2015)
• Mohammad S. Obaidat, Faouzi Zarai, and Petros Nicopolitidis (eds.). Modeling

and Simulation of Computer Networks and Systems (Waltham, MA: Morgan Kauf‐
mann, 2015)

• William R. Shadish, Thomas D. Cook, and Donald T. Campbell. (2002) Experi‐
mental and Quasi-experimental Designs for Generalized Causal Inference (Boston,
MA: Houghton Mifflin, 2002)

• Angela B. Shiflet and George W. Shiflet. Introduction to Computational Science:
Modeling and Simulation for the Sciences (Second Edition) (Princeton, NJ: Prince‐
ton University Press, 2014)

• USENIX Workshops on Cyber Security Experimentation and Test (CSET)

Conclusion | 39

http://www.cyberexperimentation.org/report/
http://www.cyberexperimentation.org/report/
http://www.cyberexperimentation.org/report/
https://www.usenix.org/conferences/byname/135

CHAPTER 4

Software Assurance

Software assurance, an important subdiscipline of software engineering, is the confi‐
dence that software will run as expected and be free of vulnerabilities. Given the
weight and importance of these tasks, scientific experimentation and evaluation can
help ensure that software is secure. In this chapter, we will look at the intersection of
software assurance and cybersecurity science. We will use fuzzing as an example of
experimentally testing a hypothesis, the importance and design of an adversarial
model, and how to put the scientific method to work in evaluating software exploita‐
bility.

The Department of Homeland Security describes software assurance as “trustworthi‐
ness, predictable execution, and conformance.” Programmers and cybersecurity prac‐
titioners spend a lot of time finding and mitigating vulnerabilities to build software
assurance, and cybersecurity science can aid that practice. “Since software engineer‐
ing is in its adolescence, it is certainly a candidate for the experimental method of
analysis. Experimentation is performed in order to help us better evaluate, predict,
understand, control, and improve the software development process and product.”
This quote is from an article from 1986, and is as true today as it was then.

In an ideal world, software developers could apply a magic process to confirm
without a doubt that software is secure. Unfortunately, such a solution is not avail‐
able, or at least not easily and universally available for all software. Formal verifica‐
tion uses the field of formal methods in mathematics to prove the correctness of
algorithms, protocols, circuits, and other systems. The Common Criteria, and before
it the Trusted Computer System Evaluation Criteria, provides standards for computer
security certification. Documentation, analysis, and testing determine the evaluation
assurance level (EAL) of a system. FreeBSD and Windows 7, for example, have both
obtained EAL Level 4 (“Methodically Designed, Tested, and Reviewed”).

41

1 Firefox has 12 million source lines of code (SLOC) and Chrome has 17 million as of June 2015. Windows 8 is
rumored to be somewhere between 30 million and 80 million SLOC.

There are plenty of interesting scientific experiments in software assurance. For
example, if you want to know how robust your company’s new music streaming ser‐
vice is, you could design the experiment methodology to test the software in a large-
scale environment that simulates thousands of real-world users. Perhaps you want to
know how to deploy or collect telemetry—automatic, remote collection of metrics
and measurements—from Internet-connected vehicles, and need to find the balance
of frequent transmissions of real-time data versus the cost of data connectivity. Soft‐
ware assurance is especially sensitive to correctly modeling the threat, so you might
experiment with the realism of the test conditions themselves. Discovering new ways
to automate the instrumentation and testing of software will continue to be valuable
to software assurance.

An Example Scientific Experiment in Software Assurance
A fundamental research question in software assurance is “how do we find all the
unknown vulnerabilities in a piece of software?” This question arises from the practi‐
cal desire to create secure solutions, especially as software grows ever larger and com‐
plex.1 A few general techniques have emerged in the past decade that practitioners
rely on to find vulnerabilities. Some techniques are tailored for specific situations,
such as static analysis when source code is available. Others can be applied in a vari‐
ety of situations. Here are some of the more common software assurance techniques:

Static analysis
Looks for vulnerabilities without executing the program. This may include
source code analysis, if available.

Dynamic analysis
Runs the program looking for anomalies or vulnerabilities based on different
program inputs. Often done in instrumented sandbox environments.

Fuzzing
A specific type of dynamic analysis in which many pseudorandom inputs are
provided to the program to find vulnerabilities.

Penetration testing
The manual or automated search for vulnerabilities by attempting to exploit sys‐
tem vulnerabilities and misconfigurations, often including human users.

For an example of scientific experimentation in software assurance, look at the paper
“Optimizing Seed Selection for Fuzzing” by Rebert et al. (2014). Because it is compu‐
tationally prohibitive to feed every possible input to a program you are analyzing,

42 | Chapter 4: Software Assurance

https://www.openhub.net
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-rebert.pdf

such as a PDF reader, the experimenter must choose the least number of inputs or
seeds to find the most bugs in the target program. The following abstract describes
the experiment and results of this experiment. The implied hypothesis is that the
quality of seed selection can maximize the total number of bugs found during a fuzz
campaign.

Abstract from a software assurance experiment
Randomly mutating well-formed program inputs or simply fuzzing, is a highly effec‐
tive and widely used strategy to find bugs in software. Other than showing fuzzers find
bugs, there has been little systematic effort in understanding the science of how to fuzz
properly. In this paper, we focus on how to mathematically formulate and reason about
one critical aspect in fuzzing: how best to pick seed files to maximize the total number
of bugs found during a fuzz campaign. We design and evaluate six different algorithms
using over 650 CPU days on Amazon Elastic Compute Cloud (EC2) to provide ground
truth data. Overall, we find 240 bugs in 8 applications and show that the choice of algo‐
rithm can greatly increase the number of bugs found. We also show that current seed
selection strategies as found in Peach may fare no better than picking seeds at random.
We make our data set and code publicly available.

Consider some ways that you could build and extend on this result. Software assur‐
ance offers some interesting opportunities for cross-disciplinary scientific explora‐
tion. Think of questions that bridge the cyber aspect with a non-cyber aspect, such as
economics or psychology. Could you use the fuzzing experiment as a way to measure
questions like: Does your company produce more secure software if a new developer
is paired with an experienced employee to instill a culture of security awareness? Do
developers who are risk-averse in the physical world produce more security-
conscious choices in the software they create? Multi-disciplinary research can be a
rich and interesting source of scientific questioning.

Fuzzing for Software Assurance
Fuzzing is one method for experimentally testing a hypothesis in the scientific
method. For example, a hypothesis might be that my webapp can withstand 10,000
examples of malformed input without crashing. Fuzzing has been around since the
1980s and offers an automated, scalable approach to testing how software handles
various input. In 2007, Microsoft posted on its blog that it uses fuzz testing internally
to test and analyze its own software, saying “it does happen to be one of our most
scalable testing approaches to detecting program failures that may have security
implications.”

Choosing fuzzing for your experimental methodology is only the start. Presumably
you have already narrowed your focus to a particular aspect of the software attack
surface. You must also make some assumptions about your adversaries, a topic we
will cover later in this chapter. It usually makes sense to use a model-based fuzzer that
understands the protocols and input formats. If you are fuzzing XML input, then you

Fuzzing for Software Assurance | 43

http://blogs.microsoft.com/cybertrust/2007/09/20/fuzz-testing-at-microsoft-and-the-triage-process/

can generate test cases for every valid field plus try breaking all the rules. In the inter‐
est of repeatability, you must track which test case triggers a given failure. Finally, you
certainly want to fuzz the software in as realistic an environment as possible. Use
production-quality code in the same configuration and environment as it will be
deployed.

Fuzzing requires some decisions that impact the process. For example, if the fuzzer is
generating random data, you must decide when to stop fuzzing. Previous scientific
exploration has helped uncover techniques for correlating fuzzing progress based on
code coverage, but code coverage may not be your goal. Even if you run a fixed num‐
ber of test cases, what does it mean if no crashes or bugs are found? There is also a
fundamental challenge in monitoring the target application to know if and why a fuz‐
zed input affected the target application. Furthermore, generating crashes is much
easier than tracking down the software bug that caused the crash.

Fuzzing may seem like a random and chaotic process that doesn’t belong in the scien‐
tific method. Admittedly, this can be true if used carelessly, but that holds for any
experimental method. Scientific rigor can improve the validity of information you get
from fuzzing. The reason behind why you choose fuzzing over any other technique is
also important. A user who applies fuzzing to blindly find crashes is accomplishing a
valuable task, but that alone is not a scientific task. Fuzzing must help test a hypothe‐
sis, and must adhere to the scientific principles previously discussed in “The Scientific
Method” on page 7, including repeatability and reproducibility.

At the opposite end of the bug-finding spectrum from fuzzing are formal methods.
Formal methods can be used to evaluate a hypothesis using mathematical models for
verifying complex hardware and software systems. SLAM, a Microsoft Research
project, is such a software model checker. The SLAM engine can be used to check if
Windows device drivers satisfy driver API usage rules, for example. Formal methods
are best suited for situations where source code is available.

Recall from Chapter 1 that empirical methods are based on observations and experi‐
ence. By contrast, theoretical methods are based on theory or pure logic. Fuzzing is
an empirical method of scientific knowledge. Empirical methods don’t necessarily
have to occur in the wild or by observing the real world. Empirical strategies can also
take many forms including exploratory surveys, case studies, and experiments. The
way to convert software assurance claims into validated facts is with the experimental
scientific method.

The Scientific Method and the Software Development Life
Cycle
Software assurance comes from following development best practices, and from con‐
sciously, deliberately adding security measures into the process. The software devel‐

44 | Chapter 4: Software Assurance

http://research.microsoft.com/en-us/projects/slam/

opment life cycle (SDLC) is surprisingly similar to the scientific method, as you can
see in Figure 4-1. Both processes have an established procedure which helps ensure
that the final product or result is of high quality. The IEEE Standard Glossary even
says “Software Engineering means application of systematic, disciplined, quantifiable
approach to development, operation, and maintenance of software.” The adjectives
used to describe this approach mirror those of the approach to scientific exploration.
However, just because both have a defined structure, simply following the process-
oriented SDLC does not necessarily mean you are doing science or following the sci‐
entific method.

Figure 4-1. Comparison of the software development life cycle with the scientific method

There are opportunities to apply the scientific method in the development life cycle.
First, scientific exploration can be applied to the SDLC process itself. For example, do
developers find more bugs than dedicated test engineers, or what is the optimal
amount of time to spend testing in order to balance security and risk? Second, science
can inform or improve specific stages of the SDLC. For example, is pair-
programming more efficient or more secure than individual programming, or what is
the optimal number of people who should conduct code reviews?

The SDLC also has lessons to teach you about the scientific method. Immersing your‐
self in the scientific method can sometimes cause you to lose sight of the goal. Science
may prove beneficial to cybersecurity practitioners by allowing them to do their jobs
better, improving their products, and generating value for their employers. The SDLC
helps maximize productivity, and satisfy customer needs and demands, and science
for its own sake might not be your goal.

Adversarial Models
Defining a realistic and accurate model of the adversary is an important and compli‐
cated undertaking. As we will see in Chapter 7, provable security relies on a model of
the system and an attack model. Cybersecurity as applied to software assurance and
other domains requires us to consider the motivations, capabilities, and actions of

Adversarial Models | 45

2 B. J. Wood and R. A. Duggan. “Red Teaming of Advanced Information Assurance Concepts,” DARPA Infor‐
mation Survivability Conference and Exposition, pp.112-118 vol.2, 2000.

those seeking to compromise the security of a system. This challenge extends to
human red teams who may attempt to emulate an adversary and also to algorithms
and software emulations of adversaries. Even modeling normal user behavior is chal‐
lenging because humans rarely act as predictably and routinely as an algorithm. The
best network traffic emulators today allow the researcher to define user activity like
70% web traffic (to a defined list of websites) and 30% email traffic (with static or
garbage content). Another choice for scientific experimentation (and training) is to
use live traffic or captures of real adversary activity.

Sandia National Laboratories’ Information Design Assurance Red Team (IDART) has
been studying and developing adversary models for some time. For example, it has
described a small nation state example adversary with these characteristics:2

• The adversary is well funded. The adversary can afford to hire consultants or buy
other expertise. This adversary can also buy commercial technology. These
adversaries can even afford to develop new or unique attacks.

• This adversary has aggressive programs to acquire education knowledge in tech‐
nologies that also may provide insider access.

• This adversary will use classic intelligence methods to obtain insider information
and access.

• This adversary will learn all design information.
• The adversary is risk averse. It will make every effort to avoid detection.
• This adversary has specific goals for attacking a system.
• This adversary is creative and very clever. It will seek out unconventional meth‐

ods to achieve its goals.

It is one thing to define these characteristics on paper and quite another to apply
them to a real-world security evaluation. This remains an open problem today. What
would it look like to test your cyber defenses against a risk-averse adversary? Here
might be one way: say you set up a penetration test using Metaploit and Armitage,
plus Cortana, the scripting language for Armitage. You could create a script that acts
like a risk-averse adversary by, for example, waiting five minutes after seeing a vul‐
nerable machine before attempting to exploit it (Example 4-1).

Example 4-1. A Cortana script that represents a risk-averse adversary

#
This script waits for a box with port 445 open to appear,

46 | Chapter 4: Software Assurance

www.allitebooks.com

http://www.allitebooks.org

waits 5 minutes, and then
launches the ms08_067_netapi exploit at it.
#
A modified version of
https://github.com/rsmudge/cortana-scripts/blob/master/autohack/autohack.cna
#

auto exploit any Windows boxes
on service_add_445 {
 sleep(5 * 60 * 1000);
 println("Exploiting $1 (" . host_os($1) . ")");
 if (host_os($1) eq "Microsoft Windows") {
 exploit("windows/smb/ms08_067_netapi", $1);
 }
}

on session_open {
 println("Session $1 opened. I got " . session_host($1) .
 " with " . session_exploit($1));
}

The bottom line is that good scientific inquiry considers the assumptions about the
capabilities of an adversary, such as what he or she can see or do. Journal papers often
devote a section (or subsection) to explaining the adversary model. For example, the
authors might state that “we assume a malicious eavesdropper where the eavesdrop‐
per can collect WiFi signals in public places.” As you create and conduct scientific
experiments, remember to define your adversarial model. For additional references
and discussions on real-world adversary simulations, see the blog posts from cyberse‐
curity developer Raphael Mudge.

Case Study: The Risk of Software Exploitability
Software assurance experts sometimes assume that all bugs are created equal. For a
complex system such as an operating system, it can be impractical to address every
bug and every crash. Software development organizations typically have an issue-
tracking system like Jira, which documents bugs and allows the organization to pri‐
oritize the order in which issues are addressed.

Not all bugs are created equal. As discussed earlier, risk is a function of threats, vul‐
nerabilities, and impact. Even with a carefully calculated risk analysis, understanding
the likelihood or probability of that risk occurring is vital. The Common Vulnerabil‐
ity Scoring System (CVSS) is a standard for measuring vulnerability risk. A CVSS
score takes into account various metrics, such as attack vector (network, local, physi‐
cal), user interaction (required or not required), and exploitability (unproven, proof
of concept, functional, high, not defined). Figure 4-2 shows the CVSS information for
Heartbleed. Calculating CVSS scores requires a thorough understanding of the vul‐
nerability, and is not easily done for every crash you generate. Microsoft’s crash ana‐

Case Study: The Risk of Software Exploitability | 47

http://blog.cobaltstrike.com/category/adversary-simulation/
http://blog.cobaltstrike.com/category/adversary-simulation/
https://www.atlassian.com/software/jira

lyzer, !exploitable, also calculates an exploitability rating (exploitable, probably
exploitable, probably not exploitable, or unknown), and does so based solely on crash
dumps. Microsoft says that the tool can tell you, “This is the sort of crash that experi‐
ence tells us is likely to be exploitable.”

Figure 4-2. National Vulnerability Database entry for Heartbleed (CVE-2014-0160)

A New Experiment
Consider a hypothetical scientific experiment to determine the likelihood of exploita‐
bility. Say you are a developer for a new embedded system that runs on an Internet-
enabled pedometer. Testing has already revealed a list of crashes and you would like
to scientifically determine which bugs to fix first based on their likelihood of exploita‐
bility. Fixing bugs results in a better product that will bring your company increased
sales and revenue. One question you could consider is how attackers have gone after
other embedded systems like yours. Historical and related data can be very insightful.
Unfortunately, it isn’t possible to test a hypothesis like “attackers will go after my
product in similar ways to Product Y” until your product is actually attacked, at
which point you will have data to support the claim. It is also difficult to predict how
dedicated adversaries, including researchers, may attack your product. However, it is
possible to use fuzzing to generate crashes, and from that information you can draw a
hypothesis. Consider this hypothesis:

Crashes in other similar software can help predict the most frequent crashes in our
new code.

48 | Chapter 4: Software Assurance

The intuition behind this hypothesis is that some crashes are more prevalent than
others, that there are identifiable features of these crashes shared between software,
and that you can use historical knowledge to identify vulnerable code in new soft‐
ware. It’s better to predict frequent crashes than to wait and see what consumers
report. You begin by gathering crashes that might indicate bugs in your own product.
This list could come from fuzzing, penetration testing, everyday use of the software,
or other crash-generating mechanisms. You also need crash information from other
similar products, either from your company or competitors. By fuzzing both groups,
you can apply some well-known techniques and determine if the hypothesis holds.

Here’s one approach:

1. Check for known vulnerabilities in the National Vulnerability Database. As of
June 2015, there were no entries in the database for Fitbits.

2. Use Galileo, a Python utility for communicating with Fitbit devices, to enable
fuzzing.

3. Use the Peach fuzzer or a custom Python script, based on the following, to send
random data to the device trying to generate crashes:

Connect to the Fitbit USB dongle
device = usb.core.find(idVendor=0x2687, idProduct=0xfb01)

Send data to the Fitbit tracker (through the dongle)
device.write(endpoint, data, timeout)

Read responses from the tracker (through the dongle)
response = device.read(endpoint, length, timeout)

4. Say you find six inputs that crash the Fitbit. Attach eight attributes to each crash:

• Stack trace
• Size of crashing method (in bytes)
• Size of crashing method (in lines of code)
• Number of parameters to the crashing method
• Number of conditional statements
• Halstead complexity measures
• Cyclomatic complexity
• Nesting-level complexity

5. Apply automatic feature selection in R with Recursive Feature Elimination (RFE)
to identify attributes that are (and are not) required to build an accurate model.

Set the seed to ensure the results are repeatable
set.seed(7)

Case Study: The Risk of Software Exploitability | 49

https://nvd.nist.gov
https://bitbucket.org/benallard/galileo/overview

Load the libraries that provide RFE
library(mlbench)
library(caret)

Load the data
data(FitbitCrashData)

Define the control using a random forest selection function
control <- rfeControl(functions=rfFuncs, method="cv", number=10)

Run the RFE algorithm
results <- rfe(FitbitCrashData[,1:8], FitbitCrashData[,9],
 sizes=c(1:8), rfeControl=control)

Summarize the results
print(results)

List the chosen features
predictors(results)

Plot the results
plot(results, type=c("g", "o"))

Without going into depth, machine learning is an approach that builds a model from
input data and learns how to make predictions without being told explicitly how to
do so (machine learning is covered in Chapter 6). This technique is good for testing
the hypothesis because we don’t know whether crashes in our new code are related to
crashes in the other software. Within machine learning is a process called feature
selection, which is designed to identify the attributes that most effect the model. For
example, a crash feature might be the number of parameters to the code function that
crashed. Perhaps crashes are more frequent in functions with more parameters. Fea‐
ture selection also weeds out irrelevant attributes; maybe the number of lines of code
in the crashing function has no statistical correlation with the number of crashes.

For a technical deep dive into this process, see “Which Crashes
Should I Fix First?: Predicting Top Crashes at an Early Stage to Pri‐
oritize Debugging Efforts” by Kim et al. (2011).

In the end, you will want to show that machine learning, based on related software
crashes, accurately predicted frequent crashes in your new code.

50 | Chapter 4: Software Assurance

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5711013
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5711013
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5711013

How to Find More Information
Research in many software assurance areas—especially vulnerability discovery—is
presented in general cybersecurity journals and conferences but also at domain-
specific venues including the International Conference on Software Security and Reli‐
ability and the International Symposium on Empirical Software Engineering and
Measurement. Popular publications for scientific advances in software assurance are
the journal Empirical Software Engineering and IEEE Transactions on Software Engi‐
neering.

Conclusion
This chapter described the intersection of cybersecurity science and software assur‐
ance. The key concepts and takeaways are:

• Scientific experimentation and evaluation can help ensure that software is secure.
• Scientists continue to study how to find unknown vulnerabilities in software.
• Fuzzing is one method for experimentally testing a hypothesis in the scientific

method.
• The scientific method and the software development life cycle each provide

structure and process, but neither replaces the other.
• Realistic and accurate models of adversaries are important to cybersecurity sci‐

ence, and one must consider assumptions about the capabilities of an adversary.

References
• Mark Dowd, John McDonald, Justin Schuh. The Art of Software Security Assess‐

ment: Identifying and Preventing Software Vulnerabilities (Boston, MA: Addison-
Wesley Professional, 2006)

• Gary McGraw. Software Security: Building Security In (Boston, MA: Addison-
Wesley Professional, 2006)

• Claes Wohlin et al. Experimentation in Software Engineering (Heidelberg:
Springer, 2012)

How to Find More Information | 51

1 Dorothy Denning. “An Intrusion-Detection Model,” IEEE Transactions on Software Engineering, Volume
SE-13, Issue 2, Feb. 1987

CHAPTER 5

Intrusion Detection and Incident Response

Computer security intrusion detection and incident response began as an academic
and scientific study in the 1980s. One of the first intrusion detection papers, written
by Dorothy Denning, introduced an anomaly detection model that describes the
foundation of the technology even today. “The model is based on the hypothesis that
security violations can be detected by monitoring a system’s audit records for abnor‐
mal patterns of system usage,” Denning wrote.1 Intrusion detection continues to
evolve and remains an active area of research and development. The field of incident
response emerged from practitioners in response to technology misuse. The first
computer emergency response team, the CERT Coordination Center, was created in
1988 in response to the Morris worm. The need to respond and manage security inci‐
dents is a practical one, but also an area that can be improved through science. In
fact, the practice of incident response naturally includes scientific, or at least
scientific-like, inquiry to investigate what, how, and why an incident occurred. Rigor
in incident response can be especially important if the incident may eventually
become part of a legal proceeding.

Rigor isn’t just about following a process. Be sure to document
what you tried, what worked and didn’t work, and gaps you identi‐
fied. This is important not only for legal matters, but also for devel‐
oping new hypotheses later.

Scientific work in intrusion detection and incident response today continues to focus
on improving the speed and effectiveness of real-world solutions, especially as net‐

53

http://www.cert.org/about/

work speeds increase. Research and development are also active in applying detection
and response to new technologies, from SCADA to the Internet of Things. In recent
years the scope of intrusion detection has broadened from a standalone, dedicated
IDS machine to distributed, coordinated detection and big data analytics. Scientific
thinking can also help dispel intrusion detection folk wisdom like “polymorphic
attacks give attackers an advantage” and “antivirus products universally cause a sig‐
nificant performance penalty to workstations.”

In this chapter, you’ll learn how to scientifically evaluate choices for purchasing an
intrusion detection system (IDS), how false positives and false negatives affect scien‐
tific analysis, how to measure performance and scalability, and how to conduct an
example experiment to maximize Snort IDS signature performance.

An Example Scientific Experiment in Intrusion Detection
For an example of scientifically informed development and evaluation in intrusion
detection, look at the paper “A Lone Wolf No More: Supporting Network Intrusion
Detection with Real-Time Intelligence” by Amann, Sommer, Sharma, and Hall
(2012). In the following abstract, you can see that the implied hypothesis is that inte‐
grating external intelligence into the IDS decision process produces a broader view
that increases reliability of detecting complex attacks. While the primary goal is
developing an enhanced IDS solution, the scientific method is used for performance
evaluation to determine volume and latency. The authors test the proposed solution
under realistic workloads to measure the traffic volume and added delays introduced
by their new feature. Unfortunately, the authors do not measure changes in reliability
(other than anecdotal evidence) with which to truly evaluate the hypothesis.

Abstract from an intrusion detection experiment
For network intrusion detection systems it is becoming increasingly difficult to reliably
report today’s complex attacks without having external context at hand. Unfortunately,
however, today’s IDS cannot readily integrate intelligence, such as dynamic blacklists,
into their operation. In this work, we introduce a fundamentally new capability into
IDS processing that vastly broadens a system’s view beyond what is visible directly on
the wire. We present a novel Input Framework that integrates external information in
real-time into the IDS decision process, independent of specific types of data, sources,
and desired analyses. We implement our design on top of an open-source IDS, and we
report initial experiences from real-world deployment in a large-scale network envi‐
ronment. To ensure that our system meets operational constraints, we further evaluate
its technical characteristics in terms of the intelligence volume it can handle under
realistic workloads, and the latency with which real-time updates become available to

54 | Chapter 5: Intrusion Detection and Incident Response

http://www.icir.org/johanna/papers/raid12loneWolf.pdf
http://www.icir.org/johanna/papers/raid12loneWolf.pdf

2 Bernhard Amann, Robin Sommer, Aashish Sharma, and Seth Hall. “A lone wolf no more: supporting network
intrusion detection with real-time intelligence.” In Proceedings of the 15th international conference on Research
in Attacks, Intrusions, and Defenses (RAID’12), Davide Balzarotti, Salvatore J. Stolfo, and Marco Cova (Eds.).
Springer-Verlag Berlin, Heidelberg (2012), 314-333.

the IDS analysis engine. The implementation is freely available as open-source soft‐
ware.2

Because this implementation is available as open source software, it would be easy to
develop a competing implementation and compare the two solutions. Alternatively,
you may wish to test this solution in a live network and report on a case study of how
well it works in your environment compared to your existing intrusion detection sys‐
tem.

An Unexpected Example of Intrusion Detection
In Neal Stephenson’s book Reamde, the main character, Richard, takes on an intrusion
detection problem: people entering airport terminals by walking upstream through
an exit portal and causing a security shutdown. Richard sees guarding against these
intruders as an example of a desperately boring job where incidents occur too infre‐
quently (once or twice per year) for guards to remain vigilant.

To test this hypothesis, Richard translates a stream of humans in a hallway into equiv‐
alently moving avatars in his massively multiplayer online role-playing game. He
offers rewards for players who catch goblins sneaking the wrong way through the pas‐
sageway. Richard adds fictitious, virtual wrong-way goblins every few minutes, and
soon 100% of the goblins are apprehended.

Richard’s technical friends note that this solution for identifying intruders is ridicu‐
lous, since the computer is already identifying intruders and depicting them in the
game. The point in the experiment, as Richard explains, is that the game proves that
such a platform works for crowdsourcing boring jobs.

You may want to think about how Stephenson’s analogy extends to network intrusion
detection experiments. Beyond gamification and crowdsourcing, how could you test
the idea? What would the important variables be?

False Positives and False Negatives
False positives and false negatives are both errors that occur in imperfect systems and
analysis, and arise often in scientific analysis. A false positive occurs when you, your
analysis, or your solution incorrectly identifies the presence of an event or phenom‐
enon when it was actually absent. A false negative occurs when you, your analysis, or

False Positives and False Negatives | 55

3 Stefan Axelsson. “The Base-Rate Fallacy and Its Implications for the Difficulty of Intrusion Detection,” In
Proceedings of the 6th ACM Conference on Computer and Communication Security, ACM Press, 1999, pp. 1–7.

your solution incorrectly identifies the absence of an event or phenomenon when it
was actually present.

Let’s start with a noncybersecurity example. You go to the doctor and are told that
you’ve tested positive for ycanthropy and that the test is 99% accurate. But 99% is the
probability that if you have the disease then you test positive, not the probability that
if you test positive then you have the disease. Because you hope that you don’t have
ycanthropy, you would like your test to be a false positive. Suppose that 0.1%—one
out of every thousand people—actually have this rare disease. Table 5-1 illustrates real
numbers instead of just percentages.

Table 5-1. True and false/positive and negative test results for lycanthropy

Sick People Healthy People (totals)

Test result positive 99 (true positives) 999 (false positives) 1,098

Test result negative 1 (false negatives) 98,901 (true negatives) 98,902

(totals) 100 99,900 100,000

Consider intrusion detection. An IDS has a false positive if it raises an alarm for an
intrusion when there was actually none present. Conversely, if the IDS has a false neg‐
ative, an intrusion slipped through without detection. Both are undesirable. However,
sometimes one is more undesirable than the other. In many cases, false positives and
false negatives are balanced—that is, lowering one increases the other. In intrusion
detection, a corporation may be unwilling to accept false negatives slipping through,
and therefore tolerates a greater number of false positives. How many false positives
or false negatives are acceptable depends on the situation.

In an important paper, Stefan Axelsson applied the base-rate fallacy
to intrusion detection systems and showed that a high percentage
of false positives had a significant effect on a system’s efficiency.3
One could say that the “effectiveness” of an IDS depends not on its
ability to detect intrusive behavior but on its ability to suppress
false alarms.

Nobody but you can tell if something is a false positive or false negative in your net‐
work. Say you run Snort with the following rule, which detects denial-of-service
attacks by alerting on traffic with the same source and destination IP address, and it is
raising lots of alarms:

56 | Chapter 5: Intrusion Detection and Incident Response

www.allitebooks.com

http://www.allitebooks.org

 alert ip any any -> any any (msg:"BAD-TRAFFIC same SRC/DST";
 sameip; reference:cve,CVE-1999-0016;
 reference:url,www.cert.org/advisories/CA-1997-28.html;classtype:bad-unknown;
 sid:527; rev:4;)

Whenever you see lots of alarms from a rule, especially a newly added rule, you
should take a careful look at the validity of the alarms. In this case, this rule is known
to cause false positives due to normal Windows server traffic on UDP ports 137 and
138. If you didn’t know this was a common false positive, you would look at the
alarms and start by investigating the offending source IP. In this case, it is easy to mit‐
igate the false positives by explicitly ignoring this rule for a Windows server (with IP
10.1.10.1):

 alert ip !10.1.10.1 any -> any any (msg:"BAD-TRAFFIC same SRC/DST";
 sameip; reference:cve,CVE-1999-0016;
 reference:url,www.cert.org/advisories/CA-1997-28.html; classtype:bad-unknown;
 sid:527; rev:4;)

To experiment with false negatives, you could generate packets that should violate the
rule and send it past the IDS. If there is no alarm, you have a false negative and you
should investigate why the traffic didn’t match the IDS rule. Here is a command to
test the rule used above using hping3, a versatile packet creation tool:

 hping3 10.1.10.1 --udp --spoof 10.1.10.1

These errors are certainly not limited to intrusion detection. Anytime an imperfect
system must answer binary (yes/no) questions about the presence or absence of a
cybersecurity-related phenomenon, the false positive and negative rates should be
calculated. Classical examples include antivirus (is this a virus?), log analysis (are
these events correlated?), and network protocol identification (is this an SSL packet?).

Cybersecurity solutions in practice do not have 100% accuracy and therefore have
some level of false positives and/or false negatives. The measurement of these types of
errors is known as the false positive rate or false negative rate. These rates are probabil‐
ities over multiple comparisons. The false positive rate is as follows:

(False Positives) / (False Positives + True Negatives)

The false negative rate is here:

(True Negatives) / (True Positives + True Negatives)

In scientific literature, it is common to see a plot of the true positives and the false
positives, known as a receiver operating characteristic (ROC) curve. The graph illus‐
trates the accuracy of the system (called the detector) in single-detection tasks like
intrusion detection. In Figure 5-1, you can see how the shape of the curve shows the
accuracy of the system, with perfect accuracy in the top-left corner.

False Positives and False Negatives | 57

Figure 5-1. Ideal receiver operating characteristic (ROC) curves (from University of
Newcastle)

Sometimes it is possible to lower the false positive and false negative rates by sacrific‐
ing some other variable, such as performance. Giving the system additional time to
calculate a more accurate result could be worth the trade-off, but experimentation is
required to understand how much improvement in accuracy can be gained and
whether users are willing to accept the added time cost. For evaluation purposes, it is
useful to plot detection rate versus false alarms per unit time. These curves convey
important information when analyzing and comparing IDSs. An IDS can be operated
at any given point on the curve by tuning the system. Complex systems like IDS have
many settings and configuration parameters that affect the system’s overall accuracy.
Stateful firewalls and intrusion detection systems require more computing power and
complexity than stateless systems, but in most situations provide added security and
lower false positives and negatives at an acceptable cost.

In the next section we will look at how to measure, test, and report on performance
and two other attributes of cybersecurity solutions.

Performance, Scalability, and Stress Testing
Three attributes of cybersecurity products and solutions that are greatly important to
users are performance, scalability, and resilience. Cybersecurity protections are often
used in hostile environments where adversaries are actively working to break them
down. Therefore, users of these defenses want to know how well the offering per‐
forms, how well it scales, and how it performs under stress. Buyers often use these
attributes to compare products, and to judge products’ value. There are many inter‐
pretations for defining and measuring these attributes and selecting the correspond‐
ing scientific measurements. Consider these examples:

58 | Chapter 5: Intrusion Detection and Incident Response

http://www.cs.newcastle.ac.uk/publications/trs/papers/871.pdf
http://www.cs.newcastle.ac.uk/publications/trs/papers/871.pdf

• Our results suggest that keeping up with average data rates requires 120–200
cores.

• In the experimental evaluation, the two proposed techniques achieve detection
rates in the range 94%–99.6%.

• Compared with the native Android system, OurDroid slows down the execution
of the application by only 3% and increases the memory footprint by only 6.2%.

• Based on the data presented, the SuperSpeedy algorithm clearly outperforms the
other AES finalists in throughput.

Each of these statements speaks differently about performance, and indirectly about
scalability and resilience. In two cases, you see that the metric is given as a range
rather than a single value. Reporting that an intrusion detection system, for example,
has a 99% detection rate could be confusing or misleading because detection rates
depend on many variables. This variability is also why scalability is important. Cloud
computing is attractive to users because a fundamental tenant is the ability to handle
unexpected (and expected) changes in demand.

Think about how your cybersecurity process or product changes the operating envi‐
ronment. These changes could improve the status quo, such as a time or memory
speedup. Many solutions incur some kind of performance penalty to CPU usage,
response time, throughput, etc. You should consider the penalty when using your sol‐
ution in the average case and in the worst case. If you think that your solution incurs
“low overhead,” be prepared to defend that claim.

There are numerous performance benchmarks available today for a variety of use
cases. Table 5-2 shows a few.

Table 5-2. Performance benchmarks

Performance benchmark Description

Valgrind Open source instrumentation framework for dynamic analysis, including a suite of performance
benchmarks

Linpack Measures computing power

Rodinia Measures accelerated computing (e.g., GPUs)

netperf Measures network traffic

CaffeineMark Java benchmark

BigDataBench Benchmark for scale-out workloads

In reality, most researchers don’t use benchmark packages for measuring cybersecur‐
ity solutions. Reasons for this include cost and time, but low-cost and low-overhead
alternatives are also available to allow you to gather data. In Linux, sysstat provides
CPU utilization statistics that might suffice for your analysis. Many developers also

Performance, Scalability, and Stress Testing | 59

create their own tools and techniques for measuring performance. Whatever you
choose, be sure to report and adequately describe your methodology and results.

Here are two examples for benchmarking using built-in Linux tools. The first pro‐
vides timing statistics about this program run. The second detects memory usage and
errors.

[~] time ./program1

real 0m0.282s
user 0m0.138s
sys 0m0.083s

[~] valgrind --tool=memcheck ./program1
...
==8423== HEAP SUMMARY:
==8423== in use at exit: 31,622 bytes in 98 blocks
==8423== total heap usage: 133 allocs, 35 frees, 68,841 bytes allocated
==8423==
...

Case Study: Measuring Snort Detection Performance
In this section, we will walk through an experiment that measures Snort perfor‐
mance. Snort, the free and lightweight network intrusion detection package, was first
introduced at the Large Installation System Administration (LISA) Conference in
1999. It has enjoyed widespread adoption around the world because of its powerful
capabilities and open source distribution. Snort’s primary feature is a rule-based sig‐
nature engine and a rich language for creating signatures to detect activity of interest.

Building on Previous Work
Any practical deployment of Snort has many IDS signatures, possibly even hundreds
or thousands. Snort’s algorithms determine the order in which to check the input
against the applicable rules. As you can expect, for any given input, the more rules
that must be checked and the more computationally intensive the rules are, the
slower the entire system performs.

A 2006 study by Soumya Sen confirmed this claim (Figure 5-2). The study author
remarked, “The alarming fact about the growth in rule set is that larger rule sets
implies more severe time constraints on packet handling and pattern matching by
Snort, and failing to cope with this growing trend will mean severe performance dete‐
rioration and packet loss.” IDS signature writers are very particular about optimizing
rule performance and optimizing rule ordering. For example, defeat rules associated
with broad categories of traffic are often processed first because they quickly decide
whether there’s a need to process additional rules. Even individual rules can be opti‐
mized; a rule which fires based on packet size and content is better optimized by

60 | Chapter 5: Intrusion Detection and Incident Response

4 Liu Yang, Pratyusa K. Manadhata, William G. Horne, Prasad Rao, and Vinod Ganapathy. “Fast Submatch
Extraction using OBDDs,” In Proceedings of the eighth ACM/IEEE symposium on Architectures for networking
and communications systems (ANCS ’12). ACM, New York, NY, USA, 163−174.

checking the size first (a fast check) before searching the packet content for a match
(a slow check). Today Snort has a performance monitor module and performance
profiling tools for measuring real-time and theoretical maximum performance.

Figure 5-2. Dependence of bandwidth supported on rule set size (payload size: 1452
bytes) (from University of Minnesota)

It might be useful to look at the experimental setup for another evaluation in which
the researchers compared their new regular expression pattern matching algorithm to
Snort and a commercial SIEM. Note the details about the test environment and the
brief introduction to the metrics collected:4

We conducted our experiments on an Intel Core2 Duo E7500 Linux-2.6.3 machine
running at 2.93 GHz with 2 GB of RAM. We measure the time efficiency of different
approaches in the average number of CPU cycles needed to process one byte of a trace
file. We only measure pattern matching and submatch extraction time, and exclude
pattern compilation time. Similarly, we measure memory efficiency in megabytes (MB)
of RAM used during pattern matching and submatch extraction.

The authors provide specifications about the CPU, OS, and RAM because these
details affect the outcome of the evaluation. It is important to record similar details
for your experiments.

A New Experiment
Consider a new hypothetical scientific experiment to dynamically reorder Snort rules
based on historical usefulness. The intuition is that given a well-chosen set of individ‐

Case Study: Measuring Snort Detection Performance | 61

http://www.tc.umn.edu/~ssen/papers/bell_labs_report_snort.pdf

ually optimized signatures, signatures that have alerted in the recent past are likely to
appear again, and therefore should be checked early in the detection process. Here
are null and alternative hypotheses:

H0

Dynamically reordering signatures of recently observed alerts to the top of the
list will not improve Snort performance.

H1

Dynamically reordering signatures of recently observed alerts to the top of the
list improves Snort performance.

You will want to compare the performance with and without reordering in order to
decide if you should accept the hypothesis. As a control, you could use the results
from Sen’s study described above. However, this is unadvised because that study did
not publish enough details about the rules used or experimental setup that would
allow you to precisely compare your results (you can and should compare your
results with that existing study). Instead, you should do a new control test to measure
performance where the only variable change is dynamic rule reordering. Testing this
hypothesis requires a prototype system that can do what we’ve described, namely
reordering signatures in an intelligent way when Snort raises an alarm.

There are several ways to measure performance in this experiment. One would be to
observe the effects on the allowable bandwidth throughput, as in Sen’s study. Another
choice would be measurement of changes to false positives and false negatives. A
third choice would be measuring resource utilization such as memory and CPU load.
There is no one right answer, and you may choose more than one set of measure‐
ments, but be sure to explain what, how, and why you measured the variables you did.

Figure 5-4 shows a graph that could show how reordering compares to the baseline.
This graph shows that dynamic reordering allows you to have a greater number of
rules than no reordering at the same network bandwidth. Say that you also measure
the attacks detected and false alarms for Snort with and without dynamic reordering.
The ROC curve in Figure 5-3 illustrates the comparison between the two systems and
summarizes the relationship between false positive and detection probability. With
these results, it’s clear that for false alarm rates less than 55%, dynamic reordering
increases detection. This is curious since both systems are using the same rules so
you’d expect them to have identical ROC curves. We’ve discovered an interesting
result that demands further investigation. At this point, it would be useful to set a
new hypothesis about the cause and continue looking for the cause.

62 | Chapter 5: Intrusion Detection and Incident Response

Figure 5-3. ROC curve of the percentage attacks detected versus the percentage of false
alarms for Snort IDS with and without dynamic signature reordering

Figure 5-4. Bandwidth versus number of rules for Snort with and without rule reorder‐
ing

If you’ve proven that dynamic reordering increases Snort performance, people will
want to know and use your results. When you document and report the results of this
experiment to your boss, team, or colleagues, you will include all the details necessary
for another person to replicate the experiment. At a minimum, you would describe
the experimental setup (hardware, network, rules used, network traffic source, and
data collection instrumentation) and details about the algorithm for rule reordering.
In the best case, you should publish or post online the exact Snort rule files used,
source code for your modifications, and compilation and runtime commands.

Case Study: Measuring Snort Detection Performance | 63

How to Find More Information
Scientific research in this field is published and presented in general cybersecurity
journals and conferences and at intrusion-specific venues including the International
Symposium on Research in Attacks, Intrusions, and Defenses (RAID) and the Con‐
ference on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA).

Conclusion
This chapter explored cybersecurity science in intrusion detection and incident
response. The key takeaways are:

• The need to respond and manage security incidents is a practical one, but also an
area that can be improved through science.

• False positives and false negatives are errors in imperfect systems and analysis
which arise in scientific analysis. Modifying intrusion detection systems and their
signatures can adjust the rates of false positives and false negatives.

• Performance, scalability, and resilience are important to users of cybersecurity
products and solutions. Each can be measured and evaluated.

• We applied cybersecurity science to an example experiment that measured per‐
formance related to dynamically reordered Snort IDS rules.

References
• Christopher Gerg and Kerry J. Cox. Managing Security with Snort and IDS Tools.

(Boston, MA: O’Reilly, 2004)
• Henry H. Liu. Software Performance and Scalability: A Quantitative Approach.

(Indianapolis, IN: Wiley, 2009).
• David J. Marchette. Computer Intrusion Detection and Network Monitoring: A

Statistical Viewpoint. (Heidelberg: Springer, 2001)
• Zhenwei Yu and Jeffrey J. P. Tsai. Intrusion Detection: A Machine Learning

Approach. (London: Imperial College Press, 2011)

64 | Chapter 5: Intrusion Detection and Incident Response

CHAPTER 6

Situational Awareness and Data Analytics

This chapter focuses on the application of science to cyber situational awareness,
especially using big data. Awareness and understanding of what is happening on the
network and in the IT environment is an important goal for infosec professionals
because it allows us to confirm our security goals and quickly identify and respond to
unanticipated and predetermined events. Yet, situational awareness is elusive. Our
perception of cyber security is assembled from many data sources, not all of which
are digital. If you want to know how IT is working in a hospital, you’re as likely to
know of an outage from users as from an automated email alert.

Situational awareness can come from information that is trivial or extraordinarily
complex. To be sure that your web server is up, an automated process could simply
scan it every minute and alert an admin when the scan fails. These kinds of binary
checks—is it up or down?—are quite useful. Slightly more sophisticated checks come
from counting. For example, the firewall seems to be dropping 90% of outbound traf‐
fic—I wonder why? Despite their simplicity, both of these types of checks, binary and
counting, may still benefit from scientific experimentation.

You almost certainly need no help getting enough data about your network. There is
little debate about the explosive growth of data in recent years and into the future.
Humans are creating more and more digital artifacts like pictures, videos, and text
messages. We are also creating technology that generates more and more digital
information, from smartphones to telescopes. “Detecting misuse is also one area
where the application of modern data-science practices may shine…,” said the 2015
Verizon Data Breach Investigations Report. “All you need is data, features, and math.”
In cybersecurity, we often focus on analyzing machine data like server logs, transac‐
tion logs, and network logs. Researchers such as Roy Maxion at Carnegie Mellon Uni‐
versity are using scientific experiments to look at new data sources, like the timing of

65

http://www.cs.cmu.edu/~keystroke/

1 Fabian Fischer and Daniel A. Keim. “NStreamAware: Real-Time Visual Analytics for Data Streams to
Enhance Situational Awareness.” In Proceedings of the IEEE Conference on Visual Analytics Science and Tech‐
nology (VAST), 2014.

keystrokes, that might help provide new sources of situational awareness for ques‐
tions including “How sure are we that Bob is the one using the computer?”

An Example Scientific Experiment in Situational
Awareness
For an example of scientific experimentation in situational awareness, see the paper
“NStreamAware: Real-Time Visual Analytics for Data Streams to Enhance Situational
Awareness” by Fischer and Keim.1 In the following abstract, you can see a brief sum‐
mary of a two-part software package that provides situational awareness using visual‐
izations of summarized data streams. The implied hypothesis could be that “stream
slices presented in a visual analytic application will enable a user to more effectively
focus on relevant parts of the stream.” These developers evaluated their solution with
two case studies, one to demonstrate its usefulness in detecting network security
events in an operational network and another with publicly available data from the
2014 VAST Challenge.

One important consideration to tool development is that users will probably use it in
ways you didn’t intend or foresee. The designers of NStreamAware showed two dif‐
ferent use cases: network traffic and social media traffic. It is common and encour‐
aged for researchers to think about use cases beyond the scope of the specific and
intended use. By showing or describing the potential for extended uses of your scien‐
tific results or tools, you demonstrate the generality and usefulness of the solution.
Some scientists call this “broader impact” to include benefits to other fields of science
and technology.

Abstract from a situational awareness experiment
The analysis of data streams is important in many security-related domains to gain sit‐
uational awareness. To provide monitoring and visual analysis of such data streams, we
propose a system, called NStreamAware, that uses modern distributed processing tech‐
nologies to analyze streams using stream slices, which are presented to analysts in a
web-based visual analytics application, called NVisAware. Furthermore, we visually
guide the user in the feature selection process to summarize the slices to focus on the
most interesting parts of the stream based on introduced expert knowledge of the ana‐
lyst. We show through case studies, how the system can be used to gain situational
awareness and eventually enhance network security. Furthermore, we apply the system
to a social media data stream to compete in an international challenge to evaluate the
applicability of our approach to other domains.

66 | Chapter 6: Situational Awareness and Data Analytics

www.allitebooks.com

http://www.vacommunity.org/VAST+Challenge+2014
http://www.allitebooks.org

The researchers describe their goal as an attempt to address the general problem of
streaming data. “The challenge in this field is also to merge and aggregate heteroge‐
neous high velocity data streams…,” they write. “The ultimate goal allows the analysts
to actually get an idea what is going on in a data stream to gain situational awareness.”
Others might have approached the problem by running analytics on a stored collec‐
tion of data such as NetFlow records. In fact, it can seem confusing to figure out why
a scientist took a particular approach or what led her to consider a certain hypothesis.
As a researcher, I’ve learned that people are most excited about scientific results that
apply to them, and that knowing what applies to them requires understanding their
situation and challenges. Unexpected leaps in science can seemingly come from
nowhere, but most scientific advances are incremental. As a practitioner, you have a
unique advantage because you see and experience the work environment day-to-day.
Your need to solve problems, combined with the curiosity to explore how or why
things work, will produce a constant stream of testable hypotheses.

Want to get started with queries against large volumes of NetFlow? Here’s an
approach that uses NetFlow records stored in a Hadoop Distributed File System, the
popular framework for distributed storage, and queries with Apache Hive, software
for querying datasets in distributed storage:

1. Add NetFlow records to HDFS.
[~] hadoop fs -mkdir /user/hadoop/data/netflow
[~] hadoop fs -put /netflow/* /user/hadoop/data/netflow

2. Create and populate a table in Hadoop using the data you just added.
[~] hive

hive> create external table netflow (date1 string, date2 string, \
 sec string, srcip string, dstip string, srcport int, \
 dstport int, protocol string) row format delimited \
 fields terminated by ',' lines terminated by '\n' \
 stored as textfile location '/user/hadoop/data/netflow';

3. Query the table using Hive. Consider some experiments to compare the query
times for using Hive compared to your current solution.

hive> select * from netflow where srcip='10.0.0.33' limit 1;
OK
2015-06-10 22:14:07 2015-06-10 22:14:08 0.000 10.0.0.33 10.0.0.255 138
138 UDP
Time taken: 0.052 seconds, Fetched: 1 row(s)

4. You can imagine the richness that would come by adding other data sources,
such as firewall, IDS, antivirus, database logs, and industry-specific logs like wire
transfers and credit data. This is exactly what Zions Bancorporation did by mov‐

An Example Scientific Experiment in Situational Awareness | 67

https://hadoop.apache.org
https://hive.apache.org

2 Cloud Security Alliance (CSA) Big Data Working Group. Big Data Analytics for Security Intelligence, Septem‐
ber 2013.

ing three terabytes of data a week to Hadoop and MapReduce, decreasing query
time from 20 minutes or more down to about one minute.2

Experimental Results to Assist Human Network Defenders
The goal of cybersecurity tools is to help humans carry out a particular function. We
build tools to help us do our jobs faster, more effectively, and more safely. Automa‐
tion is key to keeping up with the task volume we would otherwise have to attend to,
and we now trust automated systems to act—and sometimes make decisions—on our
behalf. Different organizations, countries, and cultures have different tolerances
about the type and scope of automated responses. One organization may ignore
unauthorized login attempts to the corporate VPN server, another may automatically
blacklist the offending IP address or even scan it back.

One example where data analytics can aid humans with situational awareness is risk
analysis. Nuanced questions such as “How much cyber-related risk are we accepting
today?” are nontraditional for most companies but are enabled by advances in data
analytics and machine learning. Interset is a Canadian company with the tagline “The
science of threat detection.” Interset sells a commercial solution that collects enter‐
prise data and uses behavioral analytics for threat analysis. It writes in a whitepaper,
“Big Data & Behavioral Analytics Applied to Security,” about the mathematical model
for behavioral analytics that it developed and implemented, which aggregates data
about activities, users, files, and methods. End users can consume the results from
these analytics with visual illustrations like the one in Figure 6-1.

Figure 6-1. Interset visualization of risky behavior using behavioral analytics

68 | Chapter 6: Situational Awareness and Data Analytics

http://bit.ly/1Nl3QZH
http://bit.ly/1Nl3RNt

Calculating cyber risk is complicated and not well understood today. You could con‐
duct many scientific experiments to develop a risk equation that works for you. You
might say “the more customer data we store in the database, the higher the risk that
an attacker will try to steal the data.” There are a great number of variables that affect
this hypothesis including user training and countermeasures protecting the data. It
would be extraordinarily complex to evaluate all the influential variables, but you can
evaluate individual ones. Interset considers four factors (user, activity, file and
method) in its model for behavioral risk. Using a ground-truth realistic dataset (your
real network is unadvised), you could design your own risk equation and experimen‐
tally test to see how well it works.

Cognitive psychology tells us that humans aren’t very good at judging probability or
frequency of events. Given all the machines and users in your network, for example,
which one is most likely to be attacked? Which one, if attacked, would cause the most
downtime? The most financial impact? When Amazon.com went down in 2013, peo‐
ple speculated that they lost between $66,000−$120,000 per minute.

Drew Conway, author of Machine Learning for Hackers, describes data science as the
intersection of hacking skills (e.g., file manipulation, algorithms), knowledge of math
and statistics, and substantive expertise (Figure 6-2). While there is interesting sci‐
ence in each overlapping area, practical motivating questions and hypotheses come
from substantive expertise, the grounding in the important real-world problems of a
domain like cybersecurity. You don’t necessarily need to possess all of these skills
yourself. A team of three people, each with one skill area, can collaborate and pro‐
duce strong results. Say you are a subject matter expert in DNS security and want to
study the use of domain generation algorithms (DGAs), dynamically calculated Inter‐
net domain names used in malware like Conficker instead of hardcoded, static URLs
for command and control. If you were monitoring DNS queries leaving your net‐
work, could you determine which ones came from humans and which came from
malware with DGA? With the help of a statistician and a programmer you could cal‐
culate the distribution of alphanumeric characters in each DNS query and try to
detect and categorize human-looking and algorithmically generated domains. This
situational awareness could help identify malware in your network or explain other
sources of nontraditional DNS traffic.

Experimental Results to Assist Human Network Defenders | 69

Figure 6-2. Drew Conway’s data science Venn diagram

No matter which combination of skills you possess for data science, machine learning
is one of the broad fields you should be familiar with as you conduct tests and experi‐
ments for cybersecurity science. Machine learning offers features that nicely match
the problems associated with situational awareness. The next section will summarize
the important aspects of machine learning and how it might assist your scientific
explorations.

Machine Learning and Data Mining for Network
Monitoring
Machine learning is a scientific discipline, a multidisciplinary subfield of computer
science, and a type of artificial intelligence. Speech recognition like Siri and Google
now use an approach to machine learning (called neural networks) to enable
machines to parse and understand human speech. In the past, computer scientists
used static pattern-matching rules to parse data. Algorithms for machine learning, on
the other hand, learn because their performance improves with experience without
being explicitly reprogrammed. The more audio that a speech recognition algorithm
processes, the more accurate it becomes. Machine learning is good at recognizing
similar or variant things, not at identifying brand-new things. And remember, there
is no one-size-fits-all machine learning solution, and the algorithms are only as good
as the data they rely on.

Machine learning has many applications in cybersecurity solutions, from fraud detec‐
tion to identifying high-risk employee behavior to intrusion detection and preven‐
tion. Here’s a specific use case. Twitter cares a lot about detecting and preventing fake
accounts, compromised accounts, and spam. Twitter might think that one way to
detect fake accounts is by the number of tweets the account sends, and it could use

70 | Chapter 6: Situational Awareness and Data Analytics

http://bit.ly/conway-data-venn

machine learning to test that hypothesis. However, machine learning might reveal
unexpected features of fake accounts, such as the mean time between tweets.

The field of machine learning is much too broad and complex for more than concise
coverage here, but hopefully in this simple introduction you will come to understand
its place in cybersecurity science and situations when machine learning might benefit
you. There are many different machine learning techniques, so it is important to
understand the ideas behind the various techniques in order to know how and when
to use them. There is even a science to machine learning itself, and it is important to
accurately assess the performance of a technique in order to know how well or how
badly it is working.

In Chapter 2 we first looked at exploratory data analysis and suggested that visually
looking at data could offer insights. Clustering, one approach to machine learning, is
one way to look at data and to see if some of the data points are more similar to each
other (grouped together in a cluster) than others. Clustering is one technique of
unsupervised learning. That is, you or the machine learning algorithm are trying to
find structure in unlabeled data. For example, finding clusters of malware families
using only the executable and no other metadata could be accomplished with cluster‐
ing. Classification, on the other hand, is a supervised learning approach. This task
involves the use of labeled training data to teach an algorithm how to classify new
examples. This technique is frequently used in image recognition where you tell the
algorithm “these are 100 pictures of human faces” and ask “do you think this other
picture is a face?”

As an experiment, say you want to cluster 15,000 possibly infected IP addresses.
Organizing malware into homogeneous clusters may be helpful to generate a faster
response to new threats and a better understanding of malware activities, since
homogeneity in a cluster can be linked to similarity. As a data point, each infected IP
address has associated features, some of which will be useful and others not. Using a
chi-square test for feature selection, a statistical test used to test the independence of
two events, you narrow down to 15 relevant features. Then, using the k-means clus‐
tering algorithm you find five distinct clusters of similarity among the infected hosts.
k-means is an extremely popular clustering algorithm that attempts to partition data
points into some number of clusters (k of them) in which each data point belongs to
the cluster with the nearest mean. The algorithm does this by picking points that have
a good chance of being in different clusters, and then assigning the other data points
to the closest cluster based on a calculation of the distance of that point to the center
of the cluster.

Looking for sample data to experiment with machine learning?
There are 320 datasets (including 91 in computer science/engineer‐
ing) in the UC Irvine Machine Learning Repository.

Machine Learning and Data Mining for Network Monitoring | 71

https://archive.ics.uci.edu/ml/datasets.html

One of the fastest ways to get started with machine learning is using R and the RStu‐
dio IDE. Despite a steep learning curve, R provides a free, high-quality environment
for data analysis. In addition to a large number of functions, included features such as
graphing are quite useful. Similar popular machine learning software includes Weka,
Apache Mahout, and Apache Spark.

With the spread of cloud computing, machine learning is now available as a service!
Azure Machine Learning and Amazon Machine Learning require little cost and
expertise and offer enormous scalability. Both of these offerings guide users through
questions that drive the process. Amazon Machine Learning currently supports three
types of machine learning categories: binary classification, multiclass classification,
and regression. Azure Machine Learning offers algorithms in regression, classifica‐
tion, clustering, and anomaly detection. Its algorithm cheat sheet can guide you
through selecting the appropriate algorithm based on the kind of question or data
you have (Figure 6-3).

Figure 6-3. Microsoft Azure Machine Learning Algorithm Cheat Sheet

No one algorithm in machine learning is appropriate for all problems; the chosen
algorithm has to fit the problem. In mathematical folklore are two so-called no free
lunch theorems that state if an algorithm performs well on one problem (or class of
problems), then it pays for that with degraded performance on the set of all other
problems. The takeaway is that because no algorithm is better than all others, you

72 | Chapter 6: Situational Awareness and Data Analytics

http://bit.ly/1Nl3Jxr

3 SPAWAR for DARPA/I2O. Independent Validation and Verification (IV&V) of Security Information and Event
Management (SIEM) Systems: Final Report, 2010.

need to use as much problem-specific knowledge as possible in selecting an algo‐
rithm.

$16,000 Malware Classification Challenge
From February 2015 to April 2015, Microsoft sponsored a challenge on Kaggle, the
website for predictive modeling and analytics competitions. For the challenge, partici‐
pants were given almost half a terabyte of data and asked to predict the probabilities
that each file belonged to one of nine malware families. A total of 377 teams partici‐
pated, and the top three teams received cash prizes totaling $16,000.

The winning team found three types of features that, when combined, enabled it to
win the competition: opcode n-grams, line counts in binary segments, and pixel
intensity from images created from ASM versions of the input files. In total the team
found 15,000 features, narrowed to 2,193 after random forest selection. It wrote all of
its code in Python.

Case Study: How Quickly Can You Find the Needle in the
Haystack?
Malicious activity in a computer network is almost always like a needle in a haystack.
The bad activity represents a very small percentage of total activity, and may even
actively try to camouflage itself. A great deal of research, product development, and
training have gone into this problem over time, and we have still not solved it. A 2010
DARPA test of six commercial security information and event management (SIEM)
systems reported that no system could identify “low and slow” attacks, those with low
activity volumes that occur slowly over time.3 In fact, attack detection that we could
call finding needles was the “single weakest area evaluated.” How could you use scien‐
tific experimentation applied to network data to find more needles?

Say you use Nagios, the popular open source network monitoring program, for situa‐
tional awareness of your moderately sized network and it generates 5,000 events per
week. Many of those correspond to normal infrastructure events, and your adminis‐
trators are overwhelmed and ignore or filter the notifications. What if you could add
value to your security operations by adding analytics to learn to detect anomalies and
uncover “low and slow” malicious activity? This sounds like an opportunity for a
summer intern that you can mentor through the scientific discovery process!

Case Study: How Quickly Can You Find the Needle in the Haystack? | 73

https://www.kaggle.com/c/malware-classification
https://www.nagios.org

A New Experiment
Consider a hypothetical experiment to explore adding data analytics to Nagios that
would automatically learn and detect outliers. Your intuition is that the network per‐
forms in a generally regular manner, and that anomalies to the norm can be detected
even if they occur “low and slow.” Here is a hypothesis:

Adding machine learning to Nagios will find more true positive anomalies than Nagios
and human analysts alone.

In this experiment, we must show that machine learning, the dependent variable,
increases the number of anomalies found. This kind of experiment is difficult to con‐
duct on live networks because you do not definitively know how many anomalies
there are. A better choice for this experiment is to simulate a live environment but use
data for which we know the precise number of anomalies. In the control group are
Nagios and human analysts, and we must measure how many anomalies they can dis‐
cover.

Time is an interesting factor in this experiment. You need to bound the time given to
the human analysts. However, the humans bring years of training and experience,
and the machine learning algorithms require time and experience to learn what nor‐
mal and anomalous activity looks like in the data. It seems only fair that the algo‐
rithm should be allowed some training time without incurring a penalty in the
experiment.

There are many ways to add machine learning to Nagios. As a developer and
designer, you’ll have to decide whether to use an algorithm that learns incrementally
as new data streams by, or to periodically retrain the algorithm with a batch algo‐
rithm. Both are potentially interesting, and might yield experiments to compare the
approaches. Your choice depends in part on how quickly you need new data to
become part of your model, and how soon old data should become irrelevant to the
model. These would also make for interesting experimental tests. Assume that you
decide to implement an incremental algorithm and call the new solution NagiosML.

The execution of the experiment might go as follows. Five experienced network ana‐
lysts are given one hour with Nagios and the test data and asked to identify the
anomalies. Say there are 10 anomalies and the analysts find 7 on average. Then we
train NagiosML with training data that contains 10 different anomalies. Once trained,
five different network analysts are given an hour with NagiosML and the test data
with which they also attempt to identify the anomalies. Say this time the analysts find
eight on average but also two false positives. We have accepted the hypothesis as sta‐
ted.

Nevertheless, the practical implications of the result are also important. The hypothe‐
sis did not ask to consider false positives, but in reality they cause added work to
investigate. Users will have to decide whether finding an extra anomaly outweighs

74 | Chapter 6: Situational Awareness and Data Analytics

two false positives. You may also consider tweaking the algorithm and re-running the
experiment to try to improve the detection rate and lower the error rate.

How to Find More Information
Advances and scientific results are shared at cybersecurity and visualization work‐
shops and conferences. The first International Conference on Cyber Situational
Awareness, Data Analytics, and Assessment (CyberSA) took place in 2015. Impor‐
tantly, situational awareness is not limited to cybersecurity, and we have much to
learn from other fields, from air traffic control to power plants to manufacturing sys‐
tems.

Conclusion
This chapter covered cybersecurity science for situational awareness and data analy‐
sis. The key takeaways are:

• Cybersecurity science can guide experiments that evaluate how well a solution is
helping human network defenders achieve a particular goal.

• It takes a combination of skills and expertise to conduct experiments in data sci‐
ence, and a collaborative team can produce strong results.

• Machine learning is good at recognizing similar or variant things and has many
applications in cybersecurity solutions, from fraud detection to identifying high-
risk employee behavior to intrusion detection and prevention.

• We set up an experiment to evaluate the hypothesis that adding machine learning
to Nagios network monitoring software would find more true positive anomalies
than Nagios and human analysts alone.

References
• Richard Bejtlich. The Practice of Network Security Monitoring (San Francisco, CA:

No Starch Press, 2013)
• Michael Collins. Network Security Through Data Analysis: Building Situational

Awareness (Boston, MA: O’Reilly, 2014)
• Peter Harrington. Machine Learning in Action (Shelter Island, NY: Manning Pub‐

lications, 2012)
• Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. An Introduction

to Statistical Learning: with Applications in R (Heidelberg: Springer, 2013)

How to Find More Information | 75

• Chris Sanders and Jason Smith. Applied Network Security Monitoring: Collection,
Detection, and Analysis (Waltham, MA: Syngress, 2013)

• Ian H. Witten, Eibe Frank, Mark A. Hall. Data Mining: Practical Machine Learn‐
ing Tools and Techniques (Waltham, MA: Morgan Kaufmann, 2011)

76 | Chapter 6: Situational Awareness and Data Analytics

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 7

Cryptography

Cryptography may be a science unto itself, but it also plays a major role in the science
of cybersecurity. Bruce Schneier described it this way: “Traditional cryptography is a
science—applied mathematics—and applied cryptography is engineering.” Gauss
famously called mathematics “the queen of the sciences.” Like other sciences, there
are pure mathematics (with no specific application in mind) and applied mathematics
(the application of its knowledge to applications and other fields).

Whether cryptography is a science, there is value in looking at how to use the scien‐
tific method to evaluate the design and application of cryptography. In this chapter,
we will look at provably secure cryptography. However, those proofs have limitations
because the proofs deal with very specific attacks. And despite provable security, peo‐
ple break or find flaws in cryptographic systems all the time. They’re broken because
of flaws in implementation, a true and often cited reason. Cryptographic systems also
suffer from defects in other noncryptographic systems, such as cryptographic keys
left unsecured in memory, lazy operating system practices, and side-channel attacks
(information leaks from the physical hardware running the cryptography).

Though there are open problems in the mathematical aspects of cryptography, you
are more likely interested in ways to use cybersecurity science to evaluate and
improve products and services. So, in this chapter we will ignore the fundamental
mathematical construction of cryptographic algorithms and focus on their imple‐
mentation and performance.

An Example Scientific Experiment in Cryptography
For an example of cybersecurity science in cryptography, look at the paper “SDDR:
light-weight, secure mobile encounters” by Lentz et al. (2014). In the following
abstract, you can see that an implied hypothesis is that SDDR, the authors’ new proto‐

77

http://bit.ly/1Sm2YZD
http://bit.ly/1Sm2YZD

col for discovery of nearby devices, is provably correct and at least as energy-efficient
as other proven cryptographic protocols. These developers took a two-pronged
approach in their evaluation with both formal proof of security and experimental
results of its energy efficiency using a research prototype. This combined approach
appeals to a wider audience than, say, a formal proof alone. Note that the abstract
highlights “four orders of magnitude more efficient” in energy-efficiency and “only
~10% of the battery,” though readers must draw their own conclusions about the
impressiveness of those results.

Abstract from an experiment of cybersecurity science in cryptography
Emerging mobile social apps use short-range radios to discover nearby devices and
users. The device discovery protocol used by these apps must be highly energy-
efficient since it runs frequently in the background. Also, a good protocol must enable
secure communication (both during and after a period of device co-location), preserve
user privacy (users must not be tracked by unauthorized third parties), while providing
selective linkability (users can recognize friends when strangers cannot) and efficient
silent revocation (users can permanently or temporarily cloak themselves from certain
friends, unilaterally and without re-keying their entire friend set).
We introduce SDDR (Secure Device Discovery and Recognition), a protocol that pro‐
vides secure encounters and satisfies all of the privacy requirements while remaining
highly energy-efficient. We formally prove the correctness of SDDR, present a proto‐
type implementation over Bluetooth, and show how existing frameworks, such as Hag‐
gle, can directly use SDDR. Our results show that the SDDR implementation, run
continuously over a day, uses only ∼10% of the battery capacity of a typical smart‐
phone. This level of energy consumption is four orders of magnitude more efficient
than prior cryptographic protocols with proven security, and one order of magnitude
more efficient than prior (unproven) protocols designed specifically for energy-
constrained devices.

As a practitioner, how would you apply these research results or ideas if you saw this
paper online or heard about it from a colleague? If you develop smartphone applica‐
tions, you might be interested in incorporating this protocol into your own product.
Thankfully, all of the research prototype code for SDDR is available on GitHub. Or,
you may have a solution of your own already and wish to compare how your algo‐
rithm compares to SDDR. Or maybe you’re curious or skeptical and want to replicate
or extend the experimental results from this paper.

Experimental Evaluation of Cryptographic Designs and
Implementation
One of the most common experimental evaluations in cryptography is of the perfor‐
mance of cryptographic algorithms. Cryptographers and practitioners compare algo‐
rithms in order to understand the algorithms’ strengths, weaknesses, and features.
Those results inform future cryptographic design and inform the choice of algorithm
to use in a new cybersecurity solution. Figure 7-1 illustrates a comparison of through‐

78 | Chapter 7: Cryptography

https://github.com/mattlentz/ebn-sddr

put for six cryptographic algorithms. Other performance metrics in cryptography
commonly include encryption time and power consumption. These results come
from running the algorithm and measuring the relevant metric, perhaps with differ‐
ent input file sizes. It is critically important to report the type of hardware used for
the experiment in these studies since hardware specifications, especially processors
and memory, strongly influence cryptographic performance.

Figure 7-1. Throughput (megabytes/second) of six symmetric encryption algorithms
from “Evaluating The Performance of Symmetric Encryption Algorithms” (2010)

There is value in experimental evaluation for cybersecurity implementations beyond
a comparison of the algorithms themselves. Experimental evaluation of implementa‐
tions and cryptography in practice are also possible. One could design an experiment
to measure the lifetime of cryptographic keys in memory for different operating sys‐
tems, or the usability of encryption features in email (see the case study in Chap‐
ter 11).

There are many other ways to evaluate cryptographic designs and implementations.
Cryptanalysis attacks are used to evaluate the mathematical construction and practi‐
cal implementation of cryptographic algorithms. Here are some common crypto‐
graphic attacks that can be used in experimentation:

Known-plaintext attack
The attacker obtains the ciphertext of a given plaintext.

Chosen-ciphertext attack
The attacker obtains the plaintexts of arbitrary ciphertexts of his own choosing.

Chosen-plaintext attack
The attacker obtains the ciphertexts of arbitrary plaintexts of her own choosing.

Experimental Evaluation of Cryptographic Designs and Implementation | 79

1 As an example, an old version of GNU Privacy Guard (GPG) contained a flaw in the ElGamal crypto algo‐
rithm. The developer had this comment in the source code: “I don’t see a reason to have a x of about the same
size as the p. It should be sufficient to have one about the size of q or the later used k plus a large safety mar‐
gin. Decryption will be much faster with such an x.”

Brute-force attack
The attacker calculates every possible combination of input (e.g., passwords or
keys) and tests to see if each is correct.

Man-in-the-middle attack
The attacker secretly relays and possibly alters the communication between two
parties who believe they are communicating directly with each other.

Cryptography is an answer to the problem of data protection. If you were given a new
cybersecurity solution, say software for full disk encryption, how would you evaluate
its effectiveness at doing what it claims and how would you validate whether you
were any more secure from using it? These questions start to blur the line between
cryptography and software assurance, not to mention risk management.

If you implement or test cryptography, keep several things in mind. First, in cryptog‐
raphy, Kerckhoffs’s principle states that a cryptosystem should be secure even if
everything about the system (except the key) is public knowledge. One implication of
this principle is that cryptographic algorithms should be subject to peer review, not
kept secret. Second, because cryptography implementers are often not cryptographers
themselves, errors and shortcuts in implementation can weaken the cryptography.1

Third, you should also pay attention to all the details of the protocol specification and
check the assumptions attached to the cryptographic and protocol designs. Security
assumptions are discussed in the next section. Finally, be aware that we are rarely sure
if cryptography is completely secure. Acceptance of cryptography generally comes
from long periods of failed attacks, and experimentation can uncover such crypto‐
graphic weaknesses.

Provably Secure Cryptography and Security Assumptions
In 1949, mathematician and father of information theory Claude Shannon wrote A
Mathematical Theory of Cryptography and proved the perfect secrecy of the one-time
pad. This notion of perfect secrecy means that the ciphertext leaks no information
about the plaintext. The phrase perfect secrecy requires some explanation. Information
theory is a collection of mathematical theories about the methods for coding, trans‐
mitting, storing, retrieving, and decoding information. Perfect secrecy is an informa‐
tion theoretic notion of security, which means that you can use mathematical theories
to prove it.

80 | Chapter 7: Cryptography

2 Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. 2002. “Authenticated encryption in SSH: prov‐
ably fixing the SSH binary packet protocol.” In Proceedings of the 9th ACM conference on Computer and com‐
munications security (CCS ’02), Vijay Atluri (Ed.). ACM, New York, NY, USA, 1−11.

3 Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. 2009. “Plaintext Recovery Attacks against
SSH.” In Proceedings of the 2009 30th IEEE Symposium on Security and Privacy (SP ’09). IEEE Computer Soci‐
ety, Washington, DC, USA, 16−26.

Information theory can even be used to describe the English lan‐
guage. Rules of grammar, for example, decrease the entropy
(uncertainity) of English. For more, see Shannon’s paper “Predic‐
tion and Entropy of Printed English.”

As a practitioner, it is important to understand that provable security in information
theory and cryptography is not an absolute statement of security. Security proofs are
conditional and are not absolute guarantees of security. Security is guaranteed only as
long as the underlying assumptions hold. Provable security is incredibly important
because it brings a quantitative nature to security. This enables protocol designers to
know precisely how much security they gets with the protocol.

Take SSH as an example. In 2002, three researchers conducted the first formal secu‐
rity analysis of the SSH Binary Packet Protocol (BPP) using the provable security
approach.2 Yet, other researchers later showed an attack on SSH BPP because the pro‐
ven security model made some assumptions about the real-world system executing
the decryption.3 A very good research question comes from this example: how do we
know that “fixing” SSH actually improves security? TLS/SSL, too, has been studied,
and by 2013 there were papers showing that most unaltered full TLS ciphersuites
offer a secure channel. The important words are most, unaltered, and full. No security
analysis has yet shown that TLS is secure in all situations.

A security model is the combination of a trust and threat models that address the set
of perceived risks. Every cybersecurity design needs a security model. You cannot talk
about the security of a system in a vacuum without also talking about the threats,
risks, and assumptions of trust. The work lies in determining what assumptions to
include in a security model and how close the theoretical model is to the practical
implementation to capture the significant attack vectors. To get you started thinking
of assumptions on your own, here are a few potential assumptions about threats or
attackers’ technical abilities that could be made for a particular situation or environ‐
ment:

• The adversary can read and modify all communications.
• The adversary has the ability to generate messages in a communication channel.
• The adversary has no ability to tamper with communication between the honest

parties.

Provably Secure Cryptography and Security Assumptions | 81

http://bit.ly/1Nl4aI5
http://bit.ly/1Nl4aI5

• The adversary has the ability to spoof its identity.
• The adversary has the ability to leak from each key a few bits at a time.
• The adversary does not have access to the master key.
• The adversary has the ability to predict operations costs.
• The adversary has unlimited computing power.
• The adversary can mount login attempts from thousands of unique IP addresses.
• The adversary cannot physically track the mobile users.

Whenever you make a security claim, also describe any and all assumptions you make
about the threat. It is disingenuous to assume an all-powerful adversary or to under‐
estimate the capabilities of possible adversaries. In the next section we will talk about
the Internet of Things (IoT), where we might assume that you are designing the secu‐
rity for smart clothing like a shirt with movement sensors woven into the fabric. Here
is one example adversarial model for that situation:

We assume that the adversary is interested in detecting a target’s movement at all times,
thereby violating a user’s expected privacy. We assume that the adversary does not have
physical access to his target’s shirt. We assume that the adversary can purchase any
number of identical shirts to study. We assume that any other shirt may be corrupted
and turned into a malicious item controlled by the adversary. We assume that the
adversary has the ability to infer all of the IoT items that belong together or to the
same user.

This collection of assumptions bounds what we explicitly believe the adversary can
and cannot do. The model usually contains only those motivations, capabilities, or
limitations of the adversary pertinent to the security offered by the proposed solu‐
tion. You might go on to suggest that the shirt needs SSL security because you can
construct an attack that would otherwise succeed given the stated adversarial model.

Not only do attackers target cryptographic implementations, they also target the writ‐
ten and unwritten assumptions. Note that security models are not limited to cryptog‐
raphy. It is quite common for cybersecurity papers to include an entire section on the
threat model used in the paper. The threat model narrows the scope of the scenario
and may also limit the applicability of the attack or defense being presented. These
can be very specific statements, such as “we assume that the adversary does not have
any privileged access on any of the key network entities such as servers and switches,
so she is unable to place herself in the middle of the stream and conduct man-in-the-
middle attacks.”

A well-defined security model benefits both the investigator conducting the assess‐
ment and the consumer of the final assessment. The model bounds the experiment
and allows you to focus on a confined problem. It also establishes relevancy for the
end user or consumer of your product.

82 | Chapter 7: Cryptography

4 Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and Louis Wingers. The
SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404,
2013.

Cryptographic Security and the Internet of Things
The proliferation of Internet-enabled devices has taken off more quickly than security
measures for them. RSA Conference is an annual information security event with a
strong emphasis on cryptography. This is one of the largest events in the industry,
with around 33,000 attendees and more than 490 sessions in 2015. Presentations fol‐
low industry trends, and there has been a clear rise recently in talks on the Internet of
Things (IoT). Kaspersky Labs summarized the trend in 2015 as the “Internet of
Crappy Things” highlighting a string of new attacks on home automation and other
consumer devices.

Small resource-constrained devices such as insulin pumps require algorithms that
respect their computing power, memory requirements, and physical size. In a world
of desktops, laptops, and even smartphones, we could implement RSA, AES, and
other mainstream algorithms with an acceptable burden on the device. But what
about a smartcard, smart meter, medical implant, or soil sensor? What you can fit on
the device and what the device needs are very different. IoT devices need efficient,
lightweight cryptographic implementations that are also trustworthy. There are at
least 24 lightweight block ciphers today designed with these constraints in mind. The
National Security Agency even proposed two families of lightweight block ciphers
called Simon (optimized for hardware) and Speck (optimized for software).4 You can
find a list of lightweight ciphers and their technical features (e.g., block size) on the
CryptoLUX Wiki.

Some have proposed offloading cryptographic functions in resource-constrained
devices. A dedicated microcontroller might increase performance and reduce the load
on the main CPU. It might also be possible to outsource crypto to a service on
another device, as long as certain assurances were made.

Cybersecurity Jobs Requiring Scientific Curiosity
The following job description for Security Architect appeared recently for Nest, man‐
ufacturer of Internet-enabled devices such as cameras and thermostats. This role
would benefit from an individual with the scientific skills we have discussed. While
the position isn’t a traditional research role and doesn’t use the word “research” or
“science,” scientific thinking and cybersecurity experimentation would enhance the
stated work objectives.

Cryptographic Security and the Internet of Things | 83

http://eprint.iacr.org/2013/404.pdf
http://eprint.iacr.org/2013/404.pdf
http://www.rsaconference.com
https://blog.kaspersky.com/internet-of-crappy-things-2/
https://blog.kaspersky.com/internet-of-crappy-things-2/
https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers

Experimentation in cybersecurity science can be used to measure and evaluate design
choices for a specific device or class of devices. Say you are investing in a home auto‐
mation system and want to add tiny soil moisture sensors that alert you when to
water your plants. How would you decide how much wireless security was necessary,
and whether the sensors could handle it? Deciding on the amount of security takes us
back to the discussion in the previous section about threat models and assumptions.
You must think about the different security threats and their associated likelihood.
For example, do you care about physical attacks like node capture, impersonation
attacks, denial-of-service attacks, replay attacks, or spoofing attacks? If you do care,
what is the likelihood of them, and what is the cost of damage if any occur? We’ve just
outlined a risk analysis that isn’t very technical but is nonetheless critical. On the
technical side, how could you also determine how well the sensors could even per‐
form the desired level of cryptography? These technical considerations are reflected
in the case study in the next section.

Another example of IoT devices to consider is smart utility sensors such as water and
electric meters. These devices are being offered (sometimes mandated) for both con‐
sumers and businesses. Smart meters effectively increase the attack surface because
the devices are networked together or back to the provider. Today, consumers have
little choice but to treat such devices as black boxes without knowledge of how they
work. Experimentation and evaluation with the scientific method will allow users to
determine the cybersecurity assurances and risks associated with smart meters.

84 | Chapter 7: Cryptography

Case Study: Evaluating Composable Security
Background
The security of individual electronic devices has evolved significantly over time, fol‐
lowed by the growth of security for systems of devices such as corporate networks. A
logical next question is “what is the impact to systemwide security given the assembly
of individual components or subsystems?” This area of study is called composable
security. Here’s one example. If I trust the security of my Fitbit fitness tracker on its
own, and trust the security of my iPhone on its own, and trust the security of the
WiFi in my home, are any of those individual devices or the group of them any less
(or more) secure because of their interconnectedness? The unexpected properties that
arise or emerge from the interaction between the components are sometimes called
emergent properties. Emergent properties are value-neutral; they are not inherently
positive or negative, but because of their unexpected nature we often think of them as
harmful.

For more coverage on composable security, including a discussion
on challenges of emergent phenomena to risk assessment, see
Emergent Properties & Security: The Complexity of Security as a Sci‐
ence by Nathaniel Husted and Steven Myers.

Both cybersecurity offense and defense can have emergent properties. Emergent
attacks are created because a group of individual agents form a system that achieves
an attack made possible by the collaboration. Distributed denial-of-service (DDoS) is
an example of this; a single bot does not have much effect, but the combined forces of
many bots in a botnet produce devastating results. You could run scientific experi‐
ments to measure the spectrum of these emergent effects as the size of the attacking
swarm grows. Emergent defenses also arise due to the composition of some property
of a group. Anonymity is an emergent property that is not apparent in isolation. The
anonymity of Tor is a property that manifests as the system grows; a single Tor node
does not achieve the same level of defense as a large collection of nodes. This fact is
easy to demonstrate scientifically by showing the ability to violate anonymity in a
one-node Tor network and the difficulty in doing so in a ten-node Tor network.

There is a very special instantiation of composable security for cryptographic proto‐
cols, known as universal composability. Universally composable cryptographic proto‐
cols remain secure even if composed with other instances of the same or other
protocols. In 2008, scholars presented a security analysis of the Transport Layer Secu‐

Case Study: Evaluating Composable Security | 85

http://dl.acm.org/citation.cfm?id=2683468
http://dl.acm.org/citation.cfm?id=2683468

5 Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi, and Jorg Schwenk. “Universally Com‐
posable Security Analysis of TLS—Secure Sessions with Handshake and Record Layer Protocols.” In Proceed‐
ings of the 2nd International Conference on Provable Security (ProvSec ’08), Joonsang Baek, Feng Bao, Kefei
Chen, and Xuejia Lai (Eds.). Springer-Verlag, Berlin, Heidelberg, 313-327, 2008.

6 This problem is based on one offered by Virgil D. Gligor in Security of Emergent Properties in Ad-Hoc Net‐
works.

rity (TLS) protocol under universal composability.5 On the contrary, there are multi-
party cryptographic protocols that are provably secure in isolation but are not secure
when executed concurrently in larger systems. Further, there are classes of functions
that cannot be computed in the universally composable fashion.

A New Experiment
The evaluation of composable security and emergent properties remains an open
problem, but let us consider a hypothetical experiment to test a particular use case.
This problem deals with the establishment of secure communication paths in IoT
networks.6 Rather than relying on theoretical analysis, we focus on practical feasibil‐
ity and an experimental setup for the verification of runtime behavior. Here is a
hypothesis:

Three ad hoc IoT devices can establish secure communication paths whose composed
communication security is equivalent to the security of two.

The intuition here is that we want to show (a) that two ad hoc devices can establish
secure communications and (b) that by adding a third, communications are no less
secure.

The probability of establishing communication between any pair of
nodes in an ad hoc network is an emergent property of random
graphs and has been studied since the 1960s.

As a practical experiment, it is acceptable to select three specific IoT devices you care
about for the test as opposed to trying to prove a theoretical result that holds for any
three devices. This approach does carry a limitation that the result may not be gener‐
alizable, and it is worth noting that when sharing your results. You should also con‐
sider using three devices of the same type, since mixing device types introduces
complexity and additional variables into the experiment. For this study, let’s use three
Pinoccio Scouts. These tiny and inexpensive devices are ideal because they natively
support mesh networking and are built with open source software and hardware.
Scouts use the Lightweight Mesh protocol, and that protocol supports two encryption
algorithms: hardware accelerated AES-128 and software XTEA. However, the entire
network uses the same shared encryption key by default.

86 | Chapter 7: Cryptography

http://www.ece.umd.edu/~gligor/cambridge04.pdf
http://www.ece.umd.edu/~gligor/cambridge04.pdf
https://pinocc.io

An important result that you could demonstrate deals with key management. Obvi‐
ously, having the same encryption key for all nodes leads to a rejection of the hypoth‐
esis because compromising the communication key in a two-node network decreases
the composed security of a three-node network. You would have to implement a key
exchange protocol that doesn’t rely on external public key infrastructure and respects
the limited memory of the nodes and their inability to store keys for a large number
of peers. Using your knowledge of cybersecurity, you also want to consider potential
ways that secure communication might be compromised: physical layer vulnerabili‐
ties, link layer jamming, passive eavesdropping, spoofing attacks, replay attacks, rout‐
ing attacks, flooding attacks, and authentication attacks. It is your discretion about
which of these you think need to be addressed in the security demonstration. Fur‐
thermore, for each one, you must now think about the difference between two-node
networks and three-node networks, and the security differences between those cases.
Unlike the shared encryption key, perhaps you argue that jamming attacks are no
more disruptive to the secure communication paths of two nodes than three.

How to Find More Information
Research in applied cryptography is presented at a large number of mathematics and
cybersecurity conferences, including the USENIX Security Symposium, the Interna‐
tional Conference on Applied Cryptography and Network Security (ACNS), and the
International Cryptology Conference (CRYPTO). Likewise, research and experimen‐
tal results appear in an assortment of journals and magazines, notably the Journal of
Cryptology and IEEE Transactions on Information Forensics and Security. The Cryptol‐
ogy ePrint Archive also provides an electronic archive of new results and recent
research cryptography.

Conclusion
In this chapter, we looked at how to use the scientific method to evaluate the design
and application of cryptography. The key takeaways are:

• One of the most common experimental evaluations in cryptography is the per‐
formance of cryptographic algorithms, including encryption time and power
consumption.

• Provably secure cryptography and security proofs are conditional and are not
absolute guarantees of security. Security is guaranteed only as long as the under‐
lying assumptions hold.

• A security model is the combination of a trust and threat models that address the
set of perceived risks. Every cybersecurity design needs a security model.

• Scientific evaluation of cryptographic algorithms is important in resource-
constrained IoT devices.

How to Find More Information | 87

http://eprint.iacr.org
http://eprint.iacr.org

• The evaluation of composable security and emergent properties remains an open
problem. We looked at a hypothetical experiment to test secure communications
in IoT networks.

References
• Ran Canetti. Universally Composable Security: A New Paradigm for Crypto‐

graphic Protocols, Cryptology ePrint Archive, Report 2000/067, (July 16, 2013)
• Bruce Schneier and Niels Ferguson. Cryptography Engineering: Design Principles

and Practical Applications (Indianapolis, IN: Wiley, 2010)
• Al Sweigart. Hacking Secret Ciphers with Python (Charleston, SC: CreateSpace

Independent Publishing, 2013)

88 | Chapter 7: Cryptography

https://eprint.iacr.org/2000/067.pdf
https://eprint.iacr.org/2000/067.pdf

CHAPTER 8

Digital Forensics

Digital forensics holds a unique distinction among the group of cybersecurity fields
in this book because it requires science. Forensic science, by definition, is the use of
scientific tests or techniques in connection with the detection of crime. There are
many corporate investigators who use forensic-like tools and techniques for nonlegal
uses such as internal investigations and data recovery, but the requirement for scien‐
tific rigor in those cases may be less demanding. In this chapter, we will talk about
cybersecurity science in digital forensics, especially for tool developers, by exploring
the requirements for scientific evidence in court, the scientific principle of repeatabil‐
ity, and a case study highlighting the differences between laboratory and real-world
experiments.

The forensics community has a small but active international research community.
There is a much larger population of digital forensic practitioners who use forensic
tools and techniques to analyze digital systems but do not perform experimentation
as their primary job. The research community supports the practitioners by investi‐
gating new and improved ways to collect, process, and analyze forensic data. In recent
years the topics of interest to researchers have included memory analysis, mobile
devices, nontraditional devices (e.g., gaming systems), and big data mining.

An Example Scientific Experiment in Digital Forensics
For an instructive example that illustrates scientific experimentation in digital foren‐
sic tool development, look at the abstract for “Language translation for file paths” by
Rowe, Schwamm, and Garfinkel (2013). This paper presents a new tool and the
experimental evaluation of its accuracy. In the abstract that follows, you can see that
the first line of the abstract identifies the problem that these researchers were looking
to address: forensic investigators need help understanding file paths in foreign lan‐
guages. The implied hypothesis is that directory-language probabilities from words

89

http://www.dfrws.org/2013/proceedings/DFRWS2013-5.pdf

used in each directory name over a large corpus, combined with those from dictio‐
nary lookups and character-type distributions, can infer the most likely language.
The authors give their contributions and results, including the sample size and accu‐
racy. The test data is available to other researchers who might want to repeat or build
upon these results, and the methodology is described in sufficient detail to enable
other researchers to reproduce the experiment.

Abstract from a digital forensics experiment
Forensic examiners are frequently confronted with content in languages that they do
not understand, and they could benefit from machine translation into their native lan‐
guage. But automated translation of file paths is a difficult problem because of the min‐
imal context for translation and the frequent mixing of multiple languages within a
path. This work developed a prototype implementation of a file-path translator that
first identifies the language for each directory segment of a path, and then translates to
English those that are not already English nor artificial words. Brown’s LA-Strings util‐
ity for language identification was tried, but its performance was found inadequate on
short strings and it was supplemented with clues from dictionary lookup, Unicode
character distributions for languages, country of origin, and language-related key‐
words. To provide better data for language inference, words used in each directory
over a large corpus were aggregated for analysis. The resulting directory-language
probabilities were combined with those for each path segment from dictionary lookup
and character-type distributions to infer the segment’s most likely language. Tests were
done on a corpus of 50.1 million file paths looking for 35 different languages. Tests
showed 90.4% accuracy on identifying languages of directories and 93.7% accuracy on
identifying languages of directory/file segments of filepaths, even after excluding 44.4%
of the paths as obviously English or untranslatable. Two of seven proposed language
clues were shown to impair directory-language identification. Experiments also com‐
pared three translation methods: the Systran translation tool, Google Translate, and
word-for-word substitution using dictionaries. Google Translate usually performed the
best, but all still made errors with European languages and a significant number of
errors with Arabic and Chinese.

This example illustrates one kind of scientific experiment involving digital forensic
tools. Such experiments could be done for other new tools, including those beyond
digital forensics. In the next section, we will discuss the unique requirements for digi‐
tal forensic tools because of their involvement in the legal process.

Scientific Validity and the Law
Digital evidence plays a part in nearly every legal case today. Even when the suspect is
not attacking a computer system, he or she is likely to have used a cellphone, camera,
email, website, or other digital medium that contains some bit of information rele‐
vant to investigation of a crime. It is important for forensic scientists to understand
how the legal system deals with scientific evidence, and the unique requirements that
the law imposes on tool development and scientific validity.

90 | Chapter 8: Digital Forensics

http://digitalcorpora.org/corpora/disk-images/real-data-corpus

1 Note: this is offered only as an example of the Daubert process. In 2006, a motion was filed to exclude this
expert testimony. The memo stated, “The government initially offered Professor Hany Farid, a Dartmouth
College professor of computer science and neuroscience. Professor Farid sought to distinguish real and
computer-generated images through a computer, rather than using visual inspection. Farid’s computer pro‐
gram purported to measure statistical consistencies within photographs and computer-generated images to
determine whether or not an image was real. After one day of a hearing, the government withdrew Dr. Farid
as an expert witness. Defense counsel noted that 30 percent of the time, Farid’s program classified a photo‐
graph [i.e., a real image] as a computer-generated image, and she highlighted these errors. One stood out in
particular: an image of a cartoon character, ‘Zembad,’ a surrealistic dragon, falsely labeled ‘real.’”

Scientific knowledge is presented in court by expert witnesses. Two Supreme Court
decisions provide the framework for admitting scientific expert testimony in the Uni‐
ted States today. The Daubert standard, from Daubert v. Merrell Dow Pharmaceuticals
(1993) is used in federal cases and many states, though the Frye standard, from Frye v.
United States (1923), is still used in the other states. Daubert says that scientific
knowledge must be “derived by the scientific method.” It continues in the same way
that we previously discussed the scientific method, saying “scientific methodology
today is based on generating hypotheses and testing them to see if they can be falsi‐
fied.”

According to Daubert, scientific evidence is valid and can be admitted in court when
it adheres to testing, peer review, the existence of a known error rate or controlling
standards, and the general acceptance of the relevant scientific community. These are
important to remember as a digital forensic practitioner, developer, or researcher.
Note that these standards deal with the method used to reach a conclusion, not the
tool itself, though questions are often raised about the implementation or use of tools.
The regulation of scientific evidence is unique to the United States, though it has been
used in two Canadian Supreme Court cases and proposed in England and Wales.
International law used between nations has few restrictions on the admissibility of
evidence, and free evaluation of evidence in court prevails.

It is insightful to observe exactly how expert witness and tool validation plays out in
the courtroom. Below is an excerpt of court testimony from United States of America
v. Rudy Frabizio (2004), in which Mr. Frabizio was charged with possession of child
pornography.1 In this exchange, attorney Dana Gershengorn asks the witness, Dr.
Hany Farid, questions seeking to establish general acceptance of the science of stega‐
nography:

Q. Professor Farid, is the science underlining your work in steganography, that is, the
patterns and the fact that they’re distinguishable in images that have been tampered
with by putting in covert messages as opposed to images that have not been so tam‐
pered, is that well accepted now in your field?
A. Yes, it is.

Scientific Validity and the Law | 91

Q. Is there any controversy on that that you’re aware of, that is, that maybe these differ‐
ences in statistics don’t exist? Are you aware of any published material that contradicts
that?
A. No.
Q. And is the technology that you’ve used in your steganography work, the program
that you’ve used, is that the same technology, similar program that you used in exam‐
ining images in the Frabizio case?
A. Yes, it is.

Later in the questioning, Dr. Farid describes the error rate for the software he used to
analyze images in the case:

THE COURT: A fixed false positive rate means what now?
THE WITNESS: It means .5 percent of the time, a CG image, computer graphics will
be misclassified as photographic.
Q. .5 percent of the time?
A. Yes, one in two hundred.
Q. Now, 30 percent of the time an image that is real, your program will say—
A. Is computer generated. Right. We need to be safe. We need to be careful. And, of
course, you know, ideally the statistics would be perfect, they’d be 100 percent here and
100 percent here, but that’s hard. We’re moving towards that, but this is where we are
right now.
Q. And in your field, having worked in this field for a long time and having reviewed
other people’s publications in peer review journals, is .5 percent accuracy acceptable in
your field?
A. Yes.

This exchange illustrates the type of questioning that occurs in many court cases
where digital evidence is presented. It may eventually happen with software you cre‐
ate if that software is used to produce evidence used in court! EnCase is one of the
most widely used commercial software packages for digital forensics, and is routinely
used to produce evidence used in court. Guidance Software, the makers of EnCase,
has published a lengthy report that documents cases where EnCase was used and vali‐
dated against the Daubert/Frye standards in court. You need not create such compre‐
hensive documentation for every tool you create, but there are a few simple things
you should do.

Cybersecurity science in forensics that involves looking at poten‐
tially offensive, illegal, or personal information can raise complex
legal and ethical issues. Consult an attorney or ethics professional
to ensure that your experiments are safe, legal, and ethical. For
more on human factors, see Chapters 11 and 12.

92 | Chapter 8: Digital Forensics

If you develop digital forensics software, and the evidence resulting from the use of
your tools may be used in court, an expert witness may someday be asked to testify to
the validity of your software. Here are a few things you can do to help ensure that
your tools will be found valid in court, should the need arise:

• Make your tools available. Whether you develop free and open source software
or commercial software, your software can only be tested and independently vali‐
dated if it is available to a wide audience. Consider putting them on GitHub or
SourceForge. As much as you are able, keep them up-to-date—abandoned and
unmaintained tools may be discounted in court.

• Seek peer review and publication. It is important to the courts that your peers in
the digital forensics community review, validate, and test your tools. This is an
excellent opportunity for scientific experimentation. Publication is also one way
to report on tests of error rates.

• Test and document error rates. No software is flawless. Apply the scientific
method and objectively determine the error rates for your software. It is much
better to be honest and truthful than to hide imperfections.

• Use accepted procedures. The courts want procedures to have “general accept‐
ance” within the scientific community (this is commonly misunderstood to mean
that the tools must have general acceptance). Open source is one way to show
procedures you used, allowing the community to evaluate and accept them.

It may not be necessary to prepare every forensic tool and technique you create for
the court. Following the scientific method and best practices in the field is always
advised, and will help ensure that your tools are accepted and validated for court if
the need arises.

Scientific Reproducibility and Repeatability
Reproducibility and repeatability are two important components for the evaluation of
digital forensic tools and for scientific inquiry in general. Reproducibility is the ability
for someone else to re-create your experiment using the same code and data that you
used. Repeatability is about you running the test again, using the same code, the same
data, and the same conditions. These two cornerstones of scientific investigation are
too often overlooked in cybersecurity. A 2015 article in Communications of the ACM
described their benefits this way: “Science advances faster when we can build on
existing results, and when new ideas can easily be measured against the state of the
art… Our goal is to get to the point where any published idea that has been evaluated,
measured, or benchmarked is accompanied by the artifact that embodies it. Just as

Scientific Reproducibility and Repeatability | 93

2 Shriram Krishnamurthi and Jan Vitek. The real software crisis: repeatability as a core value. Communications
of the ACM 58, 3 (February 2015), 34−36.

formal results are increasingly expected to come with mechanized proofs, empirical
results should come with code.”2

Consider a digital forensics technique that attempts to identify images of human
beings in digital images. This is an important problem when investigating child por‐
nography cases, and a computationally challenging problem to train a computer to
identify images of humans. The developers of a new program, which contains a new
algorithm for detecting human images, wish to show reproducibility and repeatabil‐
ity. They can show repeatability by running the same program several times, using
the same input files, and achieving the same results. If the results vary, the experi‐
menters must explain why. To achieve reproducibility, the developers should offer the
exact program, the exact input files, and a detailed description of the test environ‐
ment to others, allowing independent parties to show that they can (or cannot) ach‐
ieve the same results as the original developers.

There are many challenges to reproducibility in cybersecurity and digital forensics.
One obvious challenge is the incredible difficulty of ensuring identical conditions for
different program runs. Computers are logical and predictable machines, yet replicat‐
ing the exact state of a machine is nontrivial given their complexity. Sometimes the
very act of doing an experiment changes the conditions, so documentation is critical.
Virtual machine snapshots offer the ability to revert to an identical machine snapshot,
but virtual machine guest performance may be affected by the host’s performance
(including other VMs running on the host).

A second significant challenge to reproducibility is that useful datasets are not widely
available to researchers. As we saw in Chapter 2, there are a few repositories of avail‐
able real, simulated, and synthetic test data. DigitalCorpora.org is a site specifically
devoted to datasets for digital forensics research and contains various collections of
disk images, packet captures, and files.

Case Study: Scientific Comparison of Forensic Tool
Performance
In this section, we will walk through a hypothetical scientific experiment in digital
forensics. In this experiment you are curious to know if parallel, distributed, cloud-
based forensic processing using MapReduce can improve the speed of common for‐
ensic tasks. Given the volumes of data that forensic laboratories and analysts have to
process, increased throughput would be valuable to the community. In your prelimi‐
nary background reading, you find an implementation of the common open source
forensic suite The Sleuth Kit for Hadoop. Further, no performance data seems to

94 | Chapter 8: Digital Forensics

http://doi.acm.org/10.1145/2658987
http://www.sleuthkit.org/tsk_hadoop/

exist, making this a new and interesting question to consider. You form your hypoth‐
esis as follows:

The time required to construct a digital forensic timeline will be 75% faster using a
Hadoop cluster than a traditional forensic workstation.

The independent variable in the hypothesis is the execution platform, which is a
cloud and a desktop. You want to experimentally measure the execution time on both
platforms, ensuring as much as possible that other variables are consistent. Therefore,
you must use the same disk image in both cases for a fair test. You select a publicly
available 500 MB USB drive image for this test. Because you wish to compare the
benefit of parallel processing using TSK Hadoop, it would be wise to use comparable
machine specifications so that one test is not unfairly advantaged by better hardware.
Table 8-1 shows basic specifications for a single forensic workstation and 10 Amazon
EC2 instances. The combination of the 10 EC2 instances is roughly equivalent to the
workstation in CPU, memory, and storage. It is important to record and report the
hardware specifications you used so that other researchers can replicate and validate
your results.

Table 8-1. Example computer specs for performance comparison

Forensic workstation Amazon EC2 instances (x10)

Dell Precision T5500

Ubuntu 14.04.1 LTS (64-bit)

Dual Intel 6 Core Xeon X5650 @2.66GHz

24GB DDR3 Memory

1TB 3.5” 7200 RPM SATA

T2 Small Type

Amazon Linux AMI (64-bit)

1 Intel Xeon family vCPU @2.5GHz

2GB Memory

100GB EBS magnetic storage volume

Each run of the experiment will measure the execution time required for The Sleuth
Kit to construct a timeline of the input drive image. You prepare both execution envi‐
ronments, run the process, and get a result. Because individual executions of a pro‐
gram are subject to many variables on the host computer (e.g., other background
processes, etc.), you repeat the timeline creation five times to assure yourself that the
results are consistent. This gives you the results in Table 8-2.

Table 8-2. Example times for timeline generation experiment

TSK on forensic workstation TSK Hadoop on Amazon EC2

Run #1: 25 seconds Run #1: 15 seconds

Run #2: 20 seconds Run #2: 17 seconds

Run #3: 21 seconds Run #3: 16 seconds

Run #4: 24 seconds Run #4: 13 seconds

Run #5: 22 seconds Run #5: 15 seconds

Case Study: Scientific Comparison of Forensic Tool Performance | 95

These results indicate that MapReduce runs approximately 33% faster on the 500 MB
disk image. There were no extreme outliers, giving confidence to the data obtained.
The data so far shows that you should reject your hypothesis, even though MapRe‐
duce is measurably faster. You now decide to test whether these results hold for dif‐
ferent sizes of disk images. Using the Real Data Corpus, you obtain one disk image
each of size 1 GB, 10 GB, 500 GB, and 2 TB. You repeat the timeline creation five
times for each disk image size, and graph the results as shown in Figure 8-1. As
before, it appears that Hadoop is consistently faster than the single workstation, but
not 75% faster as you hypothesized. At this point you could modify your hypothesis
to reflect and apply your new knowledge. You could also extend the experiment with
a new hypothesis and compare various Hadoop node sizes. Perhaps a five-node clus‐
ter performs as well as 10 in this case, or perhaps 20 nodes is substantially faster.

Figure 8-1. Example comparison of execution times on a workstation versus MapReduce
for various disk image sizes

There are several ways to put your results to work. You should at least consider pub‐
lishing your results online or in a paper. This preliminary data might be convincing
enough to even start a company or build a new product that specializes in forensics as
a service using MapReduce. At the very least you will have learned something!

How to Find More Information
Research is presented in general cybersecurity journals and conferences but also at
forensic-specific venues including the Digital Forensics Research Workshop
(DFRWS), IFIP Working Group 11.9 on Digital Forensics, and American Academy of
Forensic Sciences. A popular publication for scientific advances in digital forensics is
the journal Digital Investigation.

96 | Chapter 8: Digital Forensics

http://digitalcorpora.org/corpora/disk-images/rdc-faq

Conclusion
This chapter covered cybersecurity science as applied to digital forensics and
forensic-like investigations and data recovery. The key takeaways are:

• Digital forensic scientists and practitioners must understand how the legal sys‐
tem deals with scientific evidence, and the unique requirements that the law
imposes on tool development and scientific validity.

• According to Daubert, scientific evidence is valid and can be admitted to court
when it adheres to testing, peer review, the existence of a known error rate or
controlling standards, and the general acceptance of the relevant scientific com‐
munity.

• Reproducibility is the ability for someone else to re-create your experiment using
the same code and data that you used. Repeatability is the ability for you to run a
test again, using the same code, the same data, and the same conditions.

• We explored an example experiment to study if cloud-based forensic processing
could construct a forensic timeline faster than traditional methods.

References
• Eoghan Casey. Digital Evidence and Computer Crime, Third Edition. (Waltham,

MA: Academic Press, 2011)
• Digital Forensics Research Workshop (DFRWS)
• The Forensics Wiki
• Cara Morris and Joseph R. Carvalko. The Science and Technology Guidebook for

Lawyers. (Chicago, IL: American Bar Association, 2014)

Conclusion | 97

http://www.dfrws.org
http://www.forensicswiki.org

CHAPTER 9

Malware Analysis

The field of malware analysis is a prime candidate for scientific exploration. Experi‐
mentation is worthwhile because the malware problem affects all computer users and
because advances in the field can be broadly useful. Malware also evolves over time,
creating an enormous dataset with a long history that we can study. Security research‐
ers have conducted scientific experiments that produced practical advances not only
in tools and techniques for malware analysis but also in knowing how malware
spreads and how to deter and mitigate the threat.

People who do malware analysis every day know the value of automation for repeti‐
tive tasks balanced with manual in-depth analysis. In one interview with
[IN]SECURE, Michael Sikorski, researcher and author of Practical Malware Analysis,
described his approach to analyzing a new piece of malware. “I start my analysis by
running the malware through our internal sandbox and seeing what the sandbox out‐
puts,” followed by basic static analysis and then dynamic analysis which drive full dis‐
assembly analysis. Anytime you see the prospect for automation is the opportunity to
scientifically study the process and later evaluate the improvements.

Recall from the discussion of test environments in Chapter 3 that cybersecurity sci‐
ence, particularly in malware analysis, can be dangerous. When conducting experi‐
mentation with malware, you must take extra precautions and safeguards to protect
yourself and others from harm. We will talk more about safe options such as sand‐
boxes and simulators in this chapter.

Malware analysis has improved in many ways with the help of scientific advances in
many fields. Consider the disassembly of compiled binary code, a fundamental task
in malware analysis. IDA Pro uses recursive descent disassembly to distinguish code
from data by determining if a given machine instruction is referenced in another
location. The recursive descent technique is not new, having been notably applied to

99

compilers for decades and the subject of many academic research papers. Malware
analysis tools, such as disassemblers, are enabled and improved through science.

An Example Scientific Experiment in Malware Analysis
For an example of scientific experimentation in malware analysis, look at the paper “A
Clinical Study of Risk Factors Related to Malware Infections” by Lévesque et al.
(2013). The abstract that follows describes an interesting malware-related experiment
that looks not at the malware itself but at users confronted with malware infection.
Humans are clearly part of the operating environment, including the detection of and
response to malware threats. In this experiment, the researchers instrumented laptops
for 50 test subjects and observed how the systems performed and how users interac‐
ted with them in practice. During the four-month study, 95 detections were observed
by the AV product on 19 different user machines, and manual analysis revealed 20
possible infections on 12 different machines. The team used general regression, logis‐
tic regression, and statistical analysis to determine that user characteristics (such as
age) were not significant risk factors but that certain types of user behavior were
indeed significant.

Abstract from a malware analysis experiment
The success of malicious software (malware) depends upon both technical and human
factors. The most security-conscious users are vulnerable to zero-day exploits; the best
security mechanisms can be circumvented by poor user choices. While there has been
significant research addressing the technical aspects of malware attack and defense,
there has been much less research reporting on how human behavior interacts with
both malware and current malware defenses.
In this paper we describe a proof-of-concept field study designed to examine the inter‐
actions between users, antivirus (anti-malware) software, and malware as they occur
on deployed systems. The four-month study, conducted in a fashion similar to the clin‐
ical trials used to evaluate medical interventions, involved 50 subjects whose laptops
were instrumented to monitor possible infections and gather data on user behavior.
Although the population size was limited, this initial study produced some intriguing,
non-intuitive insights into the efficacy of current defenses, particularly with regards to
the technical sophistication of end users. We assert that this work shows the feasibility
and utility of testing security software through long-term field studies with greater eco‐
logical validity than can be achieved through other means.

You can imagine that this kind of real-world testing would be useful for antivirus ven‐
dors and other cybersecurity solution providers. In the next section, we discuss the
benefits of different experimental environments for malware analysis.

Scientific Data Collection for Simulators and Sandboxes
Experimental discovery with malware is a routine activity for malware analysts even
when it isn’t scientific. Dynamic analysis, where an analyst observes the malware exe‐

100 | Chapter 9: Malware Analysis

http://dl.acm.org/citation.cfm?id=2516747
http://dl.acm.org/citation.cfm?id=2516747

cuting, can sometimes reveal functionality of the software more quickly than static
analysis, where the analyst dissects and analyzes the file without executing it. Because
malware inherently interacts with its target, the malware imparts change to the target
environment, even in unexpected ways. Malware analysts benefit from analysis envi‐
ronments, especially virtual machines, that allow them to quickly and easily revert or
rebuild the execution environment to a known state. Scientific reproducibility is
rarely the primary goal of this practice.

Different malware analysis environments have their own methods for collecting sci‐
entific measurements during experimentation. Commercial, open source, and home‐
grown malware-analysis environments provide capabilities that aid the malware
analyst in monitoring the environment to answer the questions “what does this mal‐
ware do and how does it do work?” One open source simulator is ns-3, which has
built-in data collection features and allows you to use third-party tools. The ns-3
framework is built to collect data during experiments. Traces can come from a variety
of sources which signal events that happen in a simulation.

A trace source could indicate when a packet is received by a network device and pro‐
vide access to the packet contents. Tracing for pcap data is done using the PointTo
PointHelper class. Here’s how to set that up so that ns-3 outputs packet captures to
experiment1.pcap:

#include "ns3/point-to-point-module.h"

PointToPointHelper pointToPoint;
pointToPoint.EnablePcapAll ("experiment1");

FlowMonitor is another ns-3 module that provides statistics on network flows. Here
is an example of how to add flow monitoring to ns-3 nodes and print flow statistics.

 // Install FlowMonitor on all nodes
 FlowMonitorHelper flowmon;
 Ptr<FlowMonitor> monitor = flowmon.InstallAll();

 // Run the simulation for 10 seconds
 Simulator::Stop (Seconds (10));
 Simulator::Run ();

 // Print per flow statistics
 monitor->CheckForLostPackets ();
 Ptr<Ipv4FlowClassifier> classifier = \
 DynamicCast<Ipv4FlowClassifier> (flowmon.GetClassifier ());
 std::map<FlowId, FlowMonitor::FlowStats> stats = monitor->GetFlowStats ();
 for (std::map<FlowId, FlowMonitor::FlowStats>::const_iterator i = \
 stats.begin (); i != stats.end (); ++i)
 {
 Ipv4FlowClassifier::FiveTuple t = classifier->FindFlow (i->first);
 std::cout << "Flow " << i->first << " (" << t.sourceAddress << " -> " \
 << t.destinationAddress << ")\n";

Scientific Data Collection for Simulators and Sandboxes | 101

 std::cout << " Tx Bytes: " << i->second.txBytes << "\n";
 std::cout << " Rx Bytes: " << i->second.rxBytes << "\n";
 std::cout << " Throughput: " <<
 i->second.rxBytes * 8.0 / 10.0 / 1024 / 1024 \
 << " Mbps\n";
 }

It is easy to add software to collect measurements to sandboxes, especially in a virtual
environment. You can install software on the virtual machine to collect network traf‐
fic, performance loads, and timing. There are now easily accessible tools for virtual
machine introspection (VMI). VMI enables you to monitor the virtual machine from
outside the machine using tools on the host. LibVMI, for example, allows you to
access the guests’ memory and CPU state. The primary benefit is that the malware
inside the guest virtual machine doesn’t know this observation is happening. PyVMI
is a Python adapter for LibVMI, which allows you to instrument data collection how‐
ever you want. You can also use a PyVMI library with Volatility for runtime memory
analysis.

[~]$ # Copy the PyVMI address space file to Volatility's plugins folder
[~]$ cp libvmi/tools/pyvmi/pyvmiaddressspace.py volatility/plugins/addrspaces/

[~]$ # Create a LibVMI profile for the virtual machine
[~]$ # Here is an example entry for a Windows 7 VM
[~]$ cat /etc/libvmi.conf
win7 {
 ostype = "Windows";
 win_tasks = 0xb8;
 win_pdbase = 0x18;
 win_pid = 0xb4;
}

[~]$ # Run Volatility and specifying the Xen VM ("win7") as the URN for the
[~]$ # address space
[~]$ python vol.py -l vmi://win7 pslist

Community Cybersecurity Science
Crowdsourced community science projects have enabled average citizens to partici‐
pate in distributed science projects from the comfort of their home or backyard.
SciStarter has more than 1,000 projects that citizen scientists can contribute to, from
reporting bird sightings to counting bees. While few cybersecurity projects are cur‐
rently hosted at SciStarter, the cybersecurity community has been working together
through other means for many years.

Because malicious activity doesn’t occur uniformly and simultaneously around the
Internet, there is value in observing and collecting data from various vantage points
around the globe. The Honeynet Project, for example, is an international nonprofit
organization of volunteers who, since 1999, have collectively gathered and analyzed

102 | Chapter 9: Malware Analysis

http://libvmi.com
http://scistarter.com

data about attackers and malware. The Honeynet Project has sponsored and sup‐
ported many cybersecurity research projects including the Cuckoo malware sandbox.

Cybersecurity information sharing is growing in other ways, too. Industry providers
like FireEye and Symantec share information with paying customers. The US Depart‐
ment of Homeland Security coordinates sharing between government and trusted
industry partners. Other efforts like AlienVault Open Threat Exchange allow anyone
to contribute anonymized threat information and receive community threat intelli‐
gence and data. While these programs are primarily designed for actionable cyberse‐
curity, they may also be a resource for individual or global cybersecurity science.

Finally, there is an active culture promoting independent software bug hunting. Goo‐
gle, Facebook, Microsoft, and many other companies offer recognition, money, and
other incentives to individuals who discover and report new bugs in their software.
HackerOne provides a platform to connect bug hunters with software vendors. Other
approaches to community vulnerability discovery include the Pwn2Own contest at
CanSecWest, and organized crowdsourced security testing from companies like Bug‐
crowd and Synack.

Game Theory for Malware Analysis
Cybersecurity involves interactions between attackers and defenders, and it is effected
by the probability of a system being attacked. This interaction can be described in
terms of a game. Game theory is the study and mathematical modeling of decision-
making which took its name in the 1940s and soon spread from economics to biology
and later computer science. The “games” that we study could be chess or blackjack,
but are just as useful to cyber-related topics such as peer-to-peer file sharing, online
advertising auctions, and computer hackers. The games are represented by mathe‐
matical models that describe the players, the actions available to the players, payoffs
of actions, and information. Players use strategies to pick actions based on informa‐
tion in order to maximize payoffs.

The execution of game theory goes something like this. Each player makes moves
from a set of available moves and follows constraints established for the game. Players
have an information set—knowledge of different variables at a particular point in
time. Players also have a strategy, which is a rule that tells the player what action to
take at each instance of the game, given her information set. The outcome is the set of
interesting elements that arise due to selections that you, the modeler, pick for values
of the information, actions, payoffs, and other variables after the game is played out.

Why would game theory be useful to you if the approach is largely theoretical? Here
is one example to help illustrate the answer. Say you manage security for a startup
video streaming company. You need to figure out how many servers to deploy around
the globe with the assumption that these servers are likely to be attacked. Modeling

Game Theory for Malware Analysis | 103

the interaction between your company and adversaries can shed light on the number
of servers required.

Game Theory for Security Resource Allocation
Game theory is well suited to security resource allocation and scheduling problems.
Algorithms for solving Bayesian Stackelberg games are used in a variety of real-world
applications:

• ARMOR (Assistant for Randomized Monitoring over Routes) has been used at
the Los Angeles International Airport to randomize roadway checkpoints and
terminal patrol routes.

• IRIS (Intelligent Randomization in Scheduling) is a game-theoretic scheduler for
randomized deployment of the US Federal Air Marshals.

• PROTECT (Port Resilience Operational/Tactical Enforcement to Combat Terror‐
ism) has been used for randomizing US Coast Guard patrolling.

• GUARDS (Game-Theoretic Unpredictable and Randomly Deployed Security)
has been used to aid the US Transportation Security Administration in schedul‐
ing resources to protect airports.

• TRUSTS (Tactical Randomization for Urban Security in Transit Systems) has
been used in some urban transit systems to compute optimal patrol strategies.

Game theory has an interesting solution concept called the Nash equilibrium, named
for mathematician John Forbes Nash, Jr. (subject of the movie A Beautiful Mind). The
Nash equilibrium describes a state in game theory where the optimal outcome of a
game is one where no player has an incentive to deviate from his or her chosen strat‐
egy after considering an opponent’s choice. Mutually assured destruction is a form of
the Nash equilibrium where the use of a weapon would destroy both sides.

Honeypots are realistic-looking decoy systems that network
defenders use to lure attackers. The honeypot allows a defender to
observe and monitor attackers’ activities in a controlled environ‐
ment, thus informing the defender about how to better defend his
or her environment.

104 | Chapter 9: Malware Analysis

1 Radek Pıbil, Viliam Lisy, Christopher Kiekintveld, Branislav Bosansky, and Michal Pechoucek. “Game Theo‐
retic Model of Strategic Honeypot Allocation in Computer Networks,” In: Decision and Game Theory for Secu‐
rity. Conference on Decision and Game Theory for Security, Budapest, 2012-11-05/2012-11-06. Heidelberg:
Springer-Verlag, GmbH, 2012, pp. 201−220. Lecture Notes in Computer Science. vol. 7638. 2012.

Several years ago, a team of researchers studied how honeypots could best be used to
deceive potential attackers.1 Network administrators were familiar with the benefits
of honeypots, but were simply guessing about the number and location of where to
place them in the network to maximize network defense. You can imagine that mal‐
ware analysts, on the other hand, might be interested in figuring out where to place
honeypots that would be more likely to attract malware and generate data to aid mal‐
ware analysis. In Figure 9-1, you can see one result from the researchers’ report show‐
ing that the Nash equilibrium strategy significantly outperforms the baseline
strategies. Game theory also allowed these researchers to show that the optimal strat‐
egy for honeypots is randomized and distributed throughout the network, not always
masquerading as the most or least valuable machines in the network.

Figure 9-1. Exploitability of defender strategies for the honeypot selection game; Xs =
Nash Equilibrium, Squares = Maximum, Pluses = Random

Compare the Nash equilibrium to a cat-and-mouse game, which is the langauge often
used to describe the relationship between attackers and defenders in cybersecurity.
We tend to think of cybersecurity as having no equilibrium, but rather being a game
of constant pursuit. Both attackers and defenders in cybersecurity can improve their
situation by changing actions. Moving target defense (described in Chapter 10) is
such a situation.

Another technique in game theory is called Stackelberg games. Stackelberg security
games are attacker-defender games where the defender attempts to allocate limited
resources to protect a set of targets, and the adversary plans to attack one such target.
In these games, the defender first commits to a strategy assuming that the adversary
can observe that strategy. Then, the adversary takes his response after seeing the
defender’s strategy. This is perhaps a stronger claim than reality, where defenders may
face uncertainty about the attacker’s ability to observe the defense strategy.

Game Theory for Malware Analysis | 105

Game theory has some strong limitations to consider. First, players in real-life ver‐
sions of a game are not as rational as a game suggests. Second, in most practical set‐
tings, the costs and motivations of other players is uncertain and difficult to
determine. Third, game theory often ignores human components of real-life deci‐
sions such as the regret (or fear of regret) of poor decisions.

You can run game theory scientific experiments with mathematical software includ‐
ing Mathematica and Maple, or with free software such as Gambit and Gams. These
software packages allow you to run the games described above, including Stackelberg
security games.

Case Study: Identifying Malware Families with Science
In this section, we consider a hypothetical scientific experiment for a method of cate‐
gorizing malware binaries into families. We first look at similar work that others have
done on the topic to differentiate this experiment from that other work. Then, we
describe how one might run a new experiment.

Building on Previous Work
From 2010−2014, DARPA ran a research program called Cyber Genome. The project
was designed to determine whether there were discernible “fingerprints” of malware
authors in malware binaries. Another goal was to study the ability to detect malware
genealogy and construct “family trees” using similarity metrics. Some companies who
participated in the research went on to create commercial products including Cyno‐
mix, a cloud-based “patent-pending cyber genome analysis technology” from Invin‐
cea.

Having heard about DARPA’s research, assume that you want to write a program to
automatically determine whether you have seen a similar variant of a piece of mal‐
ware before. This technique is similar to using biological DNA profiling to identify
evidence of a genetic relationship. This feature might be useful in an antivirus prod‐
uct or network security appliance where you could tell users “we haven’t seen this file
before, but it appears similar to Trojan X.”

In 2009, researchers building algorithms for determining malware relationships con‐
structed the image in Figure 9-2 to illustrate the biggest of 14 families of Bagle mal‐
ware in their dataset. The research team also tested their algorithms with the Mytob
malware family, which show relations between the Mydoom, Polybot, and Gaobot
malware.

106 | Chapter 9: Malware Analysis

http://gambit.sourceforge.net
http://www.gams.com
http://www.invincea.com/products/cynomix/
http://www.invincea.com/products/cynomix/

Figure 9-2. A family tree of variants of the Bagle worm, from “An Empirical Study of
Malware Evolution” (2009)

Biological DNA profiling was first reported in 1985 by Sir Alec Jef‐
freys. The first criminal conviction to use DNA evidence in the US
occurred two years later. To date, no criminal cases have been deci‐
ded using malware fingerprinting.

A New Experiment
You have a novel algorithm for cyber DNA profiling that you think can match new,
never-before-seen malware samples with digital relatives in a known set. You want to
offer proof of this claim, and embark on experimentation to evaluate this hypothesis:

My cyber DNA profiling algorithm can correctly identify digital genetic relationships
of new samples with known malware families with 95% confidence.

One approach to testing this hypothesis is to simply try malware samples and see how
well your algorithm works. A key challenge with this kind of testing, however, is that
you have to know ground truth to determine whether or not the algorithm per‐
formed correctly. During the testing, you essentially need to know the answer about
which malware family the test sample belongs to before you start. Even if you are suc‐
cessful in this regard, perhaps by using known variants of malware as the researchers
did with Mytob and Bagle, people may be unconvinced by your results.

Ground truth malware sets for testing are a challenge for everyone building malware
solutions. One research team doing malware clustering in 2009 chose to use 2,658
samples (from a set of 14,212) that a majority of six antivirus programs agreed upon.
In 2013, students at the Naval Postgraduate School manually created a small dataset
of ground truth malware for their Ground Truth Malware Database. Malware sam‐
ples with and without labels can be obtained for free from various websites, including
Contagio Malware Dump, Open Malware, and VirusShare.

Case Study: Identifying Malware Families with Science | 107

http://contagiodump.blogspot.com
http://openmalware.org
http://virusshare.com

The sample size required for this experiment is impossible to estimate because there
is no way to accurately determine whether you have a representative sample of all
malware. People are likely to question your results if you use a sample size that they
consider too small. In general, aim for hundreds or thousands of samples whenever
possible.

How to Find More Information
Advances and scientific results in malware analysis are shared at cybersecurity and
topic-specific workshops and conferences. REcon is one annual reverse engineering
conference. Virus Bulletin hosts an annual international conference on malware and
other cyber threats. The IEEE International Conference on Malicious and Unwanted
Software (MALCON) presents theoretical and applied knowledge of malware-related
tools, practices, and incidents. The Conference on Decision and Game Theory for
Security (GameSec) is one forum for academic and industrial researchers in game
theory and technological systems.

Conclusion
This chapter presented the application of cybersecurity science to malware analysis.
The key takeaways are:

• Malware analysis tools are enabled and improved through science. Security
researchers conduct experiments that produce practical advances in tools and
techniques for malware analysis, in knowing how malware spreads, and how to
deter and mitigate the threat.

• Malware analysis simulators and sandboxes sometimes have features that support
the scientific method, including reproducible execution, reliable data collection,
and virtual machine introspection.

• Game theory is one way to practice cybersecurity science, analyzing interactions
between attackers and defenders as a strategic game.

• We applied the scientific method to malware analysis using a hypothetical case to
study the ability to identify relationships between similar malware binaries.

References
• Matthew O. Jackson. “A Brief Introduction to the Basics of Game Theory” (2011)
• Michael Sikorski and Andrew Honig. Practical Malware Analysis (San Francisco,

CA: No Starch Press, 2012)

108 | Chapter 9: Malware Analysis

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1968579

• Steven Tadelis. Game Theory: An Introduction (Princeton, NJ: Princeton Univer‐
sity Press, 2013)

References | 109

CHAPTER 10

System Security Engineering

I once heard that Yahoo has full-time employees who are responsible for replacing
failed hard drives in its 50,000+ servers. If the average hard drive lasts for two years,
then Yahoo has to replace roughly 69 hard drives per day! System security engineer‐
ing in cybersecurity is about building and evaluating systems to be dependable in the
face of adversaries and errors. Building a secure system is ideally about taking an
unambiguous policy, formally validating the hardware design and implementation,
formally validating the software, and generating scads of documentation. Such a sys‐
tem, despite precise, formalized elegance, is not usable. Therefore, we have to com‐
promise on pieces of this idealized development and engineering process. For every
compromise there comes some risk, and the security engineer must try to drive down
that risk, recognizing that it can never reach zero. Science can help you analyze the
options and figure out how to mitigate them.

Understanding security requirements at the system level—the big picture—requires
cross-disciplinary skills and tools. Security engineers should consider economics,
psychology, and ethics in addition to information technology. Examples of broad sys‐
tems of this nature include enterprise networks, electronic voting solutions, and
online web services. You probably don’t have to think about system security for any‐
thing the size of Facebook, but the principles of system-level security are just as
important for basic client-server applications and small business computer networks.
As a system-level risk, security engineering takes on different kinds of scientific
experimentation. In this chapter, we will look at those differences. You will also learn
the powerful analysis technique of regression analysis, how to evaluate system secu‐
rity through the lens of moving target defense, and a walk-through experiment to
defend against unintentional insider threats.

Scientific experimentation should not be an answer to the statement “I don’t know
how to design a system.” Instead, science in this domain is useful for testing hypothe‐

111

1 J. H. Saltzer and M. D. Schroeder. “The protection of information in computer systems,” Proceedings of the
IEEE, vol. 63, no. 9, pp. 1278–1308, Sept. 1975.

ses about how the system will react and for helping to measure the security impact of
your engineering choices, and therefore provides insights about how to improve
system-level security. Say you are responsible for deploying public key infrastructure
(PKI) in your enterprise. As the infosec professional, you should understand, test,
and document what attackers could do from various vantage points in your network
such as man-in-the-middle attacks or phishing, how you could effectively monitor
the PKI deployment, and how human users might affect the system in situations like
high load.

There are many research questions in security engineering that apply to new and
existing solutions. You may ask specific questions, like “does this system maintain its
integrity under specific stressors?” Well-designed experiments can answer such ques‐
tions. You may also ask, “does the composition of components increase the attack sur‐
face of the system?” You could certainly design experiments that launch a suite of
attacks against the system and measure the system’s response. You may want to help
answer questions that nobody has solved to date, like how to measure attack surfaces
using experimentation.

The research problems in system security engineering are both technical and non-
technical. For example, it is difficult to manage evaluations because tools for measur‐
ing security protections for different parts of the system are so different.
Measurements of security in cryptographic algorithms cannot be easily compared to
measurements of security in human usability. How could we improve the Common
Criteria, which many regard as pointlessly bureaucratic? Research is needed to make
these evaluations compatible and cohesive. Other disciplines, such as economics,
have tools for understanding risk even with incomplete information. Cybersecurity
still has much to learn from these other disciplines.

Cybersecurity Models, Principles, and Theories:
Hypotheses in Disguise

An awful lot of traditional cybersecurity—formal models, design principles, theories
—are really hypotheses in disguise. Sometimes these are the result of thorough inves‐
tigation and scientific scrutiny, but many haven’t been subjected to a lot of rigorous
analysis, despite the fact that they are widely taught. In Chapter 1 we said that there
are few axioms in security, but in reality we too often take our models, principles, and
theories as axiomatic without realizing it.

For just one example, consider Saltzer’s and Schroeder’s Design Principles from their
paper The Protection of Information in Computer Systems.1 One blogger called this

112 | Chapter 10: System Security Engineering

2 T. Yen, V. Heorhiadi, A. Oprea, M. Reiter, A. Juels. “An Epidemiological Study of Malware Encounters in a
Large Enterprise.” In ACM Conference on Computer and Communications Security, 2014.

paper “one of the most cited, least read works in computer security history.” The prin‐
ciples proposed by Saltzer and Schroeder, shown below, were added to textbooks and
influenced the DoD’s Trusted Computer System Evaluation Criteria. Over time the
principles solidified into guidelines. Look over the list and think about ways you
could test them as hypotheses. The bottom line is that you should proceed cautiously
before taking anything as sacrosanct, even long-standing models, principles, and the‐
ories.

• Principle of Economy of Mechanism
• Principle of Fail-Safe Defaults
• Principle of Complete Mediation
• Principle of Open Design
• Principle of Separation of Privilege
• Principle of Least Privilege
• Principle of Least Common Mechanism
• Principle of Psychological Acceptability

An Example Scientific Experiment in System Security
Engineering
For an example of scientific experimentation in system engineering, see the paper “An
Epidemiological Study of Malware Encounters in a Large Enterprise” by Yen et al.2 In
the abstract below you can see that this study attempted to answer research questions
about patterns of malware encounters, including “How did the malware infiltrate net‐
work perimeter?” and “Can we predict which users will encounter malware?” Else‐
where in the paper we learn that the authors analyzed McAfee antivirus logs from
85,000+ hosts in a multinational enterprise over four months. Among the findings
were that malware rates varied widely across countries, that employees were three
times more likely to be infected outside the enterprise network (e.g., at home), and
that malware encounters were highest among people with technical jobs. Using
regression (described in “Regression Analysis” on page 115), the researchers built a
classifier (an algorithm that maps input to a category) that could successfully identify
hosts at high risk for malware. Note that this study used the epidemiological method
—the science of patterns, causes, and effects (often of medical diseases)—and that
there was no stated hypothesis or controlled experiment.

An Example Scientific Experiment in System Security Engineering | 113

Abstract from a system security engineering experiment
We present an epidemiological study of malware encounters in a large, multinational
enterprise. Our datasets allow us to observe or infer not only malware presence on
enterprise computers, but also malware entry points, network locations of the comput‐
ers (i.e., inside the enterprise network or outside) when the malware were encountered,
and for some web-based malware encounters, web activities that gave rise to them. By
coupling this data with demographic information for each host’s primary user, such as
his or her job title and level in the management hierarchy, we are able to paint a rea‐
sonably comprehensive picture of malware encounters for this enterprise. We use this
analysis to build a logistic regression model for inferring the risk of hosts encountering
malware; those ranked highly by our model have a greater than three times higher rate
of encountering malware than the base rate. We also discuss where our study confirms
or refutes other studies and guidance that our results suggest.

Science and Artifacts
You may encounter fellow developers, engineers, scientists, and infosec professionals
who believe that artifacts are not contributions to science. When people do experi‐
ments and studies and the end result is a piece of software or hardware, that result is
called an artifact. The experimental result and product stem from human activity and
not of a natural phenomenon under investigation. Artifacts are not well respected in
terms of their scientific content, sometimes unfairly. In discussing whether or not his
own study was “science” or not, one co-author of the preceding abstract summarized
their contribution as “[a] classifier for prioritizing responses to infection indicators…
that’s an artifact!” However, the software is essential to illustrating what has been
accomplished, in the same way that a visualization program illustrates the scientific
results and developments behind it. Think of proof-of-concept artifacts as a way to
show the properties claimed for a new methodology; you use the methodology to
produce an implementation, and others can assess both the methodology and the
artifact.

Let’s look at how you could conduct a study in your own network similar to the epi‐
demiological study above. Your hypothesis could be that people with the title “Vice
President” have a higher rate of infection. Here’s an approach:

1. Gather antivirus alerts for the enterprise. If you run McAfee ePolicy Orchestrator,
export the Threat Event Log by querying the EPOEvents table and exporting as a
CSV file named infections.csv. Here is a query to select the victim’s hostname,
username, IP address, threat name (e.g., W32/Conficker.worm), and threat type
(e.g., “worm”).

SELECT [TargetHostName], [TargetUserName],
dbo.RSDFN_ConvertIntToIPString (TargetIPV4), [ThreatName]
[ThreatType] FROM [dbo].[EPOEvents]

114 | Chapter 10: System Security Engineering

You should get a CSV file with contents like this:
workstation5,dykstra,10.5.1.4,W32/Conficker.worm,Worm
workstation5,dykstra,10.5.1.4,Downloader.gen.a,Trojan
workstation32,smith,10.17.0.2,W32/Conficker.worm,Worm
...

2. Gather usernames and titles. In Active Directory for Windows, you can retrieve
all accounts and save them to username_titles.csv with this PowerShell command:

get-aduser -SizeLimit 0 -Properties Title,SamAccountName \
|Export-Csv username_titles.csv

You should get a CSV file with contents like this:
Senior Researcher,dykstra
CEO,smith
Programmer,alice
...

3. Now combine the two files based on common usernames. In Linux, use this com‐
mand:

Compare the usernames: 2nd field in username_titles.csv and 2nd field
in infections.csv
If there's a match, print the second field in username_titles.csv
(SamAccountName) and the fifth field in infections.csv (ThreatType)

awk 'NR==FNR{username_titles[$2]=$1;next}{print username_titles[$2]",\
 "$5;}' FS="," username_titles.csv infections.csv

You should get output like this:
Senior Researcher,Worm
Senior Researcher,Trojan
CEO,Worm
...

You could extend this example using IP addresses to compare infections inside the
enterprise network to those outside. In the next section, we will learn how to do
regression analysis, which you could also apply to this example.

Regression Analysis
Regression analysis is one of the most widely used data analysis techniques for esti‐
mating the relationships among variables. In particular, regression is used to predict
the future values of the dependent variable. Regression is a mathematical model rep‐
resented by equations, and exact relationships do not exist in regression analysis.
There are many types of regression analysis that differ in the types of variables used
in the equations of the model. You are most likely to encounter linear regression,
which uses one independent variable to explain or predict the outcome of one depen‐

Regression Analysis | 115

3 George E. P. Box and Norman R. Draper. Empirical Model-Building and Response Surfaces (Wiley, 1987).

dent variable. The relationship between the variables is typically in the form of a
straight “best fit” line (for linear regression) that best approximates all the individual
data points. Regression analysis is a very broad and complex topic only skimmed here
to let you understand the basic concept.

The formula for converting between Fahrenheit and Celsius is an
exact relationship (F = (9/5)C + 32). Unlike regression, the rela‐
tionship is known exactly so there is no need to model the relation‐
ship.

British statistician George Box famously said that “essentially, all models are wrong,
but some are useful.”3 The truth in this statement comes from the fact that models are
simplifications and approximations of reality that often ignore important factors (e.g.,
friction, gravity, etc.). However, models are still useful for understanding our complex
world and making predictions. Regression analysis is useful in practical cybersecurity
because predictions can inform our choices about how to build, deploy, or configure
cybersecurity solutions.

Statistical software such as MATLAB and R make regression analysis approachable
for nonexperts. The output of the software will include coefficients for the regression
equation. The strength of the model is expressed in these correlation coefficients,
which explain how much of the predicted value can be explained by the regression
formula. Generally ranging from 0 to 1, a value of 0 indicates no predictive power,
0.1−0.3 weak prediction, 0.4−0.6 moderate prediction, and 0.7−1 strong prediction.
The following example has a correlation of 0.68, or moderate predictive ability. Purely
scientific studies often strive for values of .9 or above, but 0.68 may be good enough
to influence the system design.

Suppose you were developing a cloud-based smartphone security app and wanted to
know how to balance battery consumption with your app’s activity on the device.
Your hypothesis is that bandwidth usage is a significant factor correlated with battery
usage. You collect some sample data from people similar to your target audience, like
that in Table 10-1.

You can graph the data in R using the lm (linear model) and plot commands, along
with a “best fit” line, as follows (see Figure 10-1):

Load the data from a CSV file
mydata <- read.csv("data.txt", header=TRUE)

Create a scatterplot of bandwidth versus battery discharge
plot(mydata$bandwidth,mydata$battery)

116 | Chapter 10: System Security Engineering

Calculate the coefficients of regression model
fit <- lm(mydata$battery~mydata$bandwidth)

Use the coefficients to draw the Line of Best Fit
abline(fit)

Figure 10-1. Regression scatterplot of actual battery/bandwidth values and the Line of
Best Fit showing the calculated approximate values from the regression model

You also want to test that other factors (CPU utilization, WiFi state, I/O idle rate) are
not as significantly correlated with battery usage. The cor command calculates the
correlations between all variable pairs as follows:

Compute the correlation coefficient between bandwidth and battery discharge
> cor(mydata$bandwidth,mydata$battery)
[1] 0.681595

Compute a correlation matrix for all variables
> cor(mydata)
 CPU wifi IO bandwidth battery
CPU 1.00000000 -0.4373735 0.65467277 0.36014650 0.08320651
wifi -0.43737346 1.0000000 -0.80266372 0.28494970 0.22539850
IO 0.65467277 -0.8026637 1.00000000 -0.04450642 -0.15041226
bandwidth 0.36014650 0.2849497 -0.04450642 1.00000000 0.68159530
battery 0.08320651 0.2253985 -0.15041226 0.68159530 1.00000000

Regression Analysis | 117

4 See also, the Chaos Monkey source code.

Table 10-1. An example data excerpt of smartphone attributes and battery discharge

cpu_utilization (%) wifi_state (on, off) io_idle (%) bandwidth (kb/s) battery_discharge

0.2 0 0.008 0 0.36

0.3 1 0.001 20 0.52

0.1 0 0.17 10 0.37

0.2 1 0.06 20 0.40

0.4 1 0 100 0.66

After the regression analysis is complete, cross-validation is used to check the model
by assessing how the results will generalize to an independent dataset. This is neces‐
sary because models sometimes incorrectly estimate how accurately a predictive
model will perform in practice. Cross-validation is performed in rounds, where each
round consists of partitioning a dataset into subsets, performing the analysis on one
subset (the training set), and validating the analysis on the other subset (the validation
set). Ten-fold cross-validation is common, where the data is partitioned into 10 sub‐
sets, cross-validation is performed 10 times, and in each round nine samples are used
for the training set and one sample is used as the validation set.

You can perform 10-fold cross-validation in R using the DAAG package as follows:

10-Fold Cross-Validation for Linear Regression
df = a data frame
m = number of folds (rounds)
library(DAAG)
cv.lm(df=mydata, fit, m=10)

As you can see, regression is a complicated topic but becomes easier to do with
modern tools. It is an important and powerful concept that plays a part in many sci‐
entific discoveries. As you consider your own cybersecurity experiments, remember
that regression can help analyze the relationships among variables.

Moving Target Defense
In a blog post several years ago, Netflix revealed that it had a Chaos Monkey.4 The
Netflix infrastructure runs in the cloud, and the Chaos Monkey was a program that
terminated random virtual machine instances in its infrastructure. Why? Because it
believed that “the best defense against major unexpected failures is to fail often.” By
failing often, Netflix forces its applications to be resilient to the chaos.

Moving Target Defense (MTD) is the concept of routine change in a system or envi‐
ronment to increase uncertainty and apparent complexity for potential attackers. It

118 | Chapter 10: System Security Engineering

http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html

can also reduce attackers’ window of opportunity and increase the costs of their
attack efforts because, from their perspective, their targets change “randomly” over
time. MTD is typically used for Internet-facing hosts rather than internal to a net‐
work, but this is not required. Examples of MTD include network configuration ran‐
domization and address space randomization. Many IT environments today remain
static for years, giving adversaries time to learn and attack the system. For example,
your web server may have been at the same IP address running the same version of
Apache for many years. MTD introduces the element of surprise, such as changing
the web server’s IP address in an unpredictable way. Chaos Monkey is an example of
MTD because a virtual machine could be terminated at any time.

MTD makes the bold assumption that perfect security is unattainable in practice.
Given that starting point, and the assumption that all systems are compromised,
MTD focuses on enabling the continued safe operation in a compromised environ‐
ment and having systems that are defensible rather than perfectly secure. As a com‐
plex system, MTD offers an opportunity for cybersecurity science. There are
interesting hypotheses to test in selecting and deploying moving target defenses in
your environment. Does the use of diversity limit spreading attacks? Is there any
measurable difference in spread rates when using static environments versus dynamic
diversity? What experiments would you want to run to convince your management
that MTD was a wise choice?

One cost of deploying MTD is the overhead of managing and executing the moves,
making complex systems intentionally more complex. Not only must the system itself
be able to implement regular changes, but so must those who interact with that sys‐
tem. If you change the IP address of your web server every day, the network defense
team and intrusion detection systems must be aware of what the current, legitimate
IP address is at any given time. Decision-makers appreciate analysis that shows that
the anticipated cost and risk of not deploying MTD are greater than the anticipated
cost and risk of adopting and implementing a change.

Risk assessments tend to evaluate the environment at a single moment in time. As a
result, they would fail to adequately capture the risk of a static target over time, or the
benefit of change. Think back to earlier in the chapter about the algorithm to predict
which machines in an enterprise were likely to encounter malware. Now think like an
attacker: if the attacker knows that you have some way to predict the vulnerable users
or machines, she will try to fool your algorithm and attack users or machines that
break the algorithm’s regular rules. In this common attacker-defender cat-and-mouse
game, you can imagine that changing even one variable in the environment could
lower the risk of an otherwise vulnerable machine: changing machine IP addresses,
deploying different web browsers, or randomly running full-disk malware scans on
machines that return to the enterprise after connecting remotely. A well-designed
experiment studying a small pilot MTD deployment would let you measure whether
or not users encounter more or less malware after implementing MTD.

Moving Target Defense | 119

5 CERT Insider Threat Team. Unintentional Insider Threats: A Foundational Study. Software Engineering Insti‐
tute, May 2013

Case Study: Defending Against Unintentional Insider
Threats
In this section, we will walk through a hypothetical scientific experiment related to
one important aspect of system security engineering: insider threats. This experiment
explores the risk of unintentional insider threat in a corporate setting. Though they
can be just as damaging as intentional insiders who deliberately and maliciously
intend to cause harm, unintentional insiders are those employees who accidentally or
inadvertently expose the business to risk, often without even knowing it.

Insider threat is a widely acknowledged and serious security con‐
cern for many businesses. The CERT Insider Threat Center at
Carnegie Mellon University has been studying the topic, and
released a report in 2013 describing “unintentional insider threat”
as insider actions or inactions without malicious intent which cause
harm or increase the probability of harm.5

The goal of this experiment is to determine if unintentional insiders could harm your
particular enterprise, and make the case for specific remediations to better protect the
network. Say you work at a financial services company with 500 employees spread
across three locations: Boston, Denver, and Tokyo. The company handles sensitive
financial information and any data breaches would cause significant harm to clients
and your company. You don’t know how often unprotected sensitive information
leaves the company on employee devices, so you’re interested in whether data loss
prevention (DLP) technology could help mitigate this risk. You form a hypothesis as
follows:

Data loss prevention software would protect the enterprise by discovering 90% of out‐
going email messages containing unprotected sensitive company data.

This hypothesis is a bit different from some other case studies that were presented.
The hypothesis seeks to understand the benefit of taking an action: adding DLP to the
environment. The tests will help demonstrate whether this action will result in the
hypothesized outcomes. This is clearly a very narrow, technology-focused question
that ignores the benefits of other mitigations to insider threat, including complemen‐
tary approaches such as user education and awareness.

120 | Chapter 10: System Security Engineering

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=58744

6 Of course, this action is legal and consistent with the “Consent to Monitor” clause in your Employee Hand‐
book, and approved by management and legal counsel.

“One size fits all” approaches to insider threats may be inappropri‐
ate even inside a single company or organization. For example, you
may wish to tailor solutions to certain individuals or business units
such as stock traders in a financial services company. High risk tol‐
erance is desirable and valued in some circumstances, so insider
threat education and awareness strategies should avoid inappropri‐
ately stifling the employees in those circumstances.

To measure the benefit of DLP, you will need a control group of users who do not use
it. However, you will need ground-truth data about what sensitive information those
users are storing and transmitting that might have been identified by DLP. There are
at least three options: construct an artificial emulated environment where you moni‐
tor simulated real-world activity, use questionnaires with a representative sample of
real-world employees of self-reported activity, or review users’ real-world activity
yourself (e.g., looking at email on the mail server—with or without their knowledge).
Assume you pick the last option, to review the email of 10 users on the mail server for
one week without notifying them.6 You discover that 30% of messages contain sensi‐
tive company data.

Now you want to evaluate a commercial DLP solution. After installing and configur‐
ing the software to detect your sensitive information, you need to gather data. As with
the control group, you have choices about where and how to collect data. In this case,
it would be wise to measure how the DLP software works for the same users and
same email data as you manually examined. This approach enables you to definitively
identify true positives (DLP correctly identified sensitive data), false positives (DLP
incorrectly identified sensitive data), and false negatives (DLP missed sensitive data).
At the end of the week, you find that DLP found that 28% of messages contained sen‐
sitive company data, with 2% false negatives and 0% false positives. Clearly, you have
confirmed the hypothesis that DLP can discover 90% of the sensitive data in email for
this small sample.

Note that we have detected sensitive data in outgoing email but we have not deter‐
mined whether the sender’s intent was malicious or an unintentional risk. Intent is
difficult to measure. While you could alert the email sender that his message contains
sensitive data and ask him if he wants to proceed, this is unlikely to dissuade mali‐
cious insiders. Some DLP solutions allow you to automatically route emails with sen‐
sitive data to an email gateway that will automatically encrypt the message. You may
be able to construct a follow-on experiment that measures the percentage of messages
violating a policy of only sending encrypted emails to known, verified recipients.

Case Study: Defending Against Unintentional Insider Threats | 121

How to Find More Information
Scientific results in security engineering appear in all kinds of cybersecurity solutions,
even if they remain hidden from most users. A recent job opening at Google for
Information Security Engineer included the responsibility to “conduct research to
identify new attack vectors against Google’s products and services” and one for a
Product Security Engineer at Facebook said: “You will be relied upon to provide engi‐
neering and product teams with the security expertise necessary to make confident
product decisions. Come help us make life hard for the bad guys.” Advances and sci‐
entific results are shared with the public at conferences such as the IEEE/IFIP Inter‐
national Conference on Dependable Systems and Networks (DSN) and the Network
and Distributed System Security Symposium (NDSS). There is an annual Workshop
on Moving Target Defense in conjunction with the ACM Conference on Computer
and Communications Security (CCS).

Conclusion
System security engineering requires cybersecurity science that uses cross-
disciplinary skills and tools. The key concepts and takeaways from this chapter are:

• Science in this domain is useful for testing hypotheses about how the system will
react and for helping to measure the security impact of your engineering choices,
providing insights about how to improve system-level security.

• Regression analysis is a widely used data analysis technique for estimating the
relationships among variables. Regression is used to predict the future values of
the dependent variable.

• Moving target defense is a concept of routine change in a system or environment
to reduce attackers’ window of opportunity because, from their perspective, their
targets change “randomly” over time.

• In a hypothetical case study, we evaluated the hypothesis that data loss prevention
software would protect an enterprise by discovering outgoing email messages
containing sensitive company data.

References
• ACM Workshop on Moving Target Defense
• Ross Anderson. Security Engineering: A Guide to Building Dependable Distributed

Systems (Indianapolis, IN: Wiley, 2008)
• Richard Cook. How Complex Systems Fail (1998)

122 | Chapter 10: System Security Engineering

http://mtd.mobicloud.asu.edu
http://web.mit.edu/2.75/resources/random/How%20Complex%20Systems%20Fail.pdf

• John Fox and Sanford Weisberg. An R Companion to Applied Regression, Second
Edition (Thousand Oaks, CA: Sage, 2011)

• Jay Jacobs and Bob Rudis. Data-Driven Security: Analysis, Visualization and
Dashboards (Indianapolis, IN: Wiley, 2014)

• Thomas P. Ryan. Modern Regression Methods, 2nd Edition (Indianapolis, IN:
Wiley, 2009)

• Adam Shostack. Threat Modeling: Designing for Security (Indianapolis, IN: Wiley,
2014)

References | 123

CHAPTER 11

Human-Computer Interaction
and Usable Security

Usability affects many cybersecurity domains presented throughout this book. Like
other cybersecurity issues, human-computer interaction and usable security also rely
on empirical experimentation. Good work in these areas also requires an understand‐
ing of how humans work. Despite its widespread applicability, usability evaluation is
often overlooked and undervalued. In this chapter you will learn about the scientific
principle of double-blind experimentation, how to measure usability during design
and validation, and how to evaluate the usability of a cybersecurity product.

In “A Roadmap for Cybersecurity Research” published by DHS in 2009, usable secu‐
rity is identified as one of 11 hard problems in infosec research. This report, and oth‐
ers like it, point out that security and usability have historically been at odds. This
situation comes in part from implementation choices that make security choices
unintuitive and confusing. Security adds complexity to a system and interferes with
the user’s primary goals, so it is an area where collaboration between the cybersecur‐
ity community and the usability research community is required. The science of usa‐
bility as applied to security is an unmet goal.

Usability is important to consumers, as evidenced by online product reviews. For
example, Qihoo 360 Security - Antivirus Free (for Android) received this review from
PC Magazine:

“…I felt overwhelmed by the sheer number of features, and was disappointed when
several of them didn’t work as advertised (or at all). And the app doesn’t do a great job
of explaining itself, or making some of its most critical features—like anti-theft tools—
easy to use.”

Experimentation and testing in human-computer interaction and usable security are
naturally more difficult to automate and scale than some other problems we’ve

125

http://www.pcmag.com/article2/0,2817,2468630,00.asp

1 For more, see National Research Council Steering Committee on the Usability, Security, and Privacy of Com‐
puter Systems, Toward Better Usability, Security, and Privacy of Information Technology: A Report of a Work‐
shop. Washington, DC: The National Academies Press, 2010.

2 Andreas Sotirakopoulos, Kirstie Hawkey, and Konstantin Beznosov. On the Challenges in Usable Security Lab
Studies: Lessons Learned from Replicating a Study on SSL Warnings (Proceedings of the Seventh Symposium on
Usable Privacy and Security (SOUPS), 2011).

explored in the book. When Ford wants to test a new engine part, it can use well-
designed models and simulations to run 20,000 tests with the push of a button and
very little cost. When it wants to test dashboards, it’s not so easy to know what con‐
sumers are going to like without doing user studies.

Usability for cybersecurity differs from general usability in several ways. For one,
security is often not the primary task or concern for users. Adding security features to
an email client, for example, disrupts the primary goal of sending and receiving
email. Another uniqueness to usable security is the adversary. An adversary might try
to take advantage of the features or flaws in human-computer interfaces and usability,
even using social engineering to persuade the user into compromising security.
Research topics in human-computer interaction (HCI) and usable security evolve
over time as computer interaction changes. Usability of wearable technology such as
fitness trackers differs from usability of a traditional laptop computer.1

An Example Scientific Experiment in Usable Security
Experiments in design and usability follow a variation on our familiar formula: par‐
ticipants (evaluators and users), evaluation procedure, and the environment and sys‐
tem setup. One kind of experiment is usability testing, completing specific tasks in a
controlled manner. Another kind of experiment requires users to responding to spe‐
cific questions. Yet another compares alternative designs, perhaps using analytical
modeling and simulation. In his classic handbook on usability, Usability Engineering,
Jakob Nielsen recommends that you conduct pilot runs during this phase, especially
if user involvement is required.

Recall from Chapter 3 that there are important choices about where to conduct an
experiment. In human factors, the setting can be especially important if it influences
the participants. A 2011 study experimentally showed a difference between self-
reported and observed actions related to web browser SSL warnings. The authors
reported that “...one third of our participants claimed that their reaction would be dif‐
ferent if they were not in a study environment and did not have the reassurance from
the study environment (e.g., ethics board approval, the university as a reputable orga‐
nization) that their information would be safe and secure.”2

For an example of scientific experimentation in usability, look at the paper “Does My
Password Go Up to Eleven? The Impact of Password Meters on Password Selection”

126 | Chapter 11: Human-Computer Interaction and Usable Security

3 Serge Egelman, Andreas Sotirakopoulos, Ildar Muslukhov, Konstantin Beznosov, and Cormac Herley. 2013.
Does my password go up to eleven?: The impact of password meters on password selection. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13). ACM, New York, NY.

by Egelman et al. (2013).3 In the abstract below you can see that this study involved
both a laboratory experiment and field experiment. The stated hypotheses (presented
later in the paper) for the laboratory experiment were:

H0

Passwords are not stronger when meters are present.

H1

Passwords are stronger when users see relative strength meters compared to no
meters.

H2

Passwords are stronger when users see relative strength meters compared to “tra‐
ditional” meters.

The stated hypotheses for the field experiment, based on data collected in the labora‐
tory, were:

H0a

Passwords are not stronger when users see meters, when creating unimportant
accounts.

H0b

Changes to the orientation and text of password meters will not result in differ‐
ent passwords.

Abstract from a human factors experiment
Password meters tell users whether their passwords are “weak” or “strong.” We per‐
formed a laboratory experiment to examine whether these meters influenced users’
password selections when they were forced to change their real passwords, and when
they were not told that their passwords were the subject of a study. We observed that
the presence of meters yielded significantly stronger passwords. We performed a fol‐
lowup field experiment to test a different scenario: creating a password for an unim‐
portant account. In this scenario, we found that the meters made no observable
difference: participants simply reused weak passwords that they used to protect similar
low-risk accounts. We conclude that meters result in stronger passwords when users
are forced to change existing passwords on “important” accounts and that individual
meter design decisions likely have a marginal impact.

An Example Scientific Experiment in Usable Security | 127

This would be a straightforward experiment for you to replicate. The most challeng‐
ing part of this study is the experimental design: how do you get study participants to
think that the thing you’re measuring (passwords) isn’t the subject of the study?

Five Myths of Usability
The website UX Myths collects frequent misconceptions about design and usability.
Here are five such misconceptions based on their collection that are useful for secu‐
rity usability:

1. You are like your users. As a designer or developer, you know and care about
your product or service more than your users. To avoid your own bias, learn
about and interact with your users, and involve them in the development process.

2. Users make optimal choices. Usability tests show that users tend to choose the
first somewhat reasonable choice that catches their eye, instead of selecting the
optimal choice.

3. People can tell you what they want. Users routinely have difficulty articulating
what they want in a product. They also make confident but false predictions
about their future behavior. This is related to another myth: usability is about
asking users what they want.

4. Usability testing is expensive. Getting user input should be disciplined and sys‐
tematic but can be fast and relatively cheap. Just remember, usability testing is
not the same as asking a few friends if they like your product. Done right and
early in the development process, usability doesn’t have to slow down develop‐
ment.

5. If you are an expert, you don’t need to test your design. Usability testing and
expert reviews are both useful but tend to reveal different issues.

Double-Blind Experimentation
Blind experimentation describes a type of experimental procedure where information
is concealed from the test subject or the experimenter to avoid human bias. In a blind
medical trial of a new drug, for example, some test subjects are given the new drug
and some are given a placebo, and neither knows which he or she has been given. An
experiment is double-blind when neither the subjects nor the experimenters know
which subjects are in the test and control groups during the experiment. To maintain
the integrity of the test, it is important for test subjects to be randomly assigned to the
test and control groups. Double-blind experiments are generally considered more sci‐
entifically rigorous than blind or nonblind experiments.

128 | Chapter 11: Human-Computer Interaction and Usable Security

http://uxmyths.com

The practice of double-blind experimentation can be extended to various areas of
cybersecurity. A double-blind penetration test would be one in which the testers are
given very little information about the target, perhaps only a name or website, and
the target organization is mostly unaware about the test. With this setup, we seek to
create a more realistic test by removing the bias that the pen testers had guilty knowl‐
edge that real attackers would not have. We also hope to create a realistic situation to
test the target organization’s security response by not informing them about the test.

Here’s another example. You want to compare the detection performance of two mal‐
ware protection systems. Using a collection of malicious and benign binaries, you
randomly select a binary, present it to one of the systems, and observe if the binary is
identified as malicious or benign. The experiment is double-blind because neither
you nor the malware protection system knows whether the test binary is malicious or
not during the test. Of course, you must also have a colleague or program record the
actual disposition of each binary in the experiment. After the experiment is over, you
can compare how many binaries each malware protection system got right. The bene‐
fit of doing a double-blind test in this situation is to remove the real or perceived bias
that you, the experimenter, might selectively choose test samples that you know one
system might get right or wrong.

The cybersecurity community uses another type of testing called black box testing,
which may appear to resemble blind testing. In a black box test, the examiner investi‐
gates the functionality of the target without knowing how it works. The black box
methodology is sometimes used to eliminate examiner bias. In most cases, however,
black box testing is used to abstract unnecessary details from testers.

Another time you may hear about double-blind procedures is in the prepublication
peer review of scientific papers for conferences and journals. In a double-blind
review, the people reviewing the paper are unaware of the authors’ identities and the
reviewers’ identities are likewise concealed from the authors. The primary goal in
double-blind review is to avoid biases and conflicts of interest between the reviewers
and authors.

Usability Measures: Effectiveness, Efficiency, and
Satisfaction
The International Standards Organization (ISO) defines usability as “the effective‐
ness, efficiency, and satisfaction with which specified users achieve specified goals in
particular environments.” (ISO 9241-11: Guidance on Usability (1998)). The three
defining characteristics are explained as follows:

Usability Measures: Effectiveness, Efficiency, and Satisfaction | 129

Effectiveness
The accuracy and completeness with which specified users can achieve specified
goals in particular environments. Example measurements include percentage of
goals achieved, functions learned, and errors corrected successfully.

Efficiency
The resources expended in relation to the accuracy and completeness of goals
achieved. Example measurements include the time to complete a task, learning
time, and time spent correcting errors.

Satisfaction
The comfort and acceptability of the work system to its users and other people
affected by its use. Example measurements include ratings for satisfaction, ease of
learning, and error handling.

A subsequent standard, ISO 20282: Ease of Operation of Every Day Products, makes
specific recommendations of design attributes and test methodologies for everyday
products. This document makes these five recommendations for easy-to-operate
products:

1. Identify the main goal of your product.
2. Identify which user characteristics and which elements of the context of use

could affect the ease of operation of your product.
3. Establish the impact of each of these characteristics on the ease of operation of

your product.
4. Ensure that the product design takes account of these characteristics.
5. Review the final design to ensure it complies with the characteristics.

One key benefit of these characteristics to science is that they are quantitative in
nature. Want to measure the usability of a reverse engineering tool? Give it to a user
along with a set of tasks to accomplish using the tool, then measure how many ques‐
tions she got right, how long it took to complete the questions, and how well she liked
the tool. The test methods in ISO 20282 use effectiveness as the critical performance
measure, defined explicitly as “the percentage of users who achieve the main goal(s)
of use of a product accurately and completely.”

Of the three usability characteristics, satisfaction is the one that many infosec profes‐
sionals are unaccustomed to measuring. You have no doubt filled out surveys of this
type that measure your satisfaction with a conference or hotel or breakfast cereal.
Common practice is to use an ordinal scale with five or fewer points. There is no con‐
sensus among experts about whether to use an even or odd point scale, but labeling
the points on the scale with descriptive text is preferred to numbers alone. In

130 | Chapter 11: Human-Computer Interaction and Usable Security

Figure 11-1, you can see an example scale that you might use with the survey ques‐
tion “How satisfied were you with the reverse engineering tool?”

Figure 11-1. A rating scale with five labeled points and two nonscaled choices for a ques‐
tion like “How satisfied were you with the tool?”

Professor Ben Shneiderman at the University of Maryland is an expert on human-
computer interaction and information visualization. He has proposed the following
Eight Golden Rules of Interface Design in his book Designing the User Interface:

1. Strive for consistency
2. Cater to universal usability
3. Offer informative feedback
4. Design dialogs to yield closure
5. Prevent errors
6. Permit easy reversal of actions
7. Support internal locus of control
8. Reduce short-term memory load

These “rules” distill much research into just a few principles and offer a guide to good
interaction design. As with most sets of rules, these offer the opportunity to measure
and evaluate how well the proposed solution has achieved the desired principle. This
list offers another set of usability measures that are complementary to effectiveness,
efficiency, and satisfaction. An ideal interface which achieves Shneiderman’s princi‐
ples should score highly in usability.

Let’s say you wanted to use Shneiderman’s rules as motivation for a test of a new
product. Rule #1 is consistency, which is related to predictable and stable language,
layout, and design. You could measure consistency in any number of ways. For exam‐
ple, you might compare the training time required to learn Version 1.0 of your soft‐

Usability Measures: Effectiveness, Efficiency, and Satisfaction | 131

ware compared to Version 2.0, and find that changes you made to increase
consistency directly reduced the amount of training time. On the other hand, you
might find that consistency as a primary concern is distracting for users and their
work. Or, you might have specialized knowledge about the context in which people
will use the product that contradicts the standard rule. If your target users always run
EnCase (for forensic analysis) alongside Microsoft Word (for documentation and
reporting), you might want to know if consistency between the tools—does Ctrl-S
mean Save in both?—is more important than the internal consistency of a single tool.

Usability is not necessarily the same as utility and desirability. People use tools with
low usability all the time, perhaps because the tools meet a need or achieve an objec‐
tive. The three usability characteristics can be correlated—high effectiveness may lead
to high satisfaction—but may also be independent. Users can be highly effective with
a tool but be highly unsatisfied with it.

Finally, let’s discuss the difference between beta testing and usability testing. Both
beta testing and usability testing are intended to gather user feedback to help devel‐
opers improve a product. Beta testing typically occurs late in the software develop‐
ment cycle when most design and functionality decisions have already been made.
Beta testing provides bug reports and general usage of new features. Usability testing
tends to happen before beta testing when there is still time to change fundamental
aspects of the solution, and provides insights about whether new features are usable.
These two tests are complementary and both should be done when possible. While
users often do beta testing in their home or office, and usability testing is sometimes
done in a lab, both tests are flexible and amenable to variations in execution.

With these ideas and considerations for what data to collect, the next section dis‐
cusses methods for how to collect data.

Methods for Gathering Usability Data
There are many ways to gather usability data. In this section, we’ll present some stan‐
dard methods and other considerations for gathering usability data during two differ‐
ent phases of development: design and validation. Different approaches to usability
testing are used during these two phases.

Testing Usability During Design
Usability testing during the design phase is focused on formative assessment, which
provides insights about how to improve the design. There are two approaches to usa‐
bility testing protocols during the tool design phase: moderated and unmoderated.

Moderated data gathering involves the use of a facilitator who observes and/or asks
questions as a participant attempts a task, and are often conducted in a controlled set‐
ting such as a laboratory. A trained and experienced facilitator can document and

132 | Chapter 11: Human-Computer Interaction and Usable Security

solicit very valuable insights about the participant’s tool experience during the ses‐
sion. If you have the luxury of time, money, and staff, moderated sessions are a pow‐
erful choice.

Unmoderated sessions allow test subjects to provide usability input independently.
Remote unmoderated usability testing over the Internet even allows data gathering
from the comfort of home. Unmoderated tests are increasingly popular given their
convenience and low cost. Remote testing is well suited for web-based interfaces but
may be inappropriate for cybersecurity hardware or specialized environments.
Remote testing can enable you to more easily draw a large and diverse group of study
participants, and several online services can handle participant recruitment, testing,
data gathering—even some data analysis.

There are four common approaches for ways of gathering data during usability test‐
ing, and one or more may be appropriate for your situation:

• Concurrent Think Aloud testing encourages the participant to speak aloud to a
(mostly passive) facilitator and explain in a stream of consciousness what he or
she is thinking and doing.

• Retrospective Think Aloud is a technique where a facilitator asks the participant
after the task is complete to orally explain what he or she did. The participant
may narrate his or her actions while watching a video replay of the task.

• Concurrent Probing involves a facilitator asking probing questions to the partic‐
ipant during the test to solicit details about what or why the participant took a
certain action.

• Retrospective Probing is a technique for asking the participant probing ques‐
tions after the session is over. This technique may be done with or without a
human facilitator, and may be used along with another method.

In a good usability test, your testers will use your tool to do whatever your real users
want to do. Rather than simply asking your testers to “look at” your tool and tell you
what they think, come up with a short list of definite tasks—finding a bit of informa‐
tion, collecting and comparing information from different locations, making judg‐
ments about the content, etc. Avoid yes/no questions like “Did you think the
navigation was clear?” Instead, ask subjects to rate their own responses, as shown in
Example 11-1.

Example 11-1. Example usability question

Respond to the following statement: This tool was easy to use.

1. Disagree Strongly
2. Disagree

Methods for Gathering Usability Data | 133

3. Disagree Somewhat
4. No Opinion
5. Agree Somewhat
6. Agree
7. Agree Strongly

Not only does this allow you to report trends (“Subjects reported an average score of
4.2 for Question 1”), but it allows you to easily quantify changes between tests. Take a
look at Table 11-1.

Table 11-1. Improvement between two usability tests as measured by three survey questions

Test 1 Test 2 Improvement

Q1. The tool is easy to use. 4.2 5.0 +19%

Q2. The tool is too complex. 4.0 3.0 +25%

Q3. The tool could do everything I wanted it to do. 3.0 4.5 +50%

Usability testing allows you to observe what people do and to
measure their performance. You are the expert who will use the
resulting data to make decisions about whether or not to change
the design.

Testing Usability During Validation and Verification
It is important to conduct usability testing when the design is complete, during the
validation and verification stage. In this phase, you may want to conduct summative
testing. Summative testing is used to determine metrics for complete tasks, including
time and success rates.

It may be helpful to describe in detail one example of gathering usability data.
Assume you just finished creating a new open source network scanning tool. You
want to get feedback from users about usability and decide to use retrospective prob‐
ing. You find some willing participants and give them the tool along with three short
questionnaires: pre-test, post-task, and post-test.

Surveys and questionnaires are prescriptive methods of data collec‐
tion because the structure dictates the type and depth of answers
that participants provide. The way that questions are asked is very
important because the response choices offered strongly affect the
responses that participants can provide.

134 | Chapter 11: Human-Computer Interaction and Usable Security

4 Alma Whitten and J. D. Tygar. Why Johnny Can’t Encrypt: A Usability Evaluation of PGP 5.0 (Proceedings of
the 8th USENIX Security Symposium, 1999).

In the pre-test questionnaire, you might want to ask the user’s education, age, years of
experience, and familiarity with other network scanning tools. The post-task ques‐
tionnaire includes items related to the task and your desired usability metrics. For
example, using a five-point scale (like that in Figure 11-1), ask for agreement with the
statement “I was satisfied with the ease of completing this task.” In the post-test ques‐
tionnaire, you can ask structured but free-form questions such as “What are two
things about the design that you really liked?” and “What are two things about the
design that you didn’t like?”

Case Study: An Interface for User-Friendly Encrypted Email
Usable interfaces for email encryption remain an open problem. One of the classic
papers in security usability written in 1999 is “Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0,”4 and considers the Pretty Good Privacy (PGP) encryption
software that had come out eight years prior in 1991. “We conclude that PGP 5.0 is
not usable enough to provide effective security for most computer users,” write the
authors, “despite its attractive graphical user interface, supporting our hypothesis that
user interface design for effective security remains an open problem.” In 2015, sixteen
years later, usable email encryption and widespread adoption of such solutions
remain elusive.

Let’s walk through a hypothetical scientific experiment in usability that evaluates
secure, encrypted email. Assume that prior work has shown the following assertions
about secure email:

• Users will reject secure email if it requires too much effort.
• Users are uninterested and unwilling to obtain or manage cryptographic keys.
• Cryptography is confusing and overwhelming for users, even those who desire

security and privacy.

Now assume you work for a university that wants to deploy a Cisco secure email solu‐
tion called Cisco Registered Envelope Service (CRES), and you want to evaluate its
usability as a security product. Companies, universities, and other customers deploy
CRES inside their network alongside a traditional email server. To encrypt an email
with CRES, the sender simply adds a special keyword like “[secure]” in the email sub‐
ject line. The email is automatically routed to a secure internal email server where it is
encrypted. Email recipients inside the company receive secure email like any non-
secure message. External recipients are redirected to a web interface where they regis‐

Case Study: An Interface for User-Friendly Encrypted Email | 135

ter and then view the secure message in a browser. How could you evaluate the
usability of this solution?

A New Experiment
For this experiment, you will have a representative group of test subjects perform the
task of using CRES. You will gather usability data from the group by collecting meas‐
urements that can help you accept or reject this hypothesis:

University students and faculty will be capable of using CRES to send and receive
encrypted email within a reasonable time overhead, and report satisfaction with the
experience.

Imagine that the university has 14,000 students and faculty. In order to achieve a 95%
confidence level with a 5% confidence interval, a sample size of 374 participants is
required. Ideally, you would like a completely random sample of the university popu‐
lation without the added bias of using only freshmen or only computer engineering
students. In reality, this goal is often difficult, so let’s pretend that you sample from a
mandatory course.

In this study plan, we will invite our prospective participants by email to the study
website. In a few brief paragraphs, the page describes the purpose of the study (to
understand how well users like and perform with encrypted email), the time required
(say, 20 minutes), and the benefits to the participant (a chance to influence the ulti‐
mate solution). Next we ask a few preliminary questions about computer skills and
previous experience with encryption. Then we provide a brief tutorial including step-
by-step instructions for using CRES. Then we begin the actual task as follows. Users
are instructed to send an encrypted email to the study team at a particular email
address. The server records the time when the user logs into the mail server and
records when the encrypted message is sent (we could alternatively or additionally
ask the user to self-report the amount spent on the task). Your study team later ana‐
lyzes the study’s special mailbox and records the senders who successfully sent them
an encrypted message. You also want to test decryption. When the participant is
ready, he clicks a web form indicating that he is ready to begin. An automated system
sends him an encrypted email and he is instructed to email the decrypted message
content to the study’s special email address. The server again records the timestamps
of each event in this task. Having completed encryption and decryption, you ask the
participant how satisfied he was with CRES.

When data collection is complete, you then aggregate and graph the results as shown
in Figure 11-2.

136 | Chapter 11: Human-Computer Interaction and Usable Security

Figure 11-2. Efficiency, effectiveness, and satisfaction with CRES

Case Study: An Interface for User-Friendly Encrypted Email | 137

The data offers insights about how efficiently and effectively users could perform the
encryption and decryption task. You might want to dig deeper with statistical analysis
into the correlation between effectiveness or efficiency and satisfaction—did users
who failed to complete a task report lower satisfaction, or did satisfaction go down
the longer it took to complete the task? These results alone are insufficient to make a
recommendation about whether to adopt CRES. This data should be compared to a
control that in this study would be regular unencrypted email. By performing a well-
designed experiment and accepting a hypothesis, you can be confident that the results
offer scientifically grounded insights to help you and other decision-makers choose
an encrypted email solution.

How to Find More Information
One of the premier venues for human factors research, including usability, is the
yearly ACM CHI (Computer-Human Interaction) Conference on Human Factors in
Computing Systems. The annual Symposium on Usable Privacy and Security
(SOUPS) brings together researchers and practitioners in human-computer interac‐
tion, security, and privacy. The Workshop on Usable Security (USEC) is another.

Conclusion
This chapter applied cybersecurity science to human-computer interaction and usa‐
bility. The key concepts and takeaways are:

• Experimentation and testing in human-computer interaction and usable security
are difficult to automate and scale but are highly important to end users.

• Experiments in usability testing include completing specific tasks in a controlled
manner and comparing alternative designs.

• Blind experimentation is a procedure where information is concealed from the
test subject or the experimenter to avoid human bias in the experiment. In
double-blind experiments, neither the subjects nor the experimenters know
which subjects are in the test and control groups during the experiment.

• Three measurable usability characteristics are effectiveness, efficiency, and satis‐
faction.

• Beta testing occurs late in the software development cycle. Usability testing
occurs earlier in the design phase while there is still time to change fundamental
aspects of the solution.

• Usability experiments can be done during design or validation. Testing during
the design phase is focused on providing insights about how to improve the

138 | Chapter 11: Human-Computer Interaction and Usable Security

design. Testing during validation is used to determine metrics for complete tasks,
including time and success rates.

References
• Lorrie Faith Cranor and Simson Garfinkel. Security and Usability: Designing

Secure Systems that People Can Use (Boston, MA: O’Reilly Media, 2005)
• Joseph S. Dumas and Janice C. Redish. A Practical Guide to Usability Testing

(Bristol, UK: Intellect Ltd; Rev Sub edition, 1999)
• Simson Garfinkel and Heather Richter Lipford. Usable Security: History, Themes,

and Challenges (San Rafael, CA: Morgan & Claypool Publishers, 2014)
• Jonathan Lazar, Jinjuan Feng, and Harry Hochheiser. Research Methods in

Human-Computer Interaction (Indianapolis, IN: Wiley, 2010)
• Ben Shneiderman and Catherine Plaisant. Designing the User Interface: Strategies

for Effective Human-Computer Interaction: Fifth Edition (Boston, MA: Addison-
Wesley, 2010)

• Symposium on Usable Privacy and Security (SOUPS)
• Stephen A. Thomas. Data Visualization with JavaScript (San Francisco, CA: No

Starch Press, 2015)
• US Dept. of Health and Human Services

References | 139

http://cups.cs.cmu.edu/soups
http://usability.gov

CHAPTER 12

Visualization

Visualization has a reputation in cybersecurity for being glitzy but shallow, more like
frosting than cake. However, visualization remains an area of active research and
offers an opportunity to apply cybersecurity science. Researcher Danny Quist once
posed this as a fundamental visualization question: “How is my tool better than
grep?” This question gets at the enormous volume of cybersecurity-related data—
especially logs—long dominated by searching and parsing, and grep has been the
gold standard cybersecurity tool to beat. This chapter assumes that you are already
familiar with the basic concepts and value of visualization and looks at the intersec‐
tion of science and visualization, how the scientific method can strengthen credibility
to visualization by measuring and evaluating how your visualizations are working,
and visualization choices to avoid. It also presents a sample case study showing how
to experimentally evaluate visualizations in a forensics tool.

Let’s start with definitions and terminology. Visualization must be based on nonvisi‐
ble data, use an image as the primary means of communication, and provide a way to
learn something about the data. There are a great deal of pretty pictures created in the
name of visualization that fail these criteria, even on the data walls of cybersecurity
watch floors and operations centers. Within data visualization there are also many
types, including charts, maps, networks, animations, and infographics.

Visualization is a natural match for cybersecurity. The cyber domain has vast
amounts of data along with the need to recognize patterns and anomalies. Humans,
being part of the cybersecurity process, need to consume and understand data, and
vision is the highest-bandwidth human sense. Visualization can support exploration,
discovery, decision making, and communication. One famous example of the impor‐
tance of visualization is Anscombe’s quartet, four datasets with nearly identical simple
statistical properties that appear very different when graphed (Figure 12-1). As we

141

mentioned in Chapter 2, one of the best ways to start analyzing data is to literally look
at it using a graph or chart, even if those visualizations are not the ultimate product.

Figure 12-1. Visualization of Anscombe’s quartet showing visual differences despite iden‐
tical simple summary statistics

However, the art and science of visualization for cybersecurity requires knowledge of
both cybersecurity and visualization—two skills that few people possess. Deep knowl‐
edge and context about cybersecurity data is necessary to create visualizations that are
meaningful and useful to users. On the other hand, cybersecurity developers often fail
to acknowledge their ignorance in visualization theory, visual efficiency, and human-
computer interaction. This knowledge split is best addressed by teams of experts who
together can create effective cybersecurity visualizations.

There is a wide range of open research topics in visualization.
Effective human interaction with visualizations remains a challenge
for designers, and visualizations of multidimensional data have
long been a topic of interest.

An Example Scientific Experiment in Cybersecurity
Visualization
For an example of scientific experimentation in cybersecurity visualization, see the
paper “Malware Images: Visualization and Automatic Classification” by Nataraj, Kar‐

142 | Chapter 12: Visualization

1 L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath. 2011. “Malware images: visualization and automatic
classification.” In Proceedings of the 8th International Symposium on Visualization for Cyber Security (Viz‐
Sec ’11). ACM, New York, NY.

2 Image source.

thikeyan, Jacob, and Manjunath (2011).1 In the abstract that follows, you can see that
the hypothesis of this experiment was that visualizations of malware binaries from the
same family appear visually similar in layout and texture. This hypothesis was con‐
firmed in experimental tests. You can see the visual similarities in the images from
two different malware families in Figure 12-2.2

Figure 12-2. Visualization showing two families of malware, the first row belonging to
the family Fakerean and the second row belonging to the family Dontovo.A

The authors say that “we went through the thumbnails of [1,713 malware images in 8
malware families] and verified that the images belonging to a family were indeed sim‐
ilar.” The experiment could have been further validated by showing the images to
unbiased evaluators to measure users’ effectiveness, efficiency, and satisfaction.

Abstract from a cybersecurity visualization experiment
We propose a simple yet effective method for visualizing and classifying malware using
image processing techniques. Malware binaries are visualized as gray-scale images,
with the observation that for many malware families, the images belonging to the same
family appear very similar in layout and texture. Motivated by this visual similarity, a

An Example Scientific Experiment in Cybersecurity Visualization | 143

http://vision.ece.ucsb.edu/~lakshman/nataraj_vizsec_2011_paper.pdf

classification method using standard image features is proposed. Neither disassembly
nor code execution is required for classification. Preliminary experimental results are
quite promising with 98% classification accuracy on a malware database of 9,458 sam‐
ples with 25 different malware families. Our technique also exhibits interesting resil‐
ience to popular obfuscation techniques such as section encryption.

Let’s look at one way you could create images of malware using the open source tool,
colorize. This tool can visualize raw file data and offers one way to visually compare
binaries. These images could be used for your own visual similarity study. Here’s one
approach:

1. Gather the files you want to compare visually. Say you have 10 Windows executa‐
bles:

c:\viz> dir *.exe
variant1.exe variant2.exe variant3.exe variant4.exe
variant5.exe variant6.exe variant7.exe variant8.exe
variant9.exe variant10.exe

2. Run colorize on each file to create images:
c:\viz> colorize -o -w 512 variant1.exe
c:\viz> colorize -o -w 512 variant2.exe
...

3. Compare images to each other and see what the visual similarities and differ‐
ences reveal to you about how these files are related. You may wish to measure
how well this visualization helps other experts in a task such as identifying fami‐
lies of malware (Figure 12-3).

Figure 12-3. Example output of the colorize program showing a visualization of the
binary

144 | Chapter 12: Visualization

http://jessekornblum.com/tools/

3 Edward Tufte. The Visual Display of Quantitative Information. (Graphics Press, 1983).

Graphical Representations of Cybersecurity Data
The goal of visualization should be to aid a human in accomplishing his or her task.
Professor Edward Tufte, statistician and prominent author on data visualization,
wrote that “indeed graphics can be more precise and revealing than conventional stat‐
istical computations.”3

Visualization to Aid Cyber Challenges
A 2014 study identified the following seven challenges faced by cyber defenders. You
can imagine that each might be improved with the help of visualization. Scientific
inquiry could help evaluate how well a visualization has helped improve the challenge.

• Lots of data
• Lots of data sources
• Data sources not linked
• Data quality
• Cadence of the network
• Progression of threat escalation
• Balancing risk and reward

Security and network administrators faced with these challenges may be familiar with
the visualization capabilities of their security tools today. For example, Splunk is a
well-known commercial package for analyzing data such as logs, and includes native
visualization capabilities. Kibana is an open source data visualization platform and is
often used in conjunction with two other log processing and searching tools, Log‐
stash and Elasticsearch. As you can see in Figure 12-4 and Figure 12-5, these plat‐
forms offer traditional types of graphics including bar graphs, pie graphs, histograms,
and world maps.

Graphical Representations of Cybersecurity Data | 145

http://www.splunk.com
https://www.elastic.co/products/kibana

Figure 12-4. An example of cybersecurity visualizations from Splunk using data from
the Cisco Identity Services Engine

Figure 12-5. An example of open source visualization using Hakabana, a Kibana dash‐
board for Haka security alerts

Unfortunately, visualizations are often used inappropriately, leading intentionally or
unintentionally to ambiguity or cognitive bias of the viewer. Let’s look at the chal‐
lenges associated with one kind of visualization: the pie chart. You might consider pie
charts one of many equal choices for displaying data, but there are actually appropri‐
ate and inappropriate uses for pie charts. The basic premise of a pie chart is that the
pie represents a meaningful whole. Don’t use a pie chart if the sum of the slices
doesn’t add up to 100%. Data represented in the pie chart must also be unique to one
slice—they cannot be counted in more than one slice. Another unfortunate problem

146 | Chapter 12: Visualization

http://bit.ly/1NPWLn8
http://www.haka-security.org/hakabana.html

4 Ben Shneiderman. “The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations.” In
Proceedings of the IEEE Symposium on Visual Languages (IEEE Computer Society Press, 1996).

with pie charts is that human viewers are not very good about judging the angle (and
therefore relative size) of a slice. Research suggests that people have low confidence
and low accuracy in reading pie charts, and that people’s perception of the slices can
be manipulated simply by rotating the pie. As a result, it is better to use pie charts to
illustrate comparisons of the slices to the whole, not to compare slices to each other.
Therefore, consider the pie chart only when there are few slices (fewer than five to
seven), when the parts are mutually exclusive, when the slices make up a meaningful
whole, and when you want to show part-whole relationships. Examples of pie charts
can be seen in Appendix A.

For more examples of good and bad illustrations of quantative
information, visit Perceptual Edge.

Ben Shneiderman, a visualization expert, developed his own visual information-
seeking mantra: overview first, zoom and filter, then details-on-demand.4 While not a
set of evaluation criteria per se, the mantra summarizes many visual design guidelines
and provides a framework for designing cybersecurity visualizations. These principles
have been validated with scientific studies showing that they measurably improve
human use of visualizations.

Science can help with cybersecurity visualization in determining two important crite‐
ria: how to visualize and how to evaluate visualizations. Choices about how to visual‐
ize data should be informed by psychological, behavioral, and cultural science.
Consider something as routine as color choice. Say you want to display computer
infections on a colored map. Imagine the Norse Attack Map in Figure 12-6 colored all
red or all green.

Graphical Representations of Cybersecurity Data | 147

http://www.perceptualedge.com/examples.php
http://map.norsecorp.com

Figure 12-6. Norse attack map

Here are some questions to ask when choosing one color over another:

• Will people with red–green color blindness have difficulty interpreting the
graphic?

• Will the graphic be seen and interpreted differently by people in China, where
red is associated with good fortune, and the United States, where red can symbol‐
ize danger?

• Is red an appropriate color for the environments where the graphic is likely to
appear, such as a dimly lit security watch floor?

• Will the color produce an illegible image if printed in black and white?

All of these learned or cultural assumptions can affect the ultimate usefulness of the
visualization, and each can be measured and evaluated to maximize the choices.

Scientifically informed deliberate choices about visualizations can also be tested, and
the next section will look more in depth at how to use experimentation to evaluate
visualizations.

Experimental Evaluation of Security Visualization
Chapter 11 discussed three usability measures: effectiveness, efficiency, and satisfac‐
tion. A key challenge for visualization is evaluating if and how a visualization meets
these criteria. You may wish to test hypotheses such as this new tool effectively conveys
information to a novice user, or users are satisfied when using my tool to solve a prob‐
lem.

148 | Chapter 12: Visualization

There is no universal approach and no single way to evaluate all security visualiza‐
tions. In fact, there is no consensus in the visualization community about what consti‐
tutes an evaluation. Different metrics and assessment techniques should be applied
depending on the purpose and scope of the evaluation. In addition to the three usa‐
bility measures mentioned above, some evaluations will consider other factors such
as the effect on collaboration, cognitive workload, and component interoperability.

User studies are an important method for evaluating cybersecurity visualizations.
These studies can help you pinpoint why a particular visualization is effective or not
with the target user population. Finding users to test your hypotheses can be chal‐
lenging, and different users are appropriate in different situations (e.g., expertise, age,
nationality). It is important to understand your test subjects to recognize and account
for biases that they may bring to the experiment.

When you look at how researchers conduct experimental evaluations of visualiza‐
tions, there are four general types of evaluation:

• Controlled experiments comparing design elements. This category compares
different types or implementations of a specific widget (e.g., a world map) or
compares how well nonvisual data maps to a graphical representation. This is a
controlled experiment because it changes exactly one variable while keeping other
variables constant.

• Usability evaluation. This area is composed of studies that allow users to interact
with a tool and provide feedback to the developers and designers about effective‐
ness, efficiency, and satisfaction, or allows the experimenter to measure and eval‐
uate those criteria

• Controlled experiments comparing two or more tools. This category compares
the differences in effectiveness, efficiency, and satisfaction between different tools
with the same goal. Generally, these studies compare a new tool with similar
existing tools.

• Real-world case studies. This area is composed of research and reports describ‐
ing how real users in natural environments perform their real tasks. These stud‐
ies can be very specific to the users or the environment and have low external
validity (generalizability to other situations).

One or more of these evaluation types may be appropriate for your situation. Within
each type are a variety of evaluation techniques, some of which are experimental. Sur‐
veys, for example, allow you to gather quantitative and qualitative data, but a survey
is not an experimental evaluation. On the other hand, if you used interface instru‐
mentation to collect usage and user interaction information, this technique could be
used to collect data in a controlled experiment. Simulations are another common
evaluation technique because they offer control over the experiment while incorpo‐
rating realistic scenarios and conditions. One of the more advanced techniques is

Experimental Evaluation of Security Visualization | 149

psychophysiological measurements, such as eye tracking, heart rate, and brain meas‐
urements taken during a user’s interaction with a visualization.

Let’s look at a slightly modified version of a usability evaluation. In Figure 12-7, the
researcher wants to see if test subjects can correctly answer questions using the new
visualization by asking a task-based question.

Figure 12-7. User evaluation question: How many subdirectories exist within the root
(“\”) directory?

In a subsequent part of the study, the developer may give the subject the answer in
order to solicit feedback about why the subject got the answer wrong, and the user’s
satisfaction with the visualization (see Figure 12-8).

150 | Chapter 12: Visualization

Figure 12-8. User evaluation, continued

Execution of a User Study
Here are some generic steps to follow when executing a user study. Adjust these steps
depending on the task and the participants, but consider some version of these steps
even for informal evaluations with people you know. It is recommended that you cre‐
ate a script to read to participants, ensuring that you cover everything in the same
way with each participant. Remember, reproducibility is a principle of the scientific
method.

1. Greet and welcome the participant and introduce yourself.
2. Thank the participant for his or her participation.
3. Explain the broad evaluation goals and why you need the participant’s help.
4. Walk through the entire study process with the participant.
5. Make sure that the participant knows what is expected of him or her during the

experiment, and seek consent if necessary.
6. Describe the study to the participant in an appropriate amount of detail.
7. Inform the participant that you will be collecting metrics (e.g., accuracy) and

explicitly state important items that will not be measured (e.g., time).

Experimental Evaluation of Security Visualization | 151

8. Answer any questions that the participant may have about the study or the pro‐
cess.

9. Ask the participant to complete the task.
10. Collect any post-task data as desired, such as a survey or questionnaire.
11. Thank the participant for completing the study.

As you can tell, there are a wide variety of approaches to evaluation, each with its own
tradeoffs. Experimental evaluation will help you evaluate how the visualization is
meeting your intended goals, improve the product, and compare one visualization to
another.

Case Study: Is My Visualization Helping Users Work More
Effectively?
In this section, we walk through a hypothetical scientific experiment in security visu‐
alization. In this experiment, we will perform an experimental evaluation of a ficti‐
tious tool called EvidenceViz, which visualizes a digital forensic disk image in an
attempt to more quickly draw a human’s attention to potential evidence.

There are numerous options for measuring a user’s performance. One is to measure
user accuracy at performing a certain task. Another is to measure the time required
to perform the task. A third is to measure emotional responses, such as the confi‐
dence the user has in her answer (indicating effectiveness). Yet another is qualitative
feedback as in a questionnaire. Tool developers and researchers sometimes have to
use their judgment about which evaluation is the most useful or compelling for other
people who will use or critique the tool. No specific measurement is necessarily
expected or required for a given solution, though there are trends in academic evalu‐
ations toward usability testing and simulation, and very few longitudinal studies—
repeated observations of the same user(s) over time—and interface instrumentations.

The goal of this testing is to help the efficacy of the new visualization technique by
narrowly evaluating one aspect: time required to perform a task. Given our desire to
measure the effectiveness of the visualization at helping a forensic analyst identify
evidence of cyber crime based on the time spent on the task, here is a hypothesis:

Forensic analysts will find specific evidence of cyber crime faster using EvidenceViz
than with EnCase.

EnCase and FTK are two of the most popular forensic tools, and the independent
variables in the experiment are the visualization techniques, yours and theirs. The
null hypothesis is that your visualization is not more effective than the currently used
techniques. The scientific method says that we must keep all other variables in the
experiment constant. In particular, we want to create an experiment where test sub‐

152 | Chapter 12: Visualization

jects will perform the same task, described next, but one randomly assigned group
will use EvidenceViz and another group will use EnCase or FTK.

The task performed by forensic analyst test subjects should reflect realistic work. The
discovery and identification of digital images is a very common forensic task because
photographs are part of many crimes. For the purposes of this experiment, we want a
hard drive image that is realistic but controlled. For many reasons, including legal
and ethical, you should not use a forensic image from a real-life crime. There are dif‐
fering opinions about the degree of realism required. You may benefit from using a
preexisting scenario-based image, or may wish to create a new image of your own. If
you create a new image, consider ways to make it look realistic, such as by browsing
Internet websites and creating documents. Then, plant the data (e.g., images of cats)
that you intend the visualization tools to help the test subjects find.

There are numerous considerations when creating realistic data for
experimentation. For more on one experience creating forensic evi‐
dence in a realistic scenario, see “Creating Realistic Corpora for
Forensic and Security Education” by Woods et al. (2011).

In this particular user study, we must make a trade-off. Either the same study partici‐
pants will see the same forensic image in multiple visualization tools, or individual
participants will see the forensic image in only one tool. Using the same people elimi‐
nates individual differences but biases the experiment because the task requires the
participant to find something, and he or she will likely know the answer after the first
test. On the other hand, when only one set of participants sees a particular technique,
you cannot isolate effects from individual differences and it requires more partici‐
pants. There is no general consensus about how many participants are needed in a
usability study. There have been empirical results endorsing the specific number of
participants as 4±1, 10±2, and various other formulas. You also want to consider
whether to specify or randomize other attributes of the participants, including experi‐
ence. You should consider giving users at least a basic primer on new or unfamiliar
tools to rule out the bias in completion time from familiarity with one tool over
another.

With these considerations in mind, assume you are able to find 20 volunteers who all
have equivalent experience as forensic analysts, 10 each for EvidenceViz and EnCase.
You bring in each participant, explain the experiment, allow him or her to complete
the task with one of the visualization tools, and time how long it takes to complete the
task. The specific task isn’t important, and could be finding a set of images or con‐
structing an event timeline. When you calculate the results, you could find that on
average it took 10.49 minutes to complete the task with EnCase and 7.10 minutes
with EvidenceViz. Using this evidence, you can accept the hypothesis with proof that

Case Study: Is My Visualization Helping Users Work More Effectively? | 153

http://digitalcorpora.org

for this group of people in this situation, people found evidence faster with Evidence‐
Viz than EnCase.

Be careful about the claims you make from this study. It did not
prove that EvidenceViz is universally “better” than EnCase. The
results must be viewed from the narrow lens of the specific task,
the specific test subjects, the specific software versions, and other
characteristics of the experiment.

How to Find More Information
Research in visualization is presented at various conferences, but especially at the
IEEE Visualization Conference (VIS), the Workshop on Visualization for Cyber Secu‐
rity (VizSec), and the IEEE Visual Analytics Science and Technology (VAST) Confer‐
ence. The Visual Analytics Benchmark Repository is a useful collection of ground
truth datasets for use in visualization research.

Conclusion
This chapter looked at the intersection of science and visualization. The key concepts
and takeaways are:

• Deep knowledge and context about cybersecurity data is necessary to create visu‐
alizations that are meaningful and useful to users.

• In one example, experimental tests showed that visualizations of malware binar‐
ies from the same family appear visually similar in layout and texture.

• Cybersecurity science can be used to evaluate whether or not a visualization aids
a human in accomplishing his or her task. When used inappropriately, visualiza‐
tions may intentionally or unintentionally lead to ambiguity or cognitive bias of
the viewer.

• There are four general types of visualization evaluations: controlled experiments
comparing design elements, usability evaluation, controlled experiments compar‐
ing two or more tools, and real-world case studies.

References
• Greg Conti. Security Data Visualization: Graphical Techniques for Network Analy‐

sis (San Francisco, CA: No Starch Press, 2007)
• Noah Iliinsky and Julie Steele. Designing Data Visualizations (Boston, MA:

O’Reilly Media, 2011)

154 | Chapter 12: Visualization

http://hcil2.cs.umd.edu/newvarepository/

• InfoViz Wiki
• Raffael Marty. Applied Security Visualization (Boston, MA: Addison-Wesley Pro‐

fessional, 2008)
• Edward R. Tufte. The Visual Display of Quantitative Information (Cheshire, CT:

Graphics Press, 2001)

References | 155

http://www.infovis-wiki.net

1 Aner Tal and Brian Wansink. “Blinded with science: Trivial graphs and formulas increase ad persuasiveness
and belief in product efficacy.” Public Understanding of Science (2014).

APPENDIX A

Understanding Bad Science, Scientific
Claims, and Marketing Hype

There is a pop song from the 1980s called “She Blinded Me with Science” that plays
on the notion of deliberately hiding truth behind real or made-up science. In this
book, I talked about the amazing benefits of science to everyday cybersecurity.
Unfortunately, not every scientific claim that you see in the news or from vendors is
as reputable as it should be. This appendix will look briefly at the ways in which peo‐
ple are misled, manipulated, or deceived by real or bogus science, scientific claims,
and marketing trickery.

Scientific skepticism is a healthy practice of questioning scientific results and claims.
In particular, it often means discerning whether the conclusions are the result of the
scientific method and are supported by empirical research. This can be very challeng‐
ing even in the best circumstances, and especially difficult when advertisers and mar‐
keters might be appealing to your emotions instead of rationality.

Vendors and marketers sometimes appeal to people’s scientific gullibility. As dis‐
cussed early in the book, people respect and trust science. Unfortunately, people can
also be over trusting and thus deceived by scientific claims if they don’t possess the
experience, healthy suspicion, and rational thinking. One academic study actually
found that people were swayed by advertisements with graphs and formulas just
because they seemed scientific:1

The appearance of being scientific can increase persuasiveness. Even trivial cues can
create such an appearance of a scientific basis. In our studies, including simple ele‐
ments, such as graphs (Studies 1–2) or a chemical formula (Study 3), increased belief

157

2 Paul Vixie, Internet Security Marketing: Buyer Beware.

in a medication’s efficacy. This appears to be due to the association of such elements
with science, rather than increased comprehensibility, use of visuals, or recall. Belief in
science moderates the persuasive effect of graphs, such that people who have a greater
belief in science are more affected by the presence of graphs (Study 2). Overall, the
studies contribute to past research by demonstrating that even trivial elements can
increase public persuasion despite their not truly indicating scientific expertise or
objective support.

Graphics can help explain and clarify data, but don’t be swayed by visualizations
alone. Cybersecurity “attack maps,” for example, might not show the quality data
you’d expect. Instead, they may be populated by “beautifully animated yet unfiltered,
unverified, non-prioritized event data that while visually compelling is worthless
from a security perspective,” says one CEO of an Internet security company.2

BAHFest, the Festival of Bad Ad-Hoc Hypotheses, which started in
2013 at MIT, is a satirical conference organized by evolutionary
biologists for their own entertainment. Speakers present serious-
sounding talks about bogus, made-up (but funny) scientific claims.

In the following sections, we will look at specific ways of communicating scientific
results that you should be aware of as you evaluate cybersecurity products and serv‐
ices.

Dangers of Manipulative Graphics and Visualizations
Chapter 12 explored ways to create and scientifically evaluate visualizations. It also
looked at a few cautionary notes, such as how color can carry cultural or symbolic
significance. Graphics and visualizations are an important mechanism for communi‐
cating scientific results and complex data. Visual communication can supplement and
sometimes simplify complex and dense text. Humans may even process visual infor‐
mation faster than text. But viewers beware, visualizations aren’t always what they
seem.

Bad visualization choices can do more harm than good. Viewers are manipulated by
bad visualizations because of mental shortcomings and perception, not necessarily
because the visualization is incorrect. Look at Figure A-1. It is nearly impossible to
distinguish the distinctions in size between the pie slices. The visualization here is
probably unhelpful to most viewers.

158 | Appendix A: Understanding Bad Science, Scientific Claims, and Marketing Hype

http://www.circleid.com/posts/20150420_internet_security_marketing_buyer_beware/

Figure A-1. An example of a bad pie chart

Figure A-2 illustrates other visualization choices. The pie charts on the left offer little
visual aid because it is difficult to see any difference between them, even though they
are displayed in such a way that the viewer is expected to compare them. The bar
charts are easier to compare, though they lack axis labels, a key feature.

Figure A-2. An example of visually challenging visualizations

Some graphics are manipulative because of the data they omit. Look at Figure A-3.
First, the image is supposed to support the claim that “Ad-Aware significantly outper‐
forms our free peers.” That short statement uses two words, “significantly” and
“peers,” that are not defined and which potentially affect the interpretation of the
claim. The graphic shows two peers, for example. The viewer could assume (incor‐
rectly) that there are no others missing from the comparison. The data in the visuali‐
zation also raises questions. If 393 malware samples were tested, how were those files
chosen? Were they randomly selected or hand-picked for easy detection by this prod‐
uct? What was the false positive rate? We are told how many files each product
“missed,” presumably indicating false negatives, but the antivirus products could have
also incorrectly identified many benign files as malicious. As you evaluate cybersecur‐
ity products and as you report data about your own products, be aware of what the
conclusions and graphics are and aren’t telling you.

Understanding Bad Science, Scientific Claims, and Marketing Hype | 159

http://bit.ly/1Nl9NpG
http://symc.ly/1OoIWyY

Figure A-3. Ad-Aware by Lavasoft in-house performance results

Recognizing and Understanding Scientific Claims
In 2004, Popular Science published an article documenting one writer’s encounters
with science claims in a typical day. He counted 106, starting with his breakfast cereal
box. You encounter a lot of scientific claims because advertising is everywhere and
advertisers are in the business of making claims. Recognizing the positive spin that
advertisers naturally seek is important when you have to make a decision about
whether to use, buy, or believe that product. Having read this book, you are already
ahead of the curve. According to the National Science Board’s 2002 study “Science
and Engineering Indicators,” only one-third of Americans can “adequately explain
what it means to study something scientifically.”

Scientific claims may be easy to recognize. Here are some examples:

• Tests show that Product A can detect 97% of sophisticated malware.
• Our forensic imaging software is twice as fast as competing products.
• Company B’s fingerprint reader is 99.9% accurate.
• Alice Corp. is better at detecting insider threats than Bob Corp.
• Nine out of ten websites we scanned on the Internet are vulnerable to the XYZ

attack.

Scientific claims tend to be obvious because they are being used to promote or sell a
product or service.

One of the marketing phrases that immediately raises flags for me is when something
is “scientifically proven.” This phrase is misguided because scientific conclusions are
never absolutely certain. All empirical evidence has some margin of error, however
small. Furthermore, scientific models don’t have to be 100% correct to be valid. It is

160 | Appendix A: Understanding Bad Science, Scientific Claims, and Marketing Hype

http://bit.ly/1Nl9ATl

3 FireEye, How Cyber Attacks Compromise Your Network, retrieved June 1, 2015.

dangerous to believe that the scientific truth we believe now cannot be updated with
new evidence or new interpretations of the evidence.

There is a well-known book by Darrell Huff titled How to Lie with Statistics (1954)
that documents ways in which numbers and statistics are sometimes presented to
support a lie. As a trivial example, consider the ambiguous meaning of the word
“average.” The description of a scientific result should use a precise mathematical
word: mean, median, or mode. While all three describe the data truthfully, choosing
one and calling it the “average” may be misleading. For example, someone might say
“the average company lost $10 million due to cybersecurity compromises last year.”
What does that mean? The answer depends greatly on the number of companies sam‐
pled and the distribution of the values. In Table A-1, the “average loss” could be
reported as $750,000 (median), $1 million (mode), or $20 million (mean).

Table A-1. Financial losses for five fictitious victims in 2014 (median=$750,000; mode=$1M;
mean=$20M)

Company Financial Loss From Cyber Attacks in 2014

Victim #1 $0

Victim #2 $500,000

Victim #3 $500,000

Victim #4 $1,000,000

Victim #5 $1,000,000

Victim #6 $100,000,000

One company issues an often-quoted report on the global cost of data breaches. The
report includes this poignant disclaimer of a reason to be skeptical of the results:
“Our study draws upon a representative, non-statistical sample of U.S.-based entities
experiencing a breach involving the loss or theft of customer or consumer records
during the past 12 months. Statistical inferences, margins of error and confidence
intervals cannot be applied to these data given that our sampling methods are not sci‐
entific [emphasis added].” There may be other reasons to trust this report, but pru‐
dent readers should make a calculated and cautious choice.

You should be especially skeptical about vendor-sponsored reports, since the vendor
has a financial incentive to make its product look good. There may be vendors that
you trust to report unbiased facts even if those facts don’t support the vendor. It is still
wise to be cautious and ask yourself what, if anything, the vendor has to gain by the
data. FireEye, a respected cybersecurity company, had this headline on its website:
“FireEye NX Series Achieves 99% Detection Rate.”3 Below the headline it said “Third-

Understanding Bad Science, Scientific Claims, and Marketing Hype | 161

http://bit.ly/1Nl9ICe

4 Delta Testing, A New Approach to Assessing Advanced Threat Solutions, retrieved June 1, 2015.

party vendor, Delta Testing, tested a number of vendors using real-world advanced
malware. Read the full report to find out the results.” If you clicked on the link and
read the report cover-to-cover, you could find this disclaimer on the last page: “Fire‐
Eye sponsored the execution of this test and chose the vendors selected.”4

Surveys are a fertile ground for abuse. Among the red flags you should watch for are
surveys that fail to disclose the survey methodology, sample size, and margin of error.
A survey found that a surprising 89% of infosec professionals think that DDoS
attacks are the biggest threat to their company. Here is how selection bias might skew
that statistic by making it larger than reality. You start by buying an email list from a
reputable marketing firm. Your email to the list includes a link to the survey, with a
note that respondents must be infosec professionals. You also promise that by com‐
pleting the survey, the respondent will be entered for a chance to win a $50 gift card.
When your survey is over, you may very well have gotten 89% of respondents who
say that DDoS attacks are the top threat. However, there is a strong selection bias
because the respondents were those who clicked on the email and self-selected as
infosec professionals.

In his book and website Spurious Correlations, Tyler Vigen explores various scenarios
in which data can be combined in surprising and often humorous ways. He says of
himself, “…I do have a love for science and discovery and that’s all anyone should
need.” The word “spurious” means fake, bogus, or fraudulent, and the charts on Vig‐
en’s site intentionally illustrate such correlations. Consider, for example, Figure A-4,
which charts actual US spending on science, space, and technology (as reported by
the Office of Management and Budget) with suicides by hanging, strangulation, and
suffocation (as reported by the Centers for Disease Control and Prevention). Because
the graphs have a similar shape, it might appear that these unrelated statistics are cor‐
related when in fact they are totally independent.

Figure A-4. A spurious correlation of two unrelated statistics

162 | Appendix A: Understanding Bad Science, Scientific Claims, and Marketing Hype

http://bit.ly/1Nl9GKH
http://www.tylervigen.com/spurious-correlations

Vendor Marketing
“Attackers have significantly decreased the cost of obtaining sensitive track data.”
How often do you see phrases like this one, which appeared in a vendor security
report? What does significantly mean here? Marketing strategist David Meerman
Scott calls this kind of language “gobbledygook,” including such phrases as “market
leading,” “groundbreaking,” and “next generation.”

Look at the press release in Figure A-5. This article describes the results of an evalua‐
tion from NSS Labs, an independent security research company. One NSS slogan is
“At NSS, we make security a science.” So far, so good. Fortinet describes the product
that was tested as an “advanced persistent threats breach detection system” but takes
liberty in saying that the product “achieves high rankings for APT threat detection”
because NSS never claims that it tests advanced threats, only “real-world” traffic (For‐
tinet also does not define APT). It is good to see a false positive rate reported, but no
false negative rate is given. We aren’t told how many, if any, nonmalicious events were
incorrectly identified as malicious.

Figure A-5. A Fortinet press release

Let’s assume that salespeople are doing their best to communicate with you, that their
use of ambiguous terms or lack of convincing evidence is innocent and isn’t intended
to deceive you. The questions in the next section may help you dig deeper and get
answers to help you evaluate the quality and trustworthiness of their products or
research results. And in the unfortunate case where the salesperson is trying to hide

Understanding Bad Science, Scientific Claims, and Marketing Hype | 163

http://bit.ly/1OoJvJi

the shortcomings of the product or research, these questions may also help reveal that
situation.

Clarifying Questions for Salespeople, Researchers, and
Developers
Your experience and expertise are valuable when learning and evaluating new tech‐
nology. The first time you read about a new cybersecurity development or see a new
product, chances are that your intuition will give you a sense for the value and utility
of that result for you. As we’ve seen in this appendix, vendors, marketers, even
researchers are trying to convince you of something. It can be helpful for you to have
some clarifying questions ready which probe deeper through the sales pitch. Whether
you’re chatting with colleagues, reading an academic paper, or talking with an exhibi‐
tor at a conference, these questions might help you decide for yourself whether the
product or experimental results are valid.

• Who did the work? Are there any conflicts of interest?
• Who paid for the work and why was it done?
• Did the experimentation or research follow the scientific method? Is it repeata‐

ble?
• How were the experimental or evaluation dataset or test subjects chosen?
• How large was the sample size? Was it truly representative?
• What is the precision associated with the results, and does it support the implied

degree of accuracy?
• What are the factually supported conclusions, and what are the speculations?
• What is the sampling error?
• What was the developer or researcher looking for when the result was found?

Was he or she biased by expectations?
• What other studies have been done on this topic? Do they say the same thing? If

they are different, why are they different?
• Do the graphics and visualizations help convey meaningful information without

manipulating the viewer?
• Are adverbs like “significantly” and “substantially” describing the product or

research sufficiently supported by evidence?
• The product seems to be supported primarily by anecdotes and testimonials.

What is the supporting evidence?
• How did you arrive at causation for the correlated data/event?

164 | Appendix A: Understanding Bad Science, Scientific Claims, and Marketing Hype

5 F. Fidler, G. Cumming, M. Burgman, N. J. Thomason. Statistical reform in medicine, psychology and ecology,
The Journal of Socio-Economics 33, 615–630 (2004).

• Who are the authors of the study or literature? Are they credible experts in their
field?

• Do the results hinge on rare or extreme data that could be attributed to anoma‐
lies or non-normal conditions?

• What is the confidence interval of the result?

In the 1990s, numerous journals in medicine, psychology, and ecol‐
ogy underwent an editorial shift to requiring confidence intervals
and discouraging sole reliance on statistical hypothesis testing
(such as p values) because authors were routinely misusing and
misinterpreting significance tests.5

• Are the conclusions based on predictions extrapolated from different data than
the actual data?

• Are the results based on rare occurrences? What is the likelihood of the condi‐
tion occurring?

• Has the result been confirmed or replicated by multiple, independent sources?
• Was there no effect, no effect detected, or a nonsignificant effect?
• Even if the results are statistically significant, is the effect size so small that the

result is unimportant?

For more red flags of bad science, see the Science or Not blog.

References
• Hamid Ghanadan. Persuading Scientists: Marketing to the World’s Most Skeptical

Audience (Nashville, TN: RockBench Publishing Corp, 2012)
• Noah J. Goldstein, Steve J. Martin, and Robert B. Cialdini. Yes!: 50 Scientifically

Proven Ways to Be Persuasive (New York, NY: Free Press, 2009)
• Darrell Huff. How to Lie with Statistics (New York, NY: W. W. Norton & Com‐

pany, 1954)
• Alex Reinhart. Statistics Done Wrong: The Woefully Complete Guide, (San Fran‐

cisco, CA: No Starch Press, 2015)

Understanding Bad Science, Scientific Claims, and Marketing Hype | 165

http://scienceornot.net/science-red-flags/

• David Meerman Scott. The New Rules of Marketing & PR, Fourth Edition (Indi‐
anapolis, IN: Wiley, 2013)

• Michael Shermer. Why People Believe Weird Things: Pseudoscience, Superstition,
and Other Confusions of Our Time, (New York, NY: Holt Paperbacks, 2002)

166 | Appendix A: Understanding Bad Science, Scientific Claims, and Marketing Hype

Index

A
ACNS Conference, 87
address space layout randomization (ASLR), 4
adversarial models, 45-47, 81
AES-128 algorithm, 86
AlienVault Open Threat Exchange, 103
alternative hypothesis, 16-17, 62
Amazon

cloud computing and, 36, 43
machine learning service, 72
Mechanical Turk, 38
public datasets, 34
shopping habits study, 6

analysis, 42
(see also malware analysis)
of experimental testing, 21-24
of situational awareness, 65-75
of software assurance, 42
regression, 115

Anscombe's quartet, 141
Apache Hive software, 67
ARMOR algorithm, 104
artifacts, 114
ASLR (address space layout randomization), 4
Axelsson, Stefan, 56
axioms, defined, 10
Azure Machine Learning, 72

B
Bacon, Francis, 7
bad science, 157, 165
Bagle malware, 106
base-rate fallacy, 56
A Beautiful Mind (film), 104

Bell-La Padula confidentiality policy, 18
beta testing, 132
biases, human cognitive, 11
big data, situational awareness and, 65
block ciphers, 83
botnets, 21, 32, 85
Box, George, 116
BPP (Binary Packet Protocol), 81
brute-force attacks, 80
buffer overflow attacks, 4
Bugcrowd, 103

C
CAIDA (Center for Applied Internet Data

Analysis), 34
case studies

evaluating composable security, 85-87
finding needle in haystack, 73-75
forensic tool performance comparison,

94-96
identifying malware families, 106-108
measuring detection performance, 60-63
software exploitability, 47-50
unintentional insider threats, 120-121
user-friendly encrypted email interface,

135-138
working more effectively, 152-154

cat-and-mouse games, 105, 119
causation, correlation and, 23
CCS Conference, 122
Celsius-Fahrenheit temperature conversion,

116
Center for Applied Internet Data Analysis

(CAIDA), 34

167

CERT Coordination Center, 53
CERT Insider Threat Center, 120
Chaos Monkey program, 118
CHI Conference, 138
chi-squared statistic, 23
chosen-ciphertext attacks, 79
chosen-plaintext attacks, 79
ciphertext attacks, 79
Cisco Registered Envelope Service (CRES),

135-138
classification, 23, 71, 73
cloud computing, 36, 72
CloudLab instrument, 37
clustering (machine learning), 71
colorize tool, 144
Common Criteria, 41
common sense, 3
Common Vulnerability Scoring System (CVSS),

47
Communications of the ACM, 93
composable security, 85-87
Concurrent Probing technique, 133
Concurrent Think Aloud technique, 133
Conficker malware, 69
confirmation bias, 11
controlled experiments, 149
conversion, Fahrenheit-Celsius, 116
Conway, Drew, 69
cor command (R), 117
correlation and causation, 23
correlation coefficients, 116
CRES (Cisco Registered Envelope Service),

135-138
cross-validation, 118
CRYPTO Conference, 87
cryptography

about, 77
evaluating composable security, 85-87
IoT and, 83-84
performance of algorithms, 78-80
provably secure, 80-82
scientific experiments in, 77-78

CryptoLUX Wiki, 83
CVSS (Common Vulnerability Scoring System),

47
Cyber Genome project, 106
CyberSA Conference, 75
cybersecurity

about, 2-4

art of, 4
job descriptions, 83
practical applications of, 5-7
theory and practice, 9-10

cybersecurity experimentation, 42
(see also scientific experiments)
about, 31-32
analyzing results, 21-24
asking good questions, 15-19
checklists for, 26-28, 38
designing fair tests, 19-20
examples of, 3
formulating hypotheses, 15-19
project management for, 28
putting results to work, 25
security and testability, 18
test environments for, 34-38

cybersecurity science
about, 1-4
human factors in, 10-12
importance of, 5-7
role of metrics in, 12
scientific method in, 7-9
theory and practice, 9-10

Cynomix technology, 106

D
DARPA

Cyber Genome project, 106
DECREE, 35
SIEM system testing, 73

data loss prevention (DLP) technology, 120-121
data mining for network monitoring, 70-73
datasets, public, 34, 71, 94
Daubert standard, 91
DDoS (distributed denial-of-service), 85
DECREE, 35
deduction, 3
denial-of-service attacks, 9, 56
Denning, Dorothy, 53
dependent variables, 16, 23
Descartes (philosopher), 7
descriptive statistics, 21
designing

fair tests, 19-20
testing during, 132-134

desktop testing, 35-36
DFRWS (Digital Forensics Research Work‐

shop), 96

168 | Index

DGAs (domain generation algorithms), 69
digital forensics

about, 89
comparison of tool performance, 94-96
reproducibility and repeatability, 93
scientific experiments in, 89-90
scientific validity and, 90-93

Digital Forensics Research Workshop
(DFRWS), 96

DigitalCorpora.org website, 94
DIMVA Conference, 64
distributed denial-of-service (DDoS), 85
DLP (data loss prevention) technology, 120-121
DNA profiling, 107
domain generation algorithms (DGAs), 69
double-blind experiments, 128
DSN (Dependable Systems and Networks)

Conference, 122
dynamic analysis, 42, 100

E
EAL (evaluation assurance level), 41
ecological validity, 32
effectiveness (usability), 130, 152-154
efficiency (usability), 130
ElGamal crypto algorithm, 80
email encryption, 135-138
emergent properties, 85
empirical method, 7
EnCase software, 92, 152-154
encryption

email, 135-138
evaluating effectiveness of, 79-80
experiment with, 86-87

Enron Corpus public dataset, 34
evaluation assurance level (EAL), 41
experimentation (see cybersecurity experimen‐

tation; scientific experiments)
!exploitable crash analyzer, 48
exploratory data analysis, 23
external validity, 20

F
Fahrenheit-Celsius temperature conversion,

116
fair tests, 19-20
false negatives, 55-58
false positives, 55-58, 92
falsifiability (scientific method), 6, 7

Farid, Hany, 91
file-path translator, 90
FireEye provider, 103, 161
FlowMonitor module (ns-3), 101
forensics, digital (see digital forensics)
formal methods, 44
Frye standard, 91
FTK tool, 152
fuzzing method, 42, 43-44

G
Galileo utility, 49
Gambit software, 106
game theory

about, 5, 103
for malware analysis, 103-106
for security resource allocation, 104

GameSec Conference, 108
Gams software, 106
Gauss, Carl Friedrich, 77
Gershengorn, Dana, 91
get-aduser cmdlet, 115
GitHub repository, 25
GNU Privacy Guard (GPG), 80
Google

PageRank algorithm, 6
sharing results in public domain, 25
speech recognition, 70
translation tool, 90

Gordin, Michael, 10
GPG (GNU Privacy Guard), 80
graphical representations of data, 145-148,

158-159
grep tool, 141
GUARDS algorithm, 104
guessing, untested, 3

H
HackerOne, 103
HDFS (Hadoop Distributed File System), 67, 94
Heartbleed bug, 47
hindsight bias, 12
Homeland Security, Department of, 41, 103
Honeynet Project, 102
honeypots, 104
hping3 tool, 57
HSR (human subjects research), 34
Huff, Darrell, 161
human factors

Index | 169

about, 10
human cognitive biases, 11
human-computer interaction and, 125-139
in simulations, 33
roles in cybersecurity science, 10
situational awareness and, 68-70

human subjects research (HSR), 34
hypotheses

alternative, 16-17, 62
assumptions and, 20
creating, 15-18
identifying implied, 17
in disguise, 112
null, 16-17, 62, 152

I
IDA Pro disassembler, 99
IDSs (intrusion detection systems)

developing solutions, 5, 54
false positives and false negatives, 56-58
Snort detection package, 60

incident response (see intrusion detection and
incident response)

independent variables, 16, 23
inferential statistics, 21
information theory, 80
insider threats, unintentional, 120-121
institutional review board (IRB), 27
internal validity, 20
International Standards Organization (ISO),

129-131
Internet of Things (IoT), 83-84, 86
Interset (company), 68
intrusion detection and incident response

about, 53
false positives and false negatives, 55-58
performance and, 58-63
scalability and, 58-60
scientific experiments in, 54-55, 100
stress testing and, 58-60

intrusion detection systems (see IDSs)
intuition, 3
IoT (Internet of Things), 83-84, 86
IRB (institutional review board), 27
IRIS algorithm, 104
ISO (International Standards Organization),

129-131
issue-tracking systems, 47

J
Jeffreys, Alec, 107
Jira issue-tracking system, 47

K
k-means clustering algorithm, 71
Kaggle website, 73
Kahneman, Daniel, 12
Kaspersky Labs, 83
Kerckhoffs's principle, 80
key management, 87, 112
Kibana platform, 145
knowledge

methods for obtaining, 3
scientific expert testimony and, 91

known-plaintext attacks, 79

L
lablets, 9
legal cases, digital evidence and, 90-93
LibVMI tool, 102
Lightweight Mesh protocol, 86
linear regression, 23, 115
LISA Conference, 60
lm command (R), 116
The Logic of Scientific Discovery (Popper), 6

M
machine learning, 50, 70-73
Machine Learning for Hackers (Conway), 69
MALCON Conference, 108
malware analysis

about, 5, 99
classification challenge, 73
game theory for, 103-106
identifying malware families, 106-108
scientific experiments in, 100
scientific method and, 8
simulators and sandboxes for, 100-102
system security engineering and, 113-115
testing scalability, 15

malware images, visualization showing,
143-144

man-in-the-middle attacks, 80, 82
marketing

ambiguous terms in, 163
appealing to scientific gullibility, 157
asking clarifying questions, 164-165

170 | Index

A Mathematical Theory of Cryptography
(Shannon), 80

MATLAB software, 116
Maxion, Roy, 65
McAfee ePolicy Orchestrator, 114
mean (analytical method), 22
measurements (metrics) (see metrics (measure‐

ments))
Mechanical Turk (Amazon), 38
median (analytical method), 22
metrics (measurements)

CVSS scores, 47
false negative rate, 57
false positive rate, 57
for encryption, 79
performance benchmarks, 59
role of, 12
Snort detection performance, 60-63
usability, 129-132

Microsoft Research, 3, 44
mode (analytical method), 22
modeling

adversarial models, 45-47, 81
in test environments, 32-33

Morris worm, 53
moving target defense, 5, 105, 118
mutually assured destruction, 104
Mytob malware family, 106

N
Nagios monitoring program, 73-75
Nash equilibrium, 104
Nash, John Forbes, Jr., 104
National Science Board, 160
National Science Foundation, 25
National Security Agency

block ciphers and, 83
lablets and, 9
open datasets, 34

National Vulnerability Database, 49
NDSS (symposium), 122
Netflix and Chaos Monkey, 118
network monitoring

data mining for, 70-73
human factor in, 68-70
machine learning for, 70-73

neural networks, 70-73
Nielsen, Jakob, 126
no free lunch theorems, 72

Norse attack map, 147
Novum Organum (Bacon), 7
ns-3 simulator, 101
NSS Labs, 163
NStreamAware system, 66
null hypothesis, 16-17, 62, 152
NVisAware application, 66

O
objectivity (scientific method), 7
observer effect, 31
open datasets, 34, 71
overconfidence bias, 12

P
p-value, 23
PageRank algorithm, 6
password cracking, 36
penetration testing, 42
perfect secrecy notion, 80
performance

of cryptographic algorithms, 78-80
of forensic tools, 94-96
of intrusion detection, 58-63

Petroski, Henry, 9
PGP (Pretty Good Privacy), 135
pie charts, 146, 159
Pinoccio Scouts, 86
PKI (public key infrastructure), 112
plaintext attacks, 79
PlanetLab testbed, 37
plot command (R), 116
PointToPointHelper class, 101
Popper, Karl, 6
Practical Malware Analysis (Sikorski), 99
PREDICT datasets, 34
predictability (scientific method), 8
Pretty Good Privacy (PGP), 135
project management, 28
PROTECT algorithm, 104
provably secure cryptography, 80-82
pseudoscience, 10
The Pseudoscience Wars (Gordin), 10
public datasets, 34, 71, 94
public key infrastructure (PKI), 112
Pwn2Own contest, 103
PyVMI library, 102

Index | 171

Q
question formulation

asking good questions, 15-18
asking probing questions, 133
for sales pitches, 164-165

Quist, Danny, 141

R
R software, 72, 116-118
RAID Symposium, 64
ranges (testbeds), 37
Reamde (Stephenson), 55
receiver operating characteristic (ROC) curve,

57-58
REcon Conference, 108
Recursive Feature Elimination (RFE), 49
regression analysis, 115-118
repeatability, 8, 93
reproducibility (scientific method), 8, 36, 93
results of experimentation

analyzing, 21-24
predictability of, 8
sharing, 25
situational awareness and, 68-70

Retrospective Probing technique, 133
Retrospective Think Aloud technique, 133
reverse engineering, 108
RFE (Recursive Feature Elimination), 49
rigor

in incident response, 53
scientific, 9

ROC (receiver operating characteristic) curve,
57-58

RSA Conference, 83
RStudio IDE, 72

S
sample sizes, 19
sandboxes, scientific data collection for,

100-102
Sandia National Laboratories, 46
satisfaction (usability), 130
scalability

for intrusion detection, 58-60
testing, 15

Schneier, Bruce, 77
Science of Security Virtual Organization (SoS

VO), 9

scientific claims, 157, 160-162
scientific experiments, 42

(see also cybersecurity experimentation)
double-blind, 128
in cryptography, 77-80
in digital forensics, 89-90
in intrusion detection, 54-55, 100
in malware analysis, 100
in situational awareness, 66-68
in software assurance, 42-43
in system security engineering, 113-115
in usable security, 126-128
in visualization, 142-144

scientific method
about, 7
cryptography and, 77
elements of, 7, 15, 93
Frye standard and, 91
governing principles, 7
motivations for, 6
research methods supported, 8
SDLC and, 44

scientific rigor, 9
SciStarter website, 102
Scott, David Meerman, 163
SDDR protocol, 77-78
SDLC (software development life cycle), 44
Security Architect job description, 83
security resource allocation, game theory for,

104
SecurityMetrics.org website, 12
Sen, Souyma, 60
Shannon, Claude, 80
Shneiderman, Ben, 131, 147
Sikorski, Michael, 99
Simon block ciphers, 83
simulation

in test environments, 32-33
scientific data collection for, 100-102

Siri speech recognition, 70
situational awareness

big data and, 65
finding needle in haystack, 73-75
human network defenders and, 68-70
network monitoring, 70-73
scientific experiments in, 66-68

SLAM project, 44
The Sleuth Kit for Hadoop, 94
Snort intrusion detection package, 60-63

172 | Index

software assurance
about, 41
adversarial models, 45-47
fuzzing for, 43-44
scientific experiments in, 42-43
SDLC and, 44
software exploitability, 47-50

software development life cycle (SDLC), 44
SoS VO (Science of Security Virtual Organiza‐

tion), 9
SOUPS (symposium), 138
SourceForge repository, 25
Speck block ciphers, 83
speech recognition, 70
Splunk package, 145
Spurious Correlations (Vigen), 162
SSH protocol, 81
Stackelberg games, 104, 105
static analysis, 42, 101
statistical power, 20
statistics (overview), 21-23
Stephenson, Neal, 55
stress testing, 58-60
summative testing, 134
supervised learning, 71
surveys, 130-131, 149-152, 162
Symantic provider, 103
Synack, 103
sysstat tools, 59
system security engineering

about, 111-112
moving target defense, 118
regression analysis and, 115-118
scientific experiments in, 113-115
unintentional insider threats, 120-121

T
temperature conversion, 116
test environments

checklist for, 38
cloud computing, 36
cybersecurity testbeds, 37
desktop testing, 35-36
modeling and simulation in, 32-33
open datasets for, 34

testbeds (ranges), 37
testing considerations

designing fair tests, 19-20
for intrusion detection, 58-60

testability of security, 18
testing scalability, 15
testing usability, 132-135

Thinking Fast and Slow (Kahneman), 12
TLS (Transport Layer Security) protocol, 81, 86
translation methods, 90
Transport Layer Security (TLS) protocol, 81, 86
Trusted Computer System Evaluation Criteria,

41, 113
TRUSTS algorithm, 104
Tufte, Edward, 145
Tukey, John, 23
Twitter social media site, 70

U
UC Irvine Machine Learning Repository, 71
United States of America v. Rudy Frabizio, 91
universal composability, 85
unsupervised learning, 71
untested guessing, 3
usability

about, 125
double-blind experiments and, 128
five myths of, 128
measurement characteristics, 129-132
methods for gathering data, 132-135
scientific experiments in security, 126-128
testing, 132-135
user-friendly encrypted email interface,

135-138
Usability Engineering (Nielsen), 126
USEC Workshop, 138
USENIX Security Symposium, 87
user studies, 151
UX Myths website, 128

V
validation

cross-validation, 118
of security policies, 18
testing usability during, 134

validity
ecological, 32
external, 20
identifying challenges to, 20
internal, 20
of digital forensics, 90-93

variables
dependent, 16, 23

Index | 173

independent, 16, 23
VAST Challenge, 66
VAST Conference, 154
vendor marketing, 157, 163-165
verifiability (scientific method), 8
verification, testing usability during, 134
Verizon Data Breach Investigations Report, 10,

65
Vigen, Tyler, 162
Vincenti, Walter, 3
virtual machine introspection (VMI), 102
virtualization, desktop solutions, 35
VIS Conference, 154
Visual Analytics Benchmark Repository, 154
visualization

about, 141-142
dangers of manipulating, 158-159
evaluating security, 148-152

graphical representations of data, 145-148
scientific experiments in, 142-144
working more effectively, 152-154

VizSec Workshop, 154
VMI (virtual machine introspection), 102

W
What Engineers Know and How They Know It

(Vincenti), 3
WYSIATI acronym, 12

X
XTEA algorithm, 86

Z
Zions Bancorporation, 67

174 | Index

About the Author
Josiah Dykstra is a Senior Researcher at the Department of Defense. Dykstra
received his PhD in Computer Science from the University of Maryland, Baltimore
County, researching the technical and legal challenges of digital forensics for cloud
computing. He is known in the DoD and forensics communities for his work on net‐
work security, intrusion detection, malware analysis, digital forensics, and cloud
computing. He is a member of the ACM, IEEE, American Academy of Forensic Sci‐
ences, Cloud Security Alliance, and American Bar Association.

Colophon
The animal on the cover of Essential Cybersecurity Science is a Japanese rhinoceros
beetle (Allomyrina dichotoma), also known as kabutomushi in Japanese—mushi for
bug and kabuto for helmet (referring to a samurai helmet in this case).

The Japanese rhino beetle is distinct in its sexual dimorphism: males are much larger
at 40–80 mm, whereas females reach about 40–60 mm. Males have a small thoracic
horn and a longer cephalic horn with a characteristic Y shape, which they use during
mating rituals and to maintain territory by lifting other males off the ground and
tossing them into the air. This nocturnal species has white or red eyes that are adap‐
ted to low light levels. Both males and females have dark brown bodies with black
ventral parts, and unusually long front legs. This species can be found in broad-leaved
forests in tropical or subtropical mountainous environments in Japan, Taiwan, Korea,
and eastern China. It feeds on tree sap, fruits, and generally sugary foods.

A Japanese rhino beetle spends most of its life underground, with only about four
months spent as an actual beetle. It emerges from the ground in late spring, and usu‐
ally dies in early fall after mating and laying eggs. Eggs are laid directly in the ground;
once hatched into larva, offspring mature within a year. Males die after mating many
times; female beetles usually die after laying eggs.

In Japan, many children buy or catch Japanese rhino beetles and breed them; these
insects sell for about 500–1,000 yen (about $5–10). They are also very popular in
gambling; in a popular game, two male beetles are placed on a log, where they battle,
trying to push the other off the log. The sole beetle remaining on the log is the win‐
ner. Gambling over this game is a major source and loss of money, particularly in the
Ryukyu Islands.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

http://animals.oreilly.com

The cover image is from Insects Abroad. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	What This Book Contains
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Disclaimer
	Acknowledgments

	Chapter 1. Introduction to Cybersecurity Science
	What Is Cybersecurity Science?
	The Importance of Cybersecurity Science
	The Scientific Method
	Cybersecurity Theory and Practice
	Pseudoscience

	Human Factors
	Roles Humans Play in Cybersecurity Science
	Human Cognitive Biases

	The Role of Metrics
	Conclusion
	References

	Chapter 2. Conducting Your Own Cybersecurity Experiments
	Asking Good Questions and Formulating Hypotheses
	Creating a Hypothesis
	Security and Testability

	Designing a Fair Test
	Analyzing Your Results
	Putting Results to Work
	A Checklist for Conducting Experimentation
	Conclusion
	References

	Chapter 3. Cybersecurity Experimentation and Test
 Environments
	Modeling and Simulation
	Open Datasets for Testing
	Desktop Testing
	Cloud Computing
	Cybersecurity Testbeds
	A Checklist for Selecting an Experimentation and Test
 Environment
	Conclusion
	References

	Chapter 4. Software Assurance
	An Example Scientific Experiment in Software Assurance
	Fuzzing for Software Assurance
	The Scientific Method and the Software Development Life
 Cycle
	Adversarial Models
	Case Study: The Risk of Software Exploitability
	A New Experiment

	How to Find More Information
	Conclusion
	References

	Chapter 5. Intrusion Detection and Incident Response
	An Example Scientific Experiment in Intrusion Detection
	False Positives and False Negatives
	Performance, Scalability, and Stress Testing
	Case Study: Measuring Snort Detection Performance
	Building on Previous Work
	A New Experiment

	How to Find More Information
	Conclusion
	References

	Chapter 6. Situational Awareness and Data Analytics
	An Example Scientific Experiment in Situational Awareness
	Experimental Results to Assist Human Network Defenders
	Machine Learning and Data Mining for Network Monitoring
	Case Study: How Quickly Can You Find the Needle in the
 Haystack?
	A New Experiment

	How to Find More Information
	Conclusion
	References

	Chapter 7. Cryptography
	An Example Scientific Experiment in Cryptography
	Experimental Evaluation of Cryptographic Designs and
 Implementation
	Provably Secure Cryptography and Security Assumptions
	Cryptographic Security and the Internet of Things
	Case Study: Evaluating Composable Security
	Background
	A New Experiment

	How to Find More Information
	Conclusion
	References

	Chapter 8. Digital Forensics
	An Example Scientific Experiment in Digital Forensics
	Scientific Validity and the Law
	Scientific Reproducibility and Repeatability
	Case Study: Scientific Comparison of Forensic Tool
 Performance
	How to Find More Information
	Conclusion
	References

	Chapter 9. Malware Analysis
	An Example Scientific Experiment in Malware Analysis
	Scientific Data Collection for Simulators and Sandboxes
	Game Theory for Malware Analysis
	Case Study: Identifying Malware Families with Science
	Building on Previous Work
	A New Experiment

	How to Find More Information
	Conclusion
	References

	Chapter 10. System Security Engineering
	An Example Scientific Experiment in System Security
 Engineering
	Regression Analysis
	Moving Target Defense
	Case Study: Defending Against Unintentional Insider Threats
	How to Find More Information
	Conclusion
	References

	Chapter 11. Human-Computer Interaction and Usable
 Security
	An Example Scientific Experiment in Usable Security
	Double-Blind Experimentation
	Usability Measures: Effectiveness, Efficiency, and
 Satisfaction
	Methods for Gathering Usability Data
	Testing Usability During Design
	Testing Usability During Validation and Verification

	Case Study: An Interface for User-Friendly Encrypted Email
	A New Experiment

	How to Find More Information
	Conclusion
	References

	Chapter 12. Visualization
	An Example Scientific Experiment in Cybersecurity
 Visualization
	Graphical Representations of Cybersecurity Data
	Experimental Evaluation of Security Visualization
	Case Study: Is My Visualization Helping Users Work More
 Effectively?
	How to Find More Information
	Conclusion
	References

	Appendix A. Understanding Bad Science, Scientific Claims, and Marketing
 Hype
	Dangers of Manipulative Graphics and Visualizations
	Recognizing and Understanding Scientific Claims
	Vendor Marketing
	Clarifying Questions for Salespeople, Researchers, and
 Developers
	References

	Index
	About the Author

